SelectionDAGISel.cpp revision 9ce2e9d5a07cb3e0176cb32838231243829d67c5
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57static cl::opt<bool>
58ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
59          cl::desc("Pop up a window to show SUnit dags after they are processed"));
60#else
61static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
62#endif
63
64//===---------------------------------------------------------------------===//
65///
66/// RegisterScheduler class - Track the registration of instruction schedulers.
67///
68//===---------------------------------------------------------------------===//
69MachinePassRegistry RegisterScheduler::Registry;
70
71//===---------------------------------------------------------------------===//
72///
73/// ISHeuristic command line option for instruction schedulers.
74///
75//===---------------------------------------------------------------------===//
76namespace {
77  cl::opt<RegisterScheduler::FunctionPassCtor, false,
78          RegisterPassParser<RegisterScheduler> >
79  ISHeuristic("pre-RA-sched",
80              cl::init(&createDefaultScheduler),
81              cl::desc("Instruction schedulers available (before register allocation):"));
82
83  static RegisterScheduler
84  defaultListDAGScheduler("default", "  Best scheduler for the target",
85                          createDefaultScheduler);
86} // namespace
87
88namespace { struct AsmOperandInfo; }
89
90namespace {
91  /// RegsForValue - This struct represents the physical registers that a
92  /// particular value is assigned and the type information about the value.
93  /// This is needed because values can be promoted into larger registers and
94  /// expanded into multiple smaller registers than the value.
95  struct VISIBILITY_HIDDEN RegsForValue {
96    /// Regs - This list holds the register (for legal and promoted values)
97    /// or register set (for expanded values) that the value should be assigned
98    /// to.
99    std::vector<unsigned> Regs;
100
101    /// RegVT - The value type of each register.
102    ///
103    MVT::ValueType RegVT;
104
105    /// ValueVT - The value type of the LLVM value, which may be promoted from
106    /// RegVT or made from merging the two expanded parts.
107    MVT::ValueType ValueVT;
108
109    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
110
111    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
112      : RegVT(regvt), ValueVT(valuevt) {
113        Regs.push_back(Reg);
114    }
115    RegsForValue(const std::vector<unsigned> &regs,
116                 MVT::ValueType regvt, MVT::ValueType valuevt)
117      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
118    }
119
120    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
121    /// this value and returns the result as a ValueVT value.  This uses
122    /// Chain/Flag as the input and updates them for the output Chain/Flag.
123    /// If the Flag pointer is NULL, no flag is used.
124    SDOperand getCopyFromRegs(SelectionDAG &DAG,
125                              SDOperand &Chain, SDOperand *Flag) const;
126
127    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
128    /// specified value into the registers specified by this object.  This uses
129    /// Chain/Flag as the input and updates them for the output Chain/Flag.
130    /// If the Flag pointer is NULL, no flag is used.
131    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
132                       SDOperand &Chain, SDOperand *Flag) const;
133
134    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
135    /// operand list.  This adds the code marker and includes the number of
136    /// values added into it.
137    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
138                              std::vector<SDOperand> &Ops) const;
139  };
140}
141
142namespace llvm {
143  //===--------------------------------------------------------------------===//
144  /// createDefaultScheduler - This creates an instruction scheduler appropriate
145  /// for the target.
146  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
147                                      SelectionDAG *DAG,
148                                      MachineBasicBlock *BB) {
149    TargetLowering &TLI = IS->getTargetLowering();
150
151    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
152      return createTDListDAGScheduler(IS, DAG, BB);
153    } else {
154      assert(TLI.getSchedulingPreference() ==
155           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
156      return createBURRListDAGScheduler(IS, DAG, BB);
157    }
158  }
159
160
161  //===--------------------------------------------------------------------===//
162  /// FunctionLoweringInfo - This contains information that is global to a
163  /// function that is used when lowering a region of the function.
164  class FunctionLoweringInfo {
165  public:
166    TargetLowering &TLI;
167    Function &Fn;
168    MachineFunction &MF;
169    SSARegMap *RegMap;
170
171    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
172
173    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
174    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
175
176    /// ValueMap - Since we emit code for the function a basic block at a time,
177    /// we must remember which virtual registers hold the values for
178    /// cross-basic-block values.
179    DenseMap<const Value*, unsigned> ValueMap;
180
181    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
182    /// the entry block.  This allows the allocas to be efficiently referenced
183    /// anywhere in the function.
184    std::map<const AllocaInst*, int> StaticAllocaMap;
185
186#ifndef NDEBUG
187    SmallSet<Instruction*, 8> CatchInfoLost;
188    SmallSet<Instruction*, 8> CatchInfoFound;
189#endif
190
191    unsigned MakeReg(MVT::ValueType VT) {
192      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
193    }
194
195    /// isExportedInst - Return true if the specified value is an instruction
196    /// exported from its block.
197    bool isExportedInst(const Value *V) {
198      return ValueMap.count(V);
199    }
200
201    unsigned CreateRegForValue(const Value *V);
202
203    unsigned InitializeRegForValue(const Value *V) {
204      unsigned &R = ValueMap[V];
205      assert(R == 0 && "Already initialized this value register!");
206      return R = CreateRegForValue(V);
207    }
208  };
209}
210
211/// isSelector - Return true if this instruction is a call to the
212/// eh.selector intrinsic.
213static bool isSelector(Instruction *I) {
214  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
215    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
216            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
217  return false;
218}
219
220/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
221/// PHI nodes or outside of the basic block that defines it, or used by a
222/// switch instruction, which may expand to multiple basic blocks.
223static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
224  if (isa<PHINode>(I)) return true;
225  BasicBlock *BB = I->getParent();
226  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
227    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
228        // FIXME: Remove switchinst special case.
229        isa<SwitchInst>(*UI))
230      return true;
231  return false;
232}
233
234/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
235/// entry block, return true.  This includes arguments used by switches, since
236/// the switch may expand into multiple basic blocks.
237static bool isOnlyUsedInEntryBlock(Argument *A) {
238  BasicBlock *Entry = A->getParent()->begin();
239  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
240    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
241      return false;  // Use not in entry block.
242  return true;
243}
244
245FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
246                                           Function &fn, MachineFunction &mf)
247    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
248
249  // Create a vreg for each argument register that is not dead and is used
250  // outside of the entry block for the function.
251  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
252       AI != E; ++AI)
253    if (!isOnlyUsedInEntryBlock(AI))
254      InitializeRegForValue(AI);
255
256  // Initialize the mapping of values to registers.  This is only set up for
257  // instruction values that are used outside of the block that defines
258  // them.
259  Function::iterator BB = Fn.begin(), EB = Fn.end();
260  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
261    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
262      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
263        const Type *Ty = AI->getAllocatedType();
264        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
265        unsigned Align =
266          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
267                   AI->getAlignment());
268
269        TySize *= CUI->getZExtValue();   // Get total allocated size.
270        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
271        StaticAllocaMap[AI] =
272          MF.getFrameInfo()->CreateStackObject(TySize, Align);
273      }
274
275  for (; BB != EB; ++BB)
276    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
277      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
278        if (!isa<AllocaInst>(I) ||
279            !StaticAllocaMap.count(cast<AllocaInst>(I)))
280          InitializeRegForValue(I);
281
282  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
283  // also creates the initial PHI MachineInstrs, though none of the input
284  // operands are populated.
285  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
286    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
287    MBBMap[BB] = MBB;
288    MF.getBasicBlockList().push_back(MBB);
289
290    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
291    // appropriate.
292    PHINode *PN;
293    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
294      if (PN->use_empty()) continue;
295
296      MVT::ValueType VT = TLI.getValueType(PN->getType());
297      unsigned NumRegisters = TLI.getNumRegisters(VT);
298      unsigned PHIReg = ValueMap[PN];
299      assert(PHIReg && "PHI node does not have an assigned virtual register!");
300      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
301      for (unsigned i = 0; i != NumRegisters; ++i)
302        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
303    }
304  }
305}
306
307/// CreateRegForValue - Allocate the appropriate number of virtual registers of
308/// the correctly promoted or expanded types.  Assign these registers
309/// consecutive vreg numbers and return the first assigned number.
310unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
311  MVT::ValueType VT = TLI.getValueType(V->getType());
312
313  unsigned NumRegisters = TLI.getNumRegisters(VT);
314  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
315
316  unsigned R = MakeReg(RegisterVT);
317  for (unsigned i = 1; i != NumRegisters; ++i)
318    MakeReg(RegisterVT);
319
320  return R;
321}
322
323//===----------------------------------------------------------------------===//
324/// SelectionDAGLowering - This is the common target-independent lowering
325/// implementation that is parameterized by a TargetLowering object.
326/// Also, targets can overload any lowering method.
327///
328namespace llvm {
329class SelectionDAGLowering {
330  MachineBasicBlock *CurMBB;
331
332  DenseMap<const Value*, SDOperand> NodeMap;
333
334  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
335  /// them up and then emit token factor nodes when possible.  This allows us to
336  /// get simple disambiguation between loads without worrying about alias
337  /// analysis.
338  std::vector<SDOperand> PendingLoads;
339
340  /// Case - A struct to record the Value for a switch case, and the
341  /// case's target basic block.
342  struct Case {
343    Constant* Low;
344    Constant* High;
345    MachineBasicBlock* BB;
346
347    Case() : Low(0), High(0), BB(0) { }
348    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
349      Low(low), High(high), BB(bb) { }
350    uint64_t size() const {
351      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
352      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
353      return (rHigh - rLow + 1ULL);
354    }
355  };
356
357  struct CaseBits {
358    uint64_t Mask;
359    MachineBasicBlock* BB;
360    unsigned Bits;
361
362    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
363      Mask(mask), BB(bb), Bits(bits) { }
364  };
365
366  typedef std::vector<Case>           CaseVector;
367  typedef std::vector<CaseBits>       CaseBitsVector;
368  typedef CaseVector::iterator        CaseItr;
369  typedef std::pair<CaseItr, CaseItr> CaseRange;
370
371  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
372  /// of conditional branches.
373  struct CaseRec {
374    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
375    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
376
377    /// CaseBB - The MBB in which to emit the compare and branch
378    MachineBasicBlock *CaseBB;
379    /// LT, GE - If nonzero, we know the current case value must be less-than or
380    /// greater-than-or-equal-to these Constants.
381    Constant *LT;
382    Constant *GE;
383    /// Range - A pair of iterators representing the range of case values to be
384    /// processed at this point in the binary search tree.
385    CaseRange Range;
386  };
387
388  typedef std::vector<CaseRec> CaseRecVector;
389
390  /// The comparison function for sorting the switch case values in the vector.
391  /// WARNING: Case ranges should be disjoint!
392  struct CaseCmp {
393    bool operator () (const Case& C1, const Case& C2) {
394      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
395      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
396      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
397      return CI1->getValue().slt(CI2->getValue());
398    }
399  };
400
401  struct CaseBitsCmp {
402    bool operator () (const CaseBits& C1, const CaseBits& C2) {
403      return C1.Bits > C2.Bits;
404    }
405  };
406
407  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
408
409public:
410  // TLI - This is information that describes the available target features we
411  // need for lowering.  This indicates when operations are unavailable,
412  // implemented with a libcall, etc.
413  TargetLowering &TLI;
414  SelectionDAG &DAG;
415  const TargetData *TD;
416  AliasAnalysis &AA;
417
418  /// SwitchCases - Vector of CaseBlock structures used to communicate
419  /// SwitchInst code generation information.
420  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
421  /// JTCases - Vector of JumpTable structures used to communicate
422  /// SwitchInst code generation information.
423  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
424  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
425
426  /// FuncInfo - Information about the function as a whole.
427  ///
428  FunctionLoweringInfo &FuncInfo;
429
430  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
431                       AliasAnalysis &aa,
432                       FunctionLoweringInfo &funcinfo)
433    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
434      FuncInfo(funcinfo) {
435  }
436
437  /// getRoot - Return the current virtual root of the Selection DAG.
438  ///
439  SDOperand getRoot() {
440    if (PendingLoads.empty())
441      return DAG.getRoot();
442
443    if (PendingLoads.size() == 1) {
444      SDOperand Root = PendingLoads[0];
445      DAG.setRoot(Root);
446      PendingLoads.clear();
447      return Root;
448    }
449
450    // Otherwise, we have to make a token factor node.
451    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
452                                 &PendingLoads[0], PendingLoads.size());
453    PendingLoads.clear();
454    DAG.setRoot(Root);
455    return Root;
456  }
457
458  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
459
460  void visit(Instruction &I) { visit(I.getOpcode(), I); }
461
462  void visit(unsigned Opcode, User &I) {
463    // Note: this doesn't use InstVisitor, because it has to work with
464    // ConstantExpr's in addition to instructions.
465    switch (Opcode) {
466    default: assert(0 && "Unknown instruction type encountered!");
467             abort();
468      // Build the switch statement using the Instruction.def file.
469#define HANDLE_INST(NUM, OPCODE, CLASS) \
470    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
471#include "llvm/Instruction.def"
472    }
473  }
474
475  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
476
477  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
478                        const Value *SV, SDOperand Root,
479                        bool isVolatile, unsigned Alignment);
480
481  SDOperand getIntPtrConstant(uint64_t Val) {
482    return DAG.getConstant(Val, TLI.getPointerTy());
483  }
484
485  SDOperand getValue(const Value *V);
486
487  void setValue(const Value *V, SDOperand NewN) {
488    SDOperand &N = NodeMap[V];
489    assert(N.Val == 0 && "Already set a value for this node!");
490    N = NewN;
491  }
492
493  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
494                            std::set<unsigned> &OutputRegs,
495                            std::set<unsigned> &InputRegs);
496
497  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
498                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
499                            unsigned Opc);
500  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
501  void ExportFromCurrentBlock(Value *V);
502  void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
503                   MachineBasicBlock *LandingPad = NULL);
504
505  // Terminator instructions.
506  void visitRet(ReturnInst &I);
507  void visitBr(BranchInst &I);
508  void visitSwitch(SwitchInst &I);
509  void visitUnreachable(UnreachableInst &I) { /* noop */ }
510
511  // Helpers for visitSwitch
512  bool handleSmallSwitchRange(CaseRec& CR,
513                              CaseRecVector& WorkList,
514                              Value* SV,
515                              MachineBasicBlock* Default);
516  bool handleJTSwitchCase(CaseRec& CR,
517                          CaseRecVector& WorkList,
518                          Value* SV,
519                          MachineBasicBlock* Default);
520  bool handleBTSplitSwitchCase(CaseRec& CR,
521                               CaseRecVector& WorkList,
522                               Value* SV,
523                               MachineBasicBlock* Default);
524  bool handleBitTestsSwitchCase(CaseRec& CR,
525                                CaseRecVector& WorkList,
526                                Value* SV,
527                                MachineBasicBlock* Default);
528  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
529  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
530  void visitBitTestCase(MachineBasicBlock* NextMBB,
531                        unsigned Reg,
532                        SelectionDAGISel::BitTestCase &B);
533  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
534  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
535                            SelectionDAGISel::JumpTableHeader &JTH);
536
537  // These all get lowered before this pass.
538  void visitInvoke(InvokeInst &I);
539  void visitUnwind(UnwindInst &I);
540
541  void visitBinary(User &I, unsigned OpCode);
542  void visitShift(User &I, unsigned Opcode);
543  void visitAdd(User &I) {
544    if (I.getType()->isFPOrFPVector())
545      visitBinary(I, ISD::FADD);
546    else
547      visitBinary(I, ISD::ADD);
548  }
549  void visitSub(User &I);
550  void visitMul(User &I) {
551    if (I.getType()->isFPOrFPVector())
552      visitBinary(I, ISD::FMUL);
553    else
554      visitBinary(I, ISD::MUL);
555  }
556  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
557  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
558  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
559  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
560  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
561  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
562  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
563  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
564  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
565  void visitShl (User &I) { visitShift(I, ISD::SHL); }
566  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
567  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
568  void visitICmp(User &I);
569  void visitFCmp(User &I);
570  // Visit the conversion instructions
571  void visitTrunc(User &I);
572  void visitZExt(User &I);
573  void visitSExt(User &I);
574  void visitFPTrunc(User &I);
575  void visitFPExt(User &I);
576  void visitFPToUI(User &I);
577  void visitFPToSI(User &I);
578  void visitUIToFP(User &I);
579  void visitSIToFP(User &I);
580  void visitPtrToInt(User &I);
581  void visitIntToPtr(User &I);
582  void visitBitCast(User &I);
583
584  void visitExtractElement(User &I);
585  void visitInsertElement(User &I);
586  void visitShuffleVector(User &I);
587
588  void visitGetElementPtr(User &I);
589  void visitSelect(User &I);
590
591  void visitMalloc(MallocInst &I);
592  void visitFree(FreeInst &I);
593  void visitAlloca(AllocaInst &I);
594  void visitLoad(LoadInst &I);
595  void visitStore(StoreInst &I);
596  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
597  void visitCall(CallInst &I);
598  void visitInlineAsm(CallSite CS);
599  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
600  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
601
602  void visitVAStart(CallInst &I);
603  void visitVAArg(VAArgInst &I);
604  void visitVAEnd(CallInst &I);
605  void visitVACopy(CallInst &I);
606
607  void visitMemIntrinsic(CallInst &I, unsigned Op);
608
609  void visitUserOp1(Instruction &I) {
610    assert(0 && "UserOp1 should not exist at instruction selection time!");
611    abort();
612  }
613  void visitUserOp2(Instruction &I) {
614    assert(0 && "UserOp2 should not exist at instruction selection time!");
615    abort();
616  }
617};
618} // end namespace llvm
619
620
621/// getCopyFromParts - Create a value that contains the
622/// specified legal parts combined into the value they represent.
623static SDOperand getCopyFromParts(SelectionDAG &DAG,
624                                  const SDOperand *Parts,
625                                  unsigned NumParts,
626                                  MVT::ValueType PartVT,
627                                  MVT::ValueType ValueVT,
628                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
629  if (!MVT::isVector(ValueVT) || NumParts == 1) {
630    SDOperand Val = Parts[0];
631
632    // If the value was expanded, copy from the top part.
633    if (NumParts > 1) {
634      assert(NumParts == 2 &&
635             "Cannot expand to more than 2 elts yet!");
636      SDOperand Hi = Parts[1];
637      if (!DAG.getTargetLoweringInfo().isLittleEndian())
638        std::swap(Val, Hi);
639      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
640    }
641
642    // Otherwise, if the value was promoted or extended, truncate it to the
643    // appropriate type.
644    if (PartVT == ValueVT)
645      return Val;
646
647    if (MVT::isVector(PartVT)) {
648      assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
649      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
650    }
651
652    if (MVT::isVector(ValueVT)) {
653      assert(NumParts == 1 &&
654             MVT::getVectorElementType(ValueVT) == PartVT &&
655             MVT::getVectorNumElements(ValueVT) == 1 &&
656             "Only trivial scalar-to-vector conversions should get here!");
657      return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
658    }
659
660    if (MVT::isInteger(PartVT) &&
661        MVT::isInteger(ValueVT)) {
662      if (ValueVT < PartVT) {
663        // For a truncate, see if we have any information to
664        // indicate whether the truncated bits will always be
665        // zero or sign-extension.
666        if (AssertOp != ISD::DELETED_NODE)
667          Val = DAG.getNode(AssertOp, PartVT, Val,
668                            DAG.getValueType(ValueVT));
669        return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
670      } else {
671        return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
672      }
673    }
674
675    if (MVT::isFloatingPoint(PartVT) &&
676        MVT::isFloatingPoint(ValueVT))
677      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
678
679    if (MVT::getSizeInBits(PartVT) ==
680        MVT::getSizeInBits(ValueVT))
681      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
682
683    assert(0 && "Unknown mismatch!");
684  }
685
686  // Handle a multi-element vector.
687  MVT::ValueType IntermediateVT, RegisterVT;
688  unsigned NumIntermediates;
689  unsigned NumRegs =
690    DAG.getTargetLoweringInfo()
691      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
692                              RegisterVT);
693
694  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
695  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
696  assert(RegisterVT == Parts[0].getValueType() &&
697         "Part type doesn't match part!");
698
699  // Assemble the parts into intermediate operands.
700  SmallVector<SDOperand, 8> Ops(NumIntermediates);
701  if (NumIntermediates == NumParts) {
702    // If the register was not expanded, truncate or copy the value,
703    // as appropriate.
704    for (unsigned i = 0; i != NumParts; ++i)
705      Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
706                                PartVT, IntermediateVT);
707  } else if (NumParts > 0) {
708    // If the intermediate type was expanded, build the intermediate operands
709    // from the parts.
710    assert(NumParts % NumIntermediates == 0 &&
711           "Must expand into a divisible number of parts!");
712    unsigned Factor = NumParts / NumIntermediates;
713    for (unsigned i = 0; i != NumIntermediates; ++i)
714      Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
715                                PartVT, IntermediateVT);
716  }
717
718  // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
719  // operands.
720  return DAG.getNode(MVT::isVector(IntermediateVT) ?
721                       ISD::CONCAT_VECTORS :
722                       ISD::BUILD_VECTOR,
723                     ValueVT, &Ops[0], NumIntermediates);
724}
725
726/// getCopyToParts - Create a series of nodes that contain the
727/// specified value split into legal parts.
728static void getCopyToParts(SelectionDAG &DAG,
729                           SDOperand Val,
730                           SDOperand *Parts,
731                           unsigned NumParts,
732                           MVT::ValueType PartVT) {
733  TargetLowering &TLI = DAG.getTargetLoweringInfo();
734  MVT::ValueType PtrVT = TLI.getPointerTy();
735  MVT::ValueType ValueVT = Val.getValueType();
736
737  if (!MVT::isVector(ValueVT) || NumParts == 1) {
738    // If the value was expanded, copy from the parts.
739    if (NumParts > 1) {
740      for (unsigned i = 0; i != NumParts; ++i)
741        Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
742                               DAG.getConstant(i, PtrVT));
743      if (!DAG.getTargetLoweringInfo().isLittleEndian())
744        std::reverse(Parts, Parts + NumParts);
745      return;
746    }
747
748    // If there is a single part and the types differ, this must be
749    // a promotion.
750    if (PartVT != ValueVT) {
751      if (MVT::isVector(PartVT)) {
752        assert(MVT::isVector(ValueVT) &&
753               "Not a vector-vector cast?");
754        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
755      } else if (MVT::isVector(ValueVT)) {
756        assert(NumParts == 1 &&
757               MVT::getVectorElementType(ValueVT) == PartVT &&
758               MVT::getVectorNumElements(ValueVT) == 1 &&
759               "Only trivial vector-to-scalar conversions should get here!");
760        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
761                          DAG.getConstant(0, PtrVT));
762      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
763        if (PartVT < ValueVT)
764          Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
765        else
766          Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
767      } else if (MVT::isFloatingPoint(PartVT) &&
768                 MVT::isFloatingPoint(ValueVT)) {
769        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
770      } else if (MVT::getSizeInBits(PartVT) ==
771                 MVT::getSizeInBits(ValueVT)) {
772        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
773      } else {
774        assert(0 && "Unknown mismatch!");
775      }
776    }
777    Parts[0] = Val;
778    return;
779  }
780
781  // Handle a multi-element vector.
782  MVT::ValueType IntermediateVT, RegisterVT;
783  unsigned NumIntermediates;
784  unsigned NumRegs =
785    DAG.getTargetLoweringInfo()
786      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
787                              RegisterVT);
788  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
789
790  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
791  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
792
793  // Split the vector into intermediate operands.
794  SmallVector<SDOperand, 8> Ops(NumIntermediates);
795  for (unsigned i = 0; i != NumIntermediates; ++i)
796    if (MVT::isVector(IntermediateVT))
797      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
798                           IntermediateVT, Val,
799                           DAG.getConstant(i * (NumElements / NumIntermediates),
800                                           PtrVT));
801    else
802      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
803                           IntermediateVT, Val,
804                           DAG.getConstant(i, PtrVT));
805
806  // Split the intermediate operands into legal parts.
807  if (NumParts == NumIntermediates) {
808    // If the register was not expanded, promote or copy the value,
809    // as appropriate.
810    for (unsigned i = 0; i != NumParts; ++i)
811      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
812  } else if (NumParts > 0) {
813    // If the intermediate type was expanded, split each the value into
814    // legal parts.
815    assert(NumParts % NumIntermediates == 0 &&
816           "Must expand into a divisible number of parts!");
817    unsigned Factor = NumParts / NumIntermediates;
818    for (unsigned i = 0; i != NumIntermediates; ++i)
819      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
820  }
821}
822
823
824SDOperand SelectionDAGLowering::getValue(const Value *V) {
825  SDOperand &N = NodeMap[V];
826  if (N.Val) return N;
827
828  const Type *VTy = V->getType();
829  MVT::ValueType VT = TLI.getValueType(VTy);
830  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
831    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
832      visit(CE->getOpcode(), *CE);
833      SDOperand N1 = NodeMap[V];
834      assert(N1.Val && "visit didn't populate the ValueMap!");
835      return N1;
836    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
837      return N = DAG.getGlobalAddress(GV, VT);
838    } else if (isa<ConstantPointerNull>(C)) {
839      return N = DAG.getConstant(0, TLI.getPointerTy());
840    } else if (isa<UndefValue>(C)) {
841      if (!isa<VectorType>(VTy))
842        return N = DAG.getNode(ISD::UNDEF, VT);
843
844      // Create a BUILD_VECTOR of undef nodes.
845      const VectorType *PTy = cast<VectorType>(VTy);
846      unsigned NumElements = PTy->getNumElements();
847      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
848
849      SmallVector<SDOperand, 8> Ops;
850      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
851
852      // Create a VConstant node with generic Vector type.
853      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
854      return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
855                             &Ops[0], Ops.size());
856    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
857      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
858    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
859      unsigned NumElements = PTy->getNumElements();
860      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
861
862      // Now that we know the number and type of the elements, push a
863      // Constant or ConstantFP node onto the ops list for each element of
864      // the vector constant.
865      SmallVector<SDOperand, 8> Ops;
866      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
867        for (unsigned i = 0; i != NumElements; ++i)
868          Ops.push_back(getValue(CP->getOperand(i)));
869      } else {
870        assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
871        SDOperand Op;
872        if (MVT::isFloatingPoint(PVT))
873          Op = DAG.getConstantFP(0, PVT);
874        else
875          Op = DAG.getConstant(0, PVT);
876        Ops.assign(NumElements, Op);
877      }
878
879      // Create a BUILD_VECTOR node.
880      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
881      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
882                                      Ops.size());
883    } else {
884      // Canonicalize all constant ints to be unsigned.
885      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
886    }
887  }
888
889  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
890    std::map<const AllocaInst*, int>::iterator SI =
891    FuncInfo.StaticAllocaMap.find(AI);
892    if (SI != FuncInfo.StaticAllocaMap.end())
893      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
894  }
895
896  unsigned InReg = FuncInfo.ValueMap[V];
897  assert(InReg && "Value not in map!");
898
899  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
900  unsigned NumRegs = TLI.getNumRegisters(VT);
901
902  std::vector<unsigned> Regs(NumRegs);
903  for (unsigned i = 0; i != NumRegs; ++i)
904    Regs[i] = InReg + i;
905
906  RegsForValue RFV(Regs, RegisterVT, VT);
907  SDOperand Chain = DAG.getEntryNode();
908
909  return RFV.getCopyFromRegs(DAG, Chain, NULL);
910}
911
912
913void SelectionDAGLowering::visitRet(ReturnInst &I) {
914  if (I.getNumOperands() == 0) {
915    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
916    return;
917  }
918  SmallVector<SDOperand, 8> NewValues;
919  NewValues.push_back(getRoot());
920  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
921    SDOperand RetOp = getValue(I.getOperand(i));
922
923    // If this is an integer return value, we need to promote it ourselves to
924    // the full width of a register, since getCopyToParts and Legalize will use
925    // ANY_EXTEND rather than sign/zero.
926    // FIXME: C calling convention requires the return type to be promoted to
927    // at least 32-bit. But this is not necessary for non-C calling conventions.
928    if (MVT::isInteger(RetOp.getValueType()) &&
929        RetOp.getValueType() < MVT::i64) {
930      MVT::ValueType TmpVT;
931      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
932        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
933      else
934        TmpVT = MVT::i32;
935      const Function *F = I.getParent()->getParent();
936      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
937      if (F->paramHasAttr(0, ParamAttr::SExt))
938        ExtendKind = ISD::SIGN_EXTEND;
939      if (F->paramHasAttr(0, ParamAttr::ZExt))
940        ExtendKind = ISD::ZERO_EXTEND;
941      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
942      NewValues.push_back(RetOp);
943      NewValues.push_back(DAG.getConstant(false, MVT::i32));
944    } else {
945      MVT::ValueType VT = RetOp.getValueType();
946      unsigned NumParts = TLI.getNumRegisters(VT);
947      MVT::ValueType PartVT = TLI.getRegisterType(VT);
948      SmallVector<SDOperand, 4> Parts(NumParts);
949      getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT);
950      for (unsigned i = 0; i < NumParts; ++i) {
951        NewValues.push_back(Parts[i]);
952        NewValues.push_back(DAG.getConstant(false, MVT::i32));
953      }
954    }
955  }
956  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
957                          &NewValues[0], NewValues.size()));
958}
959
960/// ExportFromCurrentBlock - If this condition isn't known to be exported from
961/// the current basic block, add it to ValueMap now so that we'll get a
962/// CopyTo/FromReg.
963void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
964  // No need to export constants.
965  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
966
967  // Already exported?
968  if (FuncInfo.isExportedInst(V)) return;
969
970  unsigned Reg = FuncInfo.InitializeRegForValue(V);
971  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
972}
973
974bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
975                                                    const BasicBlock *FromBB) {
976  // The operands of the setcc have to be in this block.  We don't know
977  // how to export them from some other block.
978  if (Instruction *VI = dyn_cast<Instruction>(V)) {
979    // Can export from current BB.
980    if (VI->getParent() == FromBB)
981      return true;
982
983    // Is already exported, noop.
984    return FuncInfo.isExportedInst(V);
985  }
986
987  // If this is an argument, we can export it if the BB is the entry block or
988  // if it is already exported.
989  if (isa<Argument>(V)) {
990    if (FromBB == &FromBB->getParent()->getEntryBlock())
991      return true;
992
993    // Otherwise, can only export this if it is already exported.
994    return FuncInfo.isExportedInst(V);
995  }
996
997  // Otherwise, constants can always be exported.
998  return true;
999}
1000
1001static bool InBlock(const Value *V, const BasicBlock *BB) {
1002  if (const Instruction *I = dyn_cast<Instruction>(V))
1003    return I->getParent() == BB;
1004  return true;
1005}
1006
1007/// FindMergedConditions - If Cond is an expression like
1008void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1009                                                MachineBasicBlock *TBB,
1010                                                MachineBasicBlock *FBB,
1011                                                MachineBasicBlock *CurBB,
1012                                                unsigned Opc) {
1013  // If this node is not part of the or/and tree, emit it as a branch.
1014  Instruction *BOp = dyn_cast<Instruction>(Cond);
1015
1016  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1017      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1018      BOp->getParent() != CurBB->getBasicBlock() ||
1019      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1020      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1021    const BasicBlock *BB = CurBB->getBasicBlock();
1022
1023    // If the leaf of the tree is a comparison, merge the condition into
1024    // the caseblock.
1025    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1026        // The operands of the cmp have to be in this block.  We don't know
1027        // how to export them from some other block.  If this is the first block
1028        // of the sequence, no exporting is needed.
1029        (CurBB == CurMBB ||
1030         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1031          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1032      BOp = cast<Instruction>(Cond);
1033      ISD::CondCode Condition;
1034      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1035        switch (IC->getPredicate()) {
1036        default: assert(0 && "Unknown icmp predicate opcode!");
1037        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1038        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1039        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1040        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1041        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1042        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1043        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1044        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1045        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1046        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1047        }
1048      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1049        ISD::CondCode FPC, FOC;
1050        switch (FC->getPredicate()) {
1051        default: assert(0 && "Unknown fcmp predicate opcode!");
1052        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1053        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1054        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1055        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1056        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1057        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1058        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1059        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1060        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1061        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1062        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1063        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1064        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1065        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1066        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1067        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1068        }
1069        if (FiniteOnlyFPMath())
1070          Condition = FOC;
1071        else
1072          Condition = FPC;
1073      } else {
1074        Condition = ISD::SETEQ; // silence warning.
1075        assert(0 && "Unknown compare instruction");
1076      }
1077
1078      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1079                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1080      SwitchCases.push_back(CB);
1081      return;
1082    }
1083
1084    // Create a CaseBlock record representing this branch.
1085    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1086                                   NULL, TBB, FBB, CurBB);
1087    SwitchCases.push_back(CB);
1088    return;
1089  }
1090
1091
1092  //  Create TmpBB after CurBB.
1093  MachineFunction::iterator BBI = CurBB;
1094  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1095  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1096
1097  if (Opc == Instruction::Or) {
1098    // Codegen X | Y as:
1099    //   jmp_if_X TBB
1100    //   jmp TmpBB
1101    // TmpBB:
1102    //   jmp_if_Y TBB
1103    //   jmp FBB
1104    //
1105
1106    // Emit the LHS condition.
1107    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1108
1109    // Emit the RHS condition into TmpBB.
1110    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1111  } else {
1112    assert(Opc == Instruction::And && "Unknown merge op!");
1113    // Codegen X & Y as:
1114    //   jmp_if_X TmpBB
1115    //   jmp FBB
1116    // TmpBB:
1117    //   jmp_if_Y TBB
1118    //   jmp FBB
1119    //
1120    //  This requires creation of TmpBB after CurBB.
1121
1122    // Emit the LHS condition.
1123    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1124
1125    // Emit the RHS condition into TmpBB.
1126    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1127  }
1128}
1129
1130/// If the set of cases should be emitted as a series of branches, return true.
1131/// If we should emit this as a bunch of and/or'd together conditions, return
1132/// false.
1133static bool
1134ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1135  if (Cases.size() != 2) return true;
1136
1137  // If this is two comparisons of the same values or'd or and'd together, they
1138  // will get folded into a single comparison, so don't emit two blocks.
1139  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1140       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1141      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1142       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1143    return false;
1144  }
1145
1146  return true;
1147}
1148
1149void SelectionDAGLowering::visitBr(BranchInst &I) {
1150  // Update machine-CFG edges.
1151  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1152
1153  // Figure out which block is immediately after the current one.
1154  MachineBasicBlock *NextBlock = 0;
1155  MachineFunction::iterator BBI = CurMBB;
1156  if (++BBI != CurMBB->getParent()->end())
1157    NextBlock = BBI;
1158
1159  if (I.isUnconditional()) {
1160    // If this is not a fall-through branch, emit the branch.
1161    if (Succ0MBB != NextBlock)
1162      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1163                              DAG.getBasicBlock(Succ0MBB)));
1164
1165    // Update machine-CFG edges.
1166    CurMBB->addSuccessor(Succ0MBB);
1167    return;
1168  }
1169
1170  // If this condition is one of the special cases we handle, do special stuff
1171  // now.
1172  Value *CondVal = I.getCondition();
1173  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1174
1175  // If this is a series of conditions that are or'd or and'd together, emit
1176  // this as a sequence of branches instead of setcc's with and/or operations.
1177  // For example, instead of something like:
1178  //     cmp A, B
1179  //     C = seteq
1180  //     cmp D, E
1181  //     F = setle
1182  //     or C, F
1183  //     jnz foo
1184  // Emit:
1185  //     cmp A, B
1186  //     je foo
1187  //     cmp D, E
1188  //     jle foo
1189  //
1190  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1191    if (BOp->hasOneUse() &&
1192        (BOp->getOpcode() == Instruction::And ||
1193         BOp->getOpcode() == Instruction::Or)) {
1194      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1195      // If the compares in later blocks need to use values not currently
1196      // exported from this block, export them now.  This block should always
1197      // be the first entry.
1198      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1199
1200      // Allow some cases to be rejected.
1201      if (ShouldEmitAsBranches(SwitchCases)) {
1202        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1203          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1204          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1205        }
1206
1207        // Emit the branch for this block.
1208        visitSwitchCase(SwitchCases[0]);
1209        SwitchCases.erase(SwitchCases.begin());
1210        return;
1211      }
1212
1213      // Okay, we decided not to do this, remove any inserted MBB's and clear
1214      // SwitchCases.
1215      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1216        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1217
1218      SwitchCases.clear();
1219    }
1220  }
1221
1222  // Create a CaseBlock record representing this branch.
1223  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1224                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1225  // Use visitSwitchCase to actually insert the fast branch sequence for this
1226  // cond branch.
1227  visitSwitchCase(CB);
1228}
1229
1230/// visitSwitchCase - Emits the necessary code to represent a single node in
1231/// the binary search tree resulting from lowering a switch instruction.
1232void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1233  SDOperand Cond;
1234  SDOperand CondLHS = getValue(CB.CmpLHS);
1235
1236  // Build the setcc now.
1237  if (CB.CmpMHS == NULL) {
1238    // Fold "(X == true)" to X and "(X == false)" to !X to
1239    // handle common cases produced by branch lowering.
1240    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1241      Cond = CondLHS;
1242    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1243      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1244      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1245    } else
1246      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1247  } else {
1248    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1249
1250    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1251    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1252
1253    SDOperand CmpOp = getValue(CB.CmpMHS);
1254    MVT::ValueType VT = CmpOp.getValueType();
1255
1256    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1257      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1258    } else {
1259      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1260      Cond = DAG.getSetCC(MVT::i1, SUB,
1261                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1262    }
1263
1264  }
1265
1266  // Set NextBlock to be the MBB immediately after the current one, if any.
1267  // This is used to avoid emitting unnecessary branches to the next block.
1268  MachineBasicBlock *NextBlock = 0;
1269  MachineFunction::iterator BBI = CurMBB;
1270  if (++BBI != CurMBB->getParent()->end())
1271    NextBlock = BBI;
1272
1273  // If the lhs block is the next block, invert the condition so that we can
1274  // fall through to the lhs instead of the rhs block.
1275  if (CB.TrueBB == NextBlock) {
1276    std::swap(CB.TrueBB, CB.FalseBB);
1277    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1278    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1279  }
1280  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1281                                 DAG.getBasicBlock(CB.TrueBB));
1282  if (CB.FalseBB == NextBlock)
1283    DAG.setRoot(BrCond);
1284  else
1285    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1286                            DAG.getBasicBlock(CB.FalseBB)));
1287  // Update successor info
1288  CurMBB->addSuccessor(CB.TrueBB);
1289  CurMBB->addSuccessor(CB.FalseBB);
1290}
1291
1292/// visitJumpTable - Emit JumpTable node in the current MBB
1293void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1294  // Emit the code for the jump table
1295  assert(JT.Reg != -1U && "Should lower JT Header first!");
1296  MVT::ValueType PTy = TLI.getPointerTy();
1297  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1298  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1299  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1300                          Table, Index));
1301  return;
1302}
1303
1304/// visitJumpTableHeader - This function emits necessary code to produce index
1305/// in the JumpTable from switch case.
1306void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1307                                         SelectionDAGISel::JumpTableHeader &JTH) {
1308  // Subtract the lowest switch case value from the value being switched on
1309  // and conditional branch to default mbb if the result is greater than the
1310  // difference between smallest and largest cases.
1311  SDOperand SwitchOp = getValue(JTH.SValue);
1312  MVT::ValueType VT = SwitchOp.getValueType();
1313  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1314                              DAG.getConstant(JTH.First, VT));
1315
1316  // The SDNode we just created, which holds the value being switched on
1317  // minus the the smallest case value, needs to be copied to a virtual
1318  // register so it can be used as an index into the jump table in a
1319  // subsequent basic block.  This value may be smaller or larger than the
1320  // target's pointer type, and therefore require extension or truncating.
1321  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1322    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1323  else
1324    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1325
1326  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1327  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1328  JT.Reg = JumpTableReg;
1329
1330  // Emit the range check for the jump table, and branch to the default
1331  // block for the switch statement if the value being switched on exceeds
1332  // the largest case in the switch.
1333  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1334                               DAG.getConstant(JTH.Last-JTH.First,VT),
1335                               ISD::SETUGT);
1336
1337  // Set NextBlock to be the MBB immediately after the current one, if any.
1338  // This is used to avoid emitting unnecessary branches to the next block.
1339  MachineBasicBlock *NextBlock = 0;
1340  MachineFunction::iterator BBI = CurMBB;
1341  if (++BBI != CurMBB->getParent()->end())
1342    NextBlock = BBI;
1343
1344  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1345                                 DAG.getBasicBlock(JT.Default));
1346
1347  if (JT.MBB == NextBlock)
1348    DAG.setRoot(BrCond);
1349  else
1350    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1351                            DAG.getBasicBlock(JT.MBB)));
1352
1353  return;
1354}
1355
1356/// visitBitTestHeader - This function emits necessary code to produce value
1357/// suitable for "bit tests"
1358void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1359  // Subtract the minimum value
1360  SDOperand SwitchOp = getValue(B.SValue);
1361  MVT::ValueType VT = SwitchOp.getValueType();
1362  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1363                              DAG.getConstant(B.First, VT));
1364
1365  // Check range
1366  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1367                                    DAG.getConstant(B.Range, VT),
1368                                    ISD::SETUGT);
1369
1370  SDOperand ShiftOp;
1371  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1372    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1373  else
1374    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1375
1376  // Make desired shift
1377  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1378                                    DAG.getConstant(1, TLI.getPointerTy()),
1379                                    ShiftOp);
1380
1381  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1382  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1383  B.Reg = SwitchReg;
1384
1385  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1386                                  DAG.getBasicBlock(B.Default));
1387
1388  // Set NextBlock to be the MBB immediately after the current one, if any.
1389  // This is used to avoid emitting unnecessary branches to the next block.
1390  MachineBasicBlock *NextBlock = 0;
1391  MachineFunction::iterator BBI = CurMBB;
1392  if (++BBI != CurMBB->getParent()->end())
1393    NextBlock = BBI;
1394
1395  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1396  if (MBB == NextBlock)
1397    DAG.setRoot(BrRange);
1398  else
1399    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1400                            DAG.getBasicBlock(MBB)));
1401
1402  CurMBB->addSuccessor(B.Default);
1403  CurMBB->addSuccessor(MBB);
1404
1405  return;
1406}
1407
1408/// visitBitTestCase - this function produces one "bit test"
1409void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1410                                            unsigned Reg,
1411                                            SelectionDAGISel::BitTestCase &B) {
1412  // Emit bit tests and jumps
1413  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1414
1415  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1416                                SwitchVal,
1417                                DAG.getConstant(B.Mask,
1418                                                TLI.getPointerTy()));
1419  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1420                                  DAG.getConstant(0, TLI.getPointerTy()),
1421                                  ISD::SETNE);
1422  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1423                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1424
1425  // Set NextBlock to be the MBB immediately after the current one, if any.
1426  // This is used to avoid emitting unnecessary branches to the next block.
1427  MachineBasicBlock *NextBlock = 0;
1428  MachineFunction::iterator BBI = CurMBB;
1429  if (++BBI != CurMBB->getParent()->end())
1430    NextBlock = BBI;
1431
1432  if (NextMBB == NextBlock)
1433    DAG.setRoot(BrAnd);
1434  else
1435    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1436                            DAG.getBasicBlock(NextMBB)));
1437
1438  CurMBB->addSuccessor(B.TargetBB);
1439  CurMBB->addSuccessor(NextMBB);
1440
1441  return;
1442}
1443
1444void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1445  // Retrieve successors.
1446  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1447  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1448
1449  if (isa<InlineAsm>(I.getCalledValue()))
1450    visitInlineAsm(&I);
1451  else
1452    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1453
1454  // If the value of the invoke is used outside of its defining block, make it
1455  // available as a virtual register.
1456  if (!I.use_empty()) {
1457    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1458    if (VMI != FuncInfo.ValueMap.end())
1459      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1460  }
1461
1462  // Drop into normal successor.
1463  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1464                          DAG.getBasicBlock(Return)));
1465
1466  // Update successor info
1467  CurMBB->addSuccessor(Return);
1468  CurMBB->addSuccessor(LandingPad);
1469}
1470
1471void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1472}
1473
1474/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1475/// small case ranges).
1476bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1477                                                  CaseRecVector& WorkList,
1478                                                  Value* SV,
1479                                                  MachineBasicBlock* Default) {
1480  Case& BackCase  = *(CR.Range.second-1);
1481
1482  // Size is the number of Cases represented by this range.
1483  unsigned Size = CR.Range.second - CR.Range.first;
1484  if (Size > 3)
1485    return false;
1486
1487  // Get the MachineFunction which holds the current MBB.  This is used when
1488  // inserting any additional MBBs necessary to represent the switch.
1489  MachineFunction *CurMF = CurMBB->getParent();
1490
1491  // Figure out which block is immediately after the current one.
1492  MachineBasicBlock *NextBlock = 0;
1493  MachineFunction::iterator BBI = CR.CaseBB;
1494
1495  if (++BBI != CurMBB->getParent()->end())
1496    NextBlock = BBI;
1497
1498  // TODO: If any two of the cases has the same destination, and if one value
1499  // is the same as the other, but has one bit unset that the other has set,
1500  // use bit manipulation to do two compares at once.  For example:
1501  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1502
1503  // Rearrange the case blocks so that the last one falls through if possible.
1504  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1505    // The last case block won't fall through into 'NextBlock' if we emit the
1506    // branches in this order.  See if rearranging a case value would help.
1507    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1508      if (I->BB == NextBlock) {
1509        std::swap(*I, BackCase);
1510        break;
1511      }
1512    }
1513  }
1514
1515  // Create a CaseBlock record representing a conditional branch to
1516  // the Case's target mbb if the value being switched on SV is equal
1517  // to C.
1518  MachineBasicBlock *CurBlock = CR.CaseBB;
1519  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1520    MachineBasicBlock *FallThrough;
1521    if (I != E-1) {
1522      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1523      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1524    } else {
1525      // If the last case doesn't match, go to the default block.
1526      FallThrough = Default;
1527    }
1528
1529    Value *RHS, *LHS, *MHS;
1530    ISD::CondCode CC;
1531    if (I->High == I->Low) {
1532      // This is just small small case range :) containing exactly 1 case
1533      CC = ISD::SETEQ;
1534      LHS = SV; RHS = I->High; MHS = NULL;
1535    } else {
1536      CC = ISD::SETLE;
1537      LHS = I->Low; MHS = SV; RHS = I->High;
1538    }
1539    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1540                                   I->BB, FallThrough, CurBlock);
1541
1542    // If emitting the first comparison, just call visitSwitchCase to emit the
1543    // code into the current block.  Otherwise, push the CaseBlock onto the
1544    // vector to be later processed by SDISel, and insert the node's MBB
1545    // before the next MBB.
1546    if (CurBlock == CurMBB)
1547      visitSwitchCase(CB);
1548    else
1549      SwitchCases.push_back(CB);
1550
1551    CurBlock = FallThrough;
1552  }
1553
1554  return true;
1555}
1556
1557static inline bool areJTsAllowed(const TargetLowering &TLI) {
1558  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1559          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1560}
1561
1562/// handleJTSwitchCase - Emit jumptable for current switch case range
1563bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1564                                              CaseRecVector& WorkList,
1565                                              Value* SV,
1566                                              MachineBasicBlock* Default) {
1567  Case& FrontCase = *CR.Range.first;
1568  Case& BackCase  = *(CR.Range.second-1);
1569
1570  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1571  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1572
1573  uint64_t TSize = 0;
1574  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1575       I!=E; ++I)
1576    TSize += I->size();
1577
1578  if (!areJTsAllowed(TLI) || TSize <= 3)
1579    return false;
1580
1581  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1582  if (Density < 0.4)
1583    return false;
1584
1585  DOUT << "Lowering jump table\n"
1586       << "First entry: " << First << ". Last entry: " << Last << "\n"
1587       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1588
1589  // Get the MachineFunction which holds the current MBB.  This is used when
1590  // inserting any additional MBBs necessary to represent the switch.
1591  MachineFunction *CurMF = CurMBB->getParent();
1592
1593  // Figure out which block is immediately after the current one.
1594  MachineBasicBlock *NextBlock = 0;
1595  MachineFunction::iterator BBI = CR.CaseBB;
1596
1597  if (++BBI != CurMBB->getParent()->end())
1598    NextBlock = BBI;
1599
1600  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1601
1602  // Create a new basic block to hold the code for loading the address
1603  // of the jump table, and jumping to it.  Update successor information;
1604  // we will either branch to the default case for the switch, or the jump
1605  // table.
1606  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1607  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1608  CR.CaseBB->addSuccessor(Default);
1609  CR.CaseBB->addSuccessor(JumpTableBB);
1610
1611  // Build a vector of destination BBs, corresponding to each target
1612  // of the jump table. If the value of the jump table slot corresponds to
1613  // a case statement, push the case's BB onto the vector, otherwise, push
1614  // the default BB.
1615  std::vector<MachineBasicBlock*> DestBBs;
1616  int64_t TEI = First;
1617  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1618    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1619    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1620
1621    if ((Low <= TEI) && (TEI <= High)) {
1622      DestBBs.push_back(I->BB);
1623      if (TEI==High)
1624        ++I;
1625    } else {
1626      DestBBs.push_back(Default);
1627    }
1628  }
1629
1630  // Update successor info. Add one edge to each unique successor.
1631  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1632  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1633         E = DestBBs.end(); I != E; ++I) {
1634    if (!SuccsHandled[(*I)->getNumber()]) {
1635      SuccsHandled[(*I)->getNumber()] = true;
1636      JumpTableBB->addSuccessor(*I);
1637    }
1638  }
1639
1640  // Create a jump table index for this jump table, or return an existing
1641  // one.
1642  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1643
1644  // Set the jump table information so that we can codegen it as a second
1645  // MachineBasicBlock
1646  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1647  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1648                                        (CR.CaseBB == CurMBB));
1649  if (CR.CaseBB == CurMBB)
1650    visitJumpTableHeader(JT, JTH);
1651
1652  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1653
1654  return true;
1655}
1656
1657/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1658/// 2 subtrees.
1659bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1660                                                   CaseRecVector& WorkList,
1661                                                   Value* SV,
1662                                                   MachineBasicBlock* Default) {
1663  // Get the MachineFunction which holds the current MBB.  This is used when
1664  // inserting any additional MBBs necessary to represent the switch.
1665  MachineFunction *CurMF = CurMBB->getParent();
1666
1667  // Figure out which block is immediately after the current one.
1668  MachineBasicBlock *NextBlock = 0;
1669  MachineFunction::iterator BBI = CR.CaseBB;
1670
1671  if (++BBI != CurMBB->getParent()->end())
1672    NextBlock = BBI;
1673
1674  Case& FrontCase = *CR.Range.first;
1675  Case& BackCase  = *(CR.Range.second-1);
1676  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1677
1678  // Size is the number of Cases represented by this range.
1679  unsigned Size = CR.Range.second - CR.Range.first;
1680
1681  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1682  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1683  double FMetric = 0;
1684  CaseItr Pivot = CR.Range.first + Size/2;
1685
1686  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1687  // (heuristically) allow us to emit JumpTable's later.
1688  uint64_t TSize = 0;
1689  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1690       I!=E; ++I)
1691    TSize += I->size();
1692
1693  uint64_t LSize = FrontCase.size();
1694  uint64_t RSize = TSize-LSize;
1695  DOUT << "Selecting best pivot: \n"
1696       << "First: " << First << ", Last: " << Last <<"\n"
1697       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1698  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1699       J!=E; ++I, ++J) {
1700    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1701    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1702    assert((RBegin-LEnd>=1) && "Invalid case distance");
1703    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1704    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1705    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1706    // Should always split in some non-trivial place
1707    DOUT <<"=>Step\n"
1708         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1709         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1710         << "Metric: " << Metric << "\n";
1711    if (FMetric < Metric) {
1712      Pivot = J;
1713      FMetric = Metric;
1714      DOUT << "Current metric set to: " << FMetric << "\n";
1715    }
1716
1717    LSize += J->size();
1718    RSize -= J->size();
1719  }
1720  if (areJTsAllowed(TLI)) {
1721    // If our case is dense we *really* should handle it earlier!
1722    assert((FMetric > 0) && "Should handle dense range earlier!");
1723  } else {
1724    Pivot = CR.Range.first + Size/2;
1725  }
1726
1727  CaseRange LHSR(CR.Range.first, Pivot);
1728  CaseRange RHSR(Pivot, CR.Range.second);
1729  Constant *C = Pivot->Low;
1730  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1731
1732  // We know that we branch to the LHS if the Value being switched on is
1733  // less than the Pivot value, C.  We use this to optimize our binary
1734  // tree a bit, by recognizing that if SV is greater than or equal to the
1735  // LHS's Case Value, and that Case Value is exactly one less than the
1736  // Pivot's Value, then we can branch directly to the LHS's Target,
1737  // rather than creating a leaf node for it.
1738  if ((LHSR.second - LHSR.first) == 1 &&
1739      LHSR.first->High == CR.GE &&
1740      cast<ConstantInt>(C)->getSExtValue() ==
1741      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1742    TrueBB = LHSR.first->BB;
1743  } else {
1744    TrueBB = new MachineBasicBlock(LLVMBB);
1745    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1746    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1747  }
1748
1749  // Similar to the optimization above, if the Value being switched on is
1750  // known to be less than the Constant CR.LT, and the current Case Value
1751  // is CR.LT - 1, then we can branch directly to the target block for
1752  // the current Case Value, rather than emitting a RHS leaf node for it.
1753  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1754      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1755      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1756    FalseBB = RHSR.first->BB;
1757  } else {
1758    FalseBB = new MachineBasicBlock(LLVMBB);
1759    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1760    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1761  }
1762
1763  // Create a CaseBlock record representing a conditional branch to
1764  // the LHS node if the value being switched on SV is less than C.
1765  // Otherwise, branch to LHS.
1766  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1767                                 TrueBB, FalseBB, CR.CaseBB);
1768
1769  if (CR.CaseBB == CurMBB)
1770    visitSwitchCase(CB);
1771  else
1772    SwitchCases.push_back(CB);
1773
1774  return true;
1775}
1776
1777/// handleBitTestsSwitchCase - if current case range has few destination and
1778/// range span less, than machine word bitwidth, encode case range into series
1779/// of masks and emit bit tests with these masks.
1780bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1781                                                    CaseRecVector& WorkList,
1782                                                    Value* SV,
1783                                                    MachineBasicBlock* Default){
1784  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1785
1786  Case& FrontCase = *CR.Range.first;
1787  Case& BackCase  = *(CR.Range.second-1);
1788
1789  // Get the MachineFunction which holds the current MBB.  This is used when
1790  // inserting any additional MBBs necessary to represent the switch.
1791  MachineFunction *CurMF = CurMBB->getParent();
1792
1793  unsigned numCmps = 0;
1794  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1795       I!=E; ++I) {
1796    // Single case counts one, case range - two.
1797    if (I->Low == I->High)
1798      numCmps +=1;
1799    else
1800      numCmps +=2;
1801  }
1802
1803  // Count unique destinations
1804  SmallSet<MachineBasicBlock*, 4> Dests;
1805  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1806    Dests.insert(I->BB);
1807    if (Dests.size() > 3)
1808      // Don't bother the code below, if there are too much unique destinations
1809      return false;
1810  }
1811  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1812       << "Total number of comparisons: " << numCmps << "\n";
1813
1814  // Compute span of values.
1815  Constant* minValue = FrontCase.Low;
1816  Constant* maxValue = BackCase.High;
1817  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1818                   cast<ConstantInt>(minValue)->getSExtValue();
1819  DOUT << "Compare range: " << range << "\n"
1820       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1821       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1822
1823  if (range>=IntPtrBits ||
1824      (!(Dests.size() == 1 && numCmps >= 3) &&
1825       !(Dests.size() == 2 && numCmps >= 5) &&
1826       !(Dests.size() >= 3 && numCmps >= 6)))
1827    return false;
1828
1829  DOUT << "Emitting bit tests\n";
1830  int64_t lowBound = 0;
1831
1832  // Optimize the case where all the case values fit in a
1833  // word without having to subtract minValue. In this case,
1834  // we can optimize away the subtraction.
1835  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1836      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1837    range = cast<ConstantInt>(maxValue)->getSExtValue();
1838  } else {
1839    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1840  }
1841
1842  CaseBitsVector CasesBits;
1843  unsigned i, count = 0;
1844
1845  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1846    MachineBasicBlock* Dest = I->BB;
1847    for (i = 0; i < count; ++i)
1848      if (Dest == CasesBits[i].BB)
1849        break;
1850
1851    if (i == count) {
1852      assert((count < 3) && "Too much destinations to test!");
1853      CasesBits.push_back(CaseBits(0, Dest, 0));
1854      count++;
1855    }
1856
1857    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1858    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1859
1860    for (uint64_t j = lo; j <= hi; j++) {
1861      CasesBits[i].Mask |=  1ULL << j;
1862      CasesBits[i].Bits++;
1863    }
1864
1865  }
1866  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1867
1868  SelectionDAGISel::BitTestInfo BTC;
1869
1870  // Figure out which block is immediately after the current one.
1871  MachineFunction::iterator BBI = CR.CaseBB;
1872  ++BBI;
1873
1874  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1875
1876  DOUT << "Cases:\n";
1877  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1878    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1879         << ", BB: " << CasesBits[i].BB << "\n";
1880
1881    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1882    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1883    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1884                                                CaseBB,
1885                                                CasesBits[i].BB));
1886  }
1887
1888  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1889                                     -1U, (CR.CaseBB == CurMBB),
1890                                     CR.CaseBB, Default, BTC);
1891
1892  if (CR.CaseBB == CurMBB)
1893    visitBitTestHeader(BTB);
1894
1895  BitTestCases.push_back(BTB);
1896
1897  return true;
1898}
1899
1900
1901// Clusterify - Transform simple list of Cases into list of CaseRange's
1902unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1903                                          const SwitchInst& SI) {
1904  unsigned numCmps = 0;
1905
1906  // Start with "simple" cases
1907  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1908    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1909    Cases.push_back(Case(SI.getSuccessorValue(i),
1910                         SI.getSuccessorValue(i),
1911                         SMBB));
1912  }
1913  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1914
1915  // Merge case into clusters
1916  if (Cases.size()>=2)
1917    // Must recompute end() each iteration because it may be
1918    // invalidated by erase if we hold on to it
1919    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
1920      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1921      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1922      MachineBasicBlock* nextBB = J->BB;
1923      MachineBasicBlock* currentBB = I->BB;
1924
1925      // If the two neighboring cases go to the same destination, merge them
1926      // into a single case.
1927      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1928        I->High = J->High;
1929        J = Cases.erase(J);
1930      } else {
1931        I = J++;
1932      }
1933    }
1934
1935  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1936    if (I->Low != I->High)
1937      // A range counts double, since it requires two compares.
1938      ++numCmps;
1939  }
1940
1941  return numCmps;
1942}
1943
1944void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1945  // Figure out which block is immediately after the current one.
1946  MachineBasicBlock *NextBlock = 0;
1947  MachineFunction::iterator BBI = CurMBB;
1948
1949  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1950
1951  // If there is only the default destination, branch to it if it is not the
1952  // next basic block.  Otherwise, just fall through.
1953  if (SI.getNumOperands() == 2) {
1954    // Update machine-CFG edges.
1955
1956    // If this is not a fall-through branch, emit the branch.
1957    if (Default != NextBlock)
1958      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1959                              DAG.getBasicBlock(Default)));
1960
1961    CurMBB->addSuccessor(Default);
1962    return;
1963  }
1964
1965  // If there are any non-default case statements, create a vector of Cases
1966  // representing each one, and sort the vector so that we can efficiently
1967  // create a binary search tree from them.
1968  CaseVector Cases;
1969  unsigned numCmps = Clusterify(Cases, SI);
1970  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1971       << ". Total compares: " << numCmps << "\n";
1972
1973  // Get the Value to be switched on and default basic blocks, which will be
1974  // inserted into CaseBlock records, representing basic blocks in the binary
1975  // search tree.
1976  Value *SV = SI.getOperand(0);
1977
1978  // Push the initial CaseRec onto the worklist
1979  CaseRecVector WorkList;
1980  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1981
1982  while (!WorkList.empty()) {
1983    // Grab a record representing a case range to process off the worklist
1984    CaseRec CR = WorkList.back();
1985    WorkList.pop_back();
1986
1987    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1988      continue;
1989
1990    // If the range has few cases (two or less) emit a series of specific
1991    // tests.
1992    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1993      continue;
1994
1995    // If the switch has more than 5 blocks, and at least 40% dense, and the
1996    // target supports indirect branches, then emit a jump table rather than
1997    // lowering the switch to a binary tree of conditional branches.
1998    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1999      continue;
2000
2001    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2002    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2003    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2004  }
2005}
2006
2007
2008void SelectionDAGLowering::visitSub(User &I) {
2009  // -0.0 - X --> fneg
2010  const Type *Ty = I.getType();
2011  if (isa<VectorType>(Ty)) {
2012    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2013      const VectorType *DestTy = cast<VectorType>(I.getType());
2014      const Type *ElTy = DestTy->getElementType();
2015      if (ElTy->isFloatingPoint()) {
2016        unsigned VL = DestTy->getNumElements();
2017        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2018        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2019        if (CV == CNZ) {
2020          SDOperand Op2 = getValue(I.getOperand(1));
2021          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2022          return;
2023        }
2024      }
2025    }
2026  }
2027  if (Ty->isFloatingPoint()) {
2028    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2029      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2030        SDOperand Op2 = getValue(I.getOperand(1));
2031        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2032        return;
2033      }
2034  }
2035
2036  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2037}
2038
2039void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2040  SDOperand Op1 = getValue(I.getOperand(0));
2041  SDOperand Op2 = getValue(I.getOperand(1));
2042
2043  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2044}
2045
2046void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2047  SDOperand Op1 = getValue(I.getOperand(0));
2048  SDOperand Op2 = getValue(I.getOperand(1));
2049
2050  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2051      MVT::getSizeInBits(Op2.getValueType()))
2052    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2053  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2054    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2055
2056  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2057}
2058
2059void SelectionDAGLowering::visitICmp(User &I) {
2060  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2061  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2062    predicate = IC->getPredicate();
2063  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2064    predicate = ICmpInst::Predicate(IC->getPredicate());
2065  SDOperand Op1 = getValue(I.getOperand(0));
2066  SDOperand Op2 = getValue(I.getOperand(1));
2067  ISD::CondCode Opcode;
2068  switch (predicate) {
2069    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2070    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2071    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2072    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2073    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2074    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2075    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2076    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2077    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2078    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2079    default:
2080      assert(!"Invalid ICmp predicate value");
2081      Opcode = ISD::SETEQ;
2082      break;
2083  }
2084  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2085}
2086
2087void SelectionDAGLowering::visitFCmp(User &I) {
2088  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2089  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2090    predicate = FC->getPredicate();
2091  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2092    predicate = FCmpInst::Predicate(FC->getPredicate());
2093  SDOperand Op1 = getValue(I.getOperand(0));
2094  SDOperand Op2 = getValue(I.getOperand(1));
2095  ISD::CondCode Condition, FOC, FPC;
2096  switch (predicate) {
2097    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2098    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2099    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2100    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2101    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2102    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2103    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2104    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2105    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2106    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2107    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2108    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2109    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2110    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2111    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2112    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2113    default:
2114      assert(!"Invalid FCmp predicate value");
2115      FOC = FPC = ISD::SETFALSE;
2116      break;
2117  }
2118  if (FiniteOnlyFPMath())
2119    Condition = FOC;
2120  else
2121    Condition = FPC;
2122  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2123}
2124
2125void SelectionDAGLowering::visitSelect(User &I) {
2126  SDOperand Cond     = getValue(I.getOperand(0));
2127  SDOperand TrueVal  = getValue(I.getOperand(1));
2128  SDOperand FalseVal = getValue(I.getOperand(2));
2129  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2130                           TrueVal, FalseVal));
2131}
2132
2133
2134void SelectionDAGLowering::visitTrunc(User &I) {
2135  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2136  SDOperand N = getValue(I.getOperand(0));
2137  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2138  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2139}
2140
2141void SelectionDAGLowering::visitZExt(User &I) {
2142  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2143  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2144  SDOperand N = getValue(I.getOperand(0));
2145  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2146  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2147}
2148
2149void SelectionDAGLowering::visitSExt(User &I) {
2150  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2151  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2152  SDOperand N = getValue(I.getOperand(0));
2153  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2154  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2155}
2156
2157void SelectionDAGLowering::visitFPTrunc(User &I) {
2158  // FPTrunc is never a no-op cast, no need to check
2159  SDOperand N = getValue(I.getOperand(0));
2160  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2161  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2162}
2163
2164void SelectionDAGLowering::visitFPExt(User &I){
2165  // FPTrunc is never a no-op cast, no need to check
2166  SDOperand N = getValue(I.getOperand(0));
2167  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2168  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2169}
2170
2171void SelectionDAGLowering::visitFPToUI(User &I) {
2172  // FPToUI is never a no-op cast, no need to check
2173  SDOperand N = getValue(I.getOperand(0));
2174  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2175  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2176}
2177
2178void SelectionDAGLowering::visitFPToSI(User &I) {
2179  // FPToSI is never a no-op cast, no need to check
2180  SDOperand N = getValue(I.getOperand(0));
2181  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2182  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2183}
2184
2185void SelectionDAGLowering::visitUIToFP(User &I) {
2186  // UIToFP is never a no-op cast, no need to check
2187  SDOperand N = getValue(I.getOperand(0));
2188  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2189  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2190}
2191
2192void SelectionDAGLowering::visitSIToFP(User &I){
2193  // UIToFP is never a no-op cast, no need to check
2194  SDOperand N = getValue(I.getOperand(0));
2195  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2196  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2197}
2198
2199void SelectionDAGLowering::visitPtrToInt(User &I) {
2200  // What to do depends on the size of the integer and the size of the pointer.
2201  // We can either truncate, zero extend, or no-op, accordingly.
2202  SDOperand N = getValue(I.getOperand(0));
2203  MVT::ValueType SrcVT = N.getValueType();
2204  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2205  SDOperand Result;
2206  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2207    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2208  else
2209    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2210    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2211  setValue(&I, Result);
2212}
2213
2214void SelectionDAGLowering::visitIntToPtr(User &I) {
2215  // What to do depends on the size of the integer and the size of the pointer.
2216  // We can either truncate, zero extend, or no-op, accordingly.
2217  SDOperand N = getValue(I.getOperand(0));
2218  MVT::ValueType SrcVT = N.getValueType();
2219  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2220  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2221    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2222  else
2223    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2224    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2225}
2226
2227void SelectionDAGLowering::visitBitCast(User &I) {
2228  SDOperand N = getValue(I.getOperand(0));
2229  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2230
2231  // BitCast assures us that source and destination are the same size so this
2232  // is either a BIT_CONVERT or a no-op.
2233  if (DestVT != N.getValueType())
2234    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2235  else
2236    setValue(&I, N); // noop cast.
2237}
2238
2239void SelectionDAGLowering::visitInsertElement(User &I) {
2240  SDOperand InVec = getValue(I.getOperand(0));
2241  SDOperand InVal = getValue(I.getOperand(1));
2242  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2243                                getValue(I.getOperand(2)));
2244
2245  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2246                           TLI.getValueType(I.getType()),
2247                           InVec, InVal, InIdx));
2248}
2249
2250void SelectionDAGLowering::visitExtractElement(User &I) {
2251  SDOperand InVec = getValue(I.getOperand(0));
2252  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2253                                getValue(I.getOperand(1)));
2254  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2255                           TLI.getValueType(I.getType()), InVec, InIdx));
2256}
2257
2258void SelectionDAGLowering::visitShuffleVector(User &I) {
2259  SDOperand V1   = getValue(I.getOperand(0));
2260  SDOperand V2   = getValue(I.getOperand(1));
2261  SDOperand Mask = getValue(I.getOperand(2));
2262
2263  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2264                           TLI.getValueType(I.getType()),
2265                           V1, V2, Mask));
2266}
2267
2268
2269void SelectionDAGLowering::visitGetElementPtr(User &I) {
2270  SDOperand N = getValue(I.getOperand(0));
2271  const Type *Ty = I.getOperand(0)->getType();
2272
2273  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2274       OI != E; ++OI) {
2275    Value *Idx = *OI;
2276    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2277      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2278      if (Field) {
2279        // N = N + Offset
2280        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2281        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2282                        getIntPtrConstant(Offset));
2283      }
2284      Ty = StTy->getElementType(Field);
2285    } else {
2286      Ty = cast<SequentialType>(Ty)->getElementType();
2287
2288      // If this is a constant subscript, handle it quickly.
2289      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2290        if (CI->getZExtValue() == 0) continue;
2291        uint64_t Offs =
2292            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2293        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2294        continue;
2295      }
2296
2297      // N = N + Idx * ElementSize;
2298      uint64_t ElementSize = TD->getABITypeSize(Ty);
2299      SDOperand IdxN = getValue(Idx);
2300
2301      // If the index is smaller or larger than intptr_t, truncate or extend
2302      // it.
2303      if (IdxN.getValueType() < N.getValueType()) {
2304        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2305      } else if (IdxN.getValueType() > N.getValueType())
2306        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2307
2308      // If this is a multiply by a power of two, turn it into a shl
2309      // immediately.  This is a very common case.
2310      if (isPowerOf2_64(ElementSize)) {
2311        unsigned Amt = Log2_64(ElementSize);
2312        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2313                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2314        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2315        continue;
2316      }
2317
2318      SDOperand Scale = getIntPtrConstant(ElementSize);
2319      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2320      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2321    }
2322  }
2323  setValue(&I, N);
2324}
2325
2326void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2327  // If this is a fixed sized alloca in the entry block of the function,
2328  // allocate it statically on the stack.
2329  if (FuncInfo.StaticAllocaMap.count(&I))
2330    return;   // getValue will auto-populate this.
2331
2332  const Type *Ty = I.getAllocatedType();
2333  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2334  unsigned Align =
2335    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2336             I.getAlignment());
2337
2338  SDOperand AllocSize = getValue(I.getArraySize());
2339  MVT::ValueType IntPtr = TLI.getPointerTy();
2340  if (IntPtr < AllocSize.getValueType())
2341    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2342  else if (IntPtr > AllocSize.getValueType())
2343    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2344
2345  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2346                          getIntPtrConstant(TySize));
2347
2348  // Handle alignment.  If the requested alignment is less than or equal to
2349  // the stack alignment, ignore it.  If the size is greater than or equal to
2350  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2351  unsigned StackAlign =
2352    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2353  if (Align <= StackAlign)
2354    Align = 0;
2355
2356  // Round the size of the allocation up to the stack alignment size
2357  // by add SA-1 to the size.
2358  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2359                          getIntPtrConstant(StackAlign-1));
2360  // Mask out the low bits for alignment purposes.
2361  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2362                          getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2363
2364  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2365  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2366                                                    MVT::Other);
2367  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2368  setValue(&I, DSA);
2369  DAG.setRoot(DSA.getValue(1));
2370
2371  // Inform the Frame Information that we have just allocated a variable-sized
2372  // object.
2373  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2374}
2375
2376void SelectionDAGLowering::visitLoad(LoadInst &I) {
2377  SDOperand Ptr = getValue(I.getOperand(0));
2378
2379  SDOperand Root;
2380  if (I.isVolatile())
2381    Root = getRoot();
2382  else {
2383    // Do not serialize non-volatile loads against each other.
2384    Root = DAG.getRoot();
2385  }
2386
2387  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2388                           Root, I.isVolatile(), I.getAlignment()));
2389}
2390
2391SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2392                                            const Value *SV, SDOperand Root,
2393                                            bool isVolatile,
2394                                            unsigned Alignment) {
2395  SDOperand L =
2396    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2397                isVolatile, Alignment);
2398
2399  if (isVolatile)
2400    DAG.setRoot(L.getValue(1));
2401  else
2402    PendingLoads.push_back(L.getValue(1));
2403
2404  return L;
2405}
2406
2407
2408void SelectionDAGLowering::visitStore(StoreInst &I) {
2409  Value *SrcV = I.getOperand(0);
2410  SDOperand Src = getValue(SrcV);
2411  SDOperand Ptr = getValue(I.getOperand(1));
2412  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2413                           I.isVolatile(), I.getAlignment()));
2414}
2415
2416/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2417/// node.
2418void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2419                                                unsigned Intrinsic) {
2420  bool HasChain = !I.doesNotAccessMemory();
2421  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2422
2423  // Build the operand list.
2424  SmallVector<SDOperand, 8> Ops;
2425  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2426    if (OnlyLoad) {
2427      // We don't need to serialize loads against other loads.
2428      Ops.push_back(DAG.getRoot());
2429    } else {
2430      Ops.push_back(getRoot());
2431    }
2432  }
2433
2434  // Add the intrinsic ID as an integer operand.
2435  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2436
2437  // Add all operands of the call to the operand list.
2438  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2439    SDOperand Op = getValue(I.getOperand(i));
2440    assert(TLI.isTypeLegal(Op.getValueType()) &&
2441           "Intrinsic uses a non-legal type?");
2442    Ops.push_back(Op);
2443  }
2444
2445  std::vector<MVT::ValueType> VTs;
2446  if (I.getType() != Type::VoidTy) {
2447    MVT::ValueType VT = TLI.getValueType(I.getType());
2448    if (MVT::isVector(VT)) {
2449      const VectorType *DestTy = cast<VectorType>(I.getType());
2450      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2451
2452      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2453      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2454    }
2455
2456    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2457    VTs.push_back(VT);
2458  }
2459  if (HasChain)
2460    VTs.push_back(MVT::Other);
2461
2462  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2463
2464  // Create the node.
2465  SDOperand Result;
2466  if (!HasChain)
2467    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2468                         &Ops[0], Ops.size());
2469  else if (I.getType() != Type::VoidTy)
2470    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2471                         &Ops[0], Ops.size());
2472  else
2473    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2474                         &Ops[0], Ops.size());
2475
2476  if (HasChain) {
2477    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2478    if (OnlyLoad)
2479      PendingLoads.push_back(Chain);
2480    else
2481      DAG.setRoot(Chain);
2482  }
2483  if (I.getType() != Type::VoidTy) {
2484    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2485      MVT::ValueType VT = TLI.getValueType(PTy);
2486      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2487    }
2488    setValue(&I, Result);
2489  }
2490}
2491
2492/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2493static GlobalVariable *ExtractTypeInfo (Value *V) {
2494  V = IntrinsicInst::StripPointerCasts(V);
2495  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2496  assert (GV || isa<ConstantPointerNull>(V) &&
2497          "TypeInfo must be a global variable or NULL");
2498  return GV;
2499}
2500
2501/// addCatchInfo - Extract the personality and type infos from an eh.selector
2502/// call, and add them to the specified machine basic block.
2503static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2504                         MachineBasicBlock *MBB) {
2505  // Inform the MachineModuleInfo of the personality for this landing pad.
2506  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2507  assert(CE->getOpcode() == Instruction::BitCast &&
2508         isa<Function>(CE->getOperand(0)) &&
2509         "Personality should be a function");
2510  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2511
2512  // Gather all the type infos for this landing pad and pass them along to
2513  // MachineModuleInfo.
2514  std::vector<GlobalVariable *> TyInfo;
2515  unsigned N = I.getNumOperands();
2516
2517  for (unsigned i = N - 1; i > 2; --i) {
2518    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2519      unsigned FilterLength = CI->getZExtValue();
2520      unsigned FirstCatch = i + FilterLength + !FilterLength;
2521      assert (FirstCatch <= N && "Invalid filter length");
2522
2523      if (FirstCatch < N) {
2524        TyInfo.reserve(N - FirstCatch);
2525        for (unsigned j = FirstCatch; j < N; ++j)
2526          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2527        MMI->addCatchTypeInfo(MBB, TyInfo);
2528        TyInfo.clear();
2529      }
2530
2531      if (!FilterLength) {
2532        // Cleanup.
2533        MMI->addCleanup(MBB);
2534      } else {
2535        // Filter.
2536        TyInfo.reserve(FilterLength - 1);
2537        for (unsigned j = i + 1; j < FirstCatch; ++j)
2538          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2539        MMI->addFilterTypeInfo(MBB, TyInfo);
2540        TyInfo.clear();
2541      }
2542
2543      N = i;
2544    }
2545  }
2546
2547  if (N > 3) {
2548    TyInfo.reserve(N - 3);
2549    for (unsigned j = 3; j < N; ++j)
2550      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2551    MMI->addCatchTypeInfo(MBB, TyInfo);
2552  }
2553}
2554
2555/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2556/// we want to emit this as a call to a named external function, return the name
2557/// otherwise lower it and return null.
2558const char *
2559SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2560  switch (Intrinsic) {
2561  default:
2562    // By default, turn this into a target intrinsic node.
2563    visitTargetIntrinsic(I, Intrinsic);
2564    return 0;
2565  case Intrinsic::vastart:  visitVAStart(I); return 0;
2566  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2567  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2568  case Intrinsic::returnaddress:
2569    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2570                             getValue(I.getOperand(1))));
2571    return 0;
2572  case Intrinsic::frameaddress:
2573    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2574                             getValue(I.getOperand(1))));
2575    return 0;
2576  case Intrinsic::setjmp:
2577    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2578    break;
2579  case Intrinsic::longjmp:
2580    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2581    break;
2582  case Intrinsic::memcpy_i32:
2583  case Intrinsic::memcpy_i64:
2584    visitMemIntrinsic(I, ISD::MEMCPY);
2585    return 0;
2586  case Intrinsic::memset_i32:
2587  case Intrinsic::memset_i64:
2588    visitMemIntrinsic(I, ISD::MEMSET);
2589    return 0;
2590  case Intrinsic::memmove_i32:
2591  case Intrinsic::memmove_i64:
2592    visitMemIntrinsic(I, ISD::MEMMOVE);
2593    return 0;
2594
2595  case Intrinsic::dbg_stoppoint: {
2596    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2597    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2598    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2599      SDOperand Ops[5];
2600
2601      Ops[0] = getRoot();
2602      Ops[1] = getValue(SPI.getLineValue());
2603      Ops[2] = getValue(SPI.getColumnValue());
2604
2605      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2606      assert(DD && "Not a debug information descriptor");
2607      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2608
2609      Ops[3] = DAG.getString(CompileUnit->getFileName());
2610      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2611
2612      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2613    }
2614
2615    return 0;
2616  }
2617  case Intrinsic::dbg_region_start: {
2618    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2619    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2620    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2621      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2622      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2623                              DAG.getConstant(LabelID, MVT::i32)));
2624    }
2625
2626    return 0;
2627  }
2628  case Intrinsic::dbg_region_end: {
2629    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2630    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2631    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2632      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2633      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2634                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2635    }
2636
2637    return 0;
2638  }
2639  case Intrinsic::dbg_func_start: {
2640    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2641    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2642    if (MMI && FSI.getSubprogram() &&
2643        MMI->Verify(FSI.getSubprogram())) {
2644      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2645      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2646                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2647    }
2648
2649    return 0;
2650  }
2651  case Intrinsic::dbg_declare: {
2652    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2653    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2654    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2655      SDOperand AddressOp  = getValue(DI.getAddress());
2656      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2657        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2658    }
2659
2660    return 0;
2661  }
2662
2663  case Intrinsic::eh_exception: {
2664    if (ExceptionHandling) {
2665      if (!CurMBB->isLandingPad()) {
2666        // FIXME: Mark exception register as live in.  Hack for PR1508.
2667        unsigned Reg = TLI.getExceptionAddressRegister();
2668        if (Reg) CurMBB->addLiveIn(Reg);
2669      }
2670      // Insert the EXCEPTIONADDR instruction.
2671      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2672      SDOperand Ops[1];
2673      Ops[0] = DAG.getRoot();
2674      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2675      setValue(&I, Op);
2676      DAG.setRoot(Op.getValue(1));
2677    } else {
2678      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2679    }
2680    return 0;
2681  }
2682
2683  case Intrinsic::eh_selector_i32:
2684  case Intrinsic::eh_selector_i64: {
2685    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2686    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2687                         MVT::i32 : MVT::i64);
2688
2689    if (ExceptionHandling && MMI) {
2690      if (CurMBB->isLandingPad())
2691        addCatchInfo(I, MMI, CurMBB);
2692      else {
2693#ifndef NDEBUG
2694        FuncInfo.CatchInfoLost.insert(&I);
2695#endif
2696        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
2697        unsigned Reg = TLI.getExceptionSelectorRegister();
2698        if (Reg) CurMBB->addLiveIn(Reg);
2699      }
2700
2701      // Insert the EHSELECTION instruction.
2702      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2703      SDOperand Ops[2];
2704      Ops[0] = getValue(I.getOperand(1));
2705      Ops[1] = getRoot();
2706      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2707      setValue(&I, Op);
2708      DAG.setRoot(Op.getValue(1));
2709    } else {
2710      setValue(&I, DAG.getConstant(0, VT));
2711    }
2712
2713    return 0;
2714  }
2715
2716  case Intrinsic::eh_typeid_for_i32:
2717  case Intrinsic::eh_typeid_for_i64: {
2718    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2719    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2720                         MVT::i32 : MVT::i64);
2721
2722    if (MMI) {
2723      // Find the type id for the given typeinfo.
2724      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2725
2726      unsigned TypeID = MMI->getTypeIDFor(GV);
2727      setValue(&I, DAG.getConstant(TypeID, VT));
2728    } else {
2729      // Return something different to eh_selector.
2730      setValue(&I, DAG.getConstant(1, VT));
2731    }
2732
2733    return 0;
2734  }
2735
2736  case Intrinsic::eh_return: {
2737    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2738
2739    if (MMI && ExceptionHandling) {
2740      MMI->setCallsEHReturn(true);
2741      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2742                              MVT::Other,
2743                              getRoot(),
2744                              getValue(I.getOperand(1)),
2745                              getValue(I.getOperand(2))));
2746    } else {
2747      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2748    }
2749
2750    return 0;
2751  }
2752
2753   case Intrinsic::eh_unwind_init: {
2754     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2755       MMI->setCallsUnwindInit(true);
2756     }
2757
2758     return 0;
2759   }
2760
2761   case Intrinsic::eh_dwarf_cfa: {
2762     if (ExceptionHandling) {
2763       MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
2764       SDOperand CfaArg;
2765       if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2766         CfaArg = DAG.getNode(ISD::TRUNCATE,
2767                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2768       else
2769         CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2770                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2771
2772       SDOperand Offset = DAG.getNode(ISD::ADD,
2773                                      TLI.getPointerTy(),
2774                                      DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
2775                                                  TLI.getPointerTy()),
2776                                      CfaArg);
2777       setValue(&I, DAG.getNode(ISD::ADD,
2778                                TLI.getPointerTy(),
2779                                DAG.getNode(ISD::FRAMEADDR,
2780                                            TLI.getPointerTy(),
2781                                            DAG.getConstant(0,
2782                                                            TLI.getPointerTy())),
2783                                Offset));
2784     } else {
2785       setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2786     }
2787
2788     return 0;
2789  }
2790
2791  case Intrinsic::sqrt:
2792    setValue(&I, DAG.getNode(ISD::FSQRT,
2793                             getValue(I.getOperand(1)).getValueType(),
2794                             getValue(I.getOperand(1))));
2795    return 0;
2796  case Intrinsic::powi:
2797    setValue(&I, DAG.getNode(ISD::FPOWI,
2798                             getValue(I.getOperand(1)).getValueType(),
2799                             getValue(I.getOperand(1)),
2800                             getValue(I.getOperand(2))));
2801    return 0;
2802  case Intrinsic::sin:
2803    setValue(&I, DAG.getNode(ISD::FSIN,
2804                             getValue(I.getOperand(1)).getValueType(),
2805                             getValue(I.getOperand(1))));
2806    return 0;
2807  case Intrinsic::cos:
2808    setValue(&I, DAG.getNode(ISD::FCOS,
2809                             getValue(I.getOperand(1)).getValueType(),
2810                             getValue(I.getOperand(1))));
2811    return 0;
2812  case Intrinsic::pow:
2813    setValue(&I, DAG.getNode(ISD::FPOW,
2814                             getValue(I.getOperand(1)).getValueType(),
2815                             getValue(I.getOperand(1)),
2816                             getValue(I.getOperand(2))));
2817    return 0;
2818  case Intrinsic::pcmarker: {
2819    SDOperand Tmp = getValue(I.getOperand(1));
2820    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2821    return 0;
2822  }
2823  case Intrinsic::readcyclecounter: {
2824    SDOperand Op = getRoot();
2825    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2826                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2827                                &Op, 1);
2828    setValue(&I, Tmp);
2829    DAG.setRoot(Tmp.getValue(1));
2830    return 0;
2831  }
2832  case Intrinsic::part_select: {
2833    // Currently not implemented: just abort
2834    assert(0 && "part_select intrinsic not implemented");
2835    abort();
2836  }
2837  case Intrinsic::part_set: {
2838    // Currently not implemented: just abort
2839    assert(0 && "part_set intrinsic not implemented");
2840    abort();
2841  }
2842  case Intrinsic::bswap:
2843    setValue(&I, DAG.getNode(ISD::BSWAP,
2844                             getValue(I.getOperand(1)).getValueType(),
2845                             getValue(I.getOperand(1))));
2846    return 0;
2847  case Intrinsic::cttz: {
2848    SDOperand Arg = getValue(I.getOperand(1));
2849    MVT::ValueType Ty = Arg.getValueType();
2850    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2851    setValue(&I, result);
2852    return 0;
2853  }
2854  case Intrinsic::ctlz: {
2855    SDOperand Arg = getValue(I.getOperand(1));
2856    MVT::ValueType Ty = Arg.getValueType();
2857    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2858    setValue(&I, result);
2859    return 0;
2860  }
2861  case Intrinsic::ctpop: {
2862    SDOperand Arg = getValue(I.getOperand(1));
2863    MVT::ValueType Ty = Arg.getValueType();
2864    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2865    setValue(&I, result);
2866    return 0;
2867  }
2868  case Intrinsic::stacksave: {
2869    SDOperand Op = getRoot();
2870    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2871              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2872    setValue(&I, Tmp);
2873    DAG.setRoot(Tmp.getValue(1));
2874    return 0;
2875  }
2876  case Intrinsic::stackrestore: {
2877    SDOperand Tmp = getValue(I.getOperand(1));
2878    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2879    return 0;
2880  }
2881  case Intrinsic::prefetch:
2882    // FIXME: Currently discarding prefetches.
2883    return 0;
2884
2885  case Intrinsic::var_annotation:
2886    // Discard annotate attributes
2887    return 0;
2888
2889  case Intrinsic::init_trampoline: {
2890    const Function *F =
2891      cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
2892
2893    SDOperand Ops[6];
2894    Ops[0] = getRoot();
2895    Ops[1] = getValue(I.getOperand(1));
2896    Ops[2] = getValue(I.getOperand(2));
2897    Ops[3] = getValue(I.getOperand(3));
2898    Ops[4] = DAG.getSrcValue(I.getOperand(1));
2899    Ops[5] = DAG.getSrcValue(F);
2900
2901    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
2902                                DAG.getNodeValueTypes(TLI.getPointerTy(),
2903                                                      MVT::Other), 2,
2904                                Ops, 6);
2905
2906    setValue(&I, Tmp);
2907    DAG.setRoot(Tmp.getValue(1));
2908    return 0;
2909  }
2910  case Intrinsic::flt_rounds: {
2911    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS, MVT::i32));
2912    return 0;
2913  }
2914  }
2915}
2916
2917
2918void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
2919                                       bool IsTailCall,
2920                                       MachineBasicBlock *LandingPad) {
2921  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2922  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2923  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2924  unsigned BeginLabel = 0, EndLabel = 0;
2925
2926  TargetLowering::ArgListTy Args;
2927  TargetLowering::ArgListEntry Entry;
2928  Args.reserve(CS.arg_size());
2929  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2930       i != e; ++i) {
2931    SDOperand ArgNode = getValue(*i);
2932    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
2933
2934    unsigned attrInd = i - CS.arg_begin() + 1;
2935    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
2936    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
2937    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
2938    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
2939    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
2940    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
2941    Args.push_back(Entry);
2942  }
2943
2944  bool MarkTryRange = LandingPad ||
2945    // C++ requires special handling of 'nounwind' calls.
2946    (CS.doesNotThrow());
2947
2948  if (MarkTryRange && ExceptionHandling && MMI) {
2949    // Insert a label before the invoke call to mark the try range.  This can be
2950    // used to detect deletion of the invoke via the MachineModuleInfo.
2951    BeginLabel = MMI->NextLabelID();
2952    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2953                            DAG.getConstant(BeginLabel, MVT::i32)));
2954  }
2955
2956  std::pair<SDOperand,SDOperand> Result =
2957    TLI.LowerCallTo(getRoot(), CS.getType(),
2958                    CS.paramHasAttr(0, ParamAttr::SExt),
2959                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
2960                    Callee, Args, DAG);
2961  if (CS.getType() != Type::VoidTy)
2962    setValue(CS.getInstruction(), Result.first);
2963  DAG.setRoot(Result.second);
2964
2965  if (MarkTryRange && ExceptionHandling && MMI) {
2966    // Insert a label at the end of the invoke call to mark the try range.  This
2967    // can be used to detect deletion of the invoke via the MachineModuleInfo.
2968    EndLabel = MMI->NextLabelID();
2969    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2970                            DAG.getConstant(EndLabel, MVT::i32)));
2971
2972    // Inform MachineModuleInfo of range.
2973    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2974  }
2975}
2976
2977
2978void SelectionDAGLowering::visitCall(CallInst &I) {
2979  const char *RenameFn = 0;
2980  if (Function *F = I.getCalledFunction()) {
2981    if (F->isDeclaration()) {
2982      if (unsigned IID = F->getIntrinsicID()) {
2983        RenameFn = visitIntrinsicCall(I, IID);
2984        if (!RenameFn)
2985          return;
2986      }
2987    }
2988
2989    // Check for well-known libc/libm calls.  If the function is internal, it
2990    // can't be a library call.
2991    unsigned NameLen = F->getNameLen();
2992    if (!F->hasInternalLinkage() && NameLen) {
2993      const char *NameStr = F->getNameStart();
2994      if (NameStr[0] == 'c' &&
2995          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
2996           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
2997        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2998            I.getOperand(1)->getType()->isFloatingPoint() &&
2999            I.getType() == I.getOperand(1)->getType() &&
3000            I.getType() == I.getOperand(2)->getType()) {
3001          SDOperand LHS = getValue(I.getOperand(1));
3002          SDOperand RHS = getValue(I.getOperand(2));
3003          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3004                                   LHS, RHS));
3005          return;
3006        }
3007      } else if (NameStr[0] == 'f' &&
3008                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3009                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3010                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3011        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3012            I.getOperand(1)->getType()->isFloatingPoint() &&
3013            I.getType() == I.getOperand(1)->getType()) {
3014          SDOperand Tmp = getValue(I.getOperand(1));
3015          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3016          return;
3017        }
3018      } else if (NameStr[0] == 's' &&
3019                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3020                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3021                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3022        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3023            I.getOperand(1)->getType()->isFloatingPoint() &&
3024            I.getType() == I.getOperand(1)->getType()) {
3025          SDOperand Tmp = getValue(I.getOperand(1));
3026          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3027          return;
3028        }
3029      } else if (NameStr[0] == 'c' &&
3030                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3031                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3032                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3033        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3034            I.getOperand(1)->getType()->isFloatingPoint() &&
3035            I.getType() == I.getOperand(1)->getType()) {
3036          SDOperand Tmp = getValue(I.getOperand(1));
3037          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3038          return;
3039        }
3040      }
3041    }
3042  } else if (isa<InlineAsm>(I.getOperand(0))) {
3043    visitInlineAsm(&I);
3044    return;
3045  }
3046
3047  SDOperand Callee;
3048  if (!RenameFn)
3049    Callee = getValue(I.getOperand(0));
3050  else
3051    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3052
3053  LowerCallTo(&I, Callee, I.isTailCall());
3054}
3055
3056
3057/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3058/// this value and returns the result as a ValueVT value.  This uses
3059/// Chain/Flag as the input and updates them for the output Chain/Flag.
3060/// If the Flag pointer is NULL, no flag is used.
3061SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3062                                        SDOperand &Chain, SDOperand *Flag)const{
3063  // Copy the legal parts from the registers.
3064  unsigned NumParts = Regs.size();
3065  SmallVector<SDOperand, 8> Parts(NumParts);
3066  for (unsigned i = 0; i != NumParts; ++i) {
3067    SDOperand Part = Flag ?
3068                     DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3069                     DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3070    Chain = Part.getValue(1);
3071    if (Flag)
3072      *Flag = Part.getValue(2);
3073    Parts[i] = Part;
3074  }
3075
3076  // Assemble the legal parts into the final value.
3077  return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3078}
3079
3080/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3081/// specified value into the registers specified by this object.  This uses
3082/// Chain/Flag as the input and updates them for the output Chain/Flag.
3083/// If the Flag pointer is NULL, no flag is used.
3084void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3085                                 SDOperand &Chain, SDOperand *Flag) const {
3086  // Get the list of the values's legal parts.
3087  unsigned NumParts = Regs.size();
3088  SmallVector<SDOperand, 8> Parts(NumParts);
3089  getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3090
3091  // Copy the parts into the registers.
3092  for (unsigned i = 0; i != NumParts; ++i) {
3093    SDOperand Part = Flag ?
3094                     DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3095                     DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3096    Chain = Part.getValue(0);
3097    if (Flag)
3098      *Flag = Part.getValue(1);
3099  }
3100}
3101
3102/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3103/// operand list.  This adds the code marker and includes the number of
3104/// values added into it.
3105void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3106                                        std::vector<SDOperand> &Ops) const {
3107  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3108  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3109  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3110    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3111}
3112
3113/// isAllocatableRegister - If the specified register is safe to allocate,
3114/// i.e. it isn't a stack pointer or some other special register, return the
3115/// register class for the register.  Otherwise, return null.
3116static const TargetRegisterClass *
3117isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3118                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
3119  MVT::ValueType FoundVT = MVT::Other;
3120  const TargetRegisterClass *FoundRC = 0;
3121  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3122       E = MRI->regclass_end(); RCI != E; ++RCI) {
3123    MVT::ValueType ThisVT = MVT::Other;
3124
3125    const TargetRegisterClass *RC = *RCI;
3126    // If none of the the value types for this register class are valid, we
3127    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3128    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3129         I != E; ++I) {
3130      if (TLI.isTypeLegal(*I)) {
3131        // If we have already found this register in a different register class,
3132        // choose the one with the largest VT specified.  For example, on
3133        // PowerPC, we favor f64 register classes over f32.
3134        if (FoundVT == MVT::Other ||
3135            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3136          ThisVT = *I;
3137          break;
3138        }
3139      }
3140    }
3141
3142    if (ThisVT == MVT::Other) continue;
3143
3144    // NOTE: This isn't ideal.  In particular, this might allocate the
3145    // frame pointer in functions that need it (due to them not being taken
3146    // out of allocation, because a variable sized allocation hasn't been seen
3147    // yet).  This is a slight code pessimization, but should still work.
3148    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3149         E = RC->allocation_order_end(MF); I != E; ++I)
3150      if (*I == Reg) {
3151        // We found a matching register class.  Keep looking at others in case
3152        // we find one with larger registers that this physreg is also in.
3153        FoundRC = RC;
3154        FoundVT = ThisVT;
3155        break;
3156      }
3157  }
3158  return FoundRC;
3159}
3160
3161
3162namespace {
3163/// AsmOperandInfo - This contains information for each constraint that we are
3164/// lowering.
3165struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3166  /// ConstraintCode - This contains the actual string for the code, like "m".
3167  std::string ConstraintCode;
3168
3169  /// ConstraintType - Information about the constraint code, e.g. Register,
3170  /// RegisterClass, Memory, Other, Unknown.
3171  TargetLowering::ConstraintType ConstraintType;
3172
3173  /// CallOperand/CallOperandval - If this is the result output operand or a
3174  /// clobber, this is null, otherwise it is the incoming operand to the
3175  /// CallInst.  This gets modified as the asm is processed.
3176  SDOperand CallOperand;
3177  Value *CallOperandVal;
3178
3179  /// ConstraintVT - The ValueType for the operand value.
3180  MVT::ValueType ConstraintVT;
3181
3182  /// AssignedRegs - If this is a register or register class operand, this
3183  /// contains the set of register corresponding to the operand.
3184  RegsForValue AssignedRegs;
3185
3186  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3187    : InlineAsm::ConstraintInfo(info),
3188      ConstraintType(TargetLowering::C_Unknown),
3189      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3190  }
3191
3192  void ComputeConstraintToUse(const TargetLowering &TLI);
3193
3194  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3195  /// busy in OutputRegs/InputRegs.
3196  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3197                         std::set<unsigned> &OutputRegs,
3198                         std::set<unsigned> &InputRegs) const {
3199     if (isOutReg)
3200       OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3201     if (isInReg)
3202       InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3203   }
3204};
3205} // end anon namespace.
3206
3207/// getConstraintGenerality - Return an integer indicating how general CT is.
3208static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3209  switch (CT) {
3210    default: assert(0 && "Unknown constraint type!");
3211    case TargetLowering::C_Other:
3212    case TargetLowering::C_Unknown:
3213      return 0;
3214    case TargetLowering::C_Register:
3215      return 1;
3216    case TargetLowering::C_RegisterClass:
3217      return 2;
3218    case TargetLowering::C_Memory:
3219      return 3;
3220  }
3221}
3222
3223void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3224  assert(!Codes.empty() && "Must have at least one constraint");
3225
3226  std::string *Current = &Codes[0];
3227  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3228  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3229    ConstraintCode = *Current;
3230    ConstraintType = CurType;
3231    return;
3232  }
3233
3234  unsigned CurGenerality = getConstraintGenerality(CurType);
3235
3236  // If we have multiple constraints, try to pick the most general one ahead
3237  // of time.  This isn't a wonderful solution, but handles common cases.
3238  for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3239    TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3240    unsigned ThisGenerality = getConstraintGenerality(ThisType);
3241    if (ThisGenerality > CurGenerality) {
3242      // This constraint letter is more general than the previous one,
3243      // use it.
3244      CurType = ThisType;
3245      Current = &Codes[j];
3246      CurGenerality = ThisGenerality;
3247    }
3248  }
3249
3250  ConstraintCode = *Current;
3251  ConstraintType = CurType;
3252}
3253
3254
3255void SelectionDAGLowering::
3256GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3257                     std::set<unsigned> &OutputRegs,
3258                     std::set<unsigned> &InputRegs) {
3259  // Compute whether this value requires an input register, an output register,
3260  // or both.
3261  bool isOutReg = false;
3262  bool isInReg = false;
3263  switch (OpInfo.Type) {
3264  case InlineAsm::isOutput:
3265    isOutReg = true;
3266
3267    // If this is an early-clobber output, or if there is an input
3268    // constraint that matches this, we need to reserve the input register
3269    // so no other inputs allocate to it.
3270    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3271    break;
3272  case InlineAsm::isInput:
3273    isInReg = true;
3274    isOutReg = false;
3275    break;
3276  case InlineAsm::isClobber:
3277    isOutReg = true;
3278    isInReg = true;
3279    break;
3280  }
3281
3282
3283  MachineFunction &MF = DAG.getMachineFunction();
3284  std::vector<unsigned> Regs;
3285
3286  // If this is a constraint for a single physreg, or a constraint for a
3287  // register class, find it.
3288  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3289    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3290                                     OpInfo.ConstraintVT);
3291
3292  unsigned NumRegs = 1;
3293  if (OpInfo.ConstraintVT != MVT::Other)
3294    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3295  MVT::ValueType RegVT;
3296  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3297
3298
3299  // If this is a constraint for a specific physical register, like {r17},
3300  // assign it now.
3301  if (PhysReg.first) {
3302    if (OpInfo.ConstraintVT == MVT::Other)
3303      ValueVT = *PhysReg.second->vt_begin();
3304
3305    // Get the actual register value type.  This is important, because the user
3306    // may have asked for (e.g.) the AX register in i32 type.  We need to
3307    // remember that AX is actually i16 to get the right extension.
3308    RegVT = *PhysReg.second->vt_begin();
3309
3310    // This is a explicit reference to a physical register.
3311    Regs.push_back(PhysReg.first);
3312
3313    // If this is an expanded reference, add the rest of the regs to Regs.
3314    if (NumRegs != 1) {
3315      TargetRegisterClass::iterator I = PhysReg.second->begin();
3316      TargetRegisterClass::iterator E = PhysReg.second->end();
3317      for (; *I != PhysReg.first; ++I)
3318        assert(I != E && "Didn't find reg!");
3319
3320      // Already added the first reg.
3321      --NumRegs; ++I;
3322      for (; NumRegs; --NumRegs, ++I) {
3323        assert(I != E && "Ran out of registers to allocate!");
3324        Regs.push_back(*I);
3325      }
3326    }
3327    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3328    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3329    return;
3330  }
3331
3332  // Otherwise, if this was a reference to an LLVM register class, create vregs
3333  // for this reference.
3334  std::vector<unsigned> RegClassRegs;
3335  const TargetRegisterClass *RC = PhysReg.second;
3336  if (RC) {
3337    // If this is an early clobber or tied register, our regalloc doesn't know
3338    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3339    // and let the regalloc do the right thing.
3340    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3341        // If there is some other early clobber and this is an input register,
3342        // then we are forced to pre-allocate the input reg so it doesn't
3343        // conflict with the earlyclobber.
3344        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3345      RegVT = *PhysReg.second->vt_begin();
3346
3347      if (OpInfo.ConstraintVT == MVT::Other)
3348        ValueVT = RegVT;
3349
3350      // Create the appropriate number of virtual registers.
3351      SSARegMap *RegMap = MF.getSSARegMap();
3352      for (; NumRegs; --NumRegs)
3353        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3354
3355      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3356      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3357      return;
3358    }
3359
3360    // Otherwise, we can't allocate it.  Let the code below figure out how to
3361    // maintain these constraints.
3362    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3363
3364  } else {
3365    // This is a reference to a register class that doesn't directly correspond
3366    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3367    // registers from the class.
3368    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3369                                                         OpInfo.ConstraintVT);
3370  }
3371
3372  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3373  unsigned NumAllocated = 0;
3374  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3375    unsigned Reg = RegClassRegs[i];
3376    // See if this register is available.
3377    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3378        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3379      // Make sure we find consecutive registers.
3380      NumAllocated = 0;
3381      continue;
3382    }
3383
3384    // Check to see if this register is allocatable (i.e. don't give out the
3385    // stack pointer).
3386    if (RC == 0) {
3387      RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3388      if (!RC) {        // Couldn't allocate this register.
3389        // Reset NumAllocated to make sure we return consecutive registers.
3390        NumAllocated = 0;
3391        continue;
3392      }
3393    }
3394
3395    // Okay, this register is good, we can use it.
3396    ++NumAllocated;
3397
3398    // If we allocated enough consecutive registers, succeed.
3399    if (NumAllocated == NumRegs) {
3400      unsigned RegStart = (i-NumAllocated)+1;
3401      unsigned RegEnd   = i+1;
3402      // Mark all of the allocated registers used.
3403      for (unsigned i = RegStart; i != RegEnd; ++i)
3404        Regs.push_back(RegClassRegs[i]);
3405
3406      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3407                                         OpInfo.ConstraintVT);
3408      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3409      return;
3410    }
3411  }
3412
3413  // Otherwise, we couldn't allocate enough registers for this.
3414  return;
3415}
3416
3417
3418/// visitInlineAsm - Handle a call to an InlineAsm object.
3419///
3420void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
3421  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3422
3423  /// ConstraintOperands - Information about all of the constraints.
3424  std::vector<AsmOperandInfo> ConstraintOperands;
3425
3426  SDOperand Chain = getRoot();
3427  SDOperand Flag;
3428
3429  std::set<unsigned> OutputRegs, InputRegs;
3430
3431  // Do a prepass over the constraints, canonicalizing them, and building up the
3432  // ConstraintOperands list.
3433  std::vector<InlineAsm::ConstraintInfo>
3434    ConstraintInfos = IA->ParseConstraints();
3435
3436  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3437  // constraint.  If so, we can't let the register allocator allocate any input
3438  // registers, because it will not know to avoid the earlyclobbered output reg.
3439  bool SawEarlyClobber = false;
3440
3441  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3442  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3443    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3444    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3445
3446    MVT::ValueType OpVT = MVT::Other;
3447
3448    // Compute the value type for each operand.
3449    switch (OpInfo.Type) {
3450    case InlineAsm::isOutput:
3451      if (!OpInfo.isIndirect) {
3452        // The return value of the call is this value.  As such, there is no
3453        // corresponding argument.
3454        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3455        OpVT = TLI.getValueType(CS.getType());
3456      } else {
3457        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3458      }
3459      break;
3460    case InlineAsm::isInput:
3461      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3462      break;
3463    case InlineAsm::isClobber:
3464      // Nothing to do.
3465      break;
3466    }
3467
3468    // If this is an input or an indirect output, process the call argument.
3469    // BasicBlocks are labels, currently appearing only in asm's.
3470    if (OpInfo.CallOperandVal) {
3471      if (isa<BasicBlock>(OpInfo.CallOperandVal))
3472        OpInfo.CallOperand =
3473          DAG.getBasicBlock(FuncInfo.MBBMap[cast<BasicBlock>(OpInfo.CallOperandVal)]);
3474      else {
3475        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3476        const Type *OpTy = OpInfo.CallOperandVal->getType();
3477        // If this is an indirect operand, the operand is a pointer to the
3478        // accessed type.
3479        if (OpInfo.isIndirect)
3480          OpTy = cast<PointerType>(OpTy)->getElementType();
3481
3482        // If OpTy is not a first-class value, it may be a struct/union that we
3483        // can tile with integers.
3484        if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3485          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3486          switch (BitSize) {
3487          default: break;
3488          case 1:
3489          case 8:
3490          case 16:
3491          case 32:
3492          case 64:
3493            OpTy = IntegerType::get(BitSize);
3494            break;
3495          }
3496        }
3497
3498        OpVT = TLI.getValueType(OpTy, true);
3499      }
3500    }
3501
3502    OpInfo.ConstraintVT = OpVT;
3503
3504    // Compute the constraint code and ConstraintType to use.
3505    OpInfo.ComputeConstraintToUse(TLI);
3506
3507    // Keep track of whether we see an earlyclobber.
3508    SawEarlyClobber |= OpInfo.isEarlyClobber;
3509
3510    // If this is a memory input, and if the operand is not indirect, do what we
3511    // need to to provide an address for the memory input.
3512    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3513        !OpInfo.isIndirect) {
3514      assert(OpInfo.Type == InlineAsm::isInput &&
3515             "Can only indirectify direct input operands!");
3516
3517      // Memory operands really want the address of the value.  If we don't have
3518      // an indirect input, put it in the constpool if we can, otherwise spill
3519      // it to a stack slot.
3520
3521      // If the operand is a float, integer, or vector constant, spill to a
3522      // constant pool entry to get its address.
3523      Value *OpVal = OpInfo.CallOperandVal;
3524      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3525          isa<ConstantVector>(OpVal)) {
3526        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3527                                                 TLI.getPointerTy());
3528      } else {
3529        // Otherwise, create a stack slot and emit a store to it before the
3530        // asm.
3531        const Type *Ty = OpVal->getType();
3532        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
3533        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3534        MachineFunction &MF = DAG.getMachineFunction();
3535        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3536        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3537        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3538        OpInfo.CallOperand = StackSlot;
3539      }
3540
3541      // There is no longer a Value* corresponding to this operand.
3542      OpInfo.CallOperandVal = 0;
3543      // It is now an indirect operand.
3544      OpInfo.isIndirect = true;
3545    }
3546
3547    // If this constraint is for a specific register, allocate it before
3548    // anything else.
3549    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3550      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3551  }
3552  ConstraintInfos.clear();
3553
3554
3555  // Second pass - Loop over all of the operands, assigning virtual or physregs
3556  // to registerclass operands.
3557  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3558    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3559
3560    // C_Register operands have already been allocated, Other/Memory don't need
3561    // to be.
3562    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3563      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3564  }
3565
3566  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3567  std::vector<SDOperand> AsmNodeOperands;
3568  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3569  AsmNodeOperands.push_back(
3570          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3571
3572
3573  // Loop over all of the inputs, copying the operand values into the
3574  // appropriate registers and processing the output regs.
3575  RegsForValue RetValRegs;
3576
3577  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3578  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3579
3580  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3581    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3582
3583    switch (OpInfo.Type) {
3584    case InlineAsm::isOutput: {
3585      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3586          OpInfo.ConstraintType != TargetLowering::C_Register) {
3587        // Memory output, or 'other' output (e.g. 'X' constraint).
3588        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3589
3590        // Add information to the INLINEASM node to know about this output.
3591        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3592        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3593                                                        TLI.getPointerTy()));
3594        AsmNodeOperands.push_back(OpInfo.CallOperand);
3595        break;
3596      }
3597
3598      // Otherwise, this is a register or register class output.
3599
3600      // Copy the output from the appropriate register.  Find a register that
3601      // we can use.
3602      if (OpInfo.AssignedRegs.Regs.empty()) {
3603        cerr << "Couldn't allocate output reg for contraint '"
3604             << OpInfo.ConstraintCode << "'!\n";
3605        exit(1);
3606      }
3607
3608      if (!OpInfo.isIndirect) {
3609        // This is the result value of the call.
3610        assert(RetValRegs.Regs.empty() &&
3611               "Cannot have multiple output constraints yet!");
3612        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3613        RetValRegs = OpInfo.AssignedRegs;
3614      } else {
3615        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3616                                                      OpInfo.CallOperandVal));
3617      }
3618
3619      // Add information to the INLINEASM node to know that this register is
3620      // set.
3621      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3622                                               AsmNodeOperands);
3623      break;
3624    }
3625    case InlineAsm::isInput: {
3626      SDOperand InOperandVal = OpInfo.CallOperand;
3627
3628      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3629        // If this is required to match an output register we have already set,
3630        // just use its register.
3631        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3632
3633        // Scan until we find the definition we already emitted of this operand.
3634        // When we find it, create a RegsForValue operand.
3635        unsigned CurOp = 2;  // The first operand.
3636        for (; OperandNo; --OperandNo) {
3637          // Advance to the next operand.
3638          unsigned NumOps =
3639            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3640          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3641                  (NumOps & 7) == 4 /*MEM*/) &&
3642                 "Skipped past definitions?");
3643          CurOp += (NumOps>>3)+1;
3644        }
3645
3646        unsigned NumOps =
3647          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3648        if ((NumOps & 7) == 2 /*REGDEF*/) {
3649          // Add NumOps>>3 registers to MatchedRegs.
3650          RegsForValue MatchedRegs;
3651          MatchedRegs.ValueVT = InOperandVal.getValueType();
3652          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3653          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3654            unsigned Reg =
3655              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3656            MatchedRegs.Regs.push_back(Reg);
3657          }
3658
3659          // Use the produced MatchedRegs object to
3660          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3661          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3662          break;
3663        } else {
3664          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3665          assert(0 && "matching constraints for memory operands unimp");
3666        }
3667      }
3668
3669      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3670        assert(!OpInfo.isIndirect &&
3671               "Don't know how to handle indirect other inputs yet!");
3672
3673        std::vector<SDOperand> Ops;
3674        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3675                                         Ops, DAG);
3676        if (Ops.empty()) {
3677          cerr << "Invalid operand for inline asm constraint '"
3678               << OpInfo.ConstraintCode << "'!\n";
3679          exit(1);
3680        }
3681
3682        // Add information to the INLINEASM node to know about this input.
3683        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
3684        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3685                                                        TLI.getPointerTy()));
3686        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
3687        break;
3688      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3689        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3690        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3691               "Memory operands expect pointer values");
3692
3693        // Add information to the INLINEASM node to know about this input.
3694        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3695        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3696                                                        TLI.getPointerTy()));
3697        AsmNodeOperands.push_back(InOperandVal);
3698        break;
3699      }
3700
3701      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3702              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3703             "Unknown constraint type!");
3704      assert(!OpInfo.isIndirect &&
3705             "Don't know how to handle indirect register inputs yet!");
3706
3707      // Copy the input into the appropriate registers.
3708      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3709             "Couldn't allocate input reg!");
3710
3711      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3712
3713      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3714                                               AsmNodeOperands);
3715      break;
3716    }
3717    case InlineAsm::isClobber: {
3718      // Add the clobbered value to the operand list, so that the register
3719      // allocator is aware that the physreg got clobbered.
3720      if (!OpInfo.AssignedRegs.Regs.empty())
3721        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3722                                                 AsmNodeOperands);
3723      break;
3724    }
3725    }
3726  }
3727
3728  // Finish up input operands.
3729  AsmNodeOperands[0] = Chain;
3730  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3731
3732  Chain = DAG.getNode(ISD::INLINEASM,
3733                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3734                      &AsmNodeOperands[0], AsmNodeOperands.size());
3735  Flag = Chain.getValue(1);
3736
3737  // If this asm returns a register value, copy the result from that register
3738  // and set it as the value of the call.
3739  if (!RetValRegs.Regs.empty()) {
3740    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3741
3742    // If the result of the inline asm is a vector, it may have the wrong
3743    // width/num elts.  Make sure to convert it to the right type with
3744    // bit_convert.
3745    if (MVT::isVector(Val.getValueType())) {
3746      const VectorType *VTy = cast<VectorType>(CS.getType());
3747      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3748
3749      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3750    }
3751
3752    setValue(CS.getInstruction(), Val);
3753  }
3754
3755  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3756
3757  // Process indirect outputs, first output all of the flagged copies out of
3758  // physregs.
3759  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3760    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3761    Value *Ptr = IndirectStoresToEmit[i].second;
3762    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3763    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3764  }
3765
3766  // Emit the non-flagged stores from the physregs.
3767  SmallVector<SDOperand, 8> OutChains;
3768  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3769    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3770                                    getValue(StoresToEmit[i].second),
3771                                    StoresToEmit[i].second, 0));
3772  if (!OutChains.empty())
3773    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3774                        &OutChains[0], OutChains.size());
3775  DAG.setRoot(Chain);
3776}
3777
3778
3779void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3780  SDOperand Src = getValue(I.getOperand(0));
3781
3782  MVT::ValueType IntPtr = TLI.getPointerTy();
3783
3784  if (IntPtr < Src.getValueType())
3785    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3786  else if (IntPtr > Src.getValueType())
3787    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3788
3789  // Scale the source by the type size.
3790  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
3791  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3792                    Src, getIntPtrConstant(ElementSize));
3793
3794  TargetLowering::ArgListTy Args;
3795  TargetLowering::ArgListEntry Entry;
3796  Entry.Node = Src;
3797  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3798  Args.push_back(Entry);
3799
3800  std::pair<SDOperand,SDOperand> Result =
3801    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3802                    DAG.getExternalSymbol("malloc", IntPtr),
3803                    Args, DAG);
3804  setValue(&I, Result.first);  // Pointers always fit in registers
3805  DAG.setRoot(Result.second);
3806}
3807
3808void SelectionDAGLowering::visitFree(FreeInst &I) {
3809  TargetLowering::ArgListTy Args;
3810  TargetLowering::ArgListEntry Entry;
3811  Entry.Node = getValue(I.getOperand(0));
3812  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3813  Args.push_back(Entry);
3814  MVT::ValueType IntPtr = TLI.getPointerTy();
3815  std::pair<SDOperand,SDOperand> Result =
3816    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3817                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3818  DAG.setRoot(Result.second);
3819}
3820
3821// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3822// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3823// instructions are special in various ways, which require special support to
3824// insert.  The specified MachineInstr is created but not inserted into any
3825// basic blocks, and the scheduler passes ownership of it to this method.
3826MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3827                                                       MachineBasicBlock *MBB) {
3828  cerr << "If a target marks an instruction with "
3829       << "'usesCustomDAGSchedInserter', it must implement "
3830       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3831  abort();
3832  return 0;
3833}
3834
3835void SelectionDAGLowering::visitVAStart(CallInst &I) {
3836  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3837                          getValue(I.getOperand(1)),
3838                          DAG.getSrcValue(I.getOperand(1))));
3839}
3840
3841void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3842  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3843                             getValue(I.getOperand(0)),
3844                             DAG.getSrcValue(I.getOperand(0)));
3845  setValue(&I, V);
3846  DAG.setRoot(V.getValue(1));
3847}
3848
3849void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3850  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3851                          getValue(I.getOperand(1)),
3852                          DAG.getSrcValue(I.getOperand(1))));
3853}
3854
3855void SelectionDAGLowering::visitVACopy(CallInst &I) {
3856  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3857                          getValue(I.getOperand(1)),
3858                          getValue(I.getOperand(2)),
3859                          DAG.getSrcValue(I.getOperand(1)),
3860                          DAG.getSrcValue(I.getOperand(2))));
3861}
3862
3863/// TargetLowering::LowerArguments - This is the default LowerArguments
3864/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3865/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3866/// integrated into SDISel.
3867std::vector<SDOperand>
3868TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3869  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3870  std::vector<SDOperand> Ops;
3871  Ops.push_back(DAG.getRoot());
3872  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3873  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3874
3875  // Add one result value for each formal argument.
3876  std::vector<MVT::ValueType> RetVals;
3877  unsigned j = 1;
3878  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3879       I != E; ++I, ++j) {
3880    MVT::ValueType VT = getValueType(I->getType());
3881    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3882    unsigned OriginalAlignment =
3883      getTargetData()->getABITypeAlignment(I->getType());
3884
3885    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3886    // that is zero extended!
3887    if (F.paramHasAttr(j, ParamAttr::ZExt))
3888      Flags &= ~(ISD::ParamFlags::SExt);
3889    if (F.paramHasAttr(j, ParamAttr::SExt))
3890      Flags |= ISD::ParamFlags::SExt;
3891    if (F.paramHasAttr(j, ParamAttr::InReg))
3892      Flags |= ISD::ParamFlags::InReg;
3893    if (F.paramHasAttr(j, ParamAttr::StructRet))
3894      Flags |= ISD::ParamFlags::StructReturn;
3895    if (F.paramHasAttr(j, ParamAttr::ByVal)) {
3896      Flags |= ISD::ParamFlags::ByVal;
3897      const PointerType *Ty = cast<PointerType>(I->getType());
3898      const StructType *STy = cast<StructType>(Ty->getElementType());
3899      unsigned StructAlign =
3900          Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
3901      unsigned StructSize  = getTargetData()->getABITypeSize(STy);
3902      Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
3903      Flags |= (StructSize  << ISD::ParamFlags::ByValSizeOffs);
3904    }
3905    if (F.paramHasAttr(j, ParamAttr::Nest))
3906      Flags |= ISD::ParamFlags::Nest;
3907    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3908
3909    switch (getTypeAction(VT)) {
3910    default: assert(0 && "Unknown type action!");
3911    case Legal:
3912      RetVals.push_back(VT);
3913      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3914      break;
3915    case Promote:
3916      RetVals.push_back(getTypeToTransformTo(VT));
3917      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3918      break;
3919    case Expand: {
3920      // If this is an illegal type, it needs to be broken up to fit into
3921      // registers.
3922      MVT::ValueType RegisterVT = getRegisterType(VT);
3923      unsigned NumRegs = getNumRegisters(VT);
3924      for (unsigned i = 0; i != NumRegs; ++i) {
3925        RetVals.push_back(RegisterVT);
3926        // if it isn't first piece, alignment must be 1
3927        if (i > 0)
3928          Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3929            (1 << ISD::ParamFlags::OrigAlignmentOffs);
3930        Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3931      }
3932      break;
3933    }
3934    }
3935  }
3936
3937  RetVals.push_back(MVT::Other);
3938
3939  // Create the node.
3940  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3941                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3942                               &Ops[0], Ops.size()).Val;
3943  unsigned NumArgRegs = Result->getNumValues() - 1;
3944  DAG.setRoot(SDOperand(Result, NumArgRegs));
3945
3946  // Set up the return result vector.
3947  Ops.clear();
3948  unsigned i = 0;
3949  unsigned Idx = 1;
3950  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3951      ++I, ++Idx) {
3952    MVT::ValueType VT = getValueType(I->getType());
3953
3954    switch (getTypeAction(VT)) {
3955    default: assert(0 && "Unknown type action!");
3956    case Legal:
3957      Ops.push_back(SDOperand(Result, i++));
3958      break;
3959    case Promote: {
3960      SDOperand Op(Result, i++);
3961      if (MVT::isInteger(VT)) {
3962        if (F.paramHasAttr(Idx, ParamAttr::SExt))
3963          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3964                           DAG.getValueType(VT));
3965        else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
3966          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3967                           DAG.getValueType(VT));
3968        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3969      } else {
3970        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3971        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3972      }
3973      Ops.push_back(Op);
3974      break;
3975    }
3976    case Expand: {
3977      MVT::ValueType PartVT = getRegisterType(VT);
3978      unsigned NumParts = getNumRegisters(VT);
3979      SmallVector<SDOperand, 4> Parts(NumParts);
3980      for (unsigned j = 0; j != NumParts; ++j)
3981        Parts[j] = SDOperand(Result, i++);
3982      Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
3983      break;
3984    }
3985    }
3986  }
3987  assert(i == NumArgRegs && "Argument register count mismatch!");
3988  return Ops;
3989}
3990
3991
3992/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3993/// implementation, which just inserts an ISD::CALL node, which is later custom
3994/// lowered by the target to something concrete.  FIXME: When all targets are
3995/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3996std::pair<SDOperand, SDOperand>
3997TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3998                            bool RetTyIsSigned, bool isVarArg,
3999                            unsigned CallingConv, bool isTailCall,
4000                            SDOperand Callee,
4001                            ArgListTy &Args, SelectionDAG &DAG) {
4002  SmallVector<SDOperand, 32> Ops;
4003  Ops.push_back(Chain);   // Op#0 - Chain
4004  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4005  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4006  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4007  Ops.push_back(Callee);
4008
4009  // Handle all of the outgoing arguments.
4010  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4011    MVT::ValueType VT = getValueType(Args[i].Ty);
4012    SDOperand Op = Args[i].Node;
4013    unsigned Flags = ISD::ParamFlags::NoFlagSet;
4014    unsigned OriginalAlignment =
4015      getTargetData()->getABITypeAlignment(Args[i].Ty);
4016
4017    if (Args[i].isSExt)
4018      Flags |= ISD::ParamFlags::SExt;
4019    if (Args[i].isZExt)
4020      Flags |= ISD::ParamFlags::ZExt;
4021    if (Args[i].isInReg)
4022      Flags |= ISD::ParamFlags::InReg;
4023    if (Args[i].isSRet)
4024      Flags |= ISD::ParamFlags::StructReturn;
4025    if (Args[i].isByVal) {
4026      Flags |= ISD::ParamFlags::ByVal;
4027      const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4028      const StructType *STy = cast<StructType>(Ty->getElementType());
4029      unsigned StructAlign =
4030          Log2_32(getTargetData()->getCallFrameTypeAlignment(STy));
4031      unsigned StructSize  = getTargetData()->getABITypeSize(STy);
4032      Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
4033      Flags |= (StructSize  << ISD::ParamFlags::ByValSizeOffs);
4034    }
4035    if (Args[i].isNest)
4036      Flags |= ISD::ParamFlags::Nest;
4037    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
4038
4039    switch (getTypeAction(VT)) {
4040    default: assert(0 && "Unknown type action!");
4041    case Legal:
4042      Ops.push_back(Op);
4043      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4044      break;
4045    case Promote:
4046      if (MVT::isInteger(VT)) {
4047        unsigned ExtOp;
4048        if (Args[i].isSExt)
4049          ExtOp = ISD::SIGN_EXTEND;
4050        else if (Args[i].isZExt)
4051          ExtOp = ISD::ZERO_EXTEND;
4052        else
4053          ExtOp = ISD::ANY_EXTEND;
4054        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
4055      } else {
4056        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
4057        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
4058      }
4059      Ops.push_back(Op);
4060      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4061      break;
4062    case Expand: {
4063      MVT::ValueType PartVT = getRegisterType(VT);
4064      unsigned NumParts = getNumRegisters(VT);
4065      SmallVector<SDOperand, 4> Parts(NumParts);
4066      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
4067      for (unsigned i = 0; i != NumParts; ++i) {
4068        // if it isn't first piece, alignment must be 1
4069        unsigned MyFlags = Flags;
4070        if (i != 0)
4071          MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4072            (1 << ISD::ParamFlags::OrigAlignmentOffs);
4073
4074        Ops.push_back(Parts[i]);
4075        Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
4076      }
4077      break;
4078    }
4079    }
4080  }
4081
4082  // Figure out the result value types.
4083  MVT::ValueType VT = getValueType(RetTy);
4084  MVT::ValueType RegisterVT = getRegisterType(VT);
4085  unsigned NumRegs = getNumRegisters(VT);
4086  SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
4087  for (unsigned i = 0; i != NumRegs; ++i)
4088    RetTys[i] = RegisterVT;
4089
4090  RetTys.push_back(MVT::Other);  // Always has a chain.
4091
4092  // Create the CALL node.
4093  SDOperand Res = DAG.getNode(ISD::CALL,
4094                              DAG.getVTList(&RetTys[0], NumRegs + 1),
4095                              &Ops[0], Ops.size());
4096  Chain = Res.getValue(NumRegs);
4097
4098  // Gather up the call result into a single value.
4099  if (RetTy != Type::VoidTy) {
4100    ISD::NodeType AssertOp = ISD::AssertSext;
4101    if (!RetTyIsSigned)
4102      AssertOp = ISD::AssertZext;
4103    SmallVector<SDOperand, 4> Results(NumRegs);
4104    for (unsigned i = 0; i != NumRegs; ++i)
4105      Results[i] = Res.getValue(i);
4106    Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
4107  }
4108
4109  return std::make_pair(Res, Chain);
4110}
4111
4112SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4113  assert(0 && "LowerOperation not implemented for this target!");
4114  abort();
4115  return SDOperand();
4116}
4117
4118SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4119                                                 SelectionDAG &DAG) {
4120  assert(0 && "CustomPromoteOperation not implemented for this target!");
4121  abort();
4122  return SDOperand();
4123}
4124
4125/// getMemsetValue - Vectorized representation of the memset value
4126/// operand.
4127static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4128                                SelectionDAG &DAG) {
4129  MVT::ValueType CurVT = VT;
4130  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4131    uint64_t Val   = C->getValue() & 255;
4132    unsigned Shift = 8;
4133    while (CurVT != MVT::i8) {
4134      Val = (Val << Shift) | Val;
4135      Shift <<= 1;
4136      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4137    }
4138    return DAG.getConstant(Val, VT);
4139  } else {
4140    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4141    unsigned Shift = 8;
4142    while (CurVT != MVT::i8) {
4143      Value =
4144        DAG.getNode(ISD::OR, VT,
4145                    DAG.getNode(ISD::SHL, VT, Value,
4146                                DAG.getConstant(Shift, MVT::i8)), Value);
4147      Shift <<= 1;
4148      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4149    }
4150
4151    return Value;
4152  }
4153}
4154
4155/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4156/// used when a memcpy is turned into a memset when the source is a constant
4157/// string ptr.
4158static SDOperand getMemsetStringVal(MVT::ValueType VT,
4159                                    SelectionDAG &DAG, TargetLowering &TLI,
4160                                    std::string &Str, unsigned Offset) {
4161  uint64_t Val = 0;
4162  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4163  if (TLI.isLittleEndian())
4164    Offset = Offset + MSB - 1;
4165  for (unsigned i = 0; i != MSB; ++i) {
4166    Val = (Val << 8) | (unsigned char)Str[Offset];
4167    Offset += TLI.isLittleEndian() ? -1 : 1;
4168  }
4169  return DAG.getConstant(Val, VT);
4170}
4171
4172/// getMemBasePlusOffset - Returns base and offset node for the
4173static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4174                                      SelectionDAG &DAG, TargetLowering &TLI) {
4175  MVT::ValueType VT = Base.getValueType();
4176  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4177}
4178
4179/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4180/// to replace the memset / memcpy is below the threshold. It also returns the
4181/// types of the sequence of  memory ops to perform memset / memcpy.
4182static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4183                                     unsigned Limit, uint64_t Size,
4184                                     unsigned Align, TargetLowering &TLI) {
4185  MVT::ValueType VT;
4186
4187  if (TLI.allowsUnalignedMemoryAccesses()) {
4188    VT = MVT::i64;
4189  } else {
4190    switch (Align & 7) {
4191    case 0:
4192      VT = MVT::i64;
4193      break;
4194    case 4:
4195      VT = MVT::i32;
4196      break;
4197    case 2:
4198      VT = MVT::i16;
4199      break;
4200    default:
4201      VT = MVT::i8;
4202      break;
4203    }
4204  }
4205
4206  MVT::ValueType LVT = MVT::i64;
4207  while (!TLI.isTypeLegal(LVT))
4208    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4209  assert(MVT::isInteger(LVT));
4210
4211  if (VT > LVT)
4212    VT = LVT;
4213
4214  unsigned NumMemOps = 0;
4215  while (Size != 0) {
4216    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4217    while (VTSize > Size) {
4218      VT = (MVT::ValueType)((unsigned)VT - 1);
4219      VTSize >>= 1;
4220    }
4221    assert(MVT::isInteger(VT));
4222
4223    if (++NumMemOps > Limit)
4224      return false;
4225    MemOps.push_back(VT);
4226    Size -= VTSize;
4227  }
4228
4229  return true;
4230}
4231
4232void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4233  SDOperand Op1 = getValue(I.getOperand(1));
4234  SDOperand Op2 = getValue(I.getOperand(2));
4235  SDOperand Op3 = getValue(I.getOperand(3));
4236  SDOperand Op4 = getValue(I.getOperand(4));
4237  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4238  if (Align == 0) Align = 1;
4239
4240  // If the source and destination are known to not be aliases, we can
4241  // lower memmove as memcpy.
4242  if (Op == ISD::MEMMOVE) {
4243    uint64_t Size = -1ULL;
4244    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4245      Size = C->getValue();
4246    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4247        AliasAnalysis::NoAlias)
4248      Op = ISD::MEMCPY;
4249  }
4250
4251  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4252    std::vector<MVT::ValueType> MemOps;
4253
4254    // Expand memset / memcpy to a series of load / store ops
4255    // if the size operand falls below a certain threshold.
4256    SmallVector<SDOperand, 8> OutChains;
4257    switch (Op) {
4258    default: break;  // Do nothing for now.
4259    case ISD::MEMSET: {
4260      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4261                                   Size->getValue(), Align, TLI)) {
4262        unsigned NumMemOps = MemOps.size();
4263        unsigned Offset = 0;
4264        for (unsigned i = 0; i < NumMemOps; i++) {
4265          MVT::ValueType VT = MemOps[i];
4266          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4267          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4268          SDOperand Store = DAG.getStore(getRoot(), Value,
4269                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4270                                         I.getOperand(1), Offset);
4271          OutChains.push_back(Store);
4272          Offset += VTSize;
4273        }
4274      }
4275      break;
4276    }
4277    case ISD::MEMCPY: {
4278      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4279                                   Size->getValue(), Align, TLI)) {
4280        unsigned NumMemOps = MemOps.size();
4281        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4282        GlobalAddressSDNode *G = NULL;
4283        std::string Str;
4284        bool CopyFromStr = false;
4285
4286        if (Op2.getOpcode() == ISD::GlobalAddress)
4287          G = cast<GlobalAddressSDNode>(Op2);
4288        else if (Op2.getOpcode() == ISD::ADD &&
4289                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4290                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4291          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4292          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4293        }
4294        if (G) {
4295          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4296          if (GV && GV->isConstant()) {
4297            Str = GV->getStringValue(false);
4298            if (!Str.empty()) {
4299              CopyFromStr = true;
4300              SrcOff += SrcDelta;
4301            }
4302          }
4303        }
4304
4305        for (unsigned i = 0; i < NumMemOps; i++) {
4306          MVT::ValueType VT = MemOps[i];
4307          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4308          SDOperand Value, Chain, Store;
4309
4310          if (CopyFromStr) {
4311            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4312            Chain = getRoot();
4313            Store =
4314              DAG.getStore(Chain, Value,
4315                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4316                           I.getOperand(1), DstOff);
4317          } else {
4318            Value = DAG.getLoad(VT, getRoot(),
4319                                getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4320                                I.getOperand(2), SrcOff, false, Align);
4321            Chain = Value.getValue(1);
4322            Store =
4323              DAG.getStore(Chain, Value,
4324                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4325                           I.getOperand(1), DstOff, false, Align);
4326          }
4327          OutChains.push_back(Store);
4328          SrcOff += VTSize;
4329          DstOff += VTSize;
4330        }
4331      }
4332      break;
4333    }
4334    }
4335
4336    if (!OutChains.empty()) {
4337      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4338                  &OutChains[0], OutChains.size()));
4339      return;
4340    }
4341  }
4342
4343  SDOperand AlwaysInline = DAG.getConstant(0, MVT::i1);
4344  SDOperand Node;
4345  switch(Op) {
4346    default:
4347      assert(0 && "Unknown Op");
4348    case ISD::MEMCPY:
4349      Node = DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4350      break;
4351    case ISD::MEMMOVE:
4352      Node = DAG.getMemmove(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4353      break;
4354    case ISD::MEMSET:
4355      Node = DAG.getMemset(getRoot(), Op1, Op2, Op3, Op4, AlwaysInline);
4356      break;
4357  }
4358  DAG.setRoot(Node);
4359}
4360
4361//===----------------------------------------------------------------------===//
4362// SelectionDAGISel code
4363//===----------------------------------------------------------------------===//
4364
4365unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4366  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4367}
4368
4369void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4370  AU.addRequired<AliasAnalysis>();
4371  AU.setPreservesAll();
4372}
4373
4374
4375
4376bool SelectionDAGISel::runOnFunction(Function &Fn) {
4377  // Get alias analysis for load/store combining.
4378  AA = &getAnalysis<AliasAnalysis>();
4379
4380  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4381  RegMap = MF.getSSARegMap();
4382  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4383
4384  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4385
4386  if (ExceptionHandling)
4387    for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4388      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4389        // Mark landing pad.
4390        FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4391
4392  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4393    SelectBasicBlock(I, MF, FuncInfo);
4394
4395  // Add function live-ins to entry block live-in set.
4396  BasicBlock *EntryBB = &Fn.getEntryBlock();
4397  BB = FuncInfo.MBBMap[EntryBB];
4398  if (!MF.livein_empty())
4399    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4400           E = MF.livein_end(); I != E; ++I)
4401      BB->addLiveIn(I->first);
4402
4403#ifndef NDEBUG
4404  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4405         "Not all catch info was assigned to a landing pad!");
4406#endif
4407
4408  return true;
4409}
4410
4411SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4412                                                           unsigned Reg) {
4413  SDOperand Op = getValue(V);
4414  assert((Op.getOpcode() != ISD::CopyFromReg ||
4415          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4416         "Copy from a reg to the same reg!");
4417
4418  MVT::ValueType SrcVT = Op.getValueType();
4419  MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4420  unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4421  SmallVector<SDOperand, 8> Regs(NumRegs);
4422  SmallVector<SDOperand, 8> Chains(NumRegs);
4423
4424  // Copy the value by legal parts into sequential virtual registers.
4425  getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4426  for (unsigned i = 0; i != NumRegs; ++i)
4427    Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4428  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4429}
4430
4431void SelectionDAGISel::
4432LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4433               std::vector<SDOperand> &UnorderedChains) {
4434  // If this is the entry block, emit arguments.
4435  Function &F = *LLVMBB->getParent();
4436  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4437  SDOperand OldRoot = SDL.DAG.getRoot();
4438  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4439
4440  unsigned a = 0;
4441  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4442       AI != E; ++AI, ++a)
4443    if (!AI->use_empty()) {
4444      SDL.setValue(AI, Args[a]);
4445
4446      // If this argument is live outside of the entry block, insert a copy from
4447      // whereever we got it to the vreg that other BB's will reference it as.
4448      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4449      if (VMI != FuncInfo.ValueMap.end()) {
4450        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4451        UnorderedChains.push_back(Copy);
4452      }
4453    }
4454
4455  // Finally, if the target has anything special to do, allow it to do so.
4456  // FIXME: this should insert code into the DAG!
4457  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4458}
4459
4460static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4461                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4462  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4463    if (isSelector(I)) {
4464      // Apply the catch info to DestBB.
4465      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4466#ifndef NDEBUG
4467      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4468        FLI.CatchInfoFound.insert(I);
4469#endif
4470    }
4471}
4472
4473/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
4474/// DAG and fixes their tailcall attribute operand.
4475static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4476                                           TargetLowering& TLI) {
4477  SDNode * Ret = NULL;
4478  SDOperand Terminator = DAG.getRoot();
4479
4480  // Find RET node.
4481  if (Terminator.getOpcode() == ISD::RET) {
4482    Ret = Terminator.Val;
4483  }
4484
4485  // Fix tail call attribute of CALL nodes.
4486  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4487         BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4488    if (BI->getOpcode() == ISD::CALL) {
4489      SDOperand OpRet(Ret, 0);
4490      SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4491      bool isMarkedTailCall =
4492        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4493      // If CALL node has tail call attribute set to true and the call is not
4494      // eligible (no RET or the target rejects) the attribute is fixed to
4495      // false. The TargetLowering::IsEligibleForTailCallOptimization function
4496      // must correctly identify tail call optimizable calls.
4497      if (isMarkedTailCall &&
4498          (Ret==NULL ||
4499           !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
4500        SmallVector<SDOperand, 32> Ops;
4501        unsigned idx=0;
4502        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4503              E=OpCall.Val->op_end(); I!=E; I++, idx++) {
4504          if (idx!=3)
4505            Ops.push_back(*I);
4506          else
4507            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4508        }
4509        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4510      }
4511    }
4512  }
4513}
4514
4515void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4516       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4517                                         FunctionLoweringInfo &FuncInfo) {
4518  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo);
4519
4520  std::vector<SDOperand> UnorderedChains;
4521
4522  // Lower any arguments needed in this block if this is the entry block.
4523  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4524    LowerArguments(LLVMBB, SDL, UnorderedChains);
4525
4526  BB = FuncInfo.MBBMap[LLVMBB];
4527  SDL.setCurrentBasicBlock(BB);
4528
4529  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4530
4531  if (ExceptionHandling && MMI && BB->isLandingPad()) {
4532    // Add a label to mark the beginning of the landing pad.  Deletion of the
4533    // landing pad can thus be detected via the MachineModuleInfo.
4534    unsigned LabelID = MMI->addLandingPad(BB);
4535    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4536                            DAG.getConstant(LabelID, MVT::i32)));
4537
4538    // Mark exception register as live in.
4539    unsigned Reg = TLI.getExceptionAddressRegister();
4540    if (Reg) BB->addLiveIn(Reg);
4541
4542    // Mark exception selector register as live in.
4543    Reg = TLI.getExceptionSelectorRegister();
4544    if (Reg) BB->addLiveIn(Reg);
4545
4546    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4547    // function and list of typeids logically belong to the invoke (or, if you
4548    // like, the basic block containing the invoke), and need to be associated
4549    // with it in the dwarf exception handling tables.  Currently however the
4550    // information is provided by an intrinsic (eh.selector) that can be moved
4551    // to unexpected places by the optimizers: if the unwind edge is critical,
4552    // then breaking it can result in the intrinsics being in the successor of
4553    // the landing pad, not the landing pad itself.  This results in exceptions
4554    // not being caught because no typeids are associated with the invoke.
4555    // This may not be the only way things can go wrong, but it is the only way
4556    // we try to work around for the moment.
4557    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4558
4559    if (Br && Br->isUnconditional()) { // Critical edge?
4560      BasicBlock::iterator I, E;
4561      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4562        if (isSelector(I))
4563          break;
4564
4565      if (I == E)
4566        // No catch info found - try to extract some from the successor.
4567        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4568    }
4569  }
4570
4571  // Lower all of the non-terminator instructions.
4572  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4573       I != E; ++I)
4574    SDL.visit(*I);
4575
4576  // Ensure that all instructions which are used outside of their defining
4577  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4578  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4579    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4580      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4581      if (VMI != FuncInfo.ValueMap.end())
4582        UnorderedChains.push_back(
4583                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4584    }
4585
4586  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4587  // ensure constants are generated when needed.  Remember the virtual registers
4588  // that need to be added to the Machine PHI nodes as input.  We cannot just
4589  // directly add them, because expansion might result in multiple MBB's for one
4590  // BB.  As such, the start of the BB might correspond to a different MBB than
4591  // the end.
4592  //
4593  TerminatorInst *TI = LLVMBB->getTerminator();
4594
4595  // Emit constants only once even if used by multiple PHI nodes.
4596  std::map<Constant*, unsigned> ConstantsOut;
4597
4598  // Vector bool would be better, but vector<bool> is really slow.
4599  std::vector<unsigned char> SuccsHandled;
4600  if (TI->getNumSuccessors())
4601    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4602
4603  // Check successor nodes' PHI nodes that expect a constant to be available
4604  // from this block.
4605  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4606    BasicBlock *SuccBB = TI->getSuccessor(succ);
4607    if (!isa<PHINode>(SuccBB->begin())) continue;
4608    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4609
4610    // If this terminator has multiple identical successors (common for
4611    // switches), only handle each succ once.
4612    unsigned SuccMBBNo = SuccMBB->getNumber();
4613    if (SuccsHandled[SuccMBBNo]) continue;
4614    SuccsHandled[SuccMBBNo] = true;
4615
4616    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4617    PHINode *PN;
4618
4619    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4620    // nodes and Machine PHI nodes, but the incoming operands have not been
4621    // emitted yet.
4622    for (BasicBlock::iterator I = SuccBB->begin();
4623         (PN = dyn_cast<PHINode>(I)); ++I) {
4624      // Ignore dead phi's.
4625      if (PN->use_empty()) continue;
4626
4627      unsigned Reg;
4628      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4629
4630      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4631        unsigned &RegOut = ConstantsOut[C];
4632        if (RegOut == 0) {
4633          RegOut = FuncInfo.CreateRegForValue(C);
4634          UnorderedChains.push_back(
4635                           SDL.CopyValueToVirtualRegister(C, RegOut));
4636        }
4637        Reg = RegOut;
4638      } else {
4639        Reg = FuncInfo.ValueMap[PHIOp];
4640        if (Reg == 0) {
4641          assert(isa<AllocaInst>(PHIOp) &&
4642                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4643                 "Didn't codegen value into a register!??");
4644          Reg = FuncInfo.CreateRegForValue(PHIOp);
4645          UnorderedChains.push_back(
4646                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4647        }
4648      }
4649
4650      // Remember that this register needs to added to the machine PHI node as
4651      // the input for this MBB.
4652      MVT::ValueType VT = TLI.getValueType(PN->getType());
4653      unsigned NumRegisters = TLI.getNumRegisters(VT);
4654      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4655        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4656    }
4657  }
4658  ConstantsOut.clear();
4659
4660  // Turn all of the unordered chains into one factored node.
4661  if (!UnorderedChains.empty()) {
4662    SDOperand Root = SDL.getRoot();
4663    if (Root.getOpcode() != ISD::EntryToken) {
4664      unsigned i = 0, e = UnorderedChains.size();
4665      for (; i != e; ++i) {
4666        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4667        if (UnorderedChains[i].Val->getOperand(0) == Root)
4668          break;  // Don't add the root if we already indirectly depend on it.
4669      }
4670
4671      if (i == e)
4672        UnorderedChains.push_back(Root);
4673    }
4674    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4675                            &UnorderedChains[0], UnorderedChains.size()));
4676  }
4677
4678  // Lower the terminator after the copies are emitted.
4679  SDL.visit(*LLVMBB->getTerminator());
4680
4681  // Copy over any CaseBlock records that may now exist due to SwitchInst
4682  // lowering, as well as any jump table information.
4683  SwitchCases.clear();
4684  SwitchCases = SDL.SwitchCases;
4685  JTCases.clear();
4686  JTCases = SDL.JTCases;
4687  BitTestCases.clear();
4688  BitTestCases = SDL.BitTestCases;
4689
4690  // Make sure the root of the DAG is up-to-date.
4691  DAG.setRoot(SDL.getRoot());
4692
4693  // Check whether calls in this block are real tail calls. Fix up CALL nodes
4694  // with correct tailcall attribute so that the target can rely on the tailcall
4695  // attribute indicating whether the call is really eligible for tail call
4696  // optimization.
4697  CheckDAGForTailCallsAndFixThem(DAG, TLI);
4698}
4699
4700void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4701  DOUT << "Lowered selection DAG:\n";
4702  DEBUG(DAG.dump());
4703
4704  // Run the DAG combiner in pre-legalize mode.
4705  DAG.Combine(false, *AA);
4706
4707  DOUT << "Optimized lowered selection DAG:\n";
4708  DEBUG(DAG.dump());
4709
4710  // Second step, hack on the DAG until it only uses operations and types that
4711  // the target supports.
4712#if 0  // Enable this some day.
4713  DAG.LegalizeTypes();
4714  // Someday even later, enable a dag combine pass here.
4715#endif
4716  DAG.Legalize();
4717
4718  DOUT << "Legalized selection DAG:\n";
4719  DEBUG(DAG.dump());
4720
4721  // Run the DAG combiner in post-legalize mode.
4722  DAG.Combine(true, *AA);
4723
4724  DOUT << "Optimized legalized selection DAG:\n";
4725  DEBUG(DAG.dump());
4726
4727  if (ViewISelDAGs) DAG.viewGraph();
4728
4729  // Third, instruction select all of the operations to machine code, adding the
4730  // code to the MachineBasicBlock.
4731  InstructionSelectBasicBlock(DAG);
4732
4733  DOUT << "Selected machine code:\n";
4734  DEBUG(BB->dump());
4735}
4736
4737void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4738                                        FunctionLoweringInfo &FuncInfo) {
4739  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4740  {
4741    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4742    CurDAG = &DAG;
4743
4744    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4745    // types that are not supported by the target.
4746    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4747
4748    // Second step, emit the lowered DAG as machine code.
4749    CodeGenAndEmitDAG(DAG);
4750  }
4751
4752  DOUT << "Total amount of phi nodes to update: "
4753       << PHINodesToUpdate.size() << "\n";
4754  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4755          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4756               << ", " << PHINodesToUpdate[i].second << ")\n";);
4757
4758  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4759  // PHI nodes in successors.
4760  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4761    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4762      MachineInstr *PHI = PHINodesToUpdate[i].first;
4763      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4764             "This is not a machine PHI node that we are updating!");
4765      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4766                                                false));
4767      PHI->addOperand(MachineOperand::CreateMBB(BB));
4768    }
4769    return;
4770  }
4771
4772  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4773    // Lower header first, if it wasn't already lowered
4774    if (!BitTestCases[i].Emitted) {
4775      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4776      CurDAG = &HSDAG;
4777      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
4778      // Set the current basic block to the mbb we wish to insert the code into
4779      BB = BitTestCases[i].Parent;
4780      HSDL.setCurrentBasicBlock(BB);
4781      // Emit the code
4782      HSDL.visitBitTestHeader(BitTestCases[i]);
4783      HSDAG.setRoot(HSDL.getRoot());
4784      CodeGenAndEmitDAG(HSDAG);
4785    }
4786
4787    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4788      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4789      CurDAG = &BSDAG;
4790      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo);
4791      // Set the current basic block to the mbb we wish to insert the code into
4792      BB = BitTestCases[i].Cases[j].ThisBB;
4793      BSDL.setCurrentBasicBlock(BB);
4794      // Emit the code
4795      if (j+1 != ej)
4796        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4797                              BitTestCases[i].Reg,
4798                              BitTestCases[i].Cases[j]);
4799      else
4800        BSDL.visitBitTestCase(BitTestCases[i].Default,
4801                              BitTestCases[i].Reg,
4802                              BitTestCases[i].Cases[j]);
4803
4804
4805      BSDAG.setRoot(BSDL.getRoot());
4806      CodeGenAndEmitDAG(BSDAG);
4807    }
4808
4809    // Update PHI Nodes
4810    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4811      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4812      MachineBasicBlock *PHIBB = PHI->getParent();
4813      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4814             "This is not a machine PHI node that we are updating!");
4815      // This is "default" BB. We have two jumps to it. From "header" BB and
4816      // from last "case" BB.
4817      if (PHIBB == BitTestCases[i].Default) {
4818        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4819                                                  false));
4820        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
4821        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4822                                                  false));
4823        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
4824                                                  back().ThisBB));
4825      }
4826      // One of "cases" BB.
4827      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4828        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4829        if (cBB->succ_end() !=
4830            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4831          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4832                                                    false));
4833          PHI->addOperand(MachineOperand::CreateMBB(cBB));
4834        }
4835      }
4836    }
4837  }
4838
4839  // If the JumpTable record is filled in, then we need to emit a jump table.
4840  // Updating the PHI nodes is tricky in this case, since we need to determine
4841  // whether the PHI is a successor of the range check MBB or the jump table MBB
4842  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4843    // Lower header first, if it wasn't already lowered
4844    if (!JTCases[i].first.Emitted) {
4845      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4846      CurDAG = &HSDAG;
4847      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
4848      // Set the current basic block to the mbb we wish to insert the code into
4849      BB = JTCases[i].first.HeaderBB;
4850      HSDL.setCurrentBasicBlock(BB);
4851      // Emit the code
4852      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4853      HSDAG.setRoot(HSDL.getRoot());
4854      CodeGenAndEmitDAG(HSDAG);
4855    }
4856
4857    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4858    CurDAG = &JSDAG;
4859    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo);
4860    // Set the current basic block to the mbb we wish to insert the code into
4861    BB = JTCases[i].second.MBB;
4862    JSDL.setCurrentBasicBlock(BB);
4863    // Emit the code
4864    JSDL.visitJumpTable(JTCases[i].second);
4865    JSDAG.setRoot(JSDL.getRoot());
4866    CodeGenAndEmitDAG(JSDAG);
4867
4868    // Update PHI Nodes
4869    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4870      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4871      MachineBasicBlock *PHIBB = PHI->getParent();
4872      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4873             "This is not a machine PHI node that we are updating!");
4874      // "default" BB. We can go there only from header BB.
4875      if (PHIBB == JTCases[i].second.Default) {
4876        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4877                                                  false));
4878        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
4879      }
4880      // JT BB. Just iterate over successors here
4881      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4882        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4883                                                  false));
4884        PHI->addOperand(MachineOperand::CreateMBB(BB));
4885      }
4886    }
4887  }
4888
4889  // If the switch block involved a branch to one of the actual successors, we
4890  // need to update PHI nodes in that block.
4891  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4892    MachineInstr *PHI = PHINodesToUpdate[i].first;
4893    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4894           "This is not a machine PHI node that we are updating!");
4895    if (BB->isSuccessor(PHI->getParent())) {
4896      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4897                                                false));
4898      PHI->addOperand(MachineOperand::CreateMBB(BB));
4899    }
4900  }
4901
4902  // If we generated any switch lowering information, build and codegen any
4903  // additional DAGs necessary.
4904  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4905    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4906    CurDAG = &SDAG;
4907    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo);
4908
4909    // Set the current basic block to the mbb we wish to insert the code into
4910    BB = SwitchCases[i].ThisBB;
4911    SDL.setCurrentBasicBlock(BB);
4912
4913    // Emit the code
4914    SDL.visitSwitchCase(SwitchCases[i]);
4915    SDAG.setRoot(SDL.getRoot());
4916    CodeGenAndEmitDAG(SDAG);
4917
4918    // Handle any PHI nodes in successors of this chunk, as if we were coming
4919    // from the original BB before switch expansion.  Note that PHI nodes can
4920    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4921    // handle them the right number of times.
4922    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4923      for (MachineBasicBlock::iterator Phi = BB->begin();
4924           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4925        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4926        for (unsigned pn = 0; ; ++pn) {
4927          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4928          if (PHINodesToUpdate[pn].first == Phi) {
4929            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
4930                                                      second, false));
4931            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
4932            break;
4933          }
4934        }
4935      }
4936
4937      // Don't process RHS if same block as LHS.
4938      if (BB == SwitchCases[i].FalseBB)
4939        SwitchCases[i].FalseBB = 0;
4940
4941      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4942      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4943      SwitchCases[i].FalseBB = 0;
4944    }
4945    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4946  }
4947}
4948
4949
4950//===----------------------------------------------------------------------===//
4951/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4952/// target node in the graph.
4953void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4954  if (ViewSchedDAGs) DAG.viewGraph();
4955
4956  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4957
4958  if (!Ctor) {
4959    Ctor = ISHeuristic;
4960    RegisterScheduler::setDefault(Ctor);
4961  }
4962
4963  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4964  BB = SL->Run();
4965
4966  if (ViewSUnitDAGs) SL->viewGraph();
4967
4968  delete SL;
4969}
4970
4971
4972HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4973  return new HazardRecognizer();
4974}
4975
4976//===----------------------------------------------------------------------===//
4977// Helper functions used by the generated instruction selector.
4978//===----------------------------------------------------------------------===//
4979// Calls to these methods are generated by tblgen.
4980
4981/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4982/// the dag combiner simplified the 255, we still want to match.  RHS is the
4983/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4984/// specified in the .td file (e.g. 255).
4985bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4986                                    int64_t DesiredMaskS) const {
4987  uint64_t ActualMask = RHS->getValue();
4988  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4989
4990  // If the actual mask exactly matches, success!
4991  if (ActualMask == DesiredMask)
4992    return true;
4993
4994  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4995  if (ActualMask & ~DesiredMask)
4996    return false;
4997
4998  // Otherwise, the DAG Combiner may have proven that the value coming in is
4999  // either already zero or is not demanded.  Check for known zero input bits.
5000  uint64_t NeededMask = DesiredMask & ~ActualMask;
5001  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5002    return true;
5003
5004  // TODO: check to see if missing bits are just not demanded.
5005
5006  // Otherwise, this pattern doesn't match.
5007  return false;
5008}
5009
5010/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5011/// the dag combiner simplified the 255, we still want to match.  RHS is the
5012/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5013/// specified in the .td file (e.g. 255).
5014bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5015                                    int64_t DesiredMaskS) const {
5016  uint64_t ActualMask = RHS->getValue();
5017  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
5018
5019  // If the actual mask exactly matches, success!
5020  if (ActualMask == DesiredMask)
5021    return true;
5022
5023  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5024  if (ActualMask & ~DesiredMask)
5025    return false;
5026
5027  // Otherwise, the DAG Combiner may have proven that the value coming in is
5028  // either already zero or is not demanded.  Check for known zero input bits.
5029  uint64_t NeededMask = DesiredMask & ~ActualMask;
5030
5031  uint64_t KnownZero, KnownOne;
5032  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5033
5034  // If all the missing bits in the or are already known to be set, match!
5035  if ((NeededMask & KnownOne) == NeededMask)
5036    return true;
5037
5038  // TODO: check to see if missing bits are just not demanded.
5039
5040  // Otherwise, this pattern doesn't match.
5041  return false;
5042}
5043
5044
5045/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5046/// by tblgen.  Others should not call it.
5047void SelectionDAGISel::
5048SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5049  std::vector<SDOperand> InOps;
5050  std::swap(InOps, Ops);
5051
5052  Ops.push_back(InOps[0]);  // input chain.
5053  Ops.push_back(InOps[1]);  // input asm string.
5054
5055  unsigned i = 2, e = InOps.size();
5056  if (InOps[e-1].getValueType() == MVT::Flag)
5057    --e;  // Don't process a flag operand if it is here.
5058
5059  while (i != e) {
5060    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5061    if ((Flags & 7) != 4 /*MEM*/) {
5062      // Just skip over this operand, copying the operands verbatim.
5063      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5064      i += (Flags >> 3) + 1;
5065    } else {
5066      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5067      // Otherwise, this is a memory operand.  Ask the target to select it.
5068      std::vector<SDOperand> SelOps;
5069      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5070        cerr << "Could not match memory address.  Inline asm failure!\n";
5071        exit(1);
5072      }
5073
5074      // Add this to the output node.
5075      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5076      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5077                                          IntPtrTy));
5078      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5079      i += 2;
5080    }
5081  }
5082
5083  // Add the flag input back if present.
5084  if (e != InOps.size())
5085    Ops.push_back(InOps.back());
5086}
5087
5088char SelectionDAGISel::ID = 0;
5089