SelectionDAGISel.cpp revision 90d33ee746f354030a4144c4ffa028599663615b
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/Timer.h"
49#include <algorithm>
50using namespace llvm;
51
52static cl::opt<bool>
53EnableValueProp("enable-value-prop", cl::Hidden);
54static cl::opt<bool>
55EnableLegalizeTypes("enable-legalize-types", cl::Hidden);
56
57
58#ifndef NDEBUG
59static cl::opt<bool>
60ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
61          cl::desc("Pop up a window to show dags before the first "
62                   "dag combine pass"));
63static cl::opt<bool>
64ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
65          cl::desc("Pop up a window to show dags before legalize types"));
66static cl::opt<bool>
67ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
68          cl::desc("Pop up a window to show dags before legalize"));
69static cl::opt<bool>
70ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
71          cl::desc("Pop up a window to show dags before the second "
72                   "dag combine pass"));
73static cl::opt<bool>
74ViewISelDAGs("view-isel-dags", cl::Hidden,
75          cl::desc("Pop up a window to show isel dags as they are selected"));
76static cl::opt<bool>
77ViewSchedDAGs("view-sched-dags", cl::Hidden,
78          cl::desc("Pop up a window to show sched dags as they are processed"));
79static cl::opt<bool>
80ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
81      cl::desc("Pop up a window to show SUnit dags after they are processed"));
82#else
83static const bool ViewDAGCombine1 = false,
84                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
85                  ViewDAGCombine2 = false,
86                  ViewISelDAGs = false, ViewSchedDAGs = false,
87                  ViewSUnitDAGs = false;
88#endif
89
90//===---------------------------------------------------------------------===//
91///
92/// RegisterScheduler class - Track the registration of instruction schedulers.
93///
94//===---------------------------------------------------------------------===//
95MachinePassRegistry RegisterScheduler::Registry;
96
97//===---------------------------------------------------------------------===//
98///
99/// ISHeuristic command line option for instruction schedulers.
100///
101//===---------------------------------------------------------------------===//
102static cl::opt<RegisterScheduler::FunctionPassCtor, false,
103               RegisterPassParser<RegisterScheduler> >
104ISHeuristic("pre-RA-sched",
105            cl::init(&createDefaultScheduler),
106            cl::desc("Instruction schedulers available (before register"
107                     " allocation):"));
108
109static RegisterScheduler
110defaultListDAGScheduler("default", "  Best scheduler for the target",
111                        createDefaultScheduler);
112
113namespace { struct SDISelAsmOperandInfo; }
114
115/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
116/// insertvalue or extractvalue indices that identify a member, return
117/// the linearized index of the start of the member.
118///
119static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
120                                   const unsigned *Indices,
121                                   const unsigned *IndicesEnd,
122                                   unsigned CurIndex = 0) {
123  // Base case: We're done.
124  if (Indices && Indices == IndicesEnd)
125    return CurIndex;
126
127  // Given a struct type, recursively traverse the elements.
128  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
129    for (StructType::element_iterator EB = STy->element_begin(),
130                                      EI = EB,
131                                      EE = STy->element_end();
132        EI != EE; ++EI) {
133      if (Indices && *Indices == unsigned(EI - EB))
134        return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
135      CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
136    }
137  }
138  // Given an array type, recursively traverse the elements.
139  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
140    const Type *EltTy = ATy->getElementType();
141    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
142      if (Indices && *Indices == i)
143        return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
144      CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
145    }
146  }
147  // We haven't found the type we're looking for, so keep searching.
148  return CurIndex + 1;
149}
150
151/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
152/// MVTs that represent all the individual underlying
153/// non-aggregate types that comprise it.
154///
155/// If Offsets is non-null, it points to a vector to be filled in
156/// with the in-memory offsets of each of the individual values.
157///
158static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
159                            SmallVectorImpl<MVT> &ValueVTs,
160                            SmallVectorImpl<uint64_t> *Offsets = 0,
161                            uint64_t StartingOffset = 0) {
162  // Given a struct type, recursively traverse the elements.
163  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
164    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
165    for (StructType::element_iterator EB = STy->element_begin(),
166                                      EI = EB,
167                                      EE = STy->element_end();
168         EI != EE; ++EI)
169      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
170                      StartingOffset + SL->getElementOffset(EI - EB));
171    return;
172  }
173  // Given an array type, recursively traverse the elements.
174  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
175    const Type *EltTy = ATy->getElementType();
176    uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
177    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
178      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
179                      StartingOffset + i * EltSize);
180    return;
181  }
182  // Base case: we can get an MVT for this LLVM IR type.
183  ValueVTs.push_back(TLI.getValueType(Ty));
184  if (Offsets)
185    Offsets->push_back(StartingOffset);
186}
187
188namespace {
189  /// RegsForValue - This struct represents the registers (physical or virtual)
190  /// that a particular set of values is assigned, and the type information about
191  /// the value. The most common situation is to represent one value at a time,
192  /// but struct or array values are handled element-wise as multiple values.
193  /// The splitting of aggregates is performed recursively, so that we never
194  /// have aggregate-typed registers. The values at this point do not necessarily
195  /// have legal types, so each value may require one or more registers of some
196  /// legal type.
197  ///
198  struct VISIBILITY_HIDDEN RegsForValue {
199    /// TLI - The TargetLowering object.
200    ///
201    const TargetLowering *TLI;
202
203    /// ValueVTs - The value types of the values, which may not be legal, and
204    /// may need be promoted or synthesized from one or more registers.
205    ///
206    SmallVector<MVT, 4> ValueVTs;
207
208    /// RegVTs - The value types of the registers. This is the same size as
209    /// ValueVTs and it records, for each value, what the type of the assigned
210    /// register or registers are. (Individual values are never synthesized
211    /// from more than one type of register.)
212    ///
213    /// With virtual registers, the contents of RegVTs is redundant with TLI's
214    /// getRegisterType member function, however when with physical registers
215    /// it is necessary to have a separate record of the types.
216    ///
217    SmallVector<MVT, 4> RegVTs;
218
219    /// Regs - This list holds the registers assigned to the values.
220    /// Each legal or promoted value requires one register, and each
221    /// expanded value requires multiple registers.
222    ///
223    SmallVector<unsigned, 4> Regs;
224
225    RegsForValue() : TLI(0) {}
226
227    RegsForValue(const TargetLowering &tli,
228                 const SmallVector<unsigned, 4> &regs,
229                 MVT regvt, MVT valuevt)
230      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
231    RegsForValue(const TargetLowering &tli,
232                 const SmallVector<unsigned, 4> &regs,
233                 const SmallVector<MVT, 4> &regvts,
234                 const SmallVector<MVT, 4> &valuevts)
235      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
236    RegsForValue(const TargetLowering &tli,
237                 unsigned Reg, const Type *Ty) : TLI(&tli) {
238      ComputeValueVTs(tli, Ty, ValueVTs);
239
240      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
241        MVT ValueVT = ValueVTs[Value];
242        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
243        MVT RegisterVT = TLI->getRegisterType(ValueVT);
244        for (unsigned i = 0; i != NumRegs; ++i)
245          Regs.push_back(Reg + i);
246        RegVTs.push_back(RegisterVT);
247        Reg += NumRegs;
248      }
249    }
250
251    /// append - Add the specified values to this one.
252    void append(const RegsForValue &RHS) {
253      TLI = RHS.TLI;
254      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
255      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
256      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
257    }
258
259
260    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
261    /// this value and returns the result as a ValueVTs value.  This uses
262    /// Chain/Flag as the input and updates them for the output Chain/Flag.
263    /// If the Flag pointer is NULL, no flag is used.
264    SDValue getCopyFromRegs(SelectionDAG &DAG,
265                              SDValue &Chain, SDValue *Flag) const;
266
267    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
268    /// specified value into the registers specified by this object.  This uses
269    /// Chain/Flag as the input and updates them for the output Chain/Flag.
270    /// If the Flag pointer is NULL, no flag is used.
271    void getCopyToRegs(SDValue Val, SelectionDAG &DAG,
272                       SDValue &Chain, SDValue *Flag) const;
273
274    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
275    /// operand list.  This adds the code marker and includes the number of
276    /// values added into it.
277    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
278                              std::vector<SDValue> &Ops) const;
279  };
280}
281
282namespace llvm {
283  //===--------------------------------------------------------------------===//
284  /// createDefaultScheduler - This creates an instruction scheduler appropriate
285  /// for the target.
286  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
287                                      SelectionDAG *DAG,
288                                      MachineBasicBlock *BB,
289                                      bool Fast) {
290    TargetLowering &TLI = IS->getTargetLowering();
291
292    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
293      return createTDListDAGScheduler(IS, DAG, BB, Fast);
294    } else {
295      assert(TLI.getSchedulingPreference() ==
296           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
297      return createBURRListDAGScheduler(IS, DAG, BB, Fast);
298    }
299  }
300
301
302  //===--------------------------------------------------------------------===//
303  /// FunctionLoweringInfo - This contains information that is global to a
304  /// function that is used when lowering a region of the function.
305  class FunctionLoweringInfo {
306  public:
307    TargetLowering &TLI;
308    Function &Fn;
309    MachineFunction &MF;
310    MachineRegisterInfo &RegInfo;
311
312    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
313
314    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
315    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
316
317    /// ValueMap - Since we emit code for the function a basic block at a time,
318    /// we must remember which virtual registers hold the values for
319    /// cross-basic-block values.
320    DenseMap<const Value*, unsigned> ValueMap;
321
322    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
323    /// the entry block.  This allows the allocas to be efficiently referenced
324    /// anywhere in the function.
325    std::map<const AllocaInst*, int> StaticAllocaMap;
326
327#ifndef NDEBUG
328    SmallSet<Instruction*, 8> CatchInfoLost;
329    SmallSet<Instruction*, 8> CatchInfoFound;
330#endif
331
332    unsigned MakeReg(MVT VT) {
333      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
334    }
335
336    /// isExportedInst - Return true if the specified value is an instruction
337    /// exported from its block.
338    bool isExportedInst(const Value *V) {
339      return ValueMap.count(V);
340    }
341
342    unsigned CreateRegForValue(const Value *V);
343
344    unsigned InitializeRegForValue(const Value *V) {
345      unsigned &R = ValueMap[V];
346      assert(R == 0 && "Already initialized this value register!");
347      return R = CreateRegForValue(V);
348    }
349
350    struct LiveOutInfo {
351      unsigned NumSignBits;
352      APInt KnownOne, KnownZero;
353      LiveOutInfo() : NumSignBits(0) {}
354    };
355
356    /// LiveOutRegInfo - Information about live out vregs, indexed by their
357    /// register number offset by 'FirstVirtualRegister'.
358    std::vector<LiveOutInfo> LiveOutRegInfo;
359  };
360}
361
362/// isSelector - Return true if this instruction is a call to the
363/// eh.selector intrinsic.
364static bool isSelector(Instruction *I) {
365  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
366    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
367            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
368  return false;
369}
370
371/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
372/// PHI nodes or outside of the basic block that defines it, or used by a
373/// switch or atomic instruction, which may expand to multiple basic blocks.
374static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
375  if (isa<PHINode>(I)) return true;
376  BasicBlock *BB = I->getParent();
377  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
378    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
379        // FIXME: Remove switchinst special case.
380        isa<SwitchInst>(*UI))
381      return true;
382  return false;
383}
384
385/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
386/// entry block, return true.  This includes arguments used by switches, since
387/// the switch may expand into multiple basic blocks.
388static bool isOnlyUsedInEntryBlock(Argument *A) {
389  BasicBlock *Entry = A->getParent()->begin();
390  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
391    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
392      return false;  // Use not in entry block.
393  return true;
394}
395
396FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
397                                           Function &fn, MachineFunction &mf)
398    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
399
400  // Create a vreg for each argument register that is not dead and is used
401  // outside of the entry block for the function.
402  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
403       AI != E; ++AI)
404    if (!isOnlyUsedInEntryBlock(AI))
405      InitializeRegForValue(AI);
406
407  // Initialize the mapping of values to registers.  This is only set up for
408  // instruction values that are used outside of the block that defines
409  // them.
410  Function::iterator BB = Fn.begin(), EB = Fn.end();
411  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
412    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
413      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
414        const Type *Ty = AI->getAllocatedType();
415        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
416        unsigned Align =
417          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
418                   AI->getAlignment());
419
420        TySize *= CUI->getZExtValue();   // Get total allocated size.
421        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
422        StaticAllocaMap[AI] =
423          MF.getFrameInfo()->CreateStackObject(TySize, Align);
424      }
425
426  for (; BB != EB; ++BB)
427    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
428      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
429        if (!isa<AllocaInst>(I) ||
430            !StaticAllocaMap.count(cast<AllocaInst>(I)))
431          InitializeRegForValue(I);
432
433  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
434  // also creates the initial PHI MachineInstrs, though none of the input
435  // operands are populated.
436  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
437    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
438    MBBMap[BB] = MBB;
439    MF.push_back(MBB);
440
441    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
442    // appropriate.
443    PHINode *PN;
444    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
445      if (PN->use_empty()) continue;
446
447      MVT VT = TLI.getValueType(PN->getType());
448      unsigned NumRegisters = TLI.getNumRegisters(VT);
449      unsigned PHIReg = ValueMap[PN];
450      assert(PHIReg && "PHI node does not have an assigned virtual register!");
451      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
452      for (unsigned i = 0; i != NumRegisters; ++i)
453        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
454    }
455  }
456}
457
458/// CreateRegForValue - Allocate the appropriate number of virtual registers of
459/// the correctly promoted or expanded types.  Assign these registers
460/// consecutive vreg numbers and return the first assigned number.
461///
462/// In the case that the given value has struct or array type, this function
463/// will assign registers for each member or element.
464///
465unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
466  SmallVector<MVT, 4> ValueVTs;
467  ComputeValueVTs(TLI, V->getType(), ValueVTs);
468
469  unsigned FirstReg = 0;
470  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
471    MVT ValueVT = ValueVTs[Value];
472    MVT RegisterVT = TLI.getRegisterType(ValueVT);
473
474    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
475    for (unsigned i = 0; i != NumRegs; ++i) {
476      unsigned R = MakeReg(RegisterVT);
477      if (!FirstReg) FirstReg = R;
478    }
479  }
480  return FirstReg;
481}
482
483//===----------------------------------------------------------------------===//
484/// SelectionDAGLowering - This is the common target-independent lowering
485/// implementation that is parameterized by a TargetLowering object.
486/// Also, targets can overload any lowering method.
487///
488namespace llvm {
489class SelectionDAGLowering {
490  MachineBasicBlock *CurMBB;
491
492  DenseMap<const Value*, SDValue> NodeMap;
493
494  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
495  /// them up and then emit token factor nodes when possible.  This allows us to
496  /// get simple disambiguation between loads without worrying about alias
497  /// analysis.
498  SmallVector<SDValue, 8> PendingLoads;
499
500  /// PendingExports - CopyToReg nodes that copy values to virtual registers
501  /// for export to other blocks need to be emitted before any terminator
502  /// instruction, but they have no other ordering requirements. We bunch them
503  /// up and the emit a single tokenfactor for them just before terminator
504  /// instructions.
505  std::vector<SDValue> PendingExports;
506
507  /// Case - A struct to record the Value for a switch case, and the
508  /// case's target basic block.
509  struct Case {
510    Constant* Low;
511    Constant* High;
512    MachineBasicBlock* BB;
513
514    Case() : Low(0), High(0), BB(0) { }
515    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
516      Low(low), High(high), BB(bb) { }
517    uint64_t size() const {
518      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
519      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
520      return (rHigh - rLow + 1ULL);
521    }
522  };
523
524  struct CaseBits {
525    uint64_t Mask;
526    MachineBasicBlock* BB;
527    unsigned Bits;
528
529    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
530      Mask(mask), BB(bb), Bits(bits) { }
531  };
532
533  typedef std::vector<Case>           CaseVector;
534  typedef std::vector<CaseBits>       CaseBitsVector;
535  typedef CaseVector::iterator        CaseItr;
536  typedef std::pair<CaseItr, CaseItr> CaseRange;
537
538  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
539  /// of conditional branches.
540  struct CaseRec {
541    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
542    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
543
544    /// CaseBB - The MBB in which to emit the compare and branch
545    MachineBasicBlock *CaseBB;
546    /// LT, GE - If nonzero, we know the current case value must be less-than or
547    /// greater-than-or-equal-to these Constants.
548    Constant *LT;
549    Constant *GE;
550    /// Range - A pair of iterators representing the range of case values to be
551    /// processed at this point in the binary search tree.
552    CaseRange Range;
553  };
554
555  typedef std::vector<CaseRec> CaseRecVector;
556
557  /// The comparison function for sorting the switch case values in the vector.
558  /// WARNING: Case ranges should be disjoint!
559  struct CaseCmp {
560    bool operator () (const Case& C1, const Case& C2) {
561      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
562      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
563      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
564      return CI1->getValue().slt(CI2->getValue());
565    }
566  };
567
568  struct CaseBitsCmp {
569    bool operator () (const CaseBits& C1, const CaseBits& C2) {
570      return C1.Bits > C2.Bits;
571    }
572  };
573
574  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
575
576public:
577  // TLI - This is information that describes the available target features we
578  // need for lowering.  This indicates when operations are unavailable,
579  // implemented with a libcall, etc.
580  TargetLowering &TLI;
581  SelectionDAG &DAG;
582  const TargetData *TD;
583  AliasAnalysis &AA;
584
585  /// SwitchCases - Vector of CaseBlock structures used to communicate
586  /// SwitchInst code generation information.
587  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
588  /// JTCases - Vector of JumpTable structures used to communicate
589  /// SwitchInst code generation information.
590  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
591  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
592
593  /// FuncInfo - Information about the function as a whole.
594  ///
595  FunctionLoweringInfo &FuncInfo;
596
597  /// GCI - Garbage collection metadata for the function.
598  CollectorMetadata *GCI;
599
600  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
601                       AliasAnalysis &aa,
602                       FunctionLoweringInfo &funcinfo,
603                       CollectorMetadata *gci)
604    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
605      FuncInfo(funcinfo), GCI(gci) {
606  }
607
608  /// getRoot - Return the current virtual root of the Selection DAG,
609  /// flushing any PendingLoad items. This must be done before emitting
610  /// a store or any other node that may need to be ordered after any
611  /// prior load instructions.
612  ///
613  SDValue getRoot() {
614    if (PendingLoads.empty())
615      return DAG.getRoot();
616
617    if (PendingLoads.size() == 1) {
618      SDValue Root = PendingLoads[0];
619      DAG.setRoot(Root);
620      PendingLoads.clear();
621      return Root;
622    }
623
624    // Otherwise, we have to make a token factor node.
625    SDValue Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
626                                 &PendingLoads[0], PendingLoads.size());
627    PendingLoads.clear();
628    DAG.setRoot(Root);
629    return Root;
630  }
631
632  /// getControlRoot - Similar to getRoot, but instead of flushing all the
633  /// PendingLoad items, flush all the PendingExports items. It is necessary
634  /// to do this before emitting a terminator instruction.
635  ///
636  SDValue getControlRoot() {
637    SDValue Root = DAG.getRoot();
638
639    if (PendingExports.empty())
640      return Root;
641
642    // Turn all of the CopyToReg chains into one factored node.
643    if (Root.getOpcode() != ISD::EntryToken) {
644      unsigned i = 0, e = PendingExports.size();
645      for (; i != e; ++i) {
646        assert(PendingExports[i].Val->getNumOperands() > 1);
647        if (PendingExports[i].Val->getOperand(0) == Root)
648          break;  // Don't add the root if we already indirectly depend on it.
649      }
650
651      if (i == e)
652        PendingExports.push_back(Root);
653    }
654
655    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
656                       &PendingExports[0],
657                       PendingExports.size());
658    PendingExports.clear();
659    DAG.setRoot(Root);
660    return Root;
661  }
662
663  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
664
665  void visit(Instruction &I) { visit(I.getOpcode(), I); }
666
667  void visit(unsigned Opcode, User &I) {
668    // Note: this doesn't use InstVisitor, because it has to work with
669    // ConstantExpr's in addition to instructions.
670    switch (Opcode) {
671    default: assert(0 && "Unknown instruction type encountered!");
672             abort();
673      // Build the switch statement using the Instruction.def file.
674#define HANDLE_INST(NUM, OPCODE, CLASS) \
675    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
676#include "llvm/Instruction.def"
677    }
678  }
679
680  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
681
682  SDValue getValue(const Value *V);
683
684  void setValue(const Value *V, SDValue NewN) {
685    SDValue &N = NodeMap[V];
686    assert(N.Val == 0 && "Already set a value for this node!");
687    N = NewN;
688  }
689
690  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
691                            std::set<unsigned> &OutputRegs,
692                            std::set<unsigned> &InputRegs);
693
694  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
695                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
696                            unsigned Opc);
697  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
698  void ExportFromCurrentBlock(Value *V);
699  void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall,
700                   MachineBasicBlock *LandingPad = NULL);
701
702  // Terminator instructions.
703  void visitRet(ReturnInst &I);
704  void visitBr(BranchInst &I);
705  void visitSwitch(SwitchInst &I);
706  void visitUnreachable(UnreachableInst &I) { /* noop */ }
707
708  // Helpers for visitSwitch
709  bool handleSmallSwitchRange(CaseRec& CR,
710                              CaseRecVector& WorkList,
711                              Value* SV,
712                              MachineBasicBlock* Default);
713  bool handleJTSwitchCase(CaseRec& CR,
714                          CaseRecVector& WorkList,
715                          Value* SV,
716                          MachineBasicBlock* Default);
717  bool handleBTSplitSwitchCase(CaseRec& CR,
718                               CaseRecVector& WorkList,
719                               Value* SV,
720                               MachineBasicBlock* Default);
721  bool handleBitTestsSwitchCase(CaseRec& CR,
722                                CaseRecVector& WorkList,
723                                Value* SV,
724                                MachineBasicBlock* Default);
725  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
726  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
727  void visitBitTestCase(MachineBasicBlock* NextMBB,
728                        unsigned Reg,
729                        SelectionDAGISel::BitTestCase &B);
730  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
731  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
732                            SelectionDAGISel::JumpTableHeader &JTH);
733
734  // These all get lowered before this pass.
735  void visitInvoke(InvokeInst &I);
736  void visitUnwind(UnwindInst &I);
737
738  void visitBinary(User &I, unsigned OpCode);
739  void visitShift(User &I, unsigned Opcode);
740  void visitAdd(User &I) {
741    if (I.getType()->isFPOrFPVector())
742      visitBinary(I, ISD::FADD);
743    else
744      visitBinary(I, ISD::ADD);
745  }
746  void visitSub(User &I);
747  void visitMul(User &I) {
748    if (I.getType()->isFPOrFPVector())
749      visitBinary(I, ISD::FMUL);
750    else
751      visitBinary(I, ISD::MUL);
752  }
753  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
754  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
755  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
756  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
757  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
758  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
759  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
760  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
761  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
762  void visitShl (User &I) { visitShift(I, ISD::SHL); }
763  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
764  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
765  void visitICmp(User &I);
766  void visitFCmp(User &I);
767  void visitVICmp(User &I);
768  void visitVFCmp(User &I);
769  // Visit the conversion instructions
770  void visitTrunc(User &I);
771  void visitZExt(User &I);
772  void visitSExt(User &I);
773  void visitFPTrunc(User &I);
774  void visitFPExt(User &I);
775  void visitFPToUI(User &I);
776  void visitFPToSI(User &I);
777  void visitUIToFP(User &I);
778  void visitSIToFP(User &I);
779  void visitPtrToInt(User &I);
780  void visitIntToPtr(User &I);
781  void visitBitCast(User &I);
782
783  void visitExtractElement(User &I);
784  void visitInsertElement(User &I);
785  void visitShuffleVector(User &I);
786
787  void visitExtractValue(ExtractValueInst &I);
788  void visitInsertValue(InsertValueInst &I);
789
790  void visitGetElementPtr(User &I);
791  void visitSelect(User &I);
792
793  void visitMalloc(MallocInst &I);
794  void visitFree(FreeInst &I);
795  void visitAlloca(AllocaInst &I);
796  void visitLoad(LoadInst &I);
797  void visitStore(StoreInst &I);
798  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
799  void visitCall(CallInst &I);
800  void visitInlineAsm(CallSite CS);
801  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
802  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
803
804  void visitVAStart(CallInst &I);
805  void visitVAArg(VAArgInst &I);
806  void visitVAEnd(CallInst &I);
807  void visitVACopy(CallInst &I);
808
809  void visitUserOp1(Instruction &I) {
810    assert(0 && "UserOp1 should not exist at instruction selection time!");
811    abort();
812  }
813  void visitUserOp2(Instruction &I) {
814    assert(0 && "UserOp2 should not exist at instruction selection time!");
815    abort();
816  }
817
818private:
819  inline const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
820
821};
822} // end namespace llvm
823
824
825/// getCopyFromParts - Create a value that contains the specified legal parts
826/// combined into the value they represent.  If the parts combine to a type
827/// larger then ValueVT then AssertOp can be used to specify whether the extra
828/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
829/// (ISD::AssertSext).
830static SDValue getCopyFromParts(SelectionDAG &DAG,
831                                  const SDValue *Parts,
832                                  unsigned NumParts,
833                                  MVT PartVT,
834                                  MVT ValueVT,
835                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
836  assert(NumParts > 0 && "No parts to assemble!");
837  TargetLowering &TLI = DAG.getTargetLoweringInfo();
838  SDValue Val = Parts[0];
839
840  if (NumParts > 1) {
841    // Assemble the value from multiple parts.
842    if (!ValueVT.isVector()) {
843      unsigned PartBits = PartVT.getSizeInBits();
844      unsigned ValueBits = ValueVT.getSizeInBits();
845
846      // Assemble the power of 2 part.
847      unsigned RoundParts = NumParts & (NumParts - 1) ?
848        1 << Log2_32(NumParts) : NumParts;
849      unsigned RoundBits = PartBits * RoundParts;
850      MVT RoundVT = RoundBits == ValueBits ?
851        ValueVT : MVT::getIntegerVT(RoundBits);
852      SDValue Lo, Hi;
853
854      if (RoundParts > 2) {
855        MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
856        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
857        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
858                              PartVT, HalfVT);
859      } else {
860        Lo = Parts[0];
861        Hi = Parts[1];
862      }
863      if (TLI.isBigEndian())
864        std::swap(Lo, Hi);
865      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
866
867      if (RoundParts < NumParts) {
868        // Assemble the trailing non-power-of-2 part.
869        unsigned OddParts = NumParts - RoundParts;
870        MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
871        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
872
873        // Combine the round and odd parts.
874        Lo = Val;
875        if (TLI.isBigEndian())
876          std::swap(Lo, Hi);
877        MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
878        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
879        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
880                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
881                                         TLI.getShiftAmountTy()));
882        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
883        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
884      }
885    } else {
886      // Handle a multi-element vector.
887      MVT IntermediateVT, RegisterVT;
888      unsigned NumIntermediates;
889      unsigned NumRegs =
890        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
891                                   RegisterVT);
892      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
893      NumParts = NumRegs; // Silence a compiler warning.
894      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
895      assert(RegisterVT == Parts[0].getValueType() &&
896             "Part type doesn't match part!");
897
898      // Assemble the parts into intermediate operands.
899      SmallVector<SDValue, 8> Ops(NumIntermediates);
900      if (NumIntermediates == NumParts) {
901        // If the register was not expanded, truncate or copy the value,
902        // as appropriate.
903        for (unsigned i = 0; i != NumParts; ++i)
904          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
905                                    PartVT, IntermediateVT);
906      } else if (NumParts > 0) {
907        // If the intermediate type was expanded, build the intermediate operands
908        // from the parts.
909        assert(NumParts % NumIntermediates == 0 &&
910               "Must expand into a divisible number of parts!");
911        unsigned Factor = NumParts / NumIntermediates;
912        for (unsigned i = 0; i != NumIntermediates; ++i)
913          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
914                                    PartVT, IntermediateVT);
915      }
916
917      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
918      // operands.
919      Val = DAG.getNode(IntermediateVT.isVector() ?
920                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
921                        ValueVT, &Ops[0], NumIntermediates);
922    }
923  }
924
925  // There is now one part, held in Val.  Correct it to match ValueVT.
926  PartVT = Val.getValueType();
927
928  if (PartVT == ValueVT)
929    return Val;
930
931  if (PartVT.isVector()) {
932    assert(ValueVT.isVector() && "Unknown vector conversion!");
933    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
934  }
935
936  if (ValueVT.isVector()) {
937    assert(ValueVT.getVectorElementType() == PartVT &&
938           ValueVT.getVectorNumElements() == 1 &&
939           "Only trivial scalar-to-vector conversions should get here!");
940    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
941  }
942
943  if (PartVT.isInteger() &&
944      ValueVT.isInteger()) {
945    if (ValueVT.bitsLT(PartVT)) {
946      // For a truncate, see if we have any information to
947      // indicate whether the truncated bits will always be
948      // zero or sign-extension.
949      if (AssertOp != ISD::DELETED_NODE)
950        Val = DAG.getNode(AssertOp, PartVT, Val,
951                          DAG.getValueType(ValueVT));
952      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
953    } else {
954      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
955    }
956  }
957
958  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
959    if (ValueVT.bitsLT(Val.getValueType()))
960      // FP_ROUND's are always exact here.
961      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
962                         DAG.getIntPtrConstant(1));
963    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
964  }
965
966  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
967    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
968
969  assert(0 && "Unknown mismatch!");
970  return SDValue();
971}
972
973/// getCopyToParts - Create a series of nodes that contain the specified value
974/// split into legal parts.  If the parts contain more bits than Val, then, for
975/// integers, ExtendKind can be used to specify how to generate the extra bits.
976static void getCopyToParts(SelectionDAG &DAG,
977                           SDValue Val,
978                           SDValue *Parts,
979                           unsigned NumParts,
980                           MVT PartVT,
981                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
982  TargetLowering &TLI = DAG.getTargetLoweringInfo();
983  MVT PtrVT = TLI.getPointerTy();
984  MVT ValueVT = Val.getValueType();
985  unsigned PartBits = PartVT.getSizeInBits();
986  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
987
988  if (!NumParts)
989    return;
990
991  if (!ValueVT.isVector()) {
992    if (PartVT == ValueVT) {
993      assert(NumParts == 1 && "No-op copy with multiple parts!");
994      Parts[0] = Val;
995      return;
996    }
997
998    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
999      // If the parts cover more bits than the value has, promote the value.
1000      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
1001        assert(NumParts == 1 && "Do not know what to promote to!");
1002        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
1003      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
1004        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1005        Val = DAG.getNode(ExtendKind, ValueVT, Val);
1006      } else {
1007        assert(0 && "Unknown mismatch!");
1008      }
1009    } else if (PartBits == ValueVT.getSizeInBits()) {
1010      // Different types of the same size.
1011      assert(NumParts == 1 && PartVT != ValueVT);
1012      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1013    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
1014      // If the parts cover less bits than value has, truncate the value.
1015      if (PartVT.isInteger() && ValueVT.isInteger()) {
1016        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1017        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1018      } else {
1019        assert(0 && "Unknown mismatch!");
1020      }
1021    }
1022
1023    // The value may have changed - recompute ValueVT.
1024    ValueVT = Val.getValueType();
1025    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
1026           "Failed to tile the value with PartVT!");
1027
1028    if (NumParts == 1) {
1029      assert(PartVT == ValueVT && "Type conversion failed!");
1030      Parts[0] = Val;
1031      return;
1032    }
1033
1034    // Expand the value into multiple parts.
1035    if (NumParts & (NumParts - 1)) {
1036      // The number of parts is not a power of 2.  Split off and copy the tail.
1037      assert(PartVT.isInteger() && ValueVT.isInteger() &&
1038             "Do not know what to expand to!");
1039      unsigned RoundParts = 1 << Log2_32(NumParts);
1040      unsigned RoundBits = RoundParts * PartBits;
1041      unsigned OddParts = NumParts - RoundParts;
1042      SDValue OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
1043                                     DAG.getConstant(RoundBits,
1044                                                     TLI.getShiftAmountTy()));
1045      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
1046      if (TLI.isBigEndian())
1047        // The odd parts were reversed by getCopyToParts - unreverse them.
1048        std::reverse(Parts + RoundParts, Parts + NumParts);
1049      NumParts = RoundParts;
1050      ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1051      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1052    }
1053
1054    // The number of parts is a power of 2.  Repeatedly bisect the value using
1055    // EXTRACT_ELEMENT.
1056    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
1057                           MVT::getIntegerVT(ValueVT.getSizeInBits()),
1058                           Val);
1059    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
1060      for (unsigned i = 0; i < NumParts; i += StepSize) {
1061        unsigned ThisBits = StepSize * PartBits / 2;
1062        MVT ThisVT = MVT::getIntegerVT (ThisBits);
1063        SDValue &Part0 = Parts[i];
1064        SDValue &Part1 = Parts[i+StepSize/2];
1065
1066        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1067                            DAG.getConstant(1, PtrVT));
1068        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1069                            DAG.getConstant(0, PtrVT));
1070
1071        if (ThisBits == PartBits && ThisVT != PartVT) {
1072          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
1073          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
1074        }
1075      }
1076    }
1077
1078    if (TLI.isBigEndian())
1079      std::reverse(Parts, Parts + NumParts);
1080
1081    return;
1082  }
1083
1084  // Vector ValueVT.
1085  if (NumParts == 1) {
1086    if (PartVT != ValueVT) {
1087      if (PartVT.isVector()) {
1088        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1089      } else {
1090        assert(ValueVT.getVectorElementType() == PartVT &&
1091               ValueVT.getVectorNumElements() == 1 &&
1092               "Only trivial vector-to-scalar conversions should get here!");
1093        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
1094                          DAG.getConstant(0, PtrVT));
1095      }
1096    }
1097
1098    Parts[0] = Val;
1099    return;
1100  }
1101
1102  // Handle a multi-element vector.
1103  MVT IntermediateVT, RegisterVT;
1104  unsigned NumIntermediates;
1105  unsigned NumRegs =
1106    DAG.getTargetLoweringInfo()
1107      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1108                              RegisterVT);
1109  unsigned NumElements = ValueVT.getVectorNumElements();
1110
1111  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1112  NumParts = NumRegs; // Silence a compiler warning.
1113  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1114
1115  // Split the vector into intermediate operands.
1116  SmallVector<SDValue, 8> Ops(NumIntermediates);
1117  for (unsigned i = 0; i != NumIntermediates; ++i)
1118    if (IntermediateVT.isVector())
1119      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
1120                           IntermediateVT, Val,
1121                           DAG.getConstant(i * (NumElements / NumIntermediates),
1122                                           PtrVT));
1123    else
1124      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
1125                           IntermediateVT, Val,
1126                           DAG.getConstant(i, PtrVT));
1127
1128  // Split the intermediate operands into legal parts.
1129  if (NumParts == NumIntermediates) {
1130    // If the register was not expanded, promote or copy the value,
1131    // as appropriate.
1132    for (unsigned i = 0; i != NumParts; ++i)
1133      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
1134  } else if (NumParts > 0) {
1135    // If the intermediate type was expanded, split each the value into
1136    // legal parts.
1137    assert(NumParts % NumIntermediates == 0 &&
1138           "Must expand into a divisible number of parts!");
1139    unsigned Factor = NumParts / NumIntermediates;
1140    for (unsigned i = 0; i != NumIntermediates; ++i)
1141      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
1142  }
1143}
1144
1145
1146SDValue SelectionDAGLowering::getValue(const Value *V) {
1147  SDValue &N = NodeMap[V];
1148  if (N.Val) return N;
1149
1150  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
1151    MVT VT = TLI.getValueType(V->getType(), true);
1152
1153    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1154      return N = DAG.getConstant(CI->getValue(), VT);
1155
1156    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
1157      return N = DAG.getGlobalAddress(GV, VT);
1158
1159    if (isa<ConstantPointerNull>(C))
1160      return N = DAG.getConstant(0, TLI.getPointerTy());
1161
1162    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1163      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
1164
1165    if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
1166        !V->getType()->isAggregateType())
1167      return N = DAG.getNode(ISD::UNDEF, VT);
1168
1169    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1170      visit(CE->getOpcode(), *CE);
1171      SDValue N1 = NodeMap[V];
1172      assert(N1.Val && "visit didn't populate the ValueMap!");
1173      return N1;
1174    }
1175
1176    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1177      SmallVector<SDValue, 4> Constants;
1178      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1179           OI != OE; ++OI) {
1180        SDNode *Val = getValue(*OI).Val;
1181        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1182          Constants.push_back(SDValue(Val, i));
1183      }
1184      return DAG.getMergeValues(&Constants[0], Constants.size());
1185    }
1186
1187    if (const ArrayType *ATy = dyn_cast<ArrayType>(C->getType())) {
1188      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1189             "Unknown array constant!");
1190      unsigned NumElts = ATy->getNumElements();
1191      if (NumElts == 0)
1192        return SDValue(); // empty array
1193      MVT EltVT = TLI.getValueType(ATy->getElementType());
1194      SmallVector<SDValue, 4> Constants(NumElts);
1195      for (unsigned i = 0, e = NumElts; i != e; ++i) {
1196        if (isa<UndefValue>(C))
1197          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1198        else if (EltVT.isFloatingPoint())
1199          Constants[i] = DAG.getConstantFP(0, EltVT);
1200        else
1201          Constants[i] = DAG.getConstant(0, EltVT);
1202      }
1203      return DAG.getMergeValues(&Constants[0], Constants.size());
1204    }
1205
1206    if (const StructType *STy = dyn_cast<StructType>(C->getType())) {
1207      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1208             "Unknown struct constant!");
1209      unsigned NumElts = STy->getNumElements();
1210      if (NumElts == 0)
1211        return SDValue(); // empty struct
1212      SmallVector<SDValue, 4> Constants(NumElts);
1213      for (unsigned i = 0, e = NumElts; i != e; ++i) {
1214        MVT EltVT = TLI.getValueType(STy->getElementType(i));
1215        if (isa<UndefValue>(C))
1216          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1217        else if (EltVT.isFloatingPoint())
1218          Constants[i] = DAG.getConstantFP(0, EltVT);
1219        else
1220          Constants[i] = DAG.getConstant(0, EltVT);
1221      }
1222      return DAG.getMergeValues(&Constants[0], Constants.size());
1223    }
1224
1225    const VectorType *VecTy = cast<VectorType>(V->getType());
1226    unsigned NumElements = VecTy->getNumElements();
1227
1228    // Now that we know the number and type of the elements, get that number of
1229    // elements into the Ops array based on what kind of constant it is.
1230    SmallVector<SDValue, 16> Ops;
1231    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1232      for (unsigned i = 0; i != NumElements; ++i)
1233        Ops.push_back(getValue(CP->getOperand(i)));
1234    } else {
1235      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1236             "Unknown vector constant!");
1237      MVT EltVT = TLI.getValueType(VecTy->getElementType());
1238
1239      SDValue Op;
1240      if (isa<UndefValue>(C))
1241        Op = DAG.getNode(ISD::UNDEF, EltVT);
1242      else if (EltVT.isFloatingPoint())
1243        Op = DAG.getConstantFP(0, EltVT);
1244      else
1245        Op = DAG.getConstant(0, EltVT);
1246      Ops.assign(NumElements, Op);
1247    }
1248
1249    // Create a BUILD_VECTOR node.
1250    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1251  }
1252
1253  // If this is a static alloca, generate it as the frameindex instead of
1254  // computation.
1255  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1256    std::map<const AllocaInst*, int>::iterator SI =
1257      FuncInfo.StaticAllocaMap.find(AI);
1258    if (SI != FuncInfo.StaticAllocaMap.end())
1259      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1260  }
1261
1262  unsigned InReg = FuncInfo.ValueMap[V];
1263  assert(InReg && "Value not in map!");
1264
1265  RegsForValue RFV(TLI, InReg, V->getType());
1266  SDValue Chain = DAG.getEntryNode();
1267  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1268}
1269
1270
1271void SelectionDAGLowering::visitRet(ReturnInst &I) {
1272  if (I.getNumOperands() == 0) {
1273    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
1274    return;
1275  }
1276
1277  SmallVector<SDValue, 8> NewValues;
1278  NewValues.push_back(getControlRoot());
1279  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1280    SDValue RetOp = getValue(I.getOperand(i));
1281
1282    SmallVector<MVT, 4> ValueVTs;
1283    ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
1284    for (unsigned j = 0, f = ValueVTs.size(); j != f; ++j) {
1285      MVT VT = ValueVTs[j];
1286
1287      // FIXME: C calling convention requires the return type to be promoted to
1288      // at least 32-bit. But this is not necessary for non-C calling conventions.
1289      if (VT.isInteger()) {
1290        MVT MinVT = TLI.getRegisterType(MVT::i32);
1291        if (VT.bitsLT(MinVT))
1292          VT = MinVT;
1293      }
1294
1295      unsigned NumParts = TLI.getNumRegisters(VT);
1296      MVT PartVT = TLI.getRegisterType(VT);
1297      SmallVector<SDValue, 4> Parts(NumParts);
1298      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1299
1300      const Function *F = I.getParent()->getParent();
1301      if (F->paramHasAttr(0, ParamAttr::SExt))
1302        ExtendKind = ISD::SIGN_EXTEND;
1303      else if (F->paramHasAttr(0, ParamAttr::ZExt))
1304        ExtendKind = ISD::ZERO_EXTEND;
1305
1306      getCopyToParts(DAG, SDValue(RetOp.Val, RetOp.ResNo + j),
1307                     &Parts[0], NumParts, PartVT, ExtendKind);
1308
1309      for (unsigned i = 0; i < NumParts; ++i) {
1310        NewValues.push_back(Parts[i]);
1311        NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
1312      }
1313    }
1314  }
1315  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1316                          &NewValues[0], NewValues.size()));
1317}
1318
1319/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1320/// the current basic block, add it to ValueMap now so that we'll get a
1321/// CopyTo/FromReg.
1322void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1323  // No need to export constants.
1324  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1325
1326  // Already exported?
1327  if (FuncInfo.isExportedInst(V)) return;
1328
1329  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1330  CopyValueToVirtualRegister(V, Reg);
1331}
1332
1333bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1334                                                    const BasicBlock *FromBB) {
1335  // The operands of the setcc have to be in this block.  We don't know
1336  // how to export them from some other block.
1337  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1338    // Can export from current BB.
1339    if (VI->getParent() == FromBB)
1340      return true;
1341
1342    // Is already exported, noop.
1343    return FuncInfo.isExportedInst(V);
1344  }
1345
1346  // If this is an argument, we can export it if the BB is the entry block or
1347  // if it is already exported.
1348  if (isa<Argument>(V)) {
1349    if (FromBB == &FromBB->getParent()->getEntryBlock())
1350      return true;
1351
1352    // Otherwise, can only export this if it is already exported.
1353    return FuncInfo.isExportedInst(V);
1354  }
1355
1356  // Otherwise, constants can always be exported.
1357  return true;
1358}
1359
1360static bool InBlock(const Value *V, const BasicBlock *BB) {
1361  if (const Instruction *I = dyn_cast<Instruction>(V))
1362    return I->getParent() == BB;
1363  return true;
1364}
1365
1366/// FindMergedConditions - If Cond is an expression like
1367void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1368                                                MachineBasicBlock *TBB,
1369                                                MachineBasicBlock *FBB,
1370                                                MachineBasicBlock *CurBB,
1371                                                unsigned Opc) {
1372  // If this node is not part of the or/and tree, emit it as a branch.
1373  Instruction *BOp = dyn_cast<Instruction>(Cond);
1374
1375  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1376      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1377      BOp->getParent() != CurBB->getBasicBlock() ||
1378      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1379      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1380    const BasicBlock *BB = CurBB->getBasicBlock();
1381
1382    // If the leaf of the tree is a comparison, merge the condition into
1383    // the caseblock.
1384    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1385        // The operands of the cmp have to be in this block.  We don't know
1386        // how to export them from some other block.  If this is the first block
1387        // of the sequence, no exporting is needed.
1388        (CurBB == CurMBB ||
1389         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1390          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1391      BOp = cast<Instruction>(Cond);
1392      ISD::CondCode Condition;
1393      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1394        switch (IC->getPredicate()) {
1395        default: assert(0 && "Unknown icmp predicate opcode!");
1396        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1397        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1398        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1399        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1400        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1401        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1402        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1403        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1404        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1405        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1406        }
1407      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1408        ISD::CondCode FPC, FOC;
1409        switch (FC->getPredicate()) {
1410        default: assert(0 && "Unknown fcmp predicate opcode!");
1411        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1412        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1413        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1414        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1415        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1416        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1417        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1418        case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
1419        case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
1420        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1421        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1422        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1423        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1424        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1425        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1426        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1427        }
1428        if (FiniteOnlyFPMath())
1429          Condition = FOC;
1430        else
1431          Condition = FPC;
1432      } else {
1433        Condition = ISD::SETEQ; // silence warning.
1434        assert(0 && "Unknown compare instruction");
1435      }
1436
1437      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1438                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1439      SwitchCases.push_back(CB);
1440      return;
1441    }
1442
1443    // Create a CaseBlock record representing this branch.
1444    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1445                                   NULL, TBB, FBB, CurBB);
1446    SwitchCases.push_back(CB);
1447    return;
1448  }
1449
1450
1451  //  Create TmpBB after CurBB.
1452  MachineFunction::iterator BBI = CurBB;
1453  MachineFunction &MF = DAG.getMachineFunction();
1454  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1455  CurBB->getParent()->insert(++BBI, TmpBB);
1456
1457  if (Opc == Instruction::Or) {
1458    // Codegen X | Y as:
1459    //   jmp_if_X TBB
1460    //   jmp TmpBB
1461    // TmpBB:
1462    //   jmp_if_Y TBB
1463    //   jmp FBB
1464    //
1465
1466    // Emit the LHS condition.
1467    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1468
1469    // Emit the RHS condition into TmpBB.
1470    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1471  } else {
1472    assert(Opc == Instruction::And && "Unknown merge op!");
1473    // Codegen X & Y as:
1474    //   jmp_if_X TmpBB
1475    //   jmp FBB
1476    // TmpBB:
1477    //   jmp_if_Y TBB
1478    //   jmp FBB
1479    //
1480    //  This requires creation of TmpBB after CurBB.
1481
1482    // Emit the LHS condition.
1483    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1484
1485    // Emit the RHS condition into TmpBB.
1486    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1487  }
1488}
1489
1490/// If the set of cases should be emitted as a series of branches, return true.
1491/// If we should emit this as a bunch of and/or'd together conditions, return
1492/// false.
1493static bool
1494ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1495  if (Cases.size() != 2) return true;
1496
1497  // If this is two comparisons of the same values or'd or and'd together, they
1498  // will get folded into a single comparison, so don't emit two blocks.
1499  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1500       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1501      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1502       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1503    return false;
1504  }
1505
1506  return true;
1507}
1508
1509void SelectionDAGLowering::visitBr(BranchInst &I) {
1510  // Update machine-CFG edges.
1511  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1512
1513  // Figure out which block is immediately after the current one.
1514  MachineBasicBlock *NextBlock = 0;
1515  MachineFunction::iterator BBI = CurMBB;
1516  if (++BBI != CurMBB->getParent()->end())
1517    NextBlock = BBI;
1518
1519  if (I.isUnconditional()) {
1520    // Update machine-CFG edges.
1521    CurMBB->addSuccessor(Succ0MBB);
1522
1523    // If this is not a fall-through branch, emit the branch.
1524    if (Succ0MBB != NextBlock)
1525      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1526                              DAG.getBasicBlock(Succ0MBB)));
1527    return;
1528  }
1529
1530  // If this condition is one of the special cases we handle, do special stuff
1531  // now.
1532  Value *CondVal = I.getCondition();
1533  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1534
1535  // If this is a series of conditions that are or'd or and'd together, emit
1536  // this as a sequence of branches instead of setcc's with and/or operations.
1537  // For example, instead of something like:
1538  //     cmp A, B
1539  //     C = seteq
1540  //     cmp D, E
1541  //     F = setle
1542  //     or C, F
1543  //     jnz foo
1544  // Emit:
1545  //     cmp A, B
1546  //     je foo
1547  //     cmp D, E
1548  //     jle foo
1549  //
1550  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1551    if (BOp->hasOneUse() &&
1552        (BOp->getOpcode() == Instruction::And ||
1553         BOp->getOpcode() == Instruction::Or)) {
1554      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1555      // If the compares in later blocks need to use values not currently
1556      // exported from this block, export them now.  This block should always
1557      // be the first entry.
1558      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1559
1560      // Allow some cases to be rejected.
1561      if (ShouldEmitAsBranches(SwitchCases)) {
1562        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1563          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1564          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1565        }
1566
1567        // Emit the branch for this block.
1568        visitSwitchCase(SwitchCases[0]);
1569        SwitchCases.erase(SwitchCases.begin());
1570        return;
1571      }
1572
1573      // Okay, we decided not to do this, remove any inserted MBB's and clear
1574      // SwitchCases.
1575      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1576        CurMBB->getParent()->erase(SwitchCases[i].ThisBB);
1577
1578      SwitchCases.clear();
1579    }
1580  }
1581
1582  // Create a CaseBlock record representing this branch.
1583  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1584                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1585  // Use visitSwitchCase to actually insert the fast branch sequence for this
1586  // cond branch.
1587  visitSwitchCase(CB);
1588}
1589
1590/// visitSwitchCase - Emits the necessary code to represent a single node in
1591/// the binary search tree resulting from lowering a switch instruction.
1592void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1593  SDValue Cond;
1594  SDValue CondLHS = getValue(CB.CmpLHS);
1595
1596  // Build the setcc now.
1597  if (CB.CmpMHS == NULL) {
1598    // Fold "(X == true)" to X and "(X == false)" to !X to
1599    // handle common cases produced by branch lowering.
1600    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1601      Cond = CondLHS;
1602    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1603      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1604      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1605    } else
1606      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1607  } else {
1608    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1609
1610    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1611    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1612
1613    SDValue CmpOp = getValue(CB.CmpMHS);
1614    MVT VT = CmpOp.getValueType();
1615
1616    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1617      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1618    } else {
1619      SDValue SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1620      Cond = DAG.getSetCC(MVT::i1, SUB,
1621                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1622    }
1623  }
1624
1625  // Update successor info
1626  CurMBB->addSuccessor(CB.TrueBB);
1627  CurMBB->addSuccessor(CB.FalseBB);
1628
1629  // Set NextBlock to be the MBB immediately after the current one, if any.
1630  // This is used to avoid emitting unnecessary branches to the next block.
1631  MachineBasicBlock *NextBlock = 0;
1632  MachineFunction::iterator BBI = CurMBB;
1633  if (++BBI != CurMBB->getParent()->end())
1634    NextBlock = BBI;
1635
1636  // If the lhs block is the next block, invert the condition so that we can
1637  // fall through to the lhs instead of the rhs block.
1638  if (CB.TrueBB == NextBlock) {
1639    std::swap(CB.TrueBB, CB.FalseBB);
1640    SDValue True = DAG.getConstant(1, Cond.getValueType());
1641    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1642  }
1643  SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1644                                 DAG.getBasicBlock(CB.TrueBB));
1645  if (CB.FalseBB == NextBlock)
1646    DAG.setRoot(BrCond);
1647  else
1648    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1649                            DAG.getBasicBlock(CB.FalseBB)));
1650}
1651
1652/// visitJumpTable - Emit JumpTable node in the current MBB
1653void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1654  // Emit the code for the jump table
1655  assert(JT.Reg != -1U && "Should lower JT Header first!");
1656  MVT PTy = TLI.getPointerTy();
1657  SDValue Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1658  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1659  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1660                          Table, Index));
1661  return;
1662}
1663
1664/// visitJumpTableHeader - This function emits necessary code to produce index
1665/// in the JumpTable from switch case.
1666void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1667                                         SelectionDAGISel::JumpTableHeader &JTH) {
1668  // Subtract the lowest switch case value from the value being switched on
1669  // and conditional branch to default mbb if the result is greater than the
1670  // difference between smallest and largest cases.
1671  SDValue SwitchOp = getValue(JTH.SValue);
1672  MVT VT = SwitchOp.getValueType();
1673  SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1674                              DAG.getConstant(JTH.First, VT));
1675
1676  // The SDNode we just created, which holds the value being switched on
1677  // minus the the smallest case value, needs to be copied to a virtual
1678  // register so it can be used as an index into the jump table in a
1679  // subsequent basic block.  This value may be smaller or larger than the
1680  // target's pointer type, and therefore require extension or truncating.
1681  if (VT.bitsGT(TLI.getPointerTy()))
1682    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1683  else
1684    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1685
1686  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1687  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1688  JT.Reg = JumpTableReg;
1689
1690  // Emit the range check for the jump table, and branch to the default
1691  // block for the switch statement if the value being switched on exceeds
1692  // the largest case in the switch.
1693  SDValue CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1694                               DAG.getConstant(JTH.Last-JTH.First,VT),
1695                               ISD::SETUGT);
1696
1697  // Set NextBlock to be the MBB immediately after the current one, if any.
1698  // This is used to avoid emitting unnecessary branches to the next block.
1699  MachineBasicBlock *NextBlock = 0;
1700  MachineFunction::iterator BBI = CurMBB;
1701  if (++BBI != CurMBB->getParent()->end())
1702    NextBlock = BBI;
1703
1704  SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1705                                 DAG.getBasicBlock(JT.Default));
1706
1707  if (JT.MBB == NextBlock)
1708    DAG.setRoot(BrCond);
1709  else
1710    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1711                            DAG.getBasicBlock(JT.MBB)));
1712
1713  return;
1714}
1715
1716/// visitBitTestHeader - This function emits necessary code to produce value
1717/// suitable for "bit tests"
1718void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1719  // Subtract the minimum value
1720  SDValue SwitchOp = getValue(B.SValue);
1721  MVT VT = SwitchOp.getValueType();
1722  SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1723                              DAG.getConstant(B.First, VT));
1724
1725  // Check range
1726  SDValue RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1727                                    DAG.getConstant(B.Range, VT),
1728                                    ISD::SETUGT);
1729
1730  SDValue ShiftOp;
1731  if (VT.bitsGT(TLI.getShiftAmountTy()))
1732    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1733  else
1734    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1735
1736  // Make desired shift
1737  SDValue SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1738                                    DAG.getConstant(1, TLI.getPointerTy()),
1739                                    ShiftOp);
1740
1741  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1742  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1743  B.Reg = SwitchReg;
1744
1745  // Set NextBlock to be the MBB immediately after the current one, if any.
1746  // This is used to avoid emitting unnecessary branches to the next block.
1747  MachineBasicBlock *NextBlock = 0;
1748  MachineFunction::iterator BBI = CurMBB;
1749  if (++BBI != CurMBB->getParent()->end())
1750    NextBlock = BBI;
1751
1752  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1753
1754  CurMBB->addSuccessor(B.Default);
1755  CurMBB->addSuccessor(MBB);
1756
1757  SDValue BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1758                                  DAG.getBasicBlock(B.Default));
1759
1760  if (MBB == NextBlock)
1761    DAG.setRoot(BrRange);
1762  else
1763    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1764                            DAG.getBasicBlock(MBB)));
1765
1766  return;
1767}
1768
1769/// visitBitTestCase - this function produces one "bit test"
1770void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1771                                            unsigned Reg,
1772                                            SelectionDAGISel::BitTestCase &B) {
1773  // Emit bit tests and jumps
1774  SDValue SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
1775                                           TLI.getPointerTy());
1776
1777  SDValue AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
1778                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1779  SDValue AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1780                                  DAG.getConstant(0, TLI.getPointerTy()),
1781                                  ISD::SETNE);
1782
1783  CurMBB->addSuccessor(B.TargetBB);
1784  CurMBB->addSuccessor(NextMBB);
1785
1786  SDValue BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1787                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1788
1789  // Set NextBlock to be the MBB immediately after the current one, if any.
1790  // This is used to avoid emitting unnecessary branches to the next block.
1791  MachineBasicBlock *NextBlock = 0;
1792  MachineFunction::iterator BBI = CurMBB;
1793  if (++BBI != CurMBB->getParent()->end())
1794    NextBlock = BBI;
1795
1796  if (NextMBB == NextBlock)
1797    DAG.setRoot(BrAnd);
1798  else
1799    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1800                            DAG.getBasicBlock(NextMBB)));
1801
1802  return;
1803}
1804
1805void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1806  // Retrieve successors.
1807  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1808  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1809
1810  if (isa<InlineAsm>(I.getCalledValue()))
1811    visitInlineAsm(&I);
1812  else
1813    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1814
1815  // If the value of the invoke is used outside of its defining block, make it
1816  // available as a virtual register.
1817  if (!I.use_empty()) {
1818    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1819    if (VMI != FuncInfo.ValueMap.end())
1820      CopyValueToVirtualRegister(&I, VMI->second);
1821  }
1822
1823  // Update successor info
1824  CurMBB->addSuccessor(Return);
1825  CurMBB->addSuccessor(LandingPad);
1826
1827  // Drop into normal successor.
1828  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1829                          DAG.getBasicBlock(Return)));
1830}
1831
1832void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1833}
1834
1835/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1836/// small case ranges).
1837bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1838                                                  CaseRecVector& WorkList,
1839                                                  Value* SV,
1840                                                  MachineBasicBlock* Default) {
1841  Case& BackCase  = *(CR.Range.second-1);
1842
1843  // Size is the number of Cases represented by this range.
1844  unsigned Size = CR.Range.second - CR.Range.first;
1845  if (Size > 3)
1846    return false;
1847
1848  // Get the MachineFunction which holds the current MBB.  This is used when
1849  // inserting any additional MBBs necessary to represent the switch.
1850  MachineFunction *CurMF = CurMBB->getParent();
1851
1852  // Figure out which block is immediately after the current one.
1853  MachineBasicBlock *NextBlock = 0;
1854  MachineFunction::iterator BBI = CR.CaseBB;
1855
1856  if (++BBI != CurMBB->getParent()->end())
1857    NextBlock = BBI;
1858
1859  // TODO: If any two of the cases has the same destination, and if one value
1860  // is the same as the other, but has one bit unset that the other has set,
1861  // use bit manipulation to do two compares at once.  For example:
1862  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1863
1864  // Rearrange the case blocks so that the last one falls through if possible.
1865  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1866    // The last case block won't fall through into 'NextBlock' if we emit the
1867    // branches in this order.  See if rearranging a case value would help.
1868    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1869      if (I->BB == NextBlock) {
1870        std::swap(*I, BackCase);
1871        break;
1872      }
1873    }
1874  }
1875
1876  // Create a CaseBlock record representing a conditional branch to
1877  // the Case's target mbb if the value being switched on SV is equal
1878  // to C.
1879  MachineBasicBlock *CurBlock = CR.CaseBB;
1880  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1881    MachineBasicBlock *FallThrough;
1882    if (I != E-1) {
1883      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1884      CurMF->insert(BBI, FallThrough);
1885    } else {
1886      // If the last case doesn't match, go to the default block.
1887      FallThrough = Default;
1888    }
1889
1890    Value *RHS, *LHS, *MHS;
1891    ISD::CondCode CC;
1892    if (I->High == I->Low) {
1893      // This is just small small case range :) containing exactly 1 case
1894      CC = ISD::SETEQ;
1895      LHS = SV; RHS = I->High; MHS = NULL;
1896    } else {
1897      CC = ISD::SETLE;
1898      LHS = I->Low; MHS = SV; RHS = I->High;
1899    }
1900    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1901                                   I->BB, FallThrough, CurBlock);
1902
1903    // If emitting the first comparison, just call visitSwitchCase to emit the
1904    // code into the current block.  Otherwise, push the CaseBlock onto the
1905    // vector to be later processed by SDISel, and insert the node's MBB
1906    // before the next MBB.
1907    if (CurBlock == CurMBB)
1908      visitSwitchCase(CB);
1909    else
1910      SwitchCases.push_back(CB);
1911
1912    CurBlock = FallThrough;
1913  }
1914
1915  return true;
1916}
1917
1918static inline bool areJTsAllowed(const TargetLowering &TLI) {
1919  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1920          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1921}
1922
1923/// handleJTSwitchCase - Emit jumptable for current switch case range
1924bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1925                                              CaseRecVector& WorkList,
1926                                              Value* SV,
1927                                              MachineBasicBlock* Default) {
1928  Case& FrontCase = *CR.Range.first;
1929  Case& BackCase  = *(CR.Range.second-1);
1930
1931  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1932  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1933
1934  uint64_t TSize = 0;
1935  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1936       I!=E; ++I)
1937    TSize += I->size();
1938
1939  if (!areJTsAllowed(TLI) || TSize <= 3)
1940    return false;
1941
1942  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1943  if (Density < 0.4)
1944    return false;
1945
1946  DOUT << "Lowering jump table\n"
1947       << "First entry: " << First << ". Last entry: " << Last << "\n"
1948       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1949
1950  // Get the MachineFunction which holds the current MBB.  This is used when
1951  // inserting any additional MBBs necessary to represent the switch.
1952  MachineFunction *CurMF = CurMBB->getParent();
1953
1954  // Figure out which block is immediately after the current one.
1955  MachineBasicBlock *NextBlock = 0;
1956  MachineFunction::iterator BBI = CR.CaseBB;
1957
1958  if (++BBI != CurMBB->getParent()->end())
1959    NextBlock = BBI;
1960
1961  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1962
1963  // Create a new basic block to hold the code for loading the address
1964  // of the jump table, and jumping to it.  Update successor information;
1965  // we will either branch to the default case for the switch, or the jump
1966  // table.
1967  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1968  CurMF->insert(BBI, JumpTableBB);
1969  CR.CaseBB->addSuccessor(Default);
1970  CR.CaseBB->addSuccessor(JumpTableBB);
1971
1972  // Build a vector of destination BBs, corresponding to each target
1973  // of the jump table. If the value of the jump table slot corresponds to
1974  // a case statement, push the case's BB onto the vector, otherwise, push
1975  // the default BB.
1976  std::vector<MachineBasicBlock*> DestBBs;
1977  int64_t TEI = First;
1978  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1979    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1980    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1981
1982    if ((Low <= TEI) && (TEI <= High)) {
1983      DestBBs.push_back(I->BB);
1984      if (TEI==High)
1985        ++I;
1986    } else {
1987      DestBBs.push_back(Default);
1988    }
1989  }
1990
1991  // Update successor info. Add one edge to each unique successor.
1992  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1993  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1994         E = DestBBs.end(); I != E; ++I) {
1995    if (!SuccsHandled[(*I)->getNumber()]) {
1996      SuccsHandled[(*I)->getNumber()] = true;
1997      JumpTableBB->addSuccessor(*I);
1998    }
1999  }
2000
2001  // Create a jump table index for this jump table, or return an existing
2002  // one.
2003  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
2004
2005  // Set the jump table information so that we can codegen it as a second
2006  // MachineBasicBlock
2007  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
2008  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
2009                                        (CR.CaseBB == CurMBB));
2010  if (CR.CaseBB == CurMBB)
2011    visitJumpTableHeader(JT, JTH);
2012
2013  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
2014
2015  return true;
2016}
2017
2018/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2019/// 2 subtrees.
2020bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
2021                                                   CaseRecVector& WorkList,
2022                                                   Value* SV,
2023                                                   MachineBasicBlock* Default) {
2024  // Get the MachineFunction which holds the current MBB.  This is used when
2025  // inserting any additional MBBs necessary to represent the switch.
2026  MachineFunction *CurMF = CurMBB->getParent();
2027
2028  // Figure out which block is immediately after the current one.
2029  MachineBasicBlock *NextBlock = 0;
2030  MachineFunction::iterator BBI = CR.CaseBB;
2031
2032  if (++BBI != CurMBB->getParent()->end())
2033    NextBlock = BBI;
2034
2035  Case& FrontCase = *CR.Range.first;
2036  Case& BackCase  = *(CR.Range.second-1);
2037  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2038
2039  // Size is the number of Cases represented by this range.
2040  unsigned Size = CR.Range.second - CR.Range.first;
2041
2042  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
2043  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
2044  double FMetric = 0;
2045  CaseItr Pivot = CR.Range.first + Size/2;
2046
2047  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2048  // (heuristically) allow us to emit JumpTable's later.
2049  uint64_t TSize = 0;
2050  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2051       I!=E; ++I)
2052    TSize += I->size();
2053
2054  uint64_t LSize = FrontCase.size();
2055  uint64_t RSize = TSize-LSize;
2056  DOUT << "Selecting best pivot: \n"
2057       << "First: " << First << ", Last: " << Last <<"\n"
2058       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
2059  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2060       J!=E; ++I, ++J) {
2061    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
2062    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
2063    assert((RBegin-LEnd>=1) && "Invalid case distance");
2064    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
2065    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
2066    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
2067    // Should always split in some non-trivial place
2068    DOUT <<"=>Step\n"
2069         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
2070         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
2071         << "Metric: " << Metric << "\n";
2072    if (FMetric < Metric) {
2073      Pivot = J;
2074      FMetric = Metric;
2075      DOUT << "Current metric set to: " << FMetric << "\n";
2076    }
2077
2078    LSize += J->size();
2079    RSize -= J->size();
2080  }
2081  if (areJTsAllowed(TLI)) {
2082    // If our case is dense we *really* should handle it earlier!
2083    assert((FMetric > 0) && "Should handle dense range earlier!");
2084  } else {
2085    Pivot = CR.Range.first + Size/2;
2086  }
2087
2088  CaseRange LHSR(CR.Range.first, Pivot);
2089  CaseRange RHSR(Pivot, CR.Range.second);
2090  Constant *C = Pivot->Low;
2091  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2092
2093  // We know that we branch to the LHS if the Value being switched on is
2094  // less than the Pivot value, C.  We use this to optimize our binary
2095  // tree a bit, by recognizing that if SV is greater than or equal to the
2096  // LHS's Case Value, and that Case Value is exactly one less than the
2097  // Pivot's Value, then we can branch directly to the LHS's Target,
2098  // rather than creating a leaf node for it.
2099  if ((LHSR.second - LHSR.first) == 1 &&
2100      LHSR.first->High == CR.GE &&
2101      cast<ConstantInt>(C)->getSExtValue() ==
2102      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
2103    TrueBB = LHSR.first->BB;
2104  } else {
2105    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2106    CurMF->insert(BBI, TrueBB);
2107    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2108  }
2109
2110  // Similar to the optimization above, if the Value being switched on is
2111  // known to be less than the Constant CR.LT, and the current Case Value
2112  // is CR.LT - 1, then we can branch directly to the target block for
2113  // the current Case Value, rather than emitting a RHS leaf node for it.
2114  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2115      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
2116      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
2117    FalseBB = RHSR.first->BB;
2118  } else {
2119    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2120    CurMF->insert(BBI, FalseBB);
2121    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2122  }
2123
2124  // Create a CaseBlock record representing a conditional branch to
2125  // the LHS node if the value being switched on SV is less than C.
2126  // Otherwise, branch to LHS.
2127  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
2128                                 TrueBB, FalseBB, CR.CaseBB);
2129
2130  if (CR.CaseBB == CurMBB)
2131    visitSwitchCase(CB);
2132  else
2133    SwitchCases.push_back(CB);
2134
2135  return true;
2136}
2137
2138/// handleBitTestsSwitchCase - if current case range has few destination and
2139/// range span less, than machine word bitwidth, encode case range into series
2140/// of masks and emit bit tests with these masks.
2141bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
2142                                                    CaseRecVector& WorkList,
2143                                                    Value* SV,
2144                                                    MachineBasicBlock* Default){
2145  unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
2146
2147  Case& FrontCase = *CR.Range.first;
2148  Case& BackCase  = *(CR.Range.second-1);
2149
2150  // Get the MachineFunction which holds the current MBB.  This is used when
2151  // inserting any additional MBBs necessary to represent the switch.
2152  MachineFunction *CurMF = CurMBB->getParent();
2153
2154  unsigned numCmps = 0;
2155  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2156       I!=E; ++I) {
2157    // Single case counts one, case range - two.
2158    if (I->Low == I->High)
2159      numCmps +=1;
2160    else
2161      numCmps +=2;
2162  }
2163
2164  // Count unique destinations
2165  SmallSet<MachineBasicBlock*, 4> Dests;
2166  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2167    Dests.insert(I->BB);
2168    if (Dests.size() > 3)
2169      // Don't bother the code below, if there are too much unique destinations
2170      return false;
2171  }
2172  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
2173       << "Total number of comparisons: " << numCmps << "\n";
2174
2175  // Compute span of values.
2176  Constant* minValue = FrontCase.Low;
2177  Constant* maxValue = BackCase.High;
2178  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
2179                   cast<ConstantInt>(minValue)->getSExtValue();
2180  DOUT << "Compare range: " << range << "\n"
2181       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
2182       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
2183
2184  if (range>=IntPtrBits ||
2185      (!(Dests.size() == 1 && numCmps >= 3) &&
2186       !(Dests.size() == 2 && numCmps >= 5) &&
2187       !(Dests.size() >= 3 && numCmps >= 6)))
2188    return false;
2189
2190  DOUT << "Emitting bit tests\n";
2191  int64_t lowBound = 0;
2192
2193  // Optimize the case where all the case values fit in a
2194  // word without having to subtract minValue. In this case,
2195  // we can optimize away the subtraction.
2196  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
2197      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
2198    range = cast<ConstantInt>(maxValue)->getSExtValue();
2199  } else {
2200    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
2201  }
2202
2203  CaseBitsVector CasesBits;
2204  unsigned i, count = 0;
2205
2206  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2207    MachineBasicBlock* Dest = I->BB;
2208    for (i = 0; i < count; ++i)
2209      if (Dest == CasesBits[i].BB)
2210        break;
2211
2212    if (i == count) {
2213      assert((count < 3) && "Too much destinations to test!");
2214      CasesBits.push_back(CaseBits(0, Dest, 0));
2215      count++;
2216    }
2217
2218    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2219    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2220
2221    for (uint64_t j = lo; j <= hi; j++) {
2222      CasesBits[i].Mask |=  1ULL << j;
2223      CasesBits[i].Bits++;
2224    }
2225
2226  }
2227  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2228
2229  SelectionDAGISel::BitTestInfo BTC;
2230
2231  // Figure out which block is immediately after the current one.
2232  MachineFunction::iterator BBI = CR.CaseBB;
2233  ++BBI;
2234
2235  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2236
2237  DOUT << "Cases:\n";
2238  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2239    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2240         << ", BB: " << CasesBits[i].BB << "\n";
2241
2242    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2243    CurMF->insert(BBI, CaseBB);
2244    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
2245                                                CaseBB,
2246                                                CasesBits[i].BB));
2247  }
2248
2249  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
2250                                     -1U, (CR.CaseBB == CurMBB),
2251                                     CR.CaseBB, Default, BTC);
2252
2253  if (CR.CaseBB == CurMBB)
2254    visitBitTestHeader(BTB);
2255
2256  BitTestCases.push_back(BTB);
2257
2258  return true;
2259}
2260
2261
2262/// Clusterify - Transform simple list of Cases into list of CaseRange's
2263unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2264                                          const SwitchInst& SI) {
2265  unsigned numCmps = 0;
2266
2267  // Start with "simple" cases
2268  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2269    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2270    Cases.push_back(Case(SI.getSuccessorValue(i),
2271                         SI.getSuccessorValue(i),
2272                         SMBB));
2273  }
2274  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2275
2276  // Merge case into clusters
2277  if (Cases.size()>=2)
2278    // Must recompute end() each iteration because it may be
2279    // invalidated by erase if we hold on to it
2280    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2281      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2282      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2283      MachineBasicBlock* nextBB = J->BB;
2284      MachineBasicBlock* currentBB = I->BB;
2285
2286      // If the two neighboring cases go to the same destination, merge them
2287      // into a single case.
2288      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2289        I->High = J->High;
2290        J = Cases.erase(J);
2291      } else {
2292        I = J++;
2293      }
2294    }
2295
2296  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2297    if (I->Low != I->High)
2298      // A range counts double, since it requires two compares.
2299      ++numCmps;
2300  }
2301
2302  return numCmps;
2303}
2304
2305void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2306  // Figure out which block is immediately after the current one.
2307  MachineBasicBlock *NextBlock = 0;
2308  MachineFunction::iterator BBI = CurMBB;
2309
2310  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2311
2312  // If there is only the default destination, branch to it if it is not the
2313  // next basic block.  Otherwise, just fall through.
2314  if (SI.getNumOperands() == 2) {
2315    // Update machine-CFG edges.
2316
2317    // If this is not a fall-through branch, emit the branch.
2318    CurMBB->addSuccessor(Default);
2319    if (Default != NextBlock)
2320      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2321                              DAG.getBasicBlock(Default)));
2322
2323    return;
2324  }
2325
2326  // If there are any non-default case statements, create a vector of Cases
2327  // representing each one, and sort the vector so that we can efficiently
2328  // create a binary search tree from them.
2329  CaseVector Cases;
2330  unsigned numCmps = Clusterify(Cases, SI);
2331  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2332       << ". Total compares: " << numCmps << "\n";
2333
2334  // Get the Value to be switched on and default basic blocks, which will be
2335  // inserted into CaseBlock records, representing basic blocks in the binary
2336  // search tree.
2337  Value *SV = SI.getOperand(0);
2338
2339  // Push the initial CaseRec onto the worklist
2340  CaseRecVector WorkList;
2341  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2342
2343  while (!WorkList.empty()) {
2344    // Grab a record representing a case range to process off the worklist
2345    CaseRec CR = WorkList.back();
2346    WorkList.pop_back();
2347
2348    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2349      continue;
2350
2351    // If the range has few cases (two or less) emit a series of specific
2352    // tests.
2353    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2354      continue;
2355
2356    // If the switch has more than 5 blocks, and at least 40% dense, and the
2357    // target supports indirect branches, then emit a jump table rather than
2358    // lowering the switch to a binary tree of conditional branches.
2359    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2360      continue;
2361
2362    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2363    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2364    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2365  }
2366}
2367
2368
2369void SelectionDAGLowering::visitSub(User &I) {
2370  // -0.0 - X --> fneg
2371  const Type *Ty = I.getType();
2372  if (isa<VectorType>(Ty)) {
2373    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2374      const VectorType *DestTy = cast<VectorType>(I.getType());
2375      const Type *ElTy = DestTy->getElementType();
2376      if (ElTy->isFloatingPoint()) {
2377        unsigned VL = DestTy->getNumElements();
2378        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2379        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2380        if (CV == CNZ) {
2381          SDValue Op2 = getValue(I.getOperand(1));
2382          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2383          return;
2384        }
2385      }
2386    }
2387  }
2388  if (Ty->isFloatingPoint()) {
2389    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2390      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2391        SDValue Op2 = getValue(I.getOperand(1));
2392        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2393        return;
2394      }
2395  }
2396
2397  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2398}
2399
2400void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2401  SDValue Op1 = getValue(I.getOperand(0));
2402  SDValue Op2 = getValue(I.getOperand(1));
2403
2404  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2405}
2406
2407void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2408  SDValue Op1 = getValue(I.getOperand(0));
2409  SDValue Op2 = getValue(I.getOperand(1));
2410  if (!isa<VectorType>(I.getType())) {
2411    if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
2412      Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2413    else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
2414      Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2415  }
2416
2417  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2418}
2419
2420void SelectionDAGLowering::visitICmp(User &I) {
2421  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2422  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2423    predicate = IC->getPredicate();
2424  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2425    predicate = ICmpInst::Predicate(IC->getPredicate());
2426  SDValue Op1 = getValue(I.getOperand(0));
2427  SDValue Op2 = getValue(I.getOperand(1));
2428  ISD::CondCode Opcode;
2429  switch (predicate) {
2430    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2431    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2432    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2433    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2434    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2435    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2436    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2437    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2438    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2439    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2440    default:
2441      assert(!"Invalid ICmp predicate value");
2442      Opcode = ISD::SETEQ;
2443      break;
2444  }
2445  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2446}
2447
2448void SelectionDAGLowering::visitFCmp(User &I) {
2449  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2450  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2451    predicate = FC->getPredicate();
2452  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2453    predicate = FCmpInst::Predicate(FC->getPredicate());
2454  SDValue Op1 = getValue(I.getOperand(0));
2455  SDValue Op2 = getValue(I.getOperand(1));
2456  ISD::CondCode Condition, FOC, FPC;
2457  switch (predicate) {
2458    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2459    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2460    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2461    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2462    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2463    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2464    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2465    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2466    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2467    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2468    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2469    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2470    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2471    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2472    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2473    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2474    default:
2475      assert(!"Invalid FCmp predicate value");
2476      FOC = FPC = ISD::SETFALSE;
2477      break;
2478  }
2479  if (FiniteOnlyFPMath())
2480    Condition = FOC;
2481  else
2482    Condition = FPC;
2483  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2484}
2485
2486void SelectionDAGLowering::visitVICmp(User &I) {
2487  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2488  if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2489    predicate = IC->getPredicate();
2490  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2491    predicate = ICmpInst::Predicate(IC->getPredicate());
2492  SDValue Op1 = getValue(I.getOperand(0));
2493  SDValue Op2 = getValue(I.getOperand(1));
2494  ISD::CondCode Opcode;
2495  switch (predicate) {
2496    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2497    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2498    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2499    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2500    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2501    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2502    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2503    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2504    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2505    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2506    default:
2507      assert(!"Invalid ICmp predicate value");
2508      Opcode = ISD::SETEQ;
2509      break;
2510  }
2511  setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2512}
2513
2514void SelectionDAGLowering::visitVFCmp(User &I) {
2515  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2516  if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2517    predicate = FC->getPredicate();
2518  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2519    predicate = FCmpInst::Predicate(FC->getPredicate());
2520  SDValue Op1 = getValue(I.getOperand(0));
2521  SDValue Op2 = getValue(I.getOperand(1));
2522  ISD::CondCode Condition, FOC, FPC;
2523  switch (predicate) {
2524    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2525    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2526    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2527    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2528    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2529    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2530    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2531    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2532    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2533    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2534    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2535    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2536    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2537    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2538    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2539    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2540    default:
2541      assert(!"Invalid VFCmp predicate value");
2542      FOC = FPC = ISD::SETFALSE;
2543      break;
2544  }
2545  if (FiniteOnlyFPMath())
2546    Condition = FOC;
2547  else
2548    Condition = FPC;
2549
2550  MVT DestVT = TLI.getValueType(I.getType());
2551
2552  setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2553}
2554
2555void SelectionDAGLowering::visitSelect(User &I) {
2556  SDValue Cond     = getValue(I.getOperand(0));
2557  SDValue TrueVal  = getValue(I.getOperand(1));
2558  SDValue FalseVal = getValue(I.getOperand(2));
2559  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2560                           TrueVal, FalseVal));
2561}
2562
2563
2564void SelectionDAGLowering::visitTrunc(User &I) {
2565  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2566  SDValue N = getValue(I.getOperand(0));
2567  MVT DestVT = TLI.getValueType(I.getType());
2568  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2569}
2570
2571void SelectionDAGLowering::visitZExt(User &I) {
2572  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2573  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2574  SDValue N = getValue(I.getOperand(0));
2575  MVT DestVT = TLI.getValueType(I.getType());
2576  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2577}
2578
2579void SelectionDAGLowering::visitSExt(User &I) {
2580  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2581  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2582  SDValue N = getValue(I.getOperand(0));
2583  MVT DestVT = TLI.getValueType(I.getType());
2584  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2585}
2586
2587void SelectionDAGLowering::visitFPTrunc(User &I) {
2588  // FPTrunc is never a no-op cast, no need to check
2589  SDValue N = getValue(I.getOperand(0));
2590  MVT DestVT = TLI.getValueType(I.getType());
2591  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2592}
2593
2594void SelectionDAGLowering::visitFPExt(User &I){
2595  // FPTrunc is never a no-op cast, no need to check
2596  SDValue N = getValue(I.getOperand(0));
2597  MVT DestVT = TLI.getValueType(I.getType());
2598  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2599}
2600
2601void SelectionDAGLowering::visitFPToUI(User &I) {
2602  // FPToUI is never a no-op cast, no need to check
2603  SDValue N = getValue(I.getOperand(0));
2604  MVT DestVT = TLI.getValueType(I.getType());
2605  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2606}
2607
2608void SelectionDAGLowering::visitFPToSI(User &I) {
2609  // FPToSI is never a no-op cast, no need to check
2610  SDValue N = getValue(I.getOperand(0));
2611  MVT DestVT = TLI.getValueType(I.getType());
2612  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2613}
2614
2615void SelectionDAGLowering::visitUIToFP(User &I) {
2616  // UIToFP is never a no-op cast, no need to check
2617  SDValue N = getValue(I.getOperand(0));
2618  MVT DestVT = TLI.getValueType(I.getType());
2619  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2620}
2621
2622void SelectionDAGLowering::visitSIToFP(User &I){
2623  // UIToFP is never a no-op cast, no need to check
2624  SDValue N = getValue(I.getOperand(0));
2625  MVT DestVT = TLI.getValueType(I.getType());
2626  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2627}
2628
2629void SelectionDAGLowering::visitPtrToInt(User &I) {
2630  // What to do depends on the size of the integer and the size of the pointer.
2631  // We can either truncate, zero extend, or no-op, accordingly.
2632  SDValue N = getValue(I.getOperand(0));
2633  MVT SrcVT = N.getValueType();
2634  MVT DestVT = TLI.getValueType(I.getType());
2635  SDValue Result;
2636  if (DestVT.bitsLT(SrcVT))
2637    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2638  else
2639    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2640    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2641  setValue(&I, Result);
2642}
2643
2644void SelectionDAGLowering::visitIntToPtr(User &I) {
2645  // What to do depends on the size of the integer and the size of the pointer.
2646  // We can either truncate, zero extend, or no-op, accordingly.
2647  SDValue N = getValue(I.getOperand(0));
2648  MVT SrcVT = N.getValueType();
2649  MVT DestVT = TLI.getValueType(I.getType());
2650  if (DestVT.bitsLT(SrcVT))
2651    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2652  else
2653    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2654    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2655}
2656
2657void SelectionDAGLowering::visitBitCast(User &I) {
2658  SDValue N = getValue(I.getOperand(0));
2659  MVT DestVT = TLI.getValueType(I.getType());
2660
2661  // BitCast assures us that source and destination are the same size so this
2662  // is either a BIT_CONVERT or a no-op.
2663  if (DestVT != N.getValueType())
2664    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2665  else
2666    setValue(&I, N); // noop cast.
2667}
2668
2669void SelectionDAGLowering::visitInsertElement(User &I) {
2670  SDValue InVec = getValue(I.getOperand(0));
2671  SDValue InVal = getValue(I.getOperand(1));
2672  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2673                                getValue(I.getOperand(2)));
2674
2675  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2676                           TLI.getValueType(I.getType()),
2677                           InVec, InVal, InIdx));
2678}
2679
2680void SelectionDAGLowering::visitExtractElement(User &I) {
2681  SDValue InVec = getValue(I.getOperand(0));
2682  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2683                                getValue(I.getOperand(1)));
2684  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2685                           TLI.getValueType(I.getType()), InVec, InIdx));
2686}
2687
2688void SelectionDAGLowering::visitShuffleVector(User &I) {
2689  SDValue V1   = getValue(I.getOperand(0));
2690  SDValue V2   = getValue(I.getOperand(1));
2691  SDValue Mask = getValue(I.getOperand(2));
2692
2693  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2694                           TLI.getValueType(I.getType()),
2695                           V1, V2, Mask));
2696}
2697
2698void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
2699  const Value *Op0 = I.getOperand(0);
2700  const Value *Op1 = I.getOperand(1);
2701  const Type *AggTy = I.getType();
2702  const Type *ValTy = Op1->getType();
2703  bool IntoUndef = isa<UndefValue>(Op0);
2704  bool FromUndef = isa<UndefValue>(Op1);
2705
2706  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2707                                            I.idx_begin(), I.idx_end());
2708
2709  SmallVector<MVT, 4> AggValueVTs;
2710  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2711  SmallVector<MVT, 4> ValValueVTs;
2712  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2713
2714  unsigned NumAggValues = AggValueVTs.size();
2715  unsigned NumValValues = ValValueVTs.size();
2716  SmallVector<SDValue, 4> Values(NumAggValues);
2717
2718  SDValue Agg = getValue(Op0);
2719  SDValue Val = getValue(Op1);
2720  unsigned i = 0;
2721  // Copy the beginning value(s) from the original aggregate.
2722  for (; i != LinearIndex; ++i)
2723    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2724                SDValue(Agg.Val, Agg.ResNo + i);
2725  // Copy values from the inserted value(s).
2726  for (; i != LinearIndex + NumValValues; ++i)
2727    Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2728                SDValue(Val.Val, Val.ResNo + i - LinearIndex);
2729  // Copy remaining value(s) from the original aggregate.
2730  for (; i != NumAggValues; ++i)
2731    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2732                SDValue(Agg.Val, Agg.ResNo + i);
2733
2734  setValue(&I, DAG.getMergeValues(DAG.getVTList(&AggValueVTs[0], NumAggValues),
2735                                  &Values[0], NumAggValues));
2736}
2737
2738void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
2739  const Value *Op0 = I.getOperand(0);
2740  const Type *AggTy = Op0->getType();
2741  const Type *ValTy = I.getType();
2742  bool OutOfUndef = isa<UndefValue>(Op0);
2743
2744  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2745                                            I.idx_begin(), I.idx_end());
2746
2747  SmallVector<MVT, 4> ValValueVTs;
2748  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2749
2750  unsigned NumValValues = ValValueVTs.size();
2751  SmallVector<SDValue, 4> Values(NumValValues);
2752
2753  SDValue Agg = getValue(Op0);
2754  // Copy out the selected value(s).
2755  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2756    Values[i - LinearIndex] =
2757      OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.Val->getValueType(Agg.ResNo + i)) :
2758                   SDValue(Agg.Val, Agg.ResNo + i);
2759
2760  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValValueVTs[0], NumValValues),
2761                                  &Values[0], NumValValues));
2762}
2763
2764
2765void SelectionDAGLowering::visitGetElementPtr(User &I) {
2766  SDValue N = getValue(I.getOperand(0));
2767  const Type *Ty = I.getOperand(0)->getType();
2768
2769  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2770       OI != E; ++OI) {
2771    Value *Idx = *OI;
2772    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2773      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2774      if (Field) {
2775        // N = N + Offset
2776        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2777        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2778                        DAG.getIntPtrConstant(Offset));
2779      }
2780      Ty = StTy->getElementType(Field);
2781    } else {
2782      Ty = cast<SequentialType>(Ty)->getElementType();
2783
2784      // If this is a constant subscript, handle it quickly.
2785      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2786        if (CI->getZExtValue() == 0) continue;
2787        uint64_t Offs =
2788            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2789        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2790                        DAG.getIntPtrConstant(Offs));
2791        continue;
2792      }
2793
2794      // N = N + Idx * ElementSize;
2795      uint64_t ElementSize = TD->getABITypeSize(Ty);
2796      SDValue IdxN = getValue(Idx);
2797
2798      // If the index is smaller or larger than intptr_t, truncate or extend
2799      // it.
2800      if (IdxN.getValueType().bitsLT(N.getValueType())) {
2801        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2802      } else if (IdxN.getValueType().bitsGT(N.getValueType()))
2803        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2804
2805      // If this is a multiply by a power of two, turn it into a shl
2806      // immediately.  This is a very common case.
2807      if (isPowerOf2_64(ElementSize)) {
2808        unsigned Amt = Log2_64(ElementSize);
2809        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2810                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2811        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2812        continue;
2813      }
2814
2815      SDValue Scale = DAG.getIntPtrConstant(ElementSize);
2816      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2817      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2818    }
2819  }
2820  setValue(&I, N);
2821}
2822
2823void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2824  // If this is a fixed sized alloca in the entry block of the function,
2825  // allocate it statically on the stack.
2826  if (FuncInfo.StaticAllocaMap.count(&I))
2827    return;   // getValue will auto-populate this.
2828
2829  const Type *Ty = I.getAllocatedType();
2830  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2831  unsigned Align =
2832    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2833             I.getAlignment());
2834
2835  SDValue AllocSize = getValue(I.getArraySize());
2836  MVT IntPtr = TLI.getPointerTy();
2837  if (IntPtr.bitsLT(AllocSize.getValueType()))
2838    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2839  else if (IntPtr.bitsGT(AllocSize.getValueType()))
2840    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2841
2842  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2843                          DAG.getIntPtrConstant(TySize));
2844
2845  // Handle alignment.  If the requested alignment is less than or equal to
2846  // the stack alignment, ignore it.  If the size is greater than or equal to
2847  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2848  unsigned StackAlign =
2849    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2850  if (Align <= StackAlign)
2851    Align = 0;
2852
2853  // Round the size of the allocation up to the stack alignment size
2854  // by add SA-1 to the size.
2855  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2856                          DAG.getIntPtrConstant(StackAlign-1));
2857  // Mask out the low bits for alignment purposes.
2858  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2859                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2860
2861  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2862  const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2863                                                    MVT::Other);
2864  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2865  setValue(&I, DSA);
2866  DAG.setRoot(DSA.getValue(1));
2867
2868  // Inform the Frame Information that we have just allocated a variable-sized
2869  // object.
2870  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2871}
2872
2873void SelectionDAGLowering::visitLoad(LoadInst &I) {
2874  const Value *SV = I.getOperand(0);
2875  SDValue Ptr = getValue(SV);
2876
2877  const Type *Ty = I.getType();
2878  bool isVolatile = I.isVolatile();
2879  unsigned Alignment = I.getAlignment();
2880
2881  SmallVector<MVT, 4> ValueVTs;
2882  SmallVector<uint64_t, 4> Offsets;
2883  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2884  unsigned NumValues = ValueVTs.size();
2885  if (NumValues == 0)
2886    return;
2887
2888  SDValue Root;
2889  bool ConstantMemory = false;
2890  if (I.isVolatile())
2891    // Serialize volatile loads with other side effects.
2892    Root = getRoot();
2893  else if (AA.pointsToConstantMemory(SV)) {
2894    // Do not serialize (non-volatile) loads of constant memory with anything.
2895    Root = DAG.getEntryNode();
2896    ConstantMemory = true;
2897  } else {
2898    // Do not serialize non-volatile loads against each other.
2899    Root = DAG.getRoot();
2900  }
2901
2902  SmallVector<SDValue, 4> Values(NumValues);
2903  SmallVector<SDValue, 4> Chains(NumValues);
2904  MVT PtrVT = Ptr.getValueType();
2905  for (unsigned i = 0; i != NumValues; ++i) {
2906    SDValue L = DAG.getLoad(ValueVTs[i], Root,
2907                              DAG.getNode(ISD::ADD, PtrVT, Ptr,
2908                                          DAG.getConstant(Offsets[i], PtrVT)),
2909                              SV, Offsets[i],
2910                              isVolatile, Alignment);
2911    Values[i] = L;
2912    Chains[i] = L.getValue(1);
2913  }
2914
2915  if (!ConstantMemory) {
2916    SDValue Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2917                                  &Chains[0], NumValues);
2918    if (isVolatile)
2919      DAG.setRoot(Chain);
2920    else
2921      PendingLoads.push_back(Chain);
2922  }
2923
2924  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues),
2925                                  &Values[0], NumValues));
2926}
2927
2928
2929void SelectionDAGLowering::visitStore(StoreInst &I) {
2930  Value *SrcV = I.getOperand(0);
2931  Value *PtrV = I.getOperand(1);
2932
2933  SmallVector<MVT, 4> ValueVTs;
2934  SmallVector<uint64_t, 4> Offsets;
2935  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2936  unsigned NumValues = ValueVTs.size();
2937  if (NumValues == 0)
2938    return;
2939
2940  // Get the lowered operands. Note that we do this after
2941  // checking if NumResults is zero, because with zero results
2942  // the operands won't have values in the map.
2943  SDValue Src = getValue(SrcV);
2944  SDValue Ptr = getValue(PtrV);
2945
2946  SDValue Root = getRoot();
2947  SmallVector<SDValue, 4> Chains(NumValues);
2948  MVT PtrVT = Ptr.getValueType();
2949  bool isVolatile = I.isVolatile();
2950  unsigned Alignment = I.getAlignment();
2951  for (unsigned i = 0; i != NumValues; ++i)
2952    Chains[i] = DAG.getStore(Root, SDValue(Src.Val, Src.ResNo + i),
2953                             DAG.getNode(ISD::ADD, PtrVT, Ptr,
2954                                         DAG.getConstant(Offsets[i], PtrVT)),
2955                             PtrV, Offsets[i],
2956                             isVolatile, Alignment);
2957
2958  DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
2959}
2960
2961/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2962/// node.
2963void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2964                                                unsigned Intrinsic) {
2965  bool HasChain = !I.doesNotAccessMemory();
2966  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2967
2968  // Build the operand list.
2969  SmallVector<SDValue, 8> Ops;
2970  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2971    if (OnlyLoad) {
2972      // We don't need to serialize loads against other loads.
2973      Ops.push_back(DAG.getRoot());
2974    } else {
2975      Ops.push_back(getRoot());
2976    }
2977  }
2978
2979  // Add the intrinsic ID as an integer operand.
2980  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2981
2982  // Add all operands of the call to the operand list.
2983  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2984    SDValue Op = getValue(I.getOperand(i));
2985    assert(TLI.isTypeLegal(Op.getValueType()) &&
2986           "Intrinsic uses a non-legal type?");
2987    Ops.push_back(Op);
2988  }
2989
2990  std::vector<MVT> VTs;
2991  if (I.getType() != Type::VoidTy) {
2992    MVT VT = TLI.getValueType(I.getType());
2993    if (VT.isVector()) {
2994      const VectorType *DestTy = cast<VectorType>(I.getType());
2995      MVT EltVT = TLI.getValueType(DestTy->getElementType());
2996
2997      VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
2998      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2999    }
3000
3001    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
3002    VTs.push_back(VT);
3003  }
3004  if (HasChain)
3005    VTs.push_back(MVT::Other);
3006
3007  const MVT *VTList = DAG.getNodeValueTypes(VTs);
3008
3009  // Create the node.
3010  SDValue Result;
3011  if (!HasChain)
3012    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
3013                         &Ops[0], Ops.size());
3014  else if (I.getType() != Type::VoidTy)
3015    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
3016                         &Ops[0], Ops.size());
3017  else
3018    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
3019                         &Ops[0], Ops.size());
3020
3021  if (HasChain) {
3022    SDValue Chain = Result.getValue(Result.Val->getNumValues()-1);
3023    if (OnlyLoad)
3024      PendingLoads.push_back(Chain);
3025    else
3026      DAG.setRoot(Chain);
3027  }
3028  if (I.getType() != Type::VoidTy) {
3029    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3030      MVT VT = TLI.getValueType(PTy);
3031      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
3032    }
3033    setValue(&I, Result);
3034  }
3035}
3036
3037/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
3038static GlobalVariable *ExtractTypeInfo (Value *V) {
3039  V = V->stripPointerCasts();
3040  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3041  assert ((GV || isa<ConstantPointerNull>(V)) &&
3042          "TypeInfo must be a global variable or NULL");
3043  return GV;
3044}
3045
3046/// addCatchInfo - Extract the personality and type infos from an eh.selector
3047/// call, and add them to the specified machine basic block.
3048static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
3049                         MachineBasicBlock *MBB) {
3050  // Inform the MachineModuleInfo of the personality for this landing pad.
3051  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
3052  assert(CE->getOpcode() == Instruction::BitCast &&
3053         isa<Function>(CE->getOperand(0)) &&
3054         "Personality should be a function");
3055  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
3056
3057  // Gather all the type infos for this landing pad and pass them along to
3058  // MachineModuleInfo.
3059  std::vector<GlobalVariable *> TyInfo;
3060  unsigned N = I.getNumOperands();
3061
3062  for (unsigned i = N - 1; i > 2; --i) {
3063    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
3064      unsigned FilterLength = CI->getZExtValue();
3065      unsigned FirstCatch = i + FilterLength + !FilterLength;
3066      assert (FirstCatch <= N && "Invalid filter length");
3067
3068      if (FirstCatch < N) {
3069        TyInfo.reserve(N - FirstCatch);
3070        for (unsigned j = FirstCatch; j < N; ++j)
3071          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3072        MMI->addCatchTypeInfo(MBB, TyInfo);
3073        TyInfo.clear();
3074      }
3075
3076      if (!FilterLength) {
3077        // Cleanup.
3078        MMI->addCleanup(MBB);
3079      } else {
3080        // Filter.
3081        TyInfo.reserve(FilterLength - 1);
3082        for (unsigned j = i + 1; j < FirstCatch; ++j)
3083          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3084        MMI->addFilterTypeInfo(MBB, TyInfo);
3085        TyInfo.clear();
3086      }
3087
3088      N = i;
3089    }
3090  }
3091
3092  if (N > 3) {
3093    TyInfo.reserve(N - 3);
3094    for (unsigned j = 3; j < N; ++j)
3095      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3096    MMI->addCatchTypeInfo(MBB, TyInfo);
3097  }
3098}
3099
3100
3101/// Inlined utility function to implement binary input atomic intrinsics for
3102// visitIntrinsicCall: I is a call instruction
3103//                     Op is the associated NodeType for I
3104const char *
3105SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3106  SDValue Root = getRoot();
3107  SDValue L = DAG.getAtomic(Op, Root,
3108                              getValue(I.getOperand(1)),
3109                              getValue(I.getOperand(2)),
3110                              I.getOperand(1));
3111  setValue(&I, L);
3112  DAG.setRoot(L.getValue(1));
3113  return 0;
3114}
3115
3116/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3117/// we want to emit this as a call to a named external function, return the name
3118/// otherwise lower it and return null.
3119const char *
3120SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3121  switch (Intrinsic) {
3122  default:
3123    // By default, turn this into a target intrinsic node.
3124    visitTargetIntrinsic(I, Intrinsic);
3125    return 0;
3126  case Intrinsic::vastart:  visitVAStart(I); return 0;
3127  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3128  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3129  case Intrinsic::returnaddress:
3130    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
3131                             getValue(I.getOperand(1))));
3132    return 0;
3133  case Intrinsic::frameaddress:
3134    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
3135                             getValue(I.getOperand(1))));
3136    return 0;
3137  case Intrinsic::setjmp:
3138    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3139    break;
3140  case Intrinsic::longjmp:
3141    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3142    break;
3143  case Intrinsic::memcpy_i32:
3144  case Intrinsic::memcpy_i64: {
3145    SDValue Op1 = getValue(I.getOperand(1));
3146    SDValue Op2 = getValue(I.getOperand(2));
3147    SDValue Op3 = getValue(I.getOperand(3));
3148    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3149    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3150                              I.getOperand(1), 0, I.getOperand(2), 0));
3151    return 0;
3152  }
3153  case Intrinsic::memset_i32:
3154  case Intrinsic::memset_i64: {
3155    SDValue Op1 = getValue(I.getOperand(1));
3156    SDValue Op2 = getValue(I.getOperand(2));
3157    SDValue Op3 = getValue(I.getOperand(3));
3158    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3159    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
3160                              I.getOperand(1), 0));
3161    return 0;
3162  }
3163  case Intrinsic::memmove_i32:
3164  case Intrinsic::memmove_i64: {
3165    SDValue Op1 = getValue(I.getOperand(1));
3166    SDValue Op2 = getValue(I.getOperand(2));
3167    SDValue Op3 = getValue(I.getOperand(3));
3168    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3169
3170    // If the source and destination are known to not be aliases, we can
3171    // lower memmove as memcpy.
3172    uint64_t Size = -1ULL;
3173    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3174      Size = C->getValue();
3175    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3176        AliasAnalysis::NoAlias) {
3177      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3178                                I.getOperand(1), 0, I.getOperand(2), 0));
3179      return 0;
3180    }
3181
3182    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
3183                               I.getOperand(1), 0, I.getOperand(2), 0));
3184    return 0;
3185  }
3186  case Intrinsic::dbg_stoppoint: {
3187    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3188    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3189    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
3190      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
3191      assert(DD && "Not a debug information descriptor");
3192      DAG.setRoot(DAG.getDbgStopPoint(getRoot(),
3193                                      SPI.getLine(),
3194                                      SPI.getColumn(),
3195                                      cast<CompileUnitDesc>(DD)));
3196    }
3197
3198    return 0;
3199  }
3200  case Intrinsic::dbg_region_start: {
3201    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3202    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
3203    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
3204      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
3205      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3206    }
3207
3208    return 0;
3209  }
3210  case Intrinsic::dbg_region_end: {
3211    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3212    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
3213    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
3214      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
3215      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3216    }
3217
3218    return 0;
3219  }
3220  case Intrinsic::dbg_func_start: {
3221    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3222    if (!MMI) return 0;
3223    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
3224    Value *SP = FSI.getSubprogram();
3225    if (SP && MMI->Verify(SP)) {
3226      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3227      // what (most?) gdb expects.
3228      DebugInfoDesc *DD = MMI->getDescFor(SP);
3229      assert(DD && "Not a debug information descriptor");
3230      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
3231      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
3232      unsigned SrcFile = MMI->RecordSource(CompileUnit);
3233      // Record the source line but does create a label. It will be emitted
3234      // at asm emission time.
3235      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
3236    }
3237
3238    return 0;
3239  }
3240  case Intrinsic::dbg_declare: {
3241    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3242    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3243    Value *Variable = DI.getVariable();
3244    if (MMI && Variable && MMI->Verify(Variable))
3245      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3246                              getValue(DI.getAddress()), getValue(Variable)));
3247    return 0;
3248  }
3249
3250  case Intrinsic::eh_exception: {
3251    if (!CurMBB->isLandingPad()) {
3252      // FIXME: Mark exception register as live in.  Hack for PR1508.
3253      unsigned Reg = TLI.getExceptionAddressRegister();
3254      if (Reg) CurMBB->addLiveIn(Reg);
3255    }
3256    // Insert the EXCEPTIONADDR instruction.
3257    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3258    SDValue Ops[1];
3259    Ops[0] = DAG.getRoot();
3260    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3261    setValue(&I, Op);
3262    DAG.setRoot(Op.getValue(1));
3263    return 0;
3264  }
3265
3266  case Intrinsic::eh_selector_i32:
3267  case Intrinsic::eh_selector_i64: {
3268    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3269    MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3270                         MVT::i32 : MVT::i64);
3271
3272    if (MMI) {
3273      if (CurMBB->isLandingPad())
3274        addCatchInfo(I, MMI, CurMBB);
3275      else {
3276#ifndef NDEBUG
3277        FuncInfo.CatchInfoLost.insert(&I);
3278#endif
3279        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3280        unsigned Reg = TLI.getExceptionSelectorRegister();
3281        if (Reg) CurMBB->addLiveIn(Reg);
3282      }
3283
3284      // Insert the EHSELECTION instruction.
3285      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3286      SDValue Ops[2];
3287      Ops[0] = getValue(I.getOperand(1));
3288      Ops[1] = getRoot();
3289      SDValue Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3290      setValue(&I, Op);
3291      DAG.setRoot(Op.getValue(1));
3292    } else {
3293      setValue(&I, DAG.getConstant(0, VT));
3294    }
3295
3296    return 0;
3297  }
3298
3299  case Intrinsic::eh_typeid_for_i32:
3300  case Intrinsic::eh_typeid_for_i64: {
3301    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3302    MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3303                         MVT::i32 : MVT::i64);
3304
3305    if (MMI) {
3306      // Find the type id for the given typeinfo.
3307      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3308
3309      unsigned TypeID = MMI->getTypeIDFor(GV);
3310      setValue(&I, DAG.getConstant(TypeID, VT));
3311    } else {
3312      // Return something different to eh_selector.
3313      setValue(&I, DAG.getConstant(1, VT));
3314    }
3315
3316    return 0;
3317  }
3318
3319  case Intrinsic::eh_return: {
3320    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3321
3322    if (MMI) {
3323      MMI->setCallsEHReturn(true);
3324      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3325                              MVT::Other,
3326                              getControlRoot(),
3327                              getValue(I.getOperand(1)),
3328                              getValue(I.getOperand(2))));
3329    } else {
3330      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3331    }
3332
3333    return 0;
3334  }
3335
3336   case Intrinsic::eh_unwind_init: {
3337     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3338       MMI->setCallsUnwindInit(true);
3339     }
3340
3341     return 0;
3342   }
3343
3344   case Intrinsic::eh_dwarf_cfa: {
3345     MVT VT = getValue(I.getOperand(1)).getValueType();
3346     SDValue CfaArg;
3347     if (VT.bitsGT(TLI.getPointerTy()))
3348       CfaArg = DAG.getNode(ISD::TRUNCATE,
3349                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3350     else
3351       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3352                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3353
3354     SDValue Offset = DAG.getNode(ISD::ADD,
3355                                    TLI.getPointerTy(),
3356                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3357                                                TLI.getPointerTy()),
3358                                    CfaArg);
3359     setValue(&I, DAG.getNode(ISD::ADD,
3360                              TLI.getPointerTy(),
3361                              DAG.getNode(ISD::FRAMEADDR,
3362                                          TLI.getPointerTy(),
3363                                          DAG.getConstant(0,
3364                                                          TLI.getPointerTy())),
3365                              Offset));
3366     return 0;
3367  }
3368
3369  case Intrinsic::sqrt:
3370    setValue(&I, DAG.getNode(ISD::FSQRT,
3371                             getValue(I.getOperand(1)).getValueType(),
3372                             getValue(I.getOperand(1))));
3373    return 0;
3374  case Intrinsic::powi:
3375    setValue(&I, DAG.getNode(ISD::FPOWI,
3376                             getValue(I.getOperand(1)).getValueType(),
3377                             getValue(I.getOperand(1)),
3378                             getValue(I.getOperand(2))));
3379    return 0;
3380  case Intrinsic::sin:
3381    setValue(&I, DAG.getNode(ISD::FSIN,
3382                             getValue(I.getOperand(1)).getValueType(),
3383                             getValue(I.getOperand(1))));
3384    return 0;
3385  case Intrinsic::cos:
3386    setValue(&I, DAG.getNode(ISD::FCOS,
3387                             getValue(I.getOperand(1)).getValueType(),
3388                             getValue(I.getOperand(1))));
3389    return 0;
3390  case Intrinsic::pow:
3391    setValue(&I, DAG.getNode(ISD::FPOW,
3392                             getValue(I.getOperand(1)).getValueType(),
3393                             getValue(I.getOperand(1)),
3394                             getValue(I.getOperand(2))));
3395    return 0;
3396  case Intrinsic::pcmarker: {
3397    SDValue Tmp = getValue(I.getOperand(1));
3398    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3399    return 0;
3400  }
3401  case Intrinsic::readcyclecounter: {
3402    SDValue Op = getRoot();
3403    SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3404                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3405                                &Op, 1);
3406    setValue(&I, Tmp);
3407    DAG.setRoot(Tmp.getValue(1));
3408    return 0;
3409  }
3410  case Intrinsic::part_select: {
3411    // Currently not implemented: just abort
3412    assert(0 && "part_select intrinsic not implemented");
3413    abort();
3414  }
3415  case Intrinsic::part_set: {
3416    // Currently not implemented: just abort
3417    assert(0 && "part_set intrinsic not implemented");
3418    abort();
3419  }
3420  case Intrinsic::bswap:
3421    setValue(&I, DAG.getNode(ISD::BSWAP,
3422                             getValue(I.getOperand(1)).getValueType(),
3423                             getValue(I.getOperand(1))));
3424    return 0;
3425  case Intrinsic::cttz: {
3426    SDValue Arg = getValue(I.getOperand(1));
3427    MVT Ty = Arg.getValueType();
3428    SDValue result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3429    setValue(&I, result);
3430    return 0;
3431  }
3432  case Intrinsic::ctlz: {
3433    SDValue Arg = getValue(I.getOperand(1));
3434    MVT Ty = Arg.getValueType();
3435    SDValue result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3436    setValue(&I, result);
3437    return 0;
3438  }
3439  case Intrinsic::ctpop: {
3440    SDValue Arg = getValue(I.getOperand(1));
3441    MVT Ty = Arg.getValueType();
3442    SDValue result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3443    setValue(&I, result);
3444    return 0;
3445  }
3446  case Intrinsic::stacksave: {
3447    SDValue Op = getRoot();
3448    SDValue Tmp = DAG.getNode(ISD::STACKSAVE,
3449              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3450    setValue(&I, Tmp);
3451    DAG.setRoot(Tmp.getValue(1));
3452    return 0;
3453  }
3454  case Intrinsic::stackrestore: {
3455    SDValue Tmp = getValue(I.getOperand(1));
3456    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3457    return 0;
3458  }
3459  case Intrinsic::var_annotation:
3460    // Discard annotate attributes
3461    return 0;
3462
3463  case Intrinsic::init_trampoline: {
3464    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
3465
3466    SDValue Ops[6];
3467    Ops[0] = getRoot();
3468    Ops[1] = getValue(I.getOperand(1));
3469    Ops[2] = getValue(I.getOperand(2));
3470    Ops[3] = getValue(I.getOperand(3));
3471    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3472    Ops[5] = DAG.getSrcValue(F);
3473
3474    SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE,
3475                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3476                                                      MVT::Other), 2,
3477                                Ops, 6);
3478
3479    setValue(&I, Tmp);
3480    DAG.setRoot(Tmp.getValue(1));
3481    return 0;
3482  }
3483
3484  case Intrinsic::gcroot:
3485    if (GCI) {
3486      Value *Alloca = I.getOperand(1);
3487      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3488
3489      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3490      GCI->addStackRoot(FI->getIndex(), TypeMap);
3491    }
3492    return 0;
3493
3494  case Intrinsic::gcread:
3495  case Intrinsic::gcwrite:
3496    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3497    return 0;
3498
3499  case Intrinsic::flt_rounds: {
3500    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3501    return 0;
3502  }
3503
3504  case Intrinsic::trap: {
3505    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3506    return 0;
3507  }
3508  case Intrinsic::prefetch: {
3509    SDValue Ops[4];
3510    Ops[0] = getRoot();
3511    Ops[1] = getValue(I.getOperand(1));
3512    Ops[2] = getValue(I.getOperand(2));
3513    Ops[3] = getValue(I.getOperand(3));
3514    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3515    return 0;
3516  }
3517
3518  case Intrinsic::memory_barrier: {
3519    SDValue Ops[6];
3520    Ops[0] = getRoot();
3521    for (int x = 1; x < 6; ++x)
3522      Ops[x] = getValue(I.getOperand(x));
3523
3524    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3525    return 0;
3526  }
3527  case Intrinsic::atomic_cmp_swap: {
3528    SDValue Root = getRoot();
3529    SDValue L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, Root,
3530                                getValue(I.getOperand(1)),
3531                                getValue(I.getOperand(2)),
3532                                getValue(I.getOperand(3)),
3533                                I.getOperand(1));
3534    setValue(&I, L);
3535    DAG.setRoot(L.getValue(1));
3536    return 0;
3537  }
3538  case Intrinsic::atomic_load_add:
3539    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
3540  case Intrinsic::atomic_load_sub:
3541    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
3542  case Intrinsic::atomic_load_and:
3543    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
3544  case Intrinsic::atomic_load_or:
3545    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
3546  case Intrinsic::atomic_load_xor:
3547    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
3548  case Intrinsic::atomic_load_nand:
3549    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
3550  case Intrinsic::atomic_load_min:
3551    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
3552  case Intrinsic::atomic_load_max:
3553    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
3554  case Intrinsic::atomic_load_umin:
3555    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
3556  case Intrinsic::atomic_load_umax:
3557      return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
3558  case Intrinsic::atomic_swap:
3559    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
3560  }
3561}
3562
3563
3564void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
3565                                       bool IsTailCall,
3566                                       MachineBasicBlock *LandingPad) {
3567  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3568  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3569  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3570  unsigned BeginLabel = 0, EndLabel = 0;
3571
3572  TargetLowering::ArgListTy Args;
3573  TargetLowering::ArgListEntry Entry;
3574  Args.reserve(CS.arg_size());
3575  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3576       i != e; ++i) {
3577    SDValue ArgNode = getValue(*i);
3578    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3579
3580    unsigned attrInd = i - CS.arg_begin() + 1;
3581    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3582    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3583    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3584    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3585    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3586    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3587    Entry.Alignment = CS.getParamAlignment(attrInd);
3588    Args.push_back(Entry);
3589  }
3590
3591  if (LandingPad && MMI) {
3592    // Insert a label before the invoke call to mark the try range.  This can be
3593    // used to detect deletion of the invoke via the MachineModuleInfo.
3594    BeginLabel = MMI->NextLabelID();
3595    // Both PendingLoads and PendingExports must be flushed here;
3596    // this call might not return.
3597    (void)getRoot();
3598    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel));
3599  }
3600
3601  std::pair<SDValue,SDValue> Result =
3602    TLI.LowerCallTo(getRoot(), CS.getType(),
3603                    CS.paramHasAttr(0, ParamAttr::SExt),
3604                    CS.paramHasAttr(0, ParamAttr::ZExt),
3605                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3606                    Callee, Args, DAG);
3607  if (CS.getType() != Type::VoidTy)
3608    setValue(CS.getInstruction(), Result.first);
3609  DAG.setRoot(Result.second);
3610
3611  if (LandingPad && MMI) {
3612    // Insert a label at the end of the invoke call to mark the try range.  This
3613    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3614    EndLabel = MMI->NextLabelID();
3615    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel));
3616
3617    // Inform MachineModuleInfo of range.
3618    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3619  }
3620}
3621
3622
3623void SelectionDAGLowering::visitCall(CallInst &I) {
3624  const char *RenameFn = 0;
3625  if (Function *F = I.getCalledFunction()) {
3626    if (F->isDeclaration()) {
3627      if (unsigned IID = F->getIntrinsicID()) {
3628        RenameFn = visitIntrinsicCall(I, IID);
3629        if (!RenameFn)
3630          return;
3631      }
3632    }
3633
3634    // Check for well-known libc/libm calls.  If the function is internal, it
3635    // can't be a library call.
3636    unsigned NameLen = F->getNameLen();
3637    if (!F->hasInternalLinkage() && NameLen) {
3638      const char *NameStr = F->getNameStart();
3639      if (NameStr[0] == 'c' &&
3640          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3641           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3642        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3643            I.getOperand(1)->getType()->isFloatingPoint() &&
3644            I.getType() == I.getOperand(1)->getType() &&
3645            I.getType() == I.getOperand(2)->getType()) {
3646          SDValue LHS = getValue(I.getOperand(1));
3647          SDValue RHS = getValue(I.getOperand(2));
3648          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3649                                   LHS, RHS));
3650          return;
3651        }
3652      } else if (NameStr[0] == 'f' &&
3653                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3654                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3655                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3656        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3657            I.getOperand(1)->getType()->isFloatingPoint() &&
3658            I.getType() == I.getOperand(1)->getType()) {
3659          SDValue Tmp = getValue(I.getOperand(1));
3660          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3661          return;
3662        }
3663      } else if (NameStr[0] == 's' &&
3664                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3665                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3666                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3667        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3668            I.getOperand(1)->getType()->isFloatingPoint() &&
3669            I.getType() == I.getOperand(1)->getType()) {
3670          SDValue Tmp = getValue(I.getOperand(1));
3671          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3672          return;
3673        }
3674      } else if (NameStr[0] == 'c' &&
3675                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3676                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3677                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3678        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3679            I.getOperand(1)->getType()->isFloatingPoint() &&
3680            I.getType() == I.getOperand(1)->getType()) {
3681          SDValue Tmp = getValue(I.getOperand(1));
3682          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3683          return;
3684        }
3685      }
3686    }
3687  } else if (isa<InlineAsm>(I.getOperand(0))) {
3688    visitInlineAsm(&I);
3689    return;
3690  }
3691
3692  SDValue Callee;
3693  if (!RenameFn)
3694    Callee = getValue(I.getOperand(0));
3695  else
3696    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3697
3698  LowerCallTo(&I, Callee, I.isTailCall());
3699}
3700
3701
3702/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3703/// this value and returns the result as a ValueVT value.  This uses
3704/// Chain/Flag as the input and updates them for the output Chain/Flag.
3705/// If the Flag pointer is NULL, no flag is used.
3706SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3707                                      SDValue &Chain,
3708                                      SDValue *Flag) const {
3709  // Assemble the legal parts into the final values.
3710  SmallVector<SDValue, 4> Values(ValueVTs.size());
3711  SmallVector<SDValue, 8> Parts;
3712  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3713    // Copy the legal parts from the registers.
3714    MVT ValueVT = ValueVTs[Value];
3715    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
3716    MVT RegisterVT = RegVTs[Value];
3717
3718    Parts.resize(NumRegs);
3719    for (unsigned i = 0; i != NumRegs; ++i) {
3720      SDValue P;
3721      if (Flag == 0)
3722        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
3723      else {
3724        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
3725        *Flag = P.getValue(2);
3726      }
3727      Chain = P.getValue(1);
3728
3729      // If the source register was virtual and if we know something about it,
3730      // add an assert node.
3731      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
3732          RegisterVT.isInteger() && !RegisterVT.isVector()) {
3733        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
3734        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
3735        if (FLI.LiveOutRegInfo.size() > SlotNo) {
3736          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
3737
3738          unsigned RegSize = RegisterVT.getSizeInBits();
3739          unsigned NumSignBits = LOI.NumSignBits;
3740          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
3741
3742          // FIXME: We capture more information than the dag can represent.  For
3743          // now, just use the tightest assertzext/assertsext possible.
3744          bool isSExt = true;
3745          MVT FromVT(MVT::Other);
3746          if (NumSignBits == RegSize)
3747            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
3748          else if (NumZeroBits >= RegSize-1)
3749            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
3750          else if (NumSignBits > RegSize-8)
3751            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
3752          else if (NumZeroBits >= RegSize-9)
3753            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
3754          else if (NumSignBits > RegSize-16)
3755            isSExt = true, FromVT = MVT::i16;   // ASSERT SEXT 16
3756          else if (NumZeroBits >= RegSize-17)
3757            isSExt = false, FromVT = MVT::i16;  // ASSERT ZEXT 16
3758          else if (NumSignBits > RegSize-32)
3759            isSExt = true, FromVT = MVT::i32;   // ASSERT SEXT 32
3760          else if (NumZeroBits >= RegSize-33)
3761            isSExt = false, FromVT = MVT::i32;  // ASSERT ZEXT 32
3762
3763          if (FromVT != MVT::Other) {
3764            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
3765                            RegisterVT, P, DAG.getValueType(FromVT));
3766
3767          }
3768        }
3769      }
3770
3771      Parts[Part+i] = P;
3772    }
3773
3774    Values[Value] = getCopyFromParts(DAG, &Parts[Part], NumRegs, RegisterVT,
3775                                     ValueVT);
3776    Part += NumRegs;
3777  }
3778
3779  return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
3780                            &Values[0], ValueVTs.size());
3781}
3782
3783/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3784/// specified value into the registers specified by this object.  This uses
3785/// Chain/Flag as the input and updates them for the output Chain/Flag.
3786/// If the Flag pointer is NULL, no flag is used.
3787void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
3788                                 SDValue &Chain, SDValue *Flag) const {
3789  // Get the list of the values's legal parts.
3790  unsigned NumRegs = Regs.size();
3791  SmallVector<SDValue, 8> Parts(NumRegs);
3792  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3793    MVT ValueVT = ValueVTs[Value];
3794    unsigned NumParts = TLI->getNumRegisters(ValueVT);
3795    MVT RegisterVT = RegVTs[Value];
3796
3797    getCopyToParts(DAG, Val.getValue(Val.ResNo + Value),
3798                   &Parts[Part], NumParts, RegisterVT);
3799    Part += NumParts;
3800  }
3801
3802  // Copy the parts into the registers.
3803  SmallVector<SDValue, 8> Chains(NumRegs);
3804  for (unsigned i = 0; i != NumRegs; ++i) {
3805    SDValue Part;
3806    if (Flag == 0)
3807      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3808    else {
3809      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
3810      *Flag = Part.getValue(1);
3811    }
3812    Chains[i] = Part.getValue(0);
3813  }
3814
3815  if (NumRegs == 1 || Flag)
3816    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
3817    // flagged to it. That is the CopyToReg nodes and the user are considered
3818    // a single scheduling unit. If we create a TokenFactor and return it as
3819    // chain, then the TokenFactor is both a predecessor (operand) of the
3820    // user as well as a successor (the TF operands are flagged to the user).
3821    // c1, f1 = CopyToReg
3822    // c2, f2 = CopyToReg
3823    // c3     = TokenFactor c1, c2
3824    // ...
3825    //        = op c3, ..., f2
3826    Chain = Chains[NumRegs-1];
3827  else
3828    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
3829}
3830
3831/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3832/// operand list.  This adds the code marker and includes the number of
3833/// values added into it.
3834void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3835                                        std::vector<SDValue> &Ops) const {
3836  MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3837  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3838  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
3839    unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
3840    MVT RegisterVT = RegVTs[Value];
3841    for (unsigned i = 0; i != NumRegs; ++i)
3842      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
3843  }
3844}
3845
3846/// isAllocatableRegister - If the specified register is safe to allocate,
3847/// i.e. it isn't a stack pointer or some other special register, return the
3848/// register class for the register.  Otherwise, return null.
3849static const TargetRegisterClass *
3850isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3851                      const TargetLowering &TLI,
3852                      const TargetRegisterInfo *TRI) {
3853  MVT FoundVT = MVT::Other;
3854  const TargetRegisterClass *FoundRC = 0;
3855  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3856       E = TRI->regclass_end(); RCI != E; ++RCI) {
3857    MVT ThisVT = MVT::Other;
3858
3859    const TargetRegisterClass *RC = *RCI;
3860    // If none of the the value types for this register class are valid, we
3861    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3862    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3863         I != E; ++I) {
3864      if (TLI.isTypeLegal(*I)) {
3865        // If we have already found this register in a different register class,
3866        // choose the one with the largest VT specified.  For example, on
3867        // PowerPC, we favor f64 register classes over f32.
3868        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
3869          ThisVT = *I;
3870          break;
3871        }
3872      }
3873    }
3874
3875    if (ThisVT == MVT::Other) continue;
3876
3877    // NOTE: This isn't ideal.  In particular, this might allocate the
3878    // frame pointer in functions that need it (due to them not being taken
3879    // out of allocation, because a variable sized allocation hasn't been seen
3880    // yet).  This is a slight code pessimization, but should still work.
3881    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3882         E = RC->allocation_order_end(MF); I != E; ++I)
3883      if (*I == Reg) {
3884        // We found a matching register class.  Keep looking at others in case
3885        // we find one with larger registers that this physreg is also in.
3886        FoundRC = RC;
3887        FoundVT = ThisVT;
3888        break;
3889      }
3890  }
3891  return FoundRC;
3892}
3893
3894
3895namespace {
3896/// AsmOperandInfo - This contains information for each constraint that we are
3897/// lowering.
3898struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
3899  /// CallOperand - If this is the result output operand or a clobber
3900  /// this is null, otherwise it is the incoming operand to the CallInst.
3901  /// This gets modified as the asm is processed.
3902  SDValue CallOperand;
3903
3904  /// AssignedRegs - If this is a register or register class operand, this
3905  /// contains the set of register corresponding to the operand.
3906  RegsForValue AssignedRegs;
3907
3908  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3909    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
3910  }
3911
3912  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3913  /// busy in OutputRegs/InputRegs.
3914  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3915                         std::set<unsigned> &OutputRegs,
3916                         std::set<unsigned> &InputRegs,
3917                         const TargetRegisterInfo &TRI) const {
3918    if (isOutReg) {
3919      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3920        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3921    }
3922    if (isInReg) {
3923      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3924        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3925    }
3926  }
3927
3928private:
3929  /// MarkRegAndAliases - Mark the specified register and all aliases in the
3930  /// specified set.
3931  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3932                                const TargetRegisterInfo &TRI) {
3933    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3934    Regs.insert(Reg);
3935    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3936      for (; *Aliases; ++Aliases)
3937        Regs.insert(*Aliases);
3938  }
3939};
3940} // end anon namespace.
3941
3942
3943/// GetRegistersForValue - Assign registers (virtual or physical) for the
3944/// specified operand.  We prefer to assign virtual registers, to allow the
3945/// register allocator handle the assignment process.  However, if the asm uses
3946/// features that we can't model on machineinstrs, we have SDISel do the
3947/// allocation.  This produces generally horrible, but correct, code.
3948///
3949///   OpInfo describes the operand.
3950///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
3951///     or any explicitly clobbered registers.
3952///   Input and OutputRegs are the set of already allocated physical registers.
3953///
3954void SelectionDAGLowering::
3955GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
3956                     std::set<unsigned> &OutputRegs,
3957                     std::set<unsigned> &InputRegs) {
3958  // Compute whether this value requires an input register, an output register,
3959  // or both.
3960  bool isOutReg = false;
3961  bool isInReg = false;
3962  switch (OpInfo.Type) {
3963  case InlineAsm::isOutput:
3964    isOutReg = true;
3965
3966    // If this is an early-clobber output, or if there is an input
3967    // constraint that matches this, we need to reserve the input register
3968    // so no other inputs allocate to it.
3969    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3970    break;
3971  case InlineAsm::isInput:
3972    isInReg = true;
3973    isOutReg = false;
3974    break;
3975  case InlineAsm::isClobber:
3976    isOutReg = true;
3977    isInReg = true;
3978    break;
3979  }
3980
3981
3982  MachineFunction &MF = DAG.getMachineFunction();
3983  SmallVector<unsigned, 4> Regs;
3984
3985  // If this is a constraint for a single physreg, or a constraint for a
3986  // register class, find it.
3987  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3988    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3989                                     OpInfo.ConstraintVT);
3990
3991  unsigned NumRegs = 1;
3992  if (OpInfo.ConstraintVT != MVT::Other)
3993    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3994  MVT RegVT;
3995  MVT ValueVT = OpInfo.ConstraintVT;
3996
3997
3998  // If this is a constraint for a specific physical register, like {r17},
3999  // assign it now.
4000  if (PhysReg.first) {
4001    if (OpInfo.ConstraintVT == MVT::Other)
4002      ValueVT = *PhysReg.second->vt_begin();
4003
4004    // Get the actual register value type.  This is important, because the user
4005    // may have asked for (e.g.) the AX register in i32 type.  We need to
4006    // remember that AX is actually i16 to get the right extension.
4007    RegVT = *PhysReg.second->vt_begin();
4008
4009    // This is a explicit reference to a physical register.
4010    Regs.push_back(PhysReg.first);
4011
4012    // If this is an expanded reference, add the rest of the regs to Regs.
4013    if (NumRegs != 1) {
4014      TargetRegisterClass::iterator I = PhysReg.second->begin();
4015      for (; *I != PhysReg.first; ++I)
4016        assert(I != PhysReg.second->end() && "Didn't find reg!");
4017
4018      // Already added the first reg.
4019      --NumRegs; ++I;
4020      for (; NumRegs; --NumRegs, ++I) {
4021        assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
4022        Regs.push_back(*I);
4023      }
4024    }
4025    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4026    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4027    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4028    return;
4029  }
4030
4031  // Otherwise, if this was a reference to an LLVM register class, create vregs
4032  // for this reference.
4033  std::vector<unsigned> RegClassRegs;
4034  const TargetRegisterClass *RC = PhysReg.second;
4035  if (RC) {
4036    // If this is an early clobber or tied register, our regalloc doesn't know
4037    // how to maintain the constraint.  If it isn't, go ahead and create vreg
4038    // and let the regalloc do the right thing.
4039    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
4040        // If there is some other early clobber and this is an input register,
4041        // then we are forced to pre-allocate the input reg so it doesn't
4042        // conflict with the earlyclobber.
4043        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
4044      RegVT = *PhysReg.second->vt_begin();
4045
4046      if (OpInfo.ConstraintVT == MVT::Other)
4047        ValueVT = RegVT;
4048
4049      // Create the appropriate number of virtual registers.
4050      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4051      for (; NumRegs; --NumRegs)
4052        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
4053
4054      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4055      return;
4056    }
4057
4058    // Otherwise, we can't allocate it.  Let the code below figure out how to
4059    // maintain these constraints.
4060    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
4061
4062  } else {
4063    // This is a reference to a register class that doesn't directly correspond
4064    // to an LLVM register class.  Allocate NumRegs consecutive, available,
4065    // registers from the class.
4066    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
4067                                                         OpInfo.ConstraintVT);
4068  }
4069
4070  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4071  unsigned NumAllocated = 0;
4072  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
4073    unsigned Reg = RegClassRegs[i];
4074    // See if this register is available.
4075    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
4076        (isInReg  && InputRegs.count(Reg))) {    // Already used.
4077      // Make sure we find consecutive registers.
4078      NumAllocated = 0;
4079      continue;
4080    }
4081
4082    // Check to see if this register is allocatable (i.e. don't give out the
4083    // stack pointer).
4084    if (RC == 0) {
4085      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
4086      if (!RC) {        // Couldn't allocate this register.
4087        // Reset NumAllocated to make sure we return consecutive registers.
4088        NumAllocated = 0;
4089        continue;
4090      }
4091    }
4092
4093    // Okay, this register is good, we can use it.
4094    ++NumAllocated;
4095
4096    // If we allocated enough consecutive registers, succeed.
4097    if (NumAllocated == NumRegs) {
4098      unsigned RegStart = (i-NumAllocated)+1;
4099      unsigned RegEnd   = i+1;
4100      // Mark all of the allocated registers used.
4101      for (unsigned i = RegStart; i != RegEnd; ++i)
4102        Regs.push_back(RegClassRegs[i]);
4103
4104      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
4105                                         OpInfo.ConstraintVT);
4106      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4107      return;
4108    }
4109  }
4110
4111  // Otherwise, we couldn't allocate enough registers for this.
4112}
4113
4114
4115/// visitInlineAsm - Handle a call to an InlineAsm object.
4116///
4117void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
4118  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4119
4120  /// ConstraintOperands - Information about all of the constraints.
4121  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
4122
4123  SDValue Chain = getRoot();
4124  SDValue Flag;
4125
4126  std::set<unsigned> OutputRegs, InputRegs;
4127
4128  // Do a prepass over the constraints, canonicalizing them, and building up the
4129  // ConstraintOperands list.
4130  std::vector<InlineAsm::ConstraintInfo>
4131    ConstraintInfos = IA->ParseConstraints();
4132
4133  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
4134  // constraint.  If so, we can't let the register allocator allocate any input
4135  // registers, because it will not know to avoid the earlyclobbered output reg.
4136  bool SawEarlyClobber = false;
4137
4138  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
4139  unsigned ResNo = 0;   // ResNo - The result number of the next output.
4140  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4141    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
4142    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
4143
4144    MVT OpVT = MVT::Other;
4145
4146    // Compute the value type for each operand.
4147    switch (OpInfo.Type) {
4148    case InlineAsm::isOutput:
4149      // Indirect outputs just consume an argument.
4150      if (OpInfo.isIndirect) {
4151        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4152        break;
4153      }
4154      // The return value of the call is this value.  As such, there is no
4155      // corresponding argument.
4156      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4157      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
4158        OpVT = TLI.getValueType(STy->getElementType(ResNo));
4159      } else {
4160        assert(ResNo == 0 && "Asm only has one result!");
4161        OpVT = TLI.getValueType(CS.getType());
4162      }
4163      ++ResNo;
4164      break;
4165    case InlineAsm::isInput:
4166      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4167      break;
4168    case InlineAsm::isClobber:
4169      // Nothing to do.
4170      break;
4171    }
4172
4173    // If this is an input or an indirect output, process the call argument.
4174    // BasicBlocks are labels, currently appearing only in asm's.
4175    if (OpInfo.CallOperandVal) {
4176      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
4177        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
4178      else {
4179        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
4180        const Type *OpTy = OpInfo.CallOperandVal->getType();
4181        // If this is an indirect operand, the operand is a pointer to the
4182        // accessed type.
4183        if (OpInfo.isIndirect)
4184          OpTy = cast<PointerType>(OpTy)->getElementType();
4185
4186        // If OpTy is not a single value, it may be a struct/union that we
4187        // can tile with integers.
4188        if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4189          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4190          switch (BitSize) {
4191          default: break;
4192          case 1:
4193          case 8:
4194          case 16:
4195          case 32:
4196          case 64:
4197            OpTy = IntegerType::get(BitSize);
4198            break;
4199          }
4200        }
4201
4202        OpVT = TLI.getValueType(OpTy, true);
4203      }
4204    }
4205
4206    OpInfo.ConstraintVT = OpVT;
4207
4208    // Compute the constraint code and ConstraintType to use.
4209    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
4210
4211    // Keep track of whether we see an earlyclobber.
4212    SawEarlyClobber |= OpInfo.isEarlyClobber;
4213
4214    // If we see a clobber of a register, it is an early clobber.
4215    if (!SawEarlyClobber &&
4216        OpInfo.Type == InlineAsm::isClobber &&
4217        OpInfo.ConstraintType == TargetLowering::C_Register) {
4218      // Note that we want to ignore things that we don't trick here, like
4219      // dirflag, fpsr, flags, etc.
4220      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4221        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4222                                         OpInfo.ConstraintVT);
4223      if (PhysReg.first || PhysReg.second) {
4224        // This is a register we know of.
4225        SawEarlyClobber = true;
4226      }
4227    }
4228
4229    // If this is a memory input, and if the operand is not indirect, do what we
4230    // need to to provide an address for the memory input.
4231    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4232        !OpInfo.isIndirect) {
4233      assert(OpInfo.Type == InlineAsm::isInput &&
4234             "Can only indirectify direct input operands!");
4235
4236      // Memory operands really want the address of the value.  If we don't have
4237      // an indirect input, put it in the constpool if we can, otherwise spill
4238      // it to a stack slot.
4239
4240      // If the operand is a float, integer, or vector constant, spill to a
4241      // constant pool entry to get its address.
4242      Value *OpVal = OpInfo.CallOperandVal;
4243      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
4244          isa<ConstantVector>(OpVal)) {
4245        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
4246                                                 TLI.getPointerTy());
4247      } else {
4248        // Otherwise, create a stack slot and emit a store to it before the
4249        // asm.
4250        const Type *Ty = OpVal->getType();
4251        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
4252        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
4253        MachineFunction &MF = DAG.getMachineFunction();
4254        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
4255        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4256        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
4257        OpInfo.CallOperand = StackSlot;
4258      }
4259
4260      // There is no longer a Value* corresponding to this operand.
4261      OpInfo.CallOperandVal = 0;
4262      // It is now an indirect operand.
4263      OpInfo.isIndirect = true;
4264    }
4265
4266    // If this constraint is for a specific register, allocate it before
4267    // anything else.
4268    if (OpInfo.ConstraintType == TargetLowering::C_Register)
4269      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4270  }
4271  ConstraintInfos.clear();
4272
4273
4274  // Second pass - Loop over all of the operands, assigning virtual or physregs
4275  // to registerclass operands.
4276  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4277    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4278
4279    // C_Register operands have already been allocated, Other/Memory don't need
4280    // to be.
4281    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
4282      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4283  }
4284
4285  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
4286  std::vector<SDValue> AsmNodeOperands;
4287  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
4288  AsmNodeOperands.push_back(
4289          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
4290
4291
4292  // Loop over all of the inputs, copying the operand values into the
4293  // appropriate registers and processing the output regs.
4294  RegsForValue RetValRegs;
4295
4296  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
4297  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
4298
4299  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4300    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4301
4302    switch (OpInfo.Type) {
4303    case InlineAsm::isOutput: {
4304      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
4305          OpInfo.ConstraintType != TargetLowering::C_Register) {
4306        // Memory output, or 'other' output (e.g. 'X' constraint).
4307        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
4308
4309        // Add information to the INLINEASM node to know about this output.
4310        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4311        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4312                                                        TLI.getPointerTy()));
4313        AsmNodeOperands.push_back(OpInfo.CallOperand);
4314        break;
4315      }
4316
4317      // Otherwise, this is a register or register class output.
4318
4319      // Copy the output from the appropriate register.  Find a register that
4320      // we can use.
4321      if (OpInfo.AssignedRegs.Regs.empty()) {
4322        cerr << "Couldn't allocate output reg for constraint '"
4323             << OpInfo.ConstraintCode << "'!\n";
4324        exit(1);
4325      }
4326
4327      // If this is an indirect operand, store through the pointer after the
4328      // asm.
4329      if (OpInfo.isIndirect) {
4330        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
4331                                                      OpInfo.CallOperandVal));
4332      } else {
4333        // This is the result value of the call.
4334        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4335        // Concatenate this output onto the outputs list.
4336        RetValRegs.append(OpInfo.AssignedRegs);
4337      }
4338
4339      // Add information to the INLINEASM node to know that this register is
4340      // set.
4341      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
4342                                               AsmNodeOperands);
4343      break;
4344    }
4345    case InlineAsm::isInput: {
4346      SDValue InOperandVal = OpInfo.CallOperand;
4347
4348      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
4349        // If this is required to match an output register we have already set,
4350        // just use its register.
4351        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
4352
4353        // Scan until we find the definition we already emitted of this operand.
4354        // When we find it, create a RegsForValue operand.
4355        unsigned CurOp = 2;  // The first operand.
4356        for (; OperandNo; --OperandNo) {
4357          // Advance to the next operand.
4358          unsigned NumOps =
4359            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4360          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
4361                  (NumOps & 7) == 4 /*MEM*/) &&
4362                 "Skipped past definitions?");
4363          CurOp += (NumOps>>3)+1;
4364        }
4365
4366        unsigned NumOps =
4367          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4368        if ((NumOps & 7) == 2 /*REGDEF*/) {
4369          // Add NumOps>>3 registers to MatchedRegs.
4370          RegsForValue MatchedRegs;
4371          MatchedRegs.TLI = &TLI;
4372          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
4373          MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
4374          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
4375            unsigned Reg =
4376              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4377            MatchedRegs.Regs.push_back(Reg);
4378          }
4379
4380          // Use the produced MatchedRegs object to
4381          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4382          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
4383          break;
4384        } else {
4385          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
4386          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4387          // Add information to the INLINEASM node to know about this input.
4388          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4389          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4390                                                          TLI.getPointerTy()));
4391          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4392          break;
4393        }
4394      }
4395
4396      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4397        assert(!OpInfo.isIndirect &&
4398               "Don't know how to handle indirect other inputs yet!");
4399
4400        std::vector<SDValue> Ops;
4401        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
4402                                         Ops, DAG);
4403        if (Ops.empty()) {
4404          cerr << "Invalid operand for inline asm constraint '"
4405               << OpInfo.ConstraintCode << "'!\n";
4406          exit(1);
4407        }
4408
4409        // Add information to the INLINEASM node to know about this input.
4410        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4411        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4412                                                        TLI.getPointerTy()));
4413        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4414        break;
4415      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4416        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4417        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4418               "Memory operands expect pointer values");
4419
4420        // Add information to the INLINEASM node to know about this input.
4421        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4422        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4423                                                        TLI.getPointerTy()));
4424        AsmNodeOperands.push_back(InOperandVal);
4425        break;
4426      }
4427
4428      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4429              OpInfo.ConstraintType == TargetLowering::C_Register) &&
4430             "Unknown constraint type!");
4431      assert(!OpInfo.isIndirect &&
4432             "Don't know how to handle indirect register inputs yet!");
4433
4434      // Copy the input into the appropriate registers.
4435      assert(!OpInfo.AssignedRegs.Regs.empty() &&
4436             "Couldn't allocate input reg!");
4437
4438      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4439
4440      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
4441                                               AsmNodeOperands);
4442      break;
4443    }
4444    case InlineAsm::isClobber: {
4445      // Add the clobbered value to the operand list, so that the register
4446      // allocator is aware that the physreg got clobbered.
4447      if (!OpInfo.AssignedRegs.Regs.empty())
4448        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
4449                                                 AsmNodeOperands);
4450      break;
4451    }
4452    }
4453  }
4454
4455  // Finish up input operands.
4456  AsmNodeOperands[0] = Chain;
4457  if (Flag.Val) AsmNodeOperands.push_back(Flag);
4458
4459  Chain = DAG.getNode(ISD::INLINEASM,
4460                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4461                      &AsmNodeOperands[0], AsmNodeOperands.size());
4462  Flag = Chain.getValue(1);
4463
4464  // If this asm returns a register value, copy the result from that register
4465  // and set it as the value of the call.
4466  if (!RetValRegs.Regs.empty()) {
4467    SDValue Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4468
4469    // If any of the results of the inline asm is a vector, it may have the
4470    // wrong width/num elts.  This can happen for register classes that can
4471    // contain multiple different value types.  The preg or vreg allocated may
4472    // not have the same VT as was expected.  Convert it to the right type with
4473    // bit_convert.
4474    if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
4475      for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
4476        if (Val.Val->getValueType(i).isVector())
4477          Val = DAG.getNode(ISD::BIT_CONVERT,
4478                            TLI.getValueType(ResSTy->getElementType(i)), Val);
4479      }
4480    } else {
4481      if (Val.getValueType().isVector())
4482        Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
4483                          Val);
4484    }
4485
4486    setValue(CS.getInstruction(), Val);
4487  }
4488
4489  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
4490
4491  // Process indirect outputs, first output all of the flagged copies out of
4492  // physregs.
4493  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4494    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4495    Value *Ptr = IndirectStoresToEmit[i].second;
4496    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4497    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4498  }
4499
4500  // Emit the non-flagged stores from the physregs.
4501  SmallVector<SDValue, 8> OutChains;
4502  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4503    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4504                                    getValue(StoresToEmit[i].second),
4505                                    StoresToEmit[i].second, 0));
4506  if (!OutChains.empty())
4507    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4508                        &OutChains[0], OutChains.size());
4509  DAG.setRoot(Chain);
4510}
4511
4512
4513void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4514  SDValue Src = getValue(I.getOperand(0));
4515
4516  MVT IntPtr = TLI.getPointerTy();
4517
4518  if (IntPtr.bitsLT(Src.getValueType()))
4519    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4520  else if (IntPtr.bitsGT(Src.getValueType()))
4521    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4522
4523  // Scale the source by the type size.
4524  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4525  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4526                    Src, DAG.getIntPtrConstant(ElementSize));
4527
4528  TargetLowering::ArgListTy Args;
4529  TargetLowering::ArgListEntry Entry;
4530  Entry.Node = Src;
4531  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4532  Args.push_back(Entry);
4533
4534  std::pair<SDValue,SDValue> Result =
4535    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4536                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4537  setValue(&I, Result.first);  // Pointers always fit in registers
4538  DAG.setRoot(Result.second);
4539}
4540
4541void SelectionDAGLowering::visitFree(FreeInst &I) {
4542  TargetLowering::ArgListTy Args;
4543  TargetLowering::ArgListEntry Entry;
4544  Entry.Node = getValue(I.getOperand(0));
4545  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4546  Args.push_back(Entry);
4547  MVT IntPtr = TLI.getPointerTy();
4548  std::pair<SDValue,SDValue> Result =
4549    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4550                    CallingConv::C, true,
4551                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4552  DAG.setRoot(Result.second);
4553}
4554
4555// EmitInstrWithCustomInserter - This method should be implemented by targets
4556// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4557// instructions are special in various ways, which require special support to
4558// insert.  The specified MachineInstr is created but not inserted into any
4559// basic blocks, and the scheduler passes ownership of it to this method.
4560MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4561                                                       MachineBasicBlock *MBB) {
4562  cerr << "If a target marks an instruction with "
4563       << "'usesCustomDAGSchedInserter', it must implement "
4564       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4565  abort();
4566  return 0;
4567}
4568
4569void SelectionDAGLowering::visitVAStart(CallInst &I) {
4570  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4571                          getValue(I.getOperand(1)),
4572                          DAG.getSrcValue(I.getOperand(1))));
4573}
4574
4575void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4576  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4577                             getValue(I.getOperand(0)),
4578                             DAG.getSrcValue(I.getOperand(0)));
4579  setValue(&I, V);
4580  DAG.setRoot(V.getValue(1));
4581}
4582
4583void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4584  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4585                          getValue(I.getOperand(1)),
4586                          DAG.getSrcValue(I.getOperand(1))));
4587}
4588
4589void SelectionDAGLowering::visitVACopy(CallInst &I) {
4590  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4591                          getValue(I.getOperand(1)),
4592                          getValue(I.getOperand(2)),
4593                          DAG.getSrcValue(I.getOperand(1)),
4594                          DAG.getSrcValue(I.getOperand(2))));
4595}
4596
4597/// TargetLowering::LowerArguments - This is the default LowerArguments
4598/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4599/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4600/// integrated into SDISel.
4601void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
4602                                    SmallVectorImpl<SDValue> &ArgValues) {
4603  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4604  SmallVector<SDValue, 3+16> Ops;
4605  Ops.push_back(DAG.getRoot());
4606  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4607  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4608
4609  // Add one result value for each formal argument.
4610  SmallVector<MVT, 16> RetVals;
4611  unsigned j = 1;
4612  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4613       I != E; ++I, ++j) {
4614    SmallVector<MVT, 4> ValueVTs;
4615    ComputeValueVTs(*this, I->getType(), ValueVTs);
4616    for (unsigned Value = 0, NumValues = ValueVTs.size();
4617         Value != NumValues; ++Value) {
4618      MVT VT = ValueVTs[Value];
4619      const Type *ArgTy = VT.getTypeForMVT();
4620      ISD::ArgFlagsTy Flags;
4621      unsigned OriginalAlignment =
4622        getTargetData()->getABITypeAlignment(ArgTy);
4623
4624      if (F.paramHasAttr(j, ParamAttr::ZExt))
4625        Flags.setZExt();
4626      if (F.paramHasAttr(j, ParamAttr::SExt))
4627        Flags.setSExt();
4628      if (F.paramHasAttr(j, ParamAttr::InReg))
4629        Flags.setInReg();
4630      if (F.paramHasAttr(j, ParamAttr::StructRet))
4631        Flags.setSRet();
4632      if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4633        Flags.setByVal();
4634        const PointerType *Ty = cast<PointerType>(I->getType());
4635        const Type *ElementTy = Ty->getElementType();
4636        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4637        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4638        // For ByVal, alignment should be passed from FE.  BE will guess if
4639        // this info is not there but there are cases it cannot get right.
4640        if (F.getParamAlignment(j))
4641          FrameAlign = F.getParamAlignment(j);
4642        Flags.setByValAlign(FrameAlign);
4643        Flags.setByValSize(FrameSize);
4644      }
4645      if (F.paramHasAttr(j, ParamAttr::Nest))
4646        Flags.setNest();
4647      Flags.setOrigAlign(OriginalAlignment);
4648
4649      MVT RegisterVT = getRegisterType(VT);
4650      unsigned NumRegs = getNumRegisters(VT);
4651      for (unsigned i = 0; i != NumRegs; ++i) {
4652        RetVals.push_back(RegisterVT);
4653        ISD::ArgFlagsTy MyFlags = Flags;
4654        if (NumRegs > 1 && i == 0)
4655          MyFlags.setSplit();
4656        // if it isn't first piece, alignment must be 1
4657        else if (i > 0)
4658          MyFlags.setOrigAlign(1);
4659        Ops.push_back(DAG.getArgFlags(MyFlags));
4660      }
4661    }
4662  }
4663
4664  RetVals.push_back(MVT::Other);
4665
4666  // Create the node.
4667  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4668                               DAG.getVTList(&RetVals[0], RetVals.size()),
4669                               &Ops[0], Ops.size()).Val;
4670
4671  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4672  // allows exposing the loads that may be part of the argument access to the
4673  // first DAGCombiner pass.
4674  SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG);
4675
4676  // The number of results should match up, except that the lowered one may have
4677  // an extra flag result.
4678  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4679          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4680           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4681         && "Lowering produced unexpected number of results!");
4682
4683  // The FORMAL_ARGUMENTS node itself is likely no longer needed.
4684  if (Result != TmpRes.Val && Result->use_empty()) {
4685    HandleSDNode Dummy(DAG.getRoot());
4686    DAG.RemoveDeadNode(Result);
4687  }
4688
4689  Result = TmpRes.Val;
4690
4691  unsigned NumArgRegs = Result->getNumValues() - 1;
4692  DAG.setRoot(SDValue(Result, NumArgRegs));
4693
4694  // Set up the return result vector.
4695  unsigned i = 0;
4696  unsigned Idx = 1;
4697  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4698      ++I, ++Idx) {
4699    SmallVector<MVT, 4> ValueVTs;
4700    ComputeValueVTs(*this, I->getType(), ValueVTs);
4701    for (unsigned Value = 0, NumValues = ValueVTs.size();
4702         Value != NumValues; ++Value) {
4703      MVT VT = ValueVTs[Value];
4704      MVT PartVT = getRegisterType(VT);
4705
4706      unsigned NumParts = getNumRegisters(VT);
4707      SmallVector<SDValue, 4> Parts(NumParts);
4708      for (unsigned j = 0; j != NumParts; ++j)
4709        Parts[j] = SDValue(Result, i++);
4710
4711      ISD::NodeType AssertOp = ISD::DELETED_NODE;
4712      if (F.paramHasAttr(Idx, ParamAttr::SExt))
4713        AssertOp = ISD::AssertSext;
4714      else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4715        AssertOp = ISD::AssertZext;
4716
4717      ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4718                                           AssertOp));
4719    }
4720  }
4721  assert(i == NumArgRegs && "Argument register count mismatch!");
4722}
4723
4724
4725/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4726/// implementation, which just inserts an ISD::CALL node, which is later custom
4727/// lowered by the target to something concrete.  FIXME: When all targets are
4728/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4729std::pair<SDValue, SDValue>
4730TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
4731                            bool RetSExt, bool RetZExt, bool isVarArg,
4732                            unsigned CallingConv, bool isTailCall,
4733                            SDValue Callee,
4734                            ArgListTy &Args, SelectionDAG &DAG) {
4735  SmallVector<SDValue, 32> Ops;
4736  Ops.push_back(Chain);   // Op#0 - Chain
4737  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4738  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4739  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4740  Ops.push_back(Callee);
4741
4742  // Handle all of the outgoing arguments.
4743  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4744    SmallVector<MVT, 4> ValueVTs;
4745    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
4746    for (unsigned Value = 0, NumValues = ValueVTs.size();
4747         Value != NumValues; ++Value) {
4748      MVT VT = ValueVTs[Value];
4749      const Type *ArgTy = VT.getTypeForMVT();
4750      SDValue Op = SDValue(Args[i].Node.Val, Args[i].Node.ResNo + Value);
4751      ISD::ArgFlagsTy Flags;
4752      unsigned OriginalAlignment =
4753        getTargetData()->getABITypeAlignment(ArgTy);
4754
4755      if (Args[i].isZExt)
4756        Flags.setZExt();
4757      if (Args[i].isSExt)
4758        Flags.setSExt();
4759      if (Args[i].isInReg)
4760        Flags.setInReg();
4761      if (Args[i].isSRet)
4762        Flags.setSRet();
4763      if (Args[i].isByVal) {
4764        Flags.setByVal();
4765        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4766        const Type *ElementTy = Ty->getElementType();
4767        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4768        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4769        // For ByVal, alignment should come from FE.  BE will guess if this
4770        // info is not there but there are cases it cannot get right.
4771        if (Args[i].Alignment)
4772          FrameAlign = Args[i].Alignment;
4773        Flags.setByValAlign(FrameAlign);
4774        Flags.setByValSize(FrameSize);
4775      }
4776      if (Args[i].isNest)
4777        Flags.setNest();
4778      Flags.setOrigAlign(OriginalAlignment);
4779
4780      MVT PartVT = getRegisterType(VT);
4781      unsigned NumParts = getNumRegisters(VT);
4782      SmallVector<SDValue, 4> Parts(NumParts);
4783      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4784
4785      if (Args[i].isSExt)
4786        ExtendKind = ISD::SIGN_EXTEND;
4787      else if (Args[i].isZExt)
4788        ExtendKind = ISD::ZERO_EXTEND;
4789
4790      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4791
4792      for (unsigned i = 0; i != NumParts; ++i) {
4793        // if it isn't first piece, alignment must be 1
4794        ISD::ArgFlagsTy MyFlags = Flags;
4795        if (NumParts > 1 && i == 0)
4796          MyFlags.setSplit();
4797        else if (i != 0)
4798          MyFlags.setOrigAlign(1);
4799
4800        Ops.push_back(Parts[i]);
4801        Ops.push_back(DAG.getArgFlags(MyFlags));
4802      }
4803    }
4804  }
4805
4806  // Figure out the result value types. We start by making a list of
4807  // the potentially illegal return value types.
4808  SmallVector<MVT, 4> LoweredRetTys;
4809  SmallVector<MVT, 4> RetTys;
4810  ComputeValueVTs(*this, RetTy, RetTys);
4811
4812  // Then we translate that to a list of legal types.
4813  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4814    MVT VT = RetTys[I];
4815    MVT RegisterVT = getRegisterType(VT);
4816    unsigned NumRegs = getNumRegisters(VT);
4817    for (unsigned i = 0; i != NumRegs; ++i)
4818      LoweredRetTys.push_back(RegisterVT);
4819  }
4820
4821  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
4822
4823  // Create the CALL node.
4824  SDValue Res = DAG.getNode(ISD::CALL,
4825                              DAG.getVTList(&LoweredRetTys[0],
4826                                            LoweredRetTys.size()),
4827                              &Ops[0], Ops.size());
4828  Chain = Res.getValue(LoweredRetTys.size() - 1);
4829
4830  // Gather up the call result into a single value.
4831  if (RetTy != Type::VoidTy) {
4832    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4833
4834    if (RetSExt)
4835      AssertOp = ISD::AssertSext;
4836    else if (RetZExt)
4837      AssertOp = ISD::AssertZext;
4838
4839    SmallVector<SDValue, 4> ReturnValues;
4840    unsigned RegNo = 0;
4841    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4842      MVT VT = RetTys[I];
4843      MVT RegisterVT = getRegisterType(VT);
4844      unsigned NumRegs = getNumRegisters(VT);
4845      unsigned RegNoEnd = NumRegs + RegNo;
4846      SmallVector<SDValue, 4> Results;
4847      for (; RegNo != RegNoEnd; ++RegNo)
4848        Results.push_back(Res.getValue(RegNo));
4849      SDValue ReturnValue =
4850        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4851                         AssertOp);
4852      ReturnValues.push_back(ReturnValue);
4853    }
4854    Res = DAG.getMergeValues(DAG.getVTList(&RetTys[0], RetTys.size()),
4855                             &ReturnValues[0], ReturnValues.size());
4856  }
4857
4858  return std::make_pair(Res, Chain);
4859}
4860
4861SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
4862  assert(0 && "LowerOperation not implemented for this target!");
4863  abort();
4864  return SDValue();
4865}
4866
4867
4868//===----------------------------------------------------------------------===//
4869// SelectionDAGISel code
4870//===----------------------------------------------------------------------===//
4871
4872unsigned SelectionDAGISel::MakeReg(MVT VT) {
4873  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4874}
4875
4876void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4877  AU.addRequired<AliasAnalysis>();
4878  AU.addRequired<CollectorModuleMetadata>();
4879  AU.setPreservesAll();
4880}
4881
4882bool SelectionDAGISel::runOnFunction(Function &Fn) {
4883  // Get alias analysis for load/store combining.
4884  AA = &getAnalysis<AliasAnalysis>();
4885
4886  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4887  if (MF.getFunction()->hasCollector())
4888    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4889  else
4890    GCI = 0;
4891  RegInfo = &MF.getRegInfo();
4892  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4893
4894  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4895
4896  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4897    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4898      // Mark landing pad.
4899      FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4900
4901  SelectAllBasicBlocks(Fn, MF, FuncInfo);
4902
4903  // Add function live-ins to entry block live-in set.
4904  BasicBlock *EntryBB = &Fn.getEntryBlock();
4905  BB = FuncInfo.MBBMap[EntryBB];
4906  if (!RegInfo->livein_empty())
4907    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4908           E = RegInfo->livein_end(); I != E; ++I)
4909      BB->addLiveIn(I->first);
4910
4911#ifndef NDEBUG
4912  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4913         "Not all catch info was assigned to a landing pad!");
4914#endif
4915
4916  return true;
4917}
4918
4919void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
4920  SDValue Op = getValue(V);
4921  assert((Op.getOpcode() != ISD::CopyFromReg ||
4922          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4923         "Copy from a reg to the same reg!");
4924  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
4925
4926  RegsForValue RFV(TLI, Reg, V->getType());
4927  SDValue Chain = DAG.getEntryNode();
4928  RFV.getCopyToRegs(Op, DAG, Chain, 0);
4929  PendingExports.push_back(Chain);
4930}
4931
4932void SelectionDAGISel::
4933LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) {
4934  // If this is the entry block, emit arguments.
4935  Function &F = *LLVMBB->getParent();
4936  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4937  SDValue OldRoot = SDL.DAG.getRoot();
4938  SmallVector<SDValue, 16> Args;
4939  TLI.LowerArguments(F, SDL.DAG, Args);
4940
4941  unsigned a = 0;
4942  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4943       AI != E; ++AI) {
4944    SmallVector<MVT, 4> ValueVTs;
4945    ComputeValueVTs(TLI, AI->getType(), ValueVTs);
4946    unsigned NumValues = ValueVTs.size();
4947    if (!AI->use_empty()) {
4948      SDL.setValue(AI, SDL.DAG.getMergeValues(&Args[a], NumValues));
4949      // If this argument is live outside of the entry block, insert a copy from
4950      // whereever we got it to the vreg that other BB's will reference it as.
4951      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4952      if (VMI != FuncInfo.ValueMap.end()) {
4953        SDL.CopyValueToVirtualRegister(AI, VMI->second);
4954      }
4955    }
4956    a += NumValues;
4957  }
4958
4959  // Finally, if the target has anything special to do, allow it to do so.
4960  // FIXME: this should insert code into the DAG!
4961  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4962}
4963
4964static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4965                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4966  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4967    if (isSelector(I)) {
4968      // Apply the catch info to DestBB.
4969      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4970#ifndef NDEBUG
4971      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4972        FLI.CatchInfoFound.insert(I);
4973#endif
4974    }
4975}
4976
4977/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
4978/// whether object offset >= 0.
4979static bool
4980IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDValue Op) {
4981  if (!isa<FrameIndexSDNode>(Op)) return false;
4982
4983  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
4984  int FrameIdx =  FrameIdxNode->getIndex();
4985  return MFI->isFixedObjectIndex(FrameIdx) &&
4986    MFI->getObjectOffset(FrameIdx) >= 0;
4987}
4988
4989/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
4990/// possibly be overwritten when lowering the outgoing arguments in a tail
4991/// call. Currently the implementation of this call is very conservative and
4992/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
4993/// virtual registers would be overwritten by direct lowering.
4994static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
4995                                                    MachineFrameInfo * MFI) {
4996  RegisterSDNode * OpReg = NULL;
4997  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
4998      (Op.getOpcode()== ISD::CopyFromReg &&
4999       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
5000       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
5001      (Op.getOpcode() == ISD::LOAD &&
5002       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
5003      (Op.getOpcode() == ISD::MERGE_VALUES &&
5004       Op.getOperand(Op.ResNo).getOpcode() == ISD::LOAD &&
5005       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.ResNo).
5006                                       getOperand(1))))
5007    return true;
5008  return false;
5009}
5010
5011/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
5012/// DAG and fixes their tailcall attribute operand.
5013static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
5014                                           TargetLowering& TLI) {
5015  SDNode * Ret = NULL;
5016  SDValue Terminator = DAG.getRoot();
5017
5018  // Find RET node.
5019  if (Terminator.getOpcode() == ISD::RET) {
5020    Ret = Terminator.Val;
5021  }
5022
5023  // Fix tail call attribute of CALL nodes.
5024  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
5025         BI = DAG.allnodes_end(); BI != BE; ) {
5026    --BI;
5027    if (BI->getOpcode() == ISD::CALL) {
5028      SDValue OpRet(Ret, 0);
5029      SDValue OpCall(BI, 0);
5030      bool isMarkedTailCall =
5031        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
5032      // If CALL node has tail call attribute set to true and the call is not
5033      // eligible (no RET or the target rejects) the attribute is fixed to
5034      // false. The TargetLowering::IsEligibleForTailCallOptimization function
5035      // must correctly identify tail call optimizable calls.
5036      if (!isMarkedTailCall) continue;
5037      if (Ret==NULL ||
5038          !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
5039        // Not eligible. Mark CALL node as non tail call.
5040        SmallVector<SDValue, 32> Ops;
5041        unsigned idx=0;
5042        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
5043              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5044          if (idx!=3)
5045            Ops.push_back(*I);
5046          else
5047            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
5048        }
5049        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5050      } else {
5051        // Look for tail call clobbered arguments. Emit a series of
5052        // copyto/copyfrom virtual register nodes to protect them.
5053        SmallVector<SDValue, 32> Ops;
5054        SDValue Chain = OpCall.getOperand(0), InFlag;
5055        unsigned idx=0;
5056        for(SDNode::op_iterator I = OpCall.Val->op_begin(),
5057              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5058          SDValue Arg = *I;
5059          if (idx > 4 && (idx % 2)) {
5060            bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
5061              getArgFlags().isByVal();
5062            MachineFunction &MF = DAG.getMachineFunction();
5063            MachineFrameInfo *MFI = MF.getFrameInfo();
5064            if (!isByVal &&
5065                IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
5066              MVT VT = Arg.getValueType();
5067              unsigned VReg = MF.getRegInfo().
5068                createVirtualRegister(TLI.getRegClassFor(VT));
5069              Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
5070              InFlag = Chain.getValue(1);
5071              Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
5072              Chain = Arg.getValue(1);
5073              InFlag = Arg.getValue(2);
5074            }
5075          }
5076          Ops.push_back(Arg);
5077        }
5078        // Link in chain of CopyTo/CopyFromReg.
5079        Ops[0] = Chain;
5080        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5081      }
5082    }
5083  }
5084}
5085
5086void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
5087       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
5088                                         FunctionLoweringInfo &FuncInfo) {
5089  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
5090
5091  // Lower any arguments needed in this block if this is the entry block.
5092  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
5093    LowerArguments(LLVMBB, SDL);
5094
5095  BB = FuncInfo.MBBMap[LLVMBB];
5096  SDL.setCurrentBasicBlock(BB);
5097
5098  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
5099
5100  if (MMI && BB->isLandingPad()) {
5101    // Add a label to mark the beginning of the landing pad.  Deletion of the
5102    // landing pad can thus be detected via the MachineModuleInfo.
5103    unsigned LabelID = MMI->addLandingPad(BB);
5104    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, DAG.getEntryNode(), LabelID));
5105
5106    // Mark exception register as live in.
5107    unsigned Reg = TLI.getExceptionAddressRegister();
5108    if (Reg) BB->addLiveIn(Reg);
5109
5110    // Mark exception selector register as live in.
5111    Reg = TLI.getExceptionSelectorRegister();
5112    if (Reg) BB->addLiveIn(Reg);
5113
5114    // FIXME: Hack around an exception handling flaw (PR1508): the personality
5115    // function and list of typeids logically belong to the invoke (or, if you
5116    // like, the basic block containing the invoke), and need to be associated
5117    // with it in the dwarf exception handling tables.  Currently however the
5118    // information is provided by an intrinsic (eh.selector) that can be moved
5119    // to unexpected places by the optimizers: if the unwind edge is critical,
5120    // then breaking it can result in the intrinsics being in the successor of
5121    // the landing pad, not the landing pad itself.  This results in exceptions
5122    // not being caught because no typeids are associated with the invoke.
5123    // This may not be the only way things can go wrong, but it is the only way
5124    // we try to work around for the moment.
5125    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
5126
5127    if (Br && Br->isUnconditional()) { // Critical edge?
5128      BasicBlock::iterator I, E;
5129      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
5130        if (isSelector(I))
5131          break;
5132
5133      if (I == E)
5134        // No catch info found - try to extract some from the successor.
5135        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
5136    }
5137  }
5138
5139  // Lower all of the non-terminator instructions.
5140  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
5141       I != E; ++I)
5142    SDL.visit(*I);
5143
5144  // Ensure that all instructions which are used outside of their defining
5145  // blocks are available as virtual registers.  Invoke is handled elsewhere.
5146  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
5147    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
5148      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
5149      if (VMI != FuncInfo.ValueMap.end())
5150        SDL.CopyValueToVirtualRegister(I, VMI->second);
5151    }
5152
5153  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
5154  // ensure constants are generated when needed.  Remember the virtual registers
5155  // that need to be added to the Machine PHI nodes as input.  We cannot just
5156  // directly add them, because expansion might result in multiple MBB's for one
5157  // BB.  As such, the start of the BB might correspond to a different MBB than
5158  // the end.
5159  //
5160  TerminatorInst *TI = LLVMBB->getTerminator();
5161
5162  // Emit constants only once even if used by multiple PHI nodes.
5163  std::map<Constant*, unsigned> ConstantsOut;
5164
5165  // Vector bool would be better, but vector<bool> is really slow.
5166  std::vector<unsigned char> SuccsHandled;
5167  if (TI->getNumSuccessors())
5168    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
5169
5170  // Check successor nodes' PHI nodes that expect a constant to be available
5171  // from this block.
5172  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5173    BasicBlock *SuccBB = TI->getSuccessor(succ);
5174    if (!isa<PHINode>(SuccBB->begin())) continue;
5175    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
5176
5177    // If this terminator has multiple identical successors (common for
5178    // switches), only handle each succ once.
5179    unsigned SuccMBBNo = SuccMBB->getNumber();
5180    if (SuccsHandled[SuccMBBNo]) continue;
5181    SuccsHandled[SuccMBBNo] = true;
5182
5183    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5184    PHINode *PN;
5185
5186    // At this point we know that there is a 1-1 correspondence between LLVM PHI
5187    // nodes and Machine PHI nodes, but the incoming operands have not been
5188    // emitted yet.
5189    for (BasicBlock::iterator I = SuccBB->begin();
5190         (PN = dyn_cast<PHINode>(I)); ++I) {
5191      // Ignore dead phi's.
5192      if (PN->use_empty()) continue;
5193
5194      unsigned Reg;
5195      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5196
5197      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5198        unsigned &RegOut = ConstantsOut[C];
5199        if (RegOut == 0) {
5200          RegOut = FuncInfo.CreateRegForValue(C);
5201          SDL.CopyValueToVirtualRegister(C, RegOut);
5202        }
5203        Reg = RegOut;
5204      } else {
5205        Reg = FuncInfo.ValueMap[PHIOp];
5206        if (Reg == 0) {
5207          assert(isa<AllocaInst>(PHIOp) &&
5208                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5209                 "Didn't codegen value into a register!??");
5210          Reg = FuncInfo.CreateRegForValue(PHIOp);
5211          SDL.CopyValueToVirtualRegister(PHIOp, Reg);
5212        }
5213      }
5214
5215      // Remember that this register needs to added to the machine PHI node as
5216      // the input for this MBB.
5217      MVT VT = TLI.getValueType(PN->getType());
5218      unsigned NumRegisters = TLI.getNumRegisters(VT);
5219      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5220        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5221    }
5222  }
5223  ConstantsOut.clear();
5224
5225  // Lower the terminator after the copies are emitted.
5226  SDL.visit(*LLVMBB->getTerminator());
5227
5228  // Copy over any CaseBlock records that may now exist due to SwitchInst
5229  // lowering, as well as any jump table information.
5230  SwitchCases.clear();
5231  SwitchCases = SDL.SwitchCases;
5232  JTCases.clear();
5233  JTCases = SDL.JTCases;
5234  BitTestCases.clear();
5235  BitTestCases = SDL.BitTestCases;
5236
5237  // Make sure the root of the DAG is up-to-date.
5238  DAG.setRoot(SDL.getControlRoot());
5239
5240  // Check whether calls in this block are real tail calls. Fix up CALL nodes
5241  // with correct tailcall attribute so that the target can rely on the tailcall
5242  // attribute indicating whether the call is really eligible for tail call
5243  // optimization.
5244  CheckDAGForTailCallsAndFixThem(DAG, TLI);
5245}
5246
5247void SelectionDAGISel::ComputeLiveOutVRegInfo(SelectionDAG &DAG) {
5248  SmallPtrSet<SDNode*, 128> VisitedNodes;
5249  SmallVector<SDNode*, 128> Worklist;
5250
5251  Worklist.push_back(DAG.getRoot().Val);
5252
5253  APInt Mask;
5254  APInt KnownZero;
5255  APInt KnownOne;
5256
5257  while (!Worklist.empty()) {
5258    SDNode *N = Worklist.back();
5259    Worklist.pop_back();
5260
5261    // If we've already seen this node, ignore it.
5262    if (!VisitedNodes.insert(N))
5263      continue;
5264
5265    // Otherwise, add all chain operands to the worklist.
5266    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5267      if (N->getOperand(i).getValueType() == MVT::Other)
5268        Worklist.push_back(N->getOperand(i).Val);
5269
5270    // If this is a CopyToReg with a vreg dest, process it.
5271    if (N->getOpcode() != ISD::CopyToReg)
5272      continue;
5273
5274    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
5275    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
5276      continue;
5277
5278    // Ignore non-scalar or non-integer values.
5279    SDValue Src = N->getOperand(2);
5280    MVT SrcVT = Src.getValueType();
5281    if (!SrcVT.isInteger() || SrcVT.isVector())
5282      continue;
5283
5284    unsigned NumSignBits = DAG.ComputeNumSignBits(Src);
5285    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
5286    DAG.ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
5287
5288    // Only install this information if it tells us something.
5289    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
5290      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
5291      FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5292      if (DestReg >= FLI.LiveOutRegInfo.size())
5293        FLI.LiveOutRegInfo.resize(DestReg+1);
5294      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
5295      LOI.NumSignBits = NumSignBits;
5296      LOI.KnownOne = NumSignBits;
5297      LOI.KnownZero = NumSignBits;
5298    }
5299  }
5300}
5301
5302void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
5303  std::string GroupName;
5304  if (TimePassesIsEnabled)
5305    GroupName = "Instruction Selection and Scheduling";
5306  std::string BlockName;
5307  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
5308      ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs)
5309    BlockName = DAG.getMachineFunction().getFunction()->getName() + ':' +
5310                BB->getBasicBlock()->getName();
5311
5312  DOUT << "Initial selection DAG:\n";
5313  DEBUG(DAG.dump());
5314
5315  if (ViewDAGCombine1) DAG.viewGraph("dag-combine1 input for " + BlockName);
5316
5317  // Run the DAG combiner in pre-legalize mode.
5318  if (TimePassesIsEnabled) {
5319    NamedRegionTimer T("DAG Combining 1", GroupName);
5320    DAG.Combine(false, *AA);
5321  } else {
5322    DAG.Combine(false, *AA);
5323  }
5324
5325  DOUT << "Optimized lowered selection DAG:\n";
5326  DEBUG(DAG.dump());
5327
5328  // Second step, hack on the DAG until it only uses operations and types that
5329  // the target supports.
5330  if (EnableLegalizeTypes) {// Enable this some day.
5331    if (ViewLegalizeTypesDAGs) DAG.viewGraph("legalize-types input for " +
5332                                             BlockName);
5333
5334    if (TimePassesIsEnabled) {
5335      NamedRegionTimer T("Type Legalization", GroupName);
5336      DAG.LegalizeTypes();
5337    } else {
5338      DAG.LegalizeTypes();
5339    }
5340
5341    DOUT << "Type-legalized selection DAG:\n";
5342    DEBUG(DAG.dump());
5343
5344    // TODO: enable a dag combine pass here.
5345  }
5346
5347  if (ViewLegalizeDAGs) DAG.viewGraph("legalize input for " + BlockName);
5348
5349  if (TimePassesIsEnabled) {
5350    NamedRegionTimer T("DAG Legalization", GroupName);
5351    DAG.Legalize();
5352  } else {
5353    DAG.Legalize();
5354  }
5355
5356  DOUT << "Legalized selection DAG:\n";
5357  DEBUG(DAG.dump());
5358
5359  if (ViewDAGCombine2) DAG.viewGraph("dag-combine2 input for " + BlockName);
5360
5361  // Run the DAG combiner in post-legalize mode.
5362  if (TimePassesIsEnabled) {
5363    NamedRegionTimer T("DAG Combining 2", GroupName);
5364    DAG.Combine(true, *AA);
5365  } else {
5366    DAG.Combine(true, *AA);
5367  }
5368
5369  DOUT << "Optimized legalized selection DAG:\n";
5370  DEBUG(DAG.dump());
5371
5372  if (ViewISelDAGs) DAG.viewGraph("isel input for " + BlockName);
5373
5374  if (!FastISel && EnableValueProp)
5375    ComputeLiveOutVRegInfo(DAG);
5376
5377  // Third, instruction select all of the operations to machine code, adding the
5378  // code to the MachineBasicBlock.
5379  if (TimePassesIsEnabled) {
5380    NamedRegionTimer T("Instruction Selection", GroupName);
5381    InstructionSelect(DAG);
5382  } else {
5383    InstructionSelect(DAG);
5384  }
5385
5386  DOUT << "Selected selection DAG:\n";
5387  DEBUG(DAG.dump());
5388
5389  if (ViewSchedDAGs) DAG.viewGraph("scheduler input for " + BlockName);
5390
5391  // Schedule machine code.
5392  ScheduleDAG *Scheduler;
5393  if (TimePassesIsEnabled) {
5394    NamedRegionTimer T("Instruction Scheduling", GroupName);
5395    Scheduler = Schedule(DAG);
5396  } else {
5397    Scheduler = Schedule(DAG);
5398  }
5399
5400  if (ViewSUnitDAGs) Scheduler->viewGraph();
5401
5402  // Emit machine code to BB.  This can change 'BB' to the last block being
5403  // inserted into.
5404  if (TimePassesIsEnabled) {
5405    NamedRegionTimer T("Instruction Creation", GroupName);
5406    BB = Scheduler->EmitSchedule();
5407  } else {
5408    BB = Scheduler->EmitSchedule();
5409  }
5410
5411  // Free the scheduler state.
5412  if (TimePassesIsEnabled) {
5413    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
5414    delete Scheduler;
5415  } else {
5416    delete Scheduler;
5417  }
5418
5419  // Perform target specific isel post processing.
5420  if (TimePassesIsEnabled) {
5421    NamedRegionTimer T("Instruction Selection Post Processing", GroupName);
5422    InstructionSelectPostProcessing();
5423  } else {
5424    InstructionSelectPostProcessing();
5425  }
5426
5427  DOUT << "Selected machine code:\n";
5428  DEBUG(BB->dump());
5429}
5430
5431void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF,
5432                                            FunctionLoweringInfo &FuncInfo) {
5433  // Define NodeAllocator here so that memory allocation is reused for
5434  // each basic block.
5435  NodeAllocatorType NodeAllocator;
5436
5437  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
5438    SelectBasicBlock(I, MF, FuncInfo, NodeAllocator);
5439}
5440
5441void
5442SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
5443                                   FunctionLoweringInfo &FuncInfo,
5444                                   NodeAllocatorType &NodeAllocator) {
5445  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
5446  {
5447    SelectionDAG DAG(TLI, MF, FuncInfo,
5448                     getAnalysisToUpdate<MachineModuleInfo>(),
5449                     NodeAllocator);
5450    CurDAG = &DAG;
5451
5452    // First step, lower LLVM code to some DAG.  This DAG may use operations and
5453    // types that are not supported by the target.
5454    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
5455
5456    // Second step, emit the lowered DAG as machine code.
5457    CodeGenAndEmitDAG(DAG);
5458  }
5459
5460  DOUT << "Total amount of phi nodes to update: "
5461       << PHINodesToUpdate.size() << "\n";
5462  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
5463          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
5464               << ", " << PHINodesToUpdate[i].second << ")\n";);
5465
5466  // Next, now that we know what the last MBB the LLVM BB expanded is, update
5467  // PHI nodes in successors.
5468  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
5469    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5470      MachineInstr *PHI = PHINodesToUpdate[i].first;
5471      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5472             "This is not a machine PHI node that we are updating!");
5473      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5474                                                false));
5475      PHI->addOperand(MachineOperand::CreateMBB(BB));
5476    }
5477    return;
5478  }
5479
5480  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
5481    // Lower header first, if it wasn't already lowered
5482    if (!BitTestCases[i].Emitted) {
5483      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5484                         getAnalysisToUpdate<MachineModuleInfo>(),
5485                         NodeAllocator);
5486      CurDAG = &HSDAG;
5487      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5488      // Set the current basic block to the mbb we wish to insert the code into
5489      BB = BitTestCases[i].Parent;
5490      HSDL.setCurrentBasicBlock(BB);
5491      // Emit the code
5492      HSDL.visitBitTestHeader(BitTestCases[i]);
5493      HSDAG.setRoot(HSDL.getRoot());
5494      CodeGenAndEmitDAG(HSDAG);
5495    }
5496
5497    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5498      SelectionDAG BSDAG(TLI, MF, FuncInfo,
5499                         getAnalysisToUpdate<MachineModuleInfo>(),
5500                         NodeAllocator);
5501      CurDAG = &BSDAG;
5502      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
5503      // Set the current basic block to the mbb we wish to insert the code into
5504      BB = BitTestCases[i].Cases[j].ThisBB;
5505      BSDL.setCurrentBasicBlock(BB);
5506      // Emit the code
5507      if (j+1 != ej)
5508        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
5509                              BitTestCases[i].Reg,
5510                              BitTestCases[i].Cases[j]);
5511      else
5512        BSDL.visitBitTestCase(BitTestCases[i].Default,
5513                              BitTestCases[i].Reg,
5514                              BitTestCases[i].Cases[j]);
5515
5516
5517      BSDAG.setRoot(BSDL.getRoot());
5518      CodeGenAndEmitDAG(BSDAG);
5519    }
5520
5521    // Update PHI Nodes
5522    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5523      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5524      MachineBasicBlock *PHIBB = PHI->getParent();
5525      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5526             "This is not a machine PHI node that we are updating!");
5527      // This is "default" BB. We have two jumps to it. From "header" BB and
5528      // from last "case" BB.
5529      if (PHIBB == BitTestCases[i].Default) {
5530        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5531                                                  false));
5532        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
5533        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5534                                                  false));
5535        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
5536                                                  back().ThisBB));
5537      }
5538      // One of "cases" BB.
5539      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5540        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
5541        if (cBB->succ_end() !=
5542            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
5543          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5544                                                    false));
5545          PHI->addOperand(MachineOperand::CreateMBB(cBB));
5546        }
5547      }
5548    }
5549  }
5550
5551  // If the JumpTable record is filled in, then we need to emit a jump table.
5552  // Updating the PHI nodes is tricky in this case, since we need to determine
5553  // whether the PHI is a successor of the range check MBB or the jump table MBB
5554  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
5555    // Lower header first, if it wasn't already lowered
5556    if (!JTCases[i].first.Emitted) {
5557      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5558                         getAnalysisToUpdate<MachineModuleInfo>(),
5559                         NodeAllocator);
5560      CurDAG = &HSDAG;
5561      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5562      // Set the current basic block to the mbb we wish to insert the code into
5563      BB = JTCases[i].first.HeaderBB;
5564      HSDL.setCurrentBasicBlock(BB);
5565      // Emit the code
5566      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
5567      HSDAG.setRoot(HSDL.getRoot());
5568      CodeGenAndEmitDAG(HSDAG);
5569    }
5570
5571    SelectionDAG JSDAG(TLI, MF, FuncInfo,
5572                       getAnalysisToUpdate<MachineModuleInfo>(),
5573                       NodeAllocator);
5574    CurDAG = &JSDAG;
5575    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
5576    // Set the current basic block to the mbb we wish to insert the code into
5577    BB = JTCases[i].second.MBB;
5578    JSDL.setCurrentBasicBlock(BB);
5579    // Emit the code
5580    JSDL.visitJumpTable(JTCases[i].second);
5581    JSDAG.setRoot(JSDL.getRoot());
5582    CodeGenAndEmitDAG(JSDAG);
5583
5584    // Update PHI Nodes
5585    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5586      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5587      MachineBasicBlock *PHIBB = PHI->getParent();
5588      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5589             "This is not a machine PHI node that we are updating!");
5590      // "default" BB. We can go there only from header BB.
5591      if (PHIBB == JTCases[i].second.Default) {
5592        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5593                                                  false));
5594        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
5595      }
5596      // JT BB. Just iterate over successors here
5597      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
5598        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5599                                                  false));
5600        PHI->addOperand(MachineOperand::CreateMBB(BB));
5601      }
5602    }
5603  }
5604
5605  // If the switch block involved a branch to one of the actual successors, we
5606  // need to update PHI nodes in that block.
5607  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5608    MachineInstr *PHI = PHINodesToUpdate[i].first;
5609    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5610           "This is not a machine PHI node that we are updating!");
5611    if (BB->isSuccessor(PHI->getParent())) {
5612      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5613                                                false));
5614      PHI->addOperand(MachineOperand::CreateMBB(BB));
5615    }
5616  }
5617
5618  // If we generated any switch lowering information, build and codegen any
5619  // additional DAGs necessary.
5620  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
5621    SelectionDAG SDAG(TLI, MF, FuncInfo,
5622                      getAnalysisToUpdate<MachineModuleInfo>(),
5623                      NodeAllocator);
5624    CurDAG = &SDAG;
5625    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
5626
5627    // Set the current basic block to the mbb we wish to insert the code into
5628    BB = SwitchCases[i].ThisBB;
5629    SDL.setCurrentBasicBlock(BB);
5630
5631    // Emit the code
5632    SDL.visitSwitchCase(SwitchCases[i]);
5633    SDAG.setRoot(SDL.getRoot());
5634    CodeGenAndEmitDAG(SDAG);
5635
5636    // Handle any PHI nodes in successors of this chunk, as if we were coming
5637    // from the original BB before switch expansion.  Note that PHI nodes can
5638    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5639    // handle them the right number of times.
5640    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5641      for (MachineBasicBlock::iterator Phi = BB->begin();
5642           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5643        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5644        for (unsigned pn = 0; ; ++pn) {
5645          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5646          if (PHINodesToUpdate[pn].first == Phi) {
5647            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5648                                                      second, false));
5649            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5650            break;
5651          }
5652        }
5653      }
5654
5655      // Don't process RHS if same block as LHS.
5656      if (BB == SwitchCases[i].FalseBB)
5657        SwitchCases[i].FalseBB = 0;
5658
5659      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5660      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5661      SwitchCases[i].FalseBB = 0;
5662    }
5663    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5664  }
5665}
5666
5667
5668/// Schedule - Pick a safe ordering for instructions for each
5669/// target node in the graph.
5670///
5671ScheduleDAG *SelectionDAGISel::Schedule(SelectionDAG &DAG) {
5672  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5673
5674  if (!Ctor) {
5675    Ctor = ISHeuristic;
5676    RegisterScheduler::setDefault(Ctor);
5677  }
5678
5679  ScheduleDAG *Scheduler = Ctor(this, &DAG, BB, FastISel);
5680  Scheduler->Run();
5681
5682  return Scheduler;
5683}
5684
5685
5686HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5687  return new HazardRecognizer();
5688}
5689
5690//===----------------------------------------------------------------------===//
5691// Helper functions used by the generated instruction selector.
5692//===----------------------------------------------------------------------===//
5693// Calls to these methods are generated by tblgen.
5694
5695/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5696/// the dag combiner simplified the 255, we still want to match.  RHS is the
5697/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5698/// specified in the .td file (e.g. 255).
5699bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
5700                                    int64_t DesiredMaskS) const {
5701  const APInt &ActualMask = RHS->getAPIntValue();
5702  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5703
5704  // If the actual mask exactly matches, success!
5705  if (ActualMask == DesiredMask)
5706    return true;
5707
5708  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5709  if (ActualMask.intersects(~DesiredMask))
5710    return false;
5711
5712  // Otherwise, the DAG Combiner may have proven that the value coming in is
5713  // either already zero or is not demanded.  Check for known zero input bits.
5714  APInt NeededMask = DesiredMask & ~ActualMask;
5715  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5716    return true;
5717
5718  // TODO: check to see if missing bits are just not demanded.
5719
5720  // Otherwise, this pattern doesn't match.
5721  return false;
5722}
5723
5724/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5725/// the dag combiner simplified the 255, we still want to match.  RHS is the
5726/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5727/// specified in the .td file (e.g. 255).
5728bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
5729                                   int64_t DesiredMaskS) const {
5730  const APInt &ActualMask = RHS->getAPIntValue();
5731  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5732
5733  // If the actual mask exactly matches, success!
5734  if (ActualMask == DesiredMask)
5735    return true;
5736
5737  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5738  if (ActualMask.intersects(~DesiredMask))
5739    return false;
5740
5741  // Otherwise, the DAG Combiner may have proven that the value coming in is
5742  // either already zero or is not demanded.  Check for known zero input bits.
5743  APInt NeededMask = DesiredMask & ~ActualMask;
5744
5745  APInt KnownZero, KnownOne;
5746  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5747
5748  // If all the missing bits in the or are already known to be set, match!
5749  if ((NeededMask & KnownOne) == NeededMask)
5750    return true;
5751
5752  // TODO: check to see if missing bits are just not demanded.
5753
5754  // Otherwise, this pattern doesn't match.
5755  return false;
5756}
5757
5758
5759/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5760/// by tblgen.  Others should not call it.
5761void SelectionDAGISel::
5762SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, SelectionDAG &DAG) {
5763  std::vector<SDValue> InOps;
5764  std::swap(InOps, Ops);
5765
5766  Ops.push_back(InOps[0]);  // input chain.
5767  Ops.push_back(InOps[1]);  // input asm string.
5768
5769  unsigned i = 2, e = InOps.size();
5770  if (InOps[e-1].getValueType() == MVT::Flag)
5771    --e;  // Don't process a flag operand if it is here.
5772
5773  while (i != e) {
5774    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5775    if ((Flags & 7) != 4 /*MEM*/) {
5776      // Just skip over this operand, copying the operands verbatim.
5777      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5778      i += (Flags >> 3) + 1;
5779    } else {
5780      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5781      // Otherwise, this is a memory operand.  Ask the target to select it.
5782      std::vector<SDValue> SelOps;
5783      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5784        cerr << "Could not match memory address.  Inline asm failure!\n";
5785        exit(1);
5786      }
5787
5788      // Add this to the output node.
5789      MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5790      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5791                                          IntPtrTy));
5792      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5793      i += 2;
5794    }
5795  }
5796
5797  // Add the flag input back if present.
5798  if (e != InOps.size())
5799    Ops.push_back(InOps.back());
5800}
5801
5802char SelectionDAGISel::ID = 0;
5803