SelectionDAGISel.cpp revision 927f866105fa29feb32c050ee823d60c2509ec76
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Support/Compiler.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/Timer.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
56STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
57
58static cl::opt<bool>
59EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
60          cl::desc("Enable verbose messages in the \"fast\" "
61                   "instruction selector"));
62static cl::opt<bool>
63EnableFastISelAbort("fast-isel-abort", cl::Hidden,
64          cl::desc("Enable abort calls when \"fast\" instruction fails"));
65
66#ifndef NDEBUG
67static cl::opt<bool>
68ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
69          cl::desc("Pop up a window to show dags before the first "
70                   "dag combine pass"));
71static cl::opt<bool>
72ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
73          cl::desc("Pop up a window to show dags before legalize types"));
74static cl::opt<bool>
75ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
76          cl::desc("Pop up a window to show dags before legalize"));
77static cl::opt<bool>
78ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the second "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before the post legalize types"
84                   " dag combine pass"));
85static cl::opt<bool>
86ViewISelDAGs("view-isel-dags", cl::Hidden,
87          cl::desc("Pop up a window to show isel dags as they are selected"));
88static cl::opt<bool>
89ViewSchedDAGs("view-sched-dags", cl::Hidden,
90          cl::desc("Pop up a window to show sched dags as they are processed"));
91static cl::opt<bool>
92ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
93      cl::desc("Pop up a window to show SUnit dags after they are processed"));
94#else
95static const bool ViewDAGCombine1 = false,
96                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
97                  ViewDAGCombine2 = false,
98                  ViewDAGCombineLT = false,
99                  ViewISelDAGs = false, ViewSchedDAGs = false,
100                  ViewSUnitDAGs = false;
101#endif
102
103//===---------------------------------------------------------------------===//
104///
105/// RegisterScheduler class - Track the registration of instruction schedulers.
106///
107//===---------------------------------------------------------------------===//
108MachinePassRegistry RegisterScheduler::Registry;
109
110//===---------------------------------------------------------------------===//
111///
112/// ISHeuristic command line option for instruction schedulers.
113///
114//===---------------------------------------------------------------------===//
115static cl::opt<RegisterScheduler::FunctionPassCtor, false,
116               RegisterPassParser<RegisterScheduler> >
117ISHeuristic("pre-RA-sched",
118            cl::init(&createDefaultScheduler),
119            cl::desc("Instruction schedulers available (before register"
120                     " allocation):"));
121
122static RegisterScheduler
123defaultListDAGScheduler("default", "Best scheduler for the target",
124                        createDefaultScheduler);
125
126namespace llvm {
127  //===--------------------------------------------------------------------===//
128  /// createDefaultScheduler - This creates an instruction scheduler appropriate
129  /// for the target.
130  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
131                                             CodeGenOpt::Level OptLevel) {
132    const TargetLowering &TLI = IS->getTargetLowering();
133
134    if (OptLevel == CodeGenOpt::None)
135      return createFastDAGScheduler(IS, OptLevel);
136    if (TLI.getSchedulingPreference() == Sched::Latency)
137      return createTDListDAGScheduler(IS, OptLevel);
138    if (TLI.getSchedulingPreference() == Sched::RegPressure)
139      return createBURRListDAGScheduler(IS, OptLevel);
140    assert(TLI.getSchedulingPreference() == Sched::Hybrid &&
141           "Unknown sched type!");
142    return createHybridListDAGScheduler(IS, OptLevel);
143  }
144}
145
146// EmitInstrWithCustomInserter - This method should be implemented by targets
147// that mark instructions with the 'usesCustomInserter' flag.  These
148// instructions are special in various ways, which require special support to
149// insert.  The specified MachineInstr is created but not inserted into any
150// basic blocks, and this method is called to expand it into a sequence of
151// instructions, potentially also creating new basic blocks and control flow.
152// When new basic blocks are inserted and the edges from MBB to its successors
153// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
154// DenseMap.
155MachineBasicBlock *
156TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
157                                            MachineBasicBlock *MBB) const {
158#ifndef NDEBUG
159  dbgs() << "If a target marks an instruction with "
160          "'usesCustomInserter', it must implement "
161          "TargetLowering::EmitInstrWithCustomInserter!";
162#endif
163  llvm_unreachable(0);
164  return 0;
165}
166
167//===----------------------------------------------------------------------===//
168// SelectionDAGISel code
169//===----------------------------------------------------------------------===//
170
171SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
172  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
173  FuncInfo(new FunctionLoweringInfo(TLI)),
174  CurDAG(new SelectionDAG(tm)),
175  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
176  GFI(),
177  OptLevel(OL),
178  DAGSize(0)
179{}
180
181SelectionDAGISel::~SelectionDAGISel() {
182  delete SDB;
183  delete CurDAG;
184  delete FuncInfo;
185}
186
187void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
188  AU.addRequired<AliasAnalysis>();
189  AU.addPreserved<AliasAnalysis>();
190  AU.addRequired<GCModuleInfo>();
191  AU.addPreserved<GCModuleInfo>();
192  MachineFunctionPass::getAnalysisUsage(AU);
193}
194
195/// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
196/// other function that gcc recognizes as "returning twice". This is used to
197/// limit code-gen optimizations on the machine function.
198///
199/// FIXME: Remove after <rdar://problem/8031714> is fixed.
200static bool FunctionCallsSetJmp(const Function *F) {
201  const Module *M = F->getParent();
202  static const char *ReturnsTwiceFns[] = {
203    "setjmp",
204    "sigsetjmp",
205    "setjmp_syscall",
206    "savectx",
207    "qsetjmp",
208    "vfork",
209    "getcontext"
210  };
211#define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
212
213  for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
214    if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
215      if (!Callee->use_empty())
216        for (Value::const_use_iterator
217               I = Callee->use_begin(), E = Callee->use_end();
218             I != E; ++I)
219          if (const CallInst *CI = dyn_cast<CallInst>(I))
220            if (CI->getParent()->getParent() == F)
221              return true;
222    }
223
224  return false;
225#undef NUM_RETURNS_TWICE_FNS
226}
227
228bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
229  // Do some sanity-checking on the command-line options.
230  assert((!EnableFastISelVerbose || EnableFastISel) &&
231         "-fast-isel-verbose requires -fast-isel");
232  assert((!EnableFastISelAbort || EnableFastISel) &&
233         "-fast-isel-abort requires -fast-isel");
234
235  const Function &Fn = *mf.getFunction();
236  const TargetInstrInfo &TII = *TM.getInstrInfo();
237  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
238
239  MF = &mf;
240  RegInfo = &MF->getRegInfo();
241  AA = &getAnalysis<AliasAnalysis>();
242  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
243
244  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
245
246  CurDAG->init(*MF);
247  FuncInfo->set(Fn, *MF);
248  SDB->init(GFI, *AA);
249
250  SelectAllBasicBlocks(Fn);
251
252  // If the first basic block in the function has live ins that need to be
253  // copied into vregs, emit the copies into the top of the block before
254  // emitting the code for the block.
255  MachineBasicBlock *EntryMBB = MF->begin();
256  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
257
258  DenseMap<unsigned, unsigned> LiveInMap;
259  if (!FuncInfo->ArgDbgValues.empty())
260    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
261           E = RegInfo->livein_end(); LI != E; ++LI)
262      if (LI->second)
263        LiveInMap.insert(std::make_pair(LI->first, LI->second));
264
265  // Insert DBG_VALUE instructions for function arguments to the entry block.
266  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
267    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
268    unsigned Reg = MI->getOperand(0).getReg();
269    if (TargetRegisterInfo::isPhysicalRegister(Reg))
270      EntryMBB->insert(EntryMBB->begin(), MI);
271    else {
272      MachineInstr *Def = RegInfo->getVRegDef(Reg);
273      MachineBasicBlock::iterator InsertPos = Def;
274      // FIXME: VR def may not be in entry block.
275      Def->getParent()->insert(llvm::next(InsertPos), MI);
276    }
277
278    // If Reg is live-in then update debug info to track its copy in a vreg.
279    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
280    if (LDI != LiveInMap.end()) {
281      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
282      MachineBasicBlock::iterator InsertPos = Def;
283      const MDNode *Variable =
284        MI->getOperand(MI->getNumOperands()-1).getMetadata();
285      unsigned Offset = MI->getOperand(1).getImm();
286      // Def is never a terminator here, so it is ok to increment InsertPos.
287      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
288              TII.get(TargetOpcode::DBG_VALUE))
289        .addReg(LDI->second, RegState::Debug)
290        .addImm(Offset).addMetadata(Variable);
291    }
292  }
293
294  // Determine if there are any calls in this machine function.
295  MachineFrameInfo *MFI = MF->getFrameInfo();
296  if (!MFI->hasCalls()) {
297    for (MachineFunction::const_iterator
298           I = MF->begin(), E = MF->end(); I != E; ++I) {
299      const MachineBasicBlock *MBB = I;
300      for (MachineBasicBlock::const_iterator
301             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
302        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
303        if (II->isInlineAsm() || (TID.isCall() && !TID.isReturn())) {
304          MFI->setHasCalls(true);
305          goto done;
306        }
307      }
308    }
309  done:;
310  }
311
312  // Determine if there is a call to setjmp in the machine function.
313  MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
314
315  // Release function-specific state. SDB and CurDAG are already cleared
316  // at this point.
317  FuncInfo->clear();
318
319  return true;
320}
321
322MachineBasicBlock *
323SelectionDAGISel::SelectBasicBlock(MachineBasicBlock *BB,
324                                   const BasicBlock *LLVMBB,
325                                   BasicBlock::const_iterator Begin,
326                                   BasicBlock::const_iterator End,
327                                   bool &HadTailCall) {
328  // Lower all of the non-terminator instructions. If a call is emitted
329  // as a tail call, cease emitting nodes for this block. Terminators
330  // are handled below.
331  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
332    SDB->visit(*I);
333
334  // Make sure the root of the DAG is up-to-date.
335  CurDAG->setRoot(SDB->getControlRoot());
336  HadTailCall = SDB->HasTailCall;
337  SDB->clear();
338
339  // Final step, emit the lowered DAG as machine code.
340  return CodeGenAndEmitDAG(BB);
341}
342
343namespace {
344/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
345/// nodes from the worklist.
346class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
347  SmallVector<SDNode*, 128> &Worklist;
348  SmallPtrSet<SDNode*, 128> &InWorklist;
349public:
350  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
351                       SmallPtrSet<SDNode*, 128> &inwl)
352    : Worklist(wl), InWorklist(inwl) {}
353
354  void RemoveFromWorklist(SDNode *N) {
355    if (!InWorklist.erase(N)) return;
356
357    SmallVector<SDNode*, 128>::iterator I =
358    std::find(Worklist.begin(), Worklist.end(), N);
359    assert(I != Worklist.end() && "Not in worklist");
360
361    *I = Worklist.back();
362    Worklist.pop_back();
363  }
364
365  virtual void NodeDeleted(SDNode *N, SDNode *E) {
366    RemoveFromWorklist(N);
367  }
368
369  virtual void NodeUpdated(SDNode *N) {
370    // Ignore updates.
371  }
372};
373}
374
375void SelectionDAGISel::ComputeLiveOutVRegInfo() {
376  SmallPtrSet<SDNode*, 128> VisitedNodes;
377  SmallVector<SDNode*, 128> Worklist;
378
379  Worklist.push_back(CurDAG->getRoot().getNode());
380
381  APInt Mask;
382  APInt KnownZero;
383  APInt KnownOne;
384
385  do {
386    SDNode *N = Worklist.pop_back_val();
387
388    // If we've already seen this node, ignore it.
389    if (!VisitedNodes.insert(N))
390      continue;
391
392    // Otherwise, add all chain operands to the worklist.
393    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
394      if (N->getOperand(i).getValueType() == MVT::Other)
395        Worklist.push_back(N->getOperand(i).getNode());
396
397    // If this is a CopyToReg with a vreg dest, process it.
398    if (N->getOpcode() != ISD::CopyToReg)
399      continue;
400
401    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
402    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
403      continue;
404
405    // Ignore non-scalar or non-integer values.
406    SDValue Src = N->getOperand(2);
407    EVT SrcVT = Src.getValueType();
408    if (!SrcVT.isInteger() || SrcVT.isVector())
409      continue;
410
411    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
412    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
413    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
414
415    // Only install this information if it tells us something.
416    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
417      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
418      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
419        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
420      FunctionLoweringInfo::LiveOutInfo &LOI =
421        FuncInfo->LiveOutRegInfo[DestReg];
422      LOI.NumSignBits = NumSignBits;
423      LOI.KnownOne = KnownOne;
424      LOI.KnownZero = KnownZero;
425    }
426  } while (!Worklist.empty());
427}
428
429MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
430  std::string GroupName;
431  if (TimePassesIsEnabled)
432    GroupName = "Instruction Selection and Scheduling";
433  std::string BlockName;
434  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
435      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
436      ViewSUnitDAGs)
437    BlockName = MF->getFunction()->getNameStr() + ":" +
438                BB->getBasicBlock()->getNameStr();
439
440  DEBUG(dbgs() << "Initial selection DAG:\n"; CurDAG->dump());
441
442  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
443
444  // Run the DAG combiner in pre-legalize mode.
445  {
446    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
447    CurDAG->Combine(Unrestricted, *AA, OptLevel);
448  }
449
450  DEBUG(dbgs() << "Optimized lowered selection DAG:\n"; CurDAG->dump());
451
452  // Second step, hack on the DAG until it only uses operations and types that
453  // the target supports.
454  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
455                                               BlockName);
456
457  bool Changed;
458  {
459    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
460    Changed = CurDAG->LegalizeTypes();
461  }
462
463  DEBUG(dbgs() << "Type-legalized selection DAG:\n"; CurDAG->dump());
464
465  if (Changed) {
466    if (ViewDAGCombineLT)
467      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
468
469    // Run the DAG combiner in post-type-legalize mode.
470    {
471      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
472                         TimePassesIsEnabled);
473      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
474    }
475
476    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n";
477          CurDAG->dump());
478  }
479
480  {
481    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
482    Changed = CurDAG->LegalizeVectors();
483  }
484
485  if (Changed) {
486    {
487      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
488      CurDAG->LegalizeTypes();
489    }
490
491    if (ViewDAGCombineLT)
492      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
493
494    // Run the DAG combiner in post-type-legalize mode.
495    {
496      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
497                         TimePassesIsEnabled);
498      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
499    }
500
501    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n";
502          CurDAG->dump());
503  }
504
505  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
506
507  {
508    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
509    CurDAG->Legalize(OptLevel);
510  }
511
512  DEBUG(dbgs() << "Legalized selection DAG:\n"; CurDAG->dump());
513
514  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
515
516  // Run the DAG combiner in post-legalize mode.
517  {
518    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
519    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
520  }
521
522  DEBUG(dbgs() << "Optimized legalized selection DAG:\n"; CurDAG->dump());
523
524  if (OptLevel != CodeGenOpt::None)
525    ComputeLiveOutVRegInfo();
526
527  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
528
529  // Third, instruction select all of the operations to machine code, adding the
530  // code to the MachineBasicBlock.
531  {
532    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
533    DoInstructionSelection();
534  }
535
536  DEBUG(dbgs() << "Selected selection DAG:\n"; CurDAG->dump());
537
538  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
539
540  // Schedule machine code.
541  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
542  {
543    NamedRegionTimer T("Instruction Scheduling", GroupName,
544                       TimePassesIsEnabled);
545    Scheduler->Run(CurDAG, BB, BB->end());
546  }
547
548  if (ViewSUnitDAGs) Scheduler->viewGraph();
549
550  // Emit machine code to BB.  This can change 'BB' to the last block being
551  // inserted into.
552  {
553    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
554    BB = Scheduler->EmitSchedule();
555  }
556
557  // Free the scheduler state.
558  {
559    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
560                       TimePassesIsEnabled);
561    delete Scheduler;
562  }
563
564  // Free the SelectionDAG state, now that we're finished with it.
565  CurDAG->clear();
566
567  return BB;
568}
569
570void SelectionDAGISel::DoInstructionSelection() {
571  DEBUG(errs() << "===== Instruction selection begins:\n");
572
573  PreprocessISelDAG();
574
575  // Select target instructions for the DAG.
576  {
577    // Number all nodes with a topological order and set DAGSize.
578    DAGSize = CurDAG->AssignTopologicalOrder();
579
580    // Create a dummy node (which is not added to allnodes), that adds
581    // a reference to the root node, preventing it from being deleted,
582    // and tracking any changes of the root.
583    HandleSDNode Dummy(CurDAG->getRoot());
584    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
585    ++ISelPosition;
586
587    // The AllNodes list is now topological-sorted. Visit the
588    // nodes by starting at the end of the list (the root of the
589    // graph) and preceding back toward the beginning (the entry
590    // node).
591    while (ISelPosition != CurDAG->allnodes_begin()) {
592      SDNode *Node = --ISelPosition;
593      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
594      // but there are currently some corner cases that it misses. Also, this
595      // makes it theoretically possible to disable the DAGCombiner.
596      if (Node->use_empty())
597        continue;
598
599      SDNode *ResNode = Select(Node);
600
601      // FIXME: This is pretty gross.  'Select' should be changed to not return
602      // anything at all and this code should be nuked with a tactical strike.
603
604      // If node should not be replaced, continue with the next one.
605      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
606        continue;
607      // Replace node.
608      if (ResNode)
609        ReplaceUses(Node, ResNode);
610
611      // If after the replacement this node is not used any more,
612      // remove this dead node.
613      if (Node->use_empty()) { // Don't delete EntryToken, etc.
614        ISelUpdater ISU(ISelPosition);
615        CurDAG->RemoveDeadNode(Node, &ISU);
616      }
617    }
618
619    CurDAG->setRoot(Dummy.getValue());
620  }
621
622  DEBUG(errs() << "===== Instruction selection ends:\n");
623
624  PostprocessISelDAG();
625}
626
627/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
628/// do other setup for EH landing-pad blocks.
629void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
630  // Add a label to mark the beginning of the landing pad.  Deletion of the
631  // landing pad can thus be detected via the MachineModuleInfo.
632  MCSymbol *Label = MF->getMMI().addLandingPad(BB);
633
634  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
635  BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
636
637  // Mark exception register as live in.
638  unsigned Reg = TLI.getExceptionAddressRegister();
639  if (Reg) BB->addLiveIn(Reg);
640
641  // Mark exception selector register as live in.
642  Reg = TLI.getExceptionSelectorRegister();
643  if (Reg) BB->addLiveIn(Reg);
644
645  // FIXME: Hack around an exception handling flaw (PR1508): the personality
646  // function and list of typeids logically belong to the invoke (or, if you
647  // like, the basic block containing the invoke), and need to be associated
648  // with it in the dwarf exception handling tables.  Currently however the
649  // information is provided by an intrinsic (eh.selector) that can be moved
650  // to unexpected places by the optimizers: if the unwind edge is critical,
651  // then breaking it can result in the intrinsics being in the successor of
652  // the landing pad, not the landing pad itself.  This results
653  // in exceptions not being caught because no typeids are associated with
654  // the invoke.  This may not be the only way things can go wrong, but it
655  // is the only way we try to work around for the moment.
656  const BasicBlock *LLVMBB = BB->getBasicBlock();
657  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
658
659  if (Br && Br->isUnconditional()) { // Critical edge?
660    BasicBlock::const_iterator I, E;
661    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
662      if (isa<EHSelectorInst>(I))
663        break;
664
665    if (I == E)
666      // No catch info found - try to extract some from the successor.
667      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
668  }
669}
670
671void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
672  // Initialize the Fast-ISel state, if needed.
673  FastISel *FastIS = 0;
674  if (EnableFastISel)
675    FastIS = TLI.createFastISel(*MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
676                                FuncInfo->StaticAllocaMap,
677                                FuncInfo->PHINodesToUpdate
678#ifndef NDEBUG
679                                , FuncInfo->CatchInfoLost
680#endif
681                                );
682
683  // Iterate over all basic blocks in the function.
684  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
685    const BasicBlock *LLVMBB = &*I;
686    MachineBasicBlock *BB = FuncInfo->MBBMap[LLVMBB];
687
688    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
689    BasicBlock::const_iterator const End = LLVMBB->end();
690    BasicBlock::const_iterator BI = Begin;
691
692    // Lower any arguments needed in this block if this is the entry block.
693    if (LLVMBB == &Fn.getEntryBlock())
694      LowerArguments(LLVMBB);
695
696    // Setup an EH landing-pad block.
697    if (BB->isLandingPad())
698      PrepareEHLandingPad(BB);
699
700    // Before doing SelectionDAG ISel, see if FastISel has been requested.
701    if (FastIS) {
702      // Emit code for any incoming arguments. This must happen before
703      // beginning FastISel on the entry block.
704      if (LLVMBB == &Fn.getEntryBlock()) {
705        CurDAG->setRoot(SDB->getControlRoot());
706        SDB->clear();
707        BB = CodeGenAndEmitDAG(BB);
708      }
709      FastIS->startNewBlock(BB);
710      // Do FastISel on as many instructions as possible.
711      for (; BI != End; ++BI) {
712        // Try to select the instruction with FastISel.
713        if (FastIS->SelectInstruction(BI))
714          continue;
715
716        // Then handle certain instructions as single-LLVM-Instruction blocks.
717        if (isa<CallInst>(BI)) {
718          ++NumFastIselFailures;
719          if (EnableFastISelVerbose || EnableFastISelAbort) {
720            dbgs() << "FastISel missed call: ";
721            BI->dump();
722          }
723
724          if (!BI->getType()->isVoidTy() && !BI->use_empty()) {
725            unsigned &R = FuncInfo->ValueMap[BI];
726            if (!R)
727              R = FuncInfo->CreateRegForValue(BI);
728          }
729
730          bool HadTailCall = false;
731          BB = SelectBasicBlock(BB, LLVMBB, BI, llvm::next(BI), HadTailCall);
732
733          // If the call was emitted as a tail call, we're done with the block.
734          if (HadTailCall) {
735            BI = End;
736            break;
737          }
738
739          // If the instruction was codegen'd with multiple blocks,
740          // inform the FastISel object where to resume inserting.
741          FastIS->setCurrentBlock(BB);
742          continue;
743        }
744
745        // Otherwise, give up on FastISel for the rest of the block.
746        // For now, be a little lenient about non-branch terminators.
747        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
748          ++NumFastIselFailures;
749          if (EnableFastISelVerbose || EnableFastISelAbort) {
750            dbgs() << "FastISel miss: ";
751            BI->dump();
752          }
753          if (EnableFastISelAbort)
754            // The "fast" selector couldn't handle something and bailed.
755            // For the purpose of debugging, just abort.
756            llvm_unreachable("FastISel didn't select the entire block");
757        }
758        break;
759      }
760    }
761
762    // Run SelectionDAG instruction selection on the remainder of the block
763    // not handled by FastISel. If FastISel is not run, this is the entire
764    // block.
765    if (BI != End) {
766      bool HadTailCall;
767      BB = SelectBasicBlock(BB, LLVMBB, BI, End, HadTailCall);
768    }
769
770    FinishBasicBlock(BB);
771    FuncInfo->PHINodesToUpdate.clear();
772  }
773
774  delete FastIS;
775}
776
777void
778SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
779
780  DEBUG(dbgs() << "Total amount of phi nodes to update: "
781               << FuncInfo->PHINodesToUpdate.size() << "\n";
782        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
783          dbgs() << "Node " << i << " : ("
784                 << FuncInfo->PHINodesToUpdate[i].first
785                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
786
787  // Next, now that we know what the last MBB the LLVM BB expanded is, update
788  // PHI nodes in successors.
789  if (SDB->SwitchCases.empty() &&
790      SDB->JTCases.empty() &&
791      SDB->BitTestCases.empty()) {
792    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
793      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
794      assert(PHI->isPHI() &&
795             "This is not a machine PHI node that we are updating!");
796      if (!BB->isSuccessor(PHI->getParent()))
797        continue;
798      PHI->addOperand(
799        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
800      PHI->addOperand(MachineOperand::CreateMBB(BB));
801    }
802    return;
803  }
804
805  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
806    // Lower header first, if it wasn't already lowered
807    if (!SDB->BitTestCases[i].Emitted) {
808      // Set the current basic block to the mbb we wish to insert the code into
809      BB = SDB->BitTestCases[i].Parent;
810      // Emit the code
811      SDB->visitBitTestHeader(SDB->BitTestCases[i], BB);
812      CurDAG->setRoot(SDB->getRoot());
813      SDB->clear();
814      BB = CodeGenAndEmitDAG(BB);
815    }
816
817    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
818      // Set the current basic block to the mbb we wish to insert the code into
819      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
820      // Emit the code
821      if (j+1 != ej)
822        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
823                              SDB->BitTestCases[i].Reg,
824                              SDB->BitTestCases[i].Cases[j],
825                              BB);
826      else
827        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
828                              SDB->BitTestCases[i].Reg,
829                              SDB->BitTestCases[i].Cases[j],
830                              BB);
831
832
833      CurDAG->setRoot(SDB->getRoot());
834      SDB->clear();
835      BB = CodeGenAndEmitDAG(BB);
836    }
837
838    // Update PHI Nodes
839    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
840         pi != pe; ++pi) {
841      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
842      MachineBasicBlock *PHIBB = PHI->getParent();
843      assert(PHI->isPHI() &&
844             "This is not a machine PHI node that we are updating!");
845      // This is "default" BB. We have two jumps to it. From "header" BB and
846      // from last "case" BB.
847      if (PHIBB == SDB->BitTestCases[i].Default) {
848        PHI->addOperand(MachineOperand::
849                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
850                                  false));
851        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
852        PHI->addOperand(MachineOperand::
853                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
854                                  false));
855        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
856                                                  back().ThisBB));
857      }
858      // One of "cases" BB.
859      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
860           j != ej; ++j) {
861        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
862        if (cBB->isSuccessor(PHIBB)) {
863          PHI->addOperand(MachineOperand::
864                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
865                                    false));
866          PHI->addOperand(MachineOperand::CreateMBB(cBB));
867        }
868      }
869    }
870  }
871  SDB->BitTestCases.clear();
872
873  // If the JumpTable record is filled in, then we need to emit a jump table.
874  // Updating the PHI nodes is tricky in this case, since we need to determine
875  // whether the PHI is a successor of the range check MBB or the jump table MBB
876  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
877    // Lower header first, if it wasn't already lowered
878    if (!SDB->JTCases[i].first.Emitted) {
879      // Set the current basic block to the mbb we wish to insert the code into
880      BB = SDB->JTCases[i].first.HeaderBB;
881      // Emit the code
882      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
883                                BB);
884      CurDAG->setRoot(SDB->getRoot());
885      SDB->clear();
886      BB = CodeGenAndEmitDAG(BB);
887    }
888
889    // Set the current basic block to the mbb we wish to insert the code into
890    BB = SDB->JTCases[i].second.MBB;
891    // Emit the code
892    SDB->visitJumpTable(SDB->JTCases[i].second);
893    CurDAG->setRoot(SDB->getRoot());
894    SDB->clear();
895    BB = CodeGenAndEmitDAG(BB);
896
897    // Update PHI Nodes
898    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
899         pi != pe; ++pi) {
900      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
901      MachineBasicBlock *PHIBB = PHI->getParent();
902      assert(PHI->isPHI() &&
903             "This is not a machine PHI node that we are updating!");
904      // "default" BB. We can go there only from header BB.
905      if (PHIBB == SDB->JTCases[i].second.Default) {
906        PHI->addOperand
907          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
908                                     false));
909        PHI->addOperand
910          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
911      }
912      // JT BB. Just iterate over successors here
913      if (BB->isSuccessor(PHIBB)) {
914        PHI->addOperand
915          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
916                                     false));
917        PHI->addOperand(MachineOperand::CreateMBB(BB));
918      }
919    }
920  }
921  SDB->JTCases.clear();
922
923  // If the switch block involved a branch to one of the actual successors, we
924  // need to update PHI nodes in that block.
925  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
926    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
927    assert(PHI->isPHI() &&
928           "This is not a machine PHI node that we are updating!");
929    if (BB->isSuccessor(PHI->getParent())) {
930      PHI->addOperand(
931        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
932      PHI->addOperand(MachineOperand::CreateMBB(BB));
933    }
934  }
935
936  // If we generated any switch lowering information, build and codegen any
937  // additional DAGs necessary.
938  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
939    // Set the current basic block to the mbb we wish to insert the code into
940    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
941
942    // Determine the unique successors.
943    SmallVector<MachineBasicBlock *, 2> Succs;
944    Succs.push_back(SDB->SwitchCases[i].TrueBB);
945    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
946      Succs.push_back(SDB->SwitchCases[i].FalseBB);
947
948    // Emit the code. Note that this could result in ThisBB being split, so
949    // we need to check for updates.
950    SDB->visitSwitchCase(SDB->SwitchCases[i], BB);
951    CurDAG->setRoot(SDB->getRoot());
952    SDB->clear();
953    ThisBB = CodeGenAndEmitDAG(BB);
954
955    // Handle any PHI nodes in successors of this chunk, as if we were coming
956    // from the original BB before switch expansion.  Note that PHI nodes can
957    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
958    // handle them the right number of times.
959    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
960      BB = Succs[i];
961      // BB may have been removed from the CFG if a branch was constant folded.
962      if (ThisBB->isSuccessor(BB)) {
963        for (MachineBasicBlock::iterator Phi = BB->begin();
964             Phi != BB->end() && Phi->isPHI();
965             ++Phi) {
966          // This value for this PHI node is recorded in PHINodesToUpdate.
967          for (unsigned pn = 0; ; ++pn) {
968            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
969                   "Didn't find PHI entry!");
970            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
971              Phi->addOperand(MachineOperand::
972                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
973                                        false));
974              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
975              break;
976            }
977          }
978        }
979      }
980    }
981  }
982  SDB->SwitchCases.clear();
983}
984
985
986/// Create the scheduler. If a specific scheduler was specified
987/// via the SchedulerRegistry, use it, otherwise select the
988/// one preferred by the target.
989///
990ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
991  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
992
993  if (!Ctor) {
994    Ctor = ISHeuristic;
995    RegisterScheduler::setDefault(Ctor);
996  }
997
998  return Ctor(this, OptLevel);
999}
1000
1001ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1002  return new ScheduleHazardRecognizer();
1003}
1004
1005//===----------------------------------------------------------------------===//
1006// Helper functions used by the generated instruction selector.
1007//===----------------------------------------------------------------------===//
1008// Calls to these methods are generated by tblgen.
1009
1010/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1011/// the dag combiner simplified the 255, we still want to match.  RHS is the
1012/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1013/// specified in the .td file (e.g. 255).
1014bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1015                                    int64_t DesiredMaskS) const {
1016  const APInt &ActualMask = RHS->getAPIntValue();
1017  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1018
1019  // If the actual mask exactly matches, success!
1020  if (ActualMask == DesiredMask)
1021    return true;
1022
1023  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1024  if (ActualMask.intersects(~DesiredMask))
1025    return false;
1026
1027  // Otherwise, the DAG Combiner may have proven that the value coming in is
1028  // either already zero or is not demanded.  Check for known zero input bits.
1029  APInt NeededMask = DesiredMask & ~ActualMask;
1030  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1031    return true;
1032
1033  // TODO: check to see if missing bits are just not demanded.
1034
1035  // Otherwise, this pattern doesn't match.
1036  return false;
1037}
1038
1039/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1040/// the dag combiner simplified the 255, we still want to match.  RHS is the
1041/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1042/// specified in the .td file (e.g. 255).
1043bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1044                                   int64_t DesiredMaskS) const {
1045  const APInt &ActualMask = RHS->getAPIntValue();
1046  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1047
1048  // If the actual mask exactly matches, success!
1049  if (ActualMask == DesiredMask)
1050    return true;
1051
1052  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1053  if (ActualMask.intersects(~DesiredMask))
1054    return false;
1055
1056  // Otherwise, the DAG Combiner may have proven that the value coming in is
1057  // either already zero or is not demanded.  Check for known zero input bits.
1058  APInt NeededMask = DesiredMask & ~ActualMask;
1059
1060  APInt KnownZero, KnownOne;
1061  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1062
1063  // If all the missing bits in the or are already known to be set, match!
1064  if ((NeededMask & KnownOne) == NeededMask)
1065    return true;
1066
1067  // TODO: check to see if missing bits are just not demanded.
1068
1069  // Otherwise, this pattern doesn't match.
1070  return false;
1071}
1072
1073
1074/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1075/// by tblgen.  Others should not call it.
1076void SelectionDAGISel::
1077SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1078  std::vector<SDValue> InOps;
1079  std::swap(InOps, Ops);
1080
1081  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1082  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1083  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1084
1085  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1086  if (InOps[e-1].getValueType() == MVT::Flag)
1087    --e;  // Don't process a flag operand if it is here.
1088
1089  while (i != e) {
1090    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1091    if (!InlineAsm::isMemKind(Flags)) {
1092      // Just skip over this operand, copying the operands verbatim.
1093      Ops.insert(Ops.end(), InOps.begin()+i,
1094                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1095      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1096    } else {
1097      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1098             "Memory operand with multiple values?");
1099      // Otherwise, this is a memory operand.  Ask the target to select it.
1100      std::vector<SDValue> SelOps;
1101      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1102        report_fatal_error("Could not match memory address.  Inline asm"
1103                           " failure!");
1104
1105      // Add this to the output node.
1106      unsigned NewFlags =
1107        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1108      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1109      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1110      i += 2;
1111    }
1112  }
1113
1114  // Add the flag input back if present.
1115  if (e != InOps.size())
1116    Ops.push_back(InOps.back());
1117}
1118
1119/// findFlagUse - Return use of EVT::Flag value produced by the specified
1120/// SDNode.
1121///
1122static SDNode *findFlagUse(SDNode *N) {
1123  unsigned FlagResNo = N->getNumValues()-1;
1124  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1125    SDUse &Use = I.getUse();
1126    if (Use.getResNo() == FlagResNo)
1127      return Use.getUser();
1128  }
1129  return NULL;
1130}
1131
1132/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1133/// This function recursively traverses up the operand chain, ignoring
1134/// certain nodes.
1135static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1136                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1137                          bool IgnoreChains) {
1138  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1139  // greater than all of its (recursive) operands.  If we scan to a point where
1140  // 'use' is smaller than the node we're scanning for, then we know we will
1141  // never find it.
1142  //
1143  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1144  // happen because we scan down to newly selected nodes in the case of flag
1145  // uses.
1146  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1147    return false;
1148
1149  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1150  // won't fail if we scan it again.
1151  if (!Visited.insert(Use))
1152    return false;
1153
1154  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1155    // Ignore chain uses, they are validated by HandleMergeInputChains.
1156    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1157      continue;
1158
1159    SDNode *N = Use->getOperand(i).getNode();
1160    if (N == Def) {
1161      if (Use == ImmedUse || Use == Root)
1162        continue;  // We are not looking for immediate use.
1163      assert(N != Root);
1164      return true;
1165    }
1166
1167    // Traverse up the operand chain.
1168    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1169      return true;
1170  }
1171  return false;
1172}
1173
1174/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1175/// operand node N of U during instruction selection that starts at Root.
1176bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1177                                          SDNode *Root) const {
1178  if (OptLevel == CodeGenOpt::None) return false;
1179  return N.hasOneUse();
1180}
1181
1182/// IsLegalToFold - Returns true if the specific operand node N of
1183/// U can be folded during instruction selection that starts at Root.
1184bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1185                                     CodeGenOpt::Level OptLevel,
1186                                     bool IgnoreChains) {
1187  if (OptLevel == CodeGenOpt::None) return false;
1188
1189  // If Root use can somehow reach N through a path that that doesn't contain
1190  // U then folding N would create a cycle. e.g. In the following
1191  // diagram, Root can reach N through X. If N is folded into into Root, then
1192  // X is both a predecessor and a successor of U.
1193  //
1194  //          [N*]           //
1195  //         ^   ^           //
1196  //        /     \          //
1197  //      [U*]    [X]?       //
1198  //        ^     ^          //
1199  //         \   /           //
1200  //          \ /            //
1201  //         [Root*]         //
1202  //
1203  // * indicates nodes to be folded together.
1204  //
1205  // If Root produces a flag, then it gets (even more) interesting. Since it
1206  // will be "glued" together with its flag use in the scheduler, we need to
1207  // check if it might reach N.
1208  //
1209  //          [N*]           //
1210  //         ^   ^           //
1211  //        /     \          //
1212  //      [U*]    [X]?       //
1213  //        ^       ^        //
1214  //         \       \       //
1215  //          \      |       //
1216  //         [Root*] |       //
1217  //          ^      |       //
1218  //          f      |       //
1219  //          |      /       //
1220  //         [Y]    /        //
1221  //           ^   /         //
1222  //           f  /          //
1223  //           | /           //
1224  //          [FU]           //
1225  //
1226  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1227  // (call it Fold), then X is a predecessor of FU and a successor of
1228  // Fold. But since Fold and FU are flagged together, this will create
1229  // a cycle in the scheduling graph.
1230
1231  // If the node has flags, walk down the graph to the "lowest" node in the
1232  // flagged set.
1233  EVT VT = Root->getValueType(Root->getNumValues()-1);
1234  while (VT == MVT::Flag) {
1235    SDNode *FU = findFlagUse(Root);
1236    if (FU == NULL)
1237      break;
1238    Root = FU;
1239    VT = Root->getValueType(Root->getNumValues()-1);
1240
1241    // If our query node has a flag result with a use, we've walked up it.  If
1242    // the user (which has already been selected) has a chain or indirectly uses
1243    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1244    // this, we cannot ignore chains in this predicate.
1245    IgnoreChains = false;
1246  }
1247
1248
1249  SmallPtrSet<SDNode*, 16> Visited;
1250  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1251}
1252
1253SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1254  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1255  SelectInlineAsmMemoryOperands(Ops);
1256
1257  std::vector<EVT> VTs;
1258  VTs.push_back(MVT::Other);
1259  VTs.push_back(MVT::Flag);
1260  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1261                                VTs, &Ops[0], Ops.size());
1262  New->setNodeId(-1);
1263  return New.getNode();
1264}
1265
1266SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1267  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1268}
1269
1270/// GetVBR - decode a vbr encoding whose top bit is set.
1271ALWAYS_INLINE static uint64_t
1272GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1273  assert(Val >= 128 && "Not a VBR");
1274  Val &= 127;  // Remove first vbr bit.
1275
1276  unsigned Shift = 7;
1277  uint64_t NextBits;
1278  do {
1279    NextBits = MatcherTable[Idx++];
1280    Val |= (NextBits&127) << Shift;
1281    Shift += 7;
1282  } while (NextBits & 128);
1283
1284  return Val;
1285}
1286
1287
1288/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1289/// interior flag and chain results to use the new flag and chain results.
1290void SelectionDAGISel::
1291UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1292                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1293                     SDValue InputFlag,
1294                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1295                     bool isMorphNodeTo) {
1296  SmallVector<SDNode*, 4> NowDeadNodes;
1297
1298  ISelUpdater ISU(ISelPosition);
1299
1300  // Now that all the normal results are replaced, we replace the chain and
1301  // flag results if present.
1302  if (!ChainNodesMatched.empty()) {
1303    assert(InputChain.getNode() != 0 &&
1304           "Matched input chains but didn't produce a chain");
1305    // Loop over all of the nodes we matched that produced a chain result.
1306    // Replace all the chain results with the final chain we ended up with.
1307    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1308      SDNode *ChainNode = ChainNodesMatched[i];
1309
1310      // If this node was already deleted, don't look at it.
1311      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1312        continue;
1313
1314      // Don't replace the results of the root node if we're doing a
1315      // MorphNodeTo.
1316      if (ChainNode == NodeToMatch && isMorphNodeTo)
1317        continue;
1318
1319      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1320      if (ChainVal.getValueType() == MVT::Flag)
1321        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1322      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1323      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1324
1325      // If the node became dead and we haven't already seen it, delete it.
1326      if (ChainNode->use_empty() &&
1327          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1328        NowDeadNodes.push_back(ChainNode);
1329    }
1330  }
1331
1332  // If the result produces a flag, update any flag results in the matched
1333  // pattern with the flag result.
1334  if (InputFlag.getNode() != 0) {
1335    // Handle any interior nodes explicitly marked.
1336    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1337      SDNode *FRN = FlagResultNodesMatched[i];
1338
1339      // If this node was already deleted, don't look at it.
1340      if (FRN->getOpcode() == ISD::DELETED_NODE)
1341        continue;
1342
1343      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1344             "Doesn't have a flag result");
1345      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1346                                        InputFlag, &ISU);
1347
1348      // If the node became dead and we haven't already seen it, delete it.
1349      if (FRN->use_empty() &&
1350          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1351        NowDeadNodes.push_back(FRN);
1352    }
1353  }
1354
1355  if (!NowDeadNodes.empty())
1356    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1357
1358  DEBUG(errs() << "ISEL: Match complete!\n");
1359}
1360
1361enum ChainResult {
1362  CR_Simple,
1363  CR_InducesCycle,
1364  CR_LeadsToInteriorNode
1365};
1366
1367/// WalkChainUsers - Walk down the users of the specified chained node that is
1368/// part of the pattern we're matching, looking at all of the users we find.
1369/// This determines whether something is an interior node, whether we have a
1370/// non-pattern node in between two pattern nodes (which prevent folding because
1371/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1372/// between pattern nodes (in which case the TF becomes part of the pattern).
1373///
1374/// The walk we do here is guaranteed to be small because we quickly get down to
1375/// already selected nodes "below" us.
1376static ChainResult
1377WalkChainUsers(SDNode *ChainedNode,
1378               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1379               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1380  ChainResult Result = CR_Simple;
1381
1382  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1383         E = ChainedNode->use_end(); UI != E; ++UI) {
1384    // Make sure the use is of the chain, not some other value we produce.
1385    if (UI.getUse().getValueType() != MVT::Other) continue;
1386
1387    SDNode *User = *UI;
1388
1389    // If we see an already-selected machine node, then we've gone beyond the
1390    // pattern that we're selecting down into the already selected chunk of the
1391    // DAG.
1392    if (User->isMachineOpcode() ||
1393        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1394      continue;
1395
1396    if (User->getOpcode() == ISD::CopyToReg ||
1397        User->getOpcode() == ISD::CopyFromReg ||
1398        User->getOpcode() == ISD::INLINEASM ||
1399        User->getOpcode() == ISD::EH_LABEL) {
1400      // If their node ID got reset to -1 then they've already been selected.
1401      // Treat them like a MachineOpcode.
1402      if (User->getNodeId() == -1)
1403        continue;
1404    }
1405
1406    // If we have a TokenFactor, we handle it specially.
1407    if (User->getOpcode() != ISD::TokenFactor) {
1408      // If the node isn't a token factor and isn't part of our pattern, then it
1409      // must be a random chained node in between two nodes we're selecting.
1410      // This happens when we have something like:
1411      //   x = load ptr
1412      //   call
1413      //   y = x+4
1414      //   store y -> ptr
1415      // Because we structurally match the load/store as a read/modify/write,
1416      // but the call is chained between them.  We cannot fold in this case
1417      // because it would induce a cycle in the graph.
1418      if (!std::count(ChainedNodesInPattern.begin(),
1419                      ChainedNodesInPattern.end(), User))
1420        return CR_InducesCycle;
1421
1422      // Otherwise we found a node that is part of our pattern.  For example in:
1423      //   x = load ptr
1424      //   y = x+4
1425      //   store y -> ptr
1426      // This would happen when we're scanning down from the load and see the
1427      // store as a user.  Record that there is a use of ChainedNode that is
1428      // part of the pattern and keep scanning uses.
1429      Result = CR_LeadsToInteriorNode;
1430      InteriorChainedNodes.push_back(User);
1431      continue;
1432    }
1433
1434    // If we found a TokenFactor, there are two cases to consider: first if the
1435    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1436    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1437    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1438    //     [Load chain]
1439    //         ^
1440    //         |
1441    //       [Load]
1442    //       ^    ^
1443    //       |    \                    DAG's like cheese
1444    //      /       \                       do you?
1445    //     /         |
1446    // [TokenFactor] [Op]
1447    //     ^          ^
1448    //     |          |
1449    //      \        /
1450    //       \      /
1451    //       [Store]
1452    //
1453    // In this case, the TokenFactor becomes part of our match and we rewrite it
1454    // as a new TokenFactor.
1455    //
1456    // To distinguish these two cases, do a recursive walk down the uses.
1457    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1458    case CR_Simple:
1459      // If the uses of the TokenFactor are just already-selected nodes, ignore
1460      // it, it is "below" our pattern.
1461      continue;
1462    case CR_InducesCycle:
1463      // If the uses of the TokenFactor lead to nodes that are not part of our
1464      // pattern that are not selected, folding would turn this into a cycle,
1465      // bail out now.
1466      return CR_InducesCycle;
1467    case CR_LeadsToInteriorNode:
1468      break;  // Otherwise, keep processing.
1469    }
1470
1471    // Okay, we know we're in the interesting interior case.  The TokenFactor
1472    // is now going to be considered part of the pattern so that we rewrite its
1473    // uses (it may have uses that are not part of the pattern) with the
1474    // ultimate chain result of the generated code.  We will also add its chain
1475    // inputs as inputs to the ultimate TokenFactor we create.
1476    Result = CR_LeadsToInteriorNode;
1477    ChainedNodesInPattern.push_back(User);
1478    InteriorChainedNodes.push_back(User);
1479    continue;
1480  }
1481
1482  return Result;
1483}
1484
1485/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1486/// operation for when the pattern matched at least one node with a chains.  The
1487/// input vector contains a list of all of the chained nodes that we match.  We
1488/// must determine if this is a valid thing to cover (i.e. matching it won't
1489/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1490/// be used as the input node chain for the generated nodes.
1491static SDValue
1492HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1493                       SelectionDAG *CurDAG) {
1494  // Walk all of the chained nodes we've matched, recursively scanning down the
1495  // users of the chain result. This adds any TokenFactor nodes that are caught
1496  // in between chained nodes to the chained and interior nodes list.
1497  SmallVector<SDNode*, 3> InteriorChainedNodes;
1498  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1499    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1500                       InteriorChainedNodes) == CR_InducesCycle)
1501      return SDValue(); // Would induce a cycle.
1502  }
1503
1504  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1505  // that we are interested in.  Form our input TokenFactor node.
1506  SmallVector<SDValue, 3> InputChains;
1507  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1508    // Add the input chain of this node to the InputChains list (which will be
1509    // the operands of the generated TokenFactor) if it's not an interior node.
1510    SDNode *N = ChainNodesMatched[i];
1511    if (N->getOpcode() != ISD::TokenFactor) {
1512      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1513        continue;
1514
1515      // Otherwise, add the input chain.
1516      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1517      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1518      InputChains.push_back(InChain);
1519      continue;
1520    }
1521
1522    // If we have a token factor, we want to add all inputs of the token factor
1523    // that are not part of the pattern we're matching.
1524    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1525      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1526                      N->getOperand(op).getNode()))
1527        InputChains.push_back(N->getOperand(op));
1528    }
1529  }
1530
1531  SDValue Res;
1532  if (InputChains.size() == 1)
1533    return InputChains[0];
1534  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1535                         MVT::Other, &InputChains[0], InputChains.size());
1536}
1537
1538/// MorphNode - Handle morphing a node in place for the selector.
1539SDNode *SelectionDAGISel::
1540MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1541          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1542  // It is possible we're using MorphNodeTo to replace a node with no
1543  // normal results with one that has a normal result (or we could be
1544  // adding a chain) and the input could have flags and chains as well.
1545  // In this case we need to shift the operands down.
1546  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1547  // than the old isel though.
1548  int OldFlagResultNo = -1, OldChainResultNo = -1;
1549
1550  unsigned NTMNumResults = Node->getNumValues();
1551  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1552    OldFlagResultNo = NTMNumResults-1;
1553    if (NTMNumResults != 1 &&
1554        Node->getValueType(NTMNumResults-2) == MVT::Other)
1555      OldChainResultNo = NTMNumResults-2;
1556  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1557    OldChainResultNo = NTMNumResults-1;
1558
1559  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1560  // that this deletes operands of the old node that become dead.
1561  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1562
1563  // MorphNodeTo can operate in two ways: if an existing node with the
1564  // specified operands exists, it can just return it.  Otherwise, it
1565  // updates the node in place to have the requested operands.
1566  if (Res == Node) {
1567    // If we updated the node in place, reset the node ID.  To the isel,
1568    // this should be just like a newly allocated machine node.
1569    Res->setNodeId(-1);
1570  }
1571
1572  unsigned ResNumResults = Res->getNumValues();
1573  // Move the flag if needed.
1574  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1575      (unsigned)OldFlagResultNo != ResNumResults-1)
1576    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1577                                      SDValue(Res, ResNumResults-1));
1578
1579  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1580  --ResNumResults;
1581
1582  // Move the chain reference if needed.
1583  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1584      (unsigned)OldChainResultNo != ResNumResults-1)
1585    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1586                                      SDValue(Res, ResNumResults-1));
1587
1588  // Otherwise, no replacement happened because the node already exists. Replace
1589  // Uses of the old node with the new one.
1590  if (Res != Node)
1591    CurDAG->ReplaceAllUsesWith(Node, Res);
1592
1593  return Res;
1594}
1595
1596/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1597ALWAYS_INLINE static bool
1598CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1599          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1600  // Accept if it is exactly the same as a previously recorded node.
1601  unsigned RecNo = MatcherTable[MatcherIndex++];
1602  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1603  return N == RecordedNodes[RecNo];
1604}
1605
1606/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1607ALWAYS_INLINE static bool
1608CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1609                      SelectionDAGISel &SDISel) {
1610  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1611}
1612
1613/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1614ALWAYS_INLINE static bool
1615CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1616                   SelectionDAGISel &SDISel, SDNode *N) {
1617  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1618}
1619
1620ALWAYS_INLINE static bool
1621CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1622            SDNode *N) {
1623  uint16_t Opc = MatcherTable[MatcherIndex++];
1624  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1625  return N->getOpcode() == Opc;
1626}
1627
1628ALWAYS_INLINE static bool
1629CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1630          SDValue N, const TargetLowering &TLI) {
1631  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1632  if (N.getValueType() == VT) return true;
1633
1634  // Handle the case when VT is iPTR.
1635  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1636}
1637
1638ALWAYS_INLINE static bool
1639CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1640               SDValue N, const TargetLowering &TLI,
1641               unsigned ChildNo) {
1642  if (ChildNo >= N.getNumOperands())
1643    return false;  // Match fails if out of range child #.
1644  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1645}
1646
1647
1648ALWAYS_INLINE static bool
1649CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1650              SDValue N) {
1651  return cast<CondCodeSDNode>(N)->get() ==
1652      (ISD::CondCode)MatcherTable[MatcherIndex++];
1653}
1654
1655ALWAYS_INLINE static bool
1656CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1657               SDValue N, const TargetLowering &TLI) {
1658  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1659  if (cast<VTSDNode>(N)->getVT() == VT)
1660    return true;
1661
1662  // Handle the case when VT is iPTR.
1663  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1664}
1665
1666ALWAYS_INLINE static bool
1667CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1668             SDValue N) {
1669  int64_t Val = MatcherTable[MatcherIndex++];
1670  if (Val & 128)
1671    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1672
1673  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1674  return C != 0 && C->getSExtValue() == Val;
1675}
1676
1677ALWAYS_INLINE static bool
1678CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1679            SDValue N, SelectionDAGISel &SDISel) {
1680  int64_t Val = MatcherTable[MatcherIndex++];
1681  if (Val & 128)
1682    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1683
1684  if (N->getOpcode() != ISD::AND) return false;
1685
1686  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1687  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1688}
1689
1690ALWAYS_INLINE static bool
1691CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1692           SDValue N, SelectionDAGISel &SDISel) {
1693  int64_t Val = MatcherTable[MatcherIndex++];
1694  if (Val & 128)
1695    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1696
1697  if (N->getOpcode() != ISD::OR) return false;
1698
1699  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1700  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1701}
1702
1703/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1704/// scope, evaluate the current node.  If the current predicate is known to
1705/// fail, set Result=true and return anything.  If the current predicate is
1706/// known to pass, set Result=false and return the MatcherIndex to continue
1707/// with.  If the current predicate is unknown, set Result=false and return the
1708/// MatcherIndex to continue with.
1709static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1710                                       unsigned Index, SDValue N,
1711                                       bool &Result, SelectionDAGISel &SDISel,
1712                                       SmallVectorImpl<SDValue> &RecordedNodes){
1713  switch (Table[Index++]) {
1714  default:
1715    Result = false;
1716    return Index-1;  // Could not evaluate this predicate.
1717  case SelectionDAGISel::OPC_CheckSame:
1718    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1719    return Index;
1720  case SelectionDAGISel::OPC_CheckPatternPredicate:
1721    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1722    return Index;
1723  case SelectionDAGISel::OPC_CheckPredicate:
1724    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1725    return Index;
1726  case SelectionDAGISel::OPC_CheckOpcode:
1727    Result = !::CheckOpcode(Table, Index, N.getNode());
1728    return Index;
1729  case SelectionDAGISel::OPC_CheckType:
1730    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1731    return Index;
1732  case SelectionDAGISel::OPC_CheckChild0Type:
1733  case SelectionDAGISel::OPC_CheckChild1Type:
1734  case SelectionDAGISel::OPC_CheckChild2Type:
1735  case SelectionDAGISel::OPC_CheckChild3Type:
1736  case SelectionDAGISel::OPC_CheckChild4Type:
1737  case SelectionDAGISel::OPC_CheckChild5Type:
1738  case SelectionDAGISel::OPC_CheckChild6Type:
1739  case SelectionDAGISel::OPC_CheckChild7Type:
1740    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1741                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1742    return Index;
1743  case SelectionDAGISel::OPC_CheckCondCode:
1744    Result = !::CheckCondCode(Table, Index, N);
1745    return Index;
1746  case SelectionDAGISel::OPC_CheckValueType:
1747    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1748    return Index;
1749  case SelectionDAGISel::OPC_CheckInteger:
1750    Result = !::CheckInteger(Table, Index, N);
1751    return Index;
1752  case SelectionDAGISel::OPC_CheckAndImm:
1753    Result = !::CheckAndImm(Table, Index, N, SDISel);
1754    return Index;
1755  case SelectionDAGISel::OPC_CheckOrImm:
1756    Result = !::CheckOrImm(Table, Index, N, SDISel);
1757    return Index;
1758  }
1759}
1760
1761namespace {
1762
1763struct MatchScope {
1764  /// FailIndex - If this match fails, this is the index to continue with.
1765  unsigned FailIndex;
1766
1767  /// NodeStack - The node stack when the scope was formed.
1768  SmallVector<SDValue, 4> NodeStack;
1769
1770  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1771  unsigned NumRecordedNodes;
1772
1773  /// NumMatchedMemRefs - The number of matched memref entries.
1774  unsigned NumMatchedMemRefs;
1775
1776  /// InputChain/InputFlag - The current chain/flag
1777  SDValue InputChain, InputFlag;
1778
1779  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1780  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1781};
1782
1783}
1784
1785SDNode *SelectionDAGISel::
1786SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1787                 unsigned TableSize) {
1788  // FIXME: Should these even be selected?  Handle these cases in the caller?
1789  switch (NodeToMatch->getOpcode()) {
1790  default:
1791    break;
1792  case ISD::EntryToken:       // These nodes remain the same.
1793  case ISD::BasicBlock:
1794  case ISD::Register:
1795  //case ISD::VALUETYPE:
1796  //case ISD::CONDCODE:
1797  case ISD::HANDLENODE:
1798  case ISD::MDNODE_SDNODE:
1799  case ISD::TargetConstant:
1800  case ISD::TargetConstantFP:
1801  case ISD::TargetConstantPool:
1802  case ISD::TargetFrameIndex:
1803  case ISD::TargetExternalSymbol:
1804  case ISD::TargetBlockAddress:
1805  case ISD::TargetJumpTable:
1806  case ISD::TargetGlobalTLSAddress:
1807  case ISD::TargetGlobalAddress:
1808  case ISD::TokenFactor:
1809  case ISD::CopyFromReg:
1810  case ISD::CopyToReg:
1811  case ISD::EH_LABEL:
1812    NodeToMatch->setNodeId(-1); // Mark selected.
1813    return 0;
1814  case ISD::AssertSext:
1815  case ISD::AssertZext:
1816    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1817                                      NodeToMatch->getOperand(0));
1818    return 0;
1819  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1820  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1821  }
1822
1823  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1824
1825  // Set up the node stack with NodeToMatch as the only node on the stack.
1826  SmallVector<SDValue, 8> NodeStack;
1827  SDValue N = SDValue(NodeToMatch, 0);
1828  NodeStack.push_back(N);
1829
1830  // MatchScopes - Scopes used when matching, if a match failure happens, this
1831  // indicates where to continue checking.
1832  SmallVector<MatchScope, 8> MatchScopes;
1833
1834  // RecordedNodes - This is the set of nodes that have been recorded by the
1835  // state machine.
1836  SmallVector<SDValue, 8> RecordedNodes;
1837
1838  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1839  // pattern.
1840  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1841
1842  // These are the current input chain and flag for use when generating nodes.
1843  // Various Emit operations change these.  For example, emitting a copytoreg
1844  // uses and updates these.
1845  SDValue InputChain, InputFlag;
1846
1847  // ChainNodesMatched - If a pattern matches nodes that have input/output
1848  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1849  // which ones they are.  The result is captured into this list so that we can
1850  // update the chain results when the pattern is complete.
1851  SmallVector<SDNode*, 3> ChainNodesMatched;
1852  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1853
1854  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1855        NodeToMatch->dump(CurDAG);
1856        errs() << '\n');
1857
1858  // Determine where to start the interpreter.  Normally we start at opcode #0,
1859  // but if the state machine starts with an OPC_SwitchOpcode, then we
1860  // accelerate the first lookup (which is guaranteed to be hot) with the
1861  // OpcodeOffset table.
1862  unsigned MatcherIndex = 0;
1863
1864  if (!OpcodeOffset.empty()) {
1865    // Already computed the OpcodeOffset table, just index into it.
1866    if (N.getOpcode() < OpcodeOffset.size())
1867      MatcherIndex = OpcodeOffset[N.getOpcode()];
1868    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1869
1870  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1871    // Otherwise, the table isn't computed, but the state machine does start
1872    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1873    // is the first time we're selecting an instruction.
1874    unsigned Idx = 1;
1875    while (1) {
1876      // Get the size of this case.
1877      unsigned CaseSize = MatcherTable[Idx++];
1878      if (CaseSize & 128)
1879        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1880      if (CaseSize == 0) break;
1881
1882      // Get the opcode, add the index to the table.
1883      uint16_t Opc = MatcherTable[Idx++];
1884      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
1885      if (Opc >= OpcodeOffset.size())
1886        OpcodeOffset.resize((Opc+1)*2);
1887      OpcodeOffset[Opc] = Idx;
1888      Idx += CaseSize;
1889    }
1890
1891    // Okay, do the lookup for the first opcode.
1892    if (N.getOpcode() < OpcodeOffset.size())
1893      MatcherIndex = OpcodeOffset[N.getOpcode()];
1894  }
1895
1896  while (1) {
1897    assert(MatcherIndex < TableSize && "Invalid index");
1898#ifndef NDEBUG
1899    unsigned CurrentOpcodeIndex = MatcherIndex;
1900#endif
1901    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
1902    switch (Opcode) {
1903    case OPC_Scope: {
1904      // Okay, the semantics of this operation are that we should push a scope
1905      // then evaluate the first child.  However, pushing a scope only to have
1906      // the first check fail (which then pops it) is inefficient.  If we can
1907      // determine immediately that the first check (or first several) will
1908      // immediately fail, don't even bother pushing a scope for them.
1909      unsigned FailIndex;
1910
1911      while (1) {
1912        unsigned NumToSkip = MatcherTable[MatcherIndex++];
1913        if (NumToSkip & 128)
1914          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
1915        // Found the end of the scope with no match.
1916        if (NumToSkip == 0) {
1917          FailIndex = 0;
1918          break;
1919        }
1920
1921        FailIndex = MatcherIndex+NumToSkip;
1922
1923        unsigned MatcherIndexOfPredicate = MatcherIndex;
1924        (void)MatcherIndexOfPredicate; // silence warning.
1925
1926        // If we can't evaluate this predicate without pushing a scope (e.g. if
1927        // it is a 'MoveParent') or if the predicate succeeds on this node, we
1928        // push the scope and evaluate the full predicate chain.
1929        bool Result;
1930        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
1931                                              Result, *this, RecordedNodes);
1932        if (!Result)
1933          break;
1934
1935        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
1936                     << "index " << MatcherIndexOfPredicate
1937                     << ", continuing at " << FailIndex << "\n");
1938        ++NumDAGIselRetries;
1939
1940        // Otherwise, we know that this case of the Scope is guaranteed to fail,
1941        // move to the next case.
1942        MatcherIndex = FailIndex;
1943      }
1944
1945      // If the whole scope failed to match, bail.
1946      if (FailIndex == 0) break;
1947
1948      // Push a MatchScope which indicates where to go if the first child fails
1949      // to match.
1950      MatchScope NewEntry;
1951      NewEntry.FailIndex = FailIndex;
1952      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
1953      NewEntry.NumRecordedNodes = RecordedNodes.size();
1954      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
1955      NewEntry.InputChain = InputChain;
1956      NewEntry.InputFlag = InputFlag;
1957      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
1958      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
1959      MatchScopes.push_back(NewEntry);
1960      continue;
1961    }
1962    case OPC_RecordNode:
1963      // Remember this node, it may end up being an operand in the pattern.
1964      RecordedNodes.push_back(N);
1965      continue;
1966
1967    case OPC_RecordChild0: case OPC_RecordChild1:
1968    case OPC_RecordChild2: case OPC_RecordChild3:
1969    case OPC_RecordChild4: case OPC_RecordChild5:
1970    case OPC_RecordChild6: case OPC_RecordChild7: {
1971      unsigned ChildNo = Opcode-OPC_RecordChild0;
1972      if (ChildNo >= N.getNumOperands())
1973        break;  // Match fails if out of range child #.
1974
1975      RecordedNodes.push_back(N->getOperand(ChildNo));
1976      continue;
1977    }
1978    case OPC_RecordMemRef:
1979      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
1980      continue;
1981
1982    case OPC_CaptureFlagInput:
1983      // If the current node has an input flag, capture it in InputFlag.
1984      if (N->getNumOperands() != 0 &&
1985          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
1986        InputFlag = N->getOperand(N->getNumOperands()-1);
1987      continue;
1988
1989    case OPC_MoveChild: {
1990      unsigned ChildNo = MatcherTable[MatcherIndex++];
1991      if (ChildNo >= N.getNumOperands())
1992        break;  // Match fails if out of range child #.
1993      N = N.getOperand(ChildNo);
1994      NodeStack.push_back(N);
1995      continue;
1996    }
1997
1998    case OPC_MoveParent:
1999      // Pop the current node off the NodeStack.
2000      NodeStack.pop_back();
2001      assert(!NodeStack.empty() && "Node stack imbalance!");
2002      N = NodeStack.back();
2003      continue;
2004
2005    case OPC_CheckSame:
2006      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2007      continue;
2008    case OPC_CheckPatternPredicate:
2009      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2010      continue;
2011    case OPC_CheckPredicate:
2012      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2013                                N.getNode()))
2014        break;
2015      continue;
2016    case OPC_CheckComplexPat: {
2017      unsigned CPNum = MatcherTable[MatcherIndex++];
2018      unsigned RecNo = MatcherTable[MatcherIndex++];
2019      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2020      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2021                               RecordedNodes))
2022        break;
2023      continue;
2024    }
2025    case OPC_CheckOpcode:
2026      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2027      continue;
2028
2029    case OPC_CheckType:
2030      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2031      continue;
2032
2033    case OPC_SwitchOpcode: {
2034      unsigned CurNodeOpcode = N.getOpcode();
2035      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2036      unsigned CaseSize;
2037      while (1) {
2038        // Get the size of this case.
2039        CaseSize = MatcherTable[MatcherIndex++];
2040        if (CaseSize & 128)
2041          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2042        if (CaseSize == 0) break;
2043
2044        uint16_t Opc = MatcherTable[MatcherIndex++];
2045        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2046
2047        // If the opcode matches, then we will execute this case.
2048        if (CurNodeOpcode == Opc)
2049          break;
2050
2051        // Otherwise, skip over this case.
2052        MatcherIndex += CaseSize;
2053      }
2054
2055      // If no cases matched, bail out.
2056      if (CaseSize == 0) break;
2057
2058      // Otherwise, execute the case we found.
2059      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2060                   << " to " << MatcherIndex << "\n");
2061      continue;
2062    }
2063
2064    case OPC_SwitchType: {
2065      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2066      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2067      unsigned CaseSize;
2068      while (1) {
2069        // Get the size of this case.
2070        CaseSize = MatcherTable[MatcherIndex++];
2071        if (CaseSize & 128)
2072          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2073        if (CaseSize == 0) break;
2074
2075        MVT::SimpleValueType CaseVT =
2076          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2077        if (CaseVT == MVT::iPTR)
2078          CaseVT = TLI.getPointerTy().SimpleTy;
2079
2080        // If the VT matches, then we will execute this case.
2081        if (CurNodeVT == CaseVT)
2082          break;
2083
2084        // Otherwise, skip over this case.
2085        MatcherIndex += CaseSize;
2086      }
2087
2088      // If no cases matched, bail out.
2089      if (CaseSize == 0) break;
2090
2091      // Otherwise, execute the case we found.
2092      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2093                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2094      continue;
2095    }
2096    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2097    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2098    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2099    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2100      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2101                            Opcode-OPC_CheckChild0Type))
2102        break;
2103      continue;
2104    case OPC_CheckCondCode:
2105      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2106      continue;
2107    case OPC_CheckValueType:
2108      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2109      continue;
2110    case OPC_CheckInteger:
2111      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2112      continue;
2113    case OPC_CheckAndImm:
2114      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2115      continue;
2116    case OPC_CheckOrImm:
2117      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2118      continue;
2119
2120    case OPC_CheckFoldableChainNode: {
2121      assert(NodeStack.size() != 1 && "No parent node");
2122      // Verify that all intermediate nodes between the root and this one have
2123      // a single use.
2124      bool HasMultipleUses = false;
2125      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2126        if (!NodeStack[i].hasOneUse()) {
2127          HasMultipleUses = true;
2128          break;
2129        }
2130      if (HasMultipleUses) break;
2131
2132      // Check to see that the target thinks this is profitable to fold and that
2133      // we can fold it without inducing cycles in the graph.
2134      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2135                              NodeToMatch) ||
2136          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2137                         NodeToMatch, OptLevel,
2138                         true/*We validate our own chains*/))
2139        break;
2140
2141      continue;
2142    }
2143    case OPC_EmitInteger: {
2144      MVT::SimpleValueType VT =
2145        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2146      int64_t Val = MatcherTable[MatcherIndex++];
2147      if (Val & 128)
2148        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2149      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2150      continue;
2151    }
2152    case OPC_EmitRegister: {
2153      MVT::SimpleValueType VT =
2154        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2155      unsigned RegNo = MatcherTable[MatcherIndex++];
2156      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2157      continue;
2158    }
2159
2160    case OPC_EmitConvertToTarget:  {
2161      // Convert from IMM/FPIMM to target version.
2162      unsigned RecNo = MatcherTable[MatcherIndex++];
2163      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2164      SDValue Imm = RecordedNodes[RecNo];
2165
2166      if (Imm->getOpcode() == ISD::Constant) {
2167        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2168        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2169      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2170        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2171        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2172      }
2173
2174      RecordedNodes.push_back(Imm);
2175      continue;
2176    }
2177
2178    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2179    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2180      // These are space-optimized forms of OPC_EmitMergeInputChains.
2181      assert(InputChain.getNode() == 0 &&
2182             "EmitMergeInputChains should be the first chain producing node");
2183      assert(ChainNodesMatched.empty() &&
2184             "Should only have one EmitMergeInputChains per match");
2185
2186      // Read all of the chained nodes.
2187      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2188      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2189      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2190
2191      // FIXME: What if other value results of the node have uses not matched
2192      // by this pattern?
2193      if (ChainNodesMatched.back() != NodeToMatch &&
2194          !RecordedNodes[RecNo].hasOneUse()) {
2195        ChainNodesMatched.clear();
2196        break;
2197      }
2198
2199      // Merge the input chains if they are not intra-pattern references.
2200      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2201
2202      if (InputChain.getNode() == 0)
2203        break;  // Failed to merge.
2204      continue;
2205    }
2206
2207    case OPC_EmitMergeInputChains: {
2208      assert(InputChain.getNode() == 0 &&
2209             "EmitMergeInputChains should be the first chain producing node");
2210      // This node gets a list of nodes we matched in the input that have
2211      // chains.  We want to token factor all of the input chains to these nodes
2212      // together.  However, if any of the input chains is actually one of the
2213      // nodes matched in this pattern, then we have an intra-match reference.
2214      // Ignore these because the newly token factored chain should not refer to
2215      // the old nodes.
2216      unsigned NumChains = MatcherTable[MatcherIndex++];
2217      assert(NumChains != 0 && "Can't TF zero chains");
2218
2219      assert(ChainNodesMatched.empty() &&
2220             "Should only have one EmitMergeInputChains per match");
2221
2222      // Read all of the chained nodes.
2223      for (unsigned i = 0; i != NumChains; ++i) {
2224        unsigned RecNo = MatcherTable[MatcherIndex++];
2225        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2226        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2227
2228        // FIXME: What if other value results of the node have uses not matched
2229        // by this pattern?
2230        if (ChainNodesMatched.back() != NodeToMatch &&
2231            !RecordedNodes[RecNo].hasOneUse()) {
2232          ChainNodesMatched.clear();
2233          break;
2234        }
2235      }
2236
2237      // If the inner loop broke out, the match fails.
2238      if (ChainNodesMatched.empty())
2239        break;
2240
2241      // Merge the input chains if they are not intra-pattern references.
2242      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2243
2244      if (InputChain.getNode() == 0)
2245        break;  // Failed to merge.
2246
2247      continue;
2248    }
2249
2250    case OPC_EmitCopyToReg: {
2251      unsigned RecNo = MatcherTable[MatcherIndex++];
2252      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2253      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2254
2255      if (InputChain.getNode() == 0)
2256        InputChain = CurDAG->getEntryNode();
2257
2258      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2259                                        DestPhysReg, RecordedNodes[RecNo],
2260                                        InputFlag);
2261
2262      InputFlag = InputChain.getValue(1);
2263      continue;
2264    }
2265
2266    case OPC_EmitNodeXForm: {
2267      unsigned XFormNo = MatcherTable[MatcherIndex++];
2268      unsigned RecNo = MatcherTable[MatcherIndex++];
2269      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2270      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2271      continue;
2272    }
2273
2274    case OPC_EmitNode:
2275    case OPC_MorphNodeTo: {
2276      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2277      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2278      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2279      // Get the result VT list.
2280      unsigned NumVTs = MatcherTable[MatcherIndex++];
2281      SmallVector<EVT, 4> VTs;
2282      for (unsigned i = 0; i != NumVTs; ++i) {
2283        MVT::SimpleValueType VT =
2284          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2285        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2286        VTs.push_back(VT);
2287      }
2288
2289      if (EmitNodeInfo & OPFL_Chain)
2290        VTs.push_back(MVT::Other);
2291      if (EmitNodeInfo & OPFL_FlagOutput)
2292        VTs.push_back(MVT::Flag);
2293
2294      // This is hot code, so optimize the two most common cases of 1 and 2
2295      // results.
2296      SDVTList VTList;
2297      if (VTs.size() == 1)
2298        VTList = CurDAG->getVTList(VTs[0]);
2299      else if (VTs.size() == 2)
2300        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2301      else
2302        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2303
2304      // Get the operand list.
2305      unsigned NumOps = MatcherTable[MatcherIndex++];
2306      SmallVector<SDValue, 8> Ops;
2307      for (unsigned i = 0; i != NumOps; ++i) {
2308        unsigned RecNo = MatcherTable[MatcherIndex++];
2309        if (RecNo & 128)
2310          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2311
2312        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2313        Ops.push_back(RecordedNodes[RecNo]);
2314      }
2315
2316      // If there are variadic operands to add, handle them now.
2317      if (EmitNodeInfo & OPFL_VariadicInfo) {
2318        // Determine the start index to copy from.
2319        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2320        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2321        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2322               "Invalid variadic node");
2323        // Copy all of the variadic operands, not including a potential flag
2324        // input.
2325        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2326             i != e; ++i) {
2327          SDValue V = NodeToMatch->getOperand(i);
2328          if (V.getValueType() == MVT::Flag) break;
2329          Ops.push_back(V);
2330        }
2331      }
2332
2333      // If this has chain/flag inputs, add them.
2334      if (EmitNodeInfo & OPFL_Chain)
2335        Ops.push_back(InputChain);
2336      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2337        Ops.push_back(InputFlag);
2338
2339      // Create the node.
2340      SDNode *Res = 0;
2341      if (Opcode != OPC_MorphNodeTo) {
2342        // If this is a normal EmitNode command, just create the new node and
2343        // add the results to the RecordedNodes list.
2344        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2345                                     VTList, Ops.data(), Ops.size());
2346
2347        // Add all the non-flag/non-chain results to the RecordedNodes list.
2348        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2349          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2350          RecordedNodes.push_back(SDValue(Res, i));
2351        }
2352
2353      } else {
2354        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2355                        EmitNodeInfo);
2356      }
2357
2358      // If the node had chain/flag results, update our notion of the current
2359      // chain and flag.
2360      if (EmitNodeInfo & OPFL_FlagOutput) {
2361        InputFlag = SDValue(Res, VTs.size()-1);
2362        if (EmitNodeInfo & OPFL_Chain)
2363          InputChain = SDValue(Res, VTs.size()-2);
2364      } else if (EmitNodeInfo & OPFL_Chain)
2365        InputChain = SDValue(Res, VTs.size()-1);
2366
2367      // If the OPFL_MemRefs flag is set on this node, slap all of the
2368      // accumulated memrefs onto it.
2369      //
2370      // FIXME: This is vastly incorrect for patterns with multiple outputs
2371      // instructions that access memory and for ComplexPatterns that match
2372      // loads.
2373      if (EmitNodeInfo & OPFL_MemRefs) {
2374        MachineSDNode::mmo_iterator MemRefs =
2375          MF->allocateMemRefsArray(MatchedMemRefs.size());
2376        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2377        cast<MachineSDNode>(Res)
2378          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2379      }
2380
2381      DEBUG(errs() << "  "
2382                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2383                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2384
2385      // If this was a MorphNodeTo then we're completely done!
2386      if (Opcode == OPC_MorphNodeTo) {
2387        // Update chain and flag uses.
2388        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2389                             InputFlag, FlagResultNodesMatched, true);
2390        return Res;
2391      }
2392
2393      continue;
2394    }
2395
2396    case OPC_MarkFlagResults: {
2397      unsigned NumNodes = MatcherTable[MatcherIndex++];
2398
2399      // Read and remember all the flag-result nodes.
2400      for (unsigned i = 0; i != NumNodes; ++i) {
2401        unsigned RecNo = MatcherTable[MatcherIndex++];
2402        if (RecNo & 128)
2403          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2404
2405        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2406        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2407      }
2408      continue;
2409    }
2410
2411    case OPC_CompleteMatch: {
2412      // The match has been completed, and any new nodes (if any) have been
2413      // created.  Patch up references to the matched dag to use the newly
2414      // created nodes.
2415      unsigned NumResults = MatcherTable[MatcherIndex++];
2416
2417      for (unsigned i = 0; i != NumResults; ++i) {
2418        unsigned ResSlot = MatcherTable[MatcherIndex++];
2419        if (ResSlot & 128)
2420          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2421
2422        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2423        SDValue Res = RecordedNodes[ResSlot];
2424
2425        assert(i < NodeToMatch->getNumValues() &&
2426               NodeToMatch->getValueType(i) != MVT::Other &&
2427               NodeToMatch->getValueType(i) != MVT::Flag &&
2428               "Invalid number of results to complete!");
2429        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2430                NodeToMatch->getValueType(i) == MVT::iPTR ||
2431                Res.getValueType() == MVT::iPTR ||
2432                NodeToMatch->getValueType(i).getSizeInBits() ==
2433                    Res.getValueType().getSizeInBits()) &&
2434               "invalid replacement");
2435        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2436      }
2437
2438      // If the root node defines a flag, add it to the flag nodes to update
2439      // list.
2440      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2441        FlagResultNodesMatched.push_back(NodeToMatch);
2442
2443      // Update chain and flag uses.
2444      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2445                           InputFlag, FlagResultNodesMatched, false);
2446
2447      assert(NodeToMatch->use_empty() &&
2448             "Didn't replace all uses of the node?");
2449
2450      // FIXME: We just return here, which interacts correctly with SelectRoot
2451      // above.  We should fix this to not return an SDNode* anymore.
2452      return 0;
2453    }
2454    }
2455
2456    // If the code reached this point, then the match failed.  See if there is
2457    // another child to try in the current 'Scope', otherwise pop it until we
2458    // find a case to check.
2459    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2460    ++NumDAGIselRetries;
2461    while (1) {
2462      if (MatchScopes.empty()) {
2463        CannotYetSelect(NodeToMatch);
2464        return 0;
2465      }
2466
2467      // Restore the interpreter state back to the point where the scope was
2468      // formed.
2469      MatchScope &LastScope = MatchScopes.back();
2470      RecordedNodes.resize(LastScope.NumRecordedNodes);
2471      NodeStack.clear();
2472      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2473      N = NodeStack.back();
2474
2475      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2476        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2477      MatcherIndex = LastScope.FailIndex;
2478
2479      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2480
2481      InputChain = LastScope.InputChain;
2482      InputFlag = LastScope.InputFlag;
2483      if (!LastScope.HasChainNodesMatched)
2484        ChainNodesMatched.clear();
2485      if (!LastScope.HasFlagResultNodesMatched)
2486        FlagResultNodesMatched.clear();
2487
2488      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2489      // we have reached the end of this scope, otherwise we have another child
2490      // in the current scope to try.
2491      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2492      if (NumToSkip & 128)
2493        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2494
2495      // If we have another child in this scope to match, update FailIndex and
2496      // try it.
2497      if (NumToSkip != 0) {
2498        LastScope.FailIndex = MatcherIndex+NumToSkip;
2499        break;
2500      }
2501
2502      // End of this scope, pop it and try the next child in the containing
2503      // scope.
2504      MatchScopes.pop_back();
2505    }
2506  }
2507}
2508
2509
2510
2511void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2512  std::string msg;
2513  raw_string_ostream Msg(msg);
2514  Msg << "Cannot yet select: ";
2515
2516  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2517      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2518      N->getOpcode() != ISD::INTRINSIC_VOID) {
2519    N->printrFull(Msg, CurDAG);
2520  } else {
2521    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2522    unsigned iid =
2523      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2524    if (iid < Intrinsic::num_intrinsics)
2525      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2526    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2527      Msg << "target intrinsic %" << TII->getName(iid);
2528    else
2529      Msg << "unknown intrinsic #" << iid;
2530  }
2531  report_fatal_error(Msg.str());
2532}
2533
2534char SelectionDAGISel::ID = 0;
2535