SelectionDAGISel.cpp revision a0d451f0c3b152920c0bc50ab6c5fb6b9eef89b4
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionAnalysis.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/CodeGen/DwarfWriter.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/Timer.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62static cl::opt<bool>
63EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
64          cl::desc("Enable verbose messages in the \"fast\" "
65                   "instruction selector"));
66static cl::opt<bool>
67EnableFastISelAbort("fast-isel-abort", cl::Hidden,
68          cl::desc("Enable abort calls when \"fast\" instruction fails"));
69static cl::opt<bool>
70SchedLiveInCopies("schedule-livein-copies", cl::Hidden,
71                  cl::desc("Schedule copies of livein registers"),
72                  cl::init(false));
73
74#ifndef NDEBUG
75static cl::opt<bool>
76ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the first "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before legalize types"));
82static cl::opt<bool>
83ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize"));
85static cl::opt<bool>
86ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before the second "
88                   "dag combine pass"));
89static cl::opt<bool>
90ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
91          cl::desc("Pop up a window to show dags before the post legalize types"
92                   " dag combine pass"));
93static cl::opt<bool>
94ViewISelDAGs("view-isel-dags", cl::Hidden,
95          cl::desc("Pop up a window to show isel dags as they are selected"));
96static cl::opt<bool>
97ViewSchedDAGs("view-sched-dags", cl::Hidden,
98          cl::desc("Pop up a window to show sched dags as they are processed"));
99static cl::opt<bool>
100ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
101      cl::desc("Pop up a window to show SUnit dags after they are processed"));
102#else
103static const bool ViewDAGCombine1 = false,
104                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
105                  ViewDAGCombine2 = false,
106                  ViewDAGCombineLT = false,
107                  ViewISelDAGs = false, ViewSchedDAGs = false,
108                  ViewSUnitDAGs = false;
109#endif
110
111//===---------------------------------------------------------------------===//
112///
113/// RegisterScheduler class - Track the registration of instruction schedulers.
114///
115//===---------------------------------------------------------------------===//
116MachinePassRegistry RegisterScheduler::Registry;
117
118//===---------------------------------------------------------------------===//
119///
120/// ISHeuristic command line option for instruction schedulers.
121///
122//===---------------------------------------------------------------------===//
123static cl::opt<RegisterScheduler::FunctionPassCtor, false,
124               RegisterPassParser<RegisterScheduler> >
125ISHeuristic("pre-RA-sched",
126            cl::init(&createDefaultScheduler),
127            cl::desc("Instruction schedulers available (before register"
128                     " allocation):"));
129
130static RegisterScheduler
131defaultListDAGScheduler("default", "Best scheduler for the target",
132                        createDefaultScheduler);
133
134namespace llvm {
135  //===--------------------------------------------------------------------===//
136  /// createDefaultScheduler - This creates an instruction scheduler appropriate
137  /// for the target.
138  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
139                                             CodeGenOpt::Level OptLevel) {
140    const TargetLowering &TLI = IS->getTargetLowering();
141
142    if (OptLevel == CodeGenOpt::None)
143      return createFastDAGScheduler(IS, OptLevel);
144    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
145      return createTDListDAGScheduler(IS, OptLevel);
146    assert(TLI.getSchedulingPreference() ==
147         TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
148    return createBURRListDAGScheduler(IS, OptLevel);
149  }
150}
151
152// EmitInstrWithCustomInserter - This method should be implemented by targets
153// that mark instructions with the 'usesCustomInserter' flag.  These
154// instructions are special in various ways, which require special support to
155// insert.  The specified MachineInstr is created but not inserted into any
156// basic blocks, and this method is called to expand it into a sequence of
157// instructions, potentially also creating new basic blocks and control flow.
158// When new basic blocks are inserted and the edges from MBB to its successors
159// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
160// DenseMap.
161MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
162                                                         MachineBasicBlock *MBB,
163                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
164#ifndef NDEBUG
165  errs() << "If a target marks an instruction with "
166          "'usesCustomInserter', it must implement "
167          "TargetLowering::EmitInstrWithCustomInserter!";
168#endif
169  llvm_unreachable(0);
170  return 0;
171}
172
173/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
174/// physical register has only a single copy use, then coalesced the copy
175/// if possible.
176static void EmitLiveInCopy(MachineBasicBlock *MBB,
177                           MachineBasicBlock::iterator &InsertPos,
178                           unsigned VirtReg, unsigned PhysReg,
179                           const TargetRegisterClass *RC,
180                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
181                           const MachineRegisterInfo &MRI,
182                           const TargetRegisterInfo &TRI,
183                           const TargetInstrInfo &TII) {
184  unsigned NumUses = 0;
185  MachineInstr *UseMI = NULL;
186  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
187         UE = MRI.use_end(); UI != UE; ++UI) {
188    UseMI = &*UI;
189    if (++NumUses > 1)
190      break;
191  }
192
193  // If the number of uses is not one, or the use is not a move instruction,
194  // don't coalesce. Also, only coalesce away a virtual register to virtual
195  // register copy.
196  bool Coalesced = false;
197  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
198  if (NumUses == 1 &&
199      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
200      TargetRegisterInfo::isVirtualRegister(DstReg)) {
201    VirtReg = DstReg;
202    Coalesced = true;
203  }
204
205  // Now find an ideal location to insert the copy.
206  MachineBasicBlock::iterator Pos = InsertPos;
207  while (Pos != MBB->begin()) {
208    MachineInstr *PrevMI = prior(Pos);
209    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
210    // copyRegToReg might emit multiple instructions to do a copy.
211    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
212    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
213      // This is what the BB looks like right now:
214      // r1024 = mov r0
215      // ...
216      // r1    = mov r1024
217      //
218      // We want to insert "r1025 = mov r1". Inserting this copy below the
219      // move to r1024 makes it impossible for that move to be coalesced.
220      //
221      // r1025 = mov r1
222      // r1024 = mov r0
223      // ...
224      // r1    = mov 1024
225      // r2    = mov 1025
226      break; // Woot! Found a good location.
227    --Pos;
228  }
229
230  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
231  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
232  (void) Emitted;
233
234  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
235  if (Coalesced) {
236    if (&*InsertPos == UseMI) ++InsertPos;
237    MBB->erase(UseMI);
238  }
239}
240
241/// EmitLiveInCopies - If this is the first basic block in the function,
242/// and if it has live ins that need to be copied into vregs, emit the
243/// copies into the block.
244static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
245                             const MachineRegisterInfo &MRI,
246                             const TargetRegisterInfo &TRI,
247                             const TargetInstrInfo &TII) {
248  if (SchedLiveInCopies) {
249    // Emit the copies at a heuristically-determined location in the block.
250    DenseMap<MachineInstr*, unsigned> CopyRegMap;
251    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
252    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
253           E = MRI.livein_end(); LI != E; ++LI)
254      if (LI->second) {
255        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
256        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
257                       RC, CopyRegMap, MRI, TRI, TII);
258      }
259  } else {
260    // Emit the copies into the top of the block.
261    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
262           E = MRI.livein_end(); LI != E; ++LI)
263      if (LI->second) {
264        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
265        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
266                                        LI->second, LI->first, RC, RC);
267        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
268        (void) Emitted;
269      }
270  }
271}
272
273//===----------------------------------------------------------------------===//
274// SelectionDAGISel code
275//===----------------------------------------------------------------------===//
276
277SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
278  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
279  FuncInfo(new FunctionLoweringInfo(TLI)),
280  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
281  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
282  GFI(),
283  OptLevel(OL),
284  DAGSize(0)
285{}
286
287SelectionDAGISel::~SelectionDAGISel() {
288  delete SDB;
289  delete CurDAG;
290  delete FuncInfo;
291}
292
293unsigned SelectionDAGISel::MakeReg(EVT VT) {
294  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
295}
296
297void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
298  AU.addRequired<AliasAnalysis>();
299  AU.addPreserved<AliasAnalysis>();
300  AU.addRequired<GCModuleInfo>();
301  AU.addPreserved<GCModuleInfo>();
302  AU.addRequired<DwarfWriter>();
303  AU.addPreserved<DwarfWriter>();
304  MachineFunctionPass::getAnalysisUsage(AU);
305}
306
307bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
308  Function &Fn = *mf.getFunction();
309
310  // Do some sanity-checking on the command-line options.
311  assert((!EnableFastISelVerbose || EnableFastISel) &&
312         "-fast-isel-verbose requires -fast-isel");
313  assert((!EnableFastISelAbort || EnableFastISel) &&
314         "-fast-isel-abort requires -fast-isel");
315
316  // Get alias analysis for load/store combining.
317  AA = &getAnalysis<AliasAnalysis>();
318
319  MF = &mf;
320  const TargetInstrInfo &TII = *TM.getInstrInfo();
321  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
322
323  if (Fn.hasGC())
324    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
325  else
326    GFI = 0;
327  RegInfo = &MF->getRegInfo();
328  DEBUG(errs() << "\n\n\n=== " << Fn.getName() << "\n");
329
330  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
331  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
332  CurDAG->init(*MF, MMI, DW);
333  FuncInfo->set(Fn, *MF, EnableFastISel);
334  SDB->init(GFI, *AA);
335
336  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
337    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
338      // Mark landing pad.
339      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
340
341  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
342
343  // If the first basic block in the function has live ins that need to be
344  // copied into vregs, emit the copies into the top of the block before
345  // emitting the code for the block.
346  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
347
348  // Add function live-ins to entry block live-in set.
349  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
350         E = RegInfo->livein_end(); I != E; ++I)
351    MF->begin()->addLiveIn(I->first);
352
353#ifndef NDEBUG
354  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
355         "Not all catch info was assigned to a landing pad!");
356#endif
357
358  FuncInfo->clear();
359
360  return true;
361}
362
363/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
364/// attached with this instruction.
365static void SetDebugLoc(unsigned MDDbgKind, Instruction *I,
366                        SelectionDAGBuilder *SDB,
367                        FastISel *FastIS, MachineFunction *MF) {
368  if (isa<DbgInfoIntrinsic>(I)) return;
369
370  if (MDNode *Dbg = I->getMetadata(MDDbgKind)) {
371    DILocation DILoc(Dbg);
372    DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo());
373
374    SDB->setCurDebugLoc(Loc);
375
376    if (FastIS)
377      FastIS->setCurDebugLoc(Loc);
378
379    // If the function doesn't have a default debug location yet, set
380    // it. This is kind of a hack.
381    if (MF->getDefaultDebugLoc().isUnknown())
382      MF->setDefaultDebugLoc(Loc);
383  }
384}
385
386/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
387static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
388  SDB->setCurDebugLoc(DebugLoc::getUnknownLoc());
389  if (FastIS)
390    FastIS->setCurDebugLoc(DebugLoc::getUnknownLoc());
391}
392
393void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
394                                        BasicBlock::iterator Begin,
395                                        BasicBlock::iterator End,
396                                        bool &HadTailCall) {
397  SDB->setCurrentBasicBlock(BB);
398  unsigned MDDbgKind = LLVMBB->getContext().getMDKindID("dbg");
399
400  // Lower all of the non-terminator instructions. If a call is emitted
401  // as a tail call, cease emitting nodes for this block.
402  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
403    SetDebugLoc(MDDbgKind, I, SDB, 0, MF);
404
405    if (!isa<TerminatorInst>(I)) {
406      SDB->visit(*I);
407
408      // Set the current debug location back to "unknown" so that it doesn't
409      // spuriously apply to subsequent instructions.
410      ResetDebugLoc(SDB, 0);
411    }
412  }
413
414  if (!SDB->HasTailCall) {
415    // Ensure that all instructions which are used outside of their defining
416    // blocks are available as virtual registers.  Invoke is handled elsewhere.
417    for (BasicBlock::iterator I = Begin; I != End; ++I)
418      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
419        SDB->CopyToExportRegsIfNeeded(I);
420
421    // Handle PHI nodes in successor blocks.
422    if (End == LLVMBB->end()) {
423      HandlePHINodesInSuccessorBlocks(LLVMBB);
424
425      // Lower the terminator after the copies are emitted.
426      SetDebugLoc(MDDbgKind, LLVMBB->getTerminator(), SDB, 0, MF);
427      SDB->visit(*LLVMBB->getTerminator());
428      ResetDebugLoc(SDB, 0);
429    }
430  }
431
432  // Make sure the root of the DAG is up-to-date.
433  CurDAG->setRoot(SDB->getControlRoot());
434
435  // Final step, emit the lowered DAG as machine code.
436  CodeGenAndEmitDAG();
437  HadTailCall = SDB->HasTailCall;
438  SDB->clear();
439}
440
441void SelectionDAGISel::ComputeLiveOutVRegInfo() {
442  SmallPtrSet<SDNode*, 128> VisitedNodes;
443  SmallVector<SDNode*, 128> Worklist;
444
445  Worklist.push_back(CurDAG->getRoot().getNode());
446
447  APInt Mask;
448  APInt KnownZero;
449  APInt KnownOne;
450
451  while (!Worklist.empty()) {
452    SDNode *N = Worklist.back();
453    Worklist.pop_back();
454
455    // If we've already seen this node, ignore it.
456    if (!VisitedNodes.insert(N))
457      continue;
458
459    // Otherwise, add all chain operands to the worklist.
460    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
461      if (N->getOperand(i).getValueType() == MVT::Other)
462        Worklist.push_back(N->getOperand(i).getNode());
463
464    // If this is a CopyToReg with a vreg dest, process it.
465    if (N->getOpcode() != ISD::CopyToReg)
466      continue;
467
468    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
469    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
470      continue;
471
472    // Ignore non-scalar or non-integer values.
473    SDValue Src = N->getOperand(2);
474    EVT SrcVT = Src.getValueType();
475    if (!SrcVT.isInteger() || SrcVT.isVector())
476      continue;
477
478    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
479    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
480    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
481
482    // Only install this information if it tells us something.
483    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
484      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
485      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
486        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
487      FunctionLoweringInfo::LiveOutInfo &LOI =
488        FuncInfo->LiveOutRegInfo[DestReg];
489      LOI.NumSignBits = NumSignBits;
490      LOI.KnownOne = KnownOne;
491      LOI.KnownZero = KnownZero;
492    }
493  }
494}
495
496void SelectionDAGISel::CodeGenAndEmitDAG() {
497  std::string GroupName;
498  if (TimePassesIsEnabled)
499    GroupName = "Instruction Selection and Scheduling";
500  std::string BlockName;
501  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
502      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
503      ViewSUnitDAGs)
504    BlockName = MF->getFunction()->getNameStr() + ":" +
505                BB->getBasicBlock()->getNameStr();
506
507  DEBUG(errs() << "Initial selection DAG:\n");
508  DEBUG(CurDAG->dump());
509
510  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
511
512  // Run the DAG combiner in pre-legalize mode.
513  if (TimePassesIsEnabled) {
514    NamedRegionTimer T("DAG Combining 1", GroupName);
515    CurDAG->Combine(Unrestricted, *AA, OptLevel);
516  } else {
517    CurDAG->Combine(Unrestricted, *AA, OptLevel);
518  }
519
520  DEBUG(errs() << "Optimized lowered selection DAG:\n");
521  DEBUG(CurDAG->dump());
522
523  // Second step, hack on the DAG until it only uses operations and types that
524  // the target supports.
525  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
526                                               BlockName);
527
528  bool Changed;
529  if (TimePassesIsEnabled) {
530    NamedRegionTimer T("Type Legalization", GroupName);
531    Changed = CurDAG->LegalizeTypes();
532  } else {
533    Changed = CurDAG->LegalizeTypes();
534  }
535
536  DEBUG(errs() << "Type-legalized selection DAG:\n");
537  DEBUG(CurDAG->dump());
538
539  if (Changed) {
540    if (ViewDAGCombineLT)
541      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
542
543    // Run the DAG combiner in post-type-legalize mode.
544    if (TimePassesIsEnabled) {
545      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
546      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
547    } else {
548      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
549    }
550
551    DEBUG(errs() << "Optimized type-legalized selection DAG:\n");
552    DEBUG(CurDAG->dump());
553  }
554
555  if (TimePassesIsEnabled) {
556    NamedRegionTimer T("Vector Legalization", GroupName);
557    Changed = CurDAG->LegalizeVectors();
558  } else {
559    Changed = CurDAG->LegalizeVectors();
560  }
561
562  if (Changed) {
563    if (TimePassesIsEnabled) {
564      NamedRegionTimer T("Type Legalization 2", GroupName);
565      CurDAG->LegalizeTypes();
566    } else {
567      CurDAG->LegalizeTypes();
568    }
569
570    if (ViewDAGCombineLT)
571      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
572
573    // Run the DAG combiner in post-type-legalize mode.
574    if (TimePassesIsEnabled) {
575      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
576      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
577    } else {
578      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
579    }
580
581    DEBUG(errs() << "Optimized vector-legalized selection DAG:\n");
582    DEBUG(CurDAG->dump());
583  }
584
585  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
586
587  if (TimePassesIsEnabled) {
588    NamedRegionTimer T("DAG Legalization", GroupName);
589    CurDAG->Legalize(OptLevel);
590  } else {
591    CurDAG->Legalize(OptLevel);
592  }
593
594  DEBUG(errs() << "Legalized selection DAG:\n");
595  DEBUG(CurDAG->dump());
596
597  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
598
599  // Run the DAG combiner in post-legalize mode.
600  if (TimePassesIsEnabled) {
601    NamedRegionTimer T("DAG Combining 2", GroupName);
602    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
603  } else {
604    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
605  }
606
607  DEBUG(errs() << "Optimized legalized selection DAG:\n");
608  DEBUG(CurDAG->dump());
609
610  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
611
612  if (OptLevel != CodeGenOpt::None)
613    ComputeLiveOutVRegInfo();
614
615  // Third, instruction select all of the operations to machine code, adding the
616  // code to the MachineBasicBlock.
617  if (TimePassesIsEnabled) {
618    NamedRegionTimer T("Instruction Selection", GroupName);
619    InstructionSelect();
620  } else {
621    InstructionSelect();
622  }
623
624  DEBUG(errs() << "Selected selection DAG:\n");
625  DEBUG(CurDAG->dump());
626
627  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
628
629  // Schedule machine code.
630  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
631  if (TimePassesIsEnabled) {
632    NamedRegionTimer T("Instruction Scheduling", GroupName);
633    Scheduler->Run(CurDAG, BB, BB->end());
634  } else {
635    Scheduler->Run(CurDAG, BB, BB->end());
636  }
637
638  if (ViewSUnitDAGs) Scheduler->viewGraph();
639
640  // Emit machine code to BB.  This can change 'BB' to the last block being
641  // inserted into.
642  if (TimePassesIsEnabled) {
643    NamedRegionTimer T("Instruction Creation", GroupName);
644    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
645  } else {
646    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
647  }
648
649  // Free the scheduler state.
650  if (TimePassesIsEnabled) {
651    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
652    delete Scheduler;
653  } else {
654    delete Scheduler;
655  }
656
657  DEBUG(errs() << "Selected machine code:\n");
658  DEBUG(BB->dump());
659}
660
661void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
662                                            MachineFunction &MF,
663                                            MachineModuleInfo *MMI,
664                                            DwarfWriter *DW,
665                                            const TargetInstrInfo &TII) {
666  // Initialize the Fast-ISel state, if needed.
667  FastISel *FastIS = 0;
668  if (EnableFastISel)
669    FastIS = TLI.createFastISel(MF, MMI, DW,
670                                FuncInfo->ValueMap,
671                                FuncInfo->MBBMap,
672                                FuncInfo->StaticAllocaMap
673#ifndef NDEBUG
674                                , FuncInfo->CatchInfoLost
675#endif
676                                );
677
678  unsigned MDDbgKind = Fn.getContext().getMDKindID("dbg");
679
680  // Iterate over all basic blocks in the function.
681  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
682    BasicBlock *LLVMBB = &*I;
683    BB = FuncInfo->MBBMap[LLVMBB];
684
685    BasicBlock::iterator const Begin = LLVMBB->begin();
686    BasicBlock::iterator const End = LLVMBB->end();
687    BasicBlock::iterator BI = Begin;
688
689    // Lower any arguments needed in this block if this is the entry block.
690    bool SuppressFastISel = false;
691    if (LLVMBB == &Fn.getEntryBlock()) {
692      LowerArguments(LLVMBB);
693
694      // If any of the arguments has the byval attribute, forgo
695      // fast-isel in the entry block.
696      if (FastIS) {
697        unsigned j = 1;
698        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
699             I != E; ++I, ++j)
700          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
701            if (EnableFastISelVerbose || EnableFastISelAbort)
702              errs() << "FastISel skips entry block due to byval argument\n";
703            SuppressFastISel = true;
704            break;
705          }
706      }
707    }
708
709    if (MMI && BB->isLandingPad()) {
710      // Add a label to mark the beginning of the landing pad.  Deletion of the
711      // landing pad can thus be detected via the MachineModuleInfo.
712      unsigned LabelID = MMI->addLandingPad(BB);
713
714      const TargetInstrDesc &II = TII.get(TargetInstrInfo::EH_LABEL);
715      BuildMI(BB, SDB->getCurDebugLoc(), II).addImm(LabelID);
716
717      // Mark exception register as live in.
718      unsigned Reg = TLI.getExceptionAddressRegister();
719      if (Reg) BB->addLiveIn(Reg);
720
721      // Mark exception selector register as live in.
722      Reg = TLI.getExceptionSelectorRegister();
723      if (Reg) BB->addLiveIn(Reg);
724
725      // FIXME: Hack around an exception handling flaw (PR1508): the personality
726      // function and list of typeids logically belong to the invoke (or, if you
727      // like, the basic block containing the invoke), and need to be associated
728      // with it in the dwarf exception handling tables.  Currently however the
729      // information is provided by an intrinsic (eh.selector) that can be moved
730      // to unexpected places by the optimizers: if the unwind edge is critical,
731      // then breaking it can result in the intrinsics being in the successor of
732      // the landing pad, not the landing pad itself.  This results in exceptions
733      // not being caught because no typeids are associated with the invoke.
734      // This may not be the only way things can go wrong, but it is the only way
735      // we try to work around for the moment.
736      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
737
738      if (Br && Br->isUnconditional()) { // Critical edge?
739        BasicBlock::iterator I, E;
740        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
741          if (isa<EHSelectorInst>(I))
742            break;
743
744        if (I == E)
745          // No catch info found - try to extract some from the successor.
746          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
747      }
748    }
749
750    // Before doing SelectionDAG ISel, see if FastISel has been requested.
751    if (FastIS && !SuppressFastISel) {
752      // Emit code for any incoming arguments. This must happen before
753      // beginning FastISel on the entry block.
754      if (LLVMBB == &Fn.getEntryBlock()) {
755        CurDAG->setRoot(SDB->getControlRoot());
756        CodeGenAndEmitDAG();
757        SDB->clear();
758      }
759      FastIS->startNewBlock(BB);
760      // Do FastISel on as many instructions as possible.
761      for (; BI != End; ++BI) {
762        // Just before the terminator instruction, insert instructions to
763        // feed PHI nodes in successor blocks.
764        if (isa<TerminatorInst>(BI))
765          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
766            ResetDebugLoc(SDB, FastIS);
767            if (EnableFastISelVerbose || EnableFastISelAbort) {
768              errs() << "FastISel miss: ";
769              BI->dump();
770            }
771            assert(!EnableFastISelAbort &&
772                   "FastISel didn't handle a PHI in a successor");
773            break;
774          }
775
776        SetDebugLoc(MDDbgKind, BI, SDB, FastIS, &MF);
777
778        // First try normal tablegen-generated "fast" selection.
779        if (FastIS->SelectInstruction(BI)) {
780          ResetDebugLoc(SDB, FastIS);
781          continue;
782        }
783
784        // Clear out the debug location so that it doesn't carry over to
785        // unrelated instructions.
786        ResetDebugLoc(SDB, FastIS);
787
788        // Then handle certain instructions as single-LLVM-Instruction blocks.
789        if (isa<CallInst>(BI)) {
790          if (EnableFastISelVerbose || EnableFastISelAbort) {
791            errs() << "FastISel missed call: ";
792            BI->dump();
793          }
794
795          if (BI->getType() != Type::getVoidTy(*CurDAG->getContext())) {
796            unsigned &R = FuncInfo->ValueMap[BI];
797            if (!R)
798              R = FuncInfo->CreateRegForValue(BI);
799          }
800
801          bool HadTailCall = false;
802          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
803
804          // If the call was emitted as a tail call, we're done with the block.
805          if (HadTailCall) {
806            BI = End;
807            break;
808          }
809
810          // If the instruction was codegen'd with multiple blocks,
811          // inform the FastISel object where to resume inserting.
812          FastIS->setCurrentBlock(BB);
813          continue;
814        }
815
816        // Otherwise, give up on FastISel for the rest of the block.
817        // For now, be a little lenient about non-branch terminators.
818        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
819          if (EnableFastISelVerbose || EnableFastISelAbort) {
820            errs() << "FastISel miss: ";
821            BI->dump();
822          }
823          if (EnableFastISelAbort)
824            // The "fast" selector couldn't handle something and bailed.
825            // For the purpose of debugging, just abort.
826            llvm_unreachable("FastISel didn't select the entire block");
827        }
828        break;
829      }
830    }
831
832    // Run SelectionDAG instruction selection on the remainder of the block
833    // not handled by FastISel. If FastISel is not run, this is the entire
834    // block.
835    if (BI != End) {
836      bool HadTailCall;
837      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
838    }
839
840    FinishBasicBlock();
841  }
842
843  delete FastIS;
844}
845
846void
847SelectionDAGISel::FinishBasicBlock() {
848
849  DEBUG(errs() << "Target-post-processed machine code:\n");
850  DEBUG(BB->dump());
851
852  DEBUG(errs() << "Total amount of phi nodes to update: "
853               << SDB->PHINodesToUpdate.size() << "\n");
854  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
855          errs() << "Node " << i << " : ("
856                 << SDB->PHINodesToUpdate[i].first
857                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
858
859  // Next, now that we know what the last MBB the LLVM BB expanded is, update
860  // PHI nodes in successors.
861  if (SDB->SwitchCases.empty() &&
862      SDB->JTCases.empty() &&
863      SDB->BitTestCases.empty()) {
864    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
865      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
866      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
867             "This is not a machine PHI node that we are updating!");
868      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
869                                                false));
870      PHI->addOperand(MachineOperand::CreateMBB(BB));
871    }
872    SDB->PHINodesToUpdate.clear();
873    return;
874  }
875
876  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
877    // Lower header first, if it wasn't already lowered
878    if (!SDB->BitTestCases[i].Emitted) {
879      // Set the current basic block to the mbb we wish to insert the code into
880      BB = SDB->BitTestCases[i].Parent;
881      SDB->setCurrentBasicBlock(BB);
882      // Emit the code
883      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
884      CurDAG->setRoot(SDB->getRoot());
885      CodeGenAndEmitDAG();
886      SDB->clear();
887    }
888
889    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
890      // Set the current basic block to the mbb we wish to insert the code into
891      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
892      SDB->setCurrentBasicBlock(BB);
893      // Emit the code
894      if (j+1 != ej)
895        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
896                              SDB->BitTestCases[i].Reg,
897                              SDB->BitTestCases[i].Cases[j]);
898      else
899        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
900                              SDB->BitTestCases[i].Reg,
901                              SDB->BitTestCases[i].Cases[j]);
902
903
904      CurDAG->setRoot(SDB->getRoot());
905      CodeGenAndEmitDAG();
906      SDB->clear();
907    }
908
909    // Update PHI Nodes
910    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
911      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
912      MachineBasicBlock *PHIBB = PHI->getParent();
913      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
914             "This is not a machine PHI node that we are updating!");
915      // This is "default" BB. We have two jumps to it. From "header" BB and
916      // from last "case" BB.
917      if (PHIBB == SDB->BitTestCases[i].Default) {
918        PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second,
919                                                  false));
920        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
921        PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second,
922                                                  false));
923        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
924                                                  back().ThisBB));
925      }
926      // One of "cases" BB.
927      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
928           j != ej; ++j) {
929        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
930        if (cBB->succ_end() !=
931            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
932          PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second,
933                                                    false));
934          PHI->addOperand(MachineOperand::CreateMBB(cBB));
935        }
936      }
937    }
938  }
939  SDB->BitTestCases.clear();
940
941  // If the JumpTable record is filled in, then we need to emit a jump table.
942  // Updating the PHI nodes is tricky in this case, since we need to determine
943  // whether the PHI is a successor of the range check MBB or the jump table MBB
944  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
945    // Lower header first, if it wasn't already lowered
946    if (!SDB->JTCases[i].first.Emitted) {
947      // Set the current basic block to the mbb we wish to insert the code into
948      BB = SDB->JTCases[i].first.HeaderBB;
949      SDB->setCurrentBasicBlock(BB);
950      // Emit the code
951      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
952      CurDAG->setRoot(SDB->getRoot());
953      CodeGenAndEmitDAG();
954      SDB->clear();
955    }
956
957    // Set the current basic block to the mbb we wish to insert the code into
958    BB = SDB->JTCases[i].second.MBB;
959    SDB->setCurrentBasicBlock(BB);
960    // Emit the code
961    SDB->visitJumpTable(SDB->JTCases[i].second);
962    CurDAG->setRoot(SDB->getRoot());
963    CodeGenAndEmitDAG();
964    SDB->clear();
965
966    // Update PHI Nodes
967    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
968      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
969      MachineBasicBlock *PHIBB = PHI->getParent();
970      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
971             "This is not a machine PHI node that we are updating!");
972      // "default" BB. We can go there only from header BB.
973      if (PHIBB == SDB->JTCases[i].second.Default) {
974        PHI->addOperand
975          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
976        PHI->addOperand
977          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
978      }
979      // JT BB. Just iterate over successors here
980      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
981        PHI->addOperand
982          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
983        PHI->addOperand(MachineOperand::CreateMBB(BB));
984      }
985    }
986  }
987  SDB->JTCases.clear();
988
989  // If the switch block involved a branch to one of the actual successors, we
990  // need to update PHI nodes in that block.
991  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
992    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
993    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
994           "This is not a machine PHI node that we are updating!");
995    if (BB->isSuccessor(PHI->getParent())) {
996      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
997                                                false));
998      PHI->addOperand(MachineOperand::CreateMBB(BB));
999    }
1000  }
1001
1002  // If we generated any switch lowering information, build and codegen any
1003  // additional DAGs necessary.
1004  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1005    // Set the current basic block to the mbb we wish to insert the code into
1006    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1007    SDB->setCurrentBasicBlock(BB);
1008
1009    // Emit the code
1010    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1011    CurDAG->setRoot(SDB->getRoot());
1012    CodeGenAndEmitDAG();
1013
1014    // Handle any PHI nodes in successors of this chunk, as if we were coming
1015    // from the original BB before switch expansion.  Note that PHI nodes can
1016    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1017    // handle them the right number of times.
1018    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1019      // If new BB's are created during scheduling, the edges may have been
1020      // updated. That is, the edge from ThisBB to BB may have been split and
1021      // BB's predecessor is now another block.
1022      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1023        SDB->EdgeMapping.find(BB);
1024      if (EI != SDB->EdgeMapping.end())
1025        ThisBB = EI->second;
1026      for (MachineBasicBlock::iterator Phi = BB->begin();
1027           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
1028        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
1029        for (unsigned pn = 0; ; ++pn) {
1030          assert(pn != SDB->PHINodesToUpdate.size() &&
1031                 "Didn't find PHI entry!");
1032          if (SDB->PHINodesToUpdate[pn].first == Phi) {
1033            Phi->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[pn].
1034                                                      second, false));
1035            Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1036            break;
1037          }
1038        }
1039      }
1040
1041      // Don't process RHS if same block as LHS.
1042      if (BB == SDB->SwitchCases[i].FalseBB)
1043        SDB->SwitchCases[i].FalseBB = 0;
1044
1045      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1046      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1047      SDB->SwitchCases[i].FalseBB = 0;
1048    }
1049    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1050    SDB->clear();
1051  }
1052  SDB->SwitchCases.clear();
1053
1054  SDB->PHINodesToUpdate.clear();
1055}
1056
1057
1058/// Create the scheduler. If a specific scheduler was specified
1059/// via the SchedulerRegistry, use it, otherwise select the
1060/// one preferred by the target.
1061///
1062ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1063  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1064
1065  if (!Ctor) {
1066    Ctor = ISHeuristic;
1067    RegisterScheduler::setDefault(Ctor);
1068  }
1069
1070  return Ctor(this, OptLevel);
1071}
1072
1073ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1074  return new ScheduleHazardRecognizer();
1075}
1076
1077//===----------------------------------------------------------------------===//
1078// Helper functions used by the generated instruction selector.
1079//===----------------------------------------------------------------------===//
1080// Calls to these methods are generated by tblgen.
1081
1082/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1083/// the dag combiner simplified the 255, we still want to match.  RHS is the
1084/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1085/// specified in the .td file (e.g. 255).
1086bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1087                                    int64_t DesiredMaskS) const {
1088  const APInt &ActualMask = RHS->getAPIntValue();
1089  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1090
1091  // If the actual mask exactly matches, success!
1092  if (ActualMask == DesiredMask)
1093    return true;
1094
1095  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1096  if (ActualMask.intersects(~DesiredMask))
1097    return false;
1098
1099  // Otherwise, the DAG Combiner may have proven that the value coming in is
1100  // either already zero or is not demanded.  Check for known zero input bits.
1101  APInt NeededMask = DesiredMask & ~ActualMask;
1102  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1103    return true;
1104
1105  // TODO: check to see if missing bits are just not demanded.
1106
1107  // Otherwise, this pattern doesn't match.
1108  return false;
1109}
1110
1111/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1112/// the dag combiner simplified the 255, we still want to match.  RHS is the
1113/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1114/// specified in the .td file (e.g. 255).
1115bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1116                                   int64_t DesiredMaskS) const {
1117  const APInt &ActualMask = RHS->getAPIntValue();
1118  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1119
1120  // If the actual mask exactly matches, success!
1121  if (ActualMask == DesiredMask)
1122    return true;
1123
1124  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1125  if (ActualMask.intersects(~DesiredMask))
1126    return false;
1127
1128  // Otherwise, the DAG Combiner may have proven that the value coming in is
1129  // either already zero or is not demanded.  Check for known zero input bits.
1130  APInt NeededMask = DesiredMask & ~ActualMask;
1131
1132  APInt KnownZero, KnownOne;
1133  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1134
1135  // If all the missing bits in the or are already known to be set, match!
1136  if ((NeededMask & KnownOne) == NeededMask)
1137    return true;
1138
1139  // TODO: check to see if missing bits are just not demanded.
1140
1141  // Otherwise, this pattern doesn't match.
1142  return false;
1143}
1144
1145
1146/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1147/// by tblgen.  Others should not call it.
1148void SelectionDAGISel::
1149SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1150  std::vector<SDValue> InOps;
1151  std::swap(InOps, Ops);
1152
1153  Ops.push_back(InOps[0]);  // input chain.
1154  Ops.push_back(InOps[1]);  // input asm string.
1155
1156  unsigned i = 2, e = InOps.size();
1157  if (InOps[e-1].getValueType() == MVT::Flag)
1158    --e;  // Don't process a flag operand if it is here.
1159
1160  while (i != e) {
1161    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1162    if ((Flags & 7) != 4 /*MEM*/) {
1163      // Just skip over this operand, copying the operands verbatim.
1164      Ops.insert(Ops.end(), InOps.begin()+i,
1165                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1166      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1167    } else {
1168      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1169             "Memory operand with multiple values?");
1170      // Otherwise, this is a memory operand.  Ask the target to select it.
1171      std::vector<SDValue> SelOps;
1172      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1173        llvm_report_error("Could not match memory address.  Inline asm"
1174                          " failure!");
1175      }
1176
1177      // Add this to the output node.
1178      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1179                                              MVT::i32));
1180      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1181      i += 2;
1182    }
1183  }
1184
1185  // Add the flag input back if present.
1186  if (e != InOps.size())
1187    Ops.push_back(InOps.back());
1188}
1189
1190/// findFlagUse - Return use of EVT::Flag value produced by the specified
1191/// SDNode.
1192///
1193static SDNode *findFlagUse(SDNode *N) {
1194  unsigned FlagResNo = N->getNumValues()-1;
1195  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1196    SDUse &Use = I.getUse();
1197    if (Use.getResNo() == FlagResNo)
1198      return Use.getUser();
1199  }
1200  return NULL;
1201}
1202
1203/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1204/// This function recursively traverses up the operand chain, ignoring
1205/// certain nodes.
1206static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1207                          SDNode *Root,
1208                          SmallPtrSet<SDNode*, 16> &Visited) {
1209  if (Use->getNodeId() < Def->getNodeId() ||
1210      !Visited.insert(Use))
1211    return false;
1212
1213  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1214    SDNode *N = Use->getOperand(i).getNode();
1215    if (N == Def) {
1216      if (Use == ImmedUse || Use == Root)
1217        continue;  // We are not looking for immediate use.
1218      assert(N != Root);
1219      return true;
1220    }
1221
1222    // Traverse up the operand chain.
1223    if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
1224      return true;
1225  }
1226  return false;
1227}
1228
1229/// isNonImmUse - Start searching from Root up the DAG to check is Def can
1230/// be reached. Return true if that's the case. However, ignore direct uses
1231/// by ImmedUse (which would be U in the example illustrated in
1232/// IsLegalAndProfitableToFold) and by Root (which can happen in the store
1233/// case).
1234/// FIXME: to be really generic, we should allow direct use by any node
1235/// that is being folded. But realisticly since we only fold loads which
1236/// have one non-chain use, we only need to watch out for load/op/store
1237/// and load/op/cmp case where the root (store / cmp) may reach the load via
1238/// its chain operand.
1239static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
1240  SmallPtrSet<SDNode*, 16> Visited;
1241  return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
1242}
1243
1244/// IsLegalAndProfitableToFold - Returns true if the specific operand node N of
1245/// U can be folded during instruction selection that starts at Root and
1246/// folding N is profitable.
1247bool SelectionDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
1248                                                  SDNode *Root) const {
1249  if (OptLevel == CodeGenOpt::None) return false;
1250
1251  // If Root use can somehow reach N through a path that that doesn't contain
1252  // U then folding N would create a cycle. e.g. In the following
1253  // diagram, Root can reach N through X. If N is folded into into Root, then
1254  // X is both a predecessor and a successor of U.
1255  //
1256  //          [N*]           //
1257  //         ^   ^           //
1258  //        /     \          //
1259  //      [U*]    [X]?       //
1260  //        ^     ^          //
1261  //         \   /           //
1262  //          \ /            //
1263  //         [Root*]         //
1264  //
1265  // * indicates nodes to be folded together.
1266  //
1267  // If Root produces a flag, then it gets (even more) interesting. Since it
1268  // will be "glued" together with its flag use in the scheduler, we need to
1269  // check if it might reach N.
1270  //
1271  //          [N*]           //
1272  //         ^   ^           //
1273  //        /     \          //
1274  //      [U*]    [X]?       //
1275  //        ^       ^        //
1276  //         \       \       //
1277  //          \      |       //
1278  //         [Root*] |       //
1279  //          ^      |       //
1280  //          f      |       //
1281  //          |      /       //
1282  //         [Y]    /        //
1283  //           ^   /         //
1284  //           f  /          //
1285  //           | /           //
1286  //          [FU]           //
1287  //
1288  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1289  // (call it Fold), then X is a predecessor of FU and a successor of
1290  // Fold. But since Fold and FU are flagged together, this will create
1291  // a cycle in the scheduling graph.
1292
1293  EVT VT = Root->getValueType(Root->getNumValues()-1);
1294  while (VT == MVT::Flag) {
1295    SDNode *FU = findFlagUse(Root);
1296    if (FU == NULL)
1297      break;
1298    Root = FU;
1299    VT = Root->getValueType(Root->getNumValues()-1);
1300  }
1301
1302  return !isNonImmUse(Root, N, U);
1303}
1304
1305SDNode *SelectionDAGISel::Select_INLINEASM(SDValue N) {
1306  std::vector<SDValue> Ops(N.getNode()->op_begin(), N.getNode()->op_end());
1307  SelectInlineAsmMemoryOperands(Ops);
1308
1309  std::vector<EVT> VTs;
1310  VTs.push_back(MVT::Other);
1311  VTs.push_back(MVT::Flag);
1312  SDValue New = CurDAG->getNode(ISD::INLINEASM, N.getDebugLoc(),
1313                                VTs, &Ops[0], Ops.size());
1314  return New.getNode();
1315}
1316
1317SDNode *SelectionDAGISel::Select_UNDEF(const SDValue &N) {
1318  return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::IMPLICIT_DEF,
1319                              N.getValueType());
1320}
1321
1322SDNode *SelectionDAGISel::Select_EH_LABEL(const SDValue &N) {
1323  SDValue Chain = N.getOperand(0);
1324  unsigned C = cast<LabelSDNode>(N)->getLabelID();
1325  SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);
1326  return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::EH_LABEL,
1327                              MVT::Other, Tmp, Chain);
1328}
1329
1330void SelectionDAGISel::CannotYetSelect(SDValue N) {
1331  std::string msg;
1332  raw_string_ostream Msg(msg);
1333  Msg << "Cannot yet select: ";
1334  N.getNode()->print(Msg, CurDAG);
1335  llvm_report_error(Msg.str());
1336}
1337
1338void SelectionDAGISel::CannotYetSelectIntrinsic(SDValue N) {
1339  errs() << "Cannot yet select: ";
1340  unsigned iid =
1341    cast<ConstantSDNode>(N.getOperand(N.getOperand(0).getValueType() == MVT::Other))->getZExtValue();
1342  if (iid < Intrinsic::num_intrinsics)
1343    llvm_report_error("Cannot yet select: intrinsic %" + Intrinsic::getName((Intrinsic::ID)iid));
1344  else if (const TargetIntrinsicInfo *tii = TM.getIntrinsicInfo())
1345    llvm_report_error(Twine("Cannot yet select: target intrinsic %") +
1346                      tii->getName(iid));
1347}
1348
1349char SelectionDAGISel::ID = 0;
1350