SelectionDAGISel.cpp revision 8c39020359e1b80277277382c63560f592619a2f
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/InlineAsm.h"
23#include "llvm/Instructions.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineDebugInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/SelectionDAG.h"
32#include "llvm/CodeGen/SSARegMap.h"
33#include "llvm/Target/MRegisterInfo.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Target/TargetFrameInfo.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Transforms/Utils/BasicBlockUtils.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/Support/Debug.h"
43#include <map>
44#include <set>
45#include <iostream>
46#include <algorithm>
47using namespace llvm;
48
49#ifndef NDEBUG
50static cl::opt<bool>
51ViewISelDAGs("view-isel-dags", cl::Hidden,
52          cl::desc("Pop up a window to show isel dags as they are selected"));
53static cl::opt<bool>
54ViewSchedDAGs("view-sched-dags", cl::Hidden,
55          cl::desc("Pop up a window to show sched dags as they are processed"));
56#else
57static const bool ViewISelDAGs = 0;
58static const bool ViewSchedDAGs = 0;
59#endif
60
61// Scheduling heuristics
62enum SchedHeuristics {
63  defaultScheduling,      // Let the target specify its preference.
64  noScheduling,           // No scheduling, emit breadth first sequence.
65  simpleScheduling,       // Two pass, min. critical path, max. utilization.
66  simpleNoItinScheduling, // Same as above exact using generic latency.
67  listSchedulingBURR,     // Bottom up reg reduction list scheduling.
68  listSchedulingTD        // Top-down list scheduler.
69};
70
71namespace {
72  cl::opt<SchedHeuristics>
73  ISHeuristic(
74    "sched",
75    cl::desc("Choose scheduling style"),
76    cl::init(defaultScheduling),
77    cl::values(
78      clEnumValN(defaultScheduling, "default",
79                 "Target preferred scheduling style"),
80      clEnumValN(noScheduling, "none",
81                 "No scheduling: breadth first sequencing"),
82      clEnumValN(simpleScheduling, "simple",
83                 "Simple two pass scheduling: minimize critical path "
84                 "and maximize processor utilization"),
85      clEnumValN(simpleNoItinScheduling, "simple-noitin",
86                 "Simple two pass scheduling: Same as simple "
87                 "except using generic latency"),
88      clEnumValN(listSchedulingBURR, "list-burr",
89                 "Bottom up register reduction list scheduling"),
90      clEnumValN(listSchedulingTD, "list-td",
91                 "Top-down list scheduler"),
92      clEnumValEnd));
93} // namespace
94
95namespace {
96  /// RegsForValue - This struct represents the physical registers that a
97  /// particular value is assigned and the type information about the value.
98  /// This is needed because values can be promoted into larger registers and
99  /// expanded into multiple smaller registers than the value.
100  struct RegsForValue {
101    /// Regs - This list hold the register (for legal and promoted values)
102    /// or register set (for expanded values) that the value should be assigned
103    /// to.
104    std::vector<unsigned> Regs;
105
106    /// RegVT - The value type of each register.
107    ///
108    MVT::ValueType RegVT;
109
110    /// ValueVT - The value type of the LLVM value, which may be promoted from
111    /// RegVT or made from merging the two expanded parts.
112    MVT::ValueType ValueVT;
113
114    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
115
116    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
117      : RegVT(regvt), ValueVT(valuevt) {
118        Regs.push_back(Reg);
119    }
120    RegsForValue(const std::vector<unsigned> &regs,
121                 MVT::ValueType regvt, MVT::ValueType valuevt)
122      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
123    }
124
125    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
126    /// this value and returns the result as a ValueVT value.  This uses
127    /// Chain/Flag as the input and updates them for the output Chain/Flag.
128    SDOperand getCopyFromRegs(SelectionDAG &DAG,
129                              SDOperand &Chain, SDOperand &Flag) const;
130
131    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
132    /// specified value into the registers specified by this object.  This uses
133    /// Chain/Flag as the input and updates them for the output Chain/Flag.
134    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
135                       SDOperand &Chain, SDOperand &Flag) const;
136
137    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
138    /// operand list.  This adds the code marker and includes the number of
139    /// values added into it.
140    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
141                              std::vector<SDOperand> &Ops) const;
142  };
143}
144
145namespace llvm {
146  //===--------------------------------------------------------------------===//
147  /// FunctionLoweringInfo - This contains information that is global to a
148  /// function that is used when lowering a region of the function.
149  class FunctionLoweringInfo {
150  public:
151    TargetLowering &TLI;
152    Function &Fn;
153    MachineFunction &MF;
154    SSARegMap *RegMap;
155
156    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
157
158    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
159    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
160
161    /// ValueMap - Since we emit code for the function a basic block at a time,
162    /// we must remember which virtual registers hold the values for
163    /// cross-basic-block values.
164    std::map<const Value*, unsigned> ValueMap;
165
166    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
167    /// the entry block.  This allows the allocas to be efficiently referenced
168    /// anywhere in the function.
169    std::map<const AllocaInst*, int> StaticAllocaMap;
170
171    unsigned MakeReg(MVT::ValueType VT) {
172      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
173    }
174
175    unsigned CreateRegForValue(const Value *V);
176
177    unsigned InitializeRegForValue(const Value *V) {
178      unsigned &R = ValueMap[V];
179      assert(R == 0 && "Already initialized this value register!");
180      return R = CreateRegForValue(V);
181    }
182  };
183}
184
185/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
186/// PHI nodes or outside of the basic block that defines it, or used by a
187/// switch instruction, which may expand to multiple basic blocks.
188static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
189  if (isa<PHINode>(I)) return true;
190  BasicBlock *BB = I->getParent();
191  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
192    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
193        isa<SwitchInst>(*UI))
194      return true;
195  return false;
196}
197
198/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
199/// entry block, return true.  This includes arguments used by switches, since
200/// the switch may expand into multiple basic blocks.
201static bool isOnlyUsedInEntryBlock(Argument *A) {
202  BasicBlock *Entry = A->getParent()->begin();
203  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
204    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
205      return false;  // Use not in entry block.
206  return true;
207}
208
209FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
210                                           Function &fn, MachineFunction &mf)
211    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
212
213  // Create a vreg for each argument register that is not dead and is used
214  // outside of the entry block for the function.
215  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
216       AI != E; ++AI)
217    if (!isOnlyUsedInEntryBlock(AI))
218      InitializeRegForValue(AI);
219
220  // Initialize the mapping of values to registers.  This is only set up for
221  // instruction values that are used outside of the block that defines
222  // them.
223  Function::iterator BB = Fn.begin(), EB = Fn.end();
224  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
225    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
226      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
227        const Type *Ty = AI->getAllocatedType();
228        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
229        unsigned Align =
230          std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
231                   AI->getAlignment());
232
233        // If the alignment of the value is smaller than the size of the value,
234        // and if the size of the value is particularly small (<= 8 bytes),
235        // round up to the size of the value for potentially better performance.
236        //
237        // FIXME: This could be made better with a preferred alignment hook in
238        // TargetData.  It serves primarily to 8-byte align doubles for X86.
239        if (Align < TySize && TySize <= 8) Align = TySize;
240        TySize *= CUI->getValue();   // Get total allocated size.
241        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
242        StaticAllocaMap[AI] =
243          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
244      }
245
246  for (; BB != EB; ++BB)
247    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
248      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
249        if (!isa<AllocaInst>(I) ||
250            !StaticAllocaMap.count(cast<AllocaInst>(I)))
251          InitializeRegForValue(I);
252
253  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
254  // also creates the initial PHI MachineInstrs, though none of the input
255  // operands are populated.
256  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
257    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
258    MBBMap[BB] = MBB;
259    MF.getBasicBlockList().push_back(MBB);
260
261    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
262    // appropriate.
263    PHINode *PN;
264    for (BasicBlock::iterator I = BB->begin();
265         (PN = dyn_cast<PHINode>(I)); ++I)
266      if (!PN->use_empty()) {
267        unsigned NumElements =
268          TLI.getNumElements(TLI.getValueType(PN->getType()));
269        unsigned PHIReg = ValueMap[PN];
270        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
271        for (unsigned i = 0; i != NumElements; ++i)
272          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
273      }
274  }
275}
276
277/// CreateRegForValue - Allocate the appropriate number of virtual registers of
278/// the correctly promoted or expanded types.  Assign these registers
279/// consecutive vreg numbers and return the first assigned number.
280unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
281  MVT::ValueType VT = TLI.getValueType(V->getType());
282
283  // The number of multiples of registers that we need, to, e.g., split up
284  // a <2 x int64> -> 4 x i32 registers.
285  unsigned NumVectorRegs = 1;
286
287  // If this is a packed type, figure out what type it will decompose into
288  // and how many of the elements it will use.
289  if (VT == MVT::Vector) {
290    const PackedType *PTy = cast<PackedType>(V->getType());
291    unsigned NumElts = PTy->getNumElements();
292    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
293
294    // Divide the input until we get to a supported size.  This will always
295    // end with a scalar if the target doesn't support vectors.
296    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
297      NumElts >>= 1;
298      NumVectorRegs <<= 1;
299    }
300    if (NumElts == 1)
301      VT = EltTy;
302    else
303      VT = getVectorType(EltTy, NumElts);
304  }
305
306  // The common case is that we will only create one register for this
307  // value.  If we have that case, create and return the virtual register.
308  unsigned NV = TLI.getNumElements(VT);
309  if (NV == 1) {
310    // If we are promoting this value, pick the next largest supported type.
311    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
312    unsigned Reg = MakeReg(PromotedType);
313    // If this is a vector of supported or promoted types (e.g. 4 x i16),
314    // create all of the registers.
315    for (unsigned i = 1; i != NumVectorRegs; ++i)
316      MakeReg(PromotedType);
317    return Reg;
318  }
319
320  // If this value is represented with multiple target registers, make sure
321  // to create enough consecutive registers of the right (smaller) type.
322  unsigned NT = VT-1;  // Find the type to use.
323  while (TLI.getNumElements((MVT::ValueType)NT) != 1)
324    --NT;
325
326  unsigned R = MakeReg((MVT::ValueType)NT);
327  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
328    MakeReg((MVT::ValueType)NT);
329  return R;
330}
331
332//===----------------------------------------------------------------------===//
333/// SelectionDAGLowering - This is the common target-independent lowering
334/// implementation that is parameterized by a TargetLowering object.
335/// Also, targets can overload any lowering method.
336///
337namespace llvm {
338class SelectionDAGLowering {
339  MachineBasicBlock *CurMBB;
340
341  std::map<const Value*, SDOperand> NodeMap;
342
343  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
344  /// them up and then emit token factor nodes when possible.  This allows us to
345  /// get simple disambiguation between loads without worrying about alias
346  /// analysis.
347  std::vector<SDOperand> PendingLoads;
348
349  /// Case - A pair of values to record the Value for a switch case, and the
350  /// case's target basic block.
351  typedef std::pair<Constant*, MachineBasicBlock*> Case;
352  typedef std::vector<Case>::iterator              CaseItr;
353  typedef std::pair<CaseItr, CaseItr>              CaseRange;
354
355  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
356  /// of conditional branches.
357  struct CaseRec {
358    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
359    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
360
361    /// CaseBB - The MBB in which to emit the compare and branch
362    MachineBasicBlock *CaseBB;
363    /// LT, GE - If nonzero, we know the current case value must be less-than or
364    /// greater-than-or-equal-to these Constants.
365    Constant *LT;
366    Constant *GE;
367    /// Range - A pair of iterators representing the range of case values to be
368    /// processed at this point in the binary search tree.
369    CaseRange Range;
370  };
371
372  /// The comparison function for sorting Case values.
373  struct CaseCmp {
374    bool operator () (const Case& C1, const Case& C2) {
375      if (const ConstantUInt* U1 = dyn_cast<const ConstantUInt>(C1.first))
376        return U1->getValue() < cast<const ConstantUInt>(C2.first)->getValue();
377
378      const ConstantSInt* S1 = dyn_cast<const ConstantSInt>(C1.first);
379      return S1->getValue() < cast<const ConstantSInt>(C2.first)->getValue();
380    }
381  };
382
383public:
384  // TLI - This is information that describes the available target features we
385  // need for lowering.  This indicates when operations are unavailable,
386  // implemented with a libcall, etc.
387  TargetLowering &TLI;
388  SelectionDAG &DAG;
389  const TargetData &TD;
390
391  /// SwitchCases - Vector of CaseBlock structures used to communicate
392  /// SwitchInst code generation information.
393  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
394
395  /// FuncInfo - Information about the function as a whole.
396  ///
397  FunctionLoweringInfo &FuncInfo;
398
399  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
400                       FunctionLoweringInfo &funcinfo)
401    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
402      FuncInfo(funcinfo) {
403  }
404
405  /// getRoot - Return the current virtual root of the Selection DAG.
406  ///
407  SDOperand getRoot() {
408    if (PendingLoads.empty())
409      return DAG.getRoot();
410
411    if (PendingLoads.size() == 1) {
412      SDOperand Root = PendingLoads[0];
413      DAG.setRoot(Root);
414      PendingLoads.clear();
415      return Root;
416    }
417
418    // Otherwise, we have to make a token factor node.
419    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
420    PendingLoads.clear();
421    DAG.setRoot(Root);
422    return Root;
423  }
424
425  void visit(Instruction &I) { visit(I.getOpcode(), I); }
426
427  void visit(unsigned Opcode, User &I) {
428    switch (Opcode) {
429    default: assert(0 && "Unknown instruction type encountered!");
430             abort();
431      // Build the switch statement using the Instruction.def file.
432#define HANDLE_INST(NUM, OPCODE, CLASS) \
433    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
434#include "llvm/Instruction.def"
435    }
436  }
437
438  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
439
440  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
441                        SDOperand SrcValue, SDOperand Root,
442                        bool isVolatile);
443
444  SDOperand getIntPtrConstant(uint64_t Val) {
445    return DAG.getConstant(Val, TLI.getPointerTy());
446  }
447
448  SDOperand getValue(const Value *V);
449
450  const SDOperand &setValue(const Value *V, SDOperand NewN) {
451    SDOperand &N = NodeMap[V];
452    assert(N.Val == 0 && "Already set a value for this node!");
453    return N = NewN;
454  }
455
456  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
457                                    MVT::ValueType VT,
458                                    bool OutReg, bool InReg,
459                                    std::set<unsigned> &OutputRegs,
460                                    std::set<unsigned> &InputRegs);
461
462  // Terminator instructions.
463  void visitRet(ReturnInst &I);
464  void visitBr(BranchInst &I);
465  void visitSwitch(SwitchInst &I);
466  void visitUnreachable(UnreachableInst &I) { /* noop */ }
467
468  // Helper for visitSwitch
469  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
470
471  // These all get lowered before this pass.
472  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
473  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
474
475  void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
476  void visitShift(User &I, unsigned Opcode);
477  void visitAdd(User &I) {
478    visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD);
479  }
480  void visitSub(User &I);
481  void visitMul(User &I) {
482    visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL);
483  }
484  void visitDiv(User &I) {
485    const Type *Ty = I.getType();
486    visitBinary(I,
487                Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV,
488                Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV);
489  }
490  void visitRem(User &I) {
491    const Type *Ty = I.getType();
492    visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
493  }
494  void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); }
495  void visitOr (User &I) { visitBinary(I, ISD::OR,  0, ISD::VOR); }
496  void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); }
497  void visitShl(User &I) { visitShift(I, ISD::SHL); }
498  void visitShr(User &I) {
499    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
500  }
501
502  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
503  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
504  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
505  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
506  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
507  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
508  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
509
510  void visitExtractElement(ExtractElementInst &I);
511  void visitInsertElement(InsertElementInst &I);
512
513  void visitGetElementPtr(User &I);
514  void visitCast(User &I);
515  void visitSelect(User &I);
516
517  void visitMalloc(MallocInst &I);
518  void visitFree(FreeInst &I);
519  void visitAlloca(AllocaInst &I);
520  void visitLoad(LoadInst &I);
521  void visitStore(StoreInst &I);
522  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
523  void visitCall(CallInst &I);
524  void visitInlineAsm(CallInst &I);
525  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
526  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
527
528  void visitVAStart(CallInst &I);
529  void visitVAArg(VAArgInst &I);
530  void visitVAEnd(CallInst &I);
531  void visitVACopy(CallInst &I);
532  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
533
534  void visitMemIntrinsic(CallInst &I, unsigned Op);
535
536  void visitUserOp1(Instruction &I) {
537    assert(0 && "UserOp1 should not exist at instruction selection time!");
538    abort();
539  }
540  void visitUserOp2(Instruction &I) {
541    assert(0 && "UserOp2 should not exist at instruction selection time!");
542    abort();
543  }
544};
545} // end namespace llvm
546
547SDOperand SelectionDAGLowering::getValue(const Value *V) {
548  SDOperand &N = NodeMap[V];
549  if (N.Val) return N;
550
551  const Type *VTy = V->getType();
552  MVT::ValueType VT = TLI.getValueType(VTy);
553  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
554    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
555      visit(CE->getOpcode(), *CE);
556      assert(N.Val && "visit didn't populate the ValueMap!");
557      return N;
558    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
559      return N = DAG.getGlobalAddress(GV, VT);
560    } else if (isa<ConstantPointerNull>(C)) {
561      return N = DAG.getConstant(0, TLI.getPointerTy());
562    } else if (isa<UndefValue>(C)) {
563      if (!isa<PackedType>(VTy))
564        return N = DAG.getNode(ISD::UNDEF, VT);
565
566      // Create a VBUILD_VECTOR of undef nodes.
567      const PackedType *PTy = cast<PackedType>(VTy);
568      unsigned NumElements = PTy->getNumElements();
569      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
570
571      std::vector<SDOperand> Ops;
572      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
573
574      // Create a VConstant node with generic Vector type.
575      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
576      Ops.push_back(DAG.getValueType(PVT));
577      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
578    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
579      return N = DAG.getConstantFP(CFP->getValue(), VT);
580    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
581      unsigned NumElements = PTy->getNumElements();
582      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
583
584      // Now that we know the number and type of the elements, push a
585      // Constant or ConstantFP node onto the ops list for each element of
586      // the packed constant.
587      std::vector<SDOperand> Ops;
588      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
589        if (MVT::isFloatingPoint(PVT)) {
590          for (unsigned i = 0; i != NumElements; ++i) {
591            const ConstantFP *El = cast<ConstantFP>(CP->getOperand(i));
592            Ops.push_back(DAG.getConstantFP(El->getValue(), PVT));
593          }
594        } else {
595          for (unsigned i = 0; i != NumElements; ++i) {
596            const ConstantIntegral *El =
597            cast<ConstantIntegral>(CP->getOperand(i));
598            Ops.push_back(DAG.getConstant(El->getRawValue(), PVT));
599          }
600        }
601      } else {
602        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
603        SDOperand Op;
604        if (MVT::isFloatingPoint(PVT))
605          Op = DAG.getConstantFP(0, PVT);
606        else
607          Op = DAG.getConstant(0, PVT);
608        Ops.assign(NumElements, Op);
609      }
610
611      // Create a VBUILD_VECTOR node with generic Vector type.
612      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
613      Ops.push_back(DAG.getValueType(PVT));
614      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
615    } else {
616      // Canonicalize all constant ints to be unsigned.
617      return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
618    }
619  }
620
621  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
622    std::map<const AllocaInst*, int>::iterator SI =
623    FuncInfo.StaticAllocaMap.find(AI);
624    if (SI != FuncInfo.StaticAllocaMap.end())
625      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
626  }
627
628  std::map<const Value*, unsigned>::const_iterator VMI =
629      FuncInfo.ValueMap.find(V);
630  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
631
632  unsigned InReg = VMI->second;
633
634  // If this type is not legal, make it so now.
635  if (VT == MVT::Vector) {
636    // FIXME: We only handle legal vectors right now.  We need a VBUILD_VECTOR
637    const PackedType *PTy = cast<PackedType>(VTy);
638    unsigned NumElements = PTy->getNumElements();
639    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
640    MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
641    assert(TLI.isTypeLegal(TVT) &&
642           "FIXME: Cannot handle illegal vector types here yet!");
643    VT = TVT;
644  }
645
646  MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
647
648  N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
649  if (DestVT < VT) {
650    // Source must be expanded.  This input value is actually coming from the
651    // register pair VMI->second and VMI->second+1.
652    N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
653                    DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
654  } else {
655    if (DestVT > VT) { // Promotion case
656      if (MVT::isFloatingPoint(VT))
657        N = DAG.getNode(ISD::FP_ROUND, VT, N);
658      else
659        N = DAG.getNode(ISD::TRUNCATE, VT, N);
660    }
661  }
662
663  return N;
664}
665
666
667void SelectionDAGLowering::visitRet(ReturnInst &I) {
668  if (I.getNumOperands() == 0) {
669    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
670    return;
671  }
672  std::vector<SDOperand> NewValues;
673  NewValues.push_back(getRoot());
674  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
675    SDOperand RetOp = getValue(I.getOperand(i));
676
677    // If this is an integer return value, we need to promote it ourselves to
678    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
679    // than sign/zero.
680    if (MVT::isInteger(RetOp.getValueType()) &&
681        RetOp.getValueType() < MVT::i64) {
682      MVT::ValueType TmpVT;
683      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
684        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
685      else
686        TmpVT = MVT::i32;
687
688      if (I.getOperand(i)->getType()->isSigned())
689        RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
690      else
691        RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
692    }
693    NewValues.push_back(RetOp);
694  }
695  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, NewValues));
696}
697
698void SelectionDAGLowering::visitBr(BranchInst &I) {
699  // Update machine-CFG edges.
700  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
701  CurMBB->addSuccessor(Succ0MBB);
702
703  // Figure out which block is immediately after the current one.
704  MachineBasicBlock *NextBlock = 0;
705  MachineFunction::iterator BBI = CurMBB;
706  if (++BBI != CurMBB->getParent()->end())
707    NextBlock = BBI;
708
709  if (I.isUnconditional()) {
710    // If this is not a fall-through branch, emit the branch.
711    if (Succ0MBB != NextBlock)
712      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
713                              DAG.getBasicBlock(Succ0MBB)));
714  } else {
715    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
716    CurMBB->addSuccessor(Succ1MBB);
717
718    SDOperand Cond = getValue(I.getCondition());
719    if (Succ1MBB == NextBlock) {
720      // If the condition is false, fall through.  This means we should branch
721      // if the condition is true to Succ #0.
722      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
723                              Cond, DAG.getBasicBlock(Succ0MBB)));
724    } else if (Succ0MBB == NextBlock) {
725      // If the condition is true, fall through.  This means we should branch if
726      // the condition is false to Succ #1.  Invert the condition first.
727      SDOperand True = DAG.getConstant(1, Cond.getValueType());
728      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
729      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
730                              Cond, DAG.getBasicBlock(Succ1MBB)));
731    } else {
732      std::vector<SDOperand> Ops;
733      Ops.push_back(getRoot());
734      // If the false case is the current basic block, then this is a self
735      // loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it
736      // adds an extra instruction in the loop.  Instead, invert the
737      // condition and emit "Loop: ... br!cond Loop; br Out.
738      if (CurMBB == Succ1MBB) {
739        std::swap(Succ0MBB, Succ1MBB);
740        SDOperand True = DAG.getConstant(1, Cond.getValueType());
741        Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
742      }
743      SDOperand True = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
744                                   DAG.getBasicBlock(Succ0MBB));
745      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, True,
746                              DAG.getBasicBlock(Succ1MBB)));
747    }
748  }
749}
750
751/// visitSwitchCase - Emits the necessary code to represent a single node in
752/// the binary search tree resulting from lowering a switch instruction.
753void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
754  SDOperand SwitchOp = getValue(CB.SwitchV);
755  SDOperand CaseOp = getValue(CB.CaseC);
756  SDOperand Cond = DAG.getSetCC(MVT::i1, SwitchOp, CaseOp, CB.CC);
757
758  // Set NextBlock to be the MBB immediately after the current one, if any.
759  // This is used to avoid emitting unnecessary branches to the next block.
760  MachineBasicBlock *NextBlock = 0;
761  MachineFunction::iterator BBI = CurMBB;
762  if (++BBI != CurMBB->getParent()->end())
763    NextBlock = BBI;
764
765  // If the lhs block is the next block, invert the condition so that we can
766  // fall through to the lhs instead of the rhs block.
767  if (CB.LHSBB == NextBlock) {
768    std::swap(CB.LHSBB, CB.RHSBB);
769    SDOperand True = DAG.getConstant(1, Cond.getValueType());
770    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
771  }
772  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
773                                 DAG.getBasicBlock(CB.LHSBB));
774  if (CB.RHSBB == NextBlock)
775    DAG.setRoot(BrCond);
776  else
777    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
778                            DAG.getBasicBlock(CB.RHSBB)));
779  // Update successor info
780  CurMBB->addSuccessor(CB.LHSBB);
781  CurMBB->addSuccessor(CB.RHSBB);
782}
783
784void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
785  // Figure out which block is immediately after the current one.
786  MachineBasicBlock *NextBlock = 0;
787  MachineFunction::iterator BBI = CurMBB;
788  if (++BBI != CurMBB->getParent()->end())
789    NextBlock = BBI;
790
791  // If there is only the default destination, branch to it if it is not the
792  // next basic block.  Otherwise, just fall through.
793  if (I.getNumOperands() == 2) {
794    // Update machine-CFG edges.
795    MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[I.getDefaultDest()];
796    // If this is not a fall-through branch, emit the branch.
797    if (DefaultMBB != NextBlock)
798      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
799                              DAG.getBasicBlock(DefaultMBB)));
800    return;
801  }
802
803  // If there are any non-default case statements, create a vector of Cases
804  // representing each one, and sort the vector so that we can efficiently
805  // create a binary search tree from them.
806  std::vector<Case> Cases;
807  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
808    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
809    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
810  }
811  std::sort(Cases.begin(), Cases.end(), CaseCmp());
812
813  // Get the Value to be switched on and default basic blocks, which will be
814  // inserted into CaseBlock records, representing basic blocks in the binary
815  // search tree.
816  Value *SV = I.getOperand(0);
817  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
818
819  // Get the current MachineFunction and LLVM basic block, for use in creating
820  // and inserting new MBBs during the creation of the binary search tree.
821  MachineFunction *CurMF = CurMBB->getParent();
822  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
823
824  // Push the initial CaseRec onto the worklist
825  std::vector<CaseRec> CaseVec;
826  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
827
828  while (!CaseVec.empty()) {
829    // Grab a record representing a case range to process off the worklist
830    CaseRec CR = CaseVec.back();
831    CaseVec.pop_back();
832
833    // Size is the number of Cases represented by this range.  If Size is 1,
834    // then we are processing a leaf of the binary search tree.  Otherwise,
835    // we need to pick a pivot, and push left and right ranges onto the
836    // worklist.
837    unsigned Size = CR.Range.second - CR.Range.first;
838
839    if (Size == 1) {
840      // Create a CaseBlock record representing a conditional branch to
841      // the Case's target mbb if the value being switched on SV is equal
842      // to C.  Otherwise, branch to default.
843      Constant *C = CR.Range.first->first;
844      MachineBasicBlock *Target = CR.Range.first->second;
845      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
846                                     CR.CaseBB);
847      // If the MBB representing the leaf node is the current MBB, then just
848      // call visitSwitchCase to emit the code into the current block.
849      // Otherwise, push the CaseBlock onto the vector to be later processed
850      // by SDISel, and insert the node's MBB before the next MBB.
851      if (CR.CaseBB == CurMBB)
852        visitSwitchCase(CB);
853      else {
854        SwitchCases.push_back(CB);
855        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
856      }
857    } else {
858      // split case range at pivot
859      CaseItr Pivot = CR.Range.first + (Size / 2);
860      CaseRange LHSR(CR.Range.first, Pivot);
861      CaseRange RHSR(Pivot, CR.Range.second);
862      Constant *C = Pivot->first;
863      MachineBasicBlock *RHSBB = 0, *LHSBB = 0;
864      // We know that we branch to the LHS if the Value being switched on is
865      // less than the Pivot value, C.  We use this to optimize our binary
866      // tree a bit, by recognizing that if SV is greater than or equal to the
867      // LHS's Case Value, and that Case Value is exactly one less than the
868      // Pivot's Value, then we can branch directly to the LHS's Target,
869      // rather than creating a leaf node for it.
870      if ((LHSR.second - LHSR.first) == 1 &&
871          LHSR.first->first == CR.GE &&
872          cast<ConstantIntegral>(C)->getRawValue() ==
873          (cast<ConstantIntegral>(CR.GE)->getRawValue() + 1ULL)) {
874        LHSBB = LHSR.first->second;
875      } else {
876        LHSBB = new MachineBasicBlock(LLVMBB);
877        CaseVec.push_back(CaseRec(LHSBB,C,CR.GE,LHSR));
878      }
879      // Similar to the optimization above, if the Value being switched on is
880      // known to be less than the Constant CR.LT, and the current Case Value
881      // is CR.LT - 1, then we can branch directly to the target block for
882      // the current Case Value, rather than emitting a RHS leaf node for it.
883      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
884          cast<ConstantIntegral>(RHSR.first->first)->getRawValue() ==
885          (cast<ConstantIntegral>(CR.LT)->getRawValue() - 1ULL)) {
886        RHSBB = RHSR.first->second;
887      } else {
888        RHSBB = new MachineBasicBlock(LLVMBB);
889        CaseVec.push_back(CaseRec(RHSBB,CR.LT,C,RHSR));
890      }
891      // Create a CaseBlock record representing a conditional branch to
892      // the LHS node if the value being switched on SV is less than C.
893      // Otherwise, branch to LHS.
894      ISD::CondCode CC = C->getType()->isSigned() ? ISD::SETLT : ISD::SETULT;
895      SelectionDAGISel::CaseBlock CB(CC, SV, C, LHSBB, RHSBB, CR.CaseBB);
896      if (CR.CaseBB == CurMBB)
897        visitSwitchCase(CB);
898      else {
899        SwitchCases.push_back(CB);
900        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
901      }
902    }
903  }
904}
905
906void SelectionDAGLowering::visitSub(User &I) {
907  // -0.0 - X --> fneg
908  if (I.getType()->isFloatingPoint()) {
909    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
910      if (CFP->isExactlyValue(-0.0)) {
911        SDOperand Op2 = getValue(I.getOperand(1));
912        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
913        return;
914      }
915  }
916  visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
917}
918
919void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp,
920                                       unsigned VecOp) {
921  const Type *Ty = I.getType();
922  SDOperand Op1 = getValue(I.getOperand(0));
923  SDOperand Op2 = getValue(I.getOperand(1));
924
925  if (Ty->isIntegral()) {
926    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
927  } else if (Ty->isFloatingPoint()) {
928    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
929  } else {
930    const PackedType *PTy = cast<PackedType>(Ty);
931    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
932    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
933    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
934  }
935}
936
937void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
938  SDOperand Op1 = getValue(I.getOperand(0));
939  SDOperand Op2 = getValue(I.getOperand(1));
940
941  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
942
943  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
944}
945
946void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
947                                      ISD::CondCode UnsignedOpcode) {
948  SDOperand Op1 = getValue(I.getOperand(0));
949  SDOperand Op2 = getValue(I.getOperand(1));
950  ISD::CondCode Opcode = SignedOpcode;
951  if (I.getOperand(0)->getType()->isUnsigned())
952    Opcode = UnsignedOpcode;
953  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
954}
955
956void SelectionDAGLowering::visitSelect(User &I) {
957  SDOperand Cond     = getValue(I.getOperand(0));
958  SDOperand TrueVal  = getValue(I.getOperand(1));
959  SDOperand FalseVal = getValue(I.getOperand(2));
960  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
961                           TrueVal, FalseVal));
962}
963
964void SelectionDAGLowering::visitCast(User &I) {
965  SDOperand N = getValue(I.getOperand(0));
966  MVT::ValueType SrcVT = N.getValueType();
967  MVT::ValueType DestVT = TLI.getValueType(I.getType());
968
969  if (DestVT == MVT::Vector) {
970    // This is a cast to a vector from something else.  This is always a bit
971    // convert.  Get information about the input vector.
972    const PackedType *DestTy = cast<PackedType>(I.getType());
973    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
974    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
975                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
976                             DAG.getValueType(EltVT)));
977  } else if (SrcVT == DestVT) {
978    setValue(&I, N);  // noop cast.
979  } else if (DestVT == MVT::i1) {
980    // Cast to bool is a comparison against zero, not truncation to zero.
981    SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) :
982                                       DAG.getConstantFP(0.0, N.getValueType());
983    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
984  } else if (isInteger(SrcVT)) {
985    if (isInteger(DestVT)) {        // Int -> Int cast
986      if (DestVT < SrcVT)   // Truncating cast?
987        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
988      else if (I.getOperand(0)->getType()->isSigned())
989        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
990      else
991        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
992    } else if (isFloatingPoint(DestVT)) {           // Int -> FP cast
993      if (I.getOperand(0)->getType()->isSigned())
994        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
995      else
996        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
997    } else {
998      assert(0 && "Unknown cast!");
999    }
1000  } else if (isFloatingPoint(SrcVT)) {
1001    if (isFloatingPoint(DestVT)) {  // FP -> FP cast
1002      if (DestVT < SrcVT)   // Rounding cast?
1003        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1004      else
1005        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1006    } else if (isInteger(DestVT)) {        // FP -> Int cast.
1007      if (I.getType()->isSigned())
1008        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1009      else
1010        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1011    } else {
1012      assert(0 && "Unknown cast!");
1013    }
1014  } else {
1015    assert(SrcVT == MVT::Vector && "Unknown cast!");
1016    assert(DestVT != MVT::Vector && "Casts to vector already handled!");
1017    // This is a cast from a vector to something else.  This is always a bit
1018    // convert.  Get information about the input vector.
1019    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1020  }
1021}
1022
1023void SelectionDAGLowering::visitInsertElement(InsertElementInst &I) {
1024  SDOperand InVec = getValue(I.getOperand(0));
1025  SDOperand InVal = getValue(I.getOperand(1));
1026  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1027                                getValue(I.getOperand(2)));
1028
1029  SDOperand Num = *(InVec.Val->op_end()-2);
1030  SDOperand Typ = *(InVec.Val->op_end()-1);
1031  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1032                           InVec, InVal, InIdx, Num, Typ));
1033}
1034
1035void SelectionDAGLowering::visitExtractElement(ExtractElementInst &I) {
1036  SDOperand InVec = getValue(I.getOperand(0));
1037  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1038                                getValue(I.getOperand(1)));
1039  SDOperand Typ = *(InVec.Val->op_end()-1);
1040  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1041                           TLI.getValueType(I.getType()), InVec, InIdx));
1042}
1043
1044void SelectionDAGLowering::visitGetElementPtr(User &I) {
1045  SDOperand N = getValue(I.getOperand(0));
1046  const Type *Ty = I.getOperand(0)->getType();
1047  const Type *UIntPtrTy = TD.getIntPtrType();
1048
1049  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1050       OI != E; ++OI) {
1051    Value *Idx = *OI;
1052    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1053      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
1054      if (Field) {
1055        // N = N + Offset
1056        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
1057        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1058                        getIntPtrConstant(Offset));
1059      }
1060      Ty = StTy->getElementType(Field);
1061    } else {
1062      Ty = cast<SequentialType>(Ty)->getElementType();
1063
1064      // If this is a constant subscript, handle it quickly.
1065      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1066        if (CI->getRawValue() == 0) continue;
1067
1068        uint64_t Offs;
1069        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
1070          Offs = (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
1071        else
1072          Offs = TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
1073        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1074        continue;
1075      }
1076
1077      // N = N + Idx * ElementSize;
1078      uint64_t ElementSize = TD.getTypeSize(Ty);
1079      SDOperand IdxN = getValue(Idx);
1080
1081      // If the index is smaller or larger than intptr_t, truncate or extend
1082      // it.
1083      if (IdxN.getValueType() < N.getValueType()) {
1084        if (Idx->getType()->isSigned())
1085          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1086        else
1087          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
1088      } else if (IdxN.getValueType() > N.getValueType())
1089        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1090
1091      // If this is a multiply by a power of two, turn it into a shl
1092      // immediately.  This is a very common case.
1093      if (isPowerOf2_64(ElementSize)) {
1094        unsigned Amt = Log2_64(ElementSize);
1095        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1096                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1097        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1098        continue;
1099      }
1100
1101      SDOperand Scale = getIntPtrConstant(ElementSize);
1102      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1103      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1104    }
1105  }
1106  setValue(&I, N);
1107}
1108
1109void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1110  // If this is a fixed sized alloca in the entry block of the function,
1111  // allocate it statically on the stack.
1112  if (FuncInfo.StaticAllocaMap.count(&I))
1113    return;   // getValue will auto-populate this.
1114
1115  const Type *Ty = I.getAllocatedType();
1116  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
1117  unsigned Align = std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
1118                            I.getAlignment());
1119
1120  SDOperand AllocSize = getValue(I.getArraySize());
1121  MVT::ValueType IntPtr = TLI.getPointerTy();
1122  if (IntPtr < AllocSize.getValueType())
1123    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1124  else if (IntPtr > AllocSize.getValueType())
1125    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1126
1127  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1128                          getIntPtrConstant(TySize));
1129
1130  // Handle alignment.  If the requested alignment is less than or equal to the
1131  // stack alignment, ignore it and round the size of the allocation up to the
1132  // stack alignment size.  If the size is greater than the stack alignment, we
1133  // note this in the DYNAMIC_STACKALLOC node.
1134  unsigned StackAlign =
1135    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1136  if (Align <= StackAlign) {
1137    Align = 0;
1138    // Add SA-1 to the size.
1139    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1140                            getIntPtrConstant(StackAlign-1));
1141    // Mask out the low bits for alignment purposes.
1142    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1143                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1144  }
1145
1146  std::vector<MVT::ValueType> VTs;
1147  VTs.push_back(AllocSize.getValueType());
1148  VTs.push_back(MVT::Other);
1149  std::vector<SDOperand> Ops;
1150  Ops.push_back(getRoot());
1151  Ops.push_back(AllocSize);
1152  Ops.push_back(getIntPtrConstant(Align));
1153  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
1154  DAG.setRoot(setValue(&I, DSA).getValue(1));
1155
1156  // Inform the Frame Information that we have just allocated a variable-sized
1157  // object.
1158  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1159}
1160
1161void SelectionDAGLowering::visitLoad(LoadInst &I) {
1162  SDOperand Ptr = getValue(I.getOperand(0));
1163
1164  SDOperand Root;
1165  if (I.isVolatile())
1166    Root = getRoot();
1167  else {
1168    // Do not serialize non-volatile loads against each other.
1169    Root = DAG.getRoot();
1170  }
1171
1172  setValue(&I, getLoadFrom(I.getType(), Ptr, DAG.getSrcValue(I.getOperand(0)),
1173                           Root, I.isVolatile()));
1174}
1175
1176SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1177                                            SDOperand SrcValue, SDOperand Root,
1178                                            bool isVolatile) {
1179  SDOperand L;
1180  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1181    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1182    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr, SrcValue);
1183  } else {
1184    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SrcValue);
1185  }
1186
1187  if (isVolatile)
1188    DAG.setRoot(L.getValue(1));
1189  else
1190    PendingLoads.push_back(L.getValue(1));
1191
1192  return L;
1193}
1194
1195
1196void SelectionDAGLowering::visitStore(StoreInst &I) {
1197  Value *SrcV = I.getOperand(0);
1198  SDOperand Src = getValue(SrcV);
1199  SDOperand Ptr = getValue(I.getOperand(1));
1200  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
1201                          DAG.getSrcValue(I.getOperand(1))));
1202}
1203
1204/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1205/// access memory and has no other side effects at all.
1206static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1207#define GET_NO_MEMORY_INTRINSICS
1208#include "llvm/Intrinsics.gen"
1209#undef GET_NO_MEMORY_INTRINSICS
1210  return false;
1211}
1212
1213/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1214/// node.
1215void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1216                                                unsigned Intrinsic) {
1217  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1218
1219  // Build the operand list.
1220  std::vector<SDOperand> Ops;
1221  if (HasChain)   // If this intrinsic has side-effects, chainify it.
1222    Ops.push_back(getRoot());
1223
1224  // Add the intrinsic ID as an integer operand.
1225  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1226
1227  // Add all operands of the call to the operand list.
1228  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1229    SDOperand Op = getValue(I.getOperand(i));
1230
1231    // If this is a vector type, force it to the right packed type.
1232    if (Op.getValueType() == MVT::Vector) {
1233      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1234      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1235
1236      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1237      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1238      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1239    }
1240
1241    assert(TLI.isTypeLegal(Op.getValueType()) &&
1242           "Intrinsic uses a non-legal type?");
1243    Ops.push_back(Op);
1244  }
1245
1246  std::vector<MVT::ValueType> VTs;
1247  if (I.getType() != Type::VoidTy) {
1248    MVT::ValueType VT = TLI.getValueType(I.getType());
1249    if (VT == MVT::Vector) {
1250      const PackedType *DestTy = cast<PackedType>(I.getType());
1251      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1252
1253      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1254      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1255    }
1256
1257    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1258    VTs.push_back(VT);
1259  }
1260  if (HasChain)
1261    VTs.push_back(MVT::Other);
1262
1263  // Create the node.
1264  SDOperand Result = DAG.getNode(ISD::INTRINSIC, VTs, Ops);
1265
1266  if (HasChain)
1267    DAG.setRoot(Result.getValue(Result.Val->getNumValues()-1));
1268  if (I.getType() != Type::VoidTy) {
1269    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1270      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1271      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1272                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1273                           DAG.getValueType(EVT));
1274    }
1275    setValue(&I, Result);
1276  }
1277}
1278
1279/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1280/// we want to emit this as a call to a named external function, return the name
1281/// otherwise lower it and return null.
1282const char *
1283SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1284  switch (Intrinsic) {
1285  default:
1286    // By default, turn this into a target intrinsic node.
1287    visitTargetIntrinsic(I, Intrinsic);
1288    return 0;
1289  case Intrinsic::vastart:  visitVAStart(I); return 0;
1290  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1291  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1292  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1293  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1294  case Intrinsic::setjmp:
1295    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1296    break;
1297  case Intrinsic::longjmp:
1298    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1299    break;
1300  case Intrinsic::memcpy_i32:
1301  case Intrinsic::memcpy_i64:
1302    visitMemIntrinsic(I, ISD::MEMCPY);
1303    return 0;
1304  case Intrinsic::memset_i32:
1305  case Intrinsic::memset_i64:
1306    visitMemIntrinsic(I, ISD::MEMSET);
1307    return 0;
1308  case Intrinsic::memmove_i32:
1309  case Intrinsic::memmove_i64:
1310    visitMemIntrinsic(I, ISD::MEMMOVE);
1311    return 0;
1312
1313  case Intrinsic::dbg_stoppoint: {
1314    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1315    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1316    if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
1317      std::vector<SDOperand> Ops;
1318
1319      Ops.push_back(getRoot());
1320      Ops.push_back(getValue(SPI.getLineValue()));
1321      Ops.push_back(getValue(SPI.getColumnValue()));
1322
1323      DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
1324      assert(DD && "Not a debug information descriptor");
1325      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1326
1327      Ops.push_back(DAG.getString(CompileUnit->getFileName()));
1328      Ops.push_back(DAG.getString(CompileUnit->getDirectory()));
1329
1330      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops));
1331    }
1332
1333    return 0;
1334  }
1335  case Intrinsic::dbg_region_start: {
1336    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1337    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1338    if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
1339      std::vector<SDOperand> Ops;
1340
1341      unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
1342
1343      Ops.push_back(getRoot());
1344      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1345
1346      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1347    }
1348
1349    return 0;
1350  }
1351  case Intrinsic::dbg_region_end: {
1352    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1353    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
1354    if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
1355      std::vector<SDOperand> Ops;
1356
1357      unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
1358
1359      Ops.push_back(getRoot());
1360      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1361
1362      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1363    }
1364
1365    return 0;
1366  }
1367  case Intrinsic::dbg_func_start: {
1368    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1369    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
1370    if (DebugInfo && FSI.getSubprogram() &&
1371        DebugInfo->Verify(FSI.getSubprogram())) {
1372      std::vector<SDOperand> Ops;
1373
1374      unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
1375
1376      Ops.push_back(getRoot());
1377      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1378
1379      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1380    }
1381
1382    return 0;
1383  }
1384  case Intrinsic::dbg_declare: {
1385    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1386    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
1387    if (DebugInfo && DebugInfo->Verify(DI.getVariable())) {
1388      std::vector<SDOperand> Ops;
1389
1390      SDOperand AddressOp  = getValue(DI.getAddress());
1391      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp)) {
1392        DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
1393      }
1394    }
1395
1396    return 0;
1397  }
1398
1399  case Intrinsic::isunordered_f32:
1400  case Intrinsic::isunordered_f64:
1401    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
1402                              getValue(I.getOperand(2)), ISD::SETUO));
1403    return 0;
1404
1405  case Intrinsic::sqrt_f32:
1406  case Intrinsic::sqrt_f64:
1407    setValue(&I, DAG.getNode(ISD::FSQRT,
1408                             getValue(I.getOperand(1)).getValueType(),
1409                             getValue(I.getOperand(1))));
1410    return 0;
1411  case Intrinsic::pcmarker: {
1412    SDOperand Tmp = getValue(I.getOperand(1));
1413    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
1414    return 0;
1415  }
1416  case Intrinsic::readcyclecounter: {
1417    std::vector<MVT::ValueType> VTs;
1418    VTs.push_back(MVT::i64);
1419    VTs.push_back(MVT::Other);
1420    std::vector<SDOperand> Ops;
1421    Ops.push_back(getRoot());
1422    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops);
1423    setValue(&I, Tmp);
1424    DAG.setRoot(Tmp.getValue(1));
1425    return 0;
1426  }
1427  case Intrinsic::bswap_i16:
1428  case Intrinsic::bswap_i32:
1429  case Intrinsic::bswap_i64:
1430    setValue(&I, DAG.getNode(ISD::BSWAP,
1431                             getValue(I.getOperand(1)).getValueType(),
1432                             getValue(I.getOperand(1))));
1433    return 0;
1434  case Intrinsic::cttz_i8:
1435  case Intrinsic::cttz_i16:
1436  case Intrinsic::cttz_i32:
1437  case Intrinsic::cttz_i64:
1438    setValue(&I, DAG.getNode(ISD::CTTZ,
1439                             getValue(I.getOperand(1)).getValueType(),
1440                             getValue(I.getOperand(1))));
1441    return 0;
1442  case Intrinsic::ctlz_i8:
1443  case Intrinsic::ctlz_i16:
1444  case Intrinsic::ctlz_i32:
1445  case Intrinsic::ctlz_i64:
1446    setValue(&I, DAG.getNode(ISD::CTLZ,
1447                             getValue(I.getOperand(1)).getValueType(),
1448                             getValue(I.getOperand(1))));
1449    return 0;
1450  case Intrinsic::ctpop_i8:
1451  case Intrinsic::ctpop_i16:
1452  case Intrinsic::ctpop_i32:
1453  case Intrinsic::ctpop_i64:
1454    setValue(&I, DAG.getNode(ISD::CTPOP,
1455                             getValue(I.getOperand(1)).getValueType(),
1456                             getValue(I.getOperand(1))));
1457    return 0;
1458  case Intrinsic::stacksave: {
1459    std::vector<MVT::ValueType> VTs;
1460    VTs.push_back(TLI.getPointerTy());
1461    VTs.push_back(MVT::Other);
1462    std::vector<SDOperand> Ops;
1463    Ops.push_back(getRoot());
1464    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops);
1465    setValue(&I, Tmp);
1466    DAG.setRoot(Tmp.getValue(1));
1467    return 0;
1468  }
1469  case Intrinsic::stackrestore: {
1470    SDOperand Tmp = getValue(I.getOperand(1));
1471    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
1472    return 0;
1473  }
1474  case Intrinsic::prefetch:
1475    // FIXME: Currently discarding prefetches.
1476    return 0;
1477  }
1478}
1479
1480
1481void SelectionDAGLowering::visitCall(CallInst &I) {
1482  const char *RenameFn = 0;
1483  if (Function *F = I.getCalledFunction()) {
1484    if (F->isExternal())
1485      if (unsigned IID = F->getIntrinsicID()) {
1486        RenameFn = visitIntrinsicCall(I, IID);
1487        if (!RenameFn)
1488          return;
1489      } else {    // Not an LLVM intrinsic.
1490        const std::string &Name = F->getName();
1491        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
1492          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
1493              I.getOperand(1)->getType()->isFloatingPoint() &&
1494              I.getType() == I.getOperand(1)->getType() &&
1495              I.getType() == I.getOperand(2)->getType()) {
1496            SDOperand LHS = getValue(I.getOperand(1));
1497            SDOperand RHS = getValue(I.getOperand(2));
1498            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
1499                                     LHS, RHS));
1500            return;
1501          }
1502        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
1503          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1504              I.getOperand(1)->getType()->isFloatingPoint() &&
1505              I.getType() == I.getOperand(1)->getType()) {
1506            SDOperand Tmp = getValue(I.getOperand(1));
1507            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
1508            return;
1509          }
1510        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
1511          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1512              I.getOperand(1)->getType()->isFloatingPoint() &&
1513              I.getType() == I.getOperand(1)->getType()) {
1514            SDOperand Tmp = getValue(I.getOperand(1));
1515            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
1516            return;
1517          }
1518        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
1519          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1520              I.getOperand(1)->getType()->isFloatingPoint() &&
1521              I.getType() == I.getOperand(1)->getType()) {
1522            SDOperand Tmp = getValue(I.getOperand(1));
1523            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
1524            return;
1525          }
1526        }
1527      }
1528  } else if (isa<InlineAsm>(I.getOperand(0))) {
1529    visitInlineAsm(I);
1530    return;
1531  }
1532
1533  SDOperand Callee;
1534  if (!RenameFn)
1535    Callee = getValue(I.getOperand(0));
1536  else
1537    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
1538  std::vector<std::pair<SDOperand, const Type*> > Args;
1539  Args.reserve(I.getNumOperands());
1540  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1541    Value *Arg = I.getOperand(i);
1542    SDOperand ArgNode = getValue(Arg);
1543    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
1544  }
1545
1546  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
1547  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1548
1549  std::pair<SDOperand,SDOperand> Result =
1550    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
1551                    I.isTailCall(), Callee, Args, DAG);
1552  if (I.getType() != Type::VoidTy)
1553    setValue(&I, Result.first);
1554  DAG.setRoot(Result.second);
1555}
1556
1557SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
1558                                        SDOperand &Chain, SDOperand &Flag)const{
1559  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
1560  Chain = Val.getValue(1);
1561  Flag  = Val.getValue(2);
1562
1563  // If the result was expanded, copy from the top part.
1564  if (Regs.size() > 1) {
1565    assert(Regs.size() == 2 &&
1566           "Cannot expand to more than 2 elts yet!");
1567    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
1568    Chain = Val.getValue(1);
1569    Flag  = Val.getValue(2);
1570    if (DAG.getTargetLoweringInfo().isLittleEndian())
1571      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
1572    else
1573      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
1574  }
1575
1576  // Otherwise, if the return value was promoted, truncate it to the
1577  // appropriate type.
1578  if (RegVT == ValueVT)
1579    return Val;
1580
1581  if (MVT::isInteger(RegVT))
1582    return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1583  else
1584    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
1585}
1586
1587/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
1588/// specified value into the registers specified by this object.  This uses
1589/// Chain/Flag as the input and updates them for the output Chain/Flag.
1590void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
1591                                 SDOperand &Chain, SDOperand &Flag) const {
1592  if (Regs.size() == 1) {
1593    // If there is a single register and the types differ, this must be
1594    // a promotion.
1595    if (RegVT != ValueVT) {
1596      if (MVT::isInteger(RegVT))
1597        Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
1598      else
1599        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
1600    }
1601    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
1602    Flag = Chain.getValue(1);
1603  } else {
1604    std::vector<unsigned> R(Regs);
1605    if (!DAG.getTargetLoweringInfo().isLittleEndian())
1606      std::reverse(R.begin(), R.end());
1607
1608    for (unsigned i = 0, e = R.size(); i != e; ++i) {
1609      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
1610                                   DAG.getConstant(i, MVT::i32));
1611      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
1612      Flag = Chain.getValue(1);
1613    }
1614  }
1615}
1616
1617/// AddInlineAsmOperands - Add this value to the specified inlineasm node
1618/// operand list.  This adds the code marker and includes the number of
1619/// values added into it.
1620void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
1621                                        std::vector<SDOperand> &Ops) const {
1622  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
1623  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1624    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
1625}
1626
1627/// isAllocatableRegister - If the specified register is safe to allocate,
1628/// i.e. it isn't a stack pointer or some other special register, return the
1629/// register class for the register.  Otherwise, return null.
1630static const TargetRegisterClass *
1631isAllocatableRegister(unsigned Reg, MachineFunction &MF,
1632                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
1633  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
1634       E = MRI->regclass_end(); RCI != E; ++RCI) {
1635    const TargetRegisterClass *RC = *RCI;
1636    // If none of the the value types for this register class are valid, we
1637    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1638    bool isLegal = false;
1639    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1640         I != E; ++I) {
1641      if (TLI.isTypeLegal(*I)) {
1642        isLegal = true;
1643        break;
1644      }
1645    }
1646
1647    if (!isLegal) continue;
1648
1649    // NOTE: This isn't ideal.  In particular, this might allocate the
1650    // frame pointer in functions that need it (due to them not being taken
1651    // out of allocation, because a variable sized allocation hasn't been seen
1652    // yet).  This is a slight code pessimization, but should still work.
1653    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
1654         E = RC->allocation_order_end(MF); I != E; ++I)
1655      if (*I == Reg)
1656        return RC;
1657  }
1658  return 0;
1659}
1660
1661RegsForValue SelectionDAGLowering::
1662GetRegistersForValue(const std::string &ConstrCode,
1663                     MVT::ValueType VT, bool isOutReg, bool isInReg,
1664                     std::set<unsigned> &OutputRegs,
1665                     std::set<unsigned> &InputRegs) {
1666  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
1667    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
1668  std::vector<unsigned> Regs;
1669
1670  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
1671  MVT::ValueType RegVT;
1672  MVT::ValueType ValueVT = VT;
1673
1674  if (PhysReg.first) {
1675    if (VT == MVT::Other)
1676      ValueVT = *PhysReg.second->vt_begin();
1677    RegVT = VT;
1678
1679    // This is a explicit reference to a physical register.
1680    Regs.push_back(PhysReg.first);
1681
1682    // If this is an expanded reference, add the rest of the regs to Regs.
1683    if (NumRegs != 1) {
1684      RegVT = *PhysReg.second->vt_begin();
1685      TargetRegisterClass::iterator I = PhysReg.second->begin();
1686      TargetRegisterClass::iterator E = PhysReg.second->end();
1687      for (; *I != PhysReg.first; ++I)
1688        assert(I != E && "Didn't find reg!");
1689
1690      // Already added the first reg.
1691      --NumRegs; ++I;
1692      for (; NumRegs; --NumRegs, ++I) {
1693        assert(I != E && "Ran out of registers to allocate!");
1694        Regs.push_back(*I);
1695      }
1696    }
1697    return RegsForValue(Regs, RegVT, ValueVT);
1698  }
1699
1700  // This is a reference to a register class.  Allocate NumRegs consecutive,
1701  // available, registers from the class.
1702  std::vector<unsigned> RegClassRegs =
1703    TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
1704
1705  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
1706  MachineFunction &MF = *CurMBB->getParent();
1707  unsigned NumAllocated = 0;
1708  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
1709    unsigned Reg = RegClassRegs[i];
1710    // See if this register is available.
1711    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
1712        (isInReg  && InputRegs.count(Reg))) {    // Already used.
1713      // Make sure we find consecutive registers.
1714      NumAllocated = 0;
1715      continue;
1716    }
1717
1718    // Check to see if this register is allocatable (i.e. don't give out the
1719    // stack pointer).
1720    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
1721    if (!RC) {
1722      // Make sure we find consecutive registers.
1723      NumAllocated = 0;
1724      continue;
1725    }
1726
1727    // Okay, this register is good, we can use it.
1728    ++NumAllocated;
1729
1730    // If we allocated enough consecutive
1731    if (NumAllocated == NumRegs) {
1732      unsigned RegStart = (i-NumAllocated)+1;
1733      unsigned RegEnd   = i+1;
1734      // Mark all of the allocated registers used.
1735      for (unsigned i = RegStart; i != RegEnd; ++i) {
1736        unsigned Reg = RegClassRegs[i];
1737        Regs.push_back(Reg);
1738        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
1739        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
1740      }
1741
1742      return RegsForValue(Regs, *RC->vt_begin(), VT);
1743    }
1744  }
1745
1746  // Otherwise, we couldn't allocate enough registers for this.
1747  return RegsForValue();
1748}
1749
1750
1751/// visitInlineAsm - Handle a call to an InlineAsm object.
1752///
1753void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
1754  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
1755
1756  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
1757                                                 MVT::Other);
1758
1759  // Note, we treat inline asms both with and without side-effects as the same.
1760  // If an inline asm doesn't have side effects and doesn't access memory, we
1761  // could not choose to not chain it.
1762  bool hasSideEffects = IA->hasSideEffects();
1763
1764  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
1765  std::vector<MVT::ValueType> ConstraintVTs;
1766
1767  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
1768  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
1769  /// if it is a def of that register.
1770  std::vector<SDOperand> AsmNodeOperands;
1771  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
1772  AsmNodeOperands.push_back(AsmStr);
1773
1774  SDOperand Chain = getRoot();
1775  SDOperand Flag;
1776
1777  // We fully assign registers here at isel time.  This is not optimal, but
1778  // should work.  For register classes that correspond to LLVM classes, we
1779  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
1780  // over the constraints, collecting fixed registers that we know we can't use.
1781  std::set<unsigned> OutputRegs, InputRegs;
1782  unsigned OpNum = 1;
1783  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1784    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
1785    std::string &ConstraintCode = Constraints[i].Codes[0];
1786
1787    MVT::ValueType OpVT;
1788
1789    // Compute the value type for each operand and add it to ConstraintVTs.
1790    switch (Constraints[i].Type) {
1791    case InlineAsm::isOutput:
1792      if (!Constraints[i].isIndirectOutput) {
1793        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
1794        OpVT = TLI.getValueType(I.getType());
1795      } else {
1796        const Type *OpTy = I.getOperand(OpNum)->getType();
1797        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
1798        OpNum++;  // Consumes a call operand.
1799      }
1800      break;
1801    case InlineAsm::isInput:
1802      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
1803      OpNum++;  // Consumes a call operand.
1804      break;
1805    case InlineAsm::isClobber:
1806      OpVT = MVT::Other;
1807      break;
1808    }
1809
1810    ConstraintVTs.push_back(OpVT);
1811
1812    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
1813      continue;  // Not assigned a fixed reg.
1814
1815    // Build a list of regs that this operand uses.  This always has a single
1816    // element for promoted/expanded operands.
1817    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
1818                                             false, false,
1819                                             OutputRegs, InputRegs);
1820
1821    switch (Constraints[i].Type) {
1822    case InlineAsm::isOutput:
1823      // We can't assign any other output to this register.
1824      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1825      // If this is an early-clobber output, it cannot be assigned to the same
1826      // value as the input reg.
1827      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
1828        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1829      break;
1830    case InlineAsm::isInput:
1831      // We can't assign any other input to this register.
1832      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1833      break;
1834    case InlineAsm::isClobber:
1835      // Clobbered regs cannot be used as inputs or outputs.
1836      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1837      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1838      break;
1839    }
1840  }
1841
1842  // Loop over all of the inputs, copying the operand values into the
1843  // appropriate registers and processing the output regs.
1844  RegsForValue RetValRegs;
1845  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
1846  OpNum = 1;
1847
1848  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1849    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
1850    std::string &ConstraintCode = Constraints[i].Codes[0];
1851
1852    switch (Constraints[i].Type) {
1853    case InlineAsm::isOutput: {
1854      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
1855      if (ConstraintCode.size() == 1)   // not a physreg name.
1856        CTy = TLI.getConstraintType(ConstraintCode[0]);
1857
1858      if (CTy == TargetLowering::C_Memory) {
1859        // Memory output.
1860        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
1861
1862        // Check that the operand (the address to store to) isn't a float.
1863        if (!MVT::isInteger(InOperandVal.getValueType()))
1864          assert(0 && "MATCH FAIL!");
1865
1866        if (!Constraints[i].isIndirectOutput)
1867          assert(0 && "MATCH FAIL!");
1868
1869        OpNum++;  // Consumes a call operand.
1870
1871        // Extend/truncate to the right pointer type if needed.
1872        MVT::ValueType PtrType = TLI.getPointerTy();
1873        if (InOperandVal.getValueType() < PtrType)
1874          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
1875        else if (InOperandVal.getValueType() > PtrType)
1876          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
1877
1878        // Add information to the INLINEASM node to know about this output.
1879        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
1880        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
1881        AsmNodeOperands.push_back(InOperandVal);
1882        break;
1883      }
1884
1885      // Otherwise, this is a register output.
1886      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
1887
1888      // If this is an early-clobber output, or if there is an input
1889      // constraint that matches this, we need to reserve the input register
1890      // so no other inputs allocate to it.
1891      bool UsesInputRegister = false;
1892      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
1893        UsesInputRegister = true;
1894
1895      // Copy the output from the appropriate register.  Find a register that
1896      // we can use.
1897      RegsForValue Regs =
1898        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
1899                             true, UsesInputRegister,
1900                             OutputRegs, InputRegs);
1901      assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
1902
1903      if (!Constraints[i].isIndirectOutput) {
1904        assert(RetValRegs.Regs.empty() &&
1905               "Cannot have multiple output constraints yet!");
1906        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
1907        RetValRegs = Regs;
1908      } else {
1909        IndirectStoresToEmit.push_back(std::make_pair(Regs,
1910                                                      I.getOperand(OpNum)));
1911        OpNum++;  // Consumes a call operand.
1912      }
1913
1914      // Add information to the INLINEASM node to know that this register is
1915      // set.
1916      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
1917      break;
1918    }
1919    case InlineAsm::isInput: {
1920      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
1921      OpNum++;  // Consumes a call operand.
1922
1923      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
1924        // If this is required to match an output register we have already set,
1925        // just use its register.
1926        unsigned OperandNo = atoi(ConstraintCode.c_str());
1927
1928        // Scan until we find the definition we already emitted of this operand.
1929        // When we find it, create a RegsForValue operand.
1930        unsigned CurOp = 2;  // The first operand.
1931        for (; OperandNo; --OperandNo) {
1932          // Advance to the next operand.
1933          unsigned NumOps =
1934            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
1935          assert((NumOps & 7) == 2 /*REGDEF*/ &&
1936                 "Skipped past definitions?");
1937          CurOp += (NumOps>>3)+1;
1938        }
1939
1940        unsigned NumOps =
1941          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
1942        assert((NumOps & 7) == 2 /*REGDEF*/ &&
1943               "Skipped past definitions?");
1944
1945        // Add NumOps>>3 registers to MatchedRegs.
1946        RegsForValue MatchedRegs;
1947        MatchedRegs.ValueVT = InOperandVal.getValueType();
1948        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
1949        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
1950          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
1951          MatchedRegs.Regs.push_back(Reg);
1952        }
1953
1954        // Use the produced MatchedRegs object to
1955        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
1956        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
1957        break;
1958      }
1959
1960      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
1961      if (ConstraintCode.size() == 1)   // not a physreg name.
1962        CTy = TLI.getConstraintType(ConstraintCode[0]);
1963
1964      if (CTy == TargetLowering::C_Other) {
1965        if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
1966          assert(0 && "MATCH FAIL!");
1967
1968        // Add information to the INLINEASM node to know about this input.
1969        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
1970        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
1971        AsmNodeOperands.push_back(InOperandVal);
1972        break;
1973      } else if (CTy == TargetLowering::C_Memory) {
1974        // Memory input.
1975
1976        // Check that the operand isn't a float.
1977        if (!MVT::isInteger(InOperandVal.getValueType()))
1978          assert(0 && "MATCH FAIL!");
1979
1980        // Extend/truncate to the right pointer type if needed.
1981        MVT::ValueType PtrType = TLI.getPointerTy();
1982        if (InOperandVal.getValueType() < PtrType)
1983          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
1984        else if (InOperandVal.getValueType() > PtrType)
1985          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
1986
1987        // Add information to the INLINEASM node to know about this input.
1988        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
1989        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
1990        AsmNodeOperands.push_back(InOperandVal);
1991        break;
1992      }
1993
1994      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
1995
1996      // Copy the input into the appropriate registers.
1997      RegsForValue InRegs =
1998        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
1999                             false, true, OutputRegs, InputRegs);
2000      // FIXME: should be match fail.
2001      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2002
2003      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
2004
2005      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2006      break;
2007    }
2008    case InlineAsm::isClobber: {
2009      RegsForValue ClobberedRegs =
2010        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2011                             OutputRegs, InputRegs);
2012      // Add the clobbered value to the operand list, so that the register
2013      // allocator is aware that the physreg got clobbered.
2014      if (!ClobberedRegs.Regs.empty())
2015        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2016      break;
2017    }
2018    }
2019  }
2020
2021  // Finish up input operands.
2022  AsmNodeOperands[0] = Chain;
2023  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2024
2025  std::vector<MVT::ValueType> VTs;
2026  VTs.push_back(MVT::Other);
2027  VTs.push_back(MVT::Flag);
2028  Chain = DAG.getNode(ISD::INLINEASM, VTs, AsmNodeOperands);
2029  Flag = Chain.getValue(1);
2030
2031  // If this asm returns a register value, copy the result from that register
2032  // and set it as the value of the call.
2033  if (!RetValRegs.Regs.empty())
2034    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2035
2036  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2037
2038  // Process indirect outputs, first output all of the flagged copies out of
2039  // physregs.
2040  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2041    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2042    Value *Ptr = IndirectStoresToEmit[i].second;
2043    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2044    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2045  }
2046
2047  // Emit the non-flagged stores from the physregs.
2048  std::vector<SDOperand> OutChains;
2049  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2050    OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
2051                                    StoresToEmit[i].first,
2052                                    getValue(StoresToEmit[i].second),
2053                                    DAG.getSrcValue(StoresToEmit[i].second)));
2054  if (!OutChains.empty())
2055    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains);
2056  DAG.setRoot(Chain);
2057}
2058
2059
2060void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2061  SDOperand Src = getValue(I.getOperand(0));
2062
2063  MVT::ValueType IntPtr = TLI.getPointerTy();
2064
2065  if (IntPtr < Src.getValueType())
2066    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2067  else if (IntPtr > Src.getValueType())
2068    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2069
2070  // Scale the source by the type size.
2071  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
2072  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2073                    Src, getIntPtrConstant(ElementSize));
2074
2075  std::vector<std::pair<SDOperand, const Type*> > Args;
2076  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
2077
2078  std::pair<SDOperand,SDOperand> Result =
2079    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
2080                    DAG.getExternalSymbol("malloc", IntPtr),
2081                    Args, DAG);
2082  setValue(&I, Result.first);  // Pointers always fit in registers
2083  DAG.setRoot(Result.second);
2084}
2085
2086void SelectionDAGLowering::visitFree(FreeInst &I) {
2087  std::vector<std::pair<SDOperand, const Type*> > Args;
2088  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
2089                                TLI.getTargetData().getIntPtrType()));
2090  MVT::ValueType IntPtr = TLI.getPointerTy();
2091  std::pair<SDOperand,SDOperand> Result =
2092    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
2093                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2094  DAG.setRoot(Result.second);
2095}
2096
2097// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2098// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2099// instructions are special in various ways, which require special support to
2100// insert.  The specified MachineInstr is created but not inserted into any
2101// basic blocks, and the scheduler passes ownership of it to this method.
2102MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2103                                                       MachineBasicBlock *MBB) {
2104  std::cerr << "If a target marks an instruction with "
2105               "'usesCustomDAGSchedInserter', it must implement "
2106               "TargetLowering::InsertAtEndOfBasicBlock!\n";
2107  abort();
2108  return 0;
2109}
2110
2111void SelectionDAGLowering::visitVAStart(CallInst &I) {
2112  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2113                          getValue(I.getOperand(1)),
2114                          DAG.getSrcValue(I.getOperand(1))));
2115}
2116
2117void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2118  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2119                             getValue(I.getOperand(0)),
2120                             DAG.getSrcValue(I.getOperand(0)));
2121  setValue(&I, V);
2122  DAG.setRoot(V.getValue(1));
2123}
2124
2125void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2126  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2127                          getValue(I.getOperand(1)),
2128                          DAG.getSrcValue(I.getOperand(1))));
2129}
2130
2131void SelectionDAGLowering::visitVACopy(CallInst &I) {
2132  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2133                          getValue(I.getOperand(1)),
2134                          getValue(I.getOperand(2)),
2135                          DAG.getSrcValue(I.getOperand(1)),
2136                          DAG.getSrcValue(I.getOperand(2))));
2137}
2138
2139// It is always conservatively correct for llvm.returnaddress and
2140// llvm.frameaddress to return 0.
2141std::pair<SDOperand, SDOperand>
2142TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
2143                                        unsigned Depth, SelectionDAG &DAG) {
2144  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
2145}
2146
2147SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2148  assert(0 && "LowerOperation not implemented for this target!");
2149  abort();
2150  return SDOperand();
2151}
2152
2153SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
2154                                                 SelectionDAG &DAG) {
2155  assert(0 && "CustomPromoteOperation not implemented for this target!");
2156  abort();
2157  return SDOperand();
2158}
2159
2160void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
2161  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
2162  std::pair<SDOperand,SDOperand> Result =
2163    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
2164  setValue(&I, Result.first);
2165  DAG.setRoot(Result.second);
2166}
2167
2168/// getMemsetValue - Vectorized representation of the memset value
2169/// operand.
2170static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2171                                SelectionDAG &DAG) {
2172  MVT::ValueType CurVT = VT;
2173  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2174    uint64_t Val   = C->getValue() & 255;
2175    unsigned Shift = 8;
2176    while (CurVT != MVT::i8) {
2177      Val = (Val << Shift) | Val;
2178      Shift <<= 1;
2179      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2180    }
2181    return DAG.getConstant(Val, VT);
2182  } else {
2183    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2184    unsigned Shift = 8;
2185    while (CurVT != MVT::i8) {
2186      Value =
2187        DAG.getNode(ISD::OR, VT,
2188                    DAG.getNode(ISD::SHL, VT, Value,
2189                                DAG.getConstant(Shift, MVT::i8)), Value);
2190      Shift <<= 1;
2191      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2192    }
2193
2194    return Value;
2195  }
2196}
2197
2198/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2199/// used when a memcpy is turned into a memset when the source is a constant
2200/// string ptr.
2201static SDOperand getMemsetStringVal(MVT::ValueType VT,
2202                                    SelectionDAG &DAG, TargetLowering &TLI,
2203                                    std::string &Str, unsigned Offset) {
2204  MVT::ValueType CurVT = VT;
2205  uint64_t Val = 0;
2206  unsigned MSB = getSizeInBits(VT) / 8;
2207  if (TLI.isLittleEndian())
2208    Offset = Offset + MSB - 1;
2209  for (unsigned i = 0; i != MSB; ++i) {
2210    Val = (Val << 8) | Str[Offset];
2211    Offset += TLI.isLittleEndian() ? -1 : 1;
2212  }
2213  return DAG.getConstant(Val, VT);
2214}
2215
2216/// getMemBasePlusOffset - Returns base and offset node for the
2217static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2218                                      SelectionDAG &DAG, TargetLowering &TLI) {
2219  MVT::ValueType VT = Base.getValueType();
2220  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2221}
2222
2223/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2224/// to replace the memset / memcpy is below the threshold. It also returns the
2225/// types of the sequence of  memory ops to perform memset / memcpy.
2226static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2227                                     unsigned Limit, uint64_t Size,
2228                                     unsigned Align, TargetLowering &TLI) {
2229  MVT::ValueType VT;
2230
2231  if (TLI.allowsUnalignedMemoryAccesses()) {
2232    VT = MVT::i64;
2233  } else {
2234    switch (Align & 7) {
2235    case 0:
2236      VT = MVT::i64;
2237      break;
2238    case 4:
2239      VT = MVT::i32;
2240      break;
2241    case 2:
2242      VT = MVT::i16;
2243      break;
2244    default:
2245      VT = MVT::i8;
2246      break;
2247    }
2248  }
2249
2250  MVT::ValueType LVT = MVT::i64;
2251  while (!TLI.isTypeLegal(LVT))
2252    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2253  assert(MVT::isInteger(LVT));
2254
2255  if (VT > LVT)
2256    VT = LVT;
2257
2258  unsigned NumMemOps = 0;
2259  while (Size != 0) {
2260    unsigned VTSize = getSizeInBits(VT) / 8;
2261    while (VTSize > Size) {
2262      VT = (MVT::ValueType)((unsigned)VT - 1);
2263      VTSize >>= 1;
2264    }
2265    assert(MVT::isInteger(VT));
2266
2267    if (++NumMemOps > Limit)
2268      return false;
2269    MemOps.push_back(VT);
2270    Size -= VTSize;
2271  }
2272
2273  return true;
2274}
2275
2276void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
2277  SDOperand Op1 = getValue(I.getOperand(1));
2278  SDOperand Op2 = getValue(I.getOperand(2));
2279  SDOperand Op3 = getValue(I.getOperand(3));
2280  SDOperand Op4 = getValue(I.getOperand(4));
2281  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
2282  if (Align == 0) Align = 1;
2283
2284  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
2285    std::vector<MVT::ValueType> MemOps;
2286
2287    // Expand memset / memcpy to a series of load / store ops
2288    // if the size operand falls below a certain threshold.
2289    std::vector<SDOperand> OutChains;
2290    switch (Op) {
2291    default: break;  // Do nothing for now.
2292    case ISD::MEMSET: {
2293      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2294                                   Size->getValue(), Align, TLI)) {
2295        unsigned NumMemOps = MemOps.size();
2296        unsigned Offset = 0;
2297        for (unsigned i = 0; i < NumMemOps; i++) {
2298          MVT::ValueType VT = MemOps[i];
2299          unsigned VTSize = getSizeInBits(VT) / 8;
2300          SDOperand Value = getMemsetValue(Op2, VT, DAG);
2301          SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, getRoot(),
2302                                        Value,
2303                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
2304                                      DAG.getSrcValue(I.getOperand(1), Offset));
2305          OutChains.push_back(Store);
2306          Offset += VTSize;
2307        }
2308      }
2309      break;
2310    }
2311    case ISD::MEMCPY: {
2312      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
2313                                   Size->getValue(), Align, TLI)) {
2314        unsigned NumMemOps = MemOps.size();
2315        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
2316        GlobalAddressSDNode *G = NULL;
2317        std::string Str;
2318        bool CopyFromStr = false;
2319
2320        if (Op2.getOpcode() == ISD::GlobalAddress)
2321          G = cast<GlobalAddressSDNode>(Op2);
2322        else if (Op2.getOpcode() == ISD::ADD &&
2323                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2324                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
2325          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
2326          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
2327        }
2328        if (G) {
2329          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2330          if (GV) {
2331            Str = GV->getStringValue(false);
2332            if (!Str.empty()) {
2333              CopyFromStr = true;
2334              SrcOff += SrcDelta;
2335            }
2336          }
2337        }
2338
2339        for (unsigned i = 0; i < NumMemOps; i++) {
2340          MVT::ValueType VT = MemOps[i];
2341          unsigned VTSize = getSizeInBits(VT) / 8;
2342          SDOperand Value, Chain, Store;
2343
2344          if (CopyFromStr) {
2345            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2346            Chain = getRoot();
2347            Store =
2348              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2349                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2350                          DAG.getSrcValue(I.getOperand(1), DstOff));
2351          } else {
2352            Value = DAG.getLoad(VT, getRoot(),
2353                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
2354                        DAG.getSrcValue(I.getOperand(2), SrcOff));
2355            Chain = Value.getValue(1);
2356            Store =
2357              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2358                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2359                          DAG.getSrcValue(I.getOperand(1), DstOff));
2360          }
2361          OutChains.push_back(Store);
2362          SrcOff += VTSize;
2363          DstOff += VTSize;
2364        }
2365      }
2366      break;
2367    }
2368    }
2369
2370    if (!OutChains.empty()) {
2371      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains));
2372      return;
2373    }
2374  }
2375
2376  std::vector<SDOperand> Ops;
2377  Ops.push_back(getRoot());
2378  Ops.push_back(Op1);
2379  Ops.push_back(Op2);
2380  Ops.push_back(Op3);
2381  Ops.push_back(Op4);
2382  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
2383}
2384
2385//===----------------------------------------------------------------------===//
2386// SelectionDAGISel code
2387//===----------------------------------------------------------------------===//
2388
2389unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
2390  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
2391}
2392
2393void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
2394  // FIXME: we only modify the CFG to split critical edges.  This
2395  // updates dom and loop info.
2396}
2397
2398
2399/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
2400/// casting to the type of GEPI.
2401static Value *InsertGEPComputeCode(Value *&V, BasicBlock *BB, Instruction *GEPI,
2402                                   Value *Ptr, Value *PtrOffset) {
2403  if (V) return V;   // Already computed.
2404
2405  BasicBlock::iterator InsertPt;
2406  if (BB == GEPI->getParent()) {
2407    // If insert into the GEP's block, insert right after the GEP.
2408    InsertPt = GEPI;
2409    ++InsertPt;
2410  } else {
2411    // Otherwise, insert at the top of BB, after any PHI nodes
2412    InsertPt = BB->begin();
2413    while (isa<PHINode>(InsertPt)) ++InsertPt;
2414  }
2415
2416  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
2417  // BB so that there is only one value live across basic blocks (the cast
2418  // operand).
2419  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
2420    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
2421      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
2422
2423  // Add the offset, cast it to the right type.
2424  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
2425  Ptr = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
2426  return V = Ptr;
2427}
2428
2429
2430/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
2431/// selection, we want to be a bit careful about some things.  In particular, if
2432/// we have a GEP instruction that is used in a different block than it is
2433/// defined, the addressing expression of the GEP cannot be folded into loads or
2434/// stores that use it.  In this case, decompose the GEP and move constant
2435/// indices into blocks that use it.
2436static void OptimizeGEPExpression(GetElementPtrInst *GEPI,
2437                                  const TargetData &TD) {
2438  // If this GEP is only used inside the block it is defined in, there is no
2439  // need to rewrite it.
2440  bool isUsedOutsideDefBB = false;
2441  BasicBlock *DefBB = GEPI->getParent();
2442  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
2443       UI != E; ++UI) {
2444    if (cast<Instruction>(*UI)->getParent() != DefBB) {
2445      isUsedOutsideDefBB = true;
2446      break;
2447    }
2448  }
2449  if (!isUsedOutsideDefBB) return;
2450
2451  // If this GEP has no non-zero constant indices, there is nothing we can do,
2452  // ignore it.
2453  bool hasConstantIndex = false;
2454  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
2455       E = GEPI->op_end(); OI != E; ++OI) {
2456    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI))
2457      if (CI->getRawValue()) {
2458        hasConstantIndex = true;
2459        break;
2460      }
2461  }
2462  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
2463  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0))) return;
2464
2465  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
2466  // constant offset (which we now know is non-zero) and deal with it later.
2467  uint64_t ConstantOffset = 0;
2468  const Type *UIntPtrTy = TD.getIntPtrType();
2469  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
2470  const Type *Ty = GEPI->getOperand(0)->getType();
2471
2472  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
2473       E = GEPI->op_end(); OI != E; ++OI) {
2474    Value *Idx = *OI;
2475    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2476      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
2477      if (Field)
2478        ConstantOffset += TD.getStructLayout(StTy)->MemberOffsets[Field];
2479      Ty = StTy->getElementType(Field);
2480    } else {
2481      Ty = cast<SequentialType>(Ty)->getElementType();
2482
2483      // Handle constant subscripts.
2484      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2485        if (CI->getRawValue() == 0) continue;
2486
2487        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
2488          ConstantOffset += (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
2489        else
2490          ConstantOffset+=TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
2491        continue;
2492      }
2493
2494      // Ptr = Ptr + Idx * ElementSize;
2495
2496      // Cast Idx to UIntPtrTy if needed.
2497      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
2498
2499      uint64_t ElementSize = TD.getTypeSize(Ty);
2500      // Mask off bits that should not be set.
2501      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
2502      Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
2503
2504      // Multiply by the element size and add to the base.
2505      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
2506      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
2507    }
2508  }
2509
2510  // Make sure that the offset fits in uintptr_t.
2511  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
2512  Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
2513
2514  // Okay, we have now emitted all of the variable index parts to the BB that
2515  // the GEP is defined in.  Loop over all of the using instructions, inserting
2516  // an "add Ptr, ConstantOffset" into each block that uses it and update the
2517  // instruction to use the newly computed value, making GEPI dead.  When the
2518  // user is a load or store instruction address, we emit the add into the user
2519  // block, otherwise we use a canonical version right next to the gep (these
2520  // won't be foldable as addresses, so we might as well share the computation).
2521
2522  std::map<BasicBlock*,Value*> InsertedExprs;
2523  while (!GEPI->use_empty()) {
2524    Instruction *User = cast<Instruction>(GEPI->use_back());
2525
2526    // If this use is not foldable into the addressing mode, use a version
2527    // emitted in the GEP block.
2528    Value *NewVal;
2529    if (!isa<LoadInst>(User) &&
2530        (!isa<StoreInst>(User) || User->getOperand(0) == GEPI)) {
2531      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
2532                                    Ptr, PtrOffset);
2533    } else {
2534      // Otherwise, insert the code in the User's block so it can be folded into
2535      // any users in that block.
2536      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
2537                                    User->getParent(), GEPI,
2538                                    Ptr, PtrOffset);
2539    }
2540    User->replaceUsesOfWith(GEPI, NewVal);
2541  }
2542
2543  // Finally, the GEP is dead, remove it.
2544  GEPI->eraseFromParent();
2545}
2546
2547bool SelectionDAGISel::runOnFunction(Function &Fn) {
2548  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
2549  RegMap = MF.getSSARegMap();
2550  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
2551
2552  // First, split all critical edges for PHI nodes with incoming values that are
2553  // constants, this way the load of the constant into a vreg will not be placed
2554  // into MBBs that are used some other way.
2555  //
2556  // In this pass we also look for GEP instructions that are used across basic
2557  // blocks and rewrites them to improve basic-block-at-a-time selection.
2558  //
2559  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
2560    PHINode *PN;
2561    BasicBlock::iterator BBI;
2562    for (BBI = BB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI)
2563      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2564        if (isa<Constant>(PN->getIncomingValue(i)))
2565          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
2566
2567    for (BasicBlock::iterator E = BB->end(); BBI != E; )
2568      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(BBI++))
2569        OptimizeGEPExpression(GEPI, TLI.getTargetData());
2570  }
2571
2572  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
2573
2574  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
2575    SelectBasicBlock(I, MF, FuncInfo);
2576
2577  return true;
2578}
2579
2580
2581SDOperand SelectionDAGISel::
2582CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
2583  SDOperand Op = SDL.getValue(V);
2584  assert((Op.getOpcode() != ISD::CopyFromReg ||
2585          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
2586         "Copy from a reg to the same reg!");
2587
2588  // If this type is not legal, we must make sure to not create an invalid
2589  // register use.
2590  MVT::ValueType SrcVT = Op.getValueType();
2591  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
2592  SelectionDAG &DAG = SDL.DAG;
2593  if (SrcVT == DestVT) {
2594    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
2595  } else if (SrcVT == MVT::Vector) {
2596    // FIXME: THIS DOES NOT SUPPORT PROMOTED/EXPANDED ELEMENTS!
2597
2598    // Figure out the right, legal destination reg to copy into.
2599    const PackedType *PTy = cast<PackedType>(V->getType());
2600    unsigned NumElts = PTy->getNumElements();
2601    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
2602
2603    unsigned NumVectorRegs = 1;
2604
2605    // Divide the input until we get to a supported size.  This will always
2606    // end with a scalar if the target doesn't support vectors.
2607    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
2608      NumElts >>= 1;
2609      NumVectorRegs <<= 1;
2610    }
2611
2612    MVT::ValueType VT;
2613    if (NumElts == 1)
2614      VT = EltTy;
2615    else
2616      VT = getVectorType(EltTy, NumElts);
2617
2618    // FIXME: THIS ASSUMES THAT THE INPUT VECTOR WILL BE LEGAL!
2619    Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
2620    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
2621  } else if (SrcVT < DestVT) {
2622    // The src value is promoted to the register.
2623    if (MVT::isFloatingPoint(SrcVT))
2624      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
2625    else
2626      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
2627    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
2628  } else  {
2629    // The src value is expanded into multiple registers.
2630    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
2631                               Op, DAG.getConstant(0, MVT::i32));
2632    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
2633                               Op, DAG.getConstant(1, MVT::i32));
2634    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
2635    return DAG.getCopyToReg(Op, Reg+1, Hi);
2636  }
2637}
2638
2639void SelectionDAGISel::
2640LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
2641               std::vector<SDOperand> &UnorderedChains) {
2642  // If this is the entry block, emit arguments.
2643  Function &F = *BB->getParent();
2644  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
2645  SDOperand OldRoot = SDL.DAG.getRoot();
2646  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
2647
2648  unsigned a = 0;
2649  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
2650       AI != E; ++AI, ++a)
2651    if (!AI->use_empty()) {
2652      SDL.setValue(AI, Args[a]);
2653
2654      // If this argument is live outside of the entry block, insert a copy from
2655      // whereever we got it to the vreg that other BB's will reference it as.
2656      if (FuncInfo.ValueMap.count(AI)) {
2657        SDOperand Copy =
2658          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
2659        UnorderedChains.push_back(Copy);
2660      }
2661    }
2662
2663  // Next, if the function has live ins that need to be copied into vregs,
2664  // emit the copies now, into the top of the block.
2665  MachineFunction &MF = SDL.DAG.getMachineFunction();
2666  if (MF.livein_begin() != MF.livein_end()) {
2667    SSARegMap *RegMap = MF.getSSARegMap();
2668    const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
2669    for (MachineFunction::livein_iterator LI = MF.livein_begin(),
2670         E = MF.livein_end(); LI != E; ++LI)
2671      if (LI->second)
2672        MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
2673                         LI->first, RegMap->getRegClass(LI->second));
2674  }
2675
2676  // Finally, if the target has anything special to do, allow it to do so.
2677  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
2678}
2679
2680
2681void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
2682       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
2683                                         FunctionLoweringInfo &FuncInfo) {
2684  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
2685
2686  std::vector<SDOperand> UnorderedChains;
2687
2688  // Lower any arguments needed in this block if this is the entry block.
2689  if (LLVMBB == &LLVMBB->getParent()->front())
2690    LowerArguments(LLVMBB, SDL, UnorderedChains);
2691
2692  BB = FuncInfo.MBBMap[LLVMBB];
2693  SDL.setCurrentBasicBlock(BB);
2694
2695  // Lower all of the non-terminator instructions.
2696  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
2697       I != E; ++I)
2698    SDL.visit(*I);
2699
2700  // Ensure that all instructions which are used outside of their defining
2701  // blocks are available as virtual registers.
2702  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
2703    if (!I->use_empty() && !isa<PHINode>(I)) {
2704      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
2705      if (VMI != FuncInfo.ValueMap.end())
2706        UnorderedChains.push_back(
2707                           CopyValueToVirtualRegister(SDL, I, VMI->second));
2708    }
2709
2710  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
2711  // ensure constants are generated when needed.  Remember the virtual registers
2712  // that need to be added to the Machine PHI nodes as input.  We cannot just
2713  // directly add them, because expansion might result in multiple MBB's for one
2714  // BB.  As such, the start of the BB might correspond to a different MBB than
2715  // the end.
2716  //
2717
2718  // Emit constants only once even if used by multiple PHI nodes.
2719  std::map<Constant*, unsigned> ConstantsOut;
2720
2721  // Check successor nodes PHI nodes that expect a constant to be available from
2722  // this block.
2723  TerminatorInst *TI = LLVMBB->getTerminator();
2724  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2725    BasicBlock *SuccBB = TI->getSuccessor(succ);
2726    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
2727    PHINode *PN;
2728
2729    // At this point we know that there is a 1-1 correspondence between LLVM PHI
2730    // nodes and Machine PHI nodes, but the incoming operands have not been
2731    // emitted yet.
2732    for (BasicBlock::iterator I = SuccBB->begin();
2733         (PN = dyn_cast<PHINode>(I)); ++I)
2734      if (!PN->use_empty()) {
2735        unsigned Reg;
2736        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
2737        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
2738          unsigned &RegOut = ConstantsOut[C];
2739          if (RegOut == 0) {
2740            RegOut = FuncInfo.CreateRegForValue(C);
2741            UnorderedChains.push_back(
2742                             CopyValueToVirtualRegister(SDL, C, RegOut));
2743          }
2744          Reg = RegOut;
2745        } else {
2746          Reg = FuncInfo.ValueMap[PHIOp];
2747          if (Reg == 0) {
2748            assert(isa<AllocaInst>(PHIOp) &&
2749                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
2750                   "Didn't codegen value into a register!??");
2751            Reg = FuncInfo.CreateRegForValue(PHIOp);
2752            UnorderedChains.push_back(
2753                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
2754          }
2755        }
2756
2757        // Remember that this register needs to added to the machine PHI node as
2758        // the input for this MBB.
2759        unsigned NumElements =
2760          TLI.getNumElements(TLI.getValueType(PN->getType()));
2761        for (unsigned i = 0, e = NumElements; i != e; ++i)
2762          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
2763      }
2764  }
2765  ConstantsOut.clear();
2766
2767  // Turn all of the unordered chains into one factored node.
2768  if (!UnorderedChains.empty()) {
2769    SDOperand Root = SDL.getRoot();
2770    if (Root.getOpcode() != ISD::EntryToken) {
2771      unsigned i = 0, e = UnorderedChains.size();
2772      for (; i != e; ++i) {
2773        assert(UnorderedChains[i].Val->getNumOperands() > 1);
2774        if (UnorderedChains[i].Val->getOperand(0) == Root)
2775          break;  // Don't add the root if we already indirectly depend on it.
2776      }
2777
2778      if (i == e)
2779        UnorderedChains.push_back(Root);
2780    }
2781    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
2782  }
2783
2784  // Lower the terminator after the copies are emitted.
2785  SDL.visit(*LLVMBB->getTerminator());
2786
2787  // Copy over any CaseBlock records that may now exist due to SwitchInst
2788  // lowering.
2789  SwitchCases.clear();
2790  SwitchCases = SDL.SwitchCases;
2791
2792  // Make sure the root of the DAG is up-to-date.
2793  DAG.setRoot(SDL.getRoot());
2794}
2795
2796void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
2797  // Run the DAG combiner in pre-legalize mode.
2798  DAG.Combine(false);
2799
2800  DEBUG(std::cerr << "Lowered selection DAG:\n");
2801  DEBUG(DAG.dump());
2802
2803  // Second step, hack on the DAG until it only uses operations and types that
2804  // the target supports.
2805  DAG.Legalize();
2806
2807  DEBUG(std::cerr << "Legalized selection DAG:\n");
2808  DEBUG(DAG.dump());
2809
2810  // Run the DAG combiner in post-legalize mode.
2811  DAG.Combine(true);
2812
2813  if (ViewISelDAGs) DAG.viewGraph();
2814
2815  // Third, instruction select all of the operations to machine code, adding the
2816  // code to the MachineBasicBlock.
2817  InstructionSelectBasicBlock(DAG);
2818
2819  DEBUG(std::cerr << "Selected machine code:\n");
2820  DEBUG(BB->dump());
2821}
2822
2823void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
2824                                        FunctionLoweringInfo &FuncInfo) {
2825  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
2826  {
2827    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
2828    CurDAG = &DAG;
2829
2830    // First step, lower LLVM code to some DAG.  This DAG may use operations and
2831    // types that are not supported by the target.
2832    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
2833
2834    // Second step, emit the lowered DAG as machine code.
2835    CodeGenAndEmitDAG(DAG);
2836  }
2837
2838  // Next, now that we know what the last MBB the LLVM BB expanded is, update
2839  // PHI nodes in successors.
2840  if (SwitchCases.empty()) {
2841    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
2842      MachineInstr *PHI = PHINodesToUpdate[i].first;
2843      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
2844             "This is not a machine PHI node that we are updating!");
2845      PHI->addRegOperand(PHINodesToUpdate[i].second);
2846      PHI->addMachineBasicBlockOperand(BB);
2847    }
2848    return;
2849  }
2850
2851  // If we generated any switch lowering information, build and codegen any
2852  // additional DAGs necessary.
2853  for(unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
2854    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
2855    CurDAG = &SDAG;
2856    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
2857    // Set the current basic block to the mbb we wish to insert the code into
2858    BB = SwitchCases[i].ThisBB;
2859    SDL.setCurrentBasicBlock(BB);
2860    // Emit the code
2861    SDL.visitSwitchCase(SwitchCases[i]);
2862    SDAG.setRoot(SDL.getRoot());
2863    CodeGenAndEmitDAG(SDAG);
2864    // Iterate over the phi nodes, if there is a phi node in a successor of this
2865    // block (for instance, the default block), then add a pair of operands to
2866    // the phi node for this block, as if we were coming from the original
2867    // BB before switch expansion.
2868    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
2869      MachineInstr *PHI = PHINodesToUpdate[pi].first;
2870      MachineBasicBlock *PHIBB = PHI->getParent();
2871      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
2872             "This is not a machine PHI node that we are updating!");
2873      if (PHIBB == SwitchCases[i].LHSBB || PHIBB == SwitchCases[i].RHSBB) {
2874        PHI->addRegOperand(PHINodesToUpdate[pi].second);
2875        PHI->addMachineBasicBlockOperand(BB);
2876      }
2877    }
2878  }
2879}
2880
2881//===----------------------------------------------------------------------===//
2882/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
2883/// target node in the graph.
2884void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
2885  if (ViewSchedDAGs) DAG.viewGraph();
2886  ScheduleDAG *SL = NULL;
2887
2888  switch (ISHeuristic) {
2889  default: assert(0 && "Unrecognized scheduling heuristic");
2890  case defaultScheduling:
2891    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
2892      SL = createSimpleDAGScheduler(noScheduling, DAG, BB);
2893    else /* TargetLowering::SchedulingForRegPressure */
2894      SL = createBURRListDAGScheduler(DAG, BB);
2895    break;
2896  case noScheduling:
2897    SL = createBFS_DAGScheduler(DAG, BB);
2898    break;
2899  case simpleScheduling:
2900    SL = createSimpleDAGScheduler(false, DAG, BB);
2901    break;
2902  case simpleNoItinScheduling:
2903    SL = createSimpleDAGScheduler(true, DAG, BB);
2904    break;
2905  case listSchedulingBURR:
2906    SL = createBURRListDAGScheduler(DAG, BB);
2907    break;
2908  case listSchedulingTD:
2909    SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
2910    break;
2911  }
2912  BB = SL->Run();
2913  delete SL;
2914}
2915
2916HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
2917  return new HazardRecognizer();
2918}
2919
2920/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2921/// by tblgen.  Others should not call it.
2922void SelectionDAGISel::
2923SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
2924  std::vector<SDOperand> InOps;
2925  std::swap(InOps, Ops);
2926
2927  Ops.push_back(InOps[0]);  // input chain.
2928  Ops.push_back(InOps[1]);  // input asm string.
2929
2930  const char *AsmStr = cast<ExternalSymbolSDNode>(InOps[1])->getSymbol();
2931  unsigned i = 2, e = InOps.size();
2932  if (InOps[e-1].getValueType() == MVT::Flag)
2933    --e;  // Don't process a flag operand if it is here.
2934
2935  while (i != e) {
2936    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
2937    if ((Flags & 7) != 4 /*MEM*/) {
2938      // Just skip over this operand, copying the operands verbatim.
2939      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
2940      i += (Flags >> 3) + 1;
2941    } else {
2942      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
2943      // Otherwise, this is a memory operand.  Ask the target to select it.
2944      std::vector<SDOperand> SelOps;
2945      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
2946        std::cerr << "Could not match memory address.  Inline asm failure!\n";
2947        exit(1);
2948      }
2949
2950      // Add this to the output node.
2951      Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
2952      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2953      i += 2;
2954    }
2955  }
2956
2957  // Add the flag input back if present.
2958  if (e != InOps.size())
2959    Ops.push_back(InOps.back());
2960}
2961