SelectionDAGISel.cpp revision 91aac1015e6714d959801dd8d60f55a72827dc4d
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "SelectionDAGBuild.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/ScheduleDAG.h"
39#include "llvm/CodeGen/SchedulerRegistry.h"
40#include "llvm/CodeGen/SelectionDAG.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetData.h"
43#include "llvm/Target/TargetFrameInfo.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/Timer.h"
52#include <algorithm>
53using namespace llvm;
54
55static cl::opt<bool>
56EnableValueProp("enable-value-prop", cl::Hidden);
57static cl::opt<bool>
58EnableLegalizeTypes("enable-legalize-types", cl::Hidden);
59static cl::opt<bool>
60EnableFastISel("fast-isel", cl::Hidden,
61          cl::desc("Enable the experimental \"fast\" instruction selector"));
62static cl::opt<bool>
63EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
64          cl::desc("Enable verbose messages in the experimental \"fast\" "
65                   "instruction selector"));
66static cl::opt<bool>
67EnableFastISelAbort("fast-isel-abort", cl::Hidden,
68          cl::desc("Enable abort calls when \"fast\" instruction fails"));
69static cl::opt<bool>
70SchedLiveInCopies("schedule-livein-copies",
71                  cl::desc("Schedule copies of livein registers"),
72                  cl::init(false));
73
74#ifndef NDEBUG
75static cl::opt<bool>
76ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the first "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before legalize types"));
82static cl::opt<bool>
83ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize"));
85static cl::opt<bool>
86ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before the second "
88                   "dag combine pass"));
89static cl::opt<bool>
90ViewISelDAGs("view-isel-dags", cl::Hidden,
91          cl::desc("Pop up a window to show isel dags as they are selected"));
92static cl::opt<bool>
93ViewSchedDAGs("view-sched-dags", cl::Hidden,
94          cl::desc("Pop up a window to show sched dags as they are processed"));
95static cl::opt<bool>
96ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
97      cl::desc("Pop up a window to show SUnit dags after they are processed"));
98#else
99static const bool ViewDAGCombine1 = false,
100                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
101                  ViewDAGCombine2 = false,
102                  ViewISelDAGs = false, ViewSchedDAGs = false,
103                  ViewSUnitDAGs = false;
104#endif
105
106//===---------------------------------------------------------------------===//
107///
108/// RegisterScheduler class - Track the registration of instruction schedulers.
109///
110//===---------------------------------------------------------------------===//
111MachinePassRegistry RegisterScheduler::Registry;
112
113//===---------------------------------------------------------------------===//
114///
115/// ISHeuristic command line option for instruction schedulers.
116///
117//===---------------------------------------------------------------------===//
118static cl::opt<RegisterScheduler::FunctionPassCtor, false,
119               RegisterPassParser<RegisterScheduler> >
120ISHeuristic("pre-RA-sched",
121            cl::init(&createDefaultScheduler),
122            cl::desc("Instruction schedulers available (before register"
123                     " allocation):"));
124
125static RegisterScheduler
126defaultListDAGScheduler("default", "  Best scheduler for the target",
127                        createDefaultScheduler);
128
129namespace llvm {
130  //===--------------------------------------------------------------------===//
131  /// createDefaultScheduler - This creates an instruction scheduler appropriate
132  /// for the target.
133  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
134                                      SelectionDAG *DAG,
135                                      MachineBasicBlock *BB,
136                                      bool Fast) {
137    TargetLowering &TLI = IS->getTargetLowering();
138
139    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
140      return createTDListDAGScheduler(IS, DAG, BB, Fast);
141    } else {
142      assert(TLI.getSchedulingPreference() ==
143           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
144      return createBURRListDAGScheduler(IS, DAG, BB, Fast);
145    }
146  }
147}
148
149// EmitInstrWithCustomInserter - This method should be implemented by targets
150// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
151// instructions are special in various ways, which require special support to
152// insert.  The specified MachineInstr is created but not inserted into any
153// basic blocks, and the scheduler passes ownership of it to this method.
154MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
155                                                       MachineBasicBlock *MBB) {
156  cerr << "If a target marks an instruction with "
157       << "'usesCustomDAGSchedInserter', it must implement "
158       << "TargetLowering::EmitInstrWithCustomInserter!\n";
159  abort();
160  return 0;
161}
162
163/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
164/// physical register has only a single copy use, then coalesced the copy
165/// if possible.
166static void EmitLiveInCopy(MachineBasicBlock *MBB,
167                           MachineBasicBlock::iterator &InsertPos,
168                           unsigned VirtReg, unsigned PhysReg,
169                           const TargetRegisterClass *RC,
170                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
171                           const MachineRegisterInfo &MRI,
172                           const TargetRegisterInfo &TRI,
173                           const TargetInstrInfo &TII) {
174  unsigned NumUses = 0;
175  MachineInstr *UseMI = NULL;
176  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
177         UE = MRI.use_end(); UI != UE; ++UI) {
178    UseMI = &*UI;
179    if (++NumUses > 1)
180      break;
181  }
182
183  // If the number of uses is not one, or the use is not a move instruction,
184  // don't coalesce. Also, only coalesce away a virtual register to virtual
185  // register copy.
186  bool Coalesced = false;
187  unsigned SrcReg, DstReg;
188  if (NumUses == 1 &&
189      TII.isMoveInstr(*UseMI, SrcReg, DstReg) &&
190      TargetRegisterInfo::isVirtualRegister(DstReg)) {
191    VirtReg = DstReg;
192    Coalesced = true;
193  }
194
195  // Now find an ideal location to insert the copy.
196  MachineBasicBlock::iterator Pos = InsertPos;
197  while (Pos != MBB->begin()) {
198    MachineInstr *PrevMI = prior(Pos);
199    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
200    // copyRegToReg might emit multiple instructions to do a copy.
201    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
202    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
203      // This is what the BB looks like right now:
204      // r1024 = mov r0
205      // ...
206      // r1    = mov r1024
207      //
208      // We want to insert "r1025 = mov r1". Inserting this copy below the
209      // move to r1024 makes it impossible for that move to be coalesced.
210      //
211      // r1025 = mov r1
212      // r1024 = mov r0
213      // ...
214      // r1    = mov 1024
215      // r2    = mov 1025
216      break; // Woot! Found a good location.
217    --Pos;
218  }
219
220  TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
221  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
222  if (Coalesced) {
223    if (&*InsertPos == UseMI) ++InsertPos;
224    MBB->erase(UseMI);
225  }
226}
227
228/// EmitLiveInCopies - If this is the first basic block in the function,
229/// and if it has live ins that need to be copied into vregs, emit the
230/// copies into the block.
231static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
232                             const MachineRegisterInfo &MRI,
233                             const TargetRegisterInfo &TRI,
234                             const TargetInstrInfo &TII) {
235  if (SchedLiveInCopies) {
236    // Emit the copies at a heuristically-determined location in the block.
237    DenseMap<MachineInstr*, unsigned> CopyRegMap;
238    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
239    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
240           E = MRI.livein_end(); LI != E; ++LI)
241      if (LI->second) {
242        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
243        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
244                       RC, CopyRegMap, MRI, TRI, TII);
245      }
246  } else {
247    // Emit the copies into the top of the block.
248    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
249           E = MRI.livein_end(); LI != E; ++LI)
250      if (LI->second) {
251        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
252        TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
253                         LI->second, LI->first, RC, RC);
254      }
255  }
256}
257
258//===----------------------------------------------------------------------===//
259// SelectionDAGISel code
260//===----------------------------------------------------------------------===//
261
262SelectionDAGISel::SelectionDAGISel(TargetLowering &tli, bool fast) :
263  FunctionPass(&ID), TLI(tli),
264  FuncInfo(new FunctionLoweringInfo(TLI)),
265  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
266  SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo)),
267  GFI(),
268  Fast(fast),
269  DAGSize(0)
270{}
271
272SelectionDAGISel::~SelectionDAGISel() {
273  delete SDL;
274  delete CurDAG;
275  delete FuncInfo;
276}
277
278unsigned SelectionDAGISel::MakeReg(MVT VT) {
279  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
280}
281
282void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
283  AU.addRequired<AliasAnalysis>();
284  AU.addRequired<GCModuleInfo>();
285  AU.setPreservesAll();
286}
287
288bool SelectionDAGISel::runOnFunction(Function &Fn) {
289  // Do some sanity-checking on the command-line options.
290  assert((!EnableFastISelVerbose || EnableFastISel) &&
291         "-fast-isel-verbose requires -fast-isel");
292  assert((!EnableFastISelAbort || EnableFastISel) &&
293         "-fast-isel-abort requires -fast-isel");
294
295  // Get alias analysis for load/store combining.
296  AA = &getAnalysis<AliasAnalysis>();
297
298  TargetMachine &TM = TLI.getTargetMachine();
299  MachineFunction &MF = MachineFunction::construct(&Fn, TM);
300  const MachineRegisterInfo &MRI = MF.getRegInfo();
301  const TargetInstrInfo &TII = *TM.getInstrInfo();
302  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
303
304  if (MF.getFunction()->hasGC())
305    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(*MF.getFunction());
306  else
307    GFI = 0;
308  RegInfo = &MF.getRegInfo();
309  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
310
311  FuncInfo->set(Fn, MF, EnableFastISel);
312  CurDAG->init(MF, getAnalysisToUpdate<MachineModuleInfo>());
313  SDL->init(GFI, *AA);
314
315  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
316    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
317      // Mark landing pad.
318      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
319
320  SelectAllBasicBlocks(Fn, MF);
321
322  // If the first basic block in the function has live ins that need to be
323  // copied into vregs, emit the copies into the top of the block before
324  // emitting the code for the block.
325  EmitLiveInCopies(MF.begin(), MRI, TRI, TII);
326
327  // Add function live-ins to entry block live-in set.
328  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
329         E = RegInfo->livein_end(); I != E; ++I)
330    MF.begin()->addLiveIn(I->first);
331
332#ifndef NDEBUG
333  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
334         "Not all catch info was assigned to a landing pad!");
335#endif
336
337  FuncInfo->clear();
338
339  return true;
340}
341
342static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
343                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
344  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
345    if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
346      // Apply the catch info to DestBB.
347      AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
348#ifndef NDEBUG
349      if (!FLI.MBBMap[SrcBB]->isLandingPad())
350        FLI.CatchInfoFound.insert(EHSel);
351#endif
352    }
353}
354
355/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
356/// whether object offset >= 0.
357static bool
358IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDValue Op) {
359  if (!isa<FrameIndexSDNode>(Op)) return false;
360
361  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
362  int FrameIdx =  FrameIdxNode->getIndex();
363  return MFI->isFixedObjectIndex(FrameIdx) &&
364    MFI->getObjectOffset(FrameIdx) >= 0;
365}
366
367/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
368/// possibly be overwritten when lowering the outgoing arguments in a tail
369/// call. Currently the implementation of this call is very conservative and
370/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
371/// virtual registers would be overwritten by direct lowering.
372static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
373                                                    MachineFrameInfo * MFI) {
374  RegisterSDNode * OpReg = NULL;
375  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
376      (Op.getOpcode()== ISD::CopyFromReg &&
377       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
378       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
379      (Op.getOpcode() == ISD::LOAD &&
380       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
381      (Op.getOpcode() == ISD::MERGE_VALUES &&
382       Op.getOperand(Op.getResNo()).getOpcode() == ISD::LOAD &&
383       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.getResNo()).
384                                       getOperand(1))))
385    return true;
386  return false;
387}
388
389/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
390/// DAG and fixes their tailcall attribute operand.
391static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
392                                           TargetLowering& TLI) {
393  SDNode * Ret = NULL;
394  SDValue Terminator = DAG.getRoot();
395
396  // Find RET node.
397  if (Terminator.getOpcode() == ISD::RET) {
398    Ret = Terminator.getNode();
399  }
400
401  // Fix tail call attribute of CALL nodes.
402  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
403         BI = DAG.allnodes_end(); BI != BE; ) {
404    --BI;
405    if (CallSDNode *TheCall = dyn_cast<CallSDNode>(BI)) {
406      SDValue OpRet(Ret, 0);
407      SDValue OpCall(BI, 0);
408      bool isMarkedTailCall = TheCall->isTailCall();
409      // If CALL node has tail call attribute set to true and the call is not
410      // eligible (no RET or the target rejects) the attribute is fixed to
411      // false. The TargetLowering::IsEligibleForTailCallOptimization function
412      // must correctly identify tail call optimizable calls.
413      if (!isMarkedTailCall) continue;
414      if (Ret==NULL ||
415          !TLI.IsEligibleForTailCallOptimization(TheCall, OpRet, DAG)) {
416        // Not eligible. Mark CALL node as non tail call. Note that we
417        // can modify the call node in place since calls are not CSE'd.
418        TheCall->setNotTailCall();
419      } else {
420        // Look for tail call clobbered arguments. Emit a series of
421        // copyto/copyfrom virtual register nodes to protect them.
422        SmallVector<SDValue, 32> Ops;
423        SDValue Chain = TheCall->getChain(), InFlag;
424        Ops.push_back(Chain);
425        Ops.push_back(TheCall->getCallee());
426        for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; ++i) {
427          SDValue Arg = TheCall->getArg(i);
428          bool isByVal = TheCall->getArgFlags(i).isByVal();
429          MachineFunction &MF = DAG.getMachineFunction();
430          MachineFrameInfo *MFI = MF.getFrameInfo();
431          if (!isByVal &&
432              IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
433            MVT VT = Arg.getValueType();
434            unsigned VReg = MF.getRegInfo().
435              createVirtualRegister(TLI.getRegClassFor(VT));
436            Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
437            InFlag = Chain.getValue(1);
438            Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
439            Chain = Arg.getValue(1);
440            InFlag = Arg.getValue(2);
441          }
442          Ops.push_back(Arg);
443          Ops.push_back(TheCall->getArgFlagsVal(i));
444        }
445        // Link in chain of CopyTo/CopyFromReg.
446        Ops[0] = Chain;
447        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
448      }
449    }
450  }
451}
452
453void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
454                                        BasicBlock::iterator Begin,
455                                        BasicBlock::iterator End) {
456  SDL->setCurrentBasicBlock(BB);
457
458  MachineModuleInfo *MMI = CurDAG->getMachineModuleInfo();
459
460  if (MMI && BB->isLandingPad()) {
461    // Add a label to mark the beginning of the landing pad.  Deletion of the
462    // landing pad can thus be detected via the MachineModuleInfo.
463    unsigned LabelID = MMI->addLandingPad(BB);
464    CurDAG->setRoot(CurDAG->getLabel(ISD::EH_LABEL,
465                                     CurDAG->getEntryNode(), LabelID));
466
467    // Mark exception register as live in.
468    unsigned Reg = TLI.getExceptionAddressRegister();
469    if (Reg) BB->addLiveIn(Reg);
470
471    // Mark exception selector register as live in.
472    Reg = TLI.getExceptionSelectorRegister();
473    if (Reg) BB->addLiveIn(Reg);
474
475    // FIXME: Hack around an exception handling flaw (PR1508): the personality
476    // function and list of typeids logically belong to the invoke (or, if you
477    // like, the basic block containing the invoke), and need to be associated
478    // with it in the dwarf exception handling tables.  Currently however the
479    // information is provided by an intrinsic (eh.selector) that can be moved
480    // to unexpected places by the optimizers: if the unwind edge is critical,
481    // then breaking it can result in the intrinsics being in the successor of
482    // the landing pad, not the landing pad itself.  This results in exceptions
483    // not being caught because no typeids are associated with the invoke.
484    // This may not be the only way things can go wrong, but it is the only way
485    // we try to work around for the moment.
486    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
487
488    if (Br && Br->isUnconditional()) { // Critical edge?
489      BasicBlock::iterator I, E;
490      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
491        if (isa<EHSelectorInst>(I))
492          break;
493
494      if (I == E)
495        // No catch info found - try to extract some from the successor.
496        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
497    }
498  }
499
500  // Lower all of the non-terminator instructions.
501  for (BasicBlock::iterator I = Begin; I != End; ++I)
502    if (!isa<TerminatorInst>(I))
503      SDL->visit(*I);
504
505  // Ensure that all instructions which are used outside of their defining
506  // blocks are available as virtual registers.  Invoke is handled elsewhere.
507  for (BasicBlock::iterator I = Begin; I != End; ++I)
508    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
509      DenseMap<const Value*,unsigned>::iterator VMI =FuncInfo->ValueMap.find(I);
510      if (VMI != FuncInfo->ValueMap.end())
511        SDL->CopyValueToVirtualRegister(I, VMI->second);
512    }
513
514  // Handle PHI nodes in successor blocks.
515  if (End == LLVMBB->end()) {
516    HandlePHINodesInSuccessorBlocks(LLVMBB);
517
518    // Lower the terminator after the copies are emitted.
519    SDL->visit(*LLVMBB->getTerminator());
520  }
521
522  // Make sure the root of the DAG is up-to-date.
523  CurDAG->setRoot(SDL->getControlRoot());
524
525  // Check whether calls in this block are real tail calls. Fix up CALL nodes
526  // with correct tailcall attribute so that the target can rely on the tailcall
527  // attribute indicating whether the call is really eligible for tail call
528  // optimization.
529  if (PerformTailCallOpt)
530    CheckDAGForTailCallsAndFixThem(*CurDAG, TLI);
531
532  // Final step, emit the lowered DAG as machine code.
533  CodeGenAndEmitDAG();
534  SDL->clear();
535}
536
537void SelectionDAGISel::ComputeLiveOutVRegInfo() {
538  SmallPtrSet<SDNode*, 128> VisitedNodes;
539  SmallVector<SDNode*, 128> Worklist;
540
541  Worklist.push_back(CurDAG->getRoot().getNode());
542
543  APInt Mask;
544  APInt KnownZero;
545  APInt KnownOne;
546
547  while (!Worklist.empty()) {
548    SDNode *N = Worklist.back();
549    Worklist.pop_back();
550
551    // If we've already seen this node, ignore it.
552    if (!VisitedNodes.insert(N))
553      continue;
554
555    // Otherwise, add all chain operands to the worklist.
556    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
557      if (N->getOperand(i).getValueType() == MVT::Other)
558        Worklist.push_back(N->getOperand(i).getNode());
559
560    // If this is a CopyToReg with a vreg dest, process it.
561    if (N->getOpcode() != ISD::CopyToReg)
562      continue;
563
564    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
565    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
566      continue;
567
568    // Ignore non-scalar or non-integer values.
569    SDValue Src = N->getOperand(2);
570    MVT SrcVT = Src.getValueType();
571    if (!SrcVT.isInteger() || SrcVT.isVector())
572      continue;
573
574    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
575    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
576    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
577
578    // Only install this information if it tells us something.
579    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
580      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
581      FunctionLoweringInfo &FLI = CurDAG->getFunctionLoweringInfo();
582      if (DestReg >= FLI.LiveOutRegInfo.size())
583        FLI.LiveOutRegInfo.resize(DestReg+1);
584      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
585      LOI.NumSignBits = NumSignBits;
586      LOI.KnownOne = NumSignBits;
587      LOI.KnownZero = NumSignBits;
588    }
589  }
590}
591
592void SelectionDAGISel::CodeGenAndEmitDAG() {
593  std::string GroupName;
594  if (TimePassesIsEnabled)
595    GroupName = "Instruction Selection and Scheduling";
596  std::string BlockName;
597  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
598      ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs)
599    BlockName = CurDAG->getMachineFunction().getFunction()->getName() + ':' +
600                BB->getBasicBlock()->getName();
601
602  DOUT << "Initial selection DAG:\n";
603  DEBUG(CurDAG->dump());
604
605  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
606
607  // Run the DAG combiner in pre-legalize mode.
608  if (TimePassesIsEnabled) {
609    NamedRegionTimer T("DAG Combining 1", GroupName);
610    CurDAG->Combine(false, *AA, Fast);
611  } else {
612    CurDAG->Combine(false, *AA, Fast);
613  }
614
615  DOUT << "Optimized lowered selection DAG:\n";
616  DEBUG(CurDAG->dump());
617
618  // Second step, hack on the DAG until it only uses operations and types that
619  // the target supports.
620  if (EnableLegalizeTypes) {// Enable this some day.
621    if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
622                                                 BlockName);
623
624    if (TimePassesIsEnabled) {
625      NamedRegionTimer T("Type Legalization", GroupName);
626      CurDAG->LegalizeTypes();
627    } else {
628      CurDAG->LegalizeTypes();
629    }
630
631    DOUT << "Type-legalized selection DAG:\n";
632    DEBUG(CurDAG->dump());
633
634    // TODO: enable a dag combine pass here.
635  }
636
637  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
638
639  if (TimePassesIsEnabled) {
640    NamedRegionTimer T("DAG Legalization", GroupName);
641    CurDAG->Legalize();
642  } else {
643    CurDAG->Legalize();
644  }
645
646  DOUT << "Legalized selection DAG:\n";
647  DEBUG(CurDAG->dump());
648
649  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
650
651  // Run the DAG combiner in post-legalize mode.
652  if (TimePassesIsEnabled) {
653    NamedRegionTimer T("DAG Combining 2", GroupName);
654    CurDAG->Combine(true, *AA, Fast);
655  } else {
656    CurDAG->Combine(true, *AA, Fast);
657  }
658
659  DOUT << "Optimized legalized selection DAG:\n";
660  DEBUG(CurDAG->dump());
661
662  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
663
664  if (!Fast && EnableValueProp)
665    ComputeLiveOutVRegInfo();
666
667  // Third, instruction select all of the operations to machine code, adding the
668  // code to the MachineBasicBlock.
669  if (TimePassesIsEnabled) {
670    NamedRegionTimer T("Instruction Selection", GroupName);
671    InstructionSelect();
672  } else {
673    InstructionSelect();
674  }
675
676  DOUT << "Selected selection DAG:\n";
677  DEBUG(CurDAG->dump());
678
679  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
680
681  // Schedule machine code.
682  ScheduleDAG *Scheduler;
683  if (TimePassesIsEnabled) {
684    NamedRegionTimer T("Instruction Scheduling", GroupName);
685    Scheduler = Schedule();
686  } else {
687    Scheduler = Schedule();
688  }
689
690  if (ViewSUnitDAGs) Scheduler->viewGraph();
691
692  // Emit machine code to BB.  This can change 'BB' to the last block being
693  // inserted into.
694  if (TimePassesIsEnabled) {
695    NamedRegionTimer T("Instruction Creation", GroupName);
696    BB = Scheduler->EmitSchedule();
697  } else {
698    BB = Scheduler->EmitSchedule();
699  }
700
701  // Free the scheduler state.
702  if (TimePassesIsEnabled) {
703    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
704    delete Scheduler;
705  } else {
706    delete Scheduler;
707  }
708
709  DOUT << "Selected machine code:\n";
710  DEBUG(BB->dump());
711}
712
713void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF) {
714  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
715    BasicBlock *LLVMBB = &*I;
716    BB = FuncInfo->MBBMap[LLVMBB];
717
718    BasicBlock::iterator const Begin = LLVMBB->begin();
719    BasicBlock::iterator const End = LLVMBB->end();
720    BasicBlock::iterator BI = Begin;
721
722    // Lower any arguments needed in this block if this is the entry block.
723    if (LLVMBB == &Fn.getEntryBlock())
724      LowerArguments(LLVMBB);
725
726    // Before doing SelectionDAG ISel, see if FastISel has been requested.
727    // FastISel doesn't support EH landing pads, which require special handling.
728    if (EnableFastISel && !BB->isLandingPad()) {
729      if (FastISel *F = TLI.createFastISel(*FuncInfo->MF, FuncInfo->ValueMap,
730                                           FuncInfo->MBBMap,
731                                           FuncInfo->StaticAllocaMap)) {
732        // Emit code for any incoming arguments. This must happen before
733        // beginning FastISel on the entry block.
734        if (LLVMBB == &Fn.getEntryBlock()) {
735          CurDAG->setRoot(SDL->getControlRoot());
736          CodeGenAndEmitDAG();
737          SDL->clear();
738        }
739        F->setCurrentBlock(BB);
740        // Do FastISel on as many instructions as possible.
741        for (; BI != End; ++BI) {
742          // Just before the terminator instruction, insert instructions to
743          // feed PHI nodes in successor blocks.
744          if (isa<TerminatorInst>(BI))
745            if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, F)) {
746              if (EnableFastISelVerbose || EnableFastISelAbort) {
747                cerr << "FastISel miss: ";
748                BI->dump();
749              }
750              if (EnableFastISelAbort)
751                assert(0 && "FastISel didn't handle a PHI in a successor");
752              break;
753            }
754
755          // First try normal tablegen-generated "fast" selection.
756          if (F->SelectInstruction(BI))
757            continue;
758
759          // Next, try calling the target to attempt to handle the instruction.
760          if (F->TargetSelectInstruction(BI))
761            continue;
762
763          // Then handle certain instructions as single-LLVM-Instruction blocks.
764          if (isa<CallInst>(BI)) {
765            if (BI->getType() != Type::VoidTy) {
766              unsigned &R = FuncInfo->ValueMap[BI];
767              if (!R)
768                R = FuncInfo->CreateRegForValue(BI);
769            }
770
771            SelectBasicBlock(LLVMBB, BI, next(BI));
772            continue;
773          }
774
775          // Otherwise, give up on FastISel for the rest of the block.
776          // For now, be a little lenient about non-branch terminators.
777          if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
778            if (EnableFastISelVerbose || EnableFastISelAbort) {
779              cerr << "FastISel miss: ";
780              BI->dump();
781            }
782            if (EnableFastISelAbort)
783              // The "fast" selector couldn't handle something and bailed.
784              // For the purpose of debugging, just abort.
785              assert(0 && "FastISel didn't select the entire block");
786          }
787          break;
788        }
789        delete F;
790      }
791    }
792
793    // Run SelectionDAG instruction selection on the remainder of the block
794    // not handled by FastISel. If FastISel is not run, this is the entire
795    // block.
796    if (BI != End)
797      SelectBasicBlock(LLVMBB, BI, End);
798
799    FinishBasicBlock();
800  }
801}
802
803void
804SelectionDAGISel::FinishBasicBlock() {
805
806  // Perform target specific isel post processing.
807  InstructionSelectPostProcessing();
808
809  DOUT << "Target-post-processed machine code:\n";
810  DEBUG(BB->dump());
811
812  DOUT << "Total amount of phi nodes to update: "
813       << SDL->PHINodesToUpdate.size() << "\n";
814  DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
815          DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
816               << ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
817
818  // Next, now that we know what the last MBB the LLVM BB expanded is, update
819  // PHI nodes in successors.
820  if (SDL->SwitchCases.empty() &&
821      SDL->JTCases.empty() &&
822      SDL->BitTestCases.empty()) {
823    for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
824      MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
825      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
826             "This is not a machine PHI node that we are updating!");
827      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
828                                                false));
829      PHI->addOperand(MachineOperand::CreateMBB(BB));
830    }
831    SDL->PHINodesToUpdate.clear();
832    return;
833  }
834
835  for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) {
836    // Lower header first, if it wasn't already lowered
837    if (!SDL->BitTestCases[i].Emitted) {
838      // Set the current basic block to the mbb we wish to insert the code into
839      BB = SDL->BitTestCases[i].Parent;
840      SDL->setCurrentBasicBlock(BB);
841      // Emit the code
842      SDL->visitBitTestHeader(SDL->BitTestCases[i]);
843      CurDAG->setRoot(SDL->getRoot());
844      CodeGenAndEmitDAG();
845      SDL->clear();
846    }
847
848    for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
849      // Set the current basic block to the mbb we wish to insert the code into
850      BB = SDL->BitTestCases[i].Cases[j].ThisBB;
851      SDL->setCurrentBasicBlock(BB);
852      // Emit the code
853      if (j+1 != ej)
854        SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB,
855                              SDL->BitTestCases[i].Reg,
856                              SDL->BitTestCases[i].Cases[j]);
857      else
858        SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
859                              SDL->BitTestCases[i].Reg,
860                              SDL->BitTestCases[i].Cases[j]);
861
862
863      CurDAG->setRoot(SDL->getRoot());
864      CodeGenAndEmitDAG();
865      SDL->clear();
866    }
867
868    // Update PHI Nodes
869    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
870      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
871      MachineBasicBlock *PHIBB = PHI->getParent();
872      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
873             "This is not a machine PHI node that we are updating!");
874      // This is "default" BB. We have two jumps to it. From "header" BB and
875      // from last "case" BB.
876      if (PHIBB == SDL->BitTestCases[i].Default) {
877        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
878                                                  false));
879        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent));
880        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
881                                                  false));
882        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases.
883                                                  back().ThisBB));
884      }
885      // One of "cases" BB.
886      for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size();
887           j != ej; ++j) {
888        MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB;
889        if (cBB->succ_end() !=
890            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
891          PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
892                                                    false));
893          PHI->addOperand(MachineOperand::CreateMBB(cBB));
894        }
895      }
896    }
897  }
898  SDL->BitTestCases.clear();
899
900  // If the JumpTable record is filled in, then we need to emit a jump table.
901  // Updating the PHI nodes is tricky in this case, since we need to determine
902  // whether the PHI is a successor of the range check MBB or the jump table MBB
903  for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) {
904    // Lower header first, if it wasn't already lowered
905    if (!SDL->JTCases[i].first.Emitted) {
906      // Set the current basic block to the mbb we wish to insert the code into
907      BB = SDL->JTCases[i].first.HeaderBB;
908      SDL->setCurrentBasicBlock(BB);
909      // Emit the code
910      SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first);
911      CurDAG->setRoot(SDL->getRoot());
912      CodeGenAndEmitDAG();
913      SDL->clear();
914    }
915
916    // Set the current basic block to the mbb we wish to insert the code into
917    BB = SDL->JTCases[i].second.MBB;
918    SDL->setCurrentBasicBlock(BB);
919    // Emit the code
920    SDL->visitJumpTable(SDL->JTCases[i].second);
921    CurDAG->setRoot(SDL->getRoot());
922    CodeGenAndEmitDAG();
923    SDL->clear();
924
925    // Update PHI Nodes
926    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
927      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
928      MachineBasicBlock *PHIBB = PHI->getParent();
929      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
930             "This is not a machine PHI node that we are updating!");
931      // "default" BB. We can go there only from header BB.
932      if (PHIBB == SDL->JTCases[i].second.Default) {
933        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
934                                                  false));
935        PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
936      }
937      // JT BB. Just iterate over successors here
938      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
939        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
940                                                  false));
941        PHI->addOperand(MachineOperand::CreateMBB(BB));
942      }
943    }
944  }
945  SDL->JTCases.clear();
946
947  // If the switch block involved a branch to one of the actual successors, we
948  // need to update PHI nodes in that block.
949  for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
950    MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
951    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
952           "This is not a machine PHI node that we are updating!");
953    if (BB->isSuccessor(PHI->getParent())) {
954      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
955                                                false));
956      PHI->addOperand(MachineOperand::CreateMBB(BB));
957    }
958  }
959
960  // If we generated any switch lowering information, build and codegen any
961  // additional DAGs necessary.
962  for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
963    // Set the current basic block to the mbb we wish to insert the code into
964    BB = SDL->SwitchCases[i].ThisBB;
965    SDL->setCurrentBasicBlock(BB);
966
967    // Emit the code
968    SDL->visitSwitchCase(SDL->SwitchCases[i]);
969    CurDAG->setRoot(SDL->getRoot());
970    CodeGenAndEmitDAG();
971    SDL->clear();
972
973    // Handle any PHI nodes in successors of this chunk, as if we were coming
974    // from the original BB before switch expansion.  Note that PHI nodes can
975    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
976    // handle them the right number of times.
977    while ((BB = SDL->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
978      for (MachineBasicBlock::iterator Phi = BB->begin();
979           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
980        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
981        for (unsigned pn = 0; ; ++pn) {
982          assert(pn != SDL->PHINodesToUpdate.size() &&
983                 "Didn't find PHI entry!");
984          if (SDL->PHINodesToUpdate[pn].first == Phi) {
985            Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
986                                                      second, false));
987            Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
988            break;
989          }
990        }
991      }
992
993      // Don't process RHS if same block as LHS.
994      if (BB == SDL->SwitchCases[i].FalseBB)
995        SDL->SwitchCases[i].FalseBB = 0;
996
997      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
998      SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
999      SDL->SwitchCases[i].FalseBB = 0;
1000    }
1001    assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
1002  }
1003  SDL->SwitchCases.clear();
1004
1005  SDL->PHINodesToUpdate.clear();
1006}
1007
1008
1009/// Schedule - Pick a safe ordering for instructions for each
1010/// target node in the graph.
1011///
1012ScheduleDAG *SelectionDAGISel::Schedule() {
1013  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1014
1015  if (!Ctor) {
1016    Ctor = ISHeuristic;
1017    RegisterScheduler::setDefault(Ctor);
1018  }
1019
1020  ScheduleDAG *Scheduler = Ctor(this, CurDAG, BB, Fast);
1021  Scheduler->Run();
1022
1023  return Scheduler;
1024}
1025
1026
1027HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1028  return new HazardRecognizer();
1029}
1030
1031//===----------------------------------------------------------------------===//
1032// Helper functions used by the generated instruction selector.
1033//===----------------------------------------------------------------------===//
1034// Calls to these methods are generated by tblgen.
1035
1036/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1037/// the dag combiner simplified the 255, we still want to match.  RHS is the
1038/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1039/// specified in the .td file (e.g. 255).
1040bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1041                                    int64_t DesiredMaskS) const {
1042  const APInt &ActualMask = RHS->getAPIntValue();
1043  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1044
1045  // If the actual mask exactly matches, success!
1046  if (ActualMask == DesiredMask)
1047    return true;
1048
1049  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1050  if (ActualMask.intersects(~DesiredMask))
1051    return false;
1052
1053  // Otherwise, the DAG Combiner may have proven that the value coming in is
1054  // either already zero or is not demanded.  Check for known zero input bits.
1055  APInt NeededMask = DesiredMask & ~ActualMask;
1056  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1057    return true;
1058
1059  // TODO: check to see if missing bits are just not demanded.
1060
1061  // Otherwise, this pattern doesn't match.
1062  return false;
1063}
1064
1065/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1066/// the dag combiner simplified the 255, we still want to match.  RHS is the
1067/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1068/// specified in the .td file (e.g. 255).
1069bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1070                                   int64_t DesiredMaskS) const {
1071  const APInt &ActualMask = RHS->getAPIntValue();
1072  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1073
1074  // If the actual mask exactly matches, success!
1075  if (ActualMask == DesiredMask)
1076    return true;
1077
1078  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1079  if (ActualMask.intersects(~DesiredMask))
1080    return false;
1081
1082  // Otherwise, the DAG Combiner may have proven that the value coming in is
1083  // either already zero or is not demanded.  Check for known zero input bits.
1084  APInt NeededMask = DesiredMask & ~ActualMask;
1085
1086  APInt KnownZero, KnownOne;
1087  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1088
1089  // If all the missing bits in the or are already known to be set, match!
1090  if ((NeededMask & KnownOne) == NeededMask)
1091    return true;
1092
1093  // TODO: check to see if missing bits are just not demanded.
1094
1095  // Otherwise, this pattern doesn't match.
1096  return false;
1097}
1098
1099
1100/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1101/// by tblgen.  Others should not call it.
1102void SelectionDAGISel::
1103SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1104  std::vector<SDValue> InOps;
1105  std::swap(InOps, Ops);
1106
1107  Ops.push_back(InOps[0]);  // input chain.
1108  Ops.push_back(InOps[1]);  // input asm string.
1109
1110  unsigned i = 2, e = InOps.size();
1111  if (InOps[e-1].getValueType() == MVT::Flag)
1112    --e;  // Don't process a flag operand if it is here.
1113
1114  while (i != e) {
1115    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1116    if ((Flags & 7) != 4 /*MEM*/ &&
1117        (Flags & 7) != 7 /*MEM OVERLAPS EARLYCLOBBER*/) {
1118      // Just skip over this operand, copying the operands verbatim.
1119      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
1120      i += (Flags >> 3) + 1;
1121    } else {
1122      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
1123      // Otherwise, this is a memory operand.  Ask the target to select it.
1124      std::vector<SDValue> SelOps;
1125      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1126        cerr << "Could not match memory address.  Inline asm failure!\n";
1127        exit(1);
1128      }
1129
1130      // Add this to the output node.
1131      MVT IntPtrTy = CurDAG->getTargetLoweringInfo().getPointerTy();
1132      Ops.push_back(CurDAG->getTargetConstant((Flags & 7) | (SelOps.size()<< 3),
1133                                              IntPtrTy));
1134      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1135      i += 2;
1136    }
1137  }
1138
1139  // Add the flag input back if present.
1140  if (e != InOps.size())
1141    Ops.push_back(InOps.back());
1142}
1143
1144char SelectionDAGISel::ID = 0;
1145