SelectionDAGISel.cpp revision 918b7c82f8f53241a5bb354931abfe53634bfc4c
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/TargetTransformInfo.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/FunctionLoweringInfo.h"
25#include "llvm/CodeGen/GCMetadata.h"
26#include "llvm/CodeGen/GCStrategy.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
33#include "llvm/CodeGen/SchedulerRegistry.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/DebugInfo.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/InlineAsm.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/Intrinsics.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/IR/Module.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLibraryInfo.h"
52#include "llvm/Target/TargetLowering.h"
53#include "llvm/Target/TargetMachine.h"
54#include "llvm/Target/TargetOptions.h"
55#include "llvm/Target/TargetRegisterInfo.h"
56#include "llvm/Target/TargetSubtargetInfo.h"
57#include "llvm/Transforms/Utils/BasicBlockUtils.h"
58#include <algorithm>
59using namespace llvm;
60
61STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
62STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
63STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
64STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
65STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
66STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
67STATISTIC(NumFastIselFailLowerArguments,
68          "Number of entry blocks where fast isel failed to lower arguments");
69
70#ifndef NDEBUG
71static cl::opt<bool>
72EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
73          cl::desc("Enable extra verbose messages in the \"fast\" "
74                   "instruction selector"));
75
76  // Terminators
77STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
78STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
79STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
80STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
81STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
82STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
83STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
84
85  // Standard binary operators...
86STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
87STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
88STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
89STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
90STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
91STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
92STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
93STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
94STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
95STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
96STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
97STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
98
99  // Logical operators...
100STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
101STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
102STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
103
104  // Memory instructions...
105STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
106STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
107STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
108STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
109STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
110STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
111STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
112
113  // Convert instructions...
114STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
115STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
116STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
117STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
118STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
119STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
120STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
121STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
122STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
123STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
124STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
125STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
126
127  // Other instructions...
128STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
129STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
130STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
131STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
132STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
133STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
134STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
135STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
136STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
137STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
138STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
139STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
140STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
141STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
142STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
143#endif
144
145static cl::opt<bool>
146EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
147          cl::desc("Enable verbose messages in the \"fast\" "
148                   "instruction selector"));
149static cl::opt<bool>
150EnableFastISelAbort("fast-isel-abort", cl::Hidden,
151          cl::desc("Enable abort calls when \"fast\" instruction selection "
152                   "fails to lower an instruction"));
153static cl::opt<bool>
154EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
155          cl::desc("Enable abort calls when \"fast\" instruction selection "
156                   "fails to lower a formal argument"));
157
158static cl::opt<bool>
159UseMBPI("use-mbpi",
160        cl::desc("use Machine Branch Probability Info"),
161        cl::init(true), cl::Hidden);
162
163#ifndef NDEBUG
164static cl::opt<bool>
165ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
166          cl::desc("Pop up a window to show dags before the first "
167                   "dag combine pass"));
168static cl::opt<bool>
169ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
170          cl::desc("Pop up a window to show dags before legalize types"));
171static cl::opt<bool>
172ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
173          cl::desc("Pop up a window to show dags before legalize"));
174static cl::opt<bool>
175ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
176          cl::desc("Pop up a window to show dags before the second "
177                   "dag combine pass"));
178static cl::opt<bool>
179ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
180          cl::desc("Pop up a window to show dags before the post legalize types"
181                   " dag combine pass"));
182static cl::opt<bool>
183ViewISelDAGs("view-isel-dags", cl::Hidden,
184          cl::desc("Pop up a window to show isel dags as they are selected"));
185static cl::opt<bool>
186ViewSchedDAGs("view-sched-dags", cl::Hidden,
187          cl::desc("Pop up a window to show sched dags as they are processed"));
188static cl::opt<bool>
189ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
190      cl::desc("Pop up a window to show SUnit dags after they are processed"));
191#else
192static const bool ViewDAGCombine1 = false,
193                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
194                  ViewDAGCombine2 = false,
195                  ViewDAGCombineLT = false,
196                  ViewISelDAGs = false, ViewSchedDAGs = false,
197                  ViewSUnitDAGs = false;
198#endif
199
200//===---------------------------------------------------------------------===//
201///
202/// RegisterScheduler class - Track the registration of instruction schedulers.
203///
204//===---------------------------------------------------------------------===//
205MachinePassRegistry RegisterScheduler::Registry;
206
207//===---------------------------------------------------------------------===//
208///
209/// ISHeuristic command line option for instruction schedulers.
210///
211//===---------------------------------------------------------------------===//
212static cl::opt<RegisterScheduler::FunctionPassCtor, false,
213               RegisterPassParser<RegisterScheduler> >
214ISHeuristic("pre-RA-sched",
215            cl::init(&createDefaultScheduler),
216            cl::desc("Instruction schedulers available (before register"
217                     " allocation):"));
218
219static RegisterScheduler
220defaultListDAGScheduler("default", "Best scheduler for the target",
221                        createDefaultScheduler);
222
223namespace llvm {
224  //===--------------------------------------------------------------------===//
225  /// createDefaultScheduler - This creates an instruction scheduler appropriate
226  /// for the target.
227  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
228                                             CodeGenOpt::Level OptLevel) {
229    const TargetLowering *TLI = IS->getTargetLowering();
230    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
231
232    if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() ||
233        TLI->getSchedulingPreference() == Sched::Source)
234      return createSourceListDAGScheduler(IS, OptLevel);
235    if (TLI->getSchedulingPreference() == Sched::RegPressure)
236      return createBURRListDAGScheduler(IS, OptLevel);
237    if (TLI->getSchedulingPreference() == Sched::Hybrid)
238      return createHybridListDAGScheduler(IS, OptLevel);
239    if (TLI->getSchedulingPreference() == Sched::VLIW)
240      return createVLIWDAGScheduler(IS, OptLevel);
241    assert(TLI->getSchedulingPreference() == Sched::ILP &&
242           "Unknown sched type!");
243    return createILPListDAGScheduler(IS, OptLevel);
244  }
245}
246
247// EmitInstrWithCustomInserter - This method should be implemented by targets
248// that mark instructions with the 'usesCustomInserter' flag.  These
249// instructions are special in various ways, which require special support to
250// insert.  The specified MachineInstr is created but not inserted into any
251// basic blocks, and this method is called to expand it into a sequence of
252// instructions, potentially also creating new basic blocks and control flow.
253// When new basic blocks are inserted and the edges from MBB to its successors
254// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
255// DenseMap.
256MachineBasicBlock *
257TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
258                                            MachineBasicBlock *MBB) const {
259#ifndef NDEBUG
260  dbgs() << "If a target marks an instruction with "
261          "'usesCustomInserter', it must implement "
262          "TargetLowering::EmitInstrWithCustomInserter!";
263#endif
264  llvm_unreachable(0);
265}
266
267void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
268                                                   SDNode *Node) const {
269  assert(!MI->hasPostISelHook() &&
270         "If a target marks an instruction with 'hasPostISelHook', "
271         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
272}
273
274//===----------------------------------------------------------------------===//
275// SelectionDAGISel code
276//===----------------------------------------------------------------------===//
277
278SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
279                                   CodeGenOpt::Level OL) :
280  MachineFunctionPass(ID), TM(tm),
281  FuncInfo(new FunctionLoweringInfo(TM)),
282  CurDAG(new SelectionDAG(tm, OL)),
283  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
284  GFI(),
285  OptLevel(OL),
286  DAGSize(0) {
287    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
288    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
289    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
290    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
291  }
292
293SelectionDAGISel::~SelectionDAGISel() {
294  delete SDB;
295  delete CurDAG;
296  delete FuncInfo;
297}
298
299void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
300  AU.addRequired<AliasAnalysis>();
301  AU.addPreserved<AliasAnalysis>();
302  AU.addRequired<GCModuleInfo>();
303  AU.addPreserved<GCModuleInfo>();
304  AU.addRequired<TargetLibraryInfo>();
305  if (UseMBPI && OptLevel != CodeGenOpt::None)
306    AU.addRequired<BranchProbabilityInfo>();
307  MachineFunctionPass::getAnalysisUsage(AU);
308}
309
310/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
311/// may trap on it.  In this case we have to split the edge so that the path
312/// through the predecessor block that doesn't go to the phi block doesn't
313/// execute the possibly trapping instruction.
314///
315/// This is required for correctness, so it must be done at -O0.
316///
317static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
318  // Loop for blocks with phi nodes.
319  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
320    PHINode *PN = dyn_cast<PHINode>(BB->begin());
321    if (PN == 0) continue;
322
323  ReprocessBlock:
324    // For each block with a PHI node, check to see if any of the input values
325    // are potentially trapping constant expressions.  Constant expressions are
326    // the only potentially trapping value that can occur as the argument to a
327    // PHI.
328    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
329      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
330        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
331        if (CE == 0 || !CE->canTrap()) continue;
332
333        // The only case we have to worry about is when the edge is critical.
334        // Since this block has a PHI Node, we assume it has multiple input
335        // edges: check to see if the pred has multiple successors.
336        BasicBlock *Pred = PN->getIncomingBlock(i);
337        if (Pred->getTerminator()->getNumSuccessors() == 1)
338          continue;
339
340        // Okay, we have to split this edge.
341        SplitCriticalEdge(Pred->getTerminator(),
342                          GetSuccessorNumber(Pred, BB), SDISel, true);
343        goto ReprocessBlock;
344      }
345  }
346}
347
348bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
349  // Do some sanity-checking on the command-line options.
350  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
351         "-fast-isel-verbose requires -fast-isel");
352  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
353         "-fast-isel-abort requires -fast-isel");
354
355  const Function &Fn = *mf.getFunction();
356  const TargetInstrInfo &TII = *TM.getInstrInfo();
357  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
358
359  MF = &mf;
360  RegInfo = &MF->getRegInfo();
361  AA = &getAnalysis<AliasAnalysis>();
362  LibInfo = &getAnalysis<TargetLibraryInfo>();
363  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
364  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
365
366  TargetSubtargetInfo &ST =
367    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
368  ST.resetSubtargetFeatures(MF);
369  TM.resetTargetOptions(MF);
370
371  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
372
373  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
374
375  CurDAG->init(*MF, TTI);
376  FuncInfo->set(Fn, *MF);
377
378  if (UseMBPI && OptLevel != CodeGenOpt::None)
379    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
380  else
381    FuncInfo->BPI = 0;
382
383  SDB->init(GFI, *AA, LibInfo);
384
385  MF->setHasMSInlineAsm(false);
386  SelectAllBasicBlocks(Fn);
387
388  // If the first basic block in the function has live ins that need to be
389  // copied into vregs, emit the copies into the top of the block before
390  // emitting the code for the block.
391  MachineBasicBlock *EntryMBB = MF->begin();
392  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
393
394  DenseMap<unsigned, unsigned> LiveInMap;
395  if (!FuncInfo->ArgDbgValues.empty())
396    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
397           E = RegInfo->livein_end(); LI != E; ++LI)
398      if (LI->second)
399        LiveInMap.insert(std::make_pair(LI->first, LI->second));
400
401  // Insert DBG_VALUE instructions for function arguments to the entry block.
402  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
403    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
404    bool hasFI = MI->getOperand(0).isFI();
405    unsigned Reg = hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
406    if (TargetRegisterInfo::isPhysicalRegister(Reg))
407      EntryMBB->insert(EntryMBB->begin(), MI);
408    else {
409      MachineInstr *Def = RegInfo->getVRegDef(Reg);
410      MachineBasicBlock::iterator InsertPos = Def;
411      // FIXME: VR def may not be in entry block.
412      Def->getParent()->insert(llvm::next(InsertPos), MI);
413    }
414
415    // If Reg is live-in then update debug info to track its copy in a vreg.
416    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
417    if (LDI != LiveInMap.end()) {
418      assert(!hasFI && "There's no handling of frame pointer updating here yet "
419                       "- add if needed");
420      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
421      MachineBasicBlock::iterator InsertPos = Def;
422      const MDNode *Variable =
423        MI->getOperand(MI->getNumOperands()-1).getMetadata();
424      unsigned Offset = MI->getOperand(1).getImm();
425      // Def is never a terminator here, so it is ok to increment InsertPos.
426      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
427              TII.get(TargetOpcode::DBG_VALUE))
428        .addReg(LDI->second, RegState::Debug)
429        .addImm(Offset).addMetadata(Variable);
430
431      // If this vreg is directly copied into an exported register then
432      // that COPY instructions also need DBG_VALUE, if it is the only
433      // user of LDI->second.
434      MachineInstr *CopyUseMI = NULL;
435      for (MachineRegisterInfo::use_iterator
436             UI = RegInfo->use_begin(LDI->second);
437           MachineInstr *UseMI = UI.skipInstruction();) {
438        if (UseMI->isDebugValue()) continue;
439        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
440          CopyUseMI = UseMI; continue;
441        }
442        // Otherwise this is another use or second copy use.
443        CopyUseMI = NULL; break;
444      }
445      if (CopyUseMI) {
446        MachineInstr *NewMI =
447          BuildMI(*MF, CopyUseMI->getDebugLoc(),
448                  TII.get(TargetOpcode::DBG_VALUE))
449          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
450          .addImm(Offset).addMetadata(Variable);
451        MachineBasicBlock::iterator Pos = CopyUseMI;
452        EntryMBB->insertAfter(Pos, NewMI);
453      }
454    }
455  }
456
457  // Determine if there are any calls in this machine function.
458  MachineFrameInfo *MFI = MF->getFrameInfo();
459  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
460       ++I) {
461
462    if (MFI->hasCalls() && MF->hasMSInlineAsm())
463      break;
464
465    const MachineBasicBlock *MBB = I;
466    for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
467         II != IE; ++II) {
468      const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
469      if ((MCID.isCall() && !MCID.isReturn()) ||
470          II->isStackAligningInlineAsm()) {
471        MFI->setHasCalls(true);
472      }
473      if (II->isMSInlineAsm()) {
474        MF->setHasMSInlineAsm(true);
475      }
476    }
477  }
478
479  // Determine if there is a call to setjmp in the machine function.
480  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
481
482  // Replace forward-declared registers with the registers containing
483  // the desired value.
484  MachineRegisterInfo &MRI = MF->getRegInfo();
485  for (DenseMap<unsigned, unsigned>::iterator
486       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
487       I != E; ++I) {
488    unsigned From = I->first;
489    unsigned To = I->second;
490    // If To is also scheduled to be replaced, find what its ultimate
491    // replacement is.
492    for (;;) {
493      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
494      if (J == E) break;
495      To = J->second;
496    }
497    // Replace it.
498    MRI.replaceRegWith(From, To);
499  }
500
501  // Freeze the set of reserved registers now that MachineFrameInfo has been
502  // set up. All the information required by getReservedRegs() should be
503  // available now.
504  MRI.freezeReservedRegs(*MF);
505
506  // Release function-specific state. SDB and CurDAG are already cleared
507  // at this point.
508  FuncInfo->clear();
509
510  return true;
511}
512
513void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
514                                        BasicBlock::const_iterator End,
515                                        bool &HadTailCall) {
516  // Lower all of the non-terminator instructions. If a call is emitted
517  // as a tail call, cease emitting nodes for this block. Terminators
518  // are handled below.
519  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
520    SDB->visit(*I);
521
522  // Make sure the root of the DAG is up-to-date.
523  CurDAG->setRoot(SDB->getControlRoot());
524  HadTailCall = SDB->HasTailCall;
525  SDB->clear();
526
527  // Final step, emit the lowered DAG as machine code.
528  CodeGenAndEmitDAG();
529}
530
531void SelectionDAGISel::ComputeLiveOutVRegInfo() {
532  SmallPtrSet<SDNode*, 128> VisitedNodes;
533  SmallVector<SDNode*, 128> Worklist;
534
535  Worklist.push_back(CurDAG->getRoot().getNode());
536
537  APInt KnownZero;
538  APInt KnownOne;
539
540  do {
541    SDNode *N = Worklist.pop_back_val();
542
543    // If we've already seen this node, ignore it.
544    if (!VisitedNodes.insert(N))
545      continue;
546
547    // Otherwise, add all chain operands to the worklist.
548    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
549      if (N->getOperand(i).getValueType() == MVT::Other)
550        Worklist.push_back(N->getOperand(i).getNode());
551
552    // If this is a CopyToReg with a vreg dest, process it.
553    if (N->getOpcode() != ISD::CopyToReg)
554      continue;
555
556    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
557    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
558      continue;
559
560    // Ignore non-scalar or non-integer values.
561    SDValue Src = N->getOperand(2);
562    EVT SrcVT = Src.getValueType();
563    if (!SrcVT.isInteger() || SrcVT.isVector())
564      continue;
565
566    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
567    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
568    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
569  } while (!Worklist.empty());
570}
571
572void SelectionDAGISel::CodeGenAndEmitDAG() {
573  std::string GroupName;
574  if (TimePassesIsEnabled)
575    GroupName = "Instruction Selection and Scheduling";
576  std::string BlockName;
577  int BlockNumber = -1;
578  (void)BlockNumber;
579#ifdef NDEBUG
580  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
581      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
582      ViewSUnitDAGs)
583#endif
584  {
585    BlockNumber = FuncInfo->MBB->getNumber();
586    BlockName = MF->getName().str() + ":" +
587                FuncInfo->MBB->getBasicBlock()->getName().str();
588  }
589  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
590        << " '" << BlockName << "'\n"; CurDAG->dump());
591
592  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
593
594  // Run the DAG combiner in pre-legalize mode.
595  {
596    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
597    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
598  }
599
600  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
601        << " '" << BlockName << "'\n"; CurDAG->dump());
602
603  // Second step, hack on the DAG until it only uses operations and types that
604  // the target supports.
605  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
606                                               BlockName);
607
608  bool Changed;
609  {
610    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
611    Changed = CurDAG->LegalizeTypes();
612  }
613
614  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
615        << " '" << BlockName << "'\n"; CurDAG->dump());
616
617  if (Changed) {
618    if (ViewDAGCombineLT)
619      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
620
621    // Run the DAG combiner in post-type-legalize mode.
622    {
623      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
624                         TimePassesIsEnabled);
625      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
626    }
627
628    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
629          << " '" << BlockName << "'\n"; CurDAG->dump());
630
631  }
632
633  {
634    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
635    Changed = CurDAG->LegalizeVectors();
636  }
637
638  if (Changed) {
639    {
640      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
641      CurDAG->LegalizeTypes();
642    }
643
644    if (ViewDAGCombineLT)
645      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
646
647    // Run the DAG combiner in post-type-legalize mode.
648    {
649      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
650                         TimePassesIsEnabled);
651      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
652    }
653
654    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
655          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
656  }
657
658  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
659
660  {
661    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
662    CurDAG->Legalize();
663  }
664
665  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
666        << " '" << BlockName << "'\n"; CurDAG->dump());
667
668  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
669
670  // Run the DAG combiner in post-legalize mode.
671  {
672    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
673    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
674  }
675
676  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
677        << " '" << BlockName << "'\n"; CurDAG->dump());
678
679  if (OptLevel != CodeGenOpt::None)
680    ComputeLiveOutVRegInfo();
681
682  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
683
684  // Third, instruction select all of the operations to machine code, adding the
685  // code to the MachineBasicBlock.
686  {
687    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
688    DoInstructionSelection();
689  }
690
691  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
692        << " '" << BlockName << "'\n"; CurDAG->dump());
693
694  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
695
696  // Schedule machine code.
697  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
698  {
699    NamedRegionTimer T("Instruction Scheduling", GroupName,
700                       TimePassesIsEnabled);
701    Scheduler->Run(CurDAG, FuncInfo->MBB);
702  }
703
704  if (ViewSUnitDAGs) Scheduler->viewGraph();
705
706  // Emit machine code to BB.  This can change 'BB' to the last block being
707  // inserted into.
708  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
709  {
710    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
711
712    // FuncInfo->InsertPt is passed by reference and set to the end of the
713    // scheduled instructions.
714    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
715  }
716
717  // If the block was split, make sure we update any references that are used to
718  // update PHI nodes later on.
719  if (FirstMBB != LastMBB)
720    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
721
722  // Free the scheduler state.
723  {
724    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
725                       TimePassesIsEnabled);
726    delete Scheduler;
727  }
728
729  // Free the SelectionDAG state, now that we're finished with it.
730  CurDAG->clear();
731}
732
733namespace {
734/// ISelUpdater - helper class to handle updates of the instruction selection
735/// graph.
736class ISelUpdater : public SelectionDAG::DAGUpdateListener {
737  SelectionDAG::allnodes_iterator &ISelPosition;
738public:
739  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
740    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
741
742  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
743  /// deleted is the current ISelPosition node, update ISelPosition.
744  ///
745  virtual void NodeDeleted(SDNode *N, SDNode *E) {
746    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
747      ++ISelPosition;
748  }
749};
750} // end anonymous namespace
751
752void SelectionDAGISel::DoInstructionSelection() {
753  DEBUG(dbgs() << "===== Instruction selection begins: BB#"
754        << FuncInfo->MBB->getNumber()
755        << " '" << FuncInfo->MBB->getName() << "'\n");
756
757  PreprocessISelDAG();
758
759  // Select target instructions for the DAG.
760  {
761    // Number all nodes with a topological order and set DAGSize.
762    DAGSize = CurDAG->AssignTopologicalOrder();
763
764    // Create a dummy node (which is not added to allnodes), that adds
765    // a reference to the root node, preventing it from being deleted,
766    // and tracking any changes of the root.
767    HandleSDNode Dummy(CurDAG->getRoot());
768    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
769    ++ISelPosition;
770
771    // Make sure that ISelPosition gets properly updated when nodes are deleted
772    // in calls made from this function.
773    ISelUpdater ISU(*CurDAG, ISelPosition);
774
775    // The AllNodes list is now topological-sorted. Visit the
776    // nodes by starting at the end of the list (the root of the
777    // graph) and preceding back toward the beginning (the entry
778    // node).
779    while (ISelPosition != CurDAG->allnodes_begin()) {
780      SDNode *Node = --ISelPosition;
781      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
782      // but there are currently some corner cases that it misses. Also, this
783      // makes it theoretically possible to disable the DAGCombiner.
784      if (Node->use_empty())
785        continue;
786
787      SDNode *ResNode = Select(Node);
788
789      // FIXME: This is pretty gross.  'Select' should be changed to not return
790      // anything at all and this code should be nuked with a tactical strike.
791
792      // If node should not be replaced, continue with the next one.
793      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
794        continue;
795      // Replace node.
796      if (ResNode) {
797        ReplaceUses(Node, ResNode);
798      }
799
800      // If after the replacement this node is not used any more,
801      // remove this dead node.
802      if (Node->use_empty()) // Don't delete EntryToken, etc.
803        CurDAG->RemoveDeadNode(Node);
804    }
805
806    CurDAG->setRoot(Dummy.getValue());
807  }
808
809  DEBUG(dbgs() << "===== Instruction selection ends:\n");
810
811  PostprocessISelDAG();
812}
813
814/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
815/// do other setup for EH landing-pad blocks.
816void SelectionDAGISel::PrepareEHLandingPad() {
817  MachineBasicBlock *MBB = FuncInfo->MBB;
818
819  // Add a label to mark the beginning of the landing pad.  Deletion of the
820  // landing pad can thus be detected via the MachineModuleInfo.
821  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
822
823  // Assign the call site to the landing pad's begin label.
824  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
825
826  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
827  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
828    .addSym(Label);
829
830  // Mark exception register as live in.
831  const TargetLowering *TLI = getTargetLowering();
832  const TargetRegisterClass *PtrRC = TLI->getRegClassFor(TLI->getPointerTy());
833  if (unsigned Reg = TLI->getExceptionPointerRegister())
834    FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
835
836  // Mark exception selector register as live in.
837  if (unsigned Reg = TLI->getExceptionSelectorRegister())
838    FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
839}
840
841/// isFoldedOrDeadInstruction - Return true if the specified instruction is
842/// side-effect free and is either dead or folded into a generated instruction.
843/// Return false if it needs to be emitted.
844static bool isFoldedOrDeadInstruction(const Instruction *I,
845                                      FunctionLoweringInfo *FuncInfo) {
846  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
847         !isa<TerminatorInst>(I) && // Terminators aren't folded.
848         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
849         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
850         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
851}
852
853#ifndef NDEBUG
854// Collect per Instruction statistics for fast-isel misses.  Only those
855// instructions that cause the bail are accounted for.  It does not account for
856// instructions higher in the block.  Thus, summing the per instructions stats
857// will not add up to what is reported by NumFastIselFailures.
858static void collectFailStats(const Instruction *I) {
859  switch (I->getOpcode()) {
860  default: assert (0 && "<Invalid operator> ");
861
862  // Terminators
863  case Instruction::Ret:         NumFastIselFailRet++; return;
864  case Instruction::Br:          NumFastIselFailBr++; return;
865  case Instruction::Switch:      NumFastIselFailSwitch++; return;
866  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
867  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
868  case Instruction::Resume:      NumFastIselFailResume++; return;
869  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
870
871  // Standard binary operators...
872  case Instruction::Add:  NumFastIselFailAdd++; return;
873  case Instruction::FAdd: NumFastIselFailFAdd++; return;
874  case Instruction::Sub:  NumFastIselFailSub++; return;
875  case Instruction::FSub: NumFastIselFailFSub++; return;
876  case Instruction::Mul:  NumFastIselFailMul++; return;
877  case Instruction::FMul: NumFastIselFailFMul++; return;
878  case Instruction::UDiv: NumFastIselFailUDiv++; return;
879  case Instruction::SDiv: NumFastIselFailSDiv++; return;
880  case Instruction::FDiv: NumFastIselFailFDiv++; return;
881  case Instruction::URem: NumFastIselFailURem++; return;
882  case Instruction::SRem: NumFastIselFailSRem++; return;
883  case Instruction::FRem: NumFastIselFailFRem++; return;
884
885  // Logical operators...
886  case Instruction::And: NumFastIselFailAnd++; return;
887  case Instruction::Or:  NumFastIselFailOr++; return;
888  case Instruction::Xor: NumFastIselFailXor++; return;
889
890  // Memory instructions...
891  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
892  case Instruction::Load:          NumFastIselFailLoad++; return;
893  case Instruction::Store:         NumFastIselFailStore++; return;
894  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
895  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
896  case Instruction::Fence:         NumFastIselFailFence++; return;
897  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
898
899  // Convert instructions...
900  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
901  case Instruction::ZExt:     NumFastIselFailZExt++; return;
902  case Instruction::SExt:     NumFastIselFailSExt++; return;
903  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
904  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
905  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
906  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
907  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
908  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
909  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
910  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
911  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
912
913  // Other instructions...
914  case Instruction::ICmp:           NumFastIselFailICmp++; return;
915  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
916  case Instruction::PHI:            NumFastIselFailPHI++; return;
917  case Instruction::Select:         NumFastIselFailSelect++; return;
918  case Instruction::Call:           NumFastIselFailCall++; return;
919  case Instruction::Shl:            NumFastIselFailShl++; return;
920  case Instruction::LShr:           NumFastIselFailLShr++; return;
921  case Instruction::AShr:           NumFastIselFailAShr++; return;
922  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
923  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
924  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
925  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
926  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
927  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
928  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
929  }
930}
931#endif
932
933void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
934  // Initialize the Fast-ISel state, if needed.
935  FastISel *FastIS = 0;
936  if (TM.Options.EnableFastISel)
937    FastIS = getTargetLowering()->createFastISel(*FuncInfo, LibInfo);
938
939  // Iterate over all basic blocks in the function.
940  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
941  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
942       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
943    const BasicBlock *LLVMBB = *I;
944
945    if (OptLevel != CodeGenOpt::None) {
946      bool AllPredsVisited = true;
947      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
948           PI != PE; ++PI) {
949        if (!FuncInfo->VisitedBBs.count(*PI)) {
950          AllPredsVisited = false;
951          break;
952        }
953      }
954
955      if (AllPredsVisited) {
956        for (BasicBlock::const_iterator I = LLVMBB->begin();
957             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
958          FuncInfo->ComputePHILiveOutRegInfo(PN);
959      } else {
960        for (BasicBlock::const_iterator I = LLVMBB->begin();
961             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
962          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
963      }
964
965      FuncInfo->VisitedBBs.insert(LLVMBB);
966    }
967
968    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
969    BasicBlock::const_iterator const End = LLVMBB->end();
970    BasicBlock::const_iterator BI = End;
971
972    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
973    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
974
975    // Setup an EH landing-pad block.
976    FuncInfo->ExceptionPointerVirtReg = 0;
977    FuncInfo->ExceptionSelectorVirtReg = 0;
978    if (FuncInfo->MBB->isLandingPad())
979      PrepareEHLandingPad();
980
981    // Before doing SelectionDAG ISel, see if FastISel has been requested.
982    if (FastIS) {
983      FastIS->startNewBlock();
984
985      // Emit code for any incoming arguments. This must happen before
986      // beginning FastISel on the entry block.
987      if (LLVMBB == &Fn.getEntryBlock()) {
988        ++NumEntryBlocks;
989
990        // Lower any arguments needed in this block if this is the entry block.
991        if (!FastIS->LowerArguments()) {
992          // Fast isel failed to lower these arguments
993          ++NumFastIselFailLowerArguments;
994          if (EnableFastISelAbortArgs)
995            llvm_unreachable("FastISel didn't lower all arguments");
996
997          // Use SelectionDAG argument lowering
998          LowerArguments(Fn);
999          CurDAG->setRoot(SDB->getControlRoot());
1000          SDB->clear();
1001          CodeGenAndEmitDAG();
1002        }
1003
1004        // If we inserted any instructions at the beginning, make a note of
1005        // where they are, so we can be sure to emit subsequent instructions
1006        // after them.
1007        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1008          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1009        else
1010          FastIS->setLastLocalValue(0);
1011      }
1012
1013      unsigned NumFastIselRemaining = std::distance(Begin, End);
1014      // Do FastISel on as many instructions as possible.
1015      for (; BI != Begin; --BI) {
1016        const Instruction *Inst = llvm::prior(BI);
1017
1018        // If we no longer require this instruction, skip it.
1019        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1020          --NumFastIselRemaining;
1021          continue;
1022        }
1023
1024        // Bottom-up: reset the insert pos at the top, after any local-value
1025        // instructions.
1026        FastIS->recomputeInsertPt();
1027
1028        // Try to select the instruction with FastISel.
1029        if (FastIS->SelectInstruction(Inst)) {
1030          --NumFastIselRemaining;
1031          ++NumFastIselSuccess;
1032          // If fast isel succeeded, skip over all the folded instructions, and
1033          // then see if there is a load right before the selected instructions.
1034          // Try to fold the load if so.
1035          const Instruction *BeforeInst = Inst;
1036          while (BeforeInst != Begin) {
1037            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1038            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1039              break;
1040          }
1041          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1042              BeforeInst->hasOneUse() &&
1043              FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
1044            // If we succeeded, don't re-select the load.
1045            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1046            --NumFastIselRemaining;
1047            ++NumFastIselSuccess;
1048          }
1049          continue;
1050        }
1051
1052#ifndef NDEBUG
1053        if (EnableFastISelVerbose2)
1054          collectFailStats(Inst);
1055#endif
1056
1057        // Then handle certain instructions as single-LLVM-Instruction blocks.
1058        if (isa<CallInst>(Inst)) {
1059
1060          if (EnableFastISelVerbose || EnableFastISelAbort) {
1061            dbgs() << "FastISel missed call: ";
1062            Inst->dump();
1063          }
1064
1065          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1066            unsigned &R = FuncInfo->ValueMap[Inst];
1067            if (!R)
1068              R = FuncInfo->CreateRegs(Inst->getType());
1069          }
1070
1071          bool HadTailCall = false;
1072          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1073          SelectBasicBlock(Inst, BI, HadTailCall);
1074
1075          // If the call was emitted as a tail call, we're done with the block.
1076          // We also need to delete any previously emitted instructions.
1077          if (HadTailCall) {
1078            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1079            --BI;
1080            break;
1081          }
1082
1083          // Recompute NumFastIselRemaining as Selection DAG instruction
1084          // selection may have handled the call, input args, etc.
1085          unsigned RemainingNow = std::distance(Begin, BI);
1086          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1087          NumFastIselRemaining = RemainingNow;
1088          continue;
1089        }
1090
1091        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1092          // Don't abort, and use a different message for terminator misses.
1093          NumFastIselFailures += NumFastIselRemaining;
1094          if (EnableFastISelVerbose || EnableFastISelAbort) {
1095            dbgs() << "FastISel missed terminator: ";
1096            Inst->dump();
1097          }
1098        } else {
1099          NumFastIselFailures += NumFastIselRemaining;
1100          if (EnableFastISelVerbose || EnableFastISelAbort) {
1101            dbgs() << "FastISel miss: ";
1102            Inst->dump();
1103          }
1104          if (EnableFastISelAbort)
1105            // The "fast" selector couldn't handle something and bailed.
1106            // For the purpose of debugging, just abort.
1107            llvm_unreachable("FastISel didn't select the entire block");
1108        }
1109        break;
1110      }
1111
1112      FastIS->recomputeInsertPt();
1113    } else {
1114      // Lower any arguments needed in this block if this is the entry block.
1115      if (LLVMBB == &Fn.getEntryBlock()) {
1116        ++NumEntryBlocks;
1117        LowerArguments(Fn);
1118      }
1119    }
1120
1121    if (Begin != BI)
1122      ++NumDAGBlocks;
1123    else
1124      ++NumFastIselBlocks;
1125
1126    if (Begin != BI) {
1127      // Run SelectionDAG instruction selection on the remainder of the block
1128      // not handled by FastISel. If FastISel is not run, this is the entire
1129      // block.
1130      bool HadTailCall;
1131      SelectBasicBlock(Begin, BI, HadTailCall);
1132    }
1133
1134    FinishBasicBlock();
1135    FuncInfo->PHINodesToUpdate.clear();
1136  }
1137
1138  delete FastIS;
1139  SDB->clearDanglingDebugInfo();
1140}
1141
1142void
1143SelectionDAGISel::FinishBasicBlock() {
1144
1145  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1146               << FuncInfo->PHINodesToUpdate.size() << "\n";
1147        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1148          dbgs() << "Node " << i << " : ("
1149                 << FuncInfo->PHINodesToUpdate[i].first
1150                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1151
1152  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1153  // PHI nodes in successors.
1154  if (SDB->SwitchCases.empty() &&
1155      SDB->JTCases.empty() &&
1156      SDB->BitTestCases.empty()) {
1157    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1158      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1159      assert(PHI->isPHI() &&
1160             "This is not a machine PHI node that we are updating!");
1161      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1162        continue;
1163      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1164    }
1165    return;
1166  }
1167
1168  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1169    // Lower header first, if it wasn't already lowered
1170    if (!SDB->BitTestCases[i].Emitted) {
1171      // Set the current basic block to the mbb we wish to insert the code into
1172      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1173      FuncInfo->InsertPt = FuncInfo->MBB->end();
1174      // Emit the code
1175      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1176      CurDAG->setRoot(SDB->getRoot());
1177      SDB->clear();
1178      CodeGenAndEmitDAG();
1179    }
1180
1181    uint32_t UnhandledWeight = 0;
1182    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1183      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1184
1185    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1186      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1187      // Set the current basic block to the mbb we wish to insert the code into
1188      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1189      FuncInfo->InsertPt = FuncInfo->MBB->end();
1190      // Emit the code
1191      if (j+1 != ej)
1192        SDB->visitBitTestCase(SDB->BitTestCases[i],
1193                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1194                              UnhandledWeight,
1195                              SDB->BitTestCases[i].Reg,
1196                              SDB->BitTestCases[i].Cases[j],
1197                              FuncInfo->MBB);
1198      else
1199        SDB->visitBitTestCase(SDB->BitTestCases[i],
1200                              SDB->BitTestCases[i].Default,
1201                              UnhandledWeight,
1202                              SDB->BitTestCases[i].Reg,
1203                              SDB->BitTestCases[i].Cases[j],
1204                              FuncInfo->MBB);
1205
1206
1207      CurDAG->setRoot(SDB->getRoot());
1208      SDB->clear();
1209      CodeGenAndEmitDAG();
1210    }
1211
1212    // Update PHI Nodes
1213    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1214         pi != pe; ++pi) {
1215      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1216      MachineBasicBlock *PHIBB = PHI->getParent();
1217      assert(PHI->isPHI() &&
1218             "This is not a machine PHI node that we are updating!");
1219      // This is "default" BB. We have two jumps to it. From "header" BB and
1220      // from last "case" BB.
1221      if (PHIBB == SDB->BitTestCases[i].Default)
1222        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1223           .addMBB(SDB->BitTestCases[i].Parent)
1224           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1225           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1226      // One of "cases" BB.
1227      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1228           j != ej; ++j) {
1229        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1230        if (cBB->isSuccessor(PHIBB))
1231          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1232      }
1233    }
1234  }
1235  SDB->BitTestCases.clear();
1236
1237  // If the JumpTable record is filled in, then we need to emit a jump table.
1238  // Updating the PHI nodes is tricky in this case, since we need to determine
1239  // whether the PHI is a successor of the range check MBB or the jump table MBB
1240  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1241    // Lower header first, if it wasn't already lowered
1242    if (!SDB->JTCases[i].first.Emitted) {
1243      // Set the current basic block to the mbb we wish to insert the code into
1244      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1245      FuncInfo->InsertPt = FuncInfo->MBB->end();
1246      // Emit the code
1247      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1248                                FuncInfo->MBB);
1249      CurDAG->setRoot(SDB->getRoot());
1250      SDB->clear();
1251      CodeGenAndEmitDAG();
1252    }
1253
1254    // Set the current basic block to the mbb we wish to insert the code into
1255    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1256    FuncInfo->InsertPt = FuncInfo->MBB->end();
1257    // Emit the code
1258    SDB->visitJumpTable(SDB->JTCases[i].second);
1259    CurDAG->setRoot(SDB->getRoot());
1260    SDB->clear();
1261    CodeGenAndEmitDAG();
1262
1263    // Update PHI Nodes
1264    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1265         pi != pe; ++pi) {
1266      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1267      MachineBasicBlock *PHIBB = PHI->getParent();
1268      assert(PHI->isPHI() &&
1269             "This is not a machine PHI node that we are updating!");
1270      // "default" BB. We can go there only from header BB.
1271      if (PHIBB == SDB->JTCases[i].second.Default)
1272        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1273           .addMBB(SDB->JTCases[i].first.HeaderBB);
1274      // JT BB. Just iterate over successors here
1275      if (FuncInfo->MBB->isSuccessor(PHIBB))
1276        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1277    }
1278  }
1279  SDB->JTCases.clear();
1280
1281  // If the switch block involved a branch to one of the actual successors, we
1282  // need to update PHI nodes in that block.
1283  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1284    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1285    assert(PHI->isPHI() &&
1286           "This is not a machine PHI node that we are updating!");
1287    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1288      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1289  }
1290
1291  // If we generated any switch lowering information, build and codegen any
1292  // additional DAGs necessary.
1293  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1294    // Set the current basic block to the mbb we wish to insert the code into
1295    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1296    FuncInfo->InsertPt = FuncInfo->MBB->end();
1297
1298    // Determine the unique successors.
1299    SmallVector<MachineBasicBlock *, 2> Succs;
1300    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1301    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1302      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1303
1304    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1305    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1306    CurDAG->setRoot(SDB->getRoot());
1307    SDB->clear();
1308    CodeGenAndEmitDAG();
1309
1310    // Remember the last block, now that any splitting is done, for use in
1311    // populating PHI nodes in successors.
1312    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1313
1314    // Handle any PHI nodes in successors of this chunk, as if we were coming
1315    // from the original BB before switch expansion.  Note that PHI nodes can
1316    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1317    // handle them the right number of times.
1318    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1319      FuncInfo->MBB = Succs[i];
1320      FuncInfo->InsertPt = FuncInfo->MBB->end();
1321      // FuncInfo->MBB may have been removed from the CFG if a branch was
1322      // constant folded.
1323      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1324        for (MachineBasicBlock::iterator
1325             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1326             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1327          MachineInstrBuilder PHI(*MF, MBBI);
1328          // This value for this PHI node is recorded in PHINodesToUpdate.
1329          for (unsigned pn = 0; ; ++pn) {
1330            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1331                   "Didn't find PHI entry!");
1332            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1333              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1334              break;
1335            }
1336          }
1337        }
1338      }
1339    }
1340  }
1341  SDB->SwitchCases.clear();
1342}
1343
1344
1345/// Create the scheduler. If a specific scheduler was specified
1346/// via the SchedulerRegistry, use it, otherwise select the
1347/// one preferred by the target.
1348///
1349ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1350  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1351
1352  if (!Ctor) {
1353    Ctor = ISHeuristic;
1354    RegisterScheduler::setDefault(Ctor);
1355  }
1356
1357  return Ctor(this, OptLevel);
1358}
1359
1360//===----------------------------------------------------------------------===//
1361// Helper functions used by the generated instruction selector.
1362//===----------------------------------------------------------------------===//
1363// Calls to these methods are generated by tblgen.
1364
1365/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1366/// the dag combiner simplified the 255, we still want to match.  RHS is the
1367/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1368/// specified in the .td file (e.g. 255).
1369bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1370                                    int64_t DesiredMaskS) const {
1371  const APInt &ActualMask = RHS->getAPIntValue();
1372  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1373
1374  // If the actual mask exactly matches, success!
1375  if (ActualMask == DesiredMask)
1376    return true;
1377
1378  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1379  if (ActualMask.intersects(~DesiredMask))
1380    return false;
1381
1382  // Otherwise, the DAG Combiner may have proven that the value coming in is
1383  // either already zero or is not demanded.  Check for known zero input bits.
1384  APInt NeededMask = DesiredMask & ~ActualMask;
1385  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1386    return true;
1387
1388  // TODO: check to see if missing bits are just not demanded.
1389
1390  // Otherwise, this pattern doesn't match.
1391  return false;
1392}
1393
1394/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1395/// the dag combiner simplified the 255, we still want to match.  RHS is the
1396/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1397/// specified in the .td file (e.g. 255).
1398bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1399                                   int64_t DesiredMaskS) const {
1400  const APInt &ActualMask = RHS->getAPIntValue();
1401  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1402
1403  // If the actual mask exactly matches, success!
1404  if (ActualMask == DesiredMask)
1405    return true;
1406
1407  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1408  if (ActualMask.intersects(~DesiredMask))
1409    return false;
1410
1411  // Otherwise, the DAG Combiner may have proven that the value coming in is
1412  // either already zero or is not demanded.  Check for known zero input bits.
1413  APInt NeededMask = DesiredMask & ~ActualMask;
1414
1415  APInt KnownZero, KnownOne;
1416  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1417
1418  // If all the missing bits in the or are already known to be set, match!
1419  if ((NeededMask & KnownOne) == NeededMask)
1420    return true;
1421
1422  // TODO: check to see if missing bits are just not demanded.
1423
1424  // Otherwise, this pattern doesn't match.
1425  return false;
1426}
1427
1428
1429/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1430/// by tblgen.  Others should not call it.
1431void SelectionDAGISel::
1432SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1433  std::vector<SDValue> InOps;
1434  std::swap(InOps, Ops);
1435
1436  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1437  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1438  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1439  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1440
1441  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1442  if (InOps[e-1].getValueType() == MVT::Glue)
1443    --e;  // Don't process a glue operand if it is here.
1444
1445  while (i != e) {
1446    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1447    if (!InlineAsm::isMemKind(Flags)) {
1448      // Just skip over this operand, copying the operands verbatim.
1449      Ops.insert(Ops.end(), InOps.begin()+i,
1450                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1451      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1452    } else {
1453      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1454             "Memory operand with multiple values?");
1455      // Otherwise, this is a memory operand.  Ask the target to select it.
1456      std::vector<SDValue> SelOps;
1457      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1458        report_fatal_error("Could not match memory address.  Inline asm"
1459                           " failure!");
1460
1461      // Add this to the output node.
1462      unsigned NewFlags =
1463        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1464      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1465      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1466      i += 2;
1467    }
1468  }
1469
1470  // Add the glue input back if present.
1471  if (e != InOps.size())
1472    Ops.push_back(InOps.back());
1473}
1474
1475/// findGlueUse - Return use of MVT::Glue value produced by the specified
1476/// SDNode.
1477///
1478static SDNode *findGlueUse(SDNode *N) {
1479  unsigned FlagResNo = N->getNumValues()-1;
1480  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1481    SDUse &Use = I.getUse();
1482    if (Use.getResNo() == FlagResNo)
1483      return Use.getUser();
1484  }
1485  return NULL;
1486}
1487
1488/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1489/// This function recursively traverses up the operand chain, ignoring
1490/// certain nodes.
1491static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1492                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1493                          bool IgnoreChains) {
1494  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1495  // greater than all of its (recursive) operands.  If we scan to a point where
1496  // 'use' is smaller than the node we're scanning for, then we know we will
1497  // never find it.
1498  //
1499  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1500  // happen because we scan down to newly selected nodes in the case of glue
1501  // uses.
1502  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1503    return false;
1504
1505  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1506  // won't fail if we scan it again.
1507  if (!Visited.insert(Use))
1508    return false;
1509
1510  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1511    // Ignore chain uses, they are validated by HandleMergeInputChains.
1512    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1513      continue;
1514
1515    SDNode *N = Use->getOperand(i).getNode();
1516    if (N == Def) {
1517      if (Use == ImmedUse || Use == Root)
1518        continue;  // We are not looking for immediate use.
1519      assert(N != Root);
1520      return true;
1521    }
1522
1523    // Traverse up the operand chain.
1524    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1525      return true;
1526  }
1527  return false;
1528}
1529
1530/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1531/// operand node N of U during instruction selection that starts at Root.
1532bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1533                                          SDNode *Root) const {
1534  if (OptLevel == CodeGenOpt::None) return false;
1535  return N.hasOneUse();
1536}
1537
1538/// IsLegalToFold - Returns true if the specific operand node N of
1539/// U can be folded during instruction selection that starts at Root.
1540bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1541                                     CodeGenOpt::Level OptLevel,
1542                                     bool IgnoreChains) {
1543  if (OptLevel == CodeGenOpt::None) return false;
1544
1545  // If Root use can somehow reach N through a path that that doesn't contain
1546  // U then folding N would create a cycle. e.g. In the following
1547  // diagram, Root can reach N through X. If N is folded into into Root, then
1548  // X is both a predecessor and a successor of U.
1549  //
1550  //          [N*]           //
1551  //         ^   ^           //
1552  //        /     \          //
1553  //      [U*]    [X]?       //
1554  //        ^     ^          //
1555  //         \   /           //
1556  //          \ /            //
1557  //         [Root*]         //
1558  //
1559  // * indicates nodes to be folded together.
1560  //
1561  // If Root produces glue, then it gets (even more) interesting. Since it
1562  // will be "glued" together with its glue use in the scheduler, we need to
1563  // check if it might reach N.
1564  //
1565  //          [N*]           //
1566  //         ^   ^           //
1567  //        /     \          //
1568  //      [U*]    [X]?       //
1569  //        ^       ^        //
1570  //         \       \       //
1571  //          \      |       //
1572  //         [Root*] |       //
1573  //          ^      |       //
1574  //          f      |       //
1575  //          |      /       //
1576  //         [Y]    /        //
1577  //           ^   /         //
1578  //           f  /          //
1579  //           | /           //
1580  //          [GU]           //
1581  //
1582  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1583  // (call it Fold), then X is a predecessor of GU and a successor of
1584  // Fold. But since Fold and GU are glued together, this will create
1585  // a cycle in the scheduling graph.
1586
1587  // If the node has glue, walk down the graph to the "lowest" node in the
1588  // glueged set.
1589  EVT VT = Root->getValueType(Root->getNumValues()-1);
1590  while (VT == MVT::Glue) {
1591    SDNode *GU = findGlueUse(Root);
1592    if (GU == NULL)
1593      break;
1594    Root = GU;
1595    VT = Root->getValueType(Root->getNumValues()-1);
1596
1597    // If our query node has a glue result with a use, we've walked up it.  If
1598    // the user (which has already been selected) has a chain or indirectly uses
1599    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1600    // this, we cannot ignore chains in this predicate.
1601    IgnoreChains = false;
1602  }
1603
1604
1605  SmallPtrSet<SDNode*, 16> Visited;
1606  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1607}
1608
1609SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1610  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1611  SelectInlineAsmMemoryOperands(Ops);
1612
1613  EVT VTs[] = { MVT::Other, MVT::Glue };
1614  SDValue New = CurDAG->getNode(ISD::INLINEASM, SDLoc(N),
1615                                VTs, &Ops[0], Ops.size());
1616  New->setNodeId(-1);
1617  return New.getNode();
1618}
1619
1620SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1621  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1622}
1623
1624/// GetVBR - decode a vbr encoding whose top bit is set.
1625LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1626GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1627  assert(Val >= 128 && "Not a VBR");
1628  Val &= 127;  // Remove first vbr bit.
1629
1630  unsigned Shift = 7;
1631  uint64_t NextBits;
1632  do {
1633    NextBits = MatcherTable[Idx++];
1634    Val |= (NextBits&127) << Shift;
1635    Shift += 7;
1636  } while (NextBits & 128);
1637
1638  return Val;
1639}
1640
1641
1642/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1643/// interior glue and chain results to use the new glue and chain results.
1644void SelectionDAGISel::
1645UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1646                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1647                    SDValue InputGlue,
1648                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1649                    bool isMorphNodeTo) {
1650  SmallVector<SDNode*, 4> NowDeadNodes;
1651
1652  // Now that all the normal results are replaced, we replace the chain and
1653  // glue results if present.
1654  if (!ChainNodesMatched.empty()) {
1655    assert(InputChain.getNode() != 0 &&
1656           "Matched input chains but didn't produce a chain");
1657    // Loop over all of the nodes we matched that produced a chain result.
1658    // Replace all the chain results with the final chain we ended up with.
1659    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1660      SDNode *ChainNode = ChainNodesMatched[i];
1661
1662      // If this node was already deleted, don't look at it.
1663      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1664        continue;
1665
1666      // Don't replace the results of the root node if we're doing a
1667      // MorphNodeTo.
1668      if (ChainNode == NodeToMatch && isMorphNodeTo)
1669        continue;
1670
1671      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1672      if (ChainVal.getValueType() == MVT::Glue)
1673        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1674      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1675      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1676
1677      // If the node became dead and we haven't already seen it, delete it.
1678      if (ChainNode->use_empty() &&
1679          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1680        NowDeadNodes.push_back(ChainNode);
1681    }
1682  }
1683
1684  // If the result produces glue, update any glue results in the matched
1685  // pattern with the glue result.
1686  if (InputGlue.getNode() != 0) {
1687    // Handle any interior nodes explicitly marked.
1688    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1689      SDNode *FRN = GlueResultNodesMatched[i];
1690
1691      // If this node was already deleted, don't look at it.
1692      if (FRN->getOpcode() == ISD::DELETED_NODE)
1693        continue;
1694
1695      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1696             "Doesn't have a glue result");
1697      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1698                                        InputGlue);
1699
1700      // If the node became dead and we haven't already seen it, delete it.
1701      if (FRN->use_empty() &&
1702          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1703        NowDeadNodes.push_back(FRN);
1704    }
1705  }
1706
1707  if (!NowDeadNodes.empty())
1708    CurDAG->RemoveDeadNodes(NowDeadNodes);
1709
1710  DEBUG(dbgs() << "ISEL: Match complete!\n");
1711}
1712
1713enum ChainResult {
1714  CR_Simple,
1715  CR_InducesCycle,
1716  CR_LeadsToInteriorNode
1717};
1718
1719/// WalkChainUsers - Walk down the users of the specified chained node that is
1720/// part of the pattern we're matching, looking at all of the users we find.
1721/// This determines whether something is an interior node, whether we have a
1722/// non-pattern node in between two pattern nodes (which prevent folding because
1723/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1724/// between pattern nodes (in which case the TF becomes part of the pattern).
1725///
1726/// The walk we do here is guaranteed to be small because we quickly get down to
1727/// already selected nodes "below" us.
1728static ChainResult
1729WalkChainUsers(const SDNode *ChainedNode,
1730               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1731               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1732  ChainResult Result = CR_Simple;
1733
1734  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1735         E = ChainedNode->use_end(); UI != E; ++UI) {
1736    // Make sure the use is of the chain, not some other value we produce.
1737    if (UI.getUse().getValueType() != MVT::Other) continue;
1738
1739    SDNode *User = *UI;
1740
1741    // If we see an already-selected machine node, then we've gone beyond the
1742    // pattern that we're selecting down into the already selected chunk of the
1743    // DAG.
1744    if (User->isMachineOpcode() ||
1745        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1746      continue;
1747
1748    unsigned UserOpcode = User->getOpcode();
1749    if (UserOpcode == ISD::CopyToReg ||
1750        UserOpcode == ISD::CopyFromReg ||
1751        UserOpcode == ISD::INLINEASM ||
1752        UserOpcode == ISD::EH_LABEL ||
1753        UserOpcode == ISD::LIFETIME_START ||
1754        UserOpcode == ISD::LIFETIME_END) {
1755      // If their node ID got reset to -1 then they've already been selected.
1756      // Treat them like a MachineOpcode.
1757      if (User->getNodeId() == -1)
1758        continue;
1759    }
1760
1761    // If we have a TokenFactor, we handle it specially.
1762    if (User->getOpcode() != ISD::TokenFactor) {
1763      // If the node isn't a token factor and isn't part of our pattern, then it
1764      // must be a random chained node in between two nodes we're selecting.
1765      // This happens when we have something like:
1766      //   x = load ptr
1767      //   call
1768      //   y = x+4
1769      //   store y -> ptr
1770      // Because we structurally match the load/store as a read/modify/write,
1771      // but the call is chained between them.  We cannot fold in this case
1772      // because it would induce a cycle in the graph.
1773      if (!std::count(ChainedNodesInPattern.begin(),
1774                      ChainedNodesInPattern.end(), User))
1775        return CR_InducesCycle;
1776
1777      // Otherwise we found a node that is part of our pattern.  For example in:
1778      //   x = load ptr
1779      //   y = x+4
1780      //   store y -> ptr
1781      // This would happen when we're scanning down from the load and see the
1782      // store as a user.  Record that there is a use of ChainedNode that is
1783      // part of the pattern and keep scanning uses.
1784      Result = CR_LeadsToInteriorNode;
1785      InteriorChainedNodes.push_back(User);
1786      continue;
1787    }
1788
1789    // If we found a TokenFactor, there are two cases to consider: first if the
1790    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1791    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1792    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1793    //     [Load chain]
1794    //         ^
1795    //         |
1796    //       [Load]
1797    //       ^    ^
1798    //       |    \                    DAG's like cheese
1799    //      /       \                       do you?
1800    //     /         |
1801    // [TokenFactor] [Op]
1802    //     ^          ^
1803    //     |          |
1804    //      \        /
1805    //       \      /
1806    //       [Store]
1807    //
1808    // In this case, the TokenFactor becomes part of our match and we rewrite it
1809    // as a new TokenFactor.
1810    //
1811    // To distinguish these two cases, do a recursive walk down the uses.
1812    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1813    case CR_Simple:
1814      // If the uses of the TokenFactor are just already-selected nodes, ignore
1815      // it, it is "below" our pattern.
1816      continue;
1817    case CR_InducesCycle:
1818      // If the uses of the TokenFactor lead to nodes that are not part of our
1819      // pattern that are not selected, folding would turn this into a cycle,
1820      // bail out now.
1821      return CR_InducesCycle;
1822    case CR_LeadsToInteriorNode:
1823      break;  // Otherwise, keep processing.
1824    }
1825
1826    // Okay, we know we're in the interesting interior case.  The TokenFactor
1827    // is now going to be considered part of the pattern so that we rewrite its
1828    // uses (it may have uses that are not part of the pattern) with the
1829    // ultimate chain result of the generated code.  We will also add its chain
1830    // inputs as inputs to the ultimate TokenFactor we create.
1831    Result = CR_LeadsToInteriorNode;
1832    ChainedNodesInPattern.push_back(User);
1833    InteriorChainedNodes.push_back(User);
1834    continue;
1835  }
1836
1837  return Result;
1838}
1839
1840/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1841/// operation for when the pattern matched at least one node with a chains.  The
1842/// input vector contains a list of all of the chained nodes that we match.  We
1843/// must determine if this is a valid thing to cover (i.e. matching it won't
1844/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1845/// be used as the input node chain for the generated nodes.
1846static SDValue
1847HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1848                       SelectionDAG *CurDAG) {
1849  // Walk all of the chained nodes we've matched, recursively scanning down the
1850  // users of the chain result. This adds any TokenFactor nodes that are caught
1851  // in between chained nodes to the chained and interior nodes list.
1852  SmallVector<SDNode*, 3> InteriorChainedNodes;
1853  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1854    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1855                       InteriorChainedNodes) == CR_InducesCycle)
1856      return SDValue(); // Would induce a cycle.
1857  }
1858
1859  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1860  // that we are interested in.  Form our input TokenFactor node.
1861  SmallVector<SDValue, 3> InputChains;
1862  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1863    // Add the input chain of this node to the InputChains list (which will be
1864    // the operands of the generated TokenFactor) if it's not an interior node.
1865    SDNode *N = ChainNodesMatched[i];
1866    if (N->getOpcode() != ISD::TokenFactor) {
1867      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1868        continue;
1869
1870      // Otherwise, add the input chain.
1871      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1872      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1873      InputChains.push_back(InChain);
1874      continue;
1875    }
1876
1877    // If we have a token factor, we want to add all inputs of the token factor
1878    // that are not part of the pattern we're matching.
1879    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1880      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1881                      N->getOperand(op).getNode()))
1882        InputChains.push_back(N->getOperand(op));
1883    }
1884  }
1885
1886  SDValue Res;
1887  if (InputChains.size() == 1)
1888    return InputChains[0];
1889  return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
1890                         MVT::Other, &InputChains[0], InputChains.size());
1891}
1892
1893/// MorphNode - Handle morphing a node in place for the selector.
1894SDNode *SelectionDAGISel::
1895MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1896          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1897  // It is possible we're using MorphNodeTo to replace a node with no
1898  // normal results with one that has a normal result (or we could be
1899  // adding a chain) and the input could have glue and chains as well.
1900  // In this case we need to shift the operands down.
1901  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1902  // than the old isel though.
1903  int OldGlueResultNo = -1, OldChainResultNo = -1;
1904
1905  unsigned NTMNumResults = Node->getNumValues();
1906  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1907    OldGlueResultNo = NTMNumResults-1;
1908    if (NTMNumResults != 1 &&
1909        Node->getValueType(NTMNumResults-2) == MVT::Other)
1910      OldChainResultNo = NTMNumResults-2;
1911  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1912    OldChainResultNo = NTMNumResults-1;
1913
1914  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1915  // that this deletes operands of the old node that become dead.
1916  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1917
1918  // MorphNodeTo can operate in two ways: if an existing node with the
1919  // specified operands exists, it can just return it.  Otherwise, it
1920  // updates the node in place to have the requested operands.
1921  if (Res == Node) {
1922    // If we updated the node in place, reset the node ID.  To the isel,
1923    // this should be just like a newly allocated machine node.
1924    Res->setNodeId(-1);
1925  }
1926
1927  unsigned ResNumResults = Res->getNumValues();
1928  // Move the glue if needed.
1929  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1930      (unsigned)OldGlueResultNo != ResNumResults-1)
1931    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1932                                      SDValue(Res, ResNumResults-1));
1933
1934  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1935    --ResNumResults;
1936
1937  // Move the chain reference if needed.
1938  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1939      (unsigned)OldChainResultNo != ResNumResults-1)
1940    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1941                                      SDValue(Res, ResNumResults-1));
1942
1943  // Otherwise, no replacement happened because the node already exists. Replace
1944  // Uses of the old node with the new one.
1945  if (Res != Node)
1946    CurDAG->ReplaceAllUsesWith(Node, Res);
1947
1948  return Res;
1949}
1950
1951/// CheckSame - Implements OP_CheckSame.
1952LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1953CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1954          SDValue N,
1955          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1956  // Accept if it is exactly the same as a previously recorded node.
1957  unsigned RecNo = MatcherTable[MatcherIndex++];
1958  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1959  return N == RecordedNodes[RecNo].first;
1960}
1961
1962/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1963LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1964CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1965                      const SelectionDAGISel &SDISel) {
1966  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1967}
1968
1969/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1970LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1971CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1972                   const SelectionDAGISel &SDISel, SDNode *N) {
1973  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1974}
1975
1976LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1977CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1978            SDNode *N) {
1979  uint16_t Opc = MatcherTable[MatcherIndex++];
1980  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1981  return N->getOpcode() == Opc;
1982}
1983
1984LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1985CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1986          SDValue N, const TargetLowering *TLI) {
1987  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1988  if (N.getValueType() == VT) return true;
1989
1990  // Handle the case when VT is iPTR.
1991  return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy();
1992}
1993
1994LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1995CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1996               SDValue N, const TargetLowering *TLI,
1997               unsigned ChildNo) {
1998  if (ChildNo >= N.getNumOperands())
1999    return false;  // Match fails if out of range child #.
2000  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2001}
2002
2003LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2004CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2005              SDValue N) {
2006  return cast<CondCodeSDNode>(N)->get() ==
2007      (ISD::CondCode)MatcherTable[MatcherIndex++];
2008}
2009
2010LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2011CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2012               SDValue N, const TargetLowering *TLI) {
2013  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2014  if (cast<VTSDNode>(N)->getVT() == VT)
2015    return true;
2016
2017  // Handle the case when VT is iPTR.
2018  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy();
2019}
2020
2021LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2022CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2023             SDValue N) {
2024  int64_t Val = MatcherTable[MatcherIndex++];
2025  if (Val & 128)
2026    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2027
2028  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2029  return C != 0 && C->getSExtValue() == Val;
2030}
2031
2032LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2033CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2034            SDValue N, const SelectionDAGISel &SDISel) {
2035  int64_t Val = MatcherTable[MatcherIndex++];
2036  if (Val & 128)
2037    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2038
2039  if (N->getOpcode() != ISD::AND) return false;
2040
2041  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2042  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2043}
2044
2045LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2046CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2047           SDValue N, const SelectionDAGISel &SDISel) {
2048  int64_t Val = MatcherTable[MatcherIndex++];
2049  if (Val & 128)
2050    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2051
2052  if (N->getOpcode() != ISD::OR) return false;
2053
2054  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2055  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2056}
2057
2058/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2059/// scope, evaluate the current node.  If the current predicate is known to
2060/// fail, set Result=true and return anything.  If the current predicate is
2061/// known to pass, set Result=false and return the MatcherIndex to continue
2062/// with.  If the current predicate is unknown, set Result=false and return the
2063/// MatcherIndex to continue with.
2064static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2065                                       unsigned Index, SDValue N,
2066                                       bool &Result,
2067                                       const SelectionDAGISel &SDISel,
2068                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2069  switch (Table[Index++]) {
2070  default:
2071    Result = false;
2072    return Index-1;  // Could not evaluate this predicate.
2073  case SelectionDAGISel::OPC_CheckSame:
2074    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2075    return Index;
2076  case SelectionDAGISel::OPC_CheckPatternPredicate:
2077    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2078    return Index;
2079  case SelectionDAGISel::OPC_CheckPredicate:
2080    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2081    return Index;
2082  case SelectionDAGISel::OPC_CheckOpcode:
2083    Result = !::CheckOpcode(Table, Index, N.getNode());
2084    return Index;
2085  case SelectionDAGISel::OPC_CheckType:
2086    Result = !::CheckType(Table, Index, N, SDISel.getTargetLowering());
2087    return Index;
2088  case SelectionDAGISel::OPC_CheckChild0Type:
2089  case SelectionDAGISel::OPC_CheckChild1Type:
2090  case SelectionDAGISel::OPC_CheckChild2Type:
2091  case SelectionDAGISel::OPC_CheckChild3Type:
2092  case SelectionDAGISel::OPC_CheckChild4Type:
2093  case SelectionDAGISel::OPC_CheckChild5Type:
2094  case SelectionDAGISel::OPC_CheckChild6Type:
2095  case SelectionDAGISel::OPC_CheckChild7Type:
2096    Result = !::CheckChildType(Table, Index, N, SDISel.getTargetLowering(),
2097                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2098    return Index;
2099  case SelectionDAGISel::OPC_CheckCondCode:
2100    Result = !::CheckCondCode(Table, Index, N);
2101    return Index;
2102  case SelectionDAGISel::OPC_CheckValueType:
2103    Result = !::CheckValueType(Table, Index, N, SDISel.getTargetLowering());
2104    return Index;
2105  case SelectionDAGISel::OPC_CheckInteger:
2106    Result = !::CheckInteger(Table, Index, N);
2107    return Index;
2108  case SelectionDAGISel::OPC_CheckAndImm:
2109    Result = !::CheckAndImm(Table, Index, N, SDISel);
2110    return Index;
2111  case SelectionDAGISel::OPC_CheckOrImm:
2112    Result = !::CheckOrImm(Table, Index, N, SDISel);
2113    return Index;
2114  }
2115}
2116
2117namespace {
2118
2119struct MatchScope {
2120  /// FailIndex - If this match fails, this is the index to continue with.
2121  unsigned FailIndex;
2122
2123  /// NodeStack - The node stack when the scope was formed.
2124  SmallVector<SDValue, 4> NodeStack;
2125
2126  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2127  unsigned NumRecordedNodes;
2128
2129  /// NumMatchedMemRefs - The number of matched memref entries.
2130  unsigned NumMatchedMemRefs;
2131
2132  /// InputChain/InputGlue - The current chain/glue
2133  SDValue InputChain, InputGlue;
2134
2135  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2136  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2137};
2138
2139}
2140
2141SDNode *SelectionDAGISel::
2142SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2143                 unsigned TableSize) {
2144  // FIXME: Should these even be selected?  Handle these cases in the caller?
2145  switch (NodeToMatch->getOpcode()) {
2146  default:
2147    break;
2148  case ISD::EntryToken:       // These nodes remain the same.
2149  case ISD::BasicBlock:
2150  case ISD::Register:
2151  case ISD::RegisterMask:
2152  //case ISD::VALUETYPE:
2153  //case ISD::CONDCODE:
2154  case ISD::HANDLENODE:
2155  case ISD::MDNODE_SDNODE:
2156  case ISD::TargetConstant:
2157  case ISD::TargetConstantFP:
2158  case ISD::TargetConstantPool:
2159  case ISD::TargetFrameIndex:
2160  case ISD::TargetExternalSymbol:
2161  case ISD::TargetBlockAddress:
2162  case ISD::TargetJumpTable:
2163  case ISD::TargetGlobalTLSAddress:
2164  case ISD::TargetGlobalAddress:
2165  case ISD::TokenFactor:
2166  case ISD::CopyFromReg:
2167  case ISD::CopyToReg:
2168  case ISD::EH_LABEL:
2169  case ISD::LIFETIME_START:
2170  case ISD::LIFETIME_END:
2171    NodeToMatch->setNodeId(-1); // Mark selected.
2172    return 0;
2173  case ISD::AssertSext:
2174  case ISD::AssertZext:
2175    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2176                                      NodeToMatch->getOperand(0));
2177    return 0;
2178  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2179  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2180  }
2181
2182  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2183
2184  // Set up the node stack with NodeToMatch as the only node on the stack.
2185  SmallVector<SDValue, 8> NodeStack;
2186  SDValue N = SDValue(NodeToMatch, 0);
2187  NodeStack.push_back(N);
2188
2189  // MatchScopes - Scopes used when matching, if a match failure happens, this
2190  // indicates where to continue checking.
2191  SmallVector<MatchScope, 8> MatchScopes;
2192
2193  // RecordedNodes - This is the set of nodes that have been recorded by the
2194  // state machine.  The second value is the parent of the node, or null if the
2195  // root is recorded.
2196  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2197
2198  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2199  // pattern.
2200  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2201
2202  // These are the current input chain and glue for use when generating nodes.
2203  // Various Emit operations change these.  For example, emitting a copytoreg
2204  // uses and updates these.
2205  SDValue InputChain, InputGlue;
2206
2207  // ChainNodesMatched - If a pattern matches nodes that have input/output
2208  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2209  // which ones they are.  The result is captured into this list so that we can
2210  // update the chain results when the pattern is complete.
2211  SmallVector<SDNode*, 3> ChainNodesMatched;
2212  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2213
2214  DEBUG(dbgs() << "ISEL: Starting pattern match on root node: ";
2215        NodeToMatch->dump(CurDAG);
2216        dbgs() << '\n');
2217
2218  // Determine where to start the interpreter.  Normally we start at opcode #0,
2219  // but if the state machine starts with an OPC_SwitchOpcode, then we
2220  // accelerate the first lookup (which is guaranteed to be hot) with the
2221  // OpcodeOffset table.
2222  unsigned MatcherIndex = 0;
2223
2224  if (!OpcodeOffset.empty()) {
2225    // Already computed the OpcodeOffset table, just index into it.
2226    if (N.getOpcode() < OpcodeOffset.size())
2227      MatcherIndex = OpcodeOffset[N.getOpcode()];
2228    DEBUG(dbgs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2229
2230  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2231    // Otherwise, the table isn't computed, but the state machine does start
2232    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2233    // is the first time we're selecting an instruction.
2234    unsigned Idx = 1;
2235    while (1) {
2236      // Get the size of this case.
2237      unsigned CaseSize = MatcherTable[Idx++];
2238      if (CaseSize & 128)
2239        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2240      if (CaseSize == 0) break;
2241
2242      // Get the opcode, add the index to the table.
2243      uint16_t Opc = MatcherTable[Idx++];
2244      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2245      if (Opc >= OpcodeOffset.size())
2246        OpcodeOffset.resize((Opc+1)*2);
2247      OpcodeOffset[Opc] = Idx;
2248      Idx += CaseSize;
2249    }
2250
2251    // Okay, do the lookup for the first opcode.
2252    if (N.getOpcode() < OpcodeOffset.size())
2253      MatcherIndex = OpcodeOffset[N.getOpcode()];
2254  }
2255
2256  while (1) {
2257    assert(MatcherIndex < TableSize && "Invalid index");
2258#ifndef NDEBUG
2259    unsigned CurrentOpcodeIndex = MatcherIndex;
2260#endif
2261    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2262    switch (Opcode) {
2263    case OPC_Scope: {
2264      // Okay, the semantics of this operation are that we should push a scope
2265      // then evaluate the first child.  However, pushing a scope only to have
2266      // the first check fail (which then pops it) is inefficient.  If we can
2267      // determine immediately that the first check (or first several) will
2268      // immediately fail, don't even bother pushing a scope for them.
2269      unsigned FailIndex;
2270
2271      while (1) {
2272        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2273        if (NumToSkip & 128)
2274          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2275        // Found the end of the scope with no match.
2276        if (NumToSkip == 0) {
2277          FailIndex = 0;
2278          break;
2279        }
2280
2281        FailIndex = MatcherIndex+NumToSkip;
2282
2283        unsigned MatcherIndexOfPredicate = MatcherIndex;
2284        (void)MatcherIndexOfPredicate; // silence warning.
2285
2286        // If we can't evaluate this predicate without pushing a scope (e.g. if
2287        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2288        // push the scope and evaluate the full predicate chain.
2289        bool Result;
2290        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2291                                              Result, *this, RecordedNodes);
2292        if (!Result)
2293          break;
2294
2295        DEBUG(dbgs() << "  Skipped scope entry (due to false predicate) at "
2296                     << "index " << MatcherIndexOfPredicate
2297                     << ", continuing at " << FailIndex << "\n");
2298        ++NumDAGIselRetries;
2299
2300        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2301        // move to the next case.
2302        MatcherIndex = FailIndex;
2303      }
2304
2305      // If the whole scope failed to match, bail.
2306      if (FailIndex == 0) break;
2307
2308      // Push a MatchScope which indicates where to go if the first child fails
2309      // to match.
2310      MatchScope NewEntry;
2311      NewEntry.FailIndex = FailIndex;
2312      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2313      NewEntry.NumRecordedNodes = RecordedNodes.size();
2314      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2315      NewEntry.InputChain = InputChain;
2316      NewEntry.InputGlue = InputGlue;
2317      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2318      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2319      MatchScopes.push_back(NewEntry);
2320      continue;
2321    }
2322    case OPC_RecordNode: {
2323      // Remember this node, it may end up being an operand in the pattern.
2324      SDNode *Parent = 0;
2325      if (NodeStack.size() > 1)
2326        Parent = NodeStack[NodeStack.size()-2].getNode();
2327      RecordedNodes.push_back(std::make_pair(N, Parent));
2328      continue;
2329    }
2330
2331    case OPC_RecordChild0: case OPC_RecordChild1:
2332    case OPC_RecordChild2: case OPC_RecordChild3:
2333    case OPC_RecordChild4: case OPC_RecordChild5:
2334    case OPC_RecordChild6: case OPC_RecordChild7: {
2335      unsigned ChildNo = Opcode-OPC_RecordChild0;
2336      if (ChildNo >= N.getNumOperands())
2337        break;  // Match fails if out of range child #.
2338
2339      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2340                                             N.getNode()));
2341      continue;
2342    }
2343    case OPC_RecordMemRef:
2344      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2345      continue;
2346
2347    case OPC_CaptureGlueInput:
2348      // If the current node has an input glue, capture it in InputGlue.
2349      if (N->getNumOperands() != 0 &&
2350          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2351        InputGlue = N->getOperand(N->getNumOperands()-1);
2352      continue;
2353
2354    case OPC_MoveChild: {
2355      unsigned ChildNo = MatcherTable[MatcherIndex++];
2356      if (ChildNo >= N.getNumOperands())
2357        break;  // Match fails if out of range child #.
2358      N = N.getOperand(ChildNo);
2359      NodeStack.push_back(N);
2360      continue;
2361    }
2362
2363    case OPC_MoveParent:
2364      // Pop the current node off the NodeStack.
2365      NodeStack.pop_back();
2366      assert(!NodeStack.empty() && "Node stack imbalance!");
2367      N = NodeStack.back();
2368      continue;
2369
2370    case OPC_CheckSame:
2371      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2372      continue;
2373    case OPC_CheckPatternPredicate:
2374      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2375      continue;
2376    case OPC_CheckPredicate:
2377      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2378                                N.getNode()))
2379        break;
2380      continue;
2381    case OPC_CheckComplexPat: {
2382      unsigned CPNum = MatcherTable[MatcherIndex++];
2383      unsigned RecNo = MatcherTable[MatcherIndex++];
2384      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2385      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2386                               RecordedNodes[RecNo].first, CPNum,
2387                               RecordedNodes))
2388        break;
2389      continue;
2390    }
2391    case OPC_CheckOpcode:
2392      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2393      continue;
2394
2395    case OPC_CheckType:
2396      if (!::CheckType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2397        break;
2398      continue;
2399
2400    case OPC_SwitchOpcode: {
2401      unsigned CurNodeOpcode = N.getOpcode();
2402      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2403      unsigned CaseSize;
2404      while (1) {
2405        // Get the size of this case.
2406        CaseSize = MatcherTable[MatcherIndex++];
2407        if (CaseSize & 128)
2408          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2409        if (CaseSize == 0) break;
2410
2411        uint16_t Opc = MatcherTable[MatcherIndex++];
2412        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2413
2414        // If the opcode matches, then we will execute this case.
2415        if (CurNodeOpcode == Opc)
2416          break;
2417
2418        // Otherwise, skip over this case.
2419        MatcherIndex += CaseSize;
2420      }
2421
2422      // If no cases matched, bail out.
2423      if (CaseSize == 0) break;
2424
2425      // Otherwise, execute the case we found.
2426      DEBUG(dbgs() << "  OpcodeSwitch from " << SwitchStart
2427                   << " to " << MatcherIndex << "\n");
2428      continue;
2429    }
2430
2431    case OPC_SwitchType: {
2432      MVT CurNodeVT = N.getValueType().getSimpleVT();
2433      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2434      unsigned CaseSize;
2435      while (1) {
2436        // Get the size of this case.
2437        CaseSize = MatcherTable[MatcherIndex++];
2438        if (CaseSize & 128)
2439          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2440        if (CaseSize == 0) break;
2441
2442        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2443        if (CaseVT == MVT::iPTR)
2444          CaseVT = getTargetLowering()->getPointerTy();
2445
2446        // If the VT matches, then we will execute this case.
2447        if (CurNodeVT == CaseVT)
2448          break;
2449
2450        // Otherwise, skip over this case.
2451        MatcherIndex += CaseSize;
2452      }
2453
2454      // If no cases matched, bail out.
2455      if (CaseSize == 0) break;
2456
2457      // Otherwise, execute the case we found.
2458      DEBUG(dbgs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2459                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2460      continue;
2461    }
2462    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2463    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2464    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2465    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2466      if (!::CheckChildType(MatcherTable, MatcherIndex, N, getTargetLowering(),
2467                            Opcode-OPC_CheckChild0Type))
2468        break;
2469      continue;
2470    case OPC_CheckCondCode:
2471      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2472      continue;
2473    case OPC_CheckValueType:
2474      if (!::CheckValueType(MatcherTable, MatcherIndex, N, getTargetLowering()))
2475        break;
2476      continue;
2477    case OPC_CheckInteger:
2478      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2479      continue;
2480    case OPC_CheckAndImm:
2481      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2482      continue;
2483    case OPC_CheckOrImm:
2484      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2485      continue;
2486
2487    case OPC_CheckFoldableChainNode: {
2488      assert(NodeStack.size() != 1 && "No parent node");
2489      // Verify that all intermediate nodes between the root and this one have
2490      // a single use.
2491      bool HasMultipleUses = false;
2492      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2493        if (!NodeStack[i].hasOneUse()) {
2494          HasMultipleUses = true;
2495          break;
2496        }
2497      if (HasMultipleUses) break;
2498
2499      // Check to see that the target thinks this is profitable to fold and that
2500      // we can fold it without inducing cycles in the graph.
2501      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2502                              NodeToMatch) ||
2503          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2504                         NodeToMatch, OptLevel,
2505                         true/*We validate our own chains*/))
2506        break;
2507
2508      continue;
2509    }
2510    case OPC_EmitInteger: {
2511      MVT::SimpleValueType VT =
2512        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2513      int64_t Val = MatcherTable[MatcherIndex++];
2514      if (Val & 128)
2515        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2516      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2517                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2518      continue;
2519    }
2520    case OPC_EmitRegister: {
2521      MVT::SimpleValueType VT =
2522        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2523      unsigned RegNo = MatcherTable[MatcherIndex++];
2524      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2525                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2526      continue;
2527    }
2528    case OPC_EmitRegister2: {
2529      // For targets w/ more than 256 register names, the register enum
2530      // values are stored in two bytes in the matcher table (just like
2531      // opcodes).
2532      MVT::SimpleValueType VT =
2533        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2534      unsigned RegNo = MatcherTable[MatcherIndex++];
2535      RegNo |= MatcherTable[MatcherIndex++] << 8;
2536      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2537                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2538      continue;
2539    }
2540
2541    case OPC_EmitConvertToTarget:  {
2542      // Convert from IMM/FPIMM to target version.
2543      unsigned RecNo = MatcherTable[MatcherIndex++];
2544      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2545      SDValue Imm = RecordedNodes[RecNo].first;
2546
2547      if (Imm->getOpcode() == ISD::Constant) {
2548        const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
2549        Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
2550      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2551        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2552        Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
2553      }
2554
2555      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2556      continue;
2557    }
2558
2559    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2560    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2561      // These are space-optimized forms of OPC_EmitMergeInputChains.
2562      assert(InputChain.getNode() == 0 &&
2563             "EmitMergeInputChains should be the first chain producing node");
2564      assert(ChainNodesMatched.empty() &&
2565             "Should only have one EmitMergeInputChains per match");
2566
2567      // Read all of the chained nodes.
2568      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2569      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2570      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2571
2572      // FIXME: What if other value results of the node have uses not matched
2573      // by this pattern?
2574      if (ChainNodesMatched.back() != NodeToMatch &&
2575          !RecordedNodes[RecNo].first.hasOneUse()) {
2576        ChainNodesMatched.clear();
2577        break;
2578      }
2579
2580      // Merge the input chains if they are not intra-pattern references.
2581      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2582
2583      if (InputChain.getNode() == 0)
2584        break;  // Failed to merge.
2585      continue;
2586    }
2587
2588    case OPC_EmitMergeInputChains: {
2589      assert(InputChain.getNode() == 0 &&
2590             "EmitMergeInputChains should be the first chain producing node");
2591      // This node gets a list of nodes we matched in the input that have
2592      // chains.  We want to token factor all of the input chains to these nodes
2593      // together.  However, if any of the input chains is actually one of the
2594      // nodes matched in this pattern, then we have an intra-match reference.
2595      // Ignore these because the newly token factored chain should not refer to
2596      // the old nodes.
2597      unsigned NumChains = MatcherTable[MatcherIndex++];
2598      assert(NumChains != 0 && "Can't TF zero chains");
2599
2600      assert(ChainNodesMatched.empty() &&
2601             "Should only have one EmitMergeInputChains per match");
2602
2603      // Read all of the chained nodes.
2604      for (unsigned i = 0; i != NumChains; ++i) {
2605        unsigned RecNo = MatcherTable[MatcherIndex++];
2606        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2607        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2608
2609        // FIXME: What if other value results of the node have uses not matched
2610        // by this pattern?
2611        if (ChainNodesMatched.back() != NodeToMatch &&
2612            !RecordedNodes[RecNo].first.hasOneUse()) {
2613          ChainNodesMatched.clear();
2614          break;
2615        }
2616      }
2617
2618      // If the inner loop broke out, the match fails.
2619      if (ChainNodesMatched.empty())
2620        break;
2621
2622      // Merge the input chains if they are not intra-pattern references.
2623      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2624
2625      if (InputChain.getNode() == 0)
2626        break;  // Failed to merge.
2627
2628      continue;
2629    }
2630
2631    case OPC_EmitCopyToReg: {
2632      unsigned RecNo = MatcherTable[MatcherIndex++];
2633      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2634      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2635
2636      if (InputChain.getNode() == 0)
2637        InputChain = CurDAG->getEntryNode();
2638
2639      InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
2640                                        DestPhysReg, RecordedNodes[RecNo].first,
2641                                        InputGlue);
2642
2643      InputGlue = InputChain.getValue(1);
2644      continue;
2645    }
2646
2647    case OPC_EmitNodeXForm: {
2648      unsigned XFormNo = MatcherTable[MatcherIndex++];
2649      unsigned RecNo = MatcherTable[MatcherIndex++];
2650      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2651      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2652      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2653      continue;
2654    }
2655
2656    case OPC_EmitNode:
2657    case OPC_MorphNodeTo: {
2658      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2659      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2660      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2661      // Get the result VT list.
2662      unsigned NumVTs = MatcherTable[MatcherIndex++];
2663      SmallVector<EVT, 4> VTs;
2664      for (unsigned i = 0; i != NumVTs; ++i) {
2665        MVT::SimpleValueType VT =
2666          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2667        if (VT == MVT::iPTR) VT = getTargetLowering()->getPointerTy().SimpleTy;
2668        VTs.push_back(VT);
2669      }
2670
2671      if (EmitNodeInfo & OPFL_Chain)
2672        VTs.push_back(MVT::Other);
2673      if (EmitNodeInfo & OPFL_GlueOutput)
2674        VTs.push_back(MVT::Glue);
2675
2676      // This is hot code, so optimize the two most common cases of 1 and 2
2677      // results.
2678      SDVTList VTList;
2679      if (VTs.size() == 1)
2680        VTList = CurDAG->getVTList(VTs[0]);
2681      else if (VTs.size() == 2)
2682        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2683      else
2684        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2685
2686      // Get the operand list.
2687      unsigned NumOps = MatcherTable[MatcherIndex++];
2688      SmallVector<SDValue, 8> Ops;
2689      for (unsigned i = 0; i != NumOps; ++i) {
2690        unsigned RecNo = MatcherTable[MatcherIndex++];
2691        if (RecNo & 128)
2692          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2693
2694        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2695        Ops.push_back(RecordedNodes[RecNo].first);
2696      }
2697
2698      // If there are variadic operands to add, handle them now.
2699      if (EmitNodeInfo & OPFL_VariadicInfo) {
2700        // Determine the start index to copy from.
2701        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2702        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2703        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2704               "Invalid variadic node");
2705        // Copy all of the variadic operands, not including a potential glue
2706        // input.
2707        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2708             i != e; ++i) {
2709          SDValue V = NodeToMatch->getOperand(i);
2710          if (V.getValueType() == MVT::Glue) break;
2711          Ops.push_back(V);
2712        }
2713      }
2714
2715      // If this has chain/glue inputs, add them.
2716      if (EmitNodeInfo & OPFL_Chain)
2717        Ops.push_back(InputChain);
2718      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2719        Ops.push_back(InputGlue);
2720
2721      // Create the node.
2722      SDNode *Res = 0;
2723      if (Opcode != OPC_MorphNodeTo) {
2724        // If this is a normal EmitNode command, just create the new node and
2725        // add the results to the RecordedNodes list.
2726        Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
2727                                     VTList, Ops);
2728
2729        // Add all the non-glue/non-chain results to the RecordedNodes list.
2730        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2731          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2732          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2733                                                             (SDNode*) 0));
2734        }
2735
2736      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2737        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2738                        EmitNodeInfo);
2739      } else {
2740        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2741        // We will visit the equivalent node later.
2742        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2743        return 0;
2744      }
2745
2746      // If the node had chain/glue results, update our notion of the current
2747      // chain and glue.
2748      if (EmitNodeInfo & OPFL_GlueOutput) {
2749        InputGlue = SDValue(Res, VTs.size()-1);
2750        if (EmitNodeInfo & OPFL_Chain)
2751          InputChain = SDValue(Res, VTs.size()-2);
2752      } else if (EmitNodeInfo & OPFL_Chain)
2753        InputChain = SDValue(Res, VTs.size()-1);
2754
2755      // If the OPFL_MemRefs glue is set on this node, slap all of the
2756      // accumulated memrefs onto it.
2757      //
2758      // FIXME: This is vastly incorrect for patterns with multiple outputs
2759      // instructions that access memory and for ComplexPatterns that match
2760      // loads.
2761      if (EmitNodeInfo & OPFL_MemRefs) {
2762        // Only attach load or store memory operands if the generated
2763        // instruction may load or store.
2764        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2765        bool mayLoad = MCID.mayLoad();
2766        bool mayStore = MCID.mayStore();
2767
2768        unsigned NumMemRefs = 0;
2769        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
2770               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2771          if ((*I)->isLoad()) {
2772            if (mayLoad)
2773              ++NumMemRefs;
2774          } else if ((*I)->isStore()) {
2775            if (mayStore)
2776              ++NumMemRefs;
2777          } else {
2778            ++NumMemRefs;
2779          }
2780        }
2781
2782        MachineSDNode::mmo_iterator MemRefs =
2783          MF->allocateMemRefsArray(NumMemRefs);
2784
2785        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2786        for (SmallVectorImpl<MachineMemOperand *>::const_iterator I =
2787               MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2788          if ((*I)->isLoad()) {
2789            if (mayLoad)
2790              *MemRefsPos++ = *I;
2791          } else if ((*I)->isStore()) {
2792            if (mayStore)
2793              *MemRefsPos++ = *I;
2794          } else {
2795            *MemRefsPos++ = *I;
2796          }
2797        }
2798
2799        cast<MachineSDNode>(Res)
2800          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2801      }
2802
2803      DEBUG(dbgs() << "  "
2804                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2805                   << " node: "; Res->dump(CurDAG); dbgs() << "\n");
2806
2807      // If this was a MorphNodeTo then we're completely done!
2808      if (Opcode == OPC_MorphNodeTo) {
2809        // Update chain and glue uses.
2810        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2811                            InputGlue, GlueResultNodesMatched, true);
2812        return Res;
2813      }
2814
2815      continue;
2816    }
2817
2818    case OPC_MarkGlueResults: {
2819      unsigned NumNodes = MatcherTable[MatcherIndex++];
2820
2821      // Read and remember all the glue-result nodes.
2822      for (unsigned i = 0; i != NumNodes; ++i) {
2823        unsigned RecNo = MatcherTable[MatcherIndex++];
2824        if (RecNo & 128)
2825          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2826
2827        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2828        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2829      }
2830      continue;
2831    }
2832
2833    case OPC_CompleteMatch: {
2834      // The match has been completed, and any new nodes (if any) have been
2835      // created.  Patch up references to the matched dag to use the newly
2836      // created nodes.
2837      unsigned NumResults = MatcherTable[MatcherIndex++];
2838
2839      for (unsigned i = 0; i != NumResults; ++i) {
2840        unsigned ResSlot = MatcherTable[MatcherIndex++];
2841        if (ResSlot & 128)
2842          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2843
2844        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2845        SDValue Res = RecordedNodes[ResSlot].first;
2846
2847        assert(i < NodeToMatch->getNumValues() &&
2848               NodeToMatch->getValueType(i) != MVT::Other &&
2849               NodeToMatch->getValueType(i) != MVT::Glue &&
2850               "Invalid number of results to complete!");
2851        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2852                NodeToMatch->getValueType(i) == MVT::iPTR ||
2853                Res.getValueType() == MVT::iPTR ||
2854                NodeToMatch->getValueType(i).getSizeInBits() ==
2855                    Res.getValueType().getSizeInBits()) &&
2856               "invalid replacement");
2857        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2858      }
2859
2860      // If the root node defines glue, add it to the glue nodes to update list.
2861      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2862        GlueResultNodesMatched.push_back(NodeToMatch);
2863
2864      // Update chain and glue uses.
2865      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2866                          InputGlue, GlueResultNodesMatched, false);
2867
2868      assert(NodeToMatch->use_empty() &&
2869             "Didn't replace all uses of the node?");
2870
2871      // FIXME: We just return here, which interacts correctly with SelectRoot
2872      // above.  We should fix this to not return an SDNode* anymore.
2873      return 0;
2874    }
2875    }
2876
2877    // If the code reached this point, then the match failed.  See if there is
2878    // another child to try in the current 'Scope', otherwise pop it until we
2879    // find a case to check.
2880    DEBUG(dbgs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2881    ++NumDAGIselRetries;
2882    while (1) {
2883      if (MatchScopes.empty()) {
2884        CannotYetSelect(NodeToMatch);
2885        return 0;
2886      }
2887
2888      // Restore the interpreter state back to the point where the scope was
2889      // formed.
2890      MatchScope &LastScope = MatchScopes.back();
2891      RecordedNodes.resize(LastScope.NumRecordedNodes);
2892      NodeStack.clear();
2893      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2894      N = NodeStack.back();
2895
2896      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2897        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2898      MatcherIndex = LastScope.FailIndex;
2899
2900      DEBUG(dbgs() << "  Continuing at " << MatcherIndex << "\n");
2901
2902      InputChain = LastScope.InputChain;
2903      InputGlue = LastScope.InputGlue;
2904      if (!LastScope.HasChainNodesMatched)
2905        ChainNodesMatched.clear();
2906      if (!LastScope.HasGlueResultNodesMatched)
2907        GlueResultNodesMatched.clear();
2908
2909      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2910      // we have reached the end of this scope, otherwise we have another child
2911      // in the current scope to try.
2912      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2913      if (NumToSkip & 128)
2914        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2915
2916      // If we have another child in this scope to match, update FailIndex and
2917      // try it.
2918      if (NumToSkip != 0) {
2919        LastScope.FailIndex = MatcherIndex+NumToSkip;
2920        break;
2921      }
2922
2923      // End of this scope, pop it and try the next child in the containing
2924      // scope.
2925      MatchScopes.pop_back();
2926    }
2927  }
2928}
2929
2930
2931
2932void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2933  std::string msg;
2934  raw_string_ostream Msg(msg);
2935  Msg << "Cannot select: ";
2936
2937  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2938      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2939      N->getOpcode() != ISD::INTRINSIC_VOID) {
2940    N->printrFull(Msg, CurDAG);
2941    Msg << "\nIn function: " << MF->getName();
2942  } else {
2943    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2944    unsigned iid =
2945      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2946    if (iid < Intrinsic::num_intrinsics)
2947      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2948    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2949      Msg << "target intrinsic %" << TII->getName(iid);
2950    else
2951      Msg << "unknown intrinsic #" << iid;
2952  }
2953  report_fatal_error(Msg.str());
2954}
2955
2956char SelectionDAGISel::ID = 0;
2957