SelectionDAGISel.cpp revision 9af7e9a1b5fb04ba677059ada9290cd3864523b2
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Support/Compiler.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/Timer.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
56STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
57
58static cl::opt<bool>
59EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
60          cl::desc("Enable verbose messages in the \"fast\" "
61                   "instruction selector"));
62static cl::opt<bool>
63EnableFastISelAbort("fast-isel-abort", cl::Hidden,
64          cl::desc("Enable abort calls when \"fast\" instruction fails"));
65
66#ifndef NDEBUG
67static cl::opt<bool>
68ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
69          cl::desc("Pop up a window to show dags before the first "
70                   "dag combine pass"));
71static cl::opt<bool>
72ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
73          cl::desc("Pop up a window to show dags before legalize types"));
74static cl::opt<bool>
75ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
76          cl::desc("Pop up a window to show dags before legalize"));
77static cl::opt<bool>
78ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the second "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before the post legalize types"
84                   " dag combine pass"));
85static cl::opt<bool>
86ViewISelDAGs("view-isel-dags", cl::Hidden,
87          cl::desc("Pop up a window to show isel dags as they are selected"));
88static cl::opt<bool>
89ViewSchedDAGs("view-sched-dags", cl::Hidden,
90          cl::desc("Pop up a window to show sched dags as they are processed"));
91static cl::opt<bool>
92ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
93      cl::desc("Pop up a window to show SUnit dags after they are processed"));
94#else
95static const bool ViewDAGCombine1 = false,
96                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
97                  ViewDAGCombine2 = false,
98                  ViewDAGCombineLT = false,
99                  ViewISelDAGs = false, ViewSchedDAGs = false,
100                  ViewSUnitDAGs = false;
101#endif
102
103//===---------------------------------------------------------------------===//
104///
105/// RegisterScheduler class - Track the registration of instruction schedulers.
106///
107//===---------------------------------------------------------------------===//
108MachinePassRegistry RegisterScheduler::Registry;
109
110//===---------------------------------------------------------------------===//
111///
112/// ISHeuristic command line option for instruction schedulers.
113///
114//===---------------------------------------------------------------------===//
115static cl::opt<RegisterScheduler::FunctionPassCtor, false,
116               RegisterPassParser<RegisterScheduler> >
117ISHeuristic("pre-RA-sched",
118            cl::init(&createDefaultScheduler),
119            cl::desc("Instruction schedulers available (before register"
120                     " allocation):"));
121
122static RegisterScheduler
123defaultListDAGScheduler("default", "Best scheduler for the target",
124                        createDefaultScheduler);
125
126namespace llvm {
127  //===--------------------------------------------------------------------===//
128  /// createDefaultScheduler - This creates an instruction scheduler appropriate
129  /// for the target.
130  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
131                                             CodeGenOpt::Level OptLevel) {
132    const TargetLowering &TLI = IS->getTargetLowering();
133
134    if (OptLevel == CodeGenOpt::None)
135      return createFastDAGScheduler(IS, OptLevel);
136    if (TLI.getSchedulingPreference() == Sched::Latency)
137      return createTDListDAGScheduler(IS, OptLevel);
138    if (TLI.getSchedulingPreference() == Sched::RegPressure)
139      return createBURRListDAGScheduler(IS, OptLevel);
140    assert(TLI.getSchedulingPreference() == Sched::Hybrid &&
141           "Unknown sched type!");
142    return createHybridListDAGScheduler(IS, OptLevel);
143  }
144}
145
146// EmitInstrWithCustomInserter - This method should be implemented by targets
147// that mark instructions with the 'usesCustomInserter' flag.  These
148// instructions are special in various ways, which require special support to
149// insert.  The specified MachineInstr is created but not inserted into any
150// basic blocks, and this method is called to expand it into a sequence of
151// instructions, potentially also creating new basic blocks and control flow.
152// When new basic blocks are inserted and the edges from MBB to its successors
153// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
154// DenseMap.
155MachineBasicBlock *
156TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
157                                            MachineBasicBlock *MBB) const {
158#ifndef NDEBUG
159  dbgs() << "If a target marks an instruction with "
160          "'usesCustomInserter', it must implement "
161          "TargetLowering::EmitInstrWithCustomInserter!";
162#endif
163  llvm_unreachable(0);
164  return 0;
165}
166
167//===----------------------------------------------------------------------===//
168// SelectionDAGISel code
169//===----------------------------------------------------------------------===//
170
171SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
172  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
173  FuncInfo(new FunctionLoweringInfo(TLI)),
174  CurDAG(new SelectionDAG(tm, *FuncInfo)),
175  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
176  GFI(),
177  OptLevel(OL),
178  DAGSize(0)
179{}
180
181SelectionDAGISel::~SelectionDAGISel() {
182  delete SDB;
183  delete CurDAG;
184  delete FuncInfo;
185}
186
187void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
188  AU.addRequired<AliasAnalysis>();
189  AU.addPreserved<AliasAnalysis>();
190  AU.addRequired<GCModuleInfo>();
191  AU.addPreserved<GCModuleInfo>();
192  MachineFunctionPass::getAnalysisUsage(AU);
193}
194
195/// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
196/// sigsetjmp. This is used to limit code-gen optimizations on the machine
197/// function.
198static bool FunctionCallsSetJmp(const Function *F) {
199  const Module *M = F->getParent();
200  const Function *SetJmp = M->getFunction("setjmp");
201  const Function *SigSetJmp = M->getFunction("sigsetjmp");
202
203  if (!SetJmp && !SigSetJmp)
204    return false;
205
206  if (SetJmp && !SetJmp->use_empty())
207    for (Value::const_use_iterator
208           I = SetJmp->use_begin(), E = SetJmp->use_end(); I != E; ++I)
209      if (const CallInst *CI = dyn_cast<CallInst>(I))
210        if (CI->getParent()->getParent() == F)
211          return true;
212
213  if (SigSetJmp && !SigSetJmp->use_empty())
214    for (Value::const_use_iterator
215           I = SigSetJmp->use_begin(), E = SigSetJmp->use_end(); I != E; ++I)
216      if (const CallInst *CI = dyn_cast<CallInst>(I))
217        if (CI->getParent()->getParent() == F)
218          return true;
219
220  return false;
221}
222
223bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
224  // Do some sanity-checking on the command-line options.
225  assert((!EnableFastISelVerbose || EnableFastISel) &&
226         "-fast-isel-verbose requires -fast-isel");
227  assert((!EnableFastISelAbort || EnableFastISel) &&
228         "-fast-isel-abort requires -fast-isel");
229
230  const Function &Fn = *mf.getFunction();
231  const TargetInstrInfo &TII = *TM.getInstrInfo();
232  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
233
234  MF = &mf;
235  RegInfo = &MF->getRegInfo();
236  AA = &getAnalysis<AliasAnalysis>();
237  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
238
239  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
240
241  CurDAG->init(*MF);
242  FuncInfo->set(Fn, *MF, EnableFastISel);
243  SDB->init(GFI, *AA);
244
245  SelectAllBasicBlocks(Fn);
246
247  // If the first basic block in the function has live ins that need to be
248  // copied into vregs, emit the copies into the top of the block before
249  // emitting the code for the block.
250  MachineBasicBlock *EntryMBB = MF->begin();
251  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
252
253  // Insert DBG_VALUE instructions for function arguments to the entry block.
254  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
255    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
256    unsigned Reg = MI->getOperand(0).getReg();
257    if (TargetRegisterInfo::isPhysicalRegister(Reg))
258      EntryMBB->insert(EntryMBB->begin(), MI);
259    else {
260      MachineInstr *Def = RegInfo->getVRegDef(Reg);
261      MachineBasicBlock::iterator InsertPos = Def;
262      // FIXME: VR def may not be in entry block.
263      Def->getParent()->insert(llvm::next(InsertPos), MI);
264    }
265  }
266
267  // Determine if there are any calls in this machine function.
268  MachineFrameInfo *MFI = MF->getFrameInfo();
269  if (!MFI->hasCalls()) {
270    for (MachineFunction::const_iterator
271           I = MF->begin(), E = MF->end(); I != E; ++I) {
272      const MachineBasicBlock *MBB = I;
273      for (MachineBasicBlock::const_iterator
274             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
275        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
276        if (II->isInlineAsm() || (TID.isCall() && !TID.isReturn())) {
277          MFI->setHasCalls(true);
278          goto done;
279        }
280      }
281    }
282  done:;
283  }
284
285  // Determine if there is a call to setjmp in the machine function.
286  MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
287
288  // Release function-specific state. SDB and CurDAG are already cleared
289  // at this point.
290  FuncInfo->clear();
291
292  return true;
293}
294
295MachineBasicBlock *
296SelectionDAGISel::SelectBasicBlock(MachineBasicBlock *BB,
297                                   const BasicBlock *LLVMBB,
298                                   BasicBlock::const_iterator Begin,
299                                   BasicBlock::const_iterator End,
300                                   bool &HadTailCall) {
301  // Lower all of the non-terminator instructions. If a call is emitted
302  // as a tail call, cease emitting nodes for this block. Terminators
303  // are handled below.
304  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
305    SDB->visit(*I);
306
307  // Make sure the root of the DAG is up-to-date.
308  CurDAG->setRoot(SDB->getControlRoot());
309  HadTailCall = SDB->HasTailCall;
310  SDB->clear();
311
312  // Final step, emit the lowered DAG as machine code.
313  return CodeGenAndEmitDAG(BB);
314}
315
316namespace {
317/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
318/// nodes from the worklist.
319class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
320  SmallVector<SDNode*, 128> &Worklist;
321  SmallPtrSet<SDNode*, 128> &InWorklist;
322public:
323  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
324                       SmallPtrSet<SDNode*, 128> &inwl)
325    : Worklist(wl), InWorklist(inwl) {}
326
327  void RemoveFromWorklist(SDNode *N) {
328    if (!InWorklist.erase(N)) return;
329
330    SmallVector<SDNode*, 128>::iterator I =
331    std::find(Worklist.begin(), Worklist.end(), N);
332    assert(I != Worklist.end() && "Not in worklist");
333
334    *I = Worklist.back();
335    Worklist.pop_back();
336  }
337
338  virtual void NodeDeleted(SDNode *N, SDNode *E) {
339    RemoveFromWorklist(N);
340  }
341
342  virtual void NodeUpdated(SDNode *N) {
343    // Ignore updates.
344  }
345};
346}
347
348/// TrivialTruncElim - Eliminate some trivial nops that can result from
349/// ShrinkDemandedOps: (trunc (ext n)) -> n.
350static bool TrivialTruncElim(SDValue Op,
351                             TargetLowering::TargetLoweringOpt &TLO) {
352  SDValue N0 = Op.getOperand(0);
353  EVT VT = Op.getValueType();
354  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
355       N0.getOpcode() == ISD::SIGN_EXTEND ||
356       N0.getOpcode() == ISD::ANY_EXTEND) &&
357      N0.getOperand(0).getValueType() == VT) {
358    return TLO.CombineTo(Op, N0.getOperand(0));
359  }
360  return false;
361}
362
363/// ShrinkDemandedOps - A late transformation pass that shrink expressions
364/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
365/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
366void SelectionDAGISel::ShrinkDemandedOps() {
367  SmallVector<SDNode*, 128> Worklist;
368  SmallPtrSet<SDNode*, 128> InWorklist;
369
370  // Add all the dag nodes to the worklist.
371  Worklist.reserve(CurDAG->allnodes_size());
372  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
373       E = CurDAG->allnodes_end(); I != E; ++I) {
374    Worklist.push_back(I);
375    InWorklist.insert(I);
376  }
377
378  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true, true, true);
379  while (!Worklist.empty()) {
380    SDNode *N = Worklist.pop_back_val();
381    InWorklist.erase(N);
382
383    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
384      // Deleting this node may make its operands dead, add them to the worklist
385      // if they aren't already there.
386      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
387        if (InWorklist.insert(N->getOperand(i).getNode()))
388          Worklist.push_back(N->getOperand(i).getNode());
389
390      CurDAG->DeleteNode(N);
391      continue;
392    }
393
394    // Run ShrinkDemandedOp on scalar binary operations.
395    if (N->getNumValues() != 1 ||
396        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
397      continue;
398
399    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
400    APInt Demanded = APInt::getAllOnesValue(BitWidth);
401    APInt KnownZero, KnownOne;
402    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
403                                  KnownZero, KnownOne, TLO) &&
404        (N->getOpcode() != ISD::TRUNCATE ||
405         !TrivialTruncElim(SDValue(N, 0), TLO)))
406      continue;
407
408    // Revisit the node.
409    assert(!InWorklist.count(N) && "Already in worklist");
410    Worklist.push_back(N);
411    InWorklist.insert(N);
412
413    // Replace the old value with the new one.
414    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
415          TLO.Old.getNode()->dump(CurDAG);
416          errs() << "\nWith: ";
417          TLO.New.getNode()->dump(CurDAG);
418          errs() << '\n');
419
420    if (InWorklist.insert(TLO.New.getNode()))
421      Worklist.push_back(TLO.New.getNode());
422
423    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
424    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
425
426    if (!TLO.Old.getNode()->use_empty()) continue;
427
428    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
429         i != e; ++i) {
430      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
431      if (OpNode->hasOneUse()) {
432        // Add OpNode to the end of the list to revisit.
433        DeadNodes.RemoveFromWorklist(OpNode);
434        Worklist.push_back(OpNode);
435        InWorklist.insert(OpNode);
436      }
437    }
438
439    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
440    CurDAG->DeleteNode(TLO.Old.getNode());
441  }
442}
443
444void SelectionDAGISel::ComputeLiveOutVRegInfo() {
445  SmallPtrSet<SDNode*, 128> VisitedNodes;
446  SmallVector<SDNode*, 128> Worklist;
447
448  Worklist.push_back(CurDAG->getRoot().getNode());
449
450  APInt Mask;
451  APInt KnownZero;
452  APInt KnownOne;
453
454  do {
455    SDNode *N = Worklist.pop_back_val();
456
457    // If we've already seen this node, ignore it.
458    if (!VisitedNodes.insert(N))
459      continue;
460
461    // Otherwise, add all chain operands to the worklist.
462    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
463      if (N->getOperand(i).getValueType() == MVT::Other)
464        Worklist.push_back(N->getOperand(i).getNode());
465
466    // If this is a CopyToReg with a vreg dest, process it.
467    if (N->getOpcode() != ISD::CopyToReg)
468      continue;
469
470    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
471    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
472      continue;
473
474    // Ignore non-scalar or non-integer values.
475    SDValue Src = N->getOperand(2);
476    EVT SrcVT = Src.getValueType();
477    if (!SrcVT.isInteger() || SrcVT.isVector())
478      continue;
479
480    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
481    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
482    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
483
484    // Only install this information if it tells us something.
485    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
486      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
487      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
488        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
489      FunctionLoweringInfo::LiveOutInfo &LOI =
490        FuncInfo->LiveOutRegInfo[DestReg];
491      LOI.NumSignBits = NumSignBits;
492      LOI.KnownOne = KnownOne;
493      LOI.KnownZero = KnownZero;
494    }
495  } while (!Worklist.empty());
496}
497
498MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
499  std::string GroupName;
500  if (TimePassesIsEnabled)
501    GroupName = "Instruction Selection and Scheduling";
502  std::string BlockName;
503  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
504      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
505      ViewSUnitDAGs)
506    BlockName = MF->getFunction()->getNameStr() + ":" +
507                BB->getBasicBlock()->getNameStr();
508
509  DEBUG(dbgs() << "Initial selection DAG:\n");
510  DEBUG(CurDAG->dump());
511
512  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
513
514  // Run the DAG combiner in pre-legalize mode.
515  if (TimePassesIsEnabled) {
516    NamedRegionTimer T("DAG Combining 1", GroupName);
517    CurDAG->Combine(Unrestricted, *AA, OptLevel);
518  } else {
519    CurDAG->Combine(Unrestricted, *AA, OptLevel);
520  }
521
522  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
523  DEBUG(CurDAG->dump());
524
525  // Second step, hack on the DAG until it only uses operations and types that
526  // the target supports.
527  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
528                                               BlockName);
529
530  bool Changed;
531  if (TimePassesIsEnabled) {
532    NamedRegionTimer T("Type Legalization", GroupName);
533    Changed = CurDAG->LegalizeTypes();
534  } else {
535    Changed = CurDAG->LegalizeTypes();
536  }
537
538  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
539  DEBUG(CurDAG->dump());
540
541  if (Changed) {
542    if (ViewDAGCombineLT)
543      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
544
545    // Run the DAG combiner in post-type-legalize mode.
546    if (TimePassesIsEnabled) {
547      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
548      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
549    } else {
550      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
551    }
552
553    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
554    DEBUG(CurDAG->dump());
555  }
556
557  if (TimePassesIsEnabled) {
558    NamedRegionTimer T("Vector Legalization", GroupName);
559    Changed = CurDAG->LegalizeVectors();
560  } else {
561    Changed = CurDAG->LegalizeVectors();
562  }
563
564  if (Changed) {
565    if (TimePassesIsEnabled) {
566      NamedRegionTimer T("Type Legalization 2", GroupName);
567      CurDAG->LegalizeTypes();
568    } else {
569      CurDAG->LegalizeTypes();
570    }
571
572    if (ViewDAGCombineLT)
573      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
574
575    // Run the DAG combiner in post-type-legalize mode.
576    if (TimePassesIsEnabled) {
577      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
578      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
579    } else {
580      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
581    }
582
583    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
584    DEBUG(CurDAG->dump());
585  }
586
587  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
588
589  if (TimePassesIsEnabled) {
590    NamedRegionTimer T("DAG Legalization", GroupName);
591    CurDAG->Legalize(OptLevel);
592  } else {
593    CurDAG->Legalize(OptLevel);
594  }
595
596  DEBUG(dbgs() << "Legalized selection DAG:\n");
597  DEBUG(CurDAG->dump());
598
599  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
600
601  // Run the DAG combiner in post-legalize mode.
602  if (TimePassesIsEnabled) {
603    NamedRegionTimer T("DAG Combining 2", GroupName);
604    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
605  } else {
606    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
607  }
608
609  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
610  DEBUG(CurDAG->dump());
611
612  if (OptLevel != CodeGenOpt::None) {
613    ShrinkDemandedOps();
614    ComputeLiveOutVRegInfo();
615  }
616
617  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
618
619  // Third, instruction select all of the operations to machine code, adding the
620  // code to the MachineBasicBlock.
621  if (TimePassesIsEnabled) {
622    NamedRegionTimer T("Instruction Selection", GroupName);
623    DoInstructionSelection();
624  } else {
625    DoInstructionSelection();
626  }
627
628  DEBUG(dbgs() << "Selected selection DAG:\n");
629  DEBUG(CurDAG->dump());
630
631  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
632
633  // Schedule machine code.
634  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
635  if (TimePassesIsEnabled) {
636    NamedRegionTimer T("Instruction Scheduling", GroupName);
637    Scheduler->Run(CurDAG, BB, BB->end());
638  } else {
639    Scheduler->Run(CurDAG, BB, BB->end());
640  }
641
642  if (ViewSUnitDAGs) Scheduler->viewGraph();
643
644  // Emit machine code to BB.  This can change 'BB' to the last block being
645  // inserted into.
646  if (TimePassesIsEnabled) {
647    NamedRegionTimer T("Instruction Creation", GroupName);
648    BB = Scheduler->EmitSchedule();
649  } else {
650    BB = Scheduler->EmitSchedule();
651  }
652
653  // Free the scheduler state.
654  if (TimePassesIsEnabled) {
655    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
656    delete Scheduler;
657  } else {
658    delete Scheduler;
659  }
660
661  // Free the SelectionDAG state, now that we're finished with it.
662  CurDAG->clear();
663
664  return BB;
665}
666
667void SelectionDAGISel::DoInstructionSelection() {
668  DEBUG(errs() << "===== Instruction selection begins:\n");
669
670  PreprocessISelDAG();
671
672  // Select target instructions for the DAG.
673  {
674    // Number all nodes with a topological order and set DAGSize.
675    DAGSize = CurDAG->AssignTopologicalOrder();
676
677    // Create a dummy node (which is not added to allnodes), that adds
678    // a reference to the root node, preventing it from being deleted,
679    // and tracking any changes of the root.
680    HandleSDNode Dummy(CurDAG->getRoot());
681    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
682    ++ISelPosition;
683
684    // The AllNodes list is now topological-sorted. Visit the
685    // nodes by starting at the end of the list (the root of the
686    // graph) and preceding back toward the beginning (the entry
687    // node).
688    while (ISelPosition != CurDAG->allnodes_begin()) {
689      SDNode *Node = --ISelPosition;
690      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
691      // but there are currently some corner cases that it misses. Also, this
692      // makes it theoretically possible to disable the DAGCombiner.
693      if (Node->use_empty())
694        continue;
695
696      SDNode *ResNode = Select(Node);
697
698      // FIXME: This is pretty gross.  'Select' should be changed to not return
699      // anything at all and this code should be nuked with a tactical strike.
700
701      // If node should not be replaced, continue with the next one.
702      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
703        continue;
704      // Replace node.
705      if (ResNode)
706        ReplaceUses(Node, ResNode);
707
708      // If after the replacement this node is not used any more,
709      // remove this dead node.
710      if (Node->use_empty()) { // Don't delete EntryToken, etc.
711        ISelUpdater ISU(ISelPosition);
712        CurDAG->RemoveDeadNode(Node, &ISU);
713      }
714    }
715
716    CurDAG->setRoot(Dummy.getValue());
717  }
718
719  DEBUG(errs() << "===== Instruction selection ends:\n");
720
721  PostprocessISelDAG();
722}
723
724/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
725/// do other setup for EH landing-pad blocks.
726void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
727  // Add a label to mark the beginning of the landing pad.  Deletion of the
728  // landing pad can thus be detected via the MachineModuleInfo.
729  MCSymbol *Label = MF->getMMI().addLandingPad(BB);
730
731  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
732  BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
733
734  // Mark exception register as live in.
735  unsigned Reg = TLI.getExceptionAddressRegister();
736  if (Reg) BB->addLiveIn(Reg);
737
738  // Mark exception selector register as live in.
739  Reg = TLI.getExceptionSelectorRegister();
740  if (Reg) BB->addLiveIn(Reg);
741
742  // FIXME: Hack around an exception handling flaw (PR1508): the personality
743  // function and list of typeids logically belong to the invoke (or, if you
744  // like, the basic block containing the invoke), and need to be associated
745  // with it in the dwarf exception handling tables.  Currently however the
746  // information is provided by an intrinsic (eh.selector) that can be moved
747  // to unexpected places by the optimizers: if the unwind edge is critical,
748  // then breaking it can result in the intrinsics being in the successor of
749  // the landing pad, not the landing pad itself.  This results
750  // in exceptions not being caught because no typeids are associated with
751  // the invoke.  This may not be the only way things can go wrong, but it
752  // is the only way we try to work around for the moment.
753  const BasicBlock *LLVMBB = BB->getBasicBlock();
754  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
755
756  if (Br && Br->isUnconditional()) { // Critical edge?
757    BasicBlock::const_iterator I, E;
758    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
759      if (isa<EHSelectorInst>(I))
760        break;
761
762    if (I == E)
763      // No catch info found - try to extract some from the successor.
764      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
765  }
766}
767
768void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
769  // Initialize the Fast-ISel state, if needed.
770  FastISel *FastIS = 0;
771  if (EnableFastISel)
772    FastIS = TLI.createFastISel(*MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
773                                FuncInfo->StaticAllocaMap,
774                                FuncInfo->PHINodesToUpdate
775#ifndef NDEBUG
776                                , FuncInfo->CatchInfoLost
777#endif
778                                );
779
780  // Iterate over all basic blocks in the function.
781  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
782    const BasicBlock *LLVMBB = &*I;
783    MachineBasicBlock *BB = FuncInfo->MBBMap[LLVMBB];
784
785    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
786    BasicBlock::const_iterator const End = LLVMBB->end();
787    BasicBlock::const_iterator BI = Begin;
788
789    // Lower any arguments needed in this block if this is the entry block.
790    if (LLVMBB == &Fn.getEntryBlock())
791      LowerArguments(LLVMBB);
792
793    // Setup an EH landing-pad block.
794    if (BB->isLandingPad())
795      PrepareEHLandingPad(BB);
796
797    // Before doing SelectionDAG ISel, see if FastISel has been requested.
798    if (FastIS) {
799      // Emit code for any incoming arguments. This must happen before
800      // beginning FastISel on the entry block.
801      if (LLVMBB == &Fn.getEntryBlock()) {
802        CurDAG->setRoot(SDB->getControlRoot());
803        SDB->clear();
804        BB = CodeGenAndEmitDAG(BB);
805      }
806      FastIS->startNewBlock(BB);
807      // Do FastISel on as many instructions as possible.
808      for (; BI != End; ++BI) {
809        // Try to select the instruction with FastISel.
810        if (FastIS->SelectInstruction(BI))
811          continue;
812
813        // Then handle certain instructions as single-LLVM-Instruction blocks.
814        if (isa<CallInst>(BI)) {
815          ++NumFastIselFailures;
816          if (EnableFastISelVerbose || EnableFastISelAbort) {
817            dbgs() << "FastISel missed call: ";
818            BI->dump();
819          }
820
821          if (!BI->getType()->isVoidTy() && !BI->use_empty()) {
822            unsigned &R = FuncInfo->ValueMap[BI];
823            if (!R)
824              R = FuncInfo->CreateRegForValue(BI);
825          }
826
827          bool HadTailCall = false;
828          BB = SelectBasicBlock(BB, LLVMBB, BI, llvm::next(BI), HadTailCall);
829
830          // If the call was emitted as a tail call, we're done with the block.
831          if (HadTailCall) {
832            BI = End;
833            break;
834          }
835
836          // If the instruction was codegen'd with multiple blocks,
837          // inform the FastISel object where to resume inserting.
838          FastIS->setCurrentBlock(BB);
839          continue;
840        }
841
842        // Otherwise, give up on FastISel for the rest of the block.
843        // For now, be a little lenient about non-branch terminators.
844        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
845          ++NumFastIselFailures;
846          if (EnableFastISelVerbose || EnableFastISelAbort) {
847            dbgs() << "FastISel miss: ";
848            BI->dump();
849          }
850          if (EnableFastISelAbort)
851            // The "fast" selector couldn't handle something and bailed.
852            // For the purpose of debugging, just abort.
853            llvm_unreachable("FastISel didn't select the entire block");
854        }
855        break;
856      }
857    }
858
859    // Run SelectionDAG instruction selection on the remainder of the block
860    // not handled by FastISel. If FastISel is not run, this is the entire
861    // block.
862    if (BI != End) {
863      bool HadTailCall;
864      BB = SelectBasicBlock(BB, LLVMBB, BI, End, HadTailCall);
865    }
866
867    FinishBasicBlock(BB);
868    FuncInfo->PHINodesToUpdate.clear();
869  }
870
871  delete FastIS;
872}
873
874void
875SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
876
877  DEBUG(dbgs() << "Total amount of phi nodes to update: "
878               << FuncInfo->PHINodesToUpdate.size() << "\n");
879  DEBUG(for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
880          dbgs() << "Node " << i << " : ("
881                 << FuncInfo->PHINodesToUpdate[i].first
882                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
883
884  // Next, now that we know what the last MBB the LLVM BB expanded is, update
885  // PHI nodes in successors.
886  if (SDB->SwitchCases.empty() &&
887      SDB->JTCases.empty() &&
888      SDB->BitTestCases.empty()) {
889    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
890      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
891      assert(PHI->isPHI() &&
892             "This is not a machine PHI node that we are updating!");
893      if (!BB->isSuccessor(PHI->getParent()))
894        continue;
895      PHI->addOperand(
896        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
897      PHI->addOperand(MachineOperand::CreateMBB(BB));
898    }
899    return;
900  }
901
902  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
903    // Lower header first, if it wasn't already lowered
904    if (!SDB->BitTestCases[i].Emitted) {
905      // Set the current basic block to the mbb we wish to insert the code into
906      BB = SDB->BitTestCases[i].Parent;
907      // Emit the code
908      SDB->visitBitTestHeader(SDB->BitTestCases[i], BB);
909      CurDAG->setRoot(SDB->getRoot());
910      SDB->clear();
911      BB = CodeGenAndEmitDAG(BB);
912    }
913
914    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
915      // Set the current basic block to the mbb we wish to insert the code into
916      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
917      // Emit the code
918      if (j+1 != ej)
919        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
920                              SDB->BitTestCases[i].Reg,
921                              SDB->BitTestCases[i].Cases[j],
922                              BB);
923      else
924        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
925                              SDB->BitTestCases[i].Reg,
926                              SDB->BitTestCases[i].Cases[j],
927                              BB);
928
929
930      CurDAG->setRoot(SDB->getRoot());
931      SDB->clear();
932      BB = CodeGenAndEmitDAG(BB);
933    }
934
935    // Update PHI Nodes
936    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
937         pi != pe; ++pi) {
938      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
939      MachineBasicBlock *PHIBB = PHI->getParent();
940      assert(PHI->isPHI() &&
941             "This is not a machine PHI node that we are updating!");
942      // This is "default" BB. We have two jumps to it. From "header" BB and
943      // from last "case" BB.
944      if (PHIBB == SDB->BitTestCases[i].Default) {
945        PHI->addOperand(MachineOperand::
946                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
947                                  false));
948        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
949        PHI->addOperand(MachineOperand::
950                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
951                                  false));
952        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
953                                                  back().ThisBB));
954      }
955      // One of "cases" BB.
956      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
957           j != ej; ++j) {
958        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
959        if (cBB->isSuccessor(PHIBB)) {
960          PHI->addOperand(MachineOperand::
961                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
962                                    false));
963          PHI->addOperand(MachineOperand::CreateMBB(cBB));
964        }
965      }
966    }
967  }
968  SDB->BitTestCases.clear();
969
970  // If the JumpTable record is filled in, then we need to emit a jump table.
971  // Updating the PHI nodes is tricky in this case, since we need to determine
972  // whether the PHI is a successor of the range check MBB or the jump table MBB
973  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
974    // Lower header first, if it wasn't already lowered
975    if (!SDB->JTCases[i].first.Emitted) {
976      // Set the current basic block to the mbb we wish to insert the code into
977      BB = SDB->JTCases[i].first.HeaderBB;
978      // Emit the code
979      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
980                                BB);
981      CurDAG->setRoot(SDB->getRoot());
982      SDB->clear();
983      BB = CodeGenAndEmitDAG(BB);
984    }
985
986    // Set the current basic block to the mbb we wish to insert the code into
987    BB = SDB->JTCases[i].second.MBB;
988    // Emit the code
989    SDB->visitJumpTable(SDB->JTCases[i].second);
990    CurDAG->setRoot(SDB->getRoot());
991    SDB->clear();
992    BB = CodeGenAndEmitDAG(BB);
993
994    // Update PHI Nodes
995    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
996         pi != pe; ++pi) {
997      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
998      MachineBasicBlock *PHIBB = PHI->getParent();
999      assert(PHI->isPHI() &&
1000             "This is not a machine PHI node that we are updating!");
1001      // "default" BB. We can go there only from header BB.
1002      if (PHIBB == SDB->JTCases[i].second.Default) {
1003        PHI->addOperand
1004          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1005                                     false));
1006        PHI->addOperand
1007          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1008      }
1009      // JT BB. Just iterate over successors here
1010      if (BB->isSuccessor(PHIBB)) {
1011        PHI->addOperand
1012          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1013                                     false));
1014        PHI->addOperand(MachineOperand::CreateMBB(BB));
1015      }
1016    }
1017  }
1018  SDB->JTCases.clear();
1019
1020  // If the switch block involved a branch to one of the actual successors, we
1021  // need to update PHI nodes in that block.
1022  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1023    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1024    assert(PHI->isPHI() &&
1025           "This is not a machine PHI node that we are updating!");
1026    if (BB->isSuccessor(PHI->getParent())) {
1027      PHI->addOperand(
1028        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1029      PHI->addOperand(MachineOperand::CreateMBB(BB));
1030    }
1031  }
1032
1033  // If we generated any switch lowering information, build and codegen any
1034  // additional DAGs necessary.
1035  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1036    // Set the current basic block to the mbb we wish to insert the code into
1037    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1038
1039    // Determine the unique successors.
1040    SmallVector<MachineBasicBlock *, 2> Succs;
1041    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1042    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1043      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1044
1045    // Emit the code. Note that this could result in ThisBB being split, so
1046    // we need to check for updates.
1047    SDB->visitSwitchCase(SDB->SwitchCases[i], BB);
1048    CurDAG->setRoot(SDB->getRoot());
1049    SDB->clear();
1050    ThisBB = CodeGenAndEmitDAG(BB);
1051
1052    // Handle any PHI nodes in successors of this chunk, as if we were coming
1053    // from the original BB before switch expansion.  Note that PHI nodes can
1054    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1055    // handle them the right number of times.
1056    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1057      BB = Succs[i];
1058      // BB may have been removed from the CFG if a branch was constant folded.
1059      if (ThisBB->isSuccessor(BB)) {
1060        for (MachineBasicBlock::iterator Phi = BB->begin();
1061             Phi != BB->end() && Phi->isPHI();
1062             ++Phi) {
1063          // This value for this PHI node is recorded in PHINodesToUpdate.
1064          for (unsigned pn = 0; ; ++pn) {
1065            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1066                   "Didn't find PHI entry!");
1067            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1068              Phi->addOperand(MachineOperand::
1069                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1070                                        false));
1071              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1072              break;
1073            }
1074          }
1075        }
1076      }
1077    }
1078  }
1079  SDB->SwitchCases.clear();
1080}
1081
1082
1083/// Create the scheduler. If a specific scheduler was specified
1084/// via the SchedulerRegistry, use it, otherwise select the
1085/// one preferred by the target.
1086///
1087ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1088  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1089
1090  if (!Ctor) {
1091    Ctor = ISHeuristic;
1092    RegisterScheduler::setDefault(Ctor);
1093  }
1094
1095  return Ctor(this, OptLevel);
1096}
1097
1098ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1099  return new ScheduleHazardRecognizer();
1100}
1101
1102//===----------------------------------------------------------------------===//
1103// Helper functions used by the generated instruction selector.
1104//===----------------------------------------------------------------------===//
1105// Calls to these methods are generated by tblgen.
1106
1107/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1108/// the dag combiner simplified the 255, we still want to match.  RHS is the
1109/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1110/// specified in the .td file (e.g. 255).
1111bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1112                                    int64_t DesiredMaskS) const {
1113  const APInt &ActualMask = RHS->getAPIntValue();
1114  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1115
1116  // If the actual mask exactly matches, success!
1117  if (ActualMask == DesiredMask)
1118    return true;
1119
1120  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1121  if (ActualMask.intersects(~DesiredMask))
1122    return false;
1123
1124  // Otherwise, the DAG Combiner may have proven that the value coming in is
1125  // either already zero or is not demanded.  Check for known zero input bits.
1126  APInt NeededMask = DesiredMask & ~ActualMask;
1127  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1128    return true;
1129
1130  // TODO: check to see if missing bits are just not demanded.
1131
1132  // Otherwise, this pattern doesn't match.
1133  return false;
1134}
1135
1136/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1137/// the dag combiner simplified the 255, we still want to match.  RHS is the
1138/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1139/// specified in the .td file (e.g. 255).
1140bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1141                                   int64_t DesiredMaskS) const {
1142  const APInt &ActualMask = RHS->getAPIntValue();
1143  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1144
1145  // If the actual mask exactly matches, success!
1146  if (ActualMask == DesiredMask)
1147    return true;
1148
1149  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1150  if (ActualMask.intersects(~DesiredMask))
1151    return false;
1152
1153  // Otherwise, the DAG Combiner may have proven that the value coming in is
1154  // either already zero or is not demanded.  Check for known zero input bits.
1155  APInt NeededMask = DesiredMask & ~ActualMask;
1156
1157  APInt KnownZero, KnownOne;
1158  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1159
1160  // If all the missing bits in the or are already known to be set, match!
1161  if ((NeededMask & KnownOne) == NeededMask)
1162    return true;
1163
1164  // TODO: check to see if missing bits are just not demanded.
1165
1166  // Otherwise, this pattern doesn't match.
1167  return false;
1168}
1169
1170
1171/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1172/// by tblgen.  Others should not call it.
1173void SelectionDAGISel::
1174SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1175  std::vector<SDValue> InOps;
1176  std::swap(InOps, Ops);
1177
1178  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1179  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1180  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1181
1182  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1183  if (InOps[e-1].getValueType() == MVT::Flag)
1184    --e;  // Don't process a flag operand if it is here.
1185
1186  while (i != e) {
1187    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1188    if (!InlineAsm::isMemKind(Flags)) {
1189      // Just skip over this operand, copying the operands verbatim.
1190      Ops.insert(Ops.end(), InOps.begin()+i,
1191                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1192      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1193    } else {
1194      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1195             "Memory operand with multiple values?");
1196      // Otherwise, this is a memory operand.  Ask the target to select it.
1197      std::vector<SDValue> SelOps;
1198      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1199        report_fatal_error("Could not match memory address.  Inline asm"
1200                           " failure!");
1201
1202      // Add this to the output node.
1203      unsigned NewFlags =
1204        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1205      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1206      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1207      i += 2;
1208    }
1209  }
1210
1211  // Add the flag input back if present.
1212  if (e != InOps.size())
1213    Ops.push_back(InOps.back());
1214}
1215
1216/// findFlagUse - Return use of EVT::Flag value produced by the specified
1217/// SDNode.
1218///
1219static SDNode *findFlagUse(SDNode *N) {
1220  unsigned FlagResNo = N->getNumValues()-1;
1221  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1222    SDUse &Use = I.getUse();
1223    if (Use.getResNo() == FlagResNo)
1224      return Use.getUser();
1225  }
1226  return NULL;
1227}
1228
1229/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1230/// This function recursively traverses up the operand chain, ignoring
1231/// certain nodes.
1232static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1233                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1234                          bool IgnoreChains) {
1235  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1236  // greater than all of its (recursive) operands.  If we scan to a point where
1237  // 'use' is smaller than the node we're scanning for, then we know we will
1238  // never find it.
1239  //
1240  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1241  // happen because we scan down to newly selected nodes in the case of flag
1242  // uses.
1243  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1244    return false;
1245
1246  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1247  // won't fail if we scan it again.
1248  if (!Visited.insert(Use))
1249    return false;
1250
1251  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1252    // Ignore chain uses, they are validated by HandleMergeInputChains.
1253    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1254      continue;
1255
1256    SDNode *N = Use->getOperand(i).getNode();
1257    if (N == Def) {
1258      if (Use == ImmedUse || Use == Root)
1259        continue;  // We are not looking for immediate use.
1260      assert(N != Root);
1261      return true;
1262    }
1263
1264    // Traverse up the operand chain.
1265    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1266      return true;
1267  }
1268  return false;
1269}
1270
1271/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1272/// operand node N of U during instruction selection that starts at Root.
1273bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1274                                          SDNode *Root) const {
1275  if (OptLevel == CodeGenOpt::None) return false;
1276  return N.hasOneUse();
1277}
1278
1279/// IsLegalToFold - Returns true if the specific operand node N of
1280/// U can be folded during instruction selection that starts at Root.
1281bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1282                                     CodeGenOpt::Level OptLevel,
1283                                     bool IgnoreChains) {
1284  if (OptLevel == CodeGenOpt::None) return false;
1285
1286  // If Root use can somehow reach N through a path that that doesn't contain
1287  // U then folding N would create a cycle. e.g. In the following
1288  // diagram, Root can reach N through X. If N is folded into into Root, then
1289  // X is both a predecessor and a successor of U.
1290  //
1291  //          [N*]           //
1292  //         ^   ^           //
1293  //        /     \          //
1294  //      [U*]    [X]?       //
1295  //        ^     ^          //
1296  //         \   /           //
1297  //          \ /            //
1298  //         [Root*]         //
1299  //
1300  // * indicates nodes to be folded together.
1301  //
1302  // If Root produces a flag, then it gets (even more) interesting. Since it
1303  // will be "glued" together with its flag use in the scheduler, we need to
1304  // check if it might reach N.
1305  //
1306  //          [N*]           //
1307  //         ^   ^           //
1308  //        /     \          //
1309  //      [U*]    [X]?       //
1310  //        ^       ^        //
1311  //         \       \       //
1312  //          \      |       //
1313  //         [Root*] |       //
1314  //          ^      |       //
1315  //          f      |       //
1316  //          |      /       //
1317  //         [Y]    /        //
1318  //           ^   /         //
1319  //           f  /          //
1320  //           | /           //
1321  //          [FU]           //
1322  //
1323  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1324  // (call it Fold), then X is a predecessor of FU and a successor of
1325  // Fold. But since Fold and FU are flagged together, this will create
1326  // a cycle in the scheduling graph.
1327
1328  // If the node has flags, walk down the graph to the "lowest" node in the
1329  // flagged set.
1330  EVT VT = Root->getValueType(Root->getNumValues()-1);
1331  while (VT == MVT::Flag) {
1332    SDNode *FU = findFlagUse(Root);
1333    if (FU == NULL)
1334      break;
1335    Root = FU;
1336    VT = Root->getValueType(Root->getNumValues()-1);
1337
1338    // If our query node has a flag result with a use, we've walked up it.  If
1339    // the user (which has already been selected) has a chain or indirectly uses
1340    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1341    // this, we cannot ignore chains in this predicate.
1342    IgnoreChains = false;
1343  }
1344
1345
1346  SmallPtrSet<SDNode*, 16> Visited;
1347  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1348}
1349
1350SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1351  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1352  SelectInlineAsmMemoryOperands(Ops);
1353
1354  std::vector<EVT> VTs;
1355  VTs.push_back(MVT::Other);
1356  VTs.push_back(MVT::Flag);
1357  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1358                                VTs, &Ops[0], Ops.size());
1359  New->setNodeId(-1);
1360  return New.getNode();
1361}
1362
1363SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1364  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1365}
1366
1367/// GetVBR - decode a vbr encoding whose top bit is set.
1368ALWAYS_INLINE static uint64_t
1369GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1370  assert(Val >= 128 && "Not a VBR");
1371  Val &= 127;  // Remove first vbr bit.
1372
1373  unsigned Shift = 7;
1374  uint64_t NextBits;
1375  do {
1376    NextBits = MatcherTable[Idx++];
1377    Val |= (NextBits&127) << Shift;
1378    Shift += 7;
1379  } while (NextBits & 128);
1380
1381  return Val;
1382}
1383
1384
1385/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1386/// interior flag and chain results to use the new flag and chain results.
1387void SelectionDAGISel::
1388UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1389                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1390                     SDValue InputFlag,
1391                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1392                     bool isMorphNodeTo) {
1393  SmallVector<SDNode*, 4> NowDeadNodes;
1394
1395  ISelUpdater ISU(ISelPosition);
1396
1397  // Now that all the normal results are replaced, we replace the chain and
1398  // flag results if present.
1399  if (!ChainNodesMatched.empty()) {
1400    assert(InputChain.getNode() != 0 &&
1401           "Matched input chains but didn't produce a chain");
1402    // Loop over all of the nodes we matched that produced a chain result.
1403    // Replace all the chain results with the final chain we ended up with.
1404    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1405      SDNode *ChainNode = ChainNodesMatched[i];
1406
1407      // If this node was already deleted, don't look at it.
1408      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1409        continue;
1410
1411      // Don't replace the results of the root node if we're doing a
1412      // MorphNodeTo.
1413      if (ChainNode == NodeToMatch && isMorphNodeTo)
1414        continue;
1415
1416      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1417      if (ChainVal.getValueType() == MVT::Flag)
1418        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1419      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1420      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1421
1422      // If the node became dead and we haven't already seen it, delete it.
1423      if (ChainNode->use_empty() &&
1424          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1425        NowDeadNodes.push_back(ChainNode);
1426    }
1427  }
1428
1429  // If the result produces a flag, update any flag results in the matched
1430  // pattern with the flag result.
1431  if (InputFlag.getNode() != 0) {
1432    // Handle any interior nodes explicitly marked.
1433    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1434      SDNode *FRN = FlagResultNodesMatched[i];
1435
1436      // If this node was already deleted, don't look at it.
1437      if (FRN->getOpcode() == ISD::DELETED_NODE)
1438        continue;
1439
1440      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1441             "Doesn't have a flag result");
1442      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1443                                        InputFlag, &ISU);
1444
1445      // If the node became dead and we haven't already seen it, delete it.
1446      if (FRN->use_empty() &&
1447          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1448        NowDeadNodes.push_back(FRN);
1449    }
1450  }
1451
1452  if (!NowDeadNodes.empty())
1453    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1454
1455  DEBUG(errs() << "ISEL: Match complete!\n");
1456}
1457
1458enum ChainResult {
1459  CR_Simple,
1460  CR_InducesCycle,
1461  CR_LeadsToInteriorNode
1462};
1463
1464/// WalkChainUsers - Walk down the users of the specified chained node that is
1465/// part of the pattern we're matching, looking at all of the users we find.
1466/// This determines whether something is an interior node, whether we have a
1467/// non-pattern node in between two pattern nodes (which prevent folding because
1468/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1469/// between pattern nodes (in which case the TF becomes part of the pattern).
1470///
1471/// The walk we do here is guaranteed to be small because we quickly get down to
1472/// already selected nodes "below" us.
1473static ChainResult
1474WalkChainUsers(SDNode *ChainedNode,
1475               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1476               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1477  ChainResult Result = CR_Simple;
1478
1479  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1480         E = ChainedNode->use_end(); UI != E; ++UI) {
1481    // Make sure the use is of the chain, not some other value we produce.
1482    if (UI.getUse().getValueType() != MVT::Other) continue;
1483
1484    SDNode *User = *UI;
1485
1486    // If we see an already-selected machine node, then we've gone beyond the
1487    // pattern that we're selecting down into the already selected chunk of the
1488    // DAG.
1489    if (User->isMachineOpcode() ||
1490        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1491      continue;
1492
1493    if (User->getOpcode() == ISD::CopyToReg ||
1494        User->getOpcode() == ISD::CopyFromReg ||
1495        User->getOpcode() == ISD::INLINEASM ||
1496        User->getOpcode() == ISD::EH_LABEL) {
1497      // If their node ID got reset to -1 then they've already been selected.
1498      // Treat them like a MachineOpcode.
1499      if (User->getNodeId() == -1)
1500        continue;
1501    }
1502
1503    // If we have a TokenFactor, we handle it specially.
1504    if (User->getOpcode() != ISD::TokenFactor) {
1505      // If the node isn't a token factor and isn't part of our pattern, then it
1506      // must be a random chained node in between two nodes we're selecting.
1507      // This happens when we have something like:
1508      //   x = load ptr
1509      //   call
1510      //   y = x+4
1511      //   store y -> ptr
1512      // Because we structurally match the load/store as a read/modify/write,
1513      // but the call is chained between them.  We cannot fold in this case
1514      // because it would induce a cycle in the graph.
1515      if (!std::count(ChainedNodesInPattern.begin(),
1516                      ChainedNodesInPattern.end(), User))
1517        return CR_InducesCycle;
1518
1519      // Otherwise we found a node that is part of our pattern.  For example in:
1520      //   x = load ptr
1521      //   y = x+4
1522      //   store y -> ptr
1523      // This would happen when we're scanning down from the load and see the
1524      // store as a user.  Record that there is a use of ChainedNode that is
1525      // part of the pattern and keep scanning uses.
1526      Result = CR_LeadsToInteriorNode;
1527      InteriorChainedNodes.push_back(User);
1528      continue;
1529    }
1530
1531    // If we found a TokenFactor, there are two cases to consider: first if the
1532    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1533    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1534    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1535    //     [Load chain]
1536    //         ^
1537    //         |
1538    //       [Load]
1539    //       ^    ^
1540    //       |    \                    DAG's like cheese
1541    //      /       \                       do you?
1542    //     /         |
1543    // [TokenFactor] [Op]
1544    //     ^          ^
1545    //     |          |
1546    //      \        /
1547    //       \      /
1548    //       [Store]
1549    //
1550    // In this case, the TokenFactor becomes part of our match and we rewrite it
1551    // as a new TokenFactor.
1552    //
1553    // To distinguish these two cases, do a recursive walk down the uses.
1554    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1555    case CR_Simple:
1556      // If the uses of the TokenFactor are just already-selected nodes, ignore
1557      // it, it is "below" our pattern.
1558      continue;
1559    case CR_InducesCycle:
1560      // If the uses of the TokenFactor lead to nodes that are not part of our
1561      // pattern that are not selected, folding would turn this into a cycle,
1562      // bail out now.
1563      return CR_InducesCycle;
1564    case CR_LeadsToInteriorNode:
1565      break;  // Otherwise, keep processing.
1566    }
1567
1568    // Okay, we know we're in the interesting interior case.  The TokenFactor
1569    // is now going to be considered part of the pattern so that we rewrite its
1570    // uses (it may have uses that are not part of the pattern) with the
1571    // ultimate chain result of the generated code.  We will also add its chain
1572    // inputs as inputs to the ultimate TokenFactor we create.
1573    Result = CR_LeadsToInteriorNode;
1574    ChainedNodesInPattern.push_back(User);
1575    InteriorChainedNodes.push_back(User);
1576    continue;
1577  }
1578
1579  return Result;
1580}
1581
1582/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1583/// operation for when the pattern matched at least one node with a chains.  The
1584/// input vector contains a list of all of the chained nodes that we match.  We
1585/// must determine if this is a valid thing to cover (i.e. matching it won't
1586/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1587/// be used as the input node chain for the generated nodes.
1588static SDValue
1589HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1590                       SelectionDAG *CurDAG) {
1591  // Walk all of the chained nodes we've matched, recursively scanning down the
1592  // users of the chain result. This adds any TokenFactor nodes that are caught
1593  // in between chained nodes to the chained and interior nodes list.
1594  SmallVector<SDNode*, 3> InteriorChainedNodes;
1595  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1596    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1597                       InteriorChainedNodes) == CR_InducesCycle)
1598      return SDValue(); // Would induce a cycle.
1599  }
1600
1601  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1602  // that we are interested in.  Form our input TokenFactor node.
1603  SmallVector<SDValue, 3> InputChains;
1604  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1605    // Add the input chain of this node to the InputChains list (which will be
1606    // the operands of the generated TokenFactor) if it's not an interior node.
1607    SDNode *N = ChainNodesMatched[i];
1608    if (N->getOpcode() != ISD::TokenFactor) {
1609      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1610        continue;
1611
1612      // Otherwise, add the input chain.
1613      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1614      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1615      InputChains.push_back(InChain);
1616      continue;
1617    }
1618
1619    // If we have a token factor, we want to add all inputs of the token factor
1620    // that are not part of the pattern we're matching.
1621    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1622      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1623                      N->getOperand(op).getNode()))
1624        InputChains.push_back(N->getOperand(op));
1625    }
1626  }
1627
1628  SDValue Res;
1629  if (InputChains.size() == 1)
1630    return InputChains[0];
1631  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1632                         MVT::Other, &InputChains[0], InputChains.size());
1633}
1634
1635/// MorphNode - Handle morphing a node in place for the selector.
1636SDNode *SelectionDAGISel::
1637MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1638          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1639  // It is possible we're using MorphNodeTo to replace a node with no
1640  // normal results with one that has a normal result (or we could be
1641  // adding a chain) and the input could have flags and chains as well.
1642  // In this case we need to shift the operands down.
1643  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1644  // than the old isel though.
1645  int OldFlagResultNo = -1, OldChainResultNo = -1;
1646
1647  unsigned NTMNumResults = Node->getNumValues();
1648  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1649    OldFlagResultNo = NTMNumResults-1;
1650    if (NTMNumResults != 1 &&
1651        Node->getValueType(NTMNumResults-2) == MVT::Other)
1652      OldChainResultNo = NTMNumResults-2;
1653  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1654    OldChainResultNo = NTMNumResults-1;
1655
1656  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1657  // that this deletes operands of the old node that become dead.
1658  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1659
1660  // MorphNodeTo can operate in two ways: if an existing node with the
1661  // specified operands exists, it can just return it.  Otherwise, it
1662  // updates the node in place to have the requested operands.
1663  if (Res == Node) {
1664    // If we updated the node in place, reset the node ID.  To the isel,
1665    // this should be just like a newly allocated machine node.
1666    Res->setNodeId(-1);
1667  }
1668
1669  unsigned ResNumResults = Res->getNumValues();
1670  // Move the flag if needed.
1671  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1672      (unsigned)OldFlagResultNo != ResNumResults-1)
1673    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1674                                      SDValue(Res, ResNumResults-1));
1675
1676  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1677  --ResNumResults;
1678
1679  // Move the chain reference if needed.
1680  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1681      (unsigned)OldChainResultNo != ResNumResults-1)
1682    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1683                                      SDValue(Res, ResNumResults-1));
1684
1685  // Otherwise, no replacement happened because the node already exists. Replace
1686  // Uses of the old node with the new one.
1687  if (Res != Node)
1688    CurDAG->ReplaceAllUsesWith(Node, Res);
1689
1690  return Res;
1691}
1692
1693/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1694ALWAYS_INLINE static bool
1695CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1696          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1697  // Accept if it is exactly the same as a previously recorded node.
1698  unsigned RecNo = MatcherTable[MatcherIndex++];
1699  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1700  return N == RecordedNodes[RecNo];
1701}
1702
1703/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1704ALWAYS_INLINE static bool
1705CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1706                      SelectionDAGISel &SDISel) {
1707  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1708}
1709
1710/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1711ALWAYS_INLINE static bool
1712CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1713                   SelectionDAGISel &SDISel, SDNode *N) {
1714  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1715}
1716
1717ALWAYS_INLINE static bool
1718CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1719            SDNode *N) {
1720  uint16_t Opc = MatcherTable[MatcherIndex++];
1721  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1722  return N->getOpcode() == Opc;
1723}
1724
1725ALWAYS_INLINE static bool
1726CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1727          SDValue N, const TargetLowering &TLI) {
1728  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1729  if (N.getValueType() == VT) return true;
1730
1731  // Handle the case when VT is iPTR.
1732  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1733}
1734
1735ALWAYS_INLINE static bool
1736CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1737               SDValue N, const TargetLowering &TLI,
1738               unsigned ChildNo) {
1739  if (ChildNo >= N.getNumOperands())
1740    return false;  // Match fails if out of range child #.
1741  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1742}
1743
1744
1745ALWAYS_INLINE static bool
1746CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1747              SDValue N) {
1748  return cast<CondCodeSDNode>(N)->get() ==
1749      (ISD::CondCode)MatcherTable[MatcherIndex++];
1750}
1751
1752ALWAYS_INLINE static bool
1753CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1754               SDValue N, const TargetLowering &TLI) {
1755  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1756  if (cast<VTSDNode>(N)->getVT() == VT)
1757    return true;
1758
1759  // Handle the case when VT is iPTR.
1760  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1761}
1762
1763ALWAYS_INLINE static bool
1764CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1765             SDValue N) {
1766  int64_t Val = MatcherTable[MatcherIndex++];
1767  if (Val & 128)
1768    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1769
1770  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1771  return C != 0 && C->getSExtValue() == Val;
1772}
1773
1774ALWAYS_INLINE static bool
1775CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1776            SDValue N, SelectionDAGISel &SDISel) {
1777  int64_t Val = MatcherTable[MatcherIndex++];
1778  if (Val & 128)
1779    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1780
1781  if (N->getOpcode() != ISD::AND) return false;
1782
1783  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1784  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1785}
1786
1787ALWAYS_INLINE static bool
1788CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1789           SDValue N, SelectionDAGISel &SDISel) {
1790  int64_t Val = MatcherTable[MatcherIndex++];
1791  if (Val & 128)
1792    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1793
1794  if (N->getOpcode() != ISD::OR) return false;
1795
1796  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1797  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1798}
1799
1800/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1801/// scope, evaluate the current node.  If the current predicate is known to
1802/// fail, set Result=true and return anything.  If the current predicate is
1803/// known to pass, set Result=false and return the MatcherIndex to continue
1804/// with.  If the current predicate is unknown, set Result=false and return the
1805/// MatcherIndex to continue with.
1806static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1807                                       unsigned Index, SDValue N,
1808                                       bool &Result, SelectionDAGISel &SDISel,
1809                                       SmallVectorImpl<SDValue> &RecordedNodes){
1810  switch (Table[Index++]) {
1811  default:
1812    Result = false;
1813    return Index-1;  // Could not evaluate this predicate.
1814  case SelectionDAGISel::OPC_CheckSame:
1815    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1816    return Index;
1817  case SelectionDAGISel::OPC_CheckPatternPredicate:
1818    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1819    return Index;
1820  case SelectionDAGISel::OPC_CheckPredicate:
1821    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1822    return Index;
1823  case SelectionDAGISel::OPC_CheckOpcode:
1824    Result = !::CheckOpcode(Table, Index, N.getNode());
1825    return Index;
1826  case SelectionDAGISel::OPC_CheckType:
1827    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1828    return Index;
1829  case SelectionDAGISel::OPC_CheckChild0Type:
1830  case SelectionDAGISel::OPC_CheckChild1Type:
1831  case SelectionDAGISel::OPC_CheckChild2Type:
1832  case SelectionDAGISel::OPC_CheckChild3Type:
1833  case SelectionDAGISel::OPC_CheckChild4Type:
1834  case SelectionDAGISel::OPC_CheckChild5Type:
1835  case SelectionDAGISel::OPC_CheckChild6Type:
1836  case SelectionDAGISel::OPC_CheckChild7Type:
1837    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1838                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1839    return Index;
1840  case SelectionDAGISel::OPC_CheckCondCode:
1841    Result = !::CheckCondCode(Table, Index, N);
1842    return Index;
1843  case SelectionDAGISel::OPC_CheckValueType:
1844    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1845    return Index;
1846  case SelectionDAGISel::OPC_CheckInteger:
1847    Result = !::CheckInteger(Table, Index, N);
1848    return Index;
1849  case SelectionDAGISel::OPC_CheckAndImm:
1850    Result = !::CheckAndImm(Table, Index, N, SDISel);
1851    return Index;
1852  case SelectionDAGISel::OPC_CheckOrImm:
1853    Result = !::CheckOrImm(Table, Index, N, SDISel);
1854    return Index;
1855  }
1856}
1857
1858namespace {
1859
1860struct MatchScope {
1861  /// FailIndex - If this match fails, this is the index to continue with.
1862  unsigned FailIndex;
1863
1864  /// NodeStack - The node stack when the scope was formed.
1865  SmallVector<SDValue, 4> NodeStack;
1866
1867  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1868  unsigned NumRecordedNodes;
1869
1870  /// NumMatchedMemRefs - The number of matched memref entries.
1871  unsigned NumMatchedMemRefs;
1872
1873  /// InputChain/InputFlag - The current chain/flag
1874  SDValue InputChain, InputFlag;
1875
1876  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1877  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1878};
1879
1880}
1881
1882SDNode *SelectionDAGISel::
1883SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1884                 unsigned TableSize) {
1885  // FIXME: Should these even be selected?  Handle these cases in the caller?
1886  switch (NodeToMatch->getOpcode()) {
1887  default:
1888    break;
1889  case ISD::EntryToken:       // These nodes remain the same.
1890  case ISD::BasicBlock:
1891  case ISD::Register:
1892  //case ISD::VALUETYPE:
1893  //case ISD::CONDCODE:
1894  case ISD::HANDLENODE:
1895  case ISD::MDNODE_SDNODE:
1896  case ISD::TargetConstant:
1897  case ISD::TargetConstantFP:
1898  case ISD::TargetConstantPool:
1899  case ISD::TargetFrameIndex:
1900  case ISD::TargetExternalSymbol:
1901  case ISD::TargetBlockAddress:
1902  case ISD::TargetJumpTable:
1903  case ISD::TargetGlobalTLSAddress:
1904  case ISD::TargetGlobalAddress:
1905  case ISD::TokenFactor:
1906  case ISD::CopyFromReg:
1907  case ISD::CopyToReg:
1908  case ISD::EH_LABEL:
1909    NodeToMatch->setNodeId(-1); // Mark selected.
1910    return 0;
1911  case ISD::AssertSext:
1912  case ISD::AssertZext:
1913    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1914                                      NodeToMatch->getOperand(0));
1915    return 0;
1916  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1917  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1918  }
1919
1920  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1921
1922  // Set up the node stack with NodeToMatch as the only node on the stack.
1923  SmallVector<SDValue, 8> NodeStack;
1924  SDValue N = SDValue(NodeToMatch, 0);
1925  NodeStack.push_back(N);
1926
1927  // MatchScopes - Scopes used when matching, if a match failure happens, this
1928  // indicates where to continue checking.
1929  SmallVector<MatchScope, 8> MatchScopes;
1930
1931  // RecordedNodes - This is the set of nodes that have been recorded by the
1932  // state machine.
1933  SmallVector<SDValue, 8> RecordedNodes;
1934
1935  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1936  // pattern.
1937  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1938
1939  // These are the current input chain and flag for use when generating nodes.
1940  // Various Emit operations change these.  For example, emitting a copytoreg
1941  // uses and updates these.
1942  SDValue InputChain, InputFlag;
1943
1944  // ChainNodesMatched - If a pattern matches nodes that have input/output
1945  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1946  // which ones they are.  The result is captured into this list so that we can
1947  // update the chain results when the pattern is complete.
1948  SmallVector<SDNode*, 3> ChainNodesMatched;
1949  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1950
1951  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1952        NodeToMatch->dump(CurDAG);
1953        errs() << '\n');
1954
1955  // Determine where to start the interpreter.  Normally we start at opcode #0,
1956  // but if the state machine starts with an OPC_SwitchOpcode, then we
1957  // accelerate the first lookup (which is guaranteed to be hot) with the
1958  // OpcodeOffset table.
1959  unsigned MatcherIndex = 0;
1960
1961  if (!OpcodeOffset.empty()) {
1962    // Already computed the OpcodeOffset table, just index into it.
1963    if (N.getOpcode() < OpcodeOffset.size())
1964      MatcherIndex = OpcodeOffset[N.getOpcode()];
1965    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1966
1967  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1968    // Otherwise, the table isn't computed, but the state machine does start
1969    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1970    // is the first time we're selecting an instruction.
1971    unsigned Idx = 1;
1972    while (1) {
1973      // Get the size of this case.
1974      unsigned CaseSize = MatcherTable[Idx++];
1975      if (CaseSize & 128)
1976        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1977      if (CaseSize == 0) break;
1978
1979      // Get the opcode, add the index to the table.
1980      uint16_t Opc = MatcherTable[Idx++];
1981      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
1982      if (Opc >= OpcodeOffset.size())
1983        OpcodeOffset.resize((Opc+1)*2);
1984      OpcodeOffset[Opc] = Idx;
1985      Idx += CaseSize;
1986    }
1987
1988    // Okay, do the lookup for the first opcode.
1989    if (N.getOpcode() < OpcodeOffset.size())
1990      MatcherIndex = OpcodeOffset[N.getOpcode()];
1991  }
1992
1993  while (1) {
1994    assert(MatcherIndex < TableSize && "Invalid index");
1995#ifndef NDEBUG
1996    unsigned CurrentOpcodeIndex = MatcherIndex;
1997#endif
1998    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
1999    switch (Opcode) {
2000    case OPC_Scope: {
2001      // Okay, the semantics of this operation are that we should push a scope
2002      // then evaluate the first child.  However, pushing a scope only to have
2003      // the first check fail (which then pops it) is inefficient.  If we can
2004      // determine immediately that the first check (or first several) will
2005      // immediately fail, don't even bother pushing a scope for them.
2006      unsigned FailIndex;
2007
2008      while (1) {
2009        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2010        if (NumToSkip & 128)
2011          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2012        // Found the end of the scope with no match.
2013        if (NumToSkip == 0) {
2014          FailIndex = 0;
2015          break;
2016        }
2017
2018        FailIndex = MatcherIndex+NumToSkip;
2019
2020        unsigned MatcherIndexOfPredicate = MatcherIndex;
2021        (void)MatcherIndexOfPredicate; // silence warning.
2022
2023        // If we can't evaluate this predicate without pushing a scope (e.g. if
2024        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2025        // push the scope and evaluate the full predicate chain.
2026        bool Result;
2027        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2028                                              Result, *this, RecordedNodes);
2029        if (!Result)
2030          break;
2031
2032        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2033                     << "index " << MatcherIndexOfPredicate
2034                     << ", continuing at " << FailIndex << "\n");
2035        ++NumDAGIselRetries;
2036
2037        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2038        // move to the next case.
2039        MatcherIndex = FailIndex;
2040      }
2041
2042      // If the whole scope failed to match, bail.
2043      if (FailIndex == 0) break;
2044
2045      // Push a MatchScope which indicates where to go if the first child fails
2046      // to match.
2047      MatchScope NewEntry;
2048      NewEntry.FailIndex = FailIndex;
2049      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2050      NewEntry.NumRecordedNodes = RecordedNodes.size();
2051      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2052      NewEntry.InputChain = InputChain;
2053      NewEntry.InputFlag = InputFlag;
2054      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2055      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2056      MatchScopes.push_back(NewEntry);
2057      continue;
2058    }
2059    case OPC_RecordNode:
2060      // Remember this node, it may end up being an operand in the pattern.
2061      RecordedNodes.push_back(N);
2062      continue;
2063
2064    case OPC_RecordChild0: case OPC_RecordChild1:
2065    case OPC_RecordChild2: case OPC_RecordChild3:
2066    case OPC_RecordChild4: case OPC_RecordChild5:
2067    case OPC_RecordChild6: case OPC_RecordChild7: {
2068      unsigned ChildNo = Opcode-OPC_RecordChild0;
2069      if (ChildNo >= N.getNumOperands())
2070        break;  // Match fails if out of range child #.
2071
2072      RecordedNodes.push_back(N->getOperand(ChildNo));
2073      continue;
2074    }
2075    case OPC_RecordMemRef:
2076      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2077      continue;
2078
2079    case OPC_CaptureFlagInput:
2080      // If the current node has an input flag, capture it in InputFlag.
2081      if (N->getNumOperands() != 0 &&
2082          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2083        InputFlag = N->getOperand(N->getNumOperands()-1);
2084      continue;
2085
2086    case OPC_MoveChild: {
2087      unsigned ChildNo = MatcherTable[MatcherIndex++];
2088      if (ChildNo >= N.getNumOperands())
2089        break;  // Match fails if out of range child #.
2090      N = N.getOperand(ChildNo);
2091      NodeStack.push_back(N);
2092      continue;
2093    }
2094
2095    case OPC_MoveParent:
2096      // Pop the current node off the NodeStack.
2097      NodeStack.pop_back();
2098      assert(!NodeStack.empty() && "Node stack imbalance!");
2099      N = NodeStack.back();
2100      continue;
2101
2102    case OPC_CheckSame:
2103      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2104      continue;
2105    case OPC_CheckPatternPredicate:
2106      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2107      continue;
2108    case OPC_CheckPredicate:
2109      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2110                                N.getNode()))
2111        break;
2112      continue;
2113    case OPC_CheckComplexPat: {
2114      unsigned CPNum = MatcherTable[MatcherIndex++];
2115      unsigned RecNo = MatcherTable[MatcherIndex++];
2116      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2117      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2118                               RecordedNodes))
2119        break;
2120      continue;
2121    }
2122    case OPC_CheckOpcode:
2123      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2124      continue;
2125
2126    case OPC_CheckType:
2127      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2128      continue;
2129
2130    case OPC_SwitchOpcode: {
2131      unsigned CurNodeOpcode = N.getOpcode();
2132      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2133      unsigned CaseSize;
2134      while (1) {
2135        // Get the size of this case.
2136        CaseSize = MatcherTable[MatcherIndex++];
2137        if (CaseSize & 128)
2138          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2139        if (CaseSize == 0) break;
2140
2141        uint16_t Opc = MatcherTable[MatcherIndex++];
2142        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2143
2144        // If the opcode matches, then we will execute this case.
2145        if (CurNodeOpcode == Opc)
2146          break;
2147
2148        // Otherwise, skip over this case.
2149        MatcherIndex += CaseSize;
2150      }
2151
2152      // If no cases matched, bail out.
2153      if (CaseSize == 0) break;
2154
2155      // Otherwise, execute the case we found.
2156      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2157                   << " to " << MatcherIndex << "\n");
2158      continue;
2159    }
2160
2161    case OPC_SwitchType: {
2162      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2163      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2164      unsigned CaseSize;
2165      while (1) {
2166        // Get the size of this case.
2167        CaseSize = MatcherTable[MatcherIndex++];
2168        if (CaseSize & 128)
2169          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2170        if (CaseSize == 0) break;
2171
2172        MVT::SimpleValueType CaseVT =
2173          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2174        if (CaseVT == MVT::iPTR)
2175          CaseVT = TLI.getPointerTy().SimpleTy;
2176
2177        // If the VT matches, then we will execute this case.
2178        if (CurNodeVT == CaseVT)
2179          break;
2180
2181        // Otherwise, skip over this case.
2182        MatcherIndex += CaseSize;
2183      }
2184
2185      // If no cases matched, bail out.
2186      if (CaseSize == 0) break;
2187
2188      // Otherwise, execute the case we found.
2189      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2190                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2191      continue;
2192    }
2193    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2194    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2195    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2196    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2197      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2198                            Opcode-OPC_CheckChild0Type))
2199        break;
2200      continue;
2201    case OPC_CheckCondCode:
2202      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2203      continue;
2204    case OPC_CheckValueType:
2205      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2206      continue;
2207    case OPC_CheckInteger:
2208      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2209      continue;
2210    case OPC_CheckAndImm:
2211      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2212      continue;
2213    case OPC_CheckOrImm:
2214      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2215      continue;
2216
2217    case OPC_CheckFoldableChainNode: {
2218      assert(NodeStack.size() != 1 && "No parent node");
2219      // Verify that all intermediate nodes between the root and this one have
2220      // a single use.
2221      bool HasMultipleUses = false;
2222      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2223        if (!NodeStack[i].hasOneUse()) {
2224          HasMultipleUses = true;
2225          break;
2226        }
2227      if (HasMultipleUses) break;
2228
2229      // Check to see that the target thinks this is profitable to fold and that
2230      // we can fold it without inducing cycles in the graph.
2231      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2232                              NodeToMatch) ||
2233          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2234                         NodeToMatch, OptLevel,
2235                         true/*We validate our own chains*/))
2236        break;
2237
2238      continue;
2239    }
2240    case OPC_EmitInteger: {
2241      MVT::SimpleValueType VT =
2242        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2243      int64_t Val = MatcherTable[MatcherIndex++];
2244      if (Val & 128)
2245        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2246      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2247      continue;
2248    }
2249    case OPC_EmitRegister: {
2250      MVT::SimpleValueType VT =
2251        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2252      unsigned RegNo = MatcherTable[MatcherIndex++];
2253      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2254      continue;
2255    }
2256
2257    case OPC_EmitConvertToTarget:  {
2258      // Convert from IMM/FPIMM to target version.
2259      unsigned RecNo = MatcherTable[MatcherIndex++];
2260      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2261      SDValue Imm = RecordedNodes[RecNo];
2262
2263      if (Imm->getOpcode() == ISD::Constant) {
2264        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2265        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2266      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2267        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2268        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2269      }
2270
2271      RecordedNodes.push_back(Imm);
2272      continue;
2273    }
2274
2275    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2276    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2277      // These are space-optimized forms of OPC_EmitMergeInputChains.
2278      assert(InputChain.getNode() == 0 &&
2279             "EmitMergeInputChains should be the first chain producing node");
2280      assert(ChainNodesMatched.empty() &&
2281             "Should only have one EmitMergeInputChains per match");
2282
2283      // Read all of the chained nodes.
2284      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2285      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2286      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2287
2288      // FIXME: What if other value results of the node have uses not matched
2289      // by this pattern?
2290      if (ChainNodesMatched.back() != NodeToMatch &&
2291          !RecordedNodes[RecNo].hasOneUse()) {
2292        ChainNodesMatched.clear();
2293        break;
2294      }
2295
2296      // Merge the input chains if they are not intra-pattern references.
2297      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2298
2299      if (InputChain.getNode() == 0)
2300        break;  // Failed to merge.
2301      continue;
2302    }
2303
2304    case OPC_EmitMergeInputChains: {
2305      assert(InputChain.getNode() == 0 &&
2306             "EmitMergeInputChains should be the first chain producing node");
2307      // This node gets a list of nodes we matched in the input that have
2308      // chains.  We want to token factor all of the input chains to these nodes
2309      // together.  However, if any of the input chains is actually one of the
2310      // nodes matched in this pattern, then we have an intra-match reference.
2311      // Ignore these because the newly token factored chain should not refer to
2312      // the old nodes.
2313      unsigned NumChains = MatcherTable[MatcherIndex++];
2314      assert(NumChains != 0 && "Can't TF zero chains");
2315
2316      assert(ChainNodesMatched.empty() &&
2317             "Should only have one EmitMergeInputChains per match");
2318
2319      // Read all of the chained nodes.
2320      for (unsigned i = 0; i != NumChains; ++i) {
2321        unsigned RecNo = MatcherTable[MatcherIndex++];
2322        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2323        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2324
2325        // FIXME: What if other value results of the node have uses not matched
2326        // by this pattern?
2327        if (ChainNodesMatched.back() != NodeToMatch &&
2328            !RecordedNodes[RecNo].hasOneUse()) {
2329          ChainNodesMatched.clear();
2330          break;
2331        }
2332      }
2333
2334      // If the inner loop broke out, the match fails.
2335      if (ChainNodesMatched.empty())
2336        break;
2337
2338      // Merge the input chains if they are not intra-pattern references.
2339      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2340
2341      if (InputChain.getNode() == 0)
2342        break;  // Failed to merge.
2343
2344      continue;
2345    }
2346
2347    case OPC_EmitCopyToReg: {
2348      unsigned RecNo = MatcherTable[MatcherIndex++];
2349      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2350      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2351
2352      if (InputChain.getNode() == 0)
2353        InputChain = CurDAG->getEntryNode();
2354
2355      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2356                                        DestPhysReg, RecordedNodes[RecNo],
2357                                        InputFlag);
2358
2359      InputFlag = InputChain.getValue(1);
2360      continue;
2361    }
2362
2363    case OPC_EmitNodeXForm: {
2364      unsigned XFormNo = MatcherTable[MatcherIndex++];
2365      unsigned RecNo = MatcherTable[MatcherIndex++];
2366      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2367      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2368      continue;
2369    }
2370
2371    case OPC_EmitNode:
2372    case OPC_MorphNodeTo: {
2373      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2374      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2375      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2376      // Get the result VT list.
2377      unsigned NumVTs = MatcherTable[MatcherIndex++];
2378      SmallVector<EVT, 4> VTs;
2379      for (unsigned i = 0; i != NumVTs; ++i) {
2380        MVT::SimpleValueType VT =
2381          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2382        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2383        VTs.push_back(VT);
2384      }
2385
2386      if (EmitNodeInfo & OPFL_Chain)
2387        VTs.push_back(MVT::Other);
2388      if (EmitNodeInfo & OPFL_FlagOutput)
2389        VTs.push_back(MVT::Flag);
2390
2391      // This is hot code, so optimize the two most common cases of 1 and 2
2392      // results.
2393      SDVTList VTList;
2394      if (VTs.size() == 1)
2395        VTList = CurDAG->getVTList(VTs[0]);
2396      else if (VTs.size() == 2)
2397        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2398      else
2399        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2400
2401      // Get the operand list.
2402      unsigned NumOps = MatcherTable[MatcherIndex++];
2403      SmallVector<SDValue, 8> Ops;
2404      for (unsigned i = 0; i != NumOps; ++i) {
2405        unsigned RecNo = MatcherTable[MatcherIndex++];
2406        if (RecNo & 128)
2407          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2408
2409        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2410        Ops.push_back(RecordedNodes[RecNo]);
2411      }
2412
2413      // If there are variadic operands to add, handle them now.
2414      if (EmitNodeInfo & OPFL_VariadicInfo) {
2415        // Determine the start index to copy from.
2416        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2417        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2418        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2419               "Invalid variadic node");
2420        // Copy all of the variadic operands, not including a potential flag
2421        // input.
2422        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2423             i != e; ++i) {
2424          SDValue V = NodeToMatch->getOperand(i);
2425          if (V.getValueType() == MVT::Flag) break;
2426          Ops.push_back(V);
2427        }
2428      }
2429
2430      // If this has chain/flag inputs, add them.
2431      if (EmitNodeInfo & OPFL_Chain)
2432        Ops.push_back(InputChain);
2433      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2434        Ops.push_back(InputFlag);
2435
2436      // Create the node.
2437      SDNode *Res = 0;
2438      if (Opcode != OPC_MorphNodeTo) {
2439        // If this is a normal EmitNode command, just create the new node and
2440        // add the results to the RecordedNodes list.
2441        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2442                                     VTList, Ops.data(), Ops.size());
2443
2444        // Add all the non-flag/non-chain results to the RecordedNodes list.
2445        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2446          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2447          RecordedNodes.push_back(SDValue(Res, i));
2448        }
2449
2450      } else {
2451        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2452                        EmitNodeInfo);
2453      }
2454
2455      // If the node had chain/flag results, update our notion of the current
2456      // chain and flag.
2457      if (EmitNodeInfo & OPFL_FlagOutput) {
2458        InputFlag = SDValue(Res, VTs.size()-1);
2459        if (EmitNodeInfo & OPFL_Chain)
2460          InputChain = SDValue(Res, VTs.size()-2);
2461      } else if (EmitNodeInfo & OPFL_Chain)
2462        InputChain = SDValue(Res, VTs.size()-1);
2463
2464      // If the OPFL_MemRefs flag is set on this node, slap all of the
2465      // accumulated memrefs onto it.
2466      //
2467      // FIXME: This is vastly incorrect for patterns with multiple outputs
2468      // instructions that access memory and for ComplexPatterns that match
2469      // loads.
2470      if (EmitNodeInfo & OPFL_MemRefs) {
2471        MachineSDNode::mmo_iterator MemRefs =
2472          MF->allocateMemRefsArray(MatchedMemRefs.size());
2473        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2474        cast<MachineSDNode>(Res)
2475          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2476      }
2477
2478      DEBUG(errs() << "  "
2479                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2480                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2481
2482      // If this was a MorphNodeTo then we're completely done!
2483      if (Opcode == OPC_MorphNodeTo) {
2484        // Update chain and flag uses.
2485        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2486                             InputFlag, FlagResultNodesMatched, true);
2487        return Res;
2488      }
2489
2490      continue;
2491    }
2492
2493    case OPC_MarkFlagResults: {
2494      unsigned NumNodes = MatcherTable[MatcherIndex++];
2495
2496      // Read and remember all the flag-result nodes.
2497      for (unsigned i = 0; i != NumNodes; ++i) {
2498        unsigned RecNo = MatcherTable[MatcherIndex++];
2499        if (RecNo & 128)
2500          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2501
2502        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2503        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2504      }
2505      continue;
2506    }
2507
2508    case OPC_CompleteMatch: {
2509      // The match has been completed, and any new nodes (if any) have been
2510      // created.  Patch up references to the matched dag to use the newly
2511      // created nodes.
2512      unsigned NumResults = MatcherTable[MatcherIndex++];
2513
2514      for (unsigned i = 0; i != NumResults; ++i) {
2515        unsigned ResSlot = MatcherTable[MatcherIndex++];
2516        if (ResSlot & 128)
2517          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2518
2519        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2520        SDValue Res = RecordedNodes[ResSlot];
2521
2522        assert(i < NodeToMatch->getNumValues() &&
2523               NodeToMatch->getValueType(i) != MVT::Other &&
2524               NodeToMatch->getValueType(i) != MVT::Flag &&
2525               "Invalid number of results to complete!");
2526        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2527                NodeToMatch->getValueType(i) == MVT::iPTR ||
2528                Res.getValueType() == MVT::iPTR ||
2529                NodeToMatch->getValueType(i).getSizeInBits() ==
2530                    Res.getValueType().getSizeInBits()) &&
2531               "invalid replacement");
2532        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2533      }
2534
2535      // If the root node defines a flag, add it to the flag nodes to update
2536      // list.
2537      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2538        FlagResultNodesMatched.push_back(NodeToMatch);
2539
2540      // Update chain and flag uses.
2541      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2542                           InputFlag, FlagResultNodesMatched, false);
2543
2544      assert(NodeToMatch->use_empty() &&
2545             "Didn't replace all uses of the node?");
2546
2547      // FIXME: We just return here, which interacts correctly with SelectRoot
2548      // above.  We should fix this to not return an SDNode* anymore.
2549      return 0;
2550    }
2551    }
2552
2553    // If the code reached this point, then the match failed.  See if there is
2554    // another child to try in the current 'Scope', otherwise pop it until we
2555    // find a case to check.
2556    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2557    ++NumDAGIselRetries;
2558    while (1) {
2559      if (MatchScopes.empty()) {
2560        CannotYetSelect(NodeToMatch);
2561        return 0;
2562      }
2563
2564      // Restore the interpreter state back to the point where the scope was
2565      // formed.
2566      MatchScope &LastScope = MatchScopes.back();
2567      RecordedNodes.resize(LastScope.NumRecordedNodes);
2568      NodeStack.clear();
2569      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2570      N = NodeStack.back();
2571
2572      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2573        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2574      MatcherIndex = LastScope.FailIndex;
2575
2576      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2577
2578      InputChain = LastScope.InputChain;
2579      InputFlag = LastScope.InputFlag;
2580      if (!LastScope.HasChainNodesMatched)
2581        ChainNodesMatched.clear();
2582      if (!LastScope.HasFlagResultNodesMatched)
2583        FlagResultNodesMatched.clear();
2584
2585      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2586      // we have reached the end of this scope, otherwise we have another child
2587      // in the current scope to try.
2588      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2589      if (NumToSkip & 128)
2590        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2591
2592      // If we have another child in this scope to match, update FailIndex and
2593      // try it.
2594      if (NumToSkip != 0) {
2595        LastScope.FailIndex = MatcherIndex+NumToSkip;
2596        break;
2597      }
2598
2599      // End of this scope, pop it and try the next child in the containing
2600      // scope.
2601      MatchScopes.pop_back();
2602    }
2603  }
2604}
2605
2606
2607
2608void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2609  std::string msg;
2610  raw_string_ostream Msg(msg);
2611  Msg << "Cannot yet select: ";
2612
2613  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2614      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2615      N->getOpcode() != ISD::INTRINSIC_VOID) {
2616    N->printrFull(Msg, CurDAG);
2617  } else {
2618    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2619    unsigned iid =
2620      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2621    if (iid < Intrinsic::num_intrinsics)
2622      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2623    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2624      Msg << "target intrinsic %" << TII->getName(iid);
2625    else
2626      Msg << "unknown intrinsic #" << iid;
2627  }
2628  report_fatal_error(Msg.str());
2629}
2630
2631char SelectionDAGISel::ID = 0;
2632