SelectionDAGISel.cpp revision 9851e78217bb61e1626440fb09204bee37e22728
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionAnalysis.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/CodeGen/DwarfWriter.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/Timer.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62static cl::opt<bool>
63EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
64          cl::desc("Enable verbose messages in the \"fast\" "
65                   "instruction selector"));
66static cl::opt<bool>
67EnableFastISelAbort("fast-isel-abort", cl::Hidden,
68          cl::desc("Enable abort calls when \"fast\" instruction fails"));
69static cl::opt<bool>
70SchedLiveInCopies("schedule-livein-copies", cl::Hidden,
71                  cl::desc("Schedule copies of livein registers"),
72                  cl::init(false));
73
74#ifndef NDEBUG
75static cl::opt<bool>
76ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the first "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before legalize types"));
82static cl::opt<bool>
83ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize"));
85static cl::opt<bool>
86ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before the second "
88                   "dag combine pass"));
89static cl::opt<bool>
90ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
91          cl::desc("Pop up a window to show dags before the post legalize types"
92                   " dag combine pass"));
93static cl::opt<bool>
94ViewISelDAGs("view-isel-dags", cl::Hidden,
95          cl::desc("Pop up a window to show isel dags as they are selected"));
96static cl::opt<bool>
97ViewSchedDAGs("view-sched-dags", cl::Hidden,
98          cl::desc("Pop up a window to show sched dags as they are processed"));
99static cl::opt<bool>
100ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
101      cl::desc("Pop up a window to show SUnit dags after they are processed"));
102#else
103static const bool ViewDAGCombine1 = false,
104                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
105                  ViewDAGCombine2 = false,
106                  ViewDAGCombineLT = false,
107                  ViewISelDAGs = false, ViewSchedDAGs = false,
108                  ViewSUnitDAGs = false;
109#endif
110
111//===---------------------------------------------------------------------===//
112///
113/// RegisterScheduler class - Track the registration of instruction schedulers.
114///
115//===---------------------------------------------------------------------===//
116MachinePassRegistry RegisterScheduler::Registry;
117
118//===---------------------------------------------------------------------===//
119///
120/// ISHeuristic command line option for instruction schedulers.
121///
122//===---------------------------------------------------------------------===//
123static cl::opt<RegisterScheduler::FunctionPassCtor, false,
124               RegisterPassParser<RegisterScheduler> >
125ISHeuristic("pre-RA-sched",
126            cl::init(&createDefaultScheduler),
127            cl::desc("Instruction schedulers available (before register"
128                     " allocation):"));
129
130static RegisterScheduler
131defaultListDAGScheduler("default", "Best scheduler for the target",
132                        createDefaultScheduler);
133
134namespace llvm {
135  //===--------------------------------------------------------------------===//
136  /// createDefaultScheduler - This creates an instruction scheduler appropriate
137  /// for the target.
138  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
139                                             CodeGenOpt::Level OptLevel) {
140    const TargetLowering &TLI = IS->getTargetLowering();
141
142    if (OptLevel == CodeGenOpt::None)
143      return createFastDAGScheduler(IS, OptLevel);
144    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
145      return createTDListDAGScheduler(IS, OptLevel);
146    assert(TLI.getSchedulingPreference() ==
147           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
148    return createBURRListDAGScheduler(IS, OptLevel);
149  }
150}
151
152// EmitInstrWithCustomInserter - This method should be implemented by targets
153// that mark instructions with the 'usesCustomInserter' flag.  These
154// instructions are special in various ways, which require special support to
155// insert.  The specified MachineInstr is created but not inserted into any
156// basic blocks, and this method is called to expand it into a sequence of
157// instructions, potentially also creating new basic blocks and control flow.
158// When new basic blocks are inserted and the edges from MBB to its successors
159// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
160// DenseMap.
161MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
162                                                         MachineBasicBlock *MBB,
163                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
164#ifndef NDEBUG
165  dbgs() << "If a target marks an instruction with "
166          "'usesCustomInserter', it must implement "
167          "TargetLowering::EmitInstrWithCustomInserter!";
168#endif
169  llvm_unreachable(0);
170  return 0;
171}
172
173/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
174/// physical register has only a single copy use, then coalesced the copy
175/// if possible.
176static void EmitLiveInCopy(MachineBasicBlock *MBB,
177                           MachineBasicBlock::iterator &InsertPos,
178                           unsigned VirtReg, unsigned PhysReg,
179                           const TargetRegisterClass *RC,
180                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
181                           const MachineRegisterInfo &MRI,
182                           const TargetRegisterInfo &TRI,
183                           const TargetInstrInfo &TII) {
184  unsigned NumUses = 0;
185  MachineInstr *UseMI = NULL;
186  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
187         UE = MRI.use_end(); UI != UE; ++UI) {
188    UseMI = &*UI;
189    if (++NumUses > 1)
190      break;
191  }
192
193  // If the number of uses is not one, or the use is not a move instruction,
194  // don't coalesce. Also, only coalesce away a virtual register to virtual
195  // register copy.
196  bool Coalesced = false;
197  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
198  if (NumUses == 1 &&
199      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
200      TargetRegisterInfo::isVirtualRegister(DstReg)) {
201    VirtReg = DstReg;
202    Coalesced = true;
203  }
204
205  // Now find an ideal location to insert the copy.
206  MachineBasicBlock::iterator Pos = InsertPos;
207  while (Pos != MBB->begin()) {
208    MachineInstr *PrevMI = prior(Pos);
209    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
210    // copyRegToReg might emit multiple instructions to do a copy.
211    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
212    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
213      // This is what the BB looks like right now:
214      // r1024 = mov r0
215      // ...
216      // r1    = mov r1024
217      //
218      // We want to insert "r1025 = mov r1". Inserting this copy below the
219      // move to r1024 makes it impossible for that move to be coalesced.
220      //
221      // r1025 = mov r1
222      // r1024 = mov r0
223      // ...
224      // r1    = mov 1024
225      // r2    = mov 1025
226      break; // Woot! Found a good location.
227    --Pos;
228  }
229
230  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
231  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
232  (void) Emitted;
233
234  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
235  if (Coalesced) {
236    if (&*InsertPos == UseMI) ++InsertPos;
237    MBB->erase(UseMI);
238  }
239}
240
241/// EmitLiveInCopies - If this is the first basic block in the function,
242/// and if it has live ins that need to be copied into vregs, emit the
243/// copies into the block.
244static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
245                             const MachineRegisterInfo &MRI,
246                             const TargetRegisterInfo &TRI,
247                             const TargetInstrInfo &TII) {
248  if (SchedLiveInCopies) {
249    // Emit the copies at a heuristically-determined location in the block.
250    DenseMap<MachineInstr*, unsigned> CopyRegMap;
251    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
252    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
253           E = MRI.livein_end(); LI != E; ++LI)
254      if (LI->second) {
255        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
256        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
257                       RC, CopyRegMap, MRI, TRI, TII);
258      }
259  } else {
260    // Emit the copies into the top of the block.
261    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
262           E = MRI.livein_end(); LI != E; ++LI)
263      if (LI->second) {
264        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
265        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
266                                        LI->second, LI->first, RC, RC);
267        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
268        (void) Emitted;
269      }
270  }
271}
272
273//===----------------------------------------------------------------------===//
274// SelectionDAGISel code
275//===----------------------------------------------------------------------===//
276
277SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
278  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
279  FuncInfo(new FunctionLoweringInfo(TLI)),
280  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
281  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
282  GFI(),
283  OptLevel(OL),
284  DAGSize(0)
285{}
286
287SelectionDAGISel::~SelectionDAGISel() {
288  delete SDB;
289  delete CurDAG;
290  delete FuncInfo;
291}
292
293unsigned SelectionDAGISel::MakeReg(EVT VT) {
294  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
295}
296
297void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
298  AU.addRequired<AliasAnalysis>();
299  AU.addPreserved<AliasAnalysis>();
300  AU.addRequired<GCModuleInfo>();
301  AU.addPreserved<GCModuleInfo>();
302  AU.addRequired<DwarfWriter>();
303  AU.addPreserved<DwarfWriter>();
304  MachineFunctionPass::getAnalysisUsage(AU);
305}
306
307bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
308  Function &Fn = *mf.getFunction();
309
310  // Do some sanity-checking on the command-line options.
311  assert((!EnableFastISelVerbose || EnableFastISel) &&
312         "-fast-isel-verbose requires -fast-isel");
313  assert((!EnableFastISelAbort || EnableFastISel) &&
314         "-fast-isel-abort requires -fast-isel");
315
316  // Get alias analysis for load/store combining.
317  AA = &getAnalysis<AliasAnalysis>();
318
319  MF = &mf;
320  const TargetInstrInfo &TII = *TM.getInstrInfo();
321  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
322
323  if (Fn.hasGC())
324    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
325  else
326    GFI = 0;
327  RegInfo = &MF->getRegInfo();
328  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
329
330  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
331  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
332  CurDAG->init(*MF, MMI, DW);
333  FuncInfo->set(Fn, *MF, EnableFastISel);
334  SDB->init(GFI, *AA);
335
336  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
337    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
338      // Mark landing pad.
339      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
340
341  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
342
343  // If the first basic block in the function has live ins that need to be
344  // copied into vregs, emit the copies into the top of the block before
345  // emitting the code for the block.
346  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
347
348  // Add function live-ins to entry block live-in set.
349  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
350         E = RegInfo->livein_end(); I != E; ++I)
351    MF->begin()->addLiveIn(I->first);
352
353#ifndef NDEBUG
354  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
355         "Not all catch info was assigned to a landing pad!");
356#endif
357
358  FuncInfo->clear();
359
360  return true;
361}
362
363/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
364/// attached with this instruction.
365static void SetDebugLoc(unsigned MDDbgKind, Instruction *I,
366                        SelectionDAGBuilder *SDB,
367                        FastISel *FastIS, MachineFunction *MF) {
368  if (isa<DbgInfoIntrinsic>(I)) return;
369
370  if (MDNode *Dbg = I->getMetadata(MDDbgKind)) {
371    DILocation DILoc(Dbg);
372    DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo());
373
374    SDB->setCurDebugLoc(Loc);
375
376    if (FastIS)
377      FastIS->setCurDebugLoc(Loc);
378
379    // If the function doesn't have a default debug location yet, set
380    // it. This is kind of a hack.
381    if (MF->getDefaultDebugLoc().isUnknown())
382      MF->setDefaultDebugLoc(Loc);
383  }
384}
385
386/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
387static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
388  SDB->setCurDebugLoc(DebugLoc::getUnknownLoc());
389  if (FastIS)
390    FastIS->setCurDebugLoc(DebugLoc::getUnknownLoc());
391}
392
393void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
394                                        BasicBlock::iterator Begin,
395                                        BasicBlock::iterator End,
396                                        bool &HadTailCall) {
397  SDB->setCurrentBasicBlock(BB);
398  unsigned MDDbgKind = LLVMBB->getContext().getMDKindID("dbg");
399
400  // Lower all of the non-terminator instructions. If a call is emitted
401  // as a tail call, cease emitting nodes for this block.
402  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
403    SetDebugLoc(MDDbgKind, I, SDB, 0, MF);
404
405    if (!isa<TerminatorInst>(I)) {
406      SDB->visit(*I);
407
408      // Set the current debug location back to "unknown" so that it doesn't
409      // spuriously apply to subsequent instructions.
410      ResetDebugLoc(SDB, 0);
411    }
412  }
413
414  if (!SDB->HasTailCall) {
415    // Ensure that all instructions which are used outside of their defining
416    // blocks are available as virtual registers.  Invoke is handled elsewhere.
417    for (BasicBlock::iterator I = Begin; I != End; ++I)
418      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
419        SDB->CopyToExportRegsIfNeeded(I);
420
421    // Handle PHI nodes in successor blocks.
422    if (End == LLVMBB->end()) {
423      HandlePHINodesInSuccessorBlocks(LLVMBB);
424
425      // Lower the terminator after the copies are emitted.
426      SetDebugLoc(MDDbgKind, LLVMBB->getTerminator(), SDB, 0, MF);
427      SDB->visit(*LLVMBB->getTerminator());
428      ResetDebugLoc(SDB, 0);
429    }
430  }
431
432  // Make sure the root of the DAG is up-to-date.
433  CurDAG->setRoot(SDB->getControlRoot());
434
435  // Final step, emit the lowered DAG as machine code.
436  CodeGenAndEmitDAG();
437  HadTailCall = SDB->HasTailCall;
438  SDB->clear();
439}
440
441namespace {
442/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
443/// nodes from the worklist.
444class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
445  SmallVector<SDNode*, 128> &Worklist;
446public:
447  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl) : Worklist(wl) {}
448
449  virtual void NodeDeleted(SDNode *N, SDNode *E) {
450    Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
451                   Worklist.end());
452  }
453
454  virtual void NodeUpdated(SDNode *N) {
455    // Ignore updates.
456  }
457};
458}
459
460/// TrivialTruncElim - Eliminate some trivial nops that can result from
461/// ShrinkDemandedOps: (trunc (ext n)) -> n.
462static bool TrivialTruncElim(SDValue Op,
463                             TargetLowering::TargetLoweringOpt &TLO) {
464  SDValue N0 = Op.getOperand(0);
465  EVT VT = Op.getValueType();
466  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
467       N0.getOpcode() == ISD::SIGN_EXTEND ||
468       N0.getOpcode() == ISD::ANY_EXTEND) &&
469      N0.getOperand(0).getValueType() == VT) {
470    return TLO.CombineTo(Op, N0.getOperand(0));
471  }
472  return false;
473}
474
475/// ShrinkDemandedOps - A late transformation pass that shrink expressions
476/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
477/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
478void SelectionDAGISel::ShrinkDemandedOps() {
479  SmallVector<SDNode*, 128> Worklist;
480
481  // Add all the dag nodes to the worklist.
482  Worklist.reserve(CurDAG->allnodes_size());
483  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
484       E = CurDAG->allnodes_end(); I != E; ++I)
485    Worklist.push_back(I);
486
487  APInt Mask;
488  APInt KnownZero;
489  APInt KnownOne;
490
491  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
492  while (!Worklist.empty()) {
493    SDNode *N = Worklist.pop_back_val();
494
495    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
496      CurDAG->DeleteNode(N);
497      continue;
498    }
499
500    // Run ShrinkDemandedOp on scalar binary operations.
501    if (N->getNumValues() == 1 &&
502        N->getValueType(0).isSimple() && N->getValueType(0).isInteger()) {
503      unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
504      APInt Demanded = APInt::getAllOnesValue(BitWidth);
505      APInt KnownZero, KnownOne;
506      if (TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
507                                   KnownZero, KnownOne, TLO) ||
508          (N->getOpcode() == ISD::TRUNCATE &&
509           TrivialTruncElim(SDValue(N, 0), TLO))) {
510        // Revisit the node.
511        Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
512                       Worklist.end());
513        Worklist.push_back(N);
514
515        // Replace the old value with the new one.
516        DEBUG(errs() << "\nReplacing ";
517              TLO.Old.getNode()->dump(CurDAG);
518              errs() << "\nWith: ";
519              TLO.New.getNode()->dump(CurDAG);
520              errs() << '\n');
521
522        Worklist.push_back(TLO.New.getNode());
523
524        SDOPsWorkListRemover DeadNodes(Worklist);
525        CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
526
527        if (TLO.Old.getNode()->use_empty()) {
528          for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
529               i != e; ++i) {
530            SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
531            if (OpNode->hasOneUse()) {
532              Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
533                                         OpNode), Worklist.end());
534              Worklist.push_back(OpNode);
535            }
536          }
537
538          Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
539                                     TLO.Old.getNode()), Worklist.end());
540          CurDAG->DeleteNode(TLO.Old.getNode());
541        }
542      }
543    }
544  }
545}
546
547void SelectionDAGISel::ComputeLiveOutVRegInfo() {
548  SmallPtrSet<SDNode*, 128> VisitedNodes;
549  SmallVector<SDNode*, 128> Worklist;
550
551  Worklist.push_back(CurDAG->getRoot().getNode());
552
553  APInt Mask;
554  APInt KnownZero;
555  APInt KnownOne;
556
557  do {
558    SDNode *N = Worklist.pop_back_val();
559
560    // If we've already seen this node, ignore it.
561    if (!VisitedNodes.insert(N))
562      continue;
563
564    // Otherwise, add all chain operands to the worklist.
565    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
566      if (N->getOperand(i).getValueType() == MVT::Other)
567        Worklist.push_back(N->getOperand(i).getNode());
568
569    // If this is a CopyToReg with a vreg dest, process it.
570    if (N->getOpcode() != ISD::CopyToReg)
571      continue;
572
573    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
574    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
575      continue;
576
577    // Ignore non-scalar or non-integer values.
578    SDValue Src = N->getOperand(2);
579    EVT SrcVT = Src.getValueType();
580    if (!SrcVT.isInteger() || SrcVT.isVector())
581      continue;
582
583    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
584    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
585    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
586
587    // Only install this information if it tells us something.
588    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
589      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
590      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
591        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
592      FunctionLoweringInfo::LiveOutInfo &LOI =
593        FuncInfo->LiveOutRegInfo[DestReg];
594      LOI.NumSignBits = NumSignBits;
595      LOI.KnownOne = KnownOne;
596      LOI.KnownZero = KnownZero;
597    }
598  } while (!Worklist.empty());
599}
600
601void SelectionDAGISel::CodeGenAndEmitDAG() {
602  std::string GroupName;
603  if (TimePassesIsEnabled)
604    GroupName = "Instruction Selection and Scheduling";
605  std::string BlockName;
606  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
607      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
608      ViewSUnitDAGs)
609    BlockName = MF->getFunction()->getNameStr() + ":" +
610                BB->getBasicBlock()->getNameStr();
611
612  DEBUG(dbgs() << "Initial selection DAG:\n");
613  DEBUG(CurDAG->dump());
614
615  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
616
617  // Run the DAG combiner in pre-legalize mode.
618  if (TimePassesIsEnabled) {
619    NamedRegionTimer T("DAG Combining 1", GroupName);
620    CurDAG->Combine(Unrestricted, *AA, OptLevel);
621  } else {
622    CurDAG->Combine(Unrestricted, *AA, OptLevel);
623  }
624
625  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
626  DEBUG(CurDAG->dump());
627
628  // Second step, hack on the DAG until it only uses operations and types that
629  // the target supports.
630  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
631                                               BlockName);
632
633  bool Changed;
634  if (TimePassesIsEnabled) {
635    NamedRegionTimer T("Type Legalization", GroupName);
636    Changed = CurDAG->LegalizeTypes();
637  } else {
638    Changed = CurDAG->LegalizeTypes();
639  }
640
641  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
642  DEBUG(CurDAG->dump());
643
644  if (Changed) {
645    if (ViewDAGCombineLT)
646      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
647
648    // Run the DAG combiner in post-type-legalize mode.
649    if (TimePassesIsEnabled) {
650      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
651      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
652    } else {
653      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
654    }
655
656    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
657    DEBUG(CurDAG->dump());
658  }
659
660  if (TimePassesIsEnabled) {
661    NamedRegionTimer T("Vector Legalization", GroupName);
662    Changed = CurDAG->LegalizeVectors();
663  } else {
664    Changed = CurDAG->LegalizeVectors();
665  }
666
667  if (Changed) {
668    if (TimePassesIsEnabled) {
669      NamedRegionTimer T("Type Legalization 2", GroupName);
670      CurDAG->LegalizeTypes();
671    } else {
672      CurDAG->LegalizeTypes();
673    }
674
675    if (ViewDAGCombineLT)
676      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
677
678    // Run the DAG combiner in post-type-legalize mode.
679    if (TimePassesIsEnabled) {
680      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
681      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
682    } else {
683      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
684    }
685
686    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
687    DEBUG(CurDAG->dump());
688  }
689
690  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
691
692  if (TimePassesIsEnabled) {
693    NamedRegionTimer T("DAG Legalization", GroupName);
694    CurDAG->Legalize(OptLevel);
695  } else {
696    CurDAG->Legalize(OptLevel);
697  }
698
699  DEBUG(dbgs() << "Legalized selection DAG:\n");
700  DEBUG(CurDAG->dump());
701
702  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
703
704  // Run the DAG combiner in post-legalize mode.
705  if (TimePassesIsEnabled) {
706    NamedRegionTimer T("DAG Combining 2", GroupName);
707    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
708  } else {
709    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
710  }
711
712  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
713  DEBUG(CurDAG->dump());
714
715  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
716
717  if (OptLevel != CodeGenOpt::None) {
718    ShrinkDemandedOps();
719    ComputeLiveOutVRegInfo();
720  }
721
722  // Third, instruction select all of the operations to machine code, adding the
723  // code to the MachineBasicBlock.
724  if (TimePassesIsEnabled) {
725    NamedRegionTimer T("Instruction Selection", GroupName);
726    DoInstructionSelection();
727  } else {
728    DoInstructionSelection();
729  }
730
731  DEBUG(dbgs() << "Selected selection DAG:\n");
732  DEBUG(CurDAG->dump());
733
734  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
735
736  // Schedule machine code.
737  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
738  if (TimePassesIsEnabled) {
739    NamedRegionTimer T("Instruction Scheduling", GroupName);
740    Scheduler->Run(CurDAG, BB, BB->end());
741  } else {
742    Scheduler->Run(CurDAG, BB, BB->end());
743  }
744
745  if (ViewSUnitDAGs) Scheduler->viewGraph();
746
747  // Emit machine code to BB.  This can change 'BB' to the last block being
748  // inserted into.
749  if (TimePassesIsEnabled) {
750    NamedRegionTimer T("Instruction Creation", GroupName);
751    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
752  } else {
753    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
754  }
755
756  // Free the scheduler state.
757  if (TimePassesIsEnabled) {
758    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
759    delete Scheduler;
760  } else {
761    delete Scheduler;
762  }
763
764  DEBUG(dbgs() << "Selected machine code:\n");
765  DEBUG(BB->dump());
766}
767
768void SelectionDAGISel::DoInstructionSelection() {
769  DEBUG(errs() << "===== Instruction selection begins:\n");
770
771  PreprocessISelDAG();
772
773  // Select target instructions for the DAG.
774  {
775    // Number all nodes with a topological order and set DAGSize.
776    DAGSize = CurDAG->AssignTopologicalOrder();
777
778    // Create a dummy node (which is not added to allnodes), that adds
779    // a reference to the root node, preventing it from being deleted,
780    // and tracking any changes of the root.
781    HandleSDNode Dummy(CurDAG->getRoot());
782    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
783    ++ISelPosition;
784
785    // The AllNodes list is now topological-sorted. Visit the
786    // nodes by starting at the end of the list (the root of the
787    // graph) and preceding back toward the beginning (the entry
788    // node).
789    while (ISelPosition != CurDAG->allnodes_begin()) {
790      SDNode *Node = --ISelPosition;
791      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
792      // but there are currently some corner cases that it misses. Also, this
793      // makes it theoretically possible to disable the DAGCombiner.
794      if (Node->use_empty())
795        continue;
796
797      SDNode *ResNode = Select(Node);
798
799      // FIXME: This is pretty gross.  'Select' should be changed to not return
800      // anything at all and this code should be nuked with a tactical strike.
801
802      // If node should not be replaced, continue with the next one.
803      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
804        continue;
805      // Replace node.
806      if (ResNode)
807        ReplaceUses(Node, ResNode);
808
809      // If after the replacement this node is not used any more,
810      // remove this dead node.
811      if (Node->use_empty()) { // Don't delete EntryToken, etc.
812        ISelUpdater ISU(ISelPosition);
813        CurDAG->RemoveDeadNode(Node, &ISU);
814      }
815    }
816
817    CurDAG->setRoot(Dummy.getValue());
818  }
819  DEBUG(errs() << "===== Instruction selection ends:\n");
820
821  PostprocessISelDAG();
822
823  // FIXME: This shouldn't be needed, remove it.
824  CurDAG->RemoveDeadNodes();
825}
826
827
828void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
829                                            MachineFunction &MF,
830                                            MachineModuleInfo *MMI,
831                                            DwarfWriter *DW,
832                                            const TargetInstrInfo &TII) {
833  // Initialize the Fast-ISel state, if needed.
834  FastISel *FastIS = 0;
835  if (EnableFastISel)
836    FastIS = TLI.createFastISel(MF, MMI, DW,
837                                FuncInfo->ValueMap,
838                                FuncInfo->MBBMap,
839                                FuncInfo->StaticAllocaMap
840#ifndef NDEBUG
841                                , FuncInfo->CatchInfoLost
842#endif
843                                );
844
845  unsigned MDDbgKind = Fn.getContext().getMDKindID("dbg");
846
847  // Iterate over all basic blocks in the function.
848  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
849    BasicBlock *LLVMBB = &*I;
850    BB = FuncInfo->MBBMap[LLVMBB];
851
852    BasicBlock::iterator const Begin = LLVMBB->begin();
853    BasicBlock::iterator const End = LLVMBB->end();
854    BasicBlock::iterator BI = Begin;
855
856    // Lower any arguments needed in this block if this is the entry block.
857    bool SuppressFastISel = false;
858    if (LLVMBB == &Fn.getEntryBlock()) {
859      LowerArguments(LLVMBB);
860
861      // If any of the arguments has the byval attribute, forgo
862      // fast-isel in the entry block.
863      if (FastIS) {
864        unsigned j = 1;
865        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
866             I != E; ++I, ++j)
867          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
868            if (EnableFastISelVerbose || EnableFastISelAbort)
869              dbgs() << "FastISel skips entry block due to byval argument\n";
870            SuppressFastISel = true;
871            break;
872          }
873      }
874    }
875
876    if (MMI && BB->isLandingPad()) {
877      // Add a label to mark the beginning of the landing pad.  Deletion of the
878      // landing pad can thus be detected via the MachineModuleInfo.
879      unsigned LabelID = MMI->addLandingPad(BB);
880
881      const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL);
882      BuildMI(BB, SDB->getCurDebugLoc(), II).addImm(LabelID);
883
884      // Mark exception register as live in.
885      unsigned Reg = TLI.getExceptionAddressRegister();
886      if (Reg) BB->addLiveIn(Reg);
887
888      // Mark exception selector register as live in.
889      Reg = TLI.getExceptionSelectorRegister();
890      if (Reg) BB->addLiveIn(Reg);
891
892      // FIXME: Hack around an exception handling flaw (PR1508): the personality
893      // function and list of typeids logically belong to the invoke (or, if you
894      // like, the basic block containing the invoke), and need to be associated
895      // with it in the dwarf exception handling tables.  Currently however the
896      // information is provided by an intrinsic (eh.selector) that can be moved
897      // to unexpected places by the optimizers: if the unwind edge is critical,
898      // then breaking it can result in the intrinsics being in the successor of
899      // the landing pad, not the landing pad itself.  This results
900      // in exceptions not being caught because no typeids are associated with
901      // the invoke.  This may not be the only way things can go wrong, but it
902      // is the only way we try to work around for the moment.
903      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
904
905      if (Br && Br->isUnconditional()) { // Critical edge?
906        BasicBlock::iterator I, E;
907        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
908          if (isa<EHSelectorInst>(I))
909            break;
910
911        if (I == E)
912          // No catch info found - try to extract some from the successor.
913          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
914      }
915    }
916
917    // Before doing SelectionDAG ISel, see if FastISel has been requested.
918    if (FastIS && !SuppressFastISel) {
919      // Emit code for any incoming arguments. This must happen before
920      // beginning FastISel on the entry block.
921      if (LLVMBB == &Fn.getEntryBlock()) {
922        CurDAG->setRoot(SDB->getControlRoot());
923        CodeGenAndEmitDAG();
924        SDB->clear();
925      }
926      FastIS->startNewBlock(BB);
927      // Do FastISel on as many instructions as possible.
928      for (; BI != End; ++BI) {
929        // Just before the terminator instruction, insert instructions to
930        // feed PHI nodes in successor blocks.
931        if (isa<TerminatorInst>(BI))
932          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
933            ResetDebugLoc(SDB, FastIS);
934            if (EnableFastISelVerbose || EnableFastISelAbort) {
935              dbgs() << "FastISel miss: ";
936              BI->dump();
937            }
938            assert(!EnableFastISelAbort &&
939                   "FastISel didn't handle a PHI in a successor");
940            break;
941          }
942
943        SetDebugLoc(MDDbgKind, BI, SDB, FastIS, &MF);
944
945        // Try to select the instruction with FastISel.
946        if (FastIS->SelectInstruction(BI)) {
947          ResetDebugLoc(SDB, FastIS);
948          continue;
949        }
950
951        // Clear out the debug location so that it doesn't carry over to
952        // unrelated instructions.
953        ResetDebugLoc(SDB, FastIS);
954
955        // Then handle certain instructions as single-LLVM-Instruction blocks.
956        if (isa<CallInst>(BI)) {
957          if (EnableFastISelVerbose || EnableFastISelAbort) {
958            dbgs() << "FastISel missed call: ";
959            BI->dump();
960          }
961
962          if (!BI->getType()->isVoidTy()) {
963            unsigned &R = FuncInfo->ValueMap[BI];
964            if (!R)
965              R = FuncInfo->CreateRegForValue(BI);
966          }
967
968          bool HadTailCall = false;
969          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
970
971          // If the call was emitted as a tail call, we're done with the block.
972          if (HadTailCall) {
973            BI = End;
974            break;
975          }
976
977          // If the instruction was codegen'd with multiple blocks,
978          // inform the FastISel object where to resume inserting.
979          FastIS->setCurrentBlock(BB);
980          continue;
981        }
982
983        // Otherwise, give up on FastISel for the rest of the block.
984        // For now, be a little lenient about non-branch terminators.
985        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
986          if (EnableFastISelVerbose || EnableFastISelAbort) {
987            dbgs() << "FastISel miss: ";
988            BI->dump();
989          }
990          if (EnableFastISelAbort)
991            // The "fast" selector couldn't handle something and bailed.
992            // For the purpose of debugging, just abort.
993            llvm_unreachable("FastISel didn't select the entire block");
994        }
995        break;
996      }
997    }
998
999    // Run SelectionDAG instruction selection on the remainder of the block
1000    // not handled by FastISel. If FastISel is not run, this is the entire
1001    // block.
1002    if (BI != End) {
1003      bool HadTailCall;
1004      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
1005    }
1006
1007    FinishBasicBlock();
1008  }
1009
1010  delete FastIS;
1011}
1012
1013void
1014SelectionDAGISel::FinishBasicBlock() {
1015
1016  DEBUG(dbgs() << "Target-post-processed machine code:\n");
1017  DEBUG(BB->dump());
1018
1019  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1020               << SDB->PHINodesToUpdate.size() << "\n");
1021  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
1022          dbgs() << "Node " << i << " : ("
1023                 << SDB->PHINodesToUpdate[i].first
1024                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
1025
1026  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1027  // PHI nodes in successors.
1028  if (SDB->SwitchCases.empty() &&
1029      SDB->JTCases.empty() &&
1030      SDB->BitTestCases.empty()) {
1031    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1032      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1033      assert(PHI->isPHI() &&
1034             "This is not a machine PHI node that we are updating!");
1035      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1036                                                false));
1037      PHI->addOperand(MachineOperand::CreateMBB(BB));
1038    }
1039    SDB->PHINodesToUpdate.clear();
1040    return;
1041  }
1042
1043  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1044    // Lower header first, if it wasn't already lowered
1045    if (!SDB->BitTestCases[i].Emitted) {
1046      // Set the current basic block to the mbb we wish to insert the code into
1047      BB = SDB->BitTestCases[i].Parent;
1048      SDB->setCurrentBasicBlock(BB);
1049      // Emit the code
1050      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
1051      CurDAG->setRoot(SDB->getRoot());
1052      CodeGenAndEmitDAG();
1053      SDB->clear();
1054    }
1055
1056    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1057      // Set the current basic block to the mbb we wish to insert the code into
1058      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
1059      SDB->setCurrentBasicBlock(BB);
1060      // Emit the code
1061      if (j+1 != ej)
1062        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
1063                              SDB->BitTestCases[i].Reg,
1064                              SDB->BitTestCases[i].Cases[j]);
1065      else
1066        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
1067                              SDB->BitTestCases[i].Reg,
1068                              SDB->BitTestCases[i].Cases[j]);
1069
1070
1071      CurDAG->setRoot(SDB->getRoot());
1072      CodeGenAndEmitDAG();
1073      SDB->clear();
1074    }
1075
1076    // Update PHI Nodes
1077    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1078      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1079      MachineBasicBlock *PHIBB = PHI->getParent();
1080      assert(PHI->isPHI() &&
1081             "This is not a machine PHI node that we are updating!");
1082      // This is "default" BB. We have two jumps to it. From "header" BB and
1083      // from last "case" BB.
1084      if (PHIBB == SDB->BitTestCases[i].Default) {
1085        PHI->addOperand(MachineOperand::
1086                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1087        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1088        PHI->addOperand(MachineOperand::
1089                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1090        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1091                                                  back().ThisBB));
1092      }
1093      // One of "cases" BB.
1094      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1095           j != ej; ++j) {
1096        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1097        if (cBB->isSuccessor(PHIBB)) {
1098          PHI->addOperand(MachineOperand::
1099                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1100          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1101        }
1102      }
1103    }
1104  }
1105  SDB->BitTestCases.clear();
1106
1107  // If the JumpTable record is filled in, then we need to emit a jump table.
1108  // Updating the PHI nodes is tricky in this case, since we need to determine
1109  // whether the PHI is a successor of the range check MBB or the jump table MBB
1110  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1111    // Lower header first, if it wasn't already lowered
1112    if (!SDB->JTCases[i].first.Emitted) {
1113      // Set the current basic block to the mbb we wish to insert the code into
1114      BB = SDB->JTCases[i].first.HeaderBB;
1115      SDB->setCurrentBasicBlock(BB);
1116      // Emit the code
1117      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
1118      CurDAG->setRoot(SDB->getRoot());
1119      CodeGenAndEmitDAG();
1120      SDB->clear();
1121    }
1122
1123    // Set the current basic block to the mbb we wish to insert the code into
1124    BB = SDB->JTCases[i].second.MBB;
1125    SDB->setCurrentBasicBlock(BB);
1126    // Emit the code
1127    SDB->visitJumpTable(SDB->JTCases[i].second);
1128    CurDAG->setRoot(SDB->getRoot());
1129    CodeGenAndEmitDAG();
1130    SDB->clear();
1131
1132    // Update PHI Nodes
1133    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1134      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1135      MachineBasicBlock *PHIBB = PHI->getParent();
1136      assert(PHI->isPHI() &&
1137             "This is not a machine PHI node that we are updating!");
1138      // "default" BB. We can go there only from header BB.
1139      if (PHIBB == SDB->JTCases[i].second.Default) {
1140        PHI->addOperand
1141          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1142        PHI->addOperand
1143          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1144      }
1145      // JT BB. Just iterate over successors here
1146      if (BB->isSuccessor(PHIBB)) {
1147        PHI->addOperand
1148          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1149        PHI->addOperand(MachineOperand::CreateMBB(BB));
1150      }
1151    }
1152  }
1153  SDB->JTCases.clear();
1154
1155  // If the switch block involved a branch to one of the actual successors, we
1156  // need to update PHI nodes in that block.
1157  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1158    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1159    assert(PHI->isPHI() &&
1160           "This is not a machine PHI node that we are updating!");
1161    if (BB->isSuccessor(PHI->getParent())) {
1162      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1163                                                false));
1164      PHI->addOperand(MachineOperand::CreateMBB(BB));
1165    }
1166  }
1167
1168  // If we generated any switch lowering information, build and codegen any
1169  // additional DAGs necessary.
1170  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1171    // Set the current basic block to the mbb we wish to insert the code into
1172    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1173    SDB->setCurrentBasicBlock(BB);
1174
1175    // Emit the code
1176    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1177    CurDAG->setRoot(SDB->getRoot());
1178    CodeGenAndEmitDAG();
1179
1180    // Handle any PHI nodes in successors of this chunk, as if we were coming
1181    // from the original BB before switch expansion.  Note that PHI nodes can
1182    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1183    // handle them the right number of times.
1184    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1185      // If new BB's are created during scheduling, the edges may have been
1186      // updated. That is, the edge from ThisBB to BB may have been split and
1187      // BB's predecessor is now another block.
1188      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1189        SDB->EdgeMapping.find(BB);
1190      if (EI != SDB->EdgeMapping.end())
1191        ThisBB = EI->second;
1192
1193      // BB may have been removed from the CFG if a branch was constant folded.
1194      if (ThisBB->isSuccessor(BB)) {
1195        for (MachineBasicBlock::iterator Phi = BB->begin();
1196             Phi != BB->end() && Phi->isPHI();
1197             ++Phi) {
1198          // This value for this PHI node is recorded in PHINodesToUpdate.
1199          for (unsigned pn = 0; ; ++pn) {
1200            assert(pn != SDB->PHINodesToUpdate.size() &&
1201                   "Didn't find PHI entry!");
1202            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1203              Phi->addOperand(MachineOperand::
1204                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1205                                        false));
1206              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1207              break;
1208            }
1209          }
1210        }
1211      }
1212
1213      // Don't process RHS if same block as LHS.
1214      if (BB == SDB->SwitchCases[i].FalseBB)
1215        SDB->SwitchCases[i].FalseBB = 0;
1216
1217      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1218      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1219      SDB->SwitchCases[i].FalseBB = 0;
1220    }
1221    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1222    SDB->clear();
1223  }
1224  SDB->SwitchCases.clear();
1225
1226  SDB->PHINodesToUpdate.clear();
1227}
1228
1229
1230/// Create the scheduler. If a specific scheduler was specified
1231/// via the SchedulerRegistry, use it, otherwise select the
1232/// one preferred by the target.
1233///
1234ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1235  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1236
1237  if (!Ctor) {
1238    Ctor = ISHeuristic;
1239    RegisterScheduler::setDefault(Ctor);
1240  }
1241
1242  return Ctor(this, OptLevel);
1243}
1244
1245ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1246  return new ScheduleHazardRecognizer();
1247}
1248
1249//===----------------------------------------------------------------------===//
1250// Helper functions used by the generated instruction selector.
1251//===----------------------------------------------------------------------===//
1252// Calls to these methods are generated by tblgen.
1253
1254/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1255/// the dag combiner simplified the 255, we still want to match.  RHS is the
1256/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1257/// specified in the .td file (e.g. 255).
1258bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1259                                    int64_t DesiredMaskS) const {
1260  const APInt &ActualMask = RHS->getAPIntValue();
1261  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1262
1263  // If the actual mask exactly matches, success!
1264  if (ActualMask == DesiredMask)
1265    return true;
1266
1267  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1268  if (ActualMask.intersects(~DesiredMask))
1269    return false;
1270
1271  // Otherwise, the DAG Combiner may have proven that the value coming in is
1272  // either already zero or is not demanded.  Check for known zero input bits.
1273  APInt NeededMask = DesiredMask & ~ActualMask;
1274  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1275    return true;
1276
1277  // TODO: check to see if missing bits are just not demanded.
1278
1279  // Otherwise, this pattern doesn't match.
1280  return false;
1281}
1282
1283/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1284/// the dag combiner simplified the 255, we still want to match.  RHS is the
1285/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1286/// specified in the .td file (e.g. 255).
1287bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1288                                   int64_t DesiredMaskS) const {
1289  const APInt &ActualMask = RHS->getAPIntValue();
1290  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1291
1292  // If the actual mask exactly matches, success!
1293  if (ActualMask == DesiredMask)
1294    return true;
1295
1296  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1297  if (ActualMask.intersects(~DesiredMask))
1298    return false;
1299
1300  // Otherwise, the DAG Combiner may have proven that the value coming in is
1301  // either already zero or is not demanded.  Check for known zero input bits.
1302  APInt NeededMask = DesiredMask & ~ActualMask;
1303
1304  APInt KnownZero, KnownOne;
1305  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1306
1307  // If all the missing bits in the or are already known to be set, match!
1308  if ((NeededMask & KnownOne) == NeededMask)
1309    return true;
1310
1311  // TODO: check to see if missing bits are just not demanded.
1312
1313  // Otherwise, this pattern doesn't match.
1314  return false;
1315}
1316
1317
1318/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1319/// by tblgen.  Others should not call it.
1320void SelectionDAGISel::
1321SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1322  std::vector<SDValue> InOps;
1323  std::swap(InOps, Ops);
1324
1325  Ops.push_back(InOps[0]);  // input chain.
1326  Ops.push_back(InOps[1]);  // input asm string.
1327
1328  unsigned i = 2, e = InOps.size();
1329  if (InOps[e-1].getValueType() == MVT::Flag)
1330    --e;  // Don't process a flag operand if it is here.
1331
1332  while (i != e) {
1333    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1334    if ((Flags & 7) != 4 /*MEM*/) {
1335      // Just skip over this operand, copying the operands verbatim.
1336      Ops.insert(Ops.end(), InOps.begin()+i,
1337                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1338      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1339    } else {
1340      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1341             "Memory operand with multiple values?");
1342      // Otherwise, this is a memory operand.  Ask the target to select it.
1343      std::vector<SDValue> SelOps;
1344      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1345        llvm_report_error("Could not match memory address.  Inline asm"
1346                          " failure!");
1347      }
1348
1349      // Add this to the output node.
1350      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1351                                              MVT::i32));
1352      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1353      i += 2;
1354    }
1355  }
1356
1357  // Add the flag input back if present.
1358  if (e != InOps.size())
1359    Ops.push_back(InOps.back());
1360}
1361
1362/// findFlagUse - Return use of EVT::Flag value produced by the specified
1363/// SDNode.
1364///
1365static SDNode *findFlagUse(SDNode *N) {
1366  unsigned FlagResNo = N->getNumValues()-1;
1367  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1368    SDUse &Use = I.getUse();
1369    if (Use.getResNo() == FlagResNo)
1370      return Use.getUser();
1371  }
1372  return NULL;
1373}
1374
1375/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1376/// This function recursively traverses up the operand chain, ignoring
1377/// certain nodes.
1378static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1379                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1380                          bool IgnoreChains) {
1381  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1382  // greater than all of its (recursive) operands.  If we scan to a point where
1383  // 'use' is smaller than the node we're scanning for, then we know we will
1384  // never find it.
1385  //
1386  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1387  // happen because we scan down to newly selected nodes in the case of flag
1388  // uses.
1389  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1390    return false;
1391
1392  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1393  // won't fail if we scan it again.
1394  if (!Visited.insert(Use))
1395    return false;
1396
1397  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1398    // Ignore chain uses, they are validated by HandleMergeInputChains.
1399    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1400      continue;
1401
1402    SDNode *N = Use->getOperand(i).getNode();
1403    if (N == Def) {
1404      if (Use == ImmedUse || Use == Root)
1405        continue;  // We are not looking for immediate use.
1406      assert(N != Root);
1407      return true;
1408    }
1409
1410    // Traverse up the operand chain.
1411    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1412      return true;
1413  }
1414  return false;
1415}
1416
1417/// isNonImmUse - Start searching from Root up the DAG to check is Def can
1418/// be reached. Return true if that's the case. However, ignore direct uses
1419/// by ImmedUse (which would be U in the example illustrated in
1420/// IsLegalToFold) and by Root (which can happen in the store case).
1421/// FIXME: to be really generic, we should allow direct use by any node
1422/// that is being folded. But realisticly since we only fold loads which
1423/// have one non-chain use, we only need to watch out for load/op/store
1424/// and load/op/cmp case where the root (store / cmp) may reach the load via
1425/// its chain operand.
1426static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
1427                               bool IgnoreChains) {
1428  SmallPtrSet<SDNode*, 16> Visited;
1429  return findNonImmUse(Root, Def, ImmedUse, Root, Visited, IgnoreChains);
1430}
1431
1432/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1433/// operand node N of U during instruction selection that starts at Root.
1434bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1435                                          SDNode *Root) const {
1436  if (OptLevel == CodeGenOpt::None) return false;
1437  return N.hasOneUse();
1438}
1439
1440/// IsLegalToFold - Returns true if the specific operand node N of
1441/// U can be folded during instruction selection that starts at Root.
1442bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1443                                     bool IgnoreChains) const {
1444  if (OptLevel == CodeGenOpt::None) return false;
1445
1446  // If Root use can somehow reach N through a path that that doesn't contain
1447  // U then folding N would create a cycle. e.g. In the following
1448  // diagram, Root can reach N through X. If N is folded into into Root, then
1449  // X is both a predecessor and a successor of U.
1450  //
1451  //          [N*]           //
1452  //         ^   ^           //
1453  //        /     \          //
1454  //      [U*]    [X]?       //
1455  //        ^     ^          //
1456  //         \   /           //
1457  //          \ /            //
1458  //         [Root*]         //
1459  //
1460  // * indicates nodes to be folded together.
1461  //
1462  // If Root produces a flag, then it gets (even more) interesting. Since it
1463  // will be "glued" together with its flag use in the scheduler, we need to
1464  // check if it might reach N.
1465  //
1466  //          [N*]           //
1467  //         ^   ^           //
1468  //        /     \          //
1469  //      [U*]    [X]?       //
1470  //        ^       ^        //
1471  //         \       \       //
1472  //          \      |       //
1473  //         [Root*] |       //
1474  //          ^      |       //
1475  //          f      |       //
1476  //          |      /       //
1477  //         [Y]    /        //
1478  //           ^   /         //
1479  //           f  /          //
1480  //           | /           //
1481  //          [FU]           //
1482  //
1483  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1484  // (call it Fold), then X is a predecessor of FU and a successor of
1485  // Fold. But since Fold and FU are flagged together, this will create
1486  // a cycle in the scheduling graph.
1487
1488  EVT VT = Root->getValueType(Root->getNumValues()-1);
1489  while (VT == MVT::Flag) {
1490    SDNode *FU = findFlagUse(Root);
1491    if (FU == NULL)
1492      break;
1493    Root = FU;
1494    VT = Root->getValueType(Root->getNumValues()-1);
1495  }
1496
1497  return !isNonImmUse(Root, N.getNode(), U, IgnoreChains);
1498}
1499
1500SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1501  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1502  SelectInlineAsmMemoryOperands(Ops);
1503
1504  std::vector<EVT> VTs;
1505  VTs.push_back(MVT::Other);
1506  VTs.push_back(MVT::Flag);
1507  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1508                                VTs, &Ops[0], Ops.size());
1509  New->setNodeId(-1);
1510  return New.getNode();
1511}
1512
1513SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1514  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1515}
1516
1517SDNode *SelectionDAGISel::Select_EH_LABEL(SDNode *N) {
1518  SDValue Chain = N->getOperand(0);
1519  unsigned C = cast<LabelSDNode>(N)->getLabelID();
1520  SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);
1521  return CurDAG->SelectNodeTo(N, TargetOpcode::EH_LABEL,
1522                              MVT::Other, Tmp, Chain);
1523}
1524
1525/// GetVBR - decode a vbr encoding whose top bit is set.
1526ALWAYS_INLINE static uint64_t
1527GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1528  assert(Val >= 128 && "Not a VBR");
1529  Val &= 127;  // Remove first vbr bit.
1530
1531  unsigned Shift = 7;
1532  uint64_t NextBits;
1533  do {
1534    NextBits = MatcherTable[Idx++];
1535    Val |= (NextBits&127) << Shift;
1536    Shift += 7;
1537  } while (NextBits & 128);
1538
1539  return Val;
1540}
1541
1542
1543/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1544/// interior flag and chain results to use the new flag and chain results.
1545void SelectionDAGISel::
1546UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1547                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1548                     SDValue InputFlag,
1549                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1550                     bool isMorphNodeTo) {
1551  SmallVector<SDNode*, 4> NowDeadNodes;
1552
1553  ISelUpdater ISU(ISelPosition);
1554
1555  // Now that all the normal results are replaced, we replace the chain and
1556  // flag results if present.
1557  if (!ChainNodesMatched.empty()) {
1558    assert(InputChain.getNode() != 0 &&
1559           "Matched input chains but didn't produce a chain");
1560    // Loop over all of the nodes we matched that produced a chain result.
1561    // Replace all the chain results with the final chain we ended up with.
1562    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1563      SDNode *ChainNode = ChainNodesMatched[i];
1564
1565      // If this node was already deleted, don't look at it.
1566      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1567        continue;
1568
1569      // Don't replace the results of the root node if we're doing a
1570      // MorphNodeTo.
1571      if (ChainNode == NodeToMatch && isMorphNodeTo)
1572        continue;
1573
1574      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1575      if (ChainVal.getValueType() == MVT::Flag)
1576        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1577      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1578      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1579
1580      // If the node became dead, delete it.
1581      if (ChainNode->use_empty())
1582        NowDeadNodes.push_back(ChainNode);
1583    }
1584  }
1585
1586  // If the result produces a flag, update any flag results in the matched
1587  // pattern with the flag result.
1588  if (InputFlag.getNode() != 0) {
1589    // Handle any interior nodes explicitly marked.
1590    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1591      SDNode *FRN = FlagResultNodesMatched[i];
1592
1593      // If this node was already deleted, don't look at it.
1594      if (FRN->getOpcode() == ISD::DELETED_NODE)
1595        continue;
1596
1597      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1598             "Doesn't have a flag result");
1599      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1600                                        InputFlag, &ISU);
1601
1602      // If the node became dead, delete it.
1603      if (FRN->use_empty())
1604        NowDeadNodes.push_back(FRN);
1605    }
1606  }
1607
1608  if (!NowDeadNodes.empty())
1609    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1610
1611  DEBUG(errs() << "ISEL: Match complete!\n");
1612}
1613
1614enum ChainResult {
1615  CR_Simple,
1616  CR_InducesCycle,
1617  CR_LeadsToInteriorNode
1618};
1619
1620/// WalkChainUsers - Walk down the users of the specified chained node that is
1621/// part of the pattern we're matching, looking at all of the users we find.
1622/// This determines whether something is an interior node, whether we have a
1623/// non-pattern node in between two pattern nodes (which prevent folding because
1624/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1625/// between pattern nodes (in which case the TF becomes part of the pattern).
1626///
1627/// The walk we do here is guaranteed to be small because we quickly get down to
1628/// already selected nodes "below" us.
1629static ChainResult
1630WalkChainUsers(SDNode *ChainedNode,
1631               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1632               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1633  ChainResult Result = CR_Simple;
1634
1635  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1636         E = ChainedNode->use_end(); UI != E; ++UI) {
1637    // Make sure the use is of the chain, not some other value we produce.
1638    if (UI.getUse().getValueType() != MVT::Other) continue;
1639
1640    SDNode *User = *UI;
1641
1642    // If we see an already-selected machine node, then we've gone beyond the
1643    // pattern that we're selecting down into the already selected chunk of the
1644    // DAG.
1645    if (User->isMachineOpcode() ||
1646        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1647      continue;
1648
1649    if (User->getOpcode() == ISD::CopyToReg ||
1650        User->getOpcode() == ISD::CopyFromReg ||
1651        User->getOpcode() == ISD::INLINEASM) {
1652      // If their node ID got reset to -1 then they've already been selected.
1653      // Treat them like a MachineOpcode.
1654      if (User->getNodeId() == -1)
1655        continue;
1656    }
1657
1658    // If we have a TokenFactor, we handle it specially.
1659    if (User->getOpcode() != ISD::TokenFactor) {
1660      // If the node isn't a token factor and isn't part of our pattern, then it
1661      // must be a random chained node in between two nodes we're selecting.
1662      // This happens when we have something like:
1663      //   x = load ptr
1664      //   call
1665      //   y = x+4
1666      //   store y -> ptr
1667      // Because we structurally match the load/store as a read/modify/write,
1668      // but the call is chained between them.  We cannot fold in this case
1669      // because it would induce a cycle in the graph.
1670      if (!std::count(ChainedNodesInPattern.begin(),
1671                      ChainedNodesInPattern.end(), User))
1672        return CR_InducesCycle;
1673
1674      // Otherwise we found a node that is part of our pattern.  For example in:
1675      //   x = load ptr
1676      //   y = x+4
1677      //   store y -> ptr
1678      // This would happen when we're scanning down from the load and see the
1679      // store as a user.  Record that there is a use of ChainedNode that is
1680      // part of the pattern and keep scanning uses.
1681      Result = CR_LeadsToInteriorNode;
1682      InteriorChainedNodes.push_back(User);
1683      continue;
1684    }
1685
1686    // If we found a TokenFactor, there are two cases to consider: first if the
1687    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1688    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1689    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1690    //     [Load chain]
1691    //         ^
1692    //         |
1693    //       [Load]
1694    //       ^    ^
1695    //       |    \                    DAG's like cheese
1696    //      /       \                       do you?
1697    //     /         |
1698    // [TokenFactor] [Op]
1699    //     ^          ^
1700    //     |          |
1701    //      \        /
1702    //       \      /
1703    //       [Store]
1704    //
1705    // In this case, the TokenFactor becomes part of our match and we rewrite it
1706    // as a new TokenFactor.
1707    //
1708    // To distinguish these two cases, do a recursive walk down the uses.
1709    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1710    case CR_Simple:
1711      // If the uses of the TokenFactor are just already-selected nodes, ignore
1712      // it, it is "below" our pattern.
1713      continue;
1714    case CR_InducesCycle:
1715      // If the uses of the TokenFactor lead to nodes that are not part of our
1716      // pattern that are not selected, folding would turn this into a cycle,
1717      // bail out now.
1718      return CR_InducesCycle;
1719    case CR_LeadsToInteriorNode:
1720      break;  // Otherwise, keep processing.
1721    }
1722
1723    // Okay, we know we're in the interesting interior case.  The TokenFactor
1724    // is now going to be considered part of the pattern so that we rewrite its
1725    // uses (it may have uses that are not part of the pattern) with the
1726    // ultimate chain result of the generated code.  We will also add its chain
1727    // inputs as inputs to the ultimate TokenFactor we create.
1728    Result = CR_LeadsToInteriorNode;
1729    ChainedNodesInPattern.push_back(User);
1730    InteriorChainedNodes.push_back(User);
1731    continue;
1732  }
1733
1734  return Result;
1735}
1736
1737/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1738/// operation for when the pattern matched at least one node with a chains.  The
1739/// input vector contains a list of all of the chained nodes that we match.  We
1740/// must determine if this is a valid thing to cover (i.e. matching it won't
1741/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1742/// be used as the input node chain for the generated nodes.
1743static SDValue
1744HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1745                       SelectionDAG *CurDAG) {
1746  // Walk all of the chained nodes we've matched, recursively scanning down the
1747  // users of the chain result. This adds any TokenFactor nodes that are caught
1748  // in between chained nodes to the chained and interior nodes list.
1749  SmallVector<SDNode*, 3> InteriorChainedNodes;
1750  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1751    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1752                       InteriorChainedNodes) == CR_InducesCycle)
1753      return SDValue(); // Would induce a cycle.
1754  }
1755
1756  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1757  // that we are interested in.  Form our input TokenFactor node.
1758  SmallVector<SDValue, 3> InputChains;
1759  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1760    // Add the input chain of this node to the InputChains list (which will be
1761    // the operands of the generated TokenFactor) if it's not an interior node.
1762    SDNode *N = ChainNodesMatched[i];
1763    if (N->getOpcode() != ISD::TokenFactor) {
1764      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1765        continue;
1766
1767      // Otherwise, add the input chain.
1768      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1769      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1770      InputChains.push_back(InChain);
1771      continue;
1772    }
1773
1774    // If we have a token factor, we want to add all inputs of the token factor
1775    // that are not part of the pattern we're matching.
1776    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1777      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1778                      N->getOperand(op).getNode()))
1779        InputChains.push_back(N->getOperand(op));
1780    }
1781  }
1782
1783  SDValue Res;
1784  if (InputChains.size() == 1)
1785    return InputChains[0];
1786  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1787                         MVT::Other, &InputChains[0], InputChains.size());
1788}
1789
1790/// MorphNode - Handle morphing a node in place for the selector.
1791SDNode *SelectionDAGISel::
1792MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1793          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1794  // It is possible we're using MorphNodeTo to replace a node with no
1795  // normal results with one that has a normal result (or we could be
1796  // adding a chain) and the input could have flags and chains as well.
1797  // In this case we need to shifting the operands down.
1798  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1799  // than the old isel though.  We should sink this into MorphNodeTo.
1800  int OldFlagResultNo = -1, OldChainResultNo = -1;
1801
1802  unsigned NTMNumResults = Node->getNumValues();
1803  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1804    OldFlagResultNo = NTMNumResults-1;
1805    if (NTMNumResults != 1 &&
1806        Node->getValueType(NTMNumResults-2) == MVT::Other)
1807      OldChainResultNo = NTMNumResults-2;
1808  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1809    OldChainResultNo = NTMNumResults-1;
1810
1811  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1812  // that this deletes operands of the old node that become dead.
1813  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1814
1815  // MorphNodeTo can operate in two ways: if an existing node with the
1816  // specified operands exists, it can just return it.  Otherwise, it
1817  // updates the node in place to have the requested operands.
1818  if (Res == Node) {
1819    // If we updated the node in place, reset the node ID.  To the isel,
1820    // this should be just like a newly allocated machine node.
1821    Res->setNodeId(-1);
1822  }
1823
1824  unsigned ResNumResults = Res->getNumValues();
1825  // Move the flag if needed.
1826  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1827      (unsigned)OldFlagResultNo != ResNumResults-1)
1828    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1829                                      SDValue(Res, ResNumResults-1));
1830
1831  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1832  --ResNumResults;
1833
1834  // Move the chain reference if needed.
1835  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1836      (unsigned)OldChainResultNo != ResNumResults-1)
1837    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1838                                      SDValue(Res, ResNumResults-1));
1839
1840  // Otherwise, no replacement happened because the node already exists. Replace
1841  // Uses of the old node with the new one.
1842  if (Res != Node)
1843    CurDAG->ReplaceAllUsesWith(Node, Res);
1844
1845  return Res;
1846}
1847
1848/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1849ALWAYS_INLINE static bool
1850CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1851          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1852  // Accept if it is exactly the same as a previously recorded node.
1853  unsigned RecNo = MatcherTable[MatcherIndex++];
1854  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1855  return N == RecordedNodes[RecNo];
1856}
1857
1858/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1859ALWAYS_INLINE static bool
1860CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1861                      SelectionDAGISel &SDISel) {
1862  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1863}
1864
1865/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1866ALWAYS_INLINE static bool
1867CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1868                   SelectionDAGISel &SDISel, SDNode *N) {
1869  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1870}
1871
1872ALWAYS_INLINE static bool
1873CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1874            SDNode *N) {
1875  return N->getOpcode() == MatcherTable[MatcherIndex++];
1876}
1877
1878ALWAYS_INLINE static bool
1879CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1880          SDValue N, const TargetLowering &TLI) {
1881  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1882  if (N.getValueType() == VT) return true;
1883
1884  // Handle the case when VT is iPTR.
1885  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1886}
1887
1888ALWAYS_INLINE static bool
1889CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1890               SDValue N, const TargetLowering &TLI,
1891               unsigned ChildNo) {
1892  if (ChildNo >= N.getNumOperands())
1893    return false;  // Match fails if out of range child #.
1894  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1895}
1896
1897
1898ALWAYS_INLINE static bool
1899CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1900              SDValue N) {
1901  return cast<CondCodeSDNode>(N)->get() ==
1902      (ISD::CondCode)MatcherTable[MatcherIndex++];
1903}
1904
1905ALWAYS_INLINE static bool
1906CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1907               SDValue N, const TargetLowering &TLI) {
1908  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1909  if (cast<VTSDNode>(N)->getVT() == VT)
1910    return true;
1911
1912  // Handle the case when VT is iPTR.
1913  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1914}
1915
1916ALWAYS_INLINE static bool
1917CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1918             SDValue N) {
1919  int64_t Val = MatcherTable[MatcherIndex++];
1920  if (Val & 128)
1921    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1922
1923  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1924  return C != 0 && C->getSExtValue() == Val;
1925}
1926
1927ALWAYS_INLINE static bool
1928CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1929            SDValue N, SelectionDAGISel &SDISel) {
1930  int64_t Val = MatcherTable[MatcherIndex++];
1931  if (Val & 128)
1932    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1933
1934  if (N->getOpcode() != ISD::AND) return false;
1935
1936  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1937  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1938}
1939
1940ALWAYS_INLINE static bool
1941CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1942           SDValue N, SelectionDAGISel &SDISel) {
1943  int64_t Val = MatcherTable[MatcherIndex++];
1944  if (Val & 128)
1945    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1946
1947  if (N->getOpcode() != ISD::OR) return false;
1948
1949  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1950  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1951}
1952
1953/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1954/// scope, evaluate the current node.  If the current predicate is known to
1955/// fail, set Result=true and return anything.  If the current predicate is
1956/// known to pass, set Result=false and return the MatcherIndex to continue
1957/// with.  If the current predicate is unknown, set Result=false and return the
1958/// MatcherIndex to continue with.
1959static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1960                                       unsigned Index, SDValue N,
1961                                       bool &Result, SelectionDAGISel &SDISel,
1962                                       SmallVectorImpl<SDValue> &RecordedNodes){
1963  switch (Table[Index++]) {
1964  default:
1965    Result = false;
1966    return Index-1;  // Could not evaluate this predicate.
1967  case SelectionDAGISel::OPC_CheckSame:
1968    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1969    return Index;
1970  case SelectionDAGISel::OPC_CheckPatternPredicate:
1971    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1972    return Index;
1973  case SelectionDAGISel::OPC_CheckPredicate:
1974    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1975    return Index;
1976  case SelectionDAGISel::OPC_CheckOpcode:
1977    Result = !::CheckOpcode(Table, Index, N.getNode());
1978    return Index;
1979  case SelectionDAGISel::OPC_CheckType:
1980    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1981    return Index;
1982  case SelectionDAGISel::OPC_CheckChild0Type:
1983  case SelectionDAGISel::OPC_CheckChild1Type:
1984  case SelectionDAGISel::OPC_CheckChild2Type:
1985  case SelectionDAGISel::OPC_CheckChild3Type:
1986  case SelectionDAGISel::OPC_CheckChild4Type:
1987  case SelectionDAGISel::OPC_CheckChild5Type:
1988  case SelectionDAGISel::OPC_CheckChild6Type:
1989  case SelectionDAGISel::OPC_CheckChild7Type:
1990    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1991                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1992    return Index;
1993  case SelectionDAGISel::OPC_CheckCondCode:
1994    Result = !::CheckCondCode(Table, Index, N);
1995    return Index;
1996  case SelectionDAGISel::OPC_CheckValueType:
1997    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1998    return Index;
1999  case SelectionDAGISel::OPC_CheckInteger:
2000    Result = !::CheckInteger(Table, Index, N);
2001    return Index;
2002  case SelectionDAGISel::OPC_CheckAndImm:
2003    Result = !::CheckAndImm(Table, Index, N, SDISel);
2004    return Index;
2005  case SelectionDAGISel::OPC_CheckOrImm:
2006    Result = !::CheckOrImm(Table, Index, N, SDISel);
2007    return Index;
2008  }
2009}
2010
2011
2012struct MatchScope {
2013  /// FailIndex - If this match fails, this is the index to continue with.
2014  unsigned FailIndex;
2015
2016  /// NodeStack - The node stack when the scope was formed.
2017  SmallVector<SDValue, 4> NodeStack;
2018
2019  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2020  unsigned NumRecordedNodes;
2021
2022  /// NumMatchedMemRefs - The number of matched memref entries.
2023  unsigned NumMatchedMemRefs;
2024
2025  /// InputChain/InputFlag - The current chain/flag
2026  SDValue InputChain, InputFlag;
2027
2028  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2029  bool HasChainNodesMatched, HasFlagResultNodesMatched;
2030};
2031
2032SDNode *SelectionDAGISel::
2033SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2034                 unsigned TableSize) {
2035  // FIXME: Should these even be selected?  Handle these cases in the caller?
2036  switch (NodeToMatch->getOpcode()) {
2037  default:
2038    break;
2039  case ISD::EntryToken:       // These nodes remain the same.
2040  case ISD::BasicBlock:
2041  case ISD::Register:
2042  case ISD::HANDLENODE:
2043  case ISD::TargetConstant:
2044  case ISD::TargetConstantFP:
2045  case ISD::TargetConstantPool:
2046  case ISD::TargetFrameIndex:
2047  case ISD::TargetExternalSymbol:
2048  case ISD::TargetBlockAddress:
2049  case ISD::TargetJumpTable:
2050  case ISD::TargetGlobalTLSAddress:
2051  case ISD::TargetGlobalAddress:
2052  case ISD::TokenFactor:
2053  case ISD::CopyFromReg:
2054  case ISD::CopyToReg:
2055    NodeToMatch->setNodeId(-1); // Mark selected.
2056    return 0;
2057  case ISD::AssertSext:
2058  case ISD::AssertZext:
2059    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2060                                      NodeToMatch->getOperand(0));
2061    return 0;
2062  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2063  case ISD::EH_LABEL:  return Select_EH_LABEL(NodeToMatch);
2064  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2065  }
2066
2067  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2068
2069  // Set up the node stack with NodeToMatch as the only node on the stack.
2070  SmallVector<SDValue, 8> NodeStack;
2071  SDValue N = SDValue(NodeToMatch, 0);
2072  NodeStack.push_back(N);
2073
2074  // MatchScopes - Scopes used when matching, if a match failure happens, this
2075  // indicates where to continue checking.
2076  SmallVector<MatchScope, 8> MatchScopes;
2077
2078  // RecordedNodes - This is the set of nodes that have been recorded by the
2079  // state machine.
2080  SmallVector<SDValue, 8> RecordedNodes;
2081
2082  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2083  // pattern.
2084  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2085
2086  // These are the current input chain and flag for use when generating nodes.
2087  // Various Emit operations change these.  For example, emitting a copytoreg
2088  // uses and updates these.
2089  SDValue InputChain, InputFlag;
2090
2091  // ChainNodesMatched - If a pattern matches nodes that have input/output
2092  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2093  // which ones they are.  The result is captured into this list so that we can
2094  // update the chain results when the pattern is complete.
2095  SmallVector<SDNode*, 3> ChainNodesMatched;
2096  SmallVector<SDNode*, 3> FlagResultNodesMatched;
2097
2098  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2099        NodeToMatch->dump(CurDAG);
2100        errs() << '\n');
2101
2102  // Determine where to start the interpreter.  Normally we start at opcode #0,
2103  // but if the state machine starts with an OPC_SwitchOpcode, then we
2104  // accelerate the first lookup (which is guaranteed to be hot) with the
2105  // OpcodeOffset table.
2106  unsigned MatcherIndex = 0;
2107
2108  if (!OpcodeOffset.empty()) {
2109    // Already computed the OpcodeOffset table, just index into it.
2110    if (N.getOpcode() < OpcodeOffset.size())
2111      MatcherIndex = OpcodeOffset[N.getOpcode()];
2112    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2113
2114  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2115    // Otherwise, the table isn't computed, but the state machine does start
2116    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2117    // is the first time we're selecting an instruction.
2118    unsigned Idx = 1;
2119    while (1) {
2120      // Get the size of this case.
2121      unsigned CaseSize = MatcherTable[Idx++];
2122      if (CaseSize & 128)
2123        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2124      if (CaseSize == 0) break;
2125
2126      // Get the opcode, add the index to the table.
2127      unsigned Opc = MatcherTable[Idx++];
2128      if (Opc >= OpcodeOffset.size())
2129        OpcodeOffset.resize((Opc+1)*2);
2130      OpcodeOffset[Opc] = Idx;
2131      Idx += CaseSize;
2132    }
2133
2134    // Okay, do the lookup for the first opcode.
2135    if (N.getOpcode() < OpcodeOffset.size())
2136      MatcherIndex = OpcodeOffset[N.getOpcode()];
2137  }
2138
2139  while (1) {
2140    assert(MatcherIndex < TableSize && "Invalid index");
2141    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2142    switch (Opcode) {
2143    case OPC_Scope: {
2144      // Okay, the semantics of this operation are that we should push a scope
2145      // then evaluate the first child.  However, pushing a scope only to have
2146      // the first check fail (which then pops it) is inefficient.  If we can
2147      // determine immediately that the first check (or first several) will
2148      // immediately fail, don't even bother pushing a scope for them.
2149      unsigned FailIndex;
2150
2151      while (1) {
2152        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2153        if (NumToSkip & 128)
2154          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2155        // Found the end of the scope with no match.
2156        if (NumToSkip == 0) {
2157          FailIndex = 0;
2158          break;
2159        }
2160
2161        FailIndex = MatcherIndex+NumToSkip;
2162
2163        // If we can't evaluate this predicate without pushing a scope (e.g. if
2164        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2165        // push the scope and evaluate the full predicate chain.
2166        bool Result;
2167        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2168                                              Result, *this, RecordedNodes);
2169        if (!Result)
2170          break;
2171
2172        DEBUG(errs() << "  Skipped scope entry at index " << MatcherIndex
2173              << " continuing at " << FailIndex << "\n");
2174
2175
2176        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2177        // move to the next case.
2178        MatcherIndex = FailIndex;
2179      }
2180
2181      // If the whole scope failed to match, bail.
2182      if (FailIndex == 0) break;
2183
2184      // Push a MatchScope which indicates where to go if the first child fails
2185      // to match.
2186      MatchScope NewEntry;
2187      NewEntry.FailIndex = FailIndex;
2188      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2189      NewEntry.NumRecordedNodes = RecordedNodes.size();
2190      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2191      NewEntry.InputChain = InputChain;
2192      NewEntry.InputFlag = InputFlag;
2193      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2194      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2195      MatchScopes.push_back(NewEntry);
2196      continue;
2197    }
2198    case OPC_RecordNode:
2199      // Remember this node, it may end up being an operand in the pattern.
2200      RecordedNodes.push_back(N);
2201      continue;
2202
2203    case OPC_RecordChild0: case OPC_RecordChild1:
2204    case OPC_RecordChild2: case OPC_RecordChild3:
2205    case OPC_RecordChild4: case OPC_RecordChild5:
2206    case OPC_RecordChild6: case OPC_RecordChild7: {
2207      unsigned ChildNo = Opcode-OPC_RecordChild0;
2208      if (ChildNo >= N.getNumOperands())
2209        break;  // Match fails if out of range child #.
2210
2211      RecordedNodes.push_back(N->getOperand(ChildNo));
2212      continue;
2213    }
2214    case OPC_RecordMemRef:
2215      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2216      continue;
2217
2218    case OPC_CaptureFlagInput:
2219      // If the current node has an input flag, capture it in InputFlag.
2220      if (N->getNumOperands() != 0 &&
2221          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2222        InputFlag = N->getOperand(N->getNumOperands()-1);
2223      continue;
2224
2225    case OPC_MoveChild: {
2226      unsigned ChildNo = MatcherTable[MatcherIndex++];
2227      if (ChildNo >= N.getNumOperands())
2228        break;  // Match fails if out of range child #.
2229      N = N.getOperand(ChildNo);
2230      NodeStack.push_back(N);
2231      continue;
2232    }
2233
2234    case OPC_MoveParent:
2235      // Pop the current node off the NodeStack.
2236      NodeStack.pop_back();
2237      assert(!NodeStack.empty() && "Node stack imbalance!");
2238      N = NodeStack.back();
2239      continue;
2240
2241    case OPC_CheckSame:
2242      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2243      continue;
2244    case OPC_CheckPatternPredicate:
2245      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2246      continue;
2247    case OPC_CheckPredicate:
2248      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2249                                N.getNode()))
2250        break;
2251      continue;
2252    case OPC_CheckComplexPat:
2253      if (!CheckComplexPattern(NodeToMatch, N,
2254                               MatcherTable[MatcherIndex++], RecordedNodes))
2255        break;
2256      continue;
2257    case OPC_CheckOpcode:
2258      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2259      continue;
2260
2261    case OPC_CheckType:
2262      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2263      continue;
2264
2265    case OPC_SwitchOpcode: {
2266      unsigned CurNodeOpcode = N.getOpcode();
2267      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2268      unsigned CaseSize;
2269      while (1) {
2270        // Get the size of this case.
2271        CaseSize = MatcherTable[MatcherIndex++];
2272        if (CaseSize & 128)
2273          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2274        if (CaseSize == 0) break;
2275
2276        // If the opcode matches, then we will execute this case.
2277        if (CurNodeOpcode == MatcherTable[MatcherIndex++])
2278          break;
2279
2280        // Otherwise, skip over this case.
2281        MatcherIndex += CaseSize;
2282      }
2283
2284      // If no cases matched, bail out.
2285      if (CaseSize == 0) break;
2286
2287      // Otherwise, execute the case we found.
2288      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2289                   << " to " << MatcherIndex << "\n");
2290      continue;
2291    }
2292
2293    case OPC_SwitchType: {
2294      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2295      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2296      unsigned CaseSize;
2297      while (1) {
2298        // Get the size of this case.
2299        CaseSize = MatcherTable[MatcherIndex++];
2300        if (CaseSize & 128)
2301          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2302        if (CaseSize == 0) break;
2303
2304        MVT::SimpleValueType CaseVT =
2305          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2306        if (CaseVT == MVT::iPTR)
2307          CaseVT = TLI.getPointerTy().SimpleTy;
2308
2309        // If the VT matches, then we will execute this case.
2310        if (CurNodeVT == CaseVT)
2311          break;
2312
2313        // Otherwise, skip over this case.
2314        MatcherIndex += CaseSize;
2315      }
2316
2317      // If no cases matched, bail out.
2318      if (CaseSize == 0) break;
2319
2320      // Otherwise, execute the case we found.
2321      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2322                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2323      continue;
2324    }
2325    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2326    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2327    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2328    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2329      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2330                            Opcode-OPC_CheckChild0Type))
2331        break;
2332      continue;
2333    case OPC_CheckCondCode:
2334      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2335      continue;
2336    case OPC_CheckValueType:
2337      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2338      continue;
2339    case OPC_CheckInteger:
2340      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2341      continue;
2342    case OPC_CheckAndImm:
2343      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2344      continue;
2345    case OPC_CheckOrImm:
2346      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2347      continue;
2348
2349    case OPC_CheckFoldableChainNode: {
2350      assert(NodeStack.size() != 1 && "No parent node");
2351      // Verify that all intermediate nodes between the root and this one have
2352      // a single use.
2353      bool HasMultipleUses = false;
2354      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2355        if (!NodeStack[i].hasOneUse()) {
2356          HasMultipleUses = true;
2357          break;
2358        }
2359      if (HasMultipleUses) break;
2360
2361      // Check to see that the target thinks this is profitable to fold and that
2362      // we can fold it without inducing cycles in the graph.
2363      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2364                              NodeToMatch) ||
2365          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2366                         NodeToMatch, true/*We validate our own chains*/))
2367        break;
2368
2369      continue;
2370    }
2371    case OPC_EmitInteger: {
2372      MVT::SimpleValueType VT =
2373        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2374      int64_t Val = MatcherTable[MatcherIndex++];
2375      if (Val & 128)
2376        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2377      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2378      continue;
2379    }
2380    case OPC_EmitRegister: {
2381      MVT::SimpleValueType VT =
2382        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2383      unsigned RegNo = MatcherTable[MatcherIndex++];
2384      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2385      continue;
2386    }
2387
2388    case OPC_EmitConvertToTarget:  {
2389      // Convert from IMM/FPIMM to target version.
2390      unsigned RecNo = MatcherTable[MatcherIndex++];
2391      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2392      SDValue Imm = RecordedNodes[RecNo];
2393
2394      if (Imm->getOpcode() == ISD::Constant) {
2395        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2396        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2397      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2398        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2399        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2400      }
2401
2402      RecordedNodes.push_back(Imm);
2403      continue;
2404    }
2405
2406    case OPC_EmitMergeInputChains: {
2407      assert(InputChain.getNode() == 0 &&
2408             "EmitMergeInputChains should be the first chain producing node");
2409      // This node gets a list of nodes we matched in the input that have
2410      // chains.  We want to token factor all of the input chains to these nodes
2411      // together.  However, if any of the input chains is actually one of the
2412      // nodes matched in this pattern, then we have an intra-match reference.
2413      // Ignore these because the newly token factored chain should not refer to
2414      // the old nodes.
2415      unsigned NumChains = MatcherTable[MatcherIndex++];
2416      assert(NumChains != 0 && "Can't TF zero chains");
2417
2418      assert(ChainNodesMatched.empty() &&
2419             "Should only have one EmitMergeInputChains per match");
2420
2421      // Read all of the chained nodes.
2422      for (unsigned i = 0; i != NumChains; ++i) {
2423        unsigned RecNo = MatcherTable[MatcherIndex++];
2424        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2425        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2426
2427        // FIXME: What if other value results of the node have uses not matched
2428        // by this pattern?
2429        if (ChainNodesMatched.back() != NodeToMatch &&
2430            !RecordedNodes[RecNo].hasOneUse()) {
2431          ChainNodesMatched.clear();
2432          break;
2433        }
2434      }
2435
2436      // If the inner loop broke out, the match fails.
2437      if (ChainNodesMatched.empty())
2438        break;
2439
2440      // Merge the input chains if they are not intra-pattern references.
2441      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2442
2443      if (InputChain.getNode() == 0)
2444        break;  // Failed to merge.
2445
2446      continue;
2447    }
2448
2449    case OPC_EmitCopyToReg: {
2450      unsigned RecNo = MatcherTable[MatcherIndex++];
2451      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2452      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2453
2454      if (InputChain.getNode() == 0)
2455        InputChain = CurDAG->getEntryNode();
2456
2457      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2458                                        DestPhysReg, RecordedNodes[RecNo],
2459                                        InputFlag);
2460
2461      InputFlag = InputChain.getValue(1);
2462      continue;
2463    }
2464
2465    case OPC_EmitNodeXForm: {
2466      unsigned XFormNo = MatcherTable[MatcherIndex++];
2467      unsigned RecNo = MatcherTable[MatcherIndex++];
2468      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2469      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2470      continue;
2471    }
2472
2473    case OPC_EmitNode:
2474    case OPC_MorphNodeTo: {
2475      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2476      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2477      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2478      // Get the result VT list.
2479      unsigned NumVTs = MatcherTable[MatcherIndex++];
2480      SmallVector<EVT, 4> VTs;
2481      for (unsigned i = 0; i != NumVTs; ++i) {
2482        MVT::SimpleValueType VT =
2483          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2484        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2485        VTs.push_back(VT);
2486      }
2487
2488      if (EmitNodeInfo & OPFL_Chain)
2489        VTs.push_back(MVT::Other);
2490      if (EmitNodeInfo & OPFL_FlagOutput)
2491        VTs.push_back(MVT::Flag);
2492
2493      // This is hot code, so optimize the two most common cases of 1 and 2
2494      // results.
2495      SDVTList VTList;
2496      if (VTs.size() == 1)
2497        VTList = CurDAG->getVTList(VTs[0]);
2498      else if (VTs.size() == 2)
2499        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2500      else
2501        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2502
2503      // Get the operand list.
2504      unsigned NumOps = MatcherTable[MatcherIndex++];
2505      SmallVector<SDValue, 8> Ops;
2506      for (unsigned i = 0; i != NumOps; ++i) {
2507        unsigned RecNo = MatcherTable[MatcherIndex++];
2508        if (RecNo & 128)
2509          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2510
2511        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2512        Ops.push_back(RecordedNodes[RecNo]);
2513      }
2514
2515      // If there are variadic operands to add, handle them now.
2516      if (EmitNodeInfo & OPFL_VariadicInfo) {
2517        // Determine the start index to copy from.
2518        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2519        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2520        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2521               "Invalid variadic node");
2522        // Copy all of the variadic operands, not including a potential flag
2523        // input.
2524        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2525             i != e; ++i) {
2526          SDValue V = NodeToMatch->getOperand(i);
2527          if (V.getValueType() == MVT::Flag) break;
2528          Ops.push_back(V);
2529        }
2530      }
2531
2532      // If this has chain/flag inputs, add them.
2533      if (EmitNodeInfo & OPFL_Chain)
2534        Ops.push_back(InputChain);
2535      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2536        Ops.push_back(InputFlag);
2537
2538      // Create the node.
2539      SDNode *Res = 0;
2540      if (Opcode != OPC_MorphNodeTo) {
2541        // If this is a normal EmitNode command, just create the new node and
2542        // add the results to the RecordedNodes list.
2543        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2544                                     VTList, Ops.data(), Ops.size());
2545
2546        // Add all the non-flag/non-chain results to the RecordedNodes list.
2547        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2548          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2549          RecordedNodes.push_back(SDValue(Res, i));
2550        }
2551
2552      } else {
2553        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2554                        EmitNodeInfo);
2555      }
2556
2557      // If the node had chain/flag results, update our notion of the current
2558      // chain and flag.
2559      if (EmitNodeInfo & OPFL_FlagOutput) {
2560        InputFlag = SDValue(Res, VTs.size()-1);
2561        if (EmitNodeInfo & OPFL_Chain)
2562          InputChain = SDValue(Res, VTs.size()-2);
2563      } else if (EmitNodeInfo & OPFL_Chain)
2564        InputChain = SDValue(Res, VTs.size()-1);
2565
2566      // If the OPFL_MemRefs flag is set on this node, slap all of the
2567      // accumulated memrefs onto it.
2568      //
2569      // FIXME: This is vastly incorrect for patterns with multiple outputs
2570      // instructions that access memory and for ComplexPatterns that match
2571      // loads.
2572      if (EmitNodeInfo & OPFL_MemRefs) {
2573        MachineSDNode::mmo_iterator MemRefs =
2574          MF->allocateMemRefsArray(MatchedMemRefs.size());
2575        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2576        cast<MachineSDNode>(Res)
2577          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2578      }
2579
2580      DEBUG(errs() << "  "
2581                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2582                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2583
2584      // If this was a MorphNodeTo then we're completely done!
2585      if (Opcode == OPC_MorphNodeTo) {
2586        // Update chain and flag uses.
2587        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2588                             InputFlag, FlagResultNodesMatched, true);
2589        return Res;
2590      }
2591
2592      continue;
2593    }
2594
2595    case OPC_MarkFlagResults: {
2596      unsigned NumNodes = MatcherTable[MatcherIndex++];
2597
2598      // Read and remember all the flag-result nodes.
2599      for (unsigned i = 0; i != NumNodes; ++i) {
2600        unsigned RecNo = MatcherTable[MatcherIndex++];
2601        if (RecNo & 128)
2602          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2603
2604        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2605        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2606      }
2607      continue;
2608    }
2609
2610    case OPC_CompleteMatch: {
2611      // The match has been completed, and any new nodes (if any) have been
2612      // created.  Patch up references to the matched dag to use the newly
2613      // created nodes.
2614      unsigned NumResults = MatcherTable[MatcherIndex++];
2615
2616      for (unsigned i = 0; i != NumResults; ++i) {
2617        unsigned ResSlot = MatcherTable[MatcherIndex++];
2618        if (ResSlot & 128)
2619          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2620
2621        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2622        SDValue Res = RecordedNodes[ResSlot];
2623
2624        // FIXME2: Eliminate this horrible hack by fixing the 'Gen' program
2625        // after (parallel) on input patterns are removed.  This would also
2626        // allow us to stop encoding #results in OPC_CompleteMatch's table
2627        // entry.
2628        if (NodeToMatch->getNumValues() <= i ||
2629            NodeToMatch->getValueType(i) == MVT::Other ||
2630            NodeToMatch->getValueType(i) == MVT::Flag)
2631          break;
2632        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2633                NodeToMatch->getValueType(i) == MVT::iPTR ||
2634                Res.getValueType() == MVT::iPTR ||
2635                NodeToMatch->getValueType(i).getSizeInBits() ==
2636                    Res.getValueType().getSizeInBits()) &&
2637               "invalid replacement");
2638        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2639      }
2640
2641      // If the root node defines a flag, add it to the flag nodes to update
2642      // list.
2643      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2644        FlagResultNodesMatched.push_back(NodeToMatch);
2645
2646      // Update chain and flag uses.
2647      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2648                           InputFlag, FlagResultNodesMatched, false);
2649
2650      assert(NodeToMatch->use_empty() &&
2651             "Didn't replace all uses of the node?");
2652
2653      // FIXME: We just return here, which interacts correctly with SelectRoot
2654      // above.  We should fix this to not return an SDNode* anymore.
2655      return 0;
2656    }
2657    }
2658
2659    // If the code reached this point, then the match failed.  See if there is
2660    // another child to try in the current 'Scope', otherwise pop it until we
2661    // find a case to check.
2662    while (1) {
2663      if (MatchScopes.empty()) {
2664        CannotYetSelect(NodeToMatch);
2665        return 0;
2666      }
2667
2668      // Restore the interpreter state back to the point where the scope was
2669      // formed.
2670      MatchScope &LastScope = MatchScopes.back();
2671      RecordedNodes.resize(LastScope.NumRecordedNodes);
2672      NodeStack.clear();
2673      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2674      N = NodeStack.back();
2675
2676      DEBUG(errs() << "  Match failed at index " << MatcherIndex
2677                   << " continuing at " << LastScope.FailIndex << "\n");
2678
2679      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2680        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2681      MatcherIndex = LastScope.FailIndex;
2682
2683      InputChain = LastScope.InputChain;
2684      InputFlag = LastScope.InputFlag;
2685      if (!LastScope.HasChainNodesMatched)
2686        ChainNodesMatched.clear();
2687      if (!LastScope.HasFlagResultNodesMatched)
2688        FlagResultNodesMatched.clear();
2689
2690      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2691      // we have reached the end of this scope, otherwise we have another child
2692      // in the current scope to try.
2693      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2694      if (NumToSkip & 128)
2695        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2696
2697      // If we have another child in this scope to match, update FailIndex and
2698      // try it.
2699      if (NumToSkip != 0) {
2700        LastScope.FailIndex = MatcherIndex+NumToSkip;
2701        break;
2702      }
2703
2704      // End of this scope, pop it and try the next child in the containing
2705      // scope.
2706      MatchScopes.pop_back();
2707    }
2708  }
2709}
2710
2711
2712
2713void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2714  if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2715      N->getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2716      N->getOpcode() == ISD::INTRINSIC_VOID)
2717    return CannotYetSelectIntrinsic(N);
2718
2719  std::string msg;
2720  raw_string_ostream Msg(msg);
2721  Msg << "Cannot yet select: ";
2722  N->printrFull(Msg, CurDAG);
2723  llvm_report_error(Msg.str());
2724}
2725
2726void SelectionDAGISel::CannotYetSelectIntrinsic(SDNode *N) {
2727  dbgs() << "Cannot yet select: ";
2728  unsigned iid =
2729    cast<ConstantSDNode>(N->getOperand(N->getOperand(0).getValueType() ==
2730                                       MVT::Other))->getZExtValue();
2731  if (iid < Intrinsic::num_intrinsics)
2732    llvm_report_error("Cannot yet select: intrinsic %" +
2733                      Intrinsic::getName((Intrinsic::ID)iid));
2734  else if (const TargetIntrinsicInfo *tii = TM.getIntrinsicInfo())
2735    llvm_report_error(Twine("Cannot yet select: target intrinsic %") +
2736                      tii->getName(iid));
2737}
2738
2739char SelectionDAGISel::ID = 0;
2740