SelectionDAGISel.cpp revision a81e33672bff2d2a45c9b65ac5f6f854aa96b463
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/Statistic.h"
50#include <algorithm>
51using namespace llvm;
52
53STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
54STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
55
56static cl::opt<bool>
57EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
58          cl::desc("Enable verbose messages in the \"fast\" "
59                   "instruction selector"));
60static cl::opt<bool>
61EnableFastISelAbort("fast-isel-abort", cl::Hidden,
62          cl::desc("Enable abort calls when \"fast\" instruction fails"));
63
64#ifndef NDEBUG
65static cl::opt<bool>
66ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
67          cl::desc("Pop up a window to show dags before the first "
68                   "dag combine pass"));
69static cl::opt<bool>
70ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
71          cl::desc("Pop up a window to show dags before legalize types"));
72static cl::opt<bool>
73ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
74          cl::desc("Pop up a window to show dags before legalize"));
75static cl::opt<bool>
76ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the second "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before the post legalize types"
82                   " dag combine pass"));
83static cl::opt<bool>
84ViewISelDAGs("view-isel-dags", cl::Hidden,
85          cl::desc("Pop up a window to show isel dags as they are selected"));
86static cl::opt<bool>
87ViewSchedDAGs("view-sched-dags", cl::Hidden,
88          cl::desc("Pop up a window to show sched dags as they are processed"));
89static cl::opt<bool>
90ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
91      cl::desc("Pop up a window to show SUnit dags after they are processed"));
92#else
93static const bool ViewDAGCombine1 = false,
94                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
95                  ViewDAGCombine2 = false,
96                  ViewDAGCombineLT = false,
97                  ViewISelDAGs = false, ViewSchedDAGs = false,
98                  ViewSUnitDAGs = false;
99#endif
100
101//===---------------------------------------------------------------------===//
102///
103/// RegisterScheduler class - Track the registration of instruction schedulers.
104///
105//===---------------------------------------------------------------------===//
106MachinePassRegistry RegisterScheduler::Registry;
107
108//===---------------------------------------------------------------------===//
109///
110/// ISHeuristic command line option for instruction schedulers.
111///
112//===---------------------------------------------------------------------===//
113static cl::opt<RegisterScheduler::FunctionPassCtor, false,
114               RegisterPassParser<RegisterScheduler> >
115ISHeuristic("pre-RA-sched",
116            cl::init(&createDefaultScheduler),
117            cl::desc("Instruction schedulers available (before register"
118                     " allocation):"));
119
120static RegisterScheduler
121defaultListDAGScheduler("default", "Best scheduler for the target",
122                        createDefaultScheduler);
123
124namespace llvm {
125  //===--------------------------------------------------------------------===//
126  /// createDefaultScheduler - This creates an instruction scheduler appropriate
127  /// for the target.
128  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
129                                             CodeGenOpt::Level OptLevel) {
130    const TargetLowering &TLI = IS->getTargetLowering();
131
132    if (OptLevel == CodeGenOpt::None)
133      return createFastDAGScheduler(IS, OptLevel);
134    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
135      return createTDListDAGScheduler(IS, OptLevel);
136    assert(TLI.getSchedulingPreference() ==
137           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
138    return createBURRListDAGScheduler(IS, OptLevel);
139  }
140}
141
142// EmitInstrWithCustomInserter - This method should be implemented by targets
143// that mark instructions with the 'usesCustomInserter' flag.  These
144// instructions are special in various ways, which require special support to
145// insert.  The specified MachineInstr is created but not inserted into any
146// basic blocks, and this method is called to expand it into a sequence of
147// instructions, potentially also creating new basic blocks and control flow.
148// When new basic blocks are inserted and the edges from MBB to its successors
149// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
150// DenseMap.
151MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
152                                                         MachineBasicBlock *MBB,
153                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
154#ifndef NDEBUG
155  dbgs() << "If a target marks an instruction with "
156          "'usesCustomInserter', it must implement "
157          "TargetLowering::EmitInstrWithCustomInserter!";
158#endif
159  llvm_unreachable(0);
160  return 0;
161}
162
163//===----------------------------------------------------------------------===//
164// SelectionDAGISel code
165//===----------------------------------------------------------------------===//
166
167SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
168  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
169  FuncInfo(new FunctionLoweringInfo(TLI)),
170  CurDAG(new SelectionDAG(tm, *FuncInfo)),
171  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
172  GFI(),
173  OptLevel(OL),
174  DAGSize(0)
175{}
176
177SelectionDAGISel::~SelectionDAGISel() {
178  delete SDB;
179  delete CurDAG;
180  delete FuncInfo;
181}
182
183void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
184  AU.addRequired<AliasAnalysis>();
185  AU.addPreserved<AliasAnalysis>();
186  AU.addRequired<GCModuleInfo>();
187  AU.addPreserved<GCModuleInfo>();
188  MachineFunctionPass::getAnalysisUsage(AU);
189}
190
191bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
192  // Do some sanity-checking on the command-line options.
193  assert((!EnableFastISelVerbose || EnableFastISel) &&
194         "-fast-isel-verbose requires -fast-isel");
195  assert((!EnableFastISelAbort || EnableFastISel) &&
196         "-fast-isel-abort requires -fast-isel");
197
198  const Function &Fn = *mf.getFunction();
199  const TargetInstrInfo &TII = *TM.getInstrInfo();
200  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
201
202  MF = &mf;
203  RegInfo = &MF->getRegInfo();
204  AA = &getAnalysis<AliasAnalysis>();
205  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
206
207  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
208
209  CurDAG->init(*MF);
210  FuncInfo->set(Fn, *MF, EnableFastISel);
211  SDB->init(GFI, *AA);
212
213  SelectAllBasicBlocks(Fn);
214
215  // Release function-specific state. SDB and CurDAG are already cleared
216  // at this point.
217  FuncInfo->clear();
218
219  // If the first basic block in the function has live ins that need to be
220  // copied into vregs, emit the copies into the top of the block before
221  // emitting the code for the block.
222  RegInfo->EmitLiveInCopies(MF->begin(), TRI, TII);
223
224  return true;
225}
226
227MachineBasicBlock *
228SelectionDAGISel::SelectBasicBlock(MachineBasicBlock *BB,
229                                   const BasicBlock *LLVMBB,
230                                   BasicBlock::const_iterator Begin,
231                                   BasicBlock::const_iterator End,
232                                   bool &HadTailCall) {
233  // Lower all of the non-terminator instructions. If a call is emitted
234  // as a tail call, cease emitting nodes for this block. Terminators
235  // are handled below.
236  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
237    SDB->visit(*I);
238
239  // Make sure the root of the DAG is up-to-date.
240  CurDAG->setRoot(SDB->getControlRoot());
241
242  // Final step, emit the lowered DAG as machine code.
243  BB = CodeGenAndEmitDAG(BB);
244  HadTailCall = SDB->HasTailCall;
245  SDB->clear();
246  return BB;
247}
248
249namespace {
250/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
251/// nodes from the worklist.
252class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
253  SmallVector<SDNode*, 128> &Worklist;
254  SmallPtrSet<SDNode*, 128> &InWorklist;
255public:
256  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
257                       SmallPtrSet<SDNode*, 128> &inwl)
258    : Worklist(wl), InWorklist(inwl) {}
259
260  void RemoveFromWorklist(SDNode *N) {
261    if (!InWorklist.erase(N)) return;
262
263    SmallVector<SDNode*, 128>::iterator I =
264    std::find(Worklist.begin(), Worklist.end(), N);
265    assert(I != Worklist.end() && "Not in worklist");
266
267    *I = Worklist.back();
268    Worklist.pop_back();
269  }
270
271  virtual void NodeDeleted(SDNode *N, SDNode *E) {
272    RemoveFromWorklist(N);
273  }
274
275  virtual void NodeUpdated(SDNode *N) {
276    // Ignore updates.
277  }
278};
279}
280
281/// TrivialTruncElim - Eliminate some trivial nops that can result from
282/// ShrinkDemandedOps: (trunc (ext n)) -> n.
283static bool TrivialTruncElim(SDValue Op,
284                             TargetLowering::TargetLoweringOpt &TLO) {
285  SDValue N0 = Op.getOperand(0);
286  EVT VT = Op.getValueType();
287  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
288       N0.getOpcode() == ISD::SIGN_EXTEND ||
289       N0.getOpcode() == ISD::ANY_EXTEND) &&
290      N0.getOperand(0).getValueType() == VT) {
291    return TLO.CombineTo(Op, N0.getOperand(0));
292  }
293  return false;
294}
295
296/// ShrinkDemandedOps - A late transformation pass that shrink expressions
297/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
298/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
299void SelectionDAGISel::ShrinkDemandedOps() {
300  SmallVector<SDNode*, 128> Worklist;
301  SmallPtrSet<SDNode*, 128> InWorklist;
302
303  // Add all the dag nodes to the worklist.
304  Worklist.reserve(CurDAG->allnodes_size());
305  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
306       E = CurDAG->allnodes_end(); I != E; ++I) {
307    Worklist.push_back(I);
308    InWorklist.insert(I);
309  }
310
311  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true, true, true);
312  while (!Worklist.empty()) {
313    SDNode *N = Worklist.pop_back_val();
314    InWorklist.erase(N);
315
316    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
317      // Deleting this node may make its operands dead, add them to the worklist
318      // if they aren't already there.
319      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
320        if (InWorklist.insert(N->getOperand(i).getNode()))
321          Worklist.push_back(N->getOperand(i).getNode());
322
323      CurDAG->DeleteNode(N);
324      continue;
325    }
326
327    // Run ShrinkDemandedOp on scalar binary operations.
328    if (N->getNumValues() != 1 ||
329        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
330      continue;
331
332    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
333    APInt Demanded = APInt::getAllOnesValue(BitWidth);
334    APInt KnownZero, KnownOne;
335    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
336                                  KnownZero, KnownOne, TLO) &&
337        (N->getOpcode() != ISD::TRUNCATE ||
338         !TrivialTruncElim(SDValue(N, 0), TLO)))
339      continue;
340
341    // Revisit the node.
342    assert(!InWorklist.count(N) && "Already in worklist");
343    Worklist.push_back(N);
344    InWorklist.insert(N);
345
346    // Replace the old value with the new one.
347    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
348          TLO.Old.getNode()->dump(CurDAG);
349          errs() << "\nWith: ";
350          TLO.New.getNode()->dump(CurDAG);
351          errs() << '\n');
352
353    if (InWorklist.insert(TLO.New.getNode()))
354      Worklist.push_back(TLO.New.getNode());
355
356    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
357    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
358
359    if (!TLO.Old.getNode()->use_empty()) continue;
360
361    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
362         i != e; ++i) {
363      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
364      if (OpNode->hasOneUse()) {
365        // Add OpNode to the end of the list to revisit.
366        DeadNodes.RemoveFromWorklist(OpNode);
367        Worklist.push_back(OpNode);
368        InWorklist.insert(OpNode);
369      }
370    }
371
372    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
373    CurDAG->DeleteNode(TLO.Old.getNode());
374  }
375}
376
377void SelectionDAGISel::ComputeLiveOutVRegInfo() {
378  SmallPtrSet<SDNode*, 128> VisitedNodes;
379  SmallVector<SDNode*, 128> Worklist;
380
381  Worklist.push_back(CurDAG->getRoot().getNode());
382
383  APInt Mask;
384  APInt KnownZero;
385  APInt KnownOne;
386
387  do {
388    SDNode *N = Worklist.pop_back_val();
389
390    // If we've already seen this node, ignore it.
391    if (!VisitedNodes.insert(N))
392      continue;
393
394    // Otherwise, add all chain operands to the worklist.
395    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
396      if (N->getOperand(i).getValueType() == MVT::Other)
397        Worklist.push_back(N->getOperand(i).getNode());
398
399    // If this is a CopyToReg with a vreg dest, process it.
400    if (N->getOpcode() != ISD::CopyToReg)
401      continue;
402
403    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
404    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
405      continue;
406
407    // Ignore non-scalar or non-integer values.
408    SDValue Src = N->getOperand(2);
409    EVT SrcVT = Src.getValueType();
410    if (!SrcVT.isInteger() || SrcVT.isVector())
411      continue;
412
413    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
414    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
415    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
416
417    // Only install this information if it tells us something.
418    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
419      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
420      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
421        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
422      FunctionLoweringInfo::LiveOutInfo &LOI =
423        FuncInfo->LiveOutRegInfo[DestReg];
424      LOI.NumSignBits = NumSignBits;
425      LOI.KnownOne = KnownOne;
426      LOI.KnownZero = KnownZero;
427    }
428  } while (!Worklist.empty());
429}
430
431MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
432  std::string GroupName;
433  if (TimePassesIsEnabled)
434    GroupName = "Instruction Selection and Scheduling";
435  std::string BlockName;
436  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
437      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
438      ViewSUnitDAGs)
439    BlockName = MF->getFunction()->getNameStr() + ":" +
440                BB->getBasicBlock()->getNameStr();
441
442  DEBUG(dbgs() << "Initial selection DAG:\n");
443  DEBUG(CurDAG->dump());
444
445  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
446
447  // Run the DAG combiner in pre-legalize mode.
448  if (TimePassesIsEnabled) {
449    NamedRegionTimer T("DAG Combining 1", GroupName);
450    CurDAG->Combine(Unrestricted, *AA, OptLevel);
451  } else {
452    CurDAG->Combine(Unrestricted, *AA, OptLevel);
453  }
454
455  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
456  DEBUG(CurDAG->dump());
457
458  // Second step, hack on the DAG until it only uses operations and types that
459  // the target supports.
460  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
461                                               BlockName);
462
463  bool Changed;
464  if (TimePassesIsEnabled) {
465    NamedRegionTimer T("Type Legalization", GroupName);
466    Changed = CurDAG->LegalizeTypes();
467  } else {
468    Changed = CurDAG->LegalizeTypes();
469  }
470
471  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
472  DEBUG(CurDAG->dump());
473
474  if (Changed) {
475    if (ViewDAGCombineLT)
476      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
477
478    // Run the DAG combiner in post-type-legalize mode.
479    if (TimePassesIsEnabled) {
480      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
481      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
482    } else {
483      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
484    }
485
486    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
487    DEBUG(CurDAG->dump());
488  }
489
490  if (TimePassesIsEnabled) {
491    NamedRegionTimer T("Vector Legalization", GroupName);
492    Changed = CurDAG->LegalizeVectors();
493  } else {
494    Changed = CurDAG->LegalizeVectors();
495  }
496
497  if (Changed) {
498    if (TimePassesIsEnabled) {
499      NamedRegionTimer T("Type Legalization 2", GroupName);
500      CurDAG->LegalizeTypes();
501    } else {
502      CurDAG->LegalizeTypes();
503    }
504
505    if (ViewDAGCombineLT)
506      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
507
508    // Run the DAG combiner in post-type-legalize mode.
509    if (TimePassesIsEnabled) {
510      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
511      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
512    } else {
513      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
514    }
515
516    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
517    DEBUG(CurDAG->dump());
518  }
519
520  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
521
522  if (TimePassesIsEnabled) {
523    NamedRegionTimer T("DAG Legalization", GroupName);
524    CurDAG->Legalize(OptLevel);
525  } else {
526    CurDAG->Legalize(OptLevel);
527  }
528
529  DEBUG(dbgs() << "Legalized selection DAG:\n");
530  DEBUG(CurDAG->dump());
531
532  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
533
534  // Run the DAG combiner in post-legalize mode.
535  if (TimePassesIsEnabled) {
536    NamedRegionTimer T("DAG Combining 2", GroupName);
537    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
538  } else {
539    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
540  }
541
542  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
543  DEBUG(CurDAG->dump());
544
545  if (OptLevel != CodeGenOpt::None) {
546    ShrinkDemandedOps();
547    ComputeLiveOutVRegInfo();
548  }
549
550  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
551
552  // Third, instruction select all of the operations to machine code, adding the
553  // code to the MachineBasicBlock.
554  if (TimePassesIsEnabled) {
555    NamedRegionTimer T("Instruction Selection", GroupName);
556    DoInstructionSelection();
557  } else {
558    DoInstructionSelection();
559  }
560
561  DEBUG(dbgs() << "Selected selection DAG:\n");
562  DEBUG(CurDAG->dump());
563
564  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
565
566  // Schedule machine code.
567  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
568  if (TimePassesIsEnabled) {
569    NamedRegionTimer T("Instruction Scheduling", GroupName);
570    Scheduler->Run(CurDAG, BB, BB->end());
571  } else {
572    Scheduler->Run(CurDAG, BB, BB->end());
573  }
574
575  if (ViewSUnitDAGs) Scheduler->viewGraph();
576
577  // Emit machine code to BB.  This can change 'BB' to the last block being
578  // inserted into.
579  if (TimePassesIsEnabled) {
580    NamedRegionTimer T("Instruction Creation", GroupName);
581    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
582  } else {
583    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
584  }
585
586  // Free the scheduler state.
587  if (TimePassesIsEnabled) {
588    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
589    delete Scheduler;
590  } else {
591    delete Scheduler;
592  }
593
594  return BB;
595}
596
597void SelectionDAGISel::DoInstructionSelection() {
598  DEBUG(errs() << "===== Instruction selection begins:\n");
599
600  PreprocessISelDAG();
601
602  // Select target instructions for the DAG.
603  {
604    // Number all nodes with a topological order and set DAGSize.
605    DAGSize = CurDAG->AssignTopologicalOrder();
606
607    // Create a dummy node (which is not added to allnodes), that adds
608    // a reference to the root node, preventing it from being deleted,
609    // and tracking any changes of the root.
610    HandleSDNode Dummy(CurDAG->getRoot());
611    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
612    ++ISelPosition;
613
614    // The AllNodes list is now topological-sorted. Visit the
615    // nodes by starting at the end of the list (the root of the
616    // graph) and preceding back toward the beginning (the entry
617    // node).
618    while (ISelPosition != CurDAG->allnodes_begin()) {
619      SDNode *Node = --ISelPosition;
620      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
621      // but there are currently some corner cases that it misses. Also, this
622      // makes it theoretically possible to disable the DAGCombiner.
623      if (Node->use_empty())
624        continue;
625
626      SDNode *ResNode = Select(Node);
627
628      // FIXME: This is pretty gross.  'Select' should be changed to not return
629      // anything at all and this code should be nuked with a tactical strike.
630
631      // If node should not be replaced, continue with the next one.
632      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
633        continue;
634      // Replace node.
635      if (ResNode)
636        ReplaceUses(Node, ResNode);
637
638      // If after the replacement this node is not used any more,
639      // remove this dead node.
640      if (Node->use_empty()) { // Don't delete EntryToken, etc.
641        ISelUpdater ISU(ISelPosition);
642        CurDAG->RemoveDeadNode(Node, &ISU);
643      }
644    }
645
646    CurDAG->setRoot(Dummy.getValue());
647  }
648  DEBUG(errs() << "===== Instruction selection ends:\n");
649
650  PostprocessISelDAG();
651}
652
653/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
654/// do other setup for EH landing-pad blocks.
655void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
656  // Add a label to mark the beginning of the landing pad.  Deletion of the
657  // landing pad can thus be detected via the MachineModuleInfo.
658  MCSymbol *Label = MF->getMMI().addLandingPad(BB);
659
660  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
661  BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
662
663  // Mark exception register as live in.
664  unsigned Reg = TLI.getExceptionAddressRegister();
665  if (Reg) BB->addLiveIn(Reg);
666
667  // Mark exception selector register as live in.
668  Reg = TLI.getExceptionSelectorRegister();
669  if (Reg) BB->addLiveIn(Reg);
670
671  // FIXME: Hack around an exception handling flaw (PR1508): the personality
672  // function and list of typeids logically belong to the invoke (or, if you
673  // like, the basic block containing the invoke), and need to be associated
674  // with it in the dwarf exception handling tables.  Currently however the
675  // information is provided by an intrinsic (eh.selector) that can be moved
676  // to unexpected places by the optimizers: if the unwind edge is critical,
677  // then breaking it can result in the intrinsics being in the successor of
678  // the landing pad, not the landing pad itself.  This results
679  // in exceptions not being caught because no typeids are associated with
680  // the invoke.  This may not be the only way things can go wrong, but it
681  // is the only way we try to work around for the moment.
682  const BasicBlock *LLVMBB = BB->getBasicBlock();
683  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
684
685  if (Br && Br->isUnconditional()) { // Critical edge?
686    BasicBlock::const_iterator I, E;
687    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
688      if (isa<EHSelectorInst>(I))
689        break;
690
691    if (I == E)
692      // No catch info found - try to extract some from the successor.
693      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
694  }
695}
696
697void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
698  // Initialize the Fast-ISel state, if needed.
699  FastISel *FastIS = 0;
700  if (EnableFastISel)
701    FastIS = TLI.createFastISel(*MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
702                                FuncInfo->StaticAllocaMap,
703                                FuncInfo->PHINodesToUpdate
704#ifndef NDEBUG
705                                , FuncInfo->CatchInfoLost
706#endif
707                                );
708
709  // Iterate over all basic blocks in the function.
710  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
711    const BasicBlock *LLVMBB = &*I;
712    MachineBasicBlock *BB = FuncInfo->MBBMap[LLVMBB];
713
714    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
715    BasicBlock::const_iterator const End = LLVMBB->end();
716    BasicBlock::const_iterator BI = Begin;
717
718    // Lower any arguments needed in this block if this is the entry block.
719    bool SuppressFastISel = false;
720    if (LLVMBB == &Fn.getEntryBlock()) {
721      LowerArguments(LLVMBB);
722
723      // If any of the arguments has the byval attribute, forgo
724      // fast-isel in the entry block.
725      if (FastIS) {
726        unsigned j = 1;
727        for (Function::const_arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
728             I != E; ++I, ++j)
729          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
730            if (EnableFastISelVerbose || EnableFastISelAbort)
731              dbgs() << "FastISel skips entry block due to byval argument\n";
732            SuppressFastISel = true;
733            break;
734          }
735      }
736    }
737
738    // Setup an EH landing-pad block.
739    if (BB->isLandingPad())
740      PrepareEHLandingPad(BB);
741
742    // Before doing SelectionDAG ISel, see if FastISel has been requested.
743    if (FastIS && !SuppressFastISel) {
744      // Emit code for any incoming arguments. This must happen before
745      // beginning FastISel on the entry block.
746      if (LLVMBB == &Fn.getEntryBlock()) {
747        CurDAG->setRoot(SDB->getControlRoot());
748        BB = CodeGenAndEmitDAG(BB);
749        SDB->clear();
750      }
751      FastIS->startNewBlock(BB);
752      // Do FastISel on as many instructions as possible.
753      for (; BI != End; ++BI) {
754        // Just before the terminator instruction, insert instructions to
755        // feed PHI nodes in successor blocks.
756        if (isa<TerminatorInst>(BI))
757          if (!FastIS->HandlePHINodesInSuccessorBlocks(LLVMBB)) {
758            ++NumFastIselFailures;
759            if (EnableFastISelVerbose || EnableFastISelAbort) {
760              dbgs() << "FastISel miss: ";
761              BI->dump();
762            }
763            assert(!EnableFastISelAbort &&
764                   "FastISel didn't handle a PHI in a successor");
765            break;
766          }
767
768        // Try to select the instruction with FastISel.
769        if (FastIS->SelectInstruction(BI))
770          continue;
771
772        // Then handle certain instructions as single-LLVM-Instruction blocks.
773        if (isa<CallInst>(BI)) {
774          ++NumFastIselFailures;
775          if (EnableFastISelVerbose || EnableFastISelAbort) {
776            dbgs() << "FastISel missed call: ";
777            BI->dump();
778          }
779
780          if (!BI->getType()->isVoidTy() && !BI->use_empty()) {
781            unsigned &R = FuncInfo->ValueMap[BI];
782            if (!R)
783              R = FuncInfo->CreateRegForValue(BI);
784          }
785
786          bool HadTailCall = false;
787          BB = SelectBasicBlock(BB, LLVMBB, BI, llvm::next(BI), HadTailCall);
788
789          // If the call was emitted as a tail call, we're done with the block.
790          if (HadTailCall) {
791            BI = End;
792            break;
793          }
794
795          // If the instruction was codegen'd with multiple blocks,
796          // inform the FastISel object where to resume inserting.
797          FastIS->setCurrentBlock(BB);
798          continue;
799        }
800
801        // Otherwise, give up on FastISel for the rest of the block.
802        // For now, be a little lenient about non-branch terminators.
803        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
804          ++NumFastIselFailures;
805          if (EnableFastISelVerbose || EnableFastISelAbort) {
806            dbgs() << "FastISel miss: ";
807            BI->dump();
808          }
809          if (EnableFastISelAbort)
810            // The "fast" selector couldn't handle something and bailed.
811            // For the purpose of debugging, just abort.
812            llvm_unreachable("FastISel didn't select the entire block");
813        }
814        break;
815      }
816    }
817
818    // Run SelectionDAG instruction selection on the remainder of the block
819    // not handled by FastISel. If FastISel is not run, this is the entire
820    // block.
821    if (BI != End) {
822      bool HadTailCall;
823      BB = SelectBasicBlock(BB, LLVMBB, BI, End, HadTailCall);
824    }
825
826    FinishBasicBlock(BB);
827    FuncInfo->PHINodesToUpdate.clear();
828  }
829
830  delete FastIS;
831}
832
833void
834SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
835
836  DEBUG(dbgs() << "Target-post-processed machine code:\n");
837  DEBUG(BB->dump());
838
839  DEBUG(dbgs() << "Total amount of phi nodes to update: "
840               << FuncInfo->PHINodesToUpdate.size() << "\n");
841  DEBUG(for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
842          dbgs() << "Node " << i << " : ("
843                 << FuncInfo->PHINodesToUpdate[i].first
844                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
845
846  // Next, now that we know what the last MBB the LLVM BB expanded is, update
847  // PHI nodes in successors.
848  if (SDB->SwitchCases.empty() &&
849      SDB->JTCases.empty() &&
850      SDB->BitTestCases.empty()) {
851    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
852      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
853      assert(PHI->isPHI() &&
854             "This is not a machine PHI node that we are updating!");
855      if (!BB->isSuccessor(PHI->getParent()))
856        continue;
857      PHI->addOperand(
858        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
859      PHI->addOperand(MachineOperand::CreateMBB(BB));
860    }
861    return;
862  }
863
864  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
865    // Lower header first, if it wasn't already lowered
866    if (!SDB->BitTestCases[i].Emitted) {
867      // Set the current basic block to the mbb we wish to insert the code into
868      BB = SDB->BitTestCases[i].Parent;
869      // Emit the code
870      SDB->visitBitTestHeader(SDB->BitTestCases[i], BB);
871      CurDAG->setRoot(SDB->getRoot());
872      BB = CodeGenAndEmitDAG(BB);
873      SDB->clear();
874    }
875
876    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
877      // Set the current basic block to the mbb we wish to insert the code into
878      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
879      // Emit the code
880      if (j+1 != ej)
881        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
882                              SDB->BitTestCases[i].Reg,
883                              SDB->BitTestCases[i].Cases[j],
884                              BB);
885      else
886        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
887                              SDB->BitTestCases[i].Reg,
888                              SDB->BitTestCases[i].Cases[j],
889                              BB);
890
891
892      CurDAG->setRoot(SDB->getRoot());
893      BB = CodeGenAndEmitDAG(BB);
894      SDB->clear();
895    }
896
897    // Update PHI Nodes
898    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
899         pi != pe; ++pi) {
900      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
901      MachineBasicBlock *PHIBB = PHI->getParent();
902      assert(PHI->isPHI() &&
903             "This is not a machine PHI node that we are updating!");
904      // This is "default" BB. We have two jumps to it. From "header" BB and
905      // from last "case" BB.
906      if (PHIBB == SDB->BitTestCases[i].Default) {
907        PHI->addOperand(MachineOperand::
908                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
909                                  false));
910        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
911        PHI->addOperand(MachineOperand::
912                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
913                                  false));
914        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
915                                                  back().ThisBB));
916      }
917      // One of "cases" BB.
918      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
919           j != ej; ++j) {
920        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
921        if (cBB->isSuccessor(PHIBB)) {
922          PHI->addOperand(MachineOperand::
923                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
924                                    false));
925          PHI->addOperand(MachineOperand::CreateMBB(cBB));
926        }
927      }
928    }
929  }
930  SDB->BitTestCases.clear();
931
932  // If the JumpTable record is filled in, then we need to emit a jump table.
933  // Updating the PHI nodes is tricky in this case, since we need to determine
934  // whether the PHI is a successor of the range check MBB or the jump table MBB
935  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
936    // Lower header first, if it wasn't already lowered
937    if (!SDB->JTCases[i].first.Emitted) {
938      // Set the current basic block to the mbb we wish to insert the code into
939      BB = SDB->JTCases[i].first.HeaderBB;
940      // Emit the code
941      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
942                                BB);
943      CurDAG->setRoot(SDB->getRoot());
944      BB = CodeGenAndEmitDAG(BB);
945      SDB->clear();
946    }
947
948    // Set the current basic block to the mbb we wish to insert the code into
949    BB = SDB->JTCases[i].second.MBB;
950    // Emit the code
951    SDB->visitJumpTable(SDB->JTCases[i].second);
952    CurDAG->setRoot(SDB->getRoot());
953    BB = CodeGenAndEmitDAG(BB);
954    SDB->clear();
955
956    // Update PHI Nodes
957    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
958         pi != pe; ++pi) {
959      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
960      MachineBasicBlock *PHIBB = PHI->getParent();
961      assert(PHI->isPHI() &&
962             "This is not a machine PHI node that we are updating!");
963      // "default" BB. We can go there only from header BB.
964      if (PHIBB == SDB->JTCases[i].second.Default) {
965        PHI->addOperand
966          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
967                                     false));
968        PHI->addOperand
969          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
970      }
971      // JT BB. Just iterate over successors here
972      if (BB->isSuccessor(PHIBB)) {
973        PHI->addOperand
974          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
975                                     false));
976        PHI->addOperand(MachineOperand::CreateMBB(BB));
977      }
978    }
979  }
980  SDB->JTCases.clear();
981
982  // If the switch block involved a branch to one of the actual successors, we
983  // need to update PHI nodes in that block.
984  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
985    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
986    assert(PHI->isPHI() &&
987           "This is not a machine PHI node that we are updating!");
988    if (BB->isSuccessor(PHI->getParent())) {
989      PHI->addOperand(
990        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
991      PHI->addOperand(MachineOperand::CreateMBB(BB));
992    }
993  }
994
995  // If we generated any switch lowering information, build and codegen any
996  // additional DAGs necessary.
997  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
998    // Set the current basic block to the mbb we wish to insert the code into
999    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1000
1001    // Emit the code
1002    SDB->visitSwitchCase(SDB->SwitchCases[i], BB);
1003    CurDAG->setRoot(SDB->getRoot());
1004    BB = CodeGenAndEmitDAG(BB);
1005
1006    // Handle any PHI nodes in successors of this chunk, as if we were coming
1007    // from the original BB before switch expansion.  Note that PHI nodes can
1008    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1009    // handle them the right number of times.
1010    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1011      // If new BB's are created during scheduling, the edges may have been
1012      // updated. That is, the edge from ThisBB to BB may have been split and
1013      // BB's predecessor is now another block.
1014      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1015        SDB->EdgeMapping.find(BB);
1016      if (EI != SDB->EdgeMapping.end())
1017        ThisBB = EI->second;
1018
1019      // BB may have been removed from the CFG if a branch was constant folded.
1020      if (ThisBB->isSuccessor(BB)) {
1021        for (MachineBasicBlock::iterator Phi = BB->begin();
1022             Phi != BB->end() && Phi->isPHI();
1023             ++Phi) {
1024          // This value for this PHI node is recorded in PHINodesToUpdate.
1025          for (unsigned pn = 0; ; ++pn) {
1026            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1027                   "Didn't find PHI entry!");
1028            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1029              Phi->addOperand(MachineOperand::
1030                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1031                                        false));
1032              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1033              break;
1034            }
1035          }
1036        }
1037      }
1038
1039      // Don't process RHS if same block as LHS.
1040      if (BB == SDB->SwitchCases[i].FalseBB)
1041        SDB->SwitchCases[i].FalseBB = 0;
1042
1043      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1044      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1045      SDB->SwitchCases[i].FalseBB = 0;
1046    }
1047    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1048    SDB->clear();
1049  }
1050  SDB->SwitchCases.clear();
1051}
1052
1053
1054/// Create the scheduler. If a specific scheduler was specified
1055/// via the SchedulerRegistry, use it, otherwise select the
1056/// one preferred by the target.
1057///
1058ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1059  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1060
1061  if (!Ctor) {
1062    Ctor = ISHeuristic;
1063    RegisterScheduler::setDefault(Ctor);
1064  }
1065
1066  return Ctor(this, OptLevel);
1067}
1068
1069ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1070  return new ScheduleHazardRecognizer();
1071}
1072
1073//===----------------------------------------------------------------------===//
1074// Helper functions used by the generated instruction selector.
1075//===----------------------------------------------------------------------===//
1076// Calls to these methods are generated by tblgen.
1077
1078/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1079/// the dag combiner simplified the 255, we still want to match.  RHS is the
1080/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1081/// specified in the .td file (e.g. 255).
1082bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1083                                    int64_t DesiredMaskS) const {
1084  const APInt &ActualMask = RHS->getAPIntValue();
1085  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1086
1087  // If the actual mask exactly matches, success!
1088  if (ActualMask == DesiredMask)
1089    return true;
1090
1091  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1092  if (ActualMask.intersects(~DesiredMask))
1093    return false;
1094
1095  // Otherwise, the DAG Combiner may have proven that the value coming in is
1096  // either already zero or is not demanded.  Check for known zero input bits.
1097  APInt NeededMask = DesiredMask & ~ActualMask;
1098  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1099    return true;
1100
1101  // TODO: check to see if missing bits are just not demanded.
1102
1103  // Otherwise, this pattern doesn't match.
1104  return false;
1105}
1106
1107/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1108/// the dag combiner simplified the 255, we still want to match.  RHS is the
1109/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1110/// specified in the .td file (e.g. 255).
1111bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1112                                   int64_t DesiredMaskS) const {
1113  const APInt &ActualMask = RHS->getAPIntValue();
1114  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1115
1116  // If the actual mask exactly matches, success!
1117  if (ActualMask == DesiredMask)
1118    return true;
1119
1120  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1121  if (ActualMask.intersects(~DesiredMask))
1122    return false;
1123
1124  // Otherwise, the DAG Combiner may have proven that the value coming in is
1125  // either already zero or is not demanded.  Check for known zero input bits.
1126  APInt NeededMask = DesiredMask & ~ActualMask;
1127
1128  APInt KnownZero, KnownOne;
1129  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1130
1131  // If all the missing bits in the or are already known to be set, match!
1132  if ((NeededMask & KnownOne) == NeededMask)
1133    return true;
1134
1135  // TODO: check to see if missing bits are just not demanded.
1136
1137  // Otherwise, this pattern doesn't match.
1138  return false;
1139}
1140
1141
1142/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1143/// by tblgen.  Others should not call it.
1144void SelectionDAGISel::
1145SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1146  std::vector<SDValue> InOps;
1147  std::swap(InOps, Ops);
1148
1149  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1150  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1151  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1152
1153  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1154  if (InOps[e-1].getValueType() == MVT::Flag)
1155    --e;  // Don't process a flag operand if it is here.
1156
1157  while (i != e) {
1158    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1159    if (!InlineAsm::isMemKind(Flags)) {
1160      // Just skip over this operand, copying the operands verbatim.
1161      Ops.insert(Ops.end(), InOps.begin()+i,
1162                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1163      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1164    } else {
1165      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1166             "Memory operand with multiple values?");
1167      // Otherwise, this is a memory operand.  Ask the target to select it.
1168      std::vector<SDValue> SelOps;
1169      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1170        report_fatal_error("Could not match memory address.  Inline asm"
1171                           " failure!");
1172
1173      // Add this to the output node.
1174      unsigned NewFlags =
1175        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1176      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1177      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1178      i += 2;
1179    }
1180  }
1181
1182  // Add the flag input back if present.
1183  if (e != InOps.size())
1184    Ops.push_back(InOps.back());
1185}
1186
1187/// findFlagUse - Return use of EVT::Flag value produced by the specified
1188/// SDNode.
1189///
1190static SDNode *findFlagUse(SDNode *N) {
1191  unsigned FlagResNo = N->getNumValues()-1;
1192  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1193    SDUse &Use = I.getUse();
1194    if (Use.getResNo() == FlagResNo)
1195      return Use.getUser();
1196  }
1197  return NULL;
1198}
1199
1200/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1201/// This function recursively traverses up the operand chain, ignoring
1202/// certain nodes.
1203static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1204                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1205                          bool IgnoreChains) {
1206  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1207  // greater than all of its (recursive) operands.  If we scan to a point where
1208  // 'use' is smaller than the node we're scanning for, then we know we will
1209  // never find it.
1210  //
1211  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1212  // happen because we scan down to newly selected nodes in the case of flag
1213  // uses.
1214  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1215    return false;
1216
1217  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1218  // won't fail if we scan it again.
1219  if (!Visited.insert(Use))
1220    return false;
1221
1222  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1223    // Ignore chain uses, they are validated by HandleMergeInputChains.
1224    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1225      continue;
1226
1227    SDNode *N = Use->getOperand(i).getNode();
1228    if (N == Def) {
1229      if (Use == ImmedUse || Use == Root)
1230        continue;  // We are not looking for immediate use.
1231      assert(N != Root);
1232      return true;
1233    }
1234
1235    // Traverse up the operand chain.
1236    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1237      return true;
1238  }
1239  return false;
1240}
1241
1242/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1243/// operand node N of U during instruction selection that starts at Root.
1244bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1245                                          SDNode *Root) const {
1246  if (OptLevel == CodeGenOpt::None) return false;
1247  return N.hasOneUse();
1248}
1249
1250/// IsLegalToFold - Returns true if the specific operand node N of
1251/// U can be folded during instruction selection that starts at Root.
1252bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1253                                     CodeGenOpt::Level OptLevel,
1254                                     bool IgnoreChains) {
1255  if (OptLevel == CodeGenOpt::None) return false;
1256
1257  // If Root use can somehow reach N through a path that that doesn't contain
1258  // U then folding N would create a cycle. e.g. In the following
1259  // diagram, Root can reach N through X. If N is folded into into Root, then
1260  // X is both a predecessor and a successor of U.
1261  //
1262  //          [N*]           //
1263  //         ^   ^           //
1264  //        /     \          //
1265  //      [U*]    [X]?       //
1266  //        ^     ^          //
1267  //         \   /           //
1268  //          \ /            //
1269  //         [Root*]         //
1270  //
1271  // * indicates nodes to be folded together.
1272  //
1273  // If Root produces a flag, then it gets (even more) interesting. Since it
1274  // will be "glued" together with its flag use in the scheduler, we need to
1275  // check if it might reach N.
1276  //
1277  //          [N*]           //
1278  //         ^   ^           //
1279  //        /     \          //
1280  //      [U*]    [X]?       //
1281  //        ^       ^        //
1282  //         \       \       //
1283  //          \      |       //
1284  //         [Root*] |       //
1285  //          ^      |       //
1286  //          f      |       //
1287  //          |      /       //
1288  //         [Y]    /        //
1289  //           ^   /         //
1290  //           f  /          //
1291  //           | /           //
1292  //          [FU]           //
1293  //
1294  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1295  // (call it Fold), then X is a predecessor of FU and a successor of
1296  // Fold. But since Fold and FU are flagged together, this will create
1297  // a cycle in the scheduling graph.
1298
1299  // If the node has flags, walk down the graph to the "lowest" node in the
1300  // flagged set.
1301  EVT VT = Root->getValueType(Root->getNumValues()-1);
1302  while (VT == MVT::Flag) {
1303    SDNode *FU = findFlagUse(Root);
1304    if (FU == NULL)
1305      break;
1306    Root = FU;
1307    VT = Root->getValueType(Root->getNumValues()-1);
1308
1309    // If our query node has a flag result with a use, we've walked up it.  If
1310    // the user (which has already been selected) has a chain or indirectly uses
1311    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1312    // this, we cannot ignore chains in this predicate.
1313    IgnoreChains = false;
1314  }
1315
1316
1317  SmallPtrSet<SDNode*, 16> Visited;
1318  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1319}
1320
1321SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1322  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1323  SelectInlineAsmMemoryOperands(Ops);
1324
1325  std::vector<EVT> VTs;
1326  VTs.push_back(MVT::Other);
1327  VTs.push_back(MVT::Flag);
1328  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1329                                VTs, &Ops[0], Ops.size());
1330  New->setNodeId(-1);
1331  return New.getNode();
1332}
1333
1334SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1335  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1336}
1337
1338/// GetVBR - decode a vbr encoding whose top bit is set.
1339ALWAYS_INLINE static uint64_t
1340GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1341  assert(Val >= 128 && "Not a VBR");
1342  Val &= 127;  // Remove first vbr bit.
1343
1344  unsigned Shift = 7;
1345  uint64_t NextBits;
1346  do {
1347    NextBits = MatcherTable[Idx++];
1348    Val |= (NextBits&127) << Shift;
1349    Shift += 7;
1350  } while (NextBits & 128);
1351
1352  return Val;
1353}
1354
1355
1356/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1357/// interior flag and chain results to use the new flag and chain results.
1358void SelectionDAGISel::
1359UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1360                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1361                     SDValue InputFlag,
1362                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1363                     bool isMorphNodeTo) {
1364  SmallVector<SDNode*, 4> NowDeadNodes;
1365
1366  ISelUpdater ISU(ISelPosition);
1367
1368  // Now that all the normal results are replaced, we replace the chain and
1369  // flag results if present.
1370  if (!ChainNodesMatched.empty()) {
1371    assert(InputChain.getNode() != 0 &&
1372           "Matched input chains but didn't produce a chain");
1373    // Loop over all of the nodes we matched that produced a chain result.
1374    // Replace all the chain results with the final chain we ended up with.
1375    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1376      SDNode *ChainNode = ChainNodesMatched[i];
1377
1378      // If this node was already deleted, don't look at it.
1379      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1380        continue;
1381
1382      // Don't replace the results of the root node if we're doing a
1383      // MorphNodeTo.
1384      if (ChainNode == NodeToMatch && isMorphNodeTo)
1385        continue;
1386
1387      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1388      if (ChainVal.getValueType() == MVT::Flag)
1389        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1390      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1391      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1392
1393      // If the node became dead and we haven't already seen it, delete it.
1394      if (ChainNode->use_empty() &&
1395          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1396        NowDeadNodes.push_back(ChainNode);
1397    }
1398  }
1399
1400  // If the result produces a flag, update any flag results in the matched
1401  // pattern with the flag result.
1402  if (InputFlag.getNode() != 0) {
1403    // Handle any interior nodes explicitly marked.
1404    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1405      SDNode *FRN = FlagResultNodesMatched[i];
1406
1407      // If this node was already deleted, don't look at it.
1408      if (FRN->getOpcode() == ISD::DELETED_NODE)
1409        continue;
1410
1411      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1412             "Doesn't have a flag result");
1413      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1414                                        InputFlag, &ISU);
1415
1416      // If the node became dead and we haven't already seen it, delete it.
1417      if (FRN->use_empty() &&
1418          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1419        NowDeadNodes.push_back(FRN);
1420    }
1421  }
1422
1423  if (!NowDeadNodes.empty())
1424    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1425
1426  DEBUG(errs() << "ISEL: Match complete!\n");
1427}
1428
1429enum ChainResult {
1430  CR_Simple,
1431  CR_InducesCycle,
1432  CR_LeadsToInteriorNode
1433};
1434
1435/// WalkChainUsers - Walk down the users of the specified chained node that is
1436/// part of the pattern we're matching, looking at all of the users we find.
1437/// This determines whether something is an interior node, whether we have a
1438/// non-pattern node in between two pattern nodes (which prevent folding because
1439/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1440/// between pattern nodes (in which case the TF becomes part of the pattern).
1441///
1442/// The walk we do here is guaranteed to be small because we quickly get down to
1443/// already selected nodes "below" us.
1444static ChainResult
1445WalkChainUsers(SDNode *ChainedNode,
1446               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1447               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1448  ChainResult Result = CR_Simple;
1449
1450  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1451         E = ChainedNode->use_end(); UI != E; ++UI) {
1452    // Make sure the use is of the chain, not some other value we produce.
1453    if (UI.getUse().getValueType() != MVT::Other) continue;
1454
1455    SDNode *User = *UI;
1456
1457    // If we see an already-selected machine node, then we've gone beyond the
1458    // pattern that we're selecting down into the already selected chunk of the
1459    // DAG.
1460    if (User->isMachineOpcode() ||
1461        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1462      continue;
1463
1464    if (User->getOpcode() == ISD::CopyToReg ||
1465        User->getOpcode() == ISD::CopyFromReg ||
1466        User->getOpcode() == ISD::INLINEASM ||
1467        User->getOpcode() == ISD::EH_LABEL) {
1468      // If their node ID got reset to -1 then they've already been selected.
1469      // Treat them like a MachineOpcode.
1470      if (User->getNodeId() == -1)
1471        continue;
1472    }
1473
1474    // If we have a TokenFactor, we handle it specially.
1475    if (User->getOpcode() != ISD::TokenFactor) {
1476      // If the node isn't a token factor and isn't part of our pattern, then it
1477      // must be a random chained node in between two nodes we're selecting.
1478      // This happens when we have something like:
1479      //   x = load ptr
1480      //   call
1481      //   y = x+4
1482      //   store y -> ptr
1483      // Because we structurally match the load/store as a read/modify/write,
1484      // but the call is chained between them.  We cannot fold in this case
1485      // because it would induce a cycle in the graph.
1486      if (!std::count(ChainedNodesInPattern.begin(),
1487                      ChainedNodesInPattern.end(), User))
1488        return CR_InducesCycle;
1489
1490      // Otherwise we found a node that is part of our pattern.  For example in:
1491      //   x = load ptr
1492      //   y = x+4
1493      //   store y -> ptr
1494      // This would happen when we're scanning down from the load and see the
1495      // store as a user.  Record that there is a use of ChainedNode that is
1496      // part of the pattern and keep scanning uses.
1497      Result = CR_LeadsToInteriorNode;
1498      InteriorChainedNodes.push_back(User);
1499      continue;
1500    }
1501
1502    // If we found a TokenFactor, there are two cases to consider: first if the
1503    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1504    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1505    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1506    //     [Load chain]
1507    //         ^
1508    //         |
1509    //       [Load]
1510    //       ^    ^
1511    //       |    \                    DAG's like cheese
1512    //      /       \                       do you?
1513    //     /         |
1514    // [TokenFactor] [Op]
1515    //     ^          ^
1516    //     |          |
1517    //      \        /
1518    //       \      /
1519    //       [Store]
1520    //
1521    // In this case, the TokenFactor becomes part of our match and we rewrite it
1522    // as a new TokenFactor.
1523    //
1524    // To distinguish these two cases, do a recursive walk down the uses.
1525    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1526    case CR_Simple:
1527      // If the uses of the TokenFactor are just already-selected nodes, ignore
1528      // it, it is "below" our pattern.
1529      continue;
1530    case CR_InducesCycle:
1531      // If the uses of the TokenFactor lead to nodes that are not part of our
1532      // pattern that are not selected, folding would turn this into a cycle,
1533      // bail out now.
1534      return CR_InducesCycle;
1535    case CR_LeadsToInteriorNode:
1536      break;  // Otherwise, keep processing.
1537    }
1538
1539    // Okay, we know we're in the interesting interior case.  The TokenFactor
1540    // is now going to be considered part of the pattern so that we rewrite its
1541    // uses (it may have uses that are not part of the pattern) with the
1542    // ultimate chain result of the generated code.  We will also add its chain
1543    // inputs as inputs to the ultimate TokenFactor we create.
1544    Result = CR_LeadsToInteriorNode;
1545    ChainedNodesInPattern.push_back(User);
1546    InteriorChainedNodes.push_back(User);
1547    continue;
1548  }
1549
1550  return Result;
1551}
1552
1553/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1554/// operation for when the pattern matched at least one node with a chains.  The
1555/// input vector contains a list of all of the chained nodes that we match.  We
1556/// must determine if this is a valid thing to cover (i.e. matching it won't
1557/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1558/// be used as the input node chain for the generated nodes.
1559static SDValue
1560HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1561                       SelectionDAG *CurDAG) {
1562  // Walk all of the chained nodes we've matched, recursively scanning down the
1563  // users of the chain result. This adds any TokenFactor nodes that are caught
1564  // in between chained nodes to the chained and interior nodes list.
1565  SmallVector<SDNode*, 3> InteriorChainedNodes;
1566  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1567    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1568                       InteriorChainedNodes) == CR_InducesCycle)
1569      return SDValue(); // Would induce a cycle.
1570  }
1571
1572  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1573  // that we are interested in.  Form our input TokenFactor node.
1574  SmallVector<SDValue, 3> InputChains;
1575  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1576    // Add the input chain of this node to the InputChains list (which will be
1577    // the operands of the generated TokenFactor) if it's not an interior node.
1578    SDNode *N = ChainNodesMatched[i];
1579    if (N->getOpcode() != ISD::TokenFactor) {
1580      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1581        continue;
1582
1583      // Otherwise, add the input chain.
1584      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1585      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1586      InputChains.push_back(InChain);
1587      continue;
1588    }
1589
1590    // If we have a token factor, we want to add all inputs of the token factor
1591    // that are not part of the pattern we're matching.
1592    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1593      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1594                      N->getOperand(op).getNode()))
1595        InputChains.push_back(N->getOperand(op));
1596    }
1597  }
1598
1599  SDValue Res;
1600  if (InputChains.size() == 1)
1601    return InputChains[0];
1602  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1603                         MVT::Other, &InputChains[0], InputChains.size());
1604}
1605
1606/// MorphNode - Handle morphing a node in place for the selector.
1607SDNode *SelectionDAGISel::
1608MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1609          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1610  // It is possible we're using MorphNodeTo to replace a node with no
1611  // normal results with one that has a normal result (or we could be
1612  // adding a chain) and the input could have flags and chains as well.
1613  // In this case we need to shift the operands down.
1614  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1615  // than the old isel though.
1616  int OldFlagResultNo = -1, OldChainResultNo = -1;
1617
1618  unsigned NTMNumResults = Node->getNumValues();
1619  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1620    OldFlagResultNo = NTMNumResults-1;
1621    if (NTMNumResults != 1 &&
1622        Node->getValueType(NTMNumResults-2) == MVT::Other)
1623      OldChainResultNo = NTMNumResults-2;
1624  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1625    OldChainResultNo = NTMNumResults-1;
1626
1627  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1628  // that this deletes operands of the old node that become dead.
1629  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1630
1631  // MorphNodeTo can operate in two ways: if an existing node with the
1632  // specified operands exists, it can just return it.  Otherwise, it
1633  // updates the node in place to have the requested operands.
1634  if (Res == Node) {
1635    // If we updated the node in place, reset the node ID.  To the isel,
1636    // this should be just like a newly allocated machine node.
1637    Res->setNodeId(-1);
1638  }
1639
1640  unsigned ResNumResults = Res->getNumValues();
1641  // Move the flag if needed.
1642  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1643      (unsigned)OldFlagResultNo != ResNumResults-1)
1644    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1645                                      SDValue(Res, ResNumResults-1));
1646
1647  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1648  --ResNumResults;
1649
1650  // Move the chain reference if needed.
1651  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1652      (unsigned)OldChainResultNo != ResNumResults-1)
1653    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1654                                      SDValue(Res, ResNumResults-1));
1655
1656  // Otherwise, no replacement happened because the node already exists. Replace
1657  // Uses of the old node with the new one.
1658  if (Res != Node)
1659    CurDAG->ReplaceAllUsesWith(Node, Res);
1660
1661  return Res;
1662}
1663
1664/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1665ALWAYS_INLINE static bool
1666CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1667          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1668  // Accept if it is exactly the same as a previously recorded node.
1669  unsigned RecNo = MatcherTable[MatcherIndex++];
1670  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1671  return N == RecordedNodes[RecNo];
1672}
1673
1674/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1675ALWAYS_INLINE static bool
1676CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1677                      SelectionDAGISel &SDISel) {
1678  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1679}
1680
1681/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1682ALWAYS_INLINE static bool
1683CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1684                   SelectionDAGISel &SDISel, SDNode *N) {
1685  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1686}
1687
1688ALWAYS_INLINE static bool
1689CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1690            SDNode *N) {
1691  uint16_t Opc = MatcherTable[MatcherIndex++];
1692  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1693  return N->getOpcode() == Opc;
1694}
1695
1696ALWAYS_INLINE static bool
1697CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1698          SDValue N, const TargetLowering &TLI) {
1699  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1700  if (N.getValueType() == VT) return true;
1701
1702  // Handle the case when VT is iPTR.
1703  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1704}
1705
1706ALWAYS_INLINE static bool
1707CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1708               SDValue N, const TargetLowering &TLI,
1709               unsigned ChildNo) {
1710  if (ChildNo >= N.getNumOperands())
1711    return false;  // Match fails if out of range child #.
1712  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1713}
1714
1715
1716ALWAYS_INLINE static bool
1717CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1718              SDValue N) {
1719  return cast<CondCodeSDNode>(N)->get() ==
1720      (ISD::CondCode)MatcherTable[MatcherIndex++];
1721}
1722
1723ALWAYS_INLINE static bool
1724CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1725               SDValue N, const TargetLowering &TLI) {
1726  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1727  if (cast<VTSDNode>(N)->getVT() == VT)
1728    return true;
1729
1730  // Handle the case when VT is iPTR.
1731  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1732}
1733
1734ALWAYS_INLINE static bool
1735CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1736             SDValue N) {
1737  int64_t Val = MatcherTable[MatcherIndex++];
1738  if (Val & 128)
1739    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1740
1741  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1742  return C != 0 && C->getSExtValue() == Val;
1743}
1744
1745ALWAYS_INLINE static bool
1746CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1747            SDValue N, SelectionDAGISel &SDISel) {
1748  int64_t Val = MatcherTable[MatcherIndex++];
1749  if (Val & 128)
1750    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1751
1752  if (N->getOpcode() != ISD::AND) return false;
1753
1754  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1755  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1756}
1757
1758ALWAYS_INLINE static bool
1759CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1760           SDValue N, SelectionDAGISel &SDISel) {
1761  int64_t Val = MatcherTable[MatcherIndex++];
1762  if (Val & 128)
1763    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1764
1765  if (N->getOpcode() != ISD::OR) return false;
1766
1767  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1768  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1769}
1770
1771/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1772/// scope, evaluate the current node.  If the current predicate is known to
1773/// fail, set Result=true and return anything.  If the current predicate is
1774/// known to pass, set Result=false and return the MatcherIndex to continue
1775/// with.  If the current predicate is unknown, set Result=false and return the
1776/// MatcherIndex to continue with.
1777static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1778                                       unsigned Index, SDValue N,
1779                                       bool &Result, SelectionDAGISel &SDISel,
1780                                       SmallVectorImpl<SDValue> &RecordedNodes){
1781  switch (Table[Index++]) {
1782  default:
1783    Result = false;
1784    return Index-1;  // Could not evaluate this predicate.
1785  case SelectionDAGISel::OPC_CheckSame:
1786    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1787    return Index;
1788  case SelectionDAGISel::OPC_CheckPatternPredicate:
1789    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1790    return Index;
1791  case SelectionDAGISel::OPC_CheckPredicate:
1792    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1793    return Index;
1794  case SelectionDAGISel::OPC_CheckOpcode:
1795    Result = !::CheckOpcode(Table, Index, N.getNode());
1796    return Index;
1797  case SelectionDAGISel::OPC_CheckType:
1798    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1799    return Index;
1800  case SelectionDAGISel::OPC_CheckChild0Type:
1801  case SelectionDAGISel::OPC_CheckChild1Type:
1802  case SelectionDAGISel::OPC_CheckChild2Type:
1803  case SelectionDAGISel::OPC_CheckChild3Type:
1804  case SelectionDAGISel::OPC_CheckChild4Type:
1805  case SelectionDAGISel::OPC_CheckChild5Type:
1806  case SelectionDAGISel::OPC_CheckChild6Type:
1807  case SelectionDAGISel::OPC_CheckChild7Type:
1808    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1809                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1810    return Index;
1811  case SelectionDAGISel::OPC_CheckCondCode:
1812    Result = !::CheckCondCode(Table, Index, N);
1813    return Index;
1814  case SelectionDAGISel::OPC_CheckValueType:
1815    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1816    return Index;
1817  case SelectionDAGISel::OPC_CheckInteger:
1818    Result = !::CheckInteger(Table, Index, N);
1819    return Index;
1820  case SelectionDAGISel::OPC_CheckAndImm:
1821    Result = !::CheckAndImm(Table, Index, N, SDISel);
1822    return Index;
1823  case SelectionDAGISel::OPC_CheckOrImm:
1824    Result = !::CheckOrImm(Table, Index, N, SDISel);
1825    return Index;
1826  }
1827}
1828
1829namespace {
1830
1831struct MatchScope {
1832  /// FailIndex - If this match fails, this is the index to continue with.
1833  unsigned FailIndex;
1834
1835  /// NodeStack - The node stack when the scope was formed.
1836  SmallVector<SDValue, 4> NodeStack;
1837
1838  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1839  unsigned NumRecordedNodes;
1840
1841  /// NumMatchedMemRefs - The number of matched memref entries.
1842  unsigned NumMatchedMemRefs;
1843
1844  /// InputChain/InputFlag - The current chain/flag
1845  SDValue InputChain, InputFlag;
1846
1847  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1848  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1849};
1850
1851}
1852
1853SDNode *SelectionDAGISel::
1854SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1855                 unsigned TableSize) {
1856  // FIXME: Should these even be selected?  Handle these cases in the caller?
1857  switch (NodeToMatch->getOpcode()) {
1858  default:
1859    break;
1860  case ISD::EntryToken:       // These nodes remain the same.
1861  case ISD::BasicBlock:
1862  case ISD::Register:
1863  //case ISD::VALUETYPE:
1864  //case ISD::CONDCODE:
1865  case ISD::HANDLENODE:
1866  case ISD::MDNODE_SDNODE:
1867  case ISD::TargetConstant:
1868  case ISD::TargetConstantFP:
1869  case ISD::TargetConstantPool:
1870  case ISD::TargetFrameIndex:
1871  case ISD::TargetExternalSymbol:
1872  case ISD::TargetBlockAddress:
1873  case ISD::TargetJumpTable:
1874  case ISD::TargetGlobalTLSAddress:
1875  case ISD::TargetGlobalAddress:
1876  case ISD::TokenFactor:
1877  case ISD::CopyFromReg:
1878  case ISD::CopyToReg:
1879  case ISD::EH_LABEL:
1880    NodeToMatch->setNodeId(-1); // Mark selected.
1881    return 0;
1882  case ISD::AssertSext:
1883  case ISD::AssertZext:
1884    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1885                                      NodeToMatch->getOperand(0));
1886    return 0;
1887  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1888  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1889  }
1890
1891  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1892
1893  // Set up the node stack with NodeToMatch as the only node on the stack.
1894  SmallVector<SDValue, 8> NodeStack;
1895  SDValue N = SDValue(NodeToMatch, 0);
1896  NodeStack.push_back(N);
1897
1898  // MatchScopes - Scopes used when matching, if a match failure happens, this
1899  // indicates where to continue checking.
1900  SmallVector<MatchScope, 8> MatchScopes;
1901
1902  // RecordedNodes - This is the set of nodes that have been recorded by the
1903  // state machine.
1904  SmallVector<SDValue, 8> RecordedNodes;
1905
1906  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1907  // pattern.
1908  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1909
1910  // These are the current input chain and flag for use when generating nodes.
1911  // Various Emit operations change these.  For example, emitting a copytoreg
1912  // uses and updates these.
1913  SDValue InputChain, InputFlag;
1914
1915  // ChainNodesMatched - If a pattern matches nodes that have input/output
1916  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1917  // which ones they are.  The result is captured into this list so that we can
1918  // update the chain results when the pattern is complete.
1919  SmallVector<SDNode*, 3> ChainNodesMatched;
1920  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1921
1922  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1923        NodeToMatch->dump(CurDAG);
1924        errs() << '\n');
1925
1926  // Determine where to start the interpreter.  Normally we start at opcode #0,
1927  // but if the state machine starts with an OPC_SwitchOpcode, then we
1928  // accelerate the first lookup (which is guaranteed to be hot) with the
1929  // OpcodeOffset table.
1930  unsigned MatcherIndex = 0;
1931
1932  if (!OpcodeOffset.empty()) {
1933    // Already computed the OpcodeOffset table, just index into it.
1934    if (N.getOpcode() < OpcodeOffset.size())
1935      MatcherIndex = OpcodeOffset[N.getOpcode()];
1936    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1937
1938  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1939    // Otherwise, the table isn't computed, but the state machine does start
1940    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1941    // is the first time we're selecting an instruction.
1942    unsigned Idx = 1;
1943    while (1) {
1944      // Get the size of this case.
1945      unsigned CaseSize = MatcherTable[Idx++];
1946      if (CaseSize & 128)
1947        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1948      if (CaseSize == 0) break;
1949
1950      // Get the opcode, add the index to the table.
1951      uint16_t Opc = MatcherTable[Idx++];
1952      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
1953      if (Opc >= OpcodeOffset.size())
1954        OpcodeOffset.resize((Opc+1)*2);
1955      OpcodeOffset[Opc] = Idx;
1956      Idx += CaseSize;
1957    }
1958
1959    // Okay, do the lookup for the first opcode.
1960    if (N.getOpcode() < OpcodeOffset.size())
1961      MatcherIndex = OpcodeOffset[N.getOpcode()];
1962  }
1963
1964  while (1) {
1965    assert(MatcherIndex < TableSize && "Invalid index");
1966#ifndef NDEBUG
1967    unsigned CurrentOpcodeIndex = MatcherIndex;
1968#endif
1969    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
1970    switch (Opcode) {
1971    case OPC_Scope: {
1972      // Okay, the semantics of this operation are that we should push a scope
1973      // then evaluate the first child.  However, pushing a scope only to have
1974      // the first check fail (which then pops it) is inefficient.  If we can
1975      // determine immediately that the first check (or first several) will
1976      // immediately fail, don't even bother pushing a scope for them.
1977      unsigned FailIndex;
1978
1979      while (1) {
1980        unsigned NumToSkip = MatcherTable[MatcherIndex++];
1981        if (NumToSkip & 128)
1982          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
1983        // Found the end of the scope with no match.
1984        if (NumToSkip == 0) {
1985          FailIndex = 0;
1986          break;
1987        }
1988
1989        FailIndex = MatcherIndex+NumToSkip;
1990
1991        unsigned MatcherIndexOfPredicate = MatcherIndex;
1992        (void)MatcherIndexOfPredicate; // silence warning.
1993
1994        // If we can't evaluate this predicate without pushing a scope (e.g. if
1995        // it is a 'MoveParent') or if the predicate succeeds on this node, we
1996        // push the scope and evaluate the full predicate chain.
1997        bool Result;
1998        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
1999                                              Result, *this, RecordedNodes);
2000        if (!Result)
2001          break;
2002
2003        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2004                     << "index " << MatcherIndexOfPredicate
2005                     << ", continuing at " << FailIndex << "\n");
2006        ++NumDAGIselRetries;
2007
2008        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2009        // move to the next case.
2010        MatcherIndex = FailIndex;
2011      }
2012
2013      // If the whole scope failed to match, bail.
2014      if (FailIndex == 0) break;
2015
2016      // Push a MatchScope which indicates where to go if the first child fails
2017      // to match.
2018      MatchScope NewEntry;
2019      NewEntry.FailIndex = FailIndex;
2020      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2021      NewEntry.NumRecordedNodes = RecordedNodes.size();
2022      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2023      NewEntry.InputChain = InputChain;
2024      NewEntry.InputFlag = InputFlag;
2025      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2026      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2027      MatchScopes.push_back(NewEntry);
2028      continue;
2029    }
2030    case OPC_RecordNode:
2031      // Remember this node, it may end up being an operand in the pattern.
2032      RecordedNodes.push_back(N);
2033      continue;
2034
2035    case OPC_RecordChild0: case OPC_RecordChild1:
2036    case OPC_RecordChild2: case OPC_RecordChild3:
2037    case OPC_RecordChild4: case OPC_RecordChild5:
2038    case OPC_RecordChild6: case OPC_RecordChild7: {
2039      unsigned ChildNo = Opcode-OPC_RecordChild0;
2040      if (ChildNo >= N.getNumOperands())
2041        break;  // Match fails if out of range child #.
2042
2043      RecordedNodes.push_back(N->getOperand(ChildNo));
2044      continue;
2045    }
2046    case OPC_RecordMemRef:
2047      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2048      continue;
2049
2050    case OPC_CaptureFlagInput:
2051      // If the current node has an input flag, capture it in InputFlag.
2052      if (N->getNumOperands() != 0 &&
2053          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2054        InputFlag = N->getOperand(N->getNumOperands()-1);
2055      continue;
2056
2057    case OPC_MoveChild: {
2058      unsigned ChildNo = MatcherTable[MatcherIndex++];
2059      if (ChildNo >= N.getNumOperands())
2060        break;  // Match fails if out of range child #.
2061      N = N.getOperand(ChildNo);
2062      NodeStack.push_back(N);
2063      continue;
2064    }
2065
2066    case OPC_MoveParent:
2067      // Pop the current node off the NodeStack.
2068      NodeStack.pop_back();
2069      assert(!NodeStack.empty() && "Node stack imbalance!");
2070      N = NodeStack.back();
2071      continue;
2072
2073    case OPC_CheckSame:
2074      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2075      continue;
2076    case OPC_CheckPatternPredicate:
2077      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2078      continue;
2079    case OPC_CheckPredicate:
2080      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2081                                N.getNode()))
2082        break;
2083      continue;
2084    case OPC_CheckComplexPat: {
2085      unsigned CPNum = MatcherTable[MatcherIndex++];
2086      unsigned RecNo = MatcherTable[MatcherIndex++];
2087      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2088      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2089                               RecordedNodes))
2090        break;
2091      continue;
2092    }
2093    case OPC_CheckOpcode:
2094      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2095      continue;
2096
2097    case OPC_CheckType:
2098      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2099      continue;
2100
2101    case OPC_SwitchOpcode: {
2102      unsigned CurNodeOpcode = N.getOpcode();
2103      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2104      unsigned CaseSize;
2105      while (1) {
2106        // Get the size of this case.
2107        CaseSize = MatcherTable[MatcherIndex++];
2108        if (CaseSize & 128)
2109          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2110        if (CaseSize == 0) break;
2111
2112        uint16_t Opc = MatcherTable[MatcherIndex++];
2113        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2114
2115        // If the opcode matches, then we will execute this case.
2116        if (CurNodeOpcode == Opc)
2117          break;
2118
2119        // Otherwise, skip over this case.
2120        MatcherIndex += CaseSize;
2121      }
2122
2123      // If no cases matched, bail out.
2124      if (CaseSize == 0) break;
2125
2126      // Otherwise, execute the case we found.
2127      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2128                   << " to " << MatcherIndex << "\n");
2129      continue;
2130    }
2131
2132    case OPC_SwitchType: {
2133      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2134      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2135      unsigned CaseSize;
2136      while (1) {
2137        // Get the size of this case.
2138        CaseSize = MatcherTable[MatcherIndex++];
2139        if (CaseSize & 128)
2140          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2141        if (CaseSize == 0) break;
2142
2143        MVT::SimpleValueType CaseVT =
2144          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2145        if (CaseVT == MVT::iPTR)
2146          CaseVT = TLI.getPointerTy().SimpleTy;
2147
2148        // If the VT matches, then we will execute this case.
2149        if (CurNodeVT == CaseVT)
2150          break;
2151
2152        // Otherwise, skip over this case.
2153        MatcherIndex += CaseSize;
2154      }
2155
2156      // If no cases matched, bail out.
2157      if (CaseSize == 0) break;
2158
2159      // Otherwise, execute the case we found.
2160      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2161                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2162      continue;
2163    }
2164    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2165    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2166    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2167    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2168      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2169                            Opcode-OPC_CheckChild0Type))
2170        break;
2171      continue;
2172    case OPC_CheckCondCode:
2173      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2174      continue;
2175    case OPC_CheckValueType:
2176      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2177      continue;
2178    case OPC_CheckInteger:
2179      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2180      continue;
2181    case OPC_CheckAndImm:
2182      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2183      continue;
2184    case OPC_CheckOrImm:
2185      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2186      continue;
2187
2188    case OPC_CheckFoldableChainNode: {
2189      assert(NodeStack.size() != 1 && "No parent node");
2190      // Verify that all intermediate nodes between the root and this one have
2191      // a single use.
2192      bool HasMultipleUses = false;
2193      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2194        if (!NodeStack[i].hasOneUse()) {
2195          HasMultipleUses = true;
2196          break;
2197        }
2198      if (HasMultipleUses) break;
2199
2200      // Check to see that the target thinks this is profitable to fold and that
2201      // we can fold it without inducing cycles in the graph.
2202      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2203                              NodeToMatch) ||
2204          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2205                         NodeToMatch, OptLevel,
2206                         true/*We validate our own chains*/))
2207        break;
2208
2209      continue;
2210    }
2211    case OPC_EmitInteger: {
2212      MVT::SimpleValueType VT =
2213        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2214      int64_t Val = MatcherTable[MatcherIndex++];
2215      if (Val & 128)
2216        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2217      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2218      continue;
2219    }
2220    case OPC_EmitRegister: {
2221      MVT::SimpleValueType VT =
2222        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2223      unsigned RegNo = MatcherTable[MatcherIndex++];
2224      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2225      continue;
2226    }
2227
2228    case OPC_EmitConvertToTarget:  {
2229      // Convert from IMM/FPIMM to target version.
2230      unsigned RecNo = MatcherTable[MatcherIndex++];
2231      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2232      SDValue Imm = RecordedNodes[RecNo];
2233
2234      if (Imm->getOpcode() == ISD::Constant) {
2235        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2236        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2237      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2238        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2239        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2240      }
2241
2242      RecordedNodes.push_back(Imm);
2243      continue;
2244    }
2245
2246    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2247    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2248      // These are space-optimized forms of OPC_EmitMergeInputChains.
2249      assert(InputChain.getNode() == 0 &&
2250             "EmitMergeInputChains should be the first chain producing node");
2251      assert(ChainNodesMatched.empty() &&
2252             "Should only have one EmitMergeInputChains per match");
2253
2254      // Read all of the chained nodes.
2255      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2256      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2257      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2258
2259      // FIXME: What if other value results of the node have uses not matched
2260      // by this pattern?
2261      if (ChainNodesMatched.back() != NodeToMatch &&
2262          !RecordedNodes[RecNo].hasOneUse()) {
2263        ChainNodesMatched.clear();
2264        break;
2265      }
2266
2267      // Merge the input chains if they are not intra-pattern references.
2268      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2269
2270      if (InputChain.getNode() == 0)
2271        break;  // Failed to merge.
2272      continue;
2273    }
2274
2275    case OPC_EmitMergeInputChains: {
2276      assert(InputChain.getNode() == 0 &&
2277             "EmitMergeInputChains should be the first chain producing node");
2278      // This node gets a list of nodes we matched in the input that have
2279      // chains.  We want to token factor all of the input chains to these nodes
2280      // together.  However, if any of the input chains is actually one of the
2281      // nodes matched in this pattern, then we have an intra-match reference.
2282      // Ignore these because the newly token factored chain should not refer to
2283      // the old nodes.
2284      unsigned NumChains = MatcherTable[MatcherIndex++];
2285      assert(NumChains != 0 && "Can't TF zero chains");
2286
2287      assert(ChainNodesMatched.empty() &&
2288             "Should only have one EmitMergeInputChains per match");
2289
2290      // Read all of the chained nodes.
2291      for (unsigned i = 0; i != NumChains; ++i) {
2292        unsigned RecNo = MatcherTable[MatcherIndex++];
2293        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2294        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2295
2296        // FIXME: What if other value results of the node have uses not matched
2297        // by this pattern?
2298        if (ChainNodesMatched.back() != NodeToMatch &&
2299            !RecordedNodes[RecNo].hasOneUse()) {
2300          ChainNodesMatched.clear();
2301          break;
2302        }
2303      }
2304
2305      // If the inner loop broke out, the match fails.
2306      if (ChainNodesMatched.empty())
2307        break;
2308
2309      // Merge the input chains if they are not intra-pattern references.
2310      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2311
2312      if (InputChain.getNode() == 0)
2313        break;  // Failed to merge.
2314
2315      continue;
2316    }
2317
2318    case OPC_EmitCopyToReg: {
2319      unsigned RecNo = MatcherTable[MatcherIndex++];
2320      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2321      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2322
2323      if (InputChain.getNode() == 0)
2324        InputChain = CurDAG->getEntryNode();
2325
2326      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2327                                        DestPhysReg, RecordedNodes[RecNo],
2328                                        InputFlag);
2329
2330      InputFlag = InputChain.getValue(1);
2331      continue;
2332    }
2333
2334    case OPC_EmitNodeXForm: {
2335      unsigned XFormNo = MatcherTable[MatcherIndex++];
2336      unsigned RecNo = MatcherTable[MatcherIndex++];
2337      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2338      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2339      continue;
2340    }
2341
2342    case OPC_EmitNode:
2343    case OPC_MorphNodeTo: {
2344      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2345      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2346      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2347      // Get the result VT list.
2348      unsigned NumVTs = MatcherTable[MatcherIndex++];
2349      SmallVector<EVT, 4> VTs;
2350      for (unsigned i = 0; i != NumVTs; ++i) {
2351        MVT::SimpleValueType VT =
2352          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2353        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2354        VTs.push_back(VT);
2355      }
2356
2357      if (EmitNodeInfo & OPFL_Chain)
2358        VTs.push_back(MVT::Other);
2359      if (EmitNodeInfo & OPFL_FlagOutput)
2360        VTs.push_back(MVT::Flag);
2361
2362      // This is hot code, so optimize the two most common cases of 1 and 2
2363      // results.
2364      SDVTList VTList;
2365      if (VTs.size() == 1)
2366        VTList = CurDAG->getVTList(VTs[0]);
2367      else if (VTs.size() == 2)
2368        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2369      else
2370        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2371
2372      // Get the operand list.
2373      unsigned NumOps = MatcherTable[MatcherIndex++];
2374      SmallVector<SDValue, 8> Ops;
2375      for (unsigned i = 0; i != NumOps; ++i) {
2376        unsigned RecNo = MatcherTable[MatcherIndex++];
2377        if (RecNo & 128)
2378          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2379
2380        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2381        Ops.push_back(RecordedNodes[RecNo]);
2382      }
2383
2384      // If there are variadic operands to add, handle them now.
2385      if (EmitNodeInfo & OPFL_VariadicInfo) {
2386        // Determine the start index to copy from.
2387        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2388        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2389        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2390               "Invalid variadic node");
2391        // Copy all of the variadic operands, not including a potential flag
2392        // input.
2393        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2394             i != e; ++i) {
2395          SDValue V = NodeToMatch->getOperand(i);
2396          if (V.getValueType() == MVT::Flag) break;
2397          Ops.push_back(V);
2398        }
2399      }
2400
2401      // If this has chain/flag inputs, add them.
2402      if (EmitNodeInfo & OPFL_Chain)
2403        Ops.push_back(InputChain);
2404      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2405        Ops.push_back(InputFlag);
2406
2407      // Create the node.
2408      SDNode *Res = 0;
2409      if (Opcode != OPC_MorphNodeTo) {
2410        // If this is a normal EmitNode command, just create the new node and
2411        // add the results to the RecordedNodes list.
2412        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2413                                     VTList, Ops.data(), Ops.size());
2414
2415        // Add all the non-flag/non-chain results to the RecordedNodes list.
2416        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2417          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2418          RecordedNodes.push_back(SDValue(Res, i));
2419        }
2420
2421      } else {
2422        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2423                        EmitNodeInfo);
2424      }
2425
2426      // If the node had chain/flag results, update our notion of the current
2427      // chain and flag.
2428      if (EmitNodeInfo & OPFL_FlagOutput) {
2429        InputFlag = SDValue(Res, VTs.size()-1);
2430        if (EmitNodeInfo & OPFL_Chain)
2431          InputChain = SDValue(Res, VTs.size()-2);
2432      } else if (EmitNodeInfo & OPFL_Chain)
2433        InputChain = SDValue(Res, VTs.size()-1);
2434
2435      // If the OPFL_MemRefs flag is set on this node, slap all of the
2436      // accumulated memrefs onto it.
2437      //
2438      // FIXME: This is vastly incorrect for patterns with multiple outputs
2439      // instructions that access memory and for ComplexPatterns that match
2440      // loads.
2441      if (EmitNodeInfo & OPFL_MemRefs) {
2442        MachineSDNode::mmo_iterator MemRefs =
2443          MF->allocateMemRefsArray(MatchedMemRefs.size());
2444        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2445        cast<MachineSDNode>(Res)
2446          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2447      }
2448
2449      DEBUG(errs() << "  "
2450                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2451                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2452
2453      // If this was a MorphNodeTo then we're completely done!
2454      if (Opcode == OPC_MorphNodeTo) {
2455        // Update chain and flag uses.
2456        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2457                             InputFlag, FlagResultNodesMatched, true);
2458        return Res;
2459      }
2460
2461      continue;
2462    }
2463
2464    case OPC_MarkFlagResults: {
2465      unsigned NumNodes = MatcherTable[MatcherIndex++];
2466
2467      // Read and remember all the flag-result nodes.
2468      for (unsigned i = 0; i != NumNodes; ++i) {
2469        unsigned RecNo = MatcherTable[MatcherIndex++];
2470        if (RecNo & 128)
2471          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2472
2473        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2474        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2475      }
2476      continue;
2477    }
2478
2479    case OPC_CompleteMatch: {
2480      // The match has been completed, and any new nodes (if any) have been
2481      // created.  Patch up references to the matched dag to use the newly
2482      // created nodes.
2483      unsigned NumResults = MatcherTable[MatcherIndex++];
2484
2485      for (unsigned i = 0; i != NumResults; ++i) {
2486        unsigned ResSlot = MatcherTable[MatcherIndex++];
2487        if (ResSlot & 128)
2488          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2489
2490        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2491        SDValue Res = RecordedNodes[ResSlot];
2492
2493        assert(i < NodeToMatch->getNumValues() &&
2494               NodeToMatch->getValueType(i) != MVT::Other &&
2495               NodeToMatch->getValueType(i) != MVT::Flag &&
2496               "Invalid number of results to complete!");
2497        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2498                NodeToMatch->getValueType(i) == MVT::iPTR ||
2499                Res.getValueType() == MVT::iPTR ||
2500                NodeToMatch->getValueType(i).getSizeInBits() ==
2501                    Res.getValueType().getSizeInBits()) &&
2502               "invalid replacement");
2503        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2504      }
2505
2506      // If the root node defines a flag, add it to the flag nodes to update
2507      // list.
2508      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2509        FlagResultNodesMatched.push_back(NodeToMatch);
2510
2511      // Update chain and flag uses.
2512      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2513                           InputFlag, FlagResultNodesMatched, false);
2514
2515      assert(NodeToMatch->use_empty() &&
2516             "Didn't replace all uses of the node?");
2517
2518      // FIXME: We just return here, which interacts correctly with SelectRoot
2519      // above.  We should fix this to not return an SDNode* anymore.
2520      return 0;
2521    }
2522    }
2523
2524    // If the code reached this point, then the match failed.  See if there is
2525    // another child to try in the current 'Scope', otherwise pop it until we
2526    // find a case to check.
2527    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2528    ++NumDAGIselRetries;
2529    while (1) {
2530      if (MatchScopes.empty()) {
2531        CannotYetSelect(NodeToMatch);
2532        return 0;
2533      }
2534
2535      // Restore the interpreter state back to the point where the scope was
2536      // formed.
2537      MatchScope &LastScope = MatchScopes.back();
2538      RecordedNodes.resize(LastScope.NumRecordedNodes);
2539      NodeStack.clear();
2540      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2541      N = NodeStack.back();
2542
2543      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2544        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2545      MatcherIndex = LastScope.FailIndex;
2546
2547      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2548
2549      InputChain = LastScope.InputChain;
2550      InputFlag = LastScope.InputFlag;
2551      if (!LastScope.HasChainNodesMatched)
2552        ChainNodesMatched.clear();
2553      if (!LastScope.HasFlagResultNodesMatched)
2554        FlagResultNodesMatched.clear();
2555
2556      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2557      // we have reached the end of this scope, otherwise we have another child
2558      // in the current scope to try.
2559      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2560      if (NumToSkip & 128)
2561        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2562
2563      // If we have another child in this scope to match, update FailIndex and
2564      // try it.
2565      if (NumToSkip != 0) {
2566        LastScope.FailIndex = MatcherIndex+NumToSkip;
2567        break;
2568      }
2569
2570      // End of this scope, pop it and try the next child in the containing
2571      // scope.
2572      MatchScopes.pop_back();
2573    }
2574  }
2575}
2576
2577
2578
2579void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2580  std::string msg;
2581  raw_string_ostream Msg(msg);
2582  Msg << "Cannot yet select: ";
2583
2584  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2585      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2586      N->getOpcode() != ISD::INTRINSIC_VOID) {
2587    N->printrFull(Msg, CurDAG);
2588  } else {
2589    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2590    unsigned iid =
2591      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2592    if (iid < Intrinsic::num_intrinsics)
2593      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2594    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2595      Msg << "target intrinsic %" << TII->getName(iid);
2596    else
2597      Msg << "unknown intrinsic #" << iid;
2598  }
2599  report_fatal_error(Msg.str());
2600}
2601
2602char SelectionDAGISel::ID = 0;
2603