SelectionDAGISel.cpp revision ac2b2cf88c9331bf44e802f6d31805c40a56af0f
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/CodeGen/ScheduleDAG.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SchedulerRegistry.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/CodeGen/SSARegMap.h"
35#include "llvm/Target/MRegisterInfo.h"
36#include "llvm/Target/TargetAsmInfo.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Target/TargetFrameInfo.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61
62//===---------------------------------------------------------------------===//
63///
64/// RegisterScheduler class - Track the registration of instruction schedulers.
65///
66//===---------------------------------------------------------------------===//
67MachinePassRegistry RegisterScheduler::Registry;
68
69//===---------------------------------------------------------------------===//
70///
71/// ISHeuristic command line option for instruction schedulers.
72///
73//===---------------------------------------------------------------------===//
74namespace {
75  cl::opt<RegisterScheduler::FunctionPassCtor, false,
76          RegisterPassParser<RegisterScheduler> >
77  ISHeuristic("sched",
78              cl::init(&createDefaultScheduler),
79              cl::desc("Instruction schedulers available:"));
80
81  static RegisterScheduler
82  defaultListDAGScheduler("default", "  Best scheduler for the target",
83                          createDefaultScheduler);
84} // namespace
85
86namespace {
87  /// RegsForValue - This struct represents the physical registers that a
88  /// particular value is assigned and the type information about the value.
89  /// This is needed because values can be promoted into larger registers and
90  /// expanded into multiple smaller registers than the value.
91  struct VISIBILITY_HIDDEN RegsForValue {
92    /// Regs - This list hold the register (for legal and promoted values)
93    /// or register set (for expanded values) that the value should be assigned
94    /// to.
95    std::vector<unsigned> Regs;
96
97    /// RegVT - The value type of each register.
98    ///
99    MVT::ValueType RegVT;
100
101    /// ValueVT - The value type of the LLVM value, which may be promoted from
102    /// RegVT or made from merging the two expanded parts.
103    MVT::ValueType ValueVT;
104
105    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
106
107    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
108      : RegVT(regvt), ValueVT(valuevt) {
109        Regs.push_back(Reg);
110    }
111    RegsForValue(const std::vector<unsigned> &regs,
112                 MVT::ValueType regvt, MVT::ValueType valuevt)
113      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
114    }
115
116    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
117    /// this value and returns the result as a ValueVT value.  This uses
118    /// Chain/Flag as the input and updates them for the output Chain/Flag.
119    SDOperand getCopyFromRegs(SelectionDAG &DAG,
120                              SDOperand &Chain, SDOperand &Flag) const;
121
122    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
123    /// specified value into the registers specified by this object.  This uses
124    /// Chain/Flag as the input and updates them for the output Chain/Flag.
125    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
126                       SDOperand &Chain, SDOperand &Flag,
127                       MVT::ValueType PtrVT) const;
128
129    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
130    /// operand list.  This adds the code marker and includes the number of
131    /// values added into it.
132    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
133                              std::vector<SDOperand> &Ops) const;
134  };
135}
136
137namespace llvm {
138  //===--------------------------------------------------------------------===//
139  /// createDefaultScheduler - This creates an instruction scheduler appropriate
140  /// for the target.
141  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
142                                      SelectionDAG *DAG,
143                                      MachineBasicBlock *BB) {
144    TargetLowering &TLI = IS->getTargetLowering();
145
146    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
147      return createTDListDAGScheduler(IS, DAG, BB);
148    } else {
149      assert(TLI.getSchedulingPreference() ==
150           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
151      return createBURRListDAGScheduler(IS, DAG, BB);
152    }
153  }
154
155
156  //===--------------------------------------------------------------------===//
157  /// FunctionLoweringInfo - This contains information that is global to a
158  /// function that is used when lowering a region of the function.
159  class FunctionLoweringInfo {
160  public:
161    TargetLowering &TLI;
162    Function &Fn;
163    MachineFunction &MF;
164    SSARegMap *RegMap;
165
166    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
167
168    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
169    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
170
171    /// ValueMap - Since we emit code for the function a basic block at a time,
172    /// we must remember which virtual registers hold the values for
173    /// cross-basic-block values.
174    std::map<const Value*, unsigned> ValueMap;
175
176    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
177    /// the entry block.  This allows the allocas to be efficiently referenced
178    /// anywhere in the function.
179    std::map<const AllocaInst*, int> StaticAllocaMap;
180
181    unsigned MakeReg(MVT::ValueType VT) {
182      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
183    }
184
185    /// isExportedInst - Return true if the specified value is an instruction
186    /// exported from its block.
187    bool isExportedInst(const Value *V) {
188      return ValueMap.count(V);
189    }
190
191    unsigned CreateRegForValue(const Value *V);
192
193    unsigned InitializeRegForValue(const Value *V) {
194      unsigned &R = ValueMap[V];
195      assert(R == 0 && "Already initialized this value register!");
196      return R = CreateRegForValue(V);
197    }
198  };
199}
200
201/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
202/// PHI nodes or outside of the basic block that defines it, or used by a
203/// switch instruction, which may expand to multiple basic blocks.
204static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
205  if (isa<PHINode>(I)) return true;
206  BasicBlock *BB = I->getParent();
207  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
208    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
209        // FIXME: Remove switchinst special case.
210        isa<SwitchInst>(*UI))
211      return true;
212  return false;
213}
214
215/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
216/// entry block, return true.  This includes arguments used by switches, since
217/// the switch may expand into multiple basic blocks.
218static bool isOnlyUsedInEntryBlock(Argument *A) {
219  BasicBlock *Entry = A->getParent()->begin();
220  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
221    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
222      return false;  // Use not in entry block.
223  return true;
224}
225
226FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
227                                           Function &fn, MachineFunction &mf)
228    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
229
230  // Create a vreg for each argument register that is not dead and is used
231  // outside of the entry block for the function.
232  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
233       AI != E; ++AI)
234    if (!isOnlyUsedInEntryBlock(AI))
235      InitializeRegForValue(AI);
236
237  // Initialize the mapping of values to registers.  This is only set up for
238  // instruction values that are used outside of the block that defines
239  // them.
240  Function::iterator BB = Fn.begin(), EB = Fn.end();
241  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
242    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
243      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
244        const Type *Ty = AI->getAllocatedType();
245        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
246        unsigned Align =
247          std::max((unsigned)TLI.getTargetData()->getTypeAlignmentPref(Ty),
248                   AI->getAlignment());
249
250        TySize *= CUI->getZExtValue();   // Get total allocated size.
251        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
252        StaticAllocaMap[AI] =
253          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
254      }
255
256  for (; BB != EB; ++BB)
257    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
258      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
259        if (!isa<AllocaInst>(I) ||
260            !StaticAllocaMap.count(cast<AllocaInst>(I)))
261          InitializeRegForValue(I);
262
263  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
264  // also creates the initial PHI MachineInstrs, though none of the input
265  // operands are populated.
266  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
267    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
268    MBBMap[BB] = MBB;
269    MF.getBasicBlockList().push_back(MBB);
270
271    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
272    // appropriate.
273    PHINode *PN;
274    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
275      if (PN->use_empty()) continue;
276
277      MVT::ValueType VT = TLI.getValueType(PN->getType());
278      unsigned NumElements;
279      if (VT != MVT::Vector)
280        NumElements = TLI.getNumElements(VT);
281      else {
282        MVT::ValueType VT1,VT2;
283        NumElements =
284          TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
285                                     VT1, VT2);
286      }
287      unsigned PHIReg = ValueMap[PN];
288      assert(PHIReg && "PHI node does not have an assigned virtual register!");
289      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
290      for (unsigned i = 0; i != NumElements; ++i)
291        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
292    }
293  }
294}
295
296/// CreateRegForValue - Allocate the appropriate number of virtual registers of
297/// the correctly promoted or expanded types.  Assign these registers
298/// consecutive vreg numbers and return the first assigned number.
299unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
300  MVT::ValueType VT = TLI.getValueType(V->getType());
301
302  // The number of multiples of registers that we need, to, e.g., split up
303  // a <2 x int64> -> 4 x i32 registers.
304  unsigned NumVectorRegs = 1;
305
306  // If this is a packed type, figure out what type it will decompose into
307  // and how many of the elements it will use.
308  if (VT == MVT::Vector) {
309    const PackedType *PTy = cast<PackedType>(V->getType());
310    unsigned NumElts = PTy->getNumElements();
311    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
312
313    // Divide the input until we get to a supported size.  This will always
314    // end with a scalar if the target doesn't support vectors.
315    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
316      NumElts >>= 1;
317      NumVectorRegs <<= 1;
318    }
319    if (NumElts == 1)
320      VT = EltTy;
321    else
322      VT = getVectorType(EltTy, NumElts);
323  }
324
325  // The common case is that we will only create one register for this
326  // value.  If we have that case, create and return the virtual register.
327  unsigned NV = TLI.getNumElements(VT);
328  if (NV == 1) {
329    // If we are promoting this value, pick the next largest supported type.
330    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
331    unsigned Reg = MakeReg(PromotedType);
332    // If this is a vector of supported or promoted types (e.g. 4 x i16),
333    // create all of the registers.
334    for (unsigned i = 1; i != NumVectorRegs; ++i)
335      MakeReg(PromotedType);
336    return Reg;
337  }
338
339  // If this value is represented with multiple target registers, make sure
340  // to create enough consecutive registers of the right (smaller) type.
341  VT = TLI.getTypeToExpandTo(VT);
342  unsigned R = MakeReg(VT);
343  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
344    MakeReg(VT);
345  return R;
346}
347
348//===----------------------------------------------------------------------===//
349/// SelectionDAGLowering - This is the common target-independent lowering
350/// implementation that is parameterized by a TargetLowering object.
351/// Also, targets can overload any lowering method.
352///
353namespace llvm {
354class SelectionDAGLowering {
355  MachineBasicBlock *CurMBB;
356
357  std::map<const Value*, SDOperand> NodeMap;
358
359  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
360  /// them up and then emit token factor nodes when possible.  This allows us to
361  /// get simple disambiguation between loads without worrying about alias
362  /// analysis.
363  std::vector<SDOperand> PendingLoads;
364
365  /// Case - A pair of values to record the Value for a switch case, and the
366  /// case's target basic block.
367  typedef std::pair<Constant*, MachineBasicBlock*> Case;
368  typedef std::vector<Case>::iterator              CaseItr;
369  typedef std::pair<CaseItr, CaseItr>              CaseRange;
370
371  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
372  /// of conditional branches.
373  struct CaseRec {
374    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
375    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
376
377    /// CaseBB - The MBB in which to emit the compare and branch
378    MachineBasicBlock *CaseBB;
379    /// LT, GE - If nonzero, we know the current case value must be less-than or
380    /// greater-than-or-equal-to these Constants.
381    Constant *LT;
382    Constant *GE;
383    /// Range - A pair of iterators representing the range of case values to be
384    /// processed at this point in the binary search tree.
385    CaseRange Range;
386  };
387
388  /// The comparison function for sorting Case values.
389  struct CaseCmp {
390    bool operator () (const Case& C1, const Case& C2) {
391      assert(isa<ConstantInt>(C1.first) && isa<ConstantInt>(C2.first));
392      return cast<const ConstantInt>(C1.first)->getSExtValue() <
393        cast<const ConstantInt>(C2.first)->getSExtValue();
394    }
395  };
396
397public:
398  // TLI - This is information that describes the available target features we
399  // need for lowering.  This indicates when operations are unavailable,
400  // implemented with a libcall, etc.
401  TargetLowering &TLI;
402  SelectionDAG &DAG;
403  const TargetData *TD;
404
405  /// SwitchCases - Vector of CaseBlock structures used to communicate
406  /// SwitchInst code generation information.
407  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
408  SelectionDAGISel::JumpTable JT;
409
410  /// FuncInfo - Information about the function as a whole.
411  ///
412  FunctionLoweringInfo &FuncInfo;
413
414  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
415                       FunctionLoweringInfo &funcinfo)
416    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
417      JT(0,0,0,0), FuncInfo(funcinfo) {
418  }
419
420  /// getRoot - Return the current virtual root of the Selection DAG.
421  ///
422  SDOperand getRoot() {
423    if (PendingLoads.empty())
424      return DAG.getRoot();
425
426    if (PendingLoads.size() == 1) {
427      SDOperand Root = PendingLoads[0];
428      DAG.setRoot(Root);
429      PendingLoads.clear();
430      return Root;
431    }
432
433    // Otherwise, we have to make a token factor node.
434    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
435                                 &PendingLoads[0], PendingLoads.size());
436    PendingLoads.clear();
437    DAG.setRoot(Root);
438    return Root;
439  }
440
441  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
442
443  void visit(Instruction &I) { visit(I.getOpcode(), I); }
444
445  void visit(unsigned Opcode, User &I) {
446    // Note: this doesn't use InstVisitor, because it has to work with
447    // ConstantExpr's in addition to instructions.
448    switch (Opcode) {
449    default: assert(0 && "Unknown instruction type encountered!");
450             abort();
451      // Build the switch statement using the Instruction.def file.
452#define HANDLE_INST(NUM, OPCODE, CLASS) \
453    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
454#include "llvm/Instruction.def"
455    }
456  }
457
458  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
459
460  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
461                        const Value *SV, SDOperand Root,
462                        bool isVolatile);
463
464  SDOperand getIntPtrConstant(uint64_t Val) {
465    return DAG.getConstant(Val, TLI.getPointerTy());
466  }
467
468  SDOperand getValue(const Value *V);
469
470  const SDOperand &setValue(const Value *V, SDOperand NewN) {
471    SDOperand &N = NodeMap[V];
472    assert(N.Val == 0 && "Already set a value for this node!");
473    return N = NewN;
474  }
475
476  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
477                                    MVT::ValueType VT,
478                                    bool OutReg, bool InReg,
479                                    std::set<unsigned> &OutputRegs,
480                                    std::set<unsigned> &InputRegs);
481
482  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
483                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
484                            unsigned Opc);
485  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
486  void ExportFromCurrentBlock(Value *V);
487
488  // Terminator instructions.
489  void visitRet(ReturnInst &I);
490  void visitBr(BranchInst &I);
491  void visitSwitch(SwitchInst &I);
492  void visitUnreachable(UnreachableInst &I) { /* noop */ }
493
494  // Helper for visitSwitch
495  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
496  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
497
498  // These all get lowered before this pass.
499  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
500  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
501
502  void visitScalarBinary(User &I, unsigned OpCode);
503  void visitVectorBinary(User &I, unsigned OpCode);
504  void visitEitherBinary(User &I, unsigned ScalarOp, unsigned VectorOp);
505  void visitShift(User &I, unsigned Opcode);
506  void visitAdd(User &I) {
507    if (isa<PackedType>(I.getType()))
508      visitVectorBinary(I, ISD::VADD);
509    else if (I.getType()->isFloatingPoint())
510      visitScalarBinary(I, ISD::FADD);
511    else
512      visitScalarBinary(I, ISD::ADD);
513  }
514  void visitSub(User &I);
515  void visitMul(User &I) {
516    if (isa<PackedType>(I.getType()))
517      visitVectorBinary(I, ISD::VMUL);
518    else if (I.getType()->isFloatingPoint())
519      visitScalarBinary(I, ISD::FMUL);
520    else
521      visitScalarBinary(I, ISD::MUL);
522  }
523  void visitURem(User &I) { visitScalarBinary(I, ISD::UREM); }
524  void visitSRem(User &I) { visitScalarBinary(I, ISD::SREM); }
525  void visitFRem(User &I) { visitScalarBinary(I, ISD::FREM); }
526  void visitUDiv(User &I) { visitEitherBinary(I, ISD::UDIV, ISD::VUDIV); }
527  void visitSDiv(User &I) { visitEitherBinary(I, ISD::SDIV, ISD::VSDIV); }
528  void visitFDiv(User &I) { visitEitherBinary(I, ISD::FDIV, ISD::VSDIV); }
529  void visitAnd (User &I) { visitEitherBinary(I, ISD::AND,  ISD::VAND ); }
530  void visitOr  (User &I) { visitEitherBinary(I, ISD::OR,   ISD::VOR  ); }
531  void visitXor (User &I) { visitEitherBinary(I, ISD::XOR,  ISD::VXOR ); }
532  void visitShl (User &I) { visitShift(I, ISD::SHL); }
533  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
534  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
535  void visitICmp(User &I);
536  void visitFCmp(User &I);
537  // Visit the conversion instructions
538  void visitTrunc(User &I);
539  void visitZExt(User &I);
540  void visitSExt(User &I);
541  void visitFPTrunc(User &I);
542  void visitFPExt(User &I);
543  void visitFPToUI(User &I);
544  void visitFPToSI(User &I);
545  void visitUIToFP(User &I);
546  void visitSIToFP(User &I);
547  void visitPtrToInt(User &I);
548  void visitIntToPtr(User &I);
549  void visitBitCast(User &I);
550
551  void visitExtractElement(User &I);
552  void visitInsertElement(User &I);
553  void visitShuffleVector(User &I);
554
555  void visitGetElementPtr(User &I);
556  void visitSelect(User &I);
557
558  void visitMalloc(MallocInst &I);
559  void visitFree(FreeInst &I);
560  void visitAlloca(AllocaInst &I);
561  void visitLoad(LoadInst &I);
562  void visitStore(StoreInst &I);
563  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
564  void visitCall(CallInst &I);
565  void visitInlineAsm(CallInst &I);
566  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
567  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
568
569  void visitVAStart(CallInst &I);
570  void visitVAArg(VAArgInst &I);
571  void visitVAEnd(CallInst &I);
572  void visitVACopy(CallInst &I);
573  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
574
575  void visitMemIntrinsic(CallInst &I, unsigned Op);
576
577  void visitUserOp1(Instruction &I) {
578    assert(0 && "UserOp1 should not exist at instruction selection time!");
579    abort();
580  }
581  void visitUserOp2(Instruction &I) {
582    assert(0 && "UserOp2 should not exist at instruction selection time!");
583    abort();
584  }
585};
586} // end namespace llvm
587
588SDOperand SelectionDAGLowering::getValue(const Value *V) {
589  SDOperand &N = NodeMap[V];
590  if (N.Val) return N;
591
592  const Type *VTy = V->getType();
593  MVT::ValueType VT = TLI.getValueType(VTy);
594  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
595    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
596      visit(CE->getOpcode(), *CE);
597      assert(N.Val && "visit didn't populate the ValueMap!");
598      return N;
599    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
600      return N = DAG.getGlobalAddress(GV, VT);
601    } else if (isa<ConstantPointerNull>(C)) {
602      return N = DAG.getConstant(0, TLI.getPointerTy());
603    } else if (isa<UndefValue>(C)) {
604      if (!isa<PackedType>(VTy))
605        return N = DAG.getNode(ISD::UNDEF, VT);
606
607      // Create a VBUILD_VECTOR of undef nodes.
608      const PackedType *PTy = cast<PackedType>(VTy);
609      unsigned NumElements = PTy->getNumElements();
610      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
611
612      SmallVector<SDOperand, 8> Ops;
613      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
614
615      // Create a VConstant node with generic Vector type.
616      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
617      Ops.push_back(DAG.getValueType(PVT));
618      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
619                             &Ops[0], Ops.size());
620    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
621      return N = DAG.getConstantFP(CFP->getValue(), VT);
622    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
623      unsigned NumElements = PTy->getNumElements();
624      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
625
626      // Now that we know the number and type of the elements, push a
627      // Constant or ConstantFP node onto the ops list for each element of
628      // the packed constant.
629      SmallVector<SDOperand, 8> Ops;
630      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
631        for (unsigned i = 0; i != NumElements; ++i)
632          Ops.push_back(getValue(CP->getOperand(i)));
633      } else {
634        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
635        SDOperand Op;
636        if (MVT::isFloatingPoint(PVT))
637          Op = DAG.getConstantFP(0, PVT);
638        else
639          Op = DAG.getConstant(0, PVT);
640        Ops.assign(NumElements, Op);
641      }
642
643      // Create a VBUILD_VECTOR node with generic Vector type.
644      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
645      Ops.push_back(DAG.getValueType(PVT));
646      return N = DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector,&Ops[0],Ops.size());
647    } else {
648      // Canonicalize all constant ints to be unsigned.
649      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
650    }
651  }
652
653  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
654    std::map<const AllocaInst*, int>::iterator SI =
655    FuncInfo.StaticAllocaMap.find(AI);
656    if (SI != FuncInfo.StaticAllocaMap.end())
657      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
658  }
659
660  std::map<const Value*, unsigned>::const_iterator VMI =
661      FuncInfo.ValueMap.find(V);
662  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
663
664  unsigned InReg = VMI->second;
665
666  // If this type is not legal, make it so now.
667  if (VT != MVT::Vector) {
668    if (TLI.getTypeAction(VT) == TargetLowering::Expand) {
669      // Source must be expanded.  This input value is actually coming from the
670      // register pair VMI->second and VMI->second+1.
671      MVT::ValueType DestVT = TLI.getTypeToExpandTo(VT);
672      unsigned NumVals = TLI.getNumElements(VT);
673      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
674      if (NumVals == 1)
675        N = DAG.getNode(ISD::BIT_CONVERT, VT, N);
676      else {
677        assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
678        N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
679                       DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
680      }
681    } else {
682      MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
683      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
684      if (TLI.getTypeAction(VT) == TargetLowering::Promote) // Promotion case
685        N = MVT::isFloatingPoint(VT)
686          ? DAG.getNode(ISD::FP_ROUND, VT, N)
687          : DAG.getNode(ISD::TRUNCATE, VT, N);
688    }
689  } else {
690    // Otherwise, if this is a vector, make it available as a generic vector
691    // here.
692    MVT::ValueType PTyElementVT, PTyLegalElementVT;
693    const PackedType *PTy = cast<PackedType>(VTy);
694    unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT,
695                                             PTyLegalElementVT);
696
697    // Build a VBUILD_VECTOR with the input registers.
698    SmallVector<SDOperand, 8> Ops;
699    if (PTyElementVT == PTyLegalElementVT) {
700      // If the value types are legal, just VBUILD the CopyFromReg nodes.
701      for (unsigned i = 0; i != NE; ++i)
702        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
703                                         PTyElementVT));
704    } else if (PTyElementVT < PTyLegalElementVT) {
705      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
706      for (unsigned i = 0; i != NE; ++i) {
707        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
708                                          PTyElementVT);
709        if (MVT::isFloatingPoint(PTyElementVT))
710          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
711        else
712          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
713        Ops.push_back(Op);
714      }
715    } else {
716      // If the register was expanded, use BUILD_PAIR.
717      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
718      for (unsigned i = 0; i != NE/2; ++i) {
719        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
720                                           PTyElementVT);
721        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
722                                           PTyElementVT);
723        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
724      }
725    }
726
727    Ops.push_back(DAG.getConstant(NE, MVT::i32));
728    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
729    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
730
731    // Finally, use a VBIT_CONVERT to make this available as the appropriate
732    // vector type.
733    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
734                    DAG.getConstant(PTy->getNumElements(),
735                                    MVT::i32),
736                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
737  }
738
739  return N;
740}
741
742
743void SelectionDAGLowering::visitRet(ReturnInst &I) {
744  if (I.getNumOperands() == 0) {
745    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
746    return;
747  }
748  SmallVector<SDOperand, 8> NewValues;
749  NewValues.push_back(getRoot());
750  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
751    SDOperand RetOp = getValue(I.getOperand(i));
752
753    // If this is an integer return value, we need to promote it ourselves to
754    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
755    // than sign/zero.
756    // FIXME: C calling convention requires the return type to be promoted to
757    // at least 32-bit. But this is not necessary for non-C calling conventions.
758    if (MVT::isInteger(RetOp.getValueType()) &&
759        RetOp.getValueType() < MVT::i64) {
760      MVT::ValueType TmpVT;
761      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
762        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
763      else
764        TmpVT = MVT::i32;
765      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
766      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
767      if (FTy->paramHasAttr(0, FunctionType::SExtAttribute))
768        ExtendKind = ISD::SIGN_EXTEND;
769      if (FTy->paramHasAttr(0, FunctionType::ZExtAttribute))
770        ExtendKind = ISD::ZERO_EXTEND;
771      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
772    }
773    NewValues.push_back(RetOp);
774    NewValues.push_back(DAG.getConstant(false, MVT::i32));
775  }
776  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
777                          &NewValues[0], NewValues.size()));
778}
779
780/// ExportFromCurrentBlock - If this condition isn't known to be exported from
781/// the current basic block, add it to ValueMap now so that we'll get a
782/// CopyTo/FromReg.
783void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
784  // No need to export constants.
785  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
786
787  // Already exported?
788  if (FuncInfo.isExportedInst(V)) return;
789
790  unsigned Reg = FuncInfo.InitializeRegForValue(V);
791  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
792}
793
794bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
795                                                    const BasicBlock *FromBB) {
796  // The operands of the setcc have to be in this block.  We don't know
797  // how to export them from some other block.
798  if (Instruction *VI = dyn_cast<Instruction>(V)) {
799    // Can export from current BB.
800    if (VI->getParent() == FromBB)
801      return true;
802
803    // Is already exported, noop.
804    return FuncInfo.isExportedInst(V);
805  }
806
807  // If this is an argument, we can export it if the BB is the entry block or
808  // if it is already exported.
809  if (isa<Argument>(V)) {
810    if (FromBB == &FromBB->getParent()->getEntryBlock())
811      return true;
812
813    // Otherwise, can only export this if it is already exported.
814    return FuncInfo.isExportedInst(V);
815  }
816
817  // Otherwise, constants can always be exported.
818  return true;
819}
820
821static bool InBlock(const Value *V, const BasicBlock *BB) {
822  if (const Instruction *I = dyn_cast<Instruction>(V))
823    return I->getParent() == BB;
824  return true;
825}
826
827/// FindMergedConditions - If Cond is an expression like
828void SelectionDAGLowering::FindMergedConditions(Value *Cond,
829                                                MachineBasicBlock *TBB,
830                                                MachineBasicBlock *FBB,
831                                                MachineBasicBlock *CurBB,
832                                                unsigned Opc) {
833  // If this node is not part of the or/and tree, emit it as a branch.
834  Instruction *BOp = dyn_cast<Instruction>(Cond);
835
836  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
837      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
838      BOp->getParent() != CurBB->getBasicBlock() ||
839      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
840      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
841    const BasicBlock *BB = CurBB->getBasicBlock();
842
843    // If the leaf of the tree is a comparison, merge the condition into
844    // the caseblock.
845    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
846        // The operands of the cmp have to be in this block.  We don't know
847        // how to export them from some other block.  If this is the first block
848        // of the sequence, no exporting is needed.
849        (CurBB == CurMBB ||
850         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
851          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
852      BOp = cast<Instruction>(Cond);
853      ISD::CondCode Condition;
854      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
855        switch (IC->getPredicate()) {
856        default: assert(0 && "Unknown icmp predicate opcode!");
857        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
858        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
859        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
860        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
861        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
862        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
863        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
864        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
865        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
866        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
867        }
868      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
869        ISD::CondCode FPC, FOC;
870        switch (FC->getPredicate()) {
871        default: assert(0 && "Unknown fcmp predicate opcode!");
872        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
873        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
874        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
875        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
876        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
877        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
878        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
879        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
880        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
881        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
882        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
883        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
884        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
885        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
886        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
887        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
888        }
889        if (FiniteOnlyFPMath())
890          Condition = FOC;
891        else
892          Condition = FPC;
893      } else {
894        assert(0 && "Unknown compare instruction");
895      }
896
897      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
898                                     BOp->getOperand(1), TBB, FBB, CurBB);
899      SwitchCases.push_back(CB);
900      return;
901    }
902
903    // Create a CaseBlock record representing this branch.
904    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
905                                   TBB, FBB, CurBB);
906    SwitchCases.push_back(CB);
907    return;
908  }
909
910
911  //  Create TmpBB after CurBB.
912  MachineFunction::iterator BBI = CurBB;
913  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
914  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
915
916  if (Opc == Instruction::Or) {
917    // Codegen X | Y as:
918    //   jmp_if_X TBB
919    //   jmp TmpBB
920    // TmpBB:
921    //   jmp_if_Y TBB
922    //   jmp FBB
923    //
924
925    // Emit the LHS condition.
926    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
927
928    // Emit the RHS condition into TmpBB.
929    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
930  } else {
931    assert(Opc == Instruction::And && "Unknown merge op!");
932    // Codegen X & Y as:
933    //   jmp_if_X TmpBB
934    //   jmp FBB
935    // TmpBB:
936    //   jmp_if_Y TBB
937    //   jmp FBB
938    //
939    //  This requires creation of TmpBB after CurBB.
940
941    // Emit the LHS condition.
942    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
943
944    // Emit the RHS condition into TmpBB.
945    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
946  }
947}
948
949/// If the set of cases should be emitted as a series of branches, return true.
950/// If we should emit this as a bunch of and/or'd together conditions, return
951/// false.
952static bool
953ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
954  if (Cases.size() != 2) return true;
955
956  // If this is two comparisons of the same values or'd or and'd together, they
957  // will get folded into a single comparison, so don't emit two blocks.
958  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
959       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
960      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
961       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
962    return false;
963  }
964
965  return true;
966}
967
968void SelectionDAGLowering::visitBr(BranchInst &I) {
969  // Update machine-CFG edges.
970  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
971
972  // Figure out which block is immediately after the current one.
973  MachineBasicBlock *NextBlock = 0;
974  MachineFunction::iterator BBI = CurMBB;
975  if (++BBI != CurMBB->getParent()->end())
976    NextBlock = BBI;
977
978  if (I.isUnconditional()) {
979    // If this is not a fall-through branch, emit the branch.
980    if (Succ0MBB != NextBlock)
981      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
982                              DAG.getBasicBlock(Succ0MBB)));
983
984    // Update machine-CFG edges.
985    CurMBB->addSuccessor(Succ0MBB);
986
987    return;
988  }
989
990  // If this condition is one of the special cases we handle, do special stuff
991  // now.
992  Value *CondVal = I.getCondition();
993  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
994
995  // If this is a series of conditions that are or'd or and'd together, emit
996  // this as a sequence of branches instead of setcc's with and/or operations.
997  // For example, instead of something like:
998  //     cmp A, B
999  //     C = seteq
1000  //     cmp D, E
1001  //     F = setle
1002  //     or C, F
1003  //     jnz foo
1004  // Emit:
1005  //     cmp A, B
1006  //     je foo
1007  //     cmp D, E
1008  //     jle foo
1009  //
1010  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1011    if (BOp->hasOneUse() &&
1012        (BOp->getOpcode() == Instruction::And ||
1013         BOp->getOpcode() == Instruction::Or)) {
1014      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1015      // If the compares in later blocks need to use values not currently
1016      // exported from this block, export them now.  This block should always
1017      // be the first entry.
1018      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1019
1020      // Allow some cases to be rejected.
1021      if (ShouldEmitAsBranches(SwitchCases)) {
1022        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1023          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1024          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1025        }
1026
1027        // Emit the branch for this block.
1028        visitSwitchCase(SwitchCases[0]);
1029        SwitchCases.erase(SwitchCases.begin());
1030        return;
1031      }
1032
1033      // Okay, we decided not to do this, remove any inserted MBB's and clear
1034      // SwitchCases.
1035      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1036        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1037
1038      SwitchCases.clear();
1039    }
1040  }
1041
1042  // Create a CaseBlock record representing this branch.
1043  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1044                                 Succ0MBB, Succ1MBB, CurMBB);
1045  // Use visitSwitchCase to actually insert the fast branch sequence for this
1046  // cond branch.
1047  visitSwitchCase(CB);
1048}
1049
1050/// visitSwitchCase - Emits the necessary code to represent a single node in
1051/// the binary search tree resulting from lowering a switch instruction.
1052void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1053  SDOperand Cond;
1054  SDOperand CondLHS = getValue(CB.CmpLHS);
1055
1056  // Build the setcc now, fold "(X == true)" to X and "(X == false)" to !X to
1057  // handle common cases produced by branch lowering.
1058  if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1059    Cond = CondLHS;
1060  else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1061    SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1062    Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1063  } else
1064    Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1065
1066  // Set NextBlock to be the MBB immediately after the current one, if any.
1067  // This is used to avoid emitting unnecessary branches to the next block.
1068  MachineBasicBlock *NextBlock = 0;
1069  MachineFunction::iterator BBI = CurMBB;
1070  if (++BBI != CurMBB->getParent()->end())
1071    NextBlock = BBI;
1072
1073  // If the lhs block is the next block, invert the condition so that we can
1074  // fall through to the lhs instead of the rhs block.
1075  if (CB.TrueBB == NextBlock) {
1076    std::swap(CB.TrueBB, CB.FalseBB);
1077    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1078    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1079  }
1080  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1081                                 DAG.getBasicBlock(CB.TrueBB));
1082  if (CB.FalseBB == NextBlock)
1083    DAG.setRoot(BrCond);
1084  else
1085    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1086                            DAG.getBasicBlock(CB.FalseBB)));
1087  // Update successor info
1088  CurMBB->addSuccessor(CB.TrueBB);
1089  CurMBB->addSuccessor(CB.FalseBB);
1090}
1091
1092void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1093  // Emit the code for the jump table
1094  MVT::ValueType PTy = TLI.getPointerTy();
1095  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1096  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1097  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1098                          Table, Index));
1099  return;
1100}
1101
1102void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
1103  // Figure out which block is immediately after the current one.
1104  MachineBasicBlock *NextBlock = 0;
1105  MachineFunction::iterator BBI = CurMBB;
1106
1107  if (++BBI != CurMBB->getParent()->end())
1108    NextBlock = BBI;
1109
1110  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
1111
1112  // If there is only the default destination, branch to it if it is not the
1113  // next basic block.  Otherwise, just fall through.
1114  if (I.getNumOperands() == 2) {
1115    // Update machine-CFG edges.
1116
1117    // If this is not a fall-through branch, emit the branch.
1118    if (Default != NextBlock)
1119      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1120                              DAG.getBasicBlock(Default)));
1121
1122    CurMBB->addSuccessor(Default);
1123    return;
1124  }
1125
1126  // If there are any non-default case statements, create a vector of Cases
1127  // representing each one, and sort the vector so that we can efficiently
1128  // create a binary search tree from them.
1129  std::vector<Case> Cases;
1130
1131  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
1132    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
1133    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
1134  }
1135
1136  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1137
1138  // Get the Value to be switched on and default basic blocks, which will be
1139  // inserted into CaseBlock records, representing basic blocks in the binary
1140  // search tree.
1141  Value *SV = I.getOperand(0);
1142
1143  // Get the MachineFunction which holds the current MBB.  This is used during
1144  // emission of jump tables, and when inserting any additional MBBs necessary
1145  // to represent the switch.
1146  MachineFunction *CurMF = CurMBB->getParent();
1147  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
1148
1149  // If the switch has few cases (two or less) emit a series of specific
1150  // tests.
1151  if (Cases.size() < 3) {
1152    // TODO: If any two of the cases has the same destination, and if one value
1153    // is the same as the other, but has one bit unset that the other has set,
1154    // use bit manipulation to do two compares at once.  For example:
1155    // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1156
1157    // Rearrange the case blocks so that the last one falls through if possible.
1158    if (NextBlock && Default != NextBlock && Cases.back().second != NextBlock) {
1159      // The last case block won't fall through into 'NextBlock' if we emit the
1160      // branches in this order.  See if rearranging a case value would help.
1161      for (unsigned i = 0, e = Cases.size()-1; i != e; ++i) {
1162        if (Cases[i].second == NextBlock) {
1163          std::swap(Cases[i], Cases.back());
1164          break;
1165        }
1166      }
1167    }
1168
1169    // Create a CaseBlock record representing a conditional branch to
1170    // the Case's target mbb if the value being switched on SV is equal
1171    // to C.
1172    MachineBasicBlock *CurBlock = CurMBB;
1173    for (unsigned i = 0, e = Cases.size(); i != e; ++i) {
1174      MachineBasicBlock *FallThrough;
1175      if (i != e-1) {
1176        FallThrough = new MachineBasicBlock(CurMBB->getBasicBlock());
1177        CurMF->getBasicBlockList().insert(BBI, FallThrough);
1178      } else {
1179        // If the last case doesn't match, go to the default block.
1180        FallThrough = Default;
1181      }
1182
1183      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, Cases[i].first,
1184                                     Cases[i].second, FallThrough, CurBlock);
1185
1186      // If emitting the first comparison, just call visitSwitchCase to emit the
1187      // code into the current block.  Otherwise, push the CaseBlock onto the
1188      // vector to be later processed by SDISel, and insert the node's MBB
1189      // before the next MBB.
1190      if (CurBlock == CurMBB)
1191        visitSwitchCase(CB);
1192      else
1193        SwitchCases.push_back(CB);
1194
1195      CurBlock = FallThrough;
1196    }
1197    return;
1198  }
1199
1200  // If the switch has more than 5 blocks, and at least 31.25% dense, and the
1201  // target supports indirect branches, then emit a jump table rather than
1202  // lowering the switch to a binary tree of conditional branches.
1203  if ((TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1204       TLI.isOperationLegal(ISD::BRIND, MVT::Other)) &&
1205      Cases.size() > 5) {
1206    uint64_t First =cast<ConstantInt>(Cases.front().first)->getZExtValue();
1207    uint64_t Last  = cast<ConstantInt>(Cases.back().first)->getZExtValue();
1208    double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
1209
1210    if (Density >= 0.3125) {
1211      // Create a new basic block to hold the code for loading the address
1212      // of the jump table, and jumping to it.  Update successor information;
1213      // we will either branch to the default case for the switch, or the jump
1214      // table.
1215      MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1216      CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1217      CurMBB->addSuccessor(Default);
1218      CurMBB->addSuccessor(JumpTableBB);
1219
1220      // Subtract the lowest switch case value from the value being switched on
1221      // and conditional branch to default mbb if the result is greater than the
1222      // difference between smallest and largest cases.
1223      SDOperand SwitchOp = getValue(SV);
1224      MVT::ValueType VT = SwitchOp.getValueType();
1225      SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1226                                  DAG.getConstant(First, VT));
1227
1228      // The SDNode we just created, which holds the value being switched on
1229      // minus the the smallest case value, needs to be copied to a virtual
1230      // register so it can be used as an index into the jump table in a
1231      // subsequent basic block.  This value may be smaller or larger than the
1232      // target's pointer type, and therefore require extension or truncating.
1233      if (VT > TLI.getPointerTy())
1234        SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1235      else
1236        SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1237
1238      unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1239      SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1240
1241      // Emit the range check for the jump table, and branch to the default
1242      // block for the switch statement if the value being switched on exceeds
1243      // the largest case in the switch.
1244      SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1245                                   DAG.getConstant(Last-First,VT), ISD::SETUGT);
1246      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1247                              DAG.getBasicBlock(Default)));
1248
1249      // Build a vector of destination BBs, corresponding to each target
1250      // of the jump table.  If the value of the jump table slot corresponds to
1251      // a case statement, push the case's BB onto the vector, otherwise, push
1252      // the default BB.
1253      std::vector<MachineBasicBlock*> DestBBs;
1254      uint64_t TEI = First;
1255      for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI)
1256        if (cast<ConstantInt>(ii->first)->getZExtValue() == TEI) {
1257          DestBBs.push_back(ii->second);
1258          ++ii;
1259        } else {
1260          DestBBs.push_back(Default);
1261        }
1262
1263      // Update successor info.  Add one edge to each unique successor.
1264      // Vector bool would be better, but vector<bool> is really slow.
1265      std::vector<unsigned char> SuccsHandled;
1266      SuccsHandled.resize(CurMBB->getParent()->getNumBlockIDs());
1267
1268      for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1269           E = DestBBs.end(); I != E; ++I) {
1270        if (!SuccsHandled[(*I)->getNumber()]) {
1271          SuccsHandled[(*I)->getNumber()] = true;
1272          JumpTableBB->addSuccessor(*I);
1273        }
1274      }
1275
1276      // Create a jump table index for this jump table, or return an existing
1277      // one.
1278      unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1279
1280      // Set the jump table information so that we can codegen it as a second
1281      // MachineBasicBlock
1282      JT.Reg = JumpTableReg;
1283      JT.JTI = JTI;
1284      JT.MBB = JumpTableBB;
1285      JT.Default = Default;
1286      return;
1287    }
1288  }
1289
1290  // Push the initial CaseRec onto the worklist
1291  std::vector<CaseRec> CaseVec;
1292  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1293
1294  while (!CaseVec.empty()) {
1295    // Grab a record representing a case range to process off the worklist
1296    CaseRec CR = CaseVec.back();
1297    CaseVec.pop_back();
1298
1299    // Size is the number of Cases represented by this range.  If Size is 1,
1300    // then we are processing a leaf of the binary search tree.  Otherwise,
1301    // we need to pick a pivot, and push left and right ranges onto the
1302    // worklist.
1303    unsigned Size = CR.Range.second - CR.Range.first;
1304
1305    if (Size == 1) {
1306      // Create a CaseBlock record representing a conditional branch to
1307      // the Case's target mbb if the value being switched on SV is equal
1308      // to C.  Otherwise, branch to default.
1309      Constant *C = CR.Range.first->first;
1310      MachineBasicBlock *Target = CR.Range.first->second;
1311      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
1312                                     CR.CaseBB);
1313
1314      // If the MBB representing the leaf node is the current MBB, then just
1315      // call visitSwitchCase to emit the code into the current block.
1316      // Otherwise, push the CaseBlock onto the vector to be later processed
1317      // by SDISel, and insert the node's MBB before the next MBB.
1318      if (CR.CaseBB == CurMBB)
1319        visitSwitchCase(CB);
1320      else
1321        SwitchCases.push_back(CB);
1322    } else {
1323      // split case range at pivot
1324      CaseItr Pivot = CR.Range.first + (Size / 2);
1325      CaseRange LHSR(CR.Range.first, Pivot);
1326      CaseRange RHSR(Pivot, CR.Range.second);
1327      Constant *C = Pivot->first;
1328      MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1329
1330      // We know that we branch to the LHS if the Value being switched on is
1331      // less than the Pivot value, C.  We use this to optimize our binary
1332      // tree a bit, by recognizing that if SV is greater than or equal to the
1333      // LHS's Case Value, and that Case Value is exactly one less than the
1334      // Pivot's Value, then we can branch directly to the LHS's Target,
1335      // rather than creating a leaf node for it.
1336      if ((LHSR.second - LHSR.first) == 1 &&
1337          LHSR.first->first == CR.GE &&
1338          cast<ConstantInt>(C)->getZExtValue() ==
1339          (cast<ConstantInt>(CR.GE)->getZExtValue() + 1ULL)) {
1340        TrueBB = LHSR.first->second;
1341      } else {
1342        TrueBB = new MachineBasicBlock(LLVMBB);
1343        CurMF->getBasicBlockList().insert(BBI, TrueBB);
1344        CaseVec.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1345      }
1346
1347      // Similar to the optimization above, if the Value being switched on is
1348      // known to be less than the Constant CR.LT, and the current Case Value
1349      // is CR.LT - 1, then we can branch directly to the target block for
1350      // the current Case Value, rather than emitting a RHS leaf node for it.
1351      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1352          cast<ConstantInt>(RHSR.first->first)->getZExtValue() ==
1353          (cast<ConstantInt>(CR.LT)->getZExtValue() - 1ULL)) {
1354        FalseBB = RHSR.first->second;
1355      } else {
1356        FalseBB = new MachineBasicBlock(LLVMBB);
1357        CurMF->getBasicBlockList().insert(BBI, FalseBB);
1358        CaseVec.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1359      }
1360
1361      // Create a CaseBlock record representing a conditional branch to
1362      // the LHS node if the value being switched on SV is less than C.
1363      // Otherwise, branch to LHS.
1364      ISD::CondCode CC =  ISD::SETLT;
1365      SelectionDAGISel::CaseBlock CB(CC, SV, C, TrueBB, FalseBB, CR.CaseBB);
1366
1367      if (CR.CaseBB == CurMBB)
1368        visitSwitchCase(CB);
1369      else
1370        SwitchCases.push_back(CB);
1371    }
1372  }
1373}
1374
1375void SelectionDAGLowering::visitSub(User &I) {
1376  // -0.0 - X --> fneg
1377  const Type *Ty = I.getType();
1378  if (isa<PackedType>(Ty)) {
1379    visitVectorBinary(I, ISD::VSUB);
1380  } else if (Ty->isFloatingPoint()) {
1381    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1382      if (CFP->isExactlyValue(-0.0)) {
1383        SDOperand Op2 = getValue(I.getOperand(1));
1384        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1385        return;
1386      }
1387    visitScalarBinary(I, ISD::FSUB);
1388  } else
1389    visitScalarBinary(I, ISD::SUB);
1390}
1391
1392void SelectionDAGLowering::visitScalarBinary(User &I, unsigned OpCode) {
1393  SDOperand Op1 = getValue(I.getOperand(0));
1394  SDOperand Op2 = getValue(I.getOperand(1));
1395
1396  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
1397}
1398
1399void
1400SelectionDAGLowering::visitVectorBinary(User &I, unsigned OpCode) {
1401  assert(isa<PackedType>(I.getType()));
1402  const PackedType *Ty = cast<PackedType>(I.getType());
1403  SDOperand Typ = DAG.getValueType(TLI.getValueType(Ty->getElementType()));
1404
1405  setValue(&I, DAG.getNode(OpCode, MVT::Vector,
1406                           getValue(I.getOperand(0)),
1407                           getValue(I.getOperand(1)),
1408                           DAG.getConstant(Ty->getNumElements(), MVT::i32),
1409                           Typ));
1410}
1411
1412void SelectionDAGLowering::visitEitherBinary(User &I, unsigned ScalarOp,
1413                                             unsigned VectorOp) {
1414  if (isa<PackedType>(I.getType()))
1415    visitVectorBinary(I, VectorOp);
1416  else
1417    visitScalarBinary(I, ScalarOp);
1418}
1419
1420void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1421  SDOperand Op1 = getValue(I.getOperand(0));
1422  SDOperand Op2 = getValue(I.getOperand(1));
1423
1424  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1425
1426  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1427}
1428
1429void SelectionDAGLowering::visitICmp(User &I) {
1430  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
1431  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
1432    predicate = IC->getPredicate();
1433  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
1434    predicate = ICmpInst::Predicate(IC->getPredicate());
1435  SDOperand Op1 = getValue(I.getOperand(0));
1436  SDOperand Op2 = getValue(I.getOperand(1));
1437  ISD::CondCode Opcode;
1438  switch (predicate) {
1439    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
1440    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
1441    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
1442    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
1443    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
1444    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
1445    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
1446    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
1447    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
1448    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
1449    default:
1450      assert(!"Invalid ICmp predicate value");
1451      Opcode = ISD::SETEQ;
1452      break;
1453  }
1454  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1455}
1456
1457void SelectionDAGLowering::visitFCmp(User &I) {
1458  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
1459  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
1460    predicate = FC->getPredicate();
1461  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
1462    predicate = FCmpInst::Predicate(FC->getPredicate());
1463  SDOperand Op1 = getValue(I.getOperand(0));
1464  SDOperand Op2 = getValue(I.getOperand(1));
1465  ISD::CondCode Condition, FOC, FPC;
1466  switch (predicate) {
1467    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1468    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1469    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1470    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1471    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1472    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1473    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1474    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1475    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1476    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1477    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1478    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1479    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1480    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1481    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1482    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1483    default:
1484      assert(!"Invalid FCmp predicate value");
1485      FOC = FPC = ISD::SETFALSE;
1486      break;
1487  }
1488  if (FiniteOnlyFPMath())
1489    Condition = FOC;
1490  else
1491    Condition = FPC;
1492  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
1493}
1494
1495void SelectionDAGLowering::visitSelect(User &I) {
1496  SDOperand Cond     = getValue(I.getOperand(0));
1497  SDOperand TrueVal  = getValue(I.getOperand(1));
1498  SDOperand FalseVal = getValue(I.getOperand(2));
1499  if (!isa<PackedType>(I.getType())) {
1500    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1501                             TrueVal, FalseVal));
1502  } else {
1503    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1504                             *(TrueVal.Val->op_end()-2),
1505                             *(TrueVal.Val->op_end()-1)));
1506  }
1507}
1508
1509
1510void SelectionDAGLowering::visitTrunc(User &I) {
1511  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
1512  SDOperand N = getValue(I.getOperand(0));
1513  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1514  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1515}
1516
1517void SelectionDAGLowering::visitZExt(User &I) {
1518  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1519  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
1520  SDOperand N = getValue(I.getOperand(0));
1521  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1522  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1523}
1524
1525void SelectionDAGLowering::visitSExt(User &I) {
1526  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1527  // SExt also can't be a cast to bool for same reason. So, nothing much to do
1528  SDOperand N = getValue(I.getOperand(0));
1529  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1530  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1531}
1532
1533void SelectionDAGLowering::visitFPTrunc(User &I) {
1534  // FPTrunc is never a no-op cast, no need to check
1535  SDOperand N = getValue(I.getOperand(0));
1536  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1537  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1538}
1539
1540void SelectionDAGLowering::visitFPExt(User &I){
1541  // FPTrunc is never a no-op cast, no need to check
1542  SDOperand N = getValue(I.getOperand(0));
1543  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1544  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1545}
1546
1547void SelectionDAGLowering::visitFPToUI(User &I) {
1548  // FPToUI is never a no-op cast, no need to check
1549  SDOperand N = getValue(I.getOperand(0));
1550  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1551  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1552}
1553
1554void SelectionDAGLowering::visitFPToSI(User &I) {
1555  // FPToSI is never a no-op cast, no need to check
1556  SDOperand N = getValue(I.getOperand(0));
1557  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1558  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1559}
1560
1561void SelectionDAGLowering::visitUIToFP(User &I) {
1562  // UIToFP is never a no-op cast, no need to check
1563  SDOperand N = getValue(I.getOperand(0));
1564  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1565  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1566}
1567
1568void SelectionDAGLowering::visitSIToFP(User &I){
1569  // UIToFP is never a no-op cast, no need to check
1570  SDOperand N = getValue(I.getOperand(0));
1571  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1572  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1573}
1574
1575void SelectionDAGLowering::visitPtrToInt(User &I) {
1576  // What to do depends on the size of the integer and the size of the pointer.
1577  // We can either truncate, zero extend, or no-op, accordingly.
1578  SDOperand N = getValue(I.getOperand(0));
1579  MVT::ValueType SrcVT = N.getValueType();
1580  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1581  SDOperand Result;
1582  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1583    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
1584  else
1585    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1586    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
1587  setValue(&I, Result);
1588}
1589
1590void SelectionDAGLowering::visitIntToPtr(User &I) {
1591  // What to do depends on the size of the integer and the size of the pointer.
1592  // We can either truncate, zero extend, or no-op, accordingly.
1593  SDOperand N = getValue(I.getOperand(0));
1594  MVT::ValueType SrcVT = N.getValueType();
1595  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1596  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1597    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1598  else
1599    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1600    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1601}
1602
1603void SelectionDAGLowering::visitBitCast(User &I) {
1604  SDOperand N = getValue(I.getOperand(0));
1605  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1606  if (DestVT == MVT::Vector) {
1607    // This is a cast to a vector from something else.
1608    // Get information about the output vector.
1609    const PackedType *DestTy = cast<PackedType>(I.getType());
1610    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1611    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1612                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1613                             DAG.getValueType(EltVT)));
1614    return;
1615  }
1616  MVT::ValueType SrcVT = N.getValueType();
1617  if (SrcVT == MVT::Vector) {
1618    // This is a cast from a vctor to something else.
1619    // Get information about the input vector.
1620    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1621    return;
1622  }
1623
1624  // BitCast assures us that source and destination are the same size so this
1625  // is either a BIT_CONVERT or a no-op.
1626  if (DestVT != N.getValueType())
1627    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
1628  else
1629    setValue(&I, N); // noop cast.
1630}
1631
1632void SelectionDAGLowering::visitInsertElement(User &I) {
1633  SDOperand InVec = getValue(I.getOperand(0));
1634  SDOperand InVal = getValue(I.getOperand(1));
1635  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1636                                getValue(I.getOperand(2)));
1637
1638  SDOperand Num = *(InVec.Val->op_end()-2);
1639  SDOperand Typ = *(InVec.Val->op_end()-1);
1640  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1641                           InVec, InVal, InIdx, Num, Typ));
1642}
1643
1644void SelectionDAGLowering::visitExtractElement(User &I) {
1645  SDOperand InVec = getValue(I.getOperand(0));
1646  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1647                                getValue(I.getOperand(1)));
1648  SDOperand Typ = *(InVec.Val->op_end()-1);
1649  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1650                           TLI.getValueType(I.getType()), InVec, InIdx));
1651}
1652
1653void SelectionDAGLowering::visitShuffleVector(User &I) {
1654  SDOperand V1   = getValue(I.getOperand(0));
1655  SDOperand V2   = getValue(I.getOperand(1));
1656  SDOperand Mask = getValue(I.getOperand(2));
1657
1658  SDOperand Num = *(V1.Val->op_end()-2);
1659  SDOperand Typ = *(V2.Val->op_end()-1);
1660  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1661                           V1, V2, Mask, Num, Typ));
1662}
1663
1664
1665void SelectionDAGLowering::visitGetElementPtr(User &I) {
1666  SDOperand N = getValue(I.getOperand(0));
1667  const Type *Ty = I.getOperand(0)->getType();
1668
1669  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1670       OI != E; ++OI) {
1671    Value *Idx = *OI;
1672    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1673      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
1674      if (Field) {
1675        // N = N + Offset
1676        uint64_t Offset = TD->getStructLayout(StTy)->MemberOffsets[Field];
1677        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1678                        getIntPtrConstant(Offset));
1679      }
1680      Ty = StTy->getElementType(Field);
1681    } else {
1682      Ty = cast<SequentialType>(Ty)->getElementType();
1683
1684      // If this is a constant subscript, handle it quickly.
1685      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1686        if (CI->getZExtValue() == 0) continue;
1687        uint64_t Offs =
1688            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
1689        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1690        continue;
1691      }
1692
1693      // N = N + Idx * ElementSize;
1694      uint64_t ElementSize = TD->getTypeSize(Ty);
1695      SDOperand IdxN = getValue(Idx);
1696
1697      // If the index is smaller or larger than intptr_t, truncate or extend
1698      // it.
1699      if (IdxN.getValueType() < N.getValueType()) {
1700        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1701      } else if (IdxN.getValueType() > N.getValueType())
1702        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1703
1704      // If this is a multiply by a power of two, turn it into a shl
1705      // immediately.  This is a very common case.
1706      if (isPowerOf2_64(ElementSize)) {
1707        unsigned Amt = Log2_64(ElementSize);
1708        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1709                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1710        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1711        continue;
1712      }
1713
1714      SDOperand Scale = getIntPtrConstant(ElementSize);
1715      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1716      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1717    }
1718  }
1719  setValue(&I, N);
1720}
1721
1722void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1723  // If this is a fixed sized alloca in the entry block of the function,
1724  // allocate it statically on the stack.
1725  if (FuncInfo.StaticAllocaMap.count(&I))
1726    return;   // getValue will auto-populate this.
1727
1728  const Type *Ty = I.getAllocatedType();
1729  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
1730  unsigned Align =
1731    std::max((unsigned)TLI.getTargetData()->getTypeAlignmentPref(Ty),
1732             I.getAlignment());
1733
1734  SDOperand AllocSize = getValue(I.getArraySize());
1735  MVT::ValueType IntPtr = TLI.getPointerTy();
1736  if (IntPtr < AllocSize.getValueType())
1737    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1738  else if (IntPtr > AllocSize.getValueType())
1739    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1740
1741  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1742                          getIntPtrConstant(TySize));
1743
1744  // Handle alignment.  If the requested alignment is less than or equal to the
1745  // stack alignment, ignore it and round the size of the allocation up to the
1746  // stack alignment size.  If the size is greater than the stack alignment, we
1747  // note this in the DYNAMIC_STACKALLOC node.
1748  unsigned StackAlign =
1749    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1750  if (Align <= StackAlign) {
1751    Align = 0;
1752    // Add SA-1 to the size.
1753    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1754                            getIntPtrConstant(StackAlign-1));
1755    // Mask out the low bits for alignment purposes.
1756    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1757                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1758  }
1759
1760  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
1761  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
1762                                                    MVT::Other);
1763  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
1764  DAG.setRoot(setValue(&I, DSA).getValue(1));
1765
1766  // Inform the Frame Information that we have just allocated a variable-sized
1767  // object.
1768  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1769}
1770
1771void SelectionDAGLowering::visitLoad(LoadInst &I) {
1772  SDOperand Ptr = getValue(I.getOperand(0));
1773
1774  SDOperand Root;
1775  if (I.isVolatile())
1776    Root = getRoot();
1777  else {
1778    // Do not serialize non-volatile loads against each other.
1779    Root = DAG.getRoot();
1780  }
1781
1782  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
1783                           Root, I.isVolatile()));
1784}
1785
1786SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1787                                            const Value *SV, SDOperand Root,
1788                                            bool isVolatile) {
1789  SDOperand L;
1790  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1791    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1792    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
1793                       DAG.getSrcValue(SV));
1794  } else {
1795    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0, isVolatile);
1796  }
1797
1798  if (isVolatile)
1799    DAG.setRoot(L.getValue(1));
1800  else
1801    PendingLoads.push_back(L.getValue(1));
1802
1803  return L;
1804}
1805
1806
1807void SelectionDAGLowering::visitStore(StoreInst &I) {
1808  Value *SrcV = I.getOperand(0);
1809  SDOperand Src = getValue(SrcV);
1810  SDOperand Ptr = getValue(I.getOperand(1));
1811  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
1812                           I.isVolatile()));
1813}
1814
1815/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1816/// access memory and has no other side effects at all.
1817static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1818#define GET_NO_MEMORY_INTRINSICS
1819#include "llvm/Intrinsics.gen"
1820#undef GET_NO_MEMORY_INTRINSICS
1821  return false;
1822}
1823
1824// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
1825// have any side-effects or if it only reads memory.
1826static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
1827#define GET_SIDE_EFFECT_INFO
1828#include "llvm/Intrinsics.gen"
1829#undef GET_SIDE_EFFECT_INFO
1830  return false;
1831}
1832
1833/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1834/// node.
1835void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1836                                                unsigned Intrinsic) {
1837  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1838  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
1839
1840  // Build the operand list.
1841  SmallVector<SDOperand, 8> Ops;
1842  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
1843    if (OnlyLoad) {
1844      // We don't need to serialize loads against other loads.
1845      Ops.push_back(DAG.getRoot());
1846    } else {
1847      Ops.push_back(getRoot());
1848    }
1849  }
1850
1851  // Add the intrinsic ID as an integer operand.
1852  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1853
1854  // Add all operands of the call to the operand list.
1855  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1856    SDOperand Op = getValue(I.getOperand(i));
1857
1858    // If this is a vector type, force it to the right packed type.
1859    if (Op.getValueType() == MVT::Vector) {
1860      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1861      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1862
1863      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1864      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1865      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1866    }
1867
1868    assert(TLI.isTypeLegal(Op.getValueType()) &&
1869           "Intrinsic uses a non-legal type?");
1870    Ops.push_back(Op);
1871  }
1872
1873  std::vector<MVT::ValueType> VTs;
1874  if (I.getType() != Type::VoidTy) {
1875    MVT::ValueType VT = TLI.getValueType(I.getType());
1876    if (VT == MVT::Vector) {
1877      const PackedType *DestTy = cast<PackedType>(I.getType());
1878      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1879
1880      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1881      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1882    }
1883
1884    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1885    VTs.push_back(VT);
1886  }
1887  if (HasChain)
1888    VTs.push_back(MVT::Other);
1889
1890  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
1891
1892  // Create the node.
1893  SDOperand Result;
1894  if (!HasChain)
1895    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
1896                         &Ops[0], Ops.size());
1897  else if (I.getType() != Type::VoidTy)
1898    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
1899                         &Ops[0], Ops.size());
1900  else
1901    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
1902                         &Ops[0], Ops.size());
1903
1904  if (HasChain) {
1905    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
1906    if (OnlyLoad)
1907      PendingLoads.push_back(Chain);
1908    else
1909      DAG.setRoot(Chain);
1910  }
1911  if (I.getType() != Type::VoidTy) {
1912    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1913      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1914      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1915                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1916                           DAG.getValueType(EVT));
1917    }
1918    setValue(&I, Result);
1919  }
1920}
1921
1922/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1923/// we want to emit this as a call to a named external function, return the name
1924/// otherwise lower it and return null.
1925const char *
1926SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1927  switch (Intrinsic) {
1928  default:
1929    // By default, turn this into a target intrinsic node.
1930    visitTargetIntrinsic(I, Intrinsic);
1931    return 0;
1932  case Intrinsic::vastart:  visitVAStart(I); return 0;
1933  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1934  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1935  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1936  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1937  case Intrinsic::setjmp:
1938    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
1939    break;
1940  case Intrinsic::longjmp:
1941    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
1942    break;
1943  case Intrinsic::memcpy_i32:
1944  case Intrinsic::memcpy_i64:
1945    visitMemIntrinsic(I, ISD::MEMCPY);
1946    return 0;
1947  case Intrinsic::memset_i32:
1948  case Intrinsic::memset_i64:
1949    visitMemIntrinsic(I, ISD::MEMSET);
1950    return 0;
1951  case Intrinsic::memmove_i32:
1952  case Intrinsic::memmove_i64:
1953    visitMemIntrinsic(I, ISD::MEMMOVE);
1954    return 0;
1955
1956  case Intrinsic::dbg_stoppoint: {
1957    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
1958    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1959    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
1960      SDOperand Ops[5];
1961
1962      Ops[0] = getRoot();
1963      Ops[1] = getValue(SPI.getLineValue());
1964      Ops[2] = getValue(SPI.getColumnValue());
1965
1966      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
1967      assert(DD && "Not a debug information descriptor");
1968      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1969
1970      Ops[3] = DAG.getString(CompileUnit->getFileName());
1971      Ops[4] = DAG.getString(CompileUnit->getDirectory());
1972
1973      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
1974    }
1975
1976    return 0;
1977  }
1978  case Intrinsic::dbg_region_start: {
1979    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
1980    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1981    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
1982      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
1983      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
1984                              DAG.getConstant(LabelID, MVT::i32)));
1985    }
1986
1987    return 0;
1988  }
1989  case Intrinsic::dbg_region_end: {
1990    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
1991    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
1992    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
1993      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
1994      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
1995                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
1996    }
1997
1998    return 0;
1999  }
2000  case Intrinsic::dbg_func_start: {
2001    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2002    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2003    if (MMI && FSI.getSubprogram() &&
2004        MMI->Verify(FSI.getSubprogram())) {
2005      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2006      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2007                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2008    }
2009
2010    return 0;
2011  }
2012  case Intrinsic::dbg_declare: {
2013    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2014    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2015    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2016      SDOperand AddressOp  = getValue(DI.getAddress());
2017      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2018        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2019    }
2020
2021    return 0;
2022  }
2023
2024  case Intrinsic::sqrt_f32:
2025  case Intrinsic::sqrt_f64:
2026    setValue(&I, DAG.getNode(ISD::FSQRT,
2027                             getValue(I.getOperand(1)).getValueType(),
2028                             getValue(I.getOperand(1))));
2029    return 0;
2030  case Intrinsic::powi_f32:
2031  case Intrinsic::powi_f64:
2032    setValue(&I, DAG.getNode(ISD::FPOWI,
2033                             getValue(I.getOperand(1)).getValueType(),
2034                             getValue(I.getOperand(1)),
2035                             getValue(I.getOperand(2))));
2036    return 0;
2037  case Intrinsic::pcmarker: {
2038    SDOperand Tmp = getValue(I.getOperand(1));
2039    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2040    return 0;
2041  }
2042  case Intrinsic::readcyclecounter: {
2043    SDOperand Op = getRoot();
2044    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2045                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2046                                &Op, 1);
2047    setValue(&I, Tmp);
2048    DAG.setRoot(Tmp.getValue(1));
2049    return 0;
2050  }
2051  case Intrinsic::bswap_i16:
2052  case Intrinsic::bswap_i32:
2053  case Intrinsic::bswap_i64:
2054    setValue(&I, DAG.getNode(ISD::BSWAP,
2055                             getValue(I.getOperand(1)).getValueType(),
2056                             getValue(I.getOperand(1))));
2057    return 0;
2058  case Intrinsic::cttz_i8:
2059  case Intrinsic::cttz_i16:
2060  case Intrinsic::cttz_i32:
2061  case Intrinsic::cttz_i64:
2062    setValue(&I, DAG.getNode(ISD::CTTZ,
2063                             getValue(I.getOperand(1)).getValueType(),
2064                             getValue(I.getOperand(1))));
2065    return 0;
2066  case Intrinsic::ctlz_i8:
2067  case Intrinsic::ctlz_i16:
2068  case Intrinsic::ctlz_i32:
2069  case Intrinsic::ctlz_i64:
2070    setValue(&I, DAG.getNode(ISD::CTLZ,
2071                             getValue(I.getOperand(1)).getValueType(),
2072                             getValue(I.getOperand(1))));
2073    return 0;
2074  case Intrinsic::ctpop_i8:
2075  case Intrinsic::ctpop_i16:
2076  case Intrinsic::ctpop_i32:
2077  case Intrinsic::ctpop_i64:
2078    setValue(&I, DAG.getNode(ISD::CTPOP,
2079                             getValue(I.getOperand(1)).getValueType(),
2080                             getValue(I.getOperand(1))));
2081    return 0;
2082  case Intrinsic::stacksave: {
2083    SDOperand Op = getRoot();
2084    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2085              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2086    setValue(&I, Tmp);
2087    DAG.setRoot(Tmp.getValue(1));
2088    return 0;
2089  }
2090  case Intrinsic::stackrestore: {
2091    SDOperand Tmp = getValue(I.getOperand(1));
2092    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2093    return 0;
2094  }
2095  case Intrinsic::prefetch:
2096    // FIXME: Currently discarding prefetches.
2097    return 0;
2098  }
2099}
2100
2101
2102void SelectionDAGLowering::visitCall(CallInst &I) {
2103  const char *RenameFn = 0;
2104  if (Function *F = I.getCalledFunction()) {
2105    if (F->isExternal())
2106      if (unsigned IID = F->getIntrinsicID()) {
2107        RenameFn = visitIntrinsicCall(I, IID);
2108        if (!RenameFn)
2109          return;
2110      } else {    // Not an LLVM intrinsic.
2111        const std::string &Name = F->getName();
2112        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2113          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2114              I.getOperand(1)->getType()->isFloatingPoint() &&
2115              I.getType() == I.getOperand(1)->getType() &&
2116              I.getType() == I.getOperand(2)->getType()) {
2117            SDOperand LHS = getValue(I.getOperand(1));
2118            SDOperand RHS = getValue(I.getOperand(2));
2119            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2120                                     LHS, RHS));
2121            return;
2122          }
2123        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2124          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2125              I.getOperand(1)->getType()->isFloatingPoint() &&
2126              I.getType() == I.getOperand(1)->getType()) {
2127            SDOperand Tmp = getValue(I.getOperand(1));
2128            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2129            return;
2130          }
2131        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2132          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2133              I.getOperand(1)->getType()->isFloatingPoint() &&
2134              I.getType() == I.getOperand(1)->getType()) {
2135            SDOperand Tmp = getValue(I.getOperand(1));
2136            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2137            return;
2138          }
2139        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2140          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2141              I.getOperand(1)->getType()->isFloatingPoint() &&
2142              I.getType() == I.getOperand(1)->getType()) {
2143            SDOperand Tmp = getValue(I.getOperand(1));
2144            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2145            return;
2146          }
2147        }
2148      }
2149  } else if (isa<InlineAsm>(I.getOperand(0))) {
2150    visitInlineAsm(I);
2151    return;
2152  }
2153
2154  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
2155  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2156
2157  SDOperand Callee;
2158  if (!RenameFn)
2159    Callee = getValue(I.getOperand(0));
2160  else
2161    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2162  TargetLowering::ArgListTy Args;
2163  TargetLowering::ArgListEntry Entry;
2164  Args.reserve(I.getNumOperands());
2165  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2166    Value *Arg = I.getOperand(i);
2167    SDOperand ArgNode = getValue(Arg);
2168    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2169    Entry.isSigned = FTy->paramHasAttr(i, FunctionType::SExtAttribute);
2170    Entry.isInReg  = FTy->paramHasAttr(i, FunctionType::InRegAttribute);
2171    Entry.isSRet   = FTy->paramHasAttr(i, FunctionType::StructRetAttribute);
2172    Args.push_back(Entry);
2173  }
2174
2175  std::pair<SDOperand,SDOperand> Result =
2176    TLI.LowerCallTo(getRoot(), I.getType(),
2177                    FTy->paramHasAttr(0,FunctionType::SExtAttribute),
2178                    FTy->isVarArg(), I.getCallingConv(), I.isTailCall(),
2179                    Callee, Args, DAG);
2180  if (I.getType() != Type::VoidTy)
2181    setValue(&I, Result.first);
2182  DAG.setRoot(Result.second);
2183}
2184
2185SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2186                                        SDOperand &Chain, SDOperand &Flag)const{
2187  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
2188  Chain = Val.getValue(1);
2189  Flag  = Val.getValue(2);
2190
2191  // If the result was expanded, copy from the top part.
2192  if (Regs.size() > 1) {
2193    assert(Regs.size() == 2 &&
2194           "Cannot expand to more than 2 elts yet!");
2195    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
2196    Chain = Hi.getValue(1);
2197    Flag  = Hi.getValue(2);
2198    if (DAG.getTargetLoweringInfo().isLittleEndian())
2199      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
2200    else
2201      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
2202  }
2203
2204  // Otherwise, if the return value was promoted or extended, truncate it to the
2205  // appropriate type.
2206  if (RegVT == ValueVT)
2207    return Val;
2208
2209  if (MVT::isInteger(RegVT)) {
2210    if (ValueVT < RegVT)
2211      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
2212    else
2213      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
2214  } else {
2215    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
2216  }
2217}
2218
2219/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2220/// specified value into the registers specified by this object.  This uses
2221/// Chain/Flag as the input and updates them for the output Chain/Flag.
2222void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2223                                 SDOperand &Chain, SDOperand &Flag,
2224                                 MVT::ValueType PtrVT) const {
2225  if (Regs.size() == 1) {
2226    // If there is a single register and the types differ, this must be
2227    // a promotion.
2228    if (RegVT != ValueVT) {
2229      if (MVT::isInteger(RegVT)) {
2230        if (RegVT < ValueVT)
2231          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
2232        else
2233          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
2234      } else
2235        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
2236    }
2237    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
2238    Flag = Chain.getValue(1);
2239  } else {
2240    std::vector<unsigned> R(Regs);
2241    if (!DAG.getTargetLoweringInfo().isLittleEndian())
2242      std::reverse(R.begin(), R.end());
2243
2244    for (unsigned i = 0, e = R.size(); i != e; ++i) {
2245      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
2246                                   DAG.getConstant(i, PtrVT));
2247      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
2248      Flag = Chain.getValue(1);
2249    }
2250  }
2251}
2252
2253/// AddInlineAsmOperands - Add this value to the specified inlineasm node
2254/// operand list.  This adds the code marker and includes the number of
2255/// values added into it.
2256void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
2257                                        std::vector<SDOperand> &Ops) const {
2258  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
2259  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
2260    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
2261}
2262
2263/// isAllocatableRegister - If the specified register is safe to allocate,
2264/// i.e. it isn't a stack pointer or some other special register, return the
2265/// register class for the register.  Otherwise, return null.
2266static const TargetRegisterClass *
2267isAllocatableRegister(unsigned Reg, MachineFunction &MF,
2268                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
2269  MVT::ValueType FoundVT = MVT::Other;
2270  const TargetRegisterClass *FoundRC = 0;
2271  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
2272       E = MRI->regclass_end(); RCI != E; ++RCI) {
2273    MVT::ValueType ThisVT = MVT::Other;
2274
2275    const TargetRegisterClass *RC = *RCI;
2276    // If none of the the value types for this register class are valid, we
2277    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2278    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2279         I != E; ++I) {
2280      if (TLI.isTypeLegal(*I)) {
2281        // If we have already found this register in a different register class,
2282        // choose the one with the largest VT specified.  For example, on
2283        // PowerPC, we favor f64 register classes over f32.
2284        if (FoundVT == MVT::Other ||
2285            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
2286          ThisVT = *I;
2287          break;
2288        }
2289      }
2290    }
2291
2292    if (ThisVT == MVT::Other) continue;
2293
2294    // NOTE: This isn't ideal.  In particular, this might allocate the
2295    // frame pointer in functions that need it (due to them not being taken
2296    // out of allocation, because a variable sized allocation hasn't been seen
2297    // yet).  This is a slight code pessimization, but should still work.
2298    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
2299         E = RC->allocation_order_end(MF); I != E; ++I)
2300      if (*I == Reg) {
2301        // We found a matching register class.  Keep looking at others in case
2302        // we find one with larger registers that this physreg is also in.
2303        FoundRC = RC;
2304        FoundVT = ThisVT;
2305        break;
2306      }
2307  }
2308  return FoundRC;
2309}
2310
2311RegsForValue SelectionDAGLowering::
2312GetRegistersForValue(const std::string &ConstrCode,
2313                     MVT::ValueType VT, bool isOutReg, bool isInReg,
2314                     std::set<unsigned> &OutputRegs,
2315                     std::set<unsigned> &InputRegs) {
2316  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
2317    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
2318  std::vector<unsigned> Regs;
2319
2320  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
2321  MVT::ValueType RegVT;
2322  MVT::ValueType ValueVT = VT;
2323
2324  // If this is a constraint for a specific physical register, like {r17},
2325  // assign it now.
2326  if (PhysReg.first) {
2327    if (VT == MVT::Other)
2328      ValueVT = *PhysReg.second->vt_begin();
2329
2330    // Get the actual register value type.  This is important, because the user
2331    // may have asked for (e.g.) the AX register in i32 type.  We need to
2332    // remember that AX is actually i16 to get the right extension.
2333    RegVT = *PhysReg.second->vt_begin();
2334
2335    // This is a explicit reference to a physical register.
2336    Regs.push_back(PhysReg.first);
2337
2338    // If this is an expanded reference, add the rest of the regs to Regs.
2339    if (NumRegs != 1) {
2340      TargetRegisterClass::iterator I = PhysReg.second->begin();
2341      TargetRegisterClass::iterator E = PhysReg.second->end();
2342      for (; *I != PhysReg.first; ++I)
2343        assert(I != E && "Didn't find reg!");
2344
2345      // Already added the first reg.
2346      --NumRegs; ++I;
2347      for (; NumRegs; --NumRegs, ++I) {
2348        assert(I != E && "Ran out of registers to allocate!");
2349        Regs.push_back(*I);
2350      }
2351    }
2352    return RegsForValue(Regs, RegVT, ValueVT);
2353  }
2354
2355  // Otherwise, if this was a reference to an LLVM register class, create vregs
2356  // for this reference.
2357  std::vector<unsigned> RegClassRegs;
2358  if (PhysReg.second) {
2359    // If this is an early clobber or tied register, our regalloc doesn't know
2360    // how to maintain the constraint.  If it isn't, go ahead and create vreg
2361    // and let the regalloc do the right thing.
2362    if (!isOutReg || !isInReg) {
2363      if (VT == MVT::Other)
2364        ValueVT = *PhysReg.second->vt_begin();
2365      RegVT = *PhysReg.second->vt_begin();
2366
2367      // Create the appropriate number of virtual registers.
2368      SSARegMap *RegMap = DAG.getMachineFunction().getSSARegMap();
2369      for (; NumRegs; --NumRegs)
2370        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
2371
2372      return RegsForValue(Regs, RegVT, ValueVT);
2373    }
2374
2375    // Otherwise, we can't allocate it.  Let the code below figure out how to
2376    // maintain these constraints.
2377    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
2378
2379  } else {
2380    // This is a reference to a register class that doesn't directly correspond
2381    // to an LLVM register class.  Allocate NumRegs consecutive, available,
2382    // registers from the class.
2383    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
2384  }
2385
2386  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
2387  MachineFunction &MF = *CurMBB->getParent();
2388  unsigned NumAllocated = 0;
2389  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
2390    unsigned Reg = RegClassRegs[i];
2391    // See if this register is available.
2392    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
2393        (isInReg  && InputRegs.count(Reg))) {    // Already used.
2394      // Make sure we find consecutive registers.
2395      NumAllocated = 0;
2396      continue;
2397    }
2398
2399    // Check to see if this register is allocatable (i.e. don't give out the
2400    // stack pointer).
2401    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
2402    if (!RC) {
2403      // Make sure we find consecutive registers.
2404      NumAllocated = 0;
2405      continue;
2406    }
2407
2408    // Okay, this register is good, we can use it.
2409    ++NumAllocated;
2410
2411    // If we allocated enough consecutive
2412    if (NumAllocated == NumRegs) {
2413      unsigned RegStart = (i-NumAllocated)+1;
2414      unsigned RegEnd   = i+1;
2415      // Mark all of the allocated registers used.
2416      for (unsigned i = RegStart; i != RegEnd; ++i) {
2417        unsigned Reg = RegClassRegs[i];
2418        Regs.push_back(Reg);
2419        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
2420        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
2421      }
2422
2423      return RegsForValue(Regs, *RC->vt_begin(), VT);
2424    }
2425  }
2426
2427  // Otherwise, we couldn't allocate enough registers for this.
2428  return RegsForValue();
2429}
2430
2431
2432/// visitInlineAsm - Handle a call to an InlineAsm object.
2433///
2434void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
2435  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
2436
2437  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
2438                                                 MVT::Other);
2439
2440  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
2441  std::vector<MVT::ValueType> ConstraintVTs;
2442
2443  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
2444  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
2445  /// if it is a def of that register.
2446  std::vector<SDOperand> AsmNodeOperands;
2447  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
2448  AsmNodeOperands.push_back(AsmStr);
2449
2450  SDOperand Chain = getRoot();
2451  SDOperand Flag;
2452
2453  // We fully assign registers here at isel time.  This is not optimal, but
2454  // should work.  For register classes that correspond to LLVM classes, we
2455  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
2456  // over the constraints, collecting fixed registers that we know we can't use.
2457  std::set<unsigned> OutputRegs, InputRegs;
2458  unsigned OpNum = 1;
2459  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2460    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2461    std::string &ConstraintCode = Constraints[i].Codes[0];
2462
2463    MVT::ValueType OpVT;
2464
2465    // Compute the value type for each operand and add it to ConstraintVTs.
2466    switch (Constraints[i].Type) {
2467    case InlineAsm::isOutput:
2468      if (!Constraints[i].isIndirectOutput) {
2469        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2470        OpVT = TLI.getValueType(I.getType());
2471      } else {
2472        const Type *OpTy = I.getOperand(OpNum)->getType();
2473        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2474        OpNum++;  // Consumes a call operand.
2475      }
2476      break;
2477    case InlineAsm::isInput:
2478      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2479      OpNum++;  // Consumes a call operand.
2480      break;
2481    case InlineAsm::isClobber:
2482      OpVT = MVT::Other;
2483      break;
2484    }
2485
2486    ConstraintVTs.push_back(OpVT);
2487
2488    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2489      continue;  // Not assigned a fixed reg.
2490
2491    // Build a list of regs that this operand uses.  This always has a single
2492    // element for promoted/expanded operands.
2493    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2494                                             false, false,
2495                                             OutputRegs, InputRegs);
2496
2497    switch (Constraints[i].Type) {
2498    case InlineAsm::isOutput:
2499      // We can't assign any other output to this register.
2500      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2501      // If this is an early-clobber output, it cannot be assigned to the same
2502      // value as the input reg.
2503      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2504        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2505      break;
2506    case InlineAsm::isInput:
2507      // We can't assign any other input to this register.
2508      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2509      break;
2510    case InlineAsm::isClobber:
2511      // Clobbered regs cannot be used as inputs or outputs.
2512      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2513      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2514      break;
2515    }
2516  }
2517
2518  // Loop over all of the inputs, copying the operand values into the
2519  // appropriate registers and processing the output regs.
2520  RegsForValue RetValRegs;
2521  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2522  OpNum = 1;
2523
2524  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2525    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2526    std::string &ConstraintCode = Constraints[i].Codes[0];
2527
2528    switch (Constraints[i].Type) {
2529    case InlineAsm::isOutput: {
2530      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2531      if (ConstraintCode.size() == 1)   // not a physreg name.
2532        CTy = TLI.getConstraintType(ConstraintCode[0]);
2533
2534      if (CTy == TargetLowering::C_Memory) {
2535        // Memory output.
2536        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2537
2538        // Check that the operand (the address to store to) isn't a float.
2539        if (!MVT::isInteger(InOperandVal.getValueType()))
2540          assert(0 && "MATCH FAIL!");
2541
2542        if (!Constraints[i].isIndirectOutput)
2543          assert(0 && "MATCH FAIL!");
2544
2545        OpNum++;  // Consumes a call operand.
2546
2547        // Extend/truncate to the right pointer type if needed.
2548        MVT::ValueType PtrType = TLI.getPointerTy();
2549        if (InOperandVal.getValueType() < PtrType)
2550          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2551        else if (InOperandVal.getValueType() > PtrType)
2552          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2553
2554        // Add information to the INLINEASM node to know about this output.
2555        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2556        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2557        AsmNodeOperands.push_back(InOperandVal);
2558        break;
2559      }
2560
2561      // Otherwise, this is a register output.
2562      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2563
2564      // If this is an early-clobber output, or if there is an input
2565      // constraint that matches this, we need to reserve the input register
2566      // so no other inputs allocate to it.
2567      bool UsesInputRegister = false;
2568      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2569        UsesInputRegister = true;
2570
2571      // Copy the output from the appropriate register.  Find a register that
2572      // we can use.
2573      RegsForValue Regs =
2574        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2575                             true, UsesInputRegister,
2576                             OutputRegs, InputRegs);
2577      if (Regs.Regs.empty()) {
2578        cerr << "Couldn't allocate output reg for contraint '"
2579             << ConstraintCode << "'!\n";
2580        exit(1);
2581      }
2582
2583      if (!Constraints[i].isIndirectOutput) {
2584        assert(RetValRegs.Regs.empty() &&
2585               "Cannot have multiple output constraints yet!");
2586        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2587        RetValRegs = Regs;
2588      } else {
2589        IndirectStoresToEmit.push_back(std::make_pair(Regs,
2590                                                      I.getOperand(OpNum)));
2591        OpNum++;  // Consumes a call operand.
2592      }
2593
2594      // Add information to the INLINEASM node to know that this register is
2595      // set.
2596      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
2597      break;
2598    }
2599    case InlineAsm::isInput: {
2600      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2601      OpNum++;  // Consumes a call operand.
2602
2603      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
2604        // If this is required to match an output register we have already set,
2605        // just use its register.
2606        unsigned OperandNo = atoi(ConstraintCode.c_str());
2607
2608        // Scan until we find the definition we already emitted of this operand.
2609        // When we find it, create a RegsForValue operand.
2610        unsigned CurOp = 2;  // The first operand.
2611        for (; OperandNo; --OperandNo) {
2612          // Advance to the next operand.
2613          unsigned NumOps =
2614            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2615          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
2616                  (NumOps & 7) == 4 /*MEM*/) &&
2617                 "Skipped past definitions?");
2618          CurOp += (NumOps>>3)+1;
2619        }
2620
2621        unsigned NumOps =
2622          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2623        assert((NumOps & 7) == 2 /*REGDEF*/ &&
2624               "Skipped past definitions?");
2625
2626        // Add NumOps>>3 registers to MatchedRegs.
2627        RegsForValue MatchedRegs;
2628        MatchedRegs.ValueVT = InOperandVal.getValueType();
2629        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
2630        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
2631          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
2632          MatchedRegs.Regs.push_back(Reg);
2633        }
2634
2635        // Use the produced MatchedRegs object to
2636        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
2637                                  TLI.getPointerTy());
2638        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2639        break;
2640      }
2641
2642      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2643      if (ConstraintCode.size() == 1)   // not a physreg name.
2644        CTy = TLI.getConstraintType(ConstraintCode[0]);
2645
2646      if (CTy == TargetLowering::C_Other) {
2647        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
2648                                                       ConstraintCode[0], DAG);
2649        if (!InOperandVal.Val) {
2650          cerr << "Invalid operand for inline asm constraint '"
2651               << ConstraintCode << "'!\n";
2652          exit(1);
2653        }
2654
2655        // Add information to the INLINEASM node to know about this input.
2656        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2657        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2658        AsmNodeOperands.push_back(InOperandVal);
2659        break;
2660      } else if (CTy == TargetLowering::C_Memory) {
2661        // Memory input.
2662
2663        // Check that the operand isn't a float.
2664        if (!MVT::isInteger(InOperandVal.getValueType()))
2665          assert(0 && "MATCH FAIL!");
2666
2667        // Extend/truncate to the right pointer type if needed.
2668        MVT::ValueType PtrType = TLI.getPointerTy();
2669        if (InOperandVal.getValueType() < PtrType)
2670          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2671        else if (InOperandVal.getValueType() > PtrType)
2672          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2673
2674        // Add information to the INLINEASM node to know about this input.
2675        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2676        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2677        AsmNodeOperands.push_back(InOperandVal);
2678        break;
2679      }
2680
2681      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2682
2683      // Copy the input into the appropriate registers.
2684      RegsForValue InRegs =
2685        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2686                             false, true, OutputRegs, InputRegs);
2687      // FIXME: should be match fail.
2688      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2689
2690      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
2691
2692      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2693      break;
2694    }
2695    case InlineAsm::isClobber: {
2696      RegsForValue ClobberedRegs =
2697        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2698                             OutputRegs, InputRegs);
2699      // Add the clobbered value to the operand list, so that the register
2700      // allocator is aware that the physreg got clobbered.
2701      if (!ClobberedRegs.Regs.empty())
2702        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2703      break;
2704    }
2705    }
2706  }
2707
2708  // Finish up input operands.
2709  AsmNodeOperands[0] = Chain;
2710  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2711
2712  Chain = DAG.getNode(ISD::INLINEASM,
2713                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
2714                      &AsmNodeOperands[0], AsmNodeOperands.size());
2715  Flag = Chain.getValue(1);
2716
2717  // If this asm returns a register value, copy the result from that register
2718  // and set it as the value of the call.
2719  if (!RetValRegs.Regs.empty())
2720    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2721
2722  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2723
2724  // Process indirect outputs, first output all of the flagged copies out of
2725  // physregs.
2726  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2727    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2728    Value *Ptr = IndirectStoresToEmit[i].second;
2729    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2730    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2731  }
2732
2733  // Emit the non-flagged stores from the physregs.
2734  SmallVector<SDOperand, 8> OutChains;
2735  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2736    OutChains.push_back(DAG.getStore(Chain,  StoresToEmit[i].first,
2737                                    getValue(StoresToEmit[i].second),
2738                                    StoresToEmit[i].second, 0));
2739  if (!OutChains.empty())
2740    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2741                        &OutChains[0], OutChains.size());
2742  DAG.setRoot(Chain);
2743}
2744
2745
2746void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2747  SDOperand Src = getValue(I.getOperand(0));
2748
2749  MVT::ValueType IntPtr = TLI.getPointerTy();
2750
2751  if (IntPtr < Src.getValueType())
2752    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2753  else if (IntPtr > Src.getValueType())
2754    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2755
2756  // Scale the source by the type size.
2757  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
2758  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2759                    Src, getIntPtrConstant(ElementSize));
2760
2761  TargetLowering::ArgListTy Args;
2762  TargetLowering::ArgListEntry Entry;
2763  Entry.Node = Src;
2764  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2765  Entry.isSigned = false;
2766  Entry.isInReg = false;
2767  Entry.isSRet = false;
2768  Args.push_back(Entry);
2769
2770  std::pair<SDOperand,SDOperand> Result =
2771    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
2772                    DAG.getExternalSymbol("malloc", IntPtr),
2773                    Args, DAG);
2774  setValue(&I, Result.first);  // Pointers always fit in registers
2775  DAG.setRoot(Result.second);
2776}
2777
2778void SelectionDAGLowering::visitFree(FreeInst &I) {
2779  TargetLowering::ArgListTy Args;
2780  TargetLowering::ArgListEntry Entry;
2781  Entry.Node = getValue(I.getOperand(0));
2782  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2783  Entry.isSigned = false;
2784  Entry.isInReg = false;
2785  Entry.isSRet = false;
2786  Args.push_back(Entry);
2787  MVT::ValueType IntPtr = TLI.getPointerTy();
2788  std::pair<SDOperand,SDOperand> Result =
2789    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
2790                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2791  DAG.setRoot(Result.second);
2792}
2793
2794// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2795// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2796// instructions are special in various ways, which require special support to
2797// insert.  The specified MachineInstr is created but not inserted into any
2798// basic blocks, and the scheduler passes ownership of it to this method.
2799MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2800                                                       MachineBasicBlock *MBB) {
2801  cerr << "If a target marks an instruction with "
2802       << "'usesCustomDAGSchedInserter', it must implement "
2803       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
2804  abort();
2805  return 0;
2806}
2807
2808void SelectionDAGLowering::visitVAStart(CallInst &I) {
2809  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2810                          getValue(I.getOperand(1)),
2811                          DAG.getSrcValue(I.getOperand(1))));
2812}
2813
2814void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2815  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2816                             getValue(I.getOperand(0)),
2817                             DAG.getSrcValue(I.getOperand(0)));
2818  setValue(&I, V);
2819  DAG.setRoot(V.getValue(1));
2820}
2821
2822void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2823  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2824                          getValue(I.getOperand(1)),
2825                          DAG.getSrcValue(I.getOperand(1))));
2826}
2827
2828void SelectionDAGLowering::visitVACopy(CallInst &I) {
2829  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2830                          getValue(I.getOperand(1)),
2831                          getValue(I.getOperand(2)),
2832                          DAG.getSrcValue(I.getOperand(1)),
2833                          DAG.getSrcValue(I.getOperand(2))));
2834}
2835
2836/// ExpandScalarFormalArgs - Recursively expand the formal_argument node, either
2837/// bit_convert it or join a pair of them with a BUILD_PAIR when appropriate.
2838static SDOperand ExpandScalarFormalArgs(MVT::ValueType VT, SDNode *Arg,
2839                                        unsigned &i, SelectionDAG &DAG,
2840                                        TargetLowering &TLI) {
2841  if (TLI.getTypeAction(VT) != TargetLowering::Expand)
2842    return SDOperand(Arg, i++);
2843
2844  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
2845  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
2846  if (NumVals == 1) {
2847    return DAG.getNode(ISD::BIT_CONVERT, VT,
2848                       ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI));
2849  } else if (NumVals == 2) {
2850    SDOperand Lo = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
2851    SDOperand Hi = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
2852    if (!TLI.isLittleEndian())
2853      std::swap(Lo, Hi);
2854    return DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
2855  } else {
2856    // Value scalarized into many values.  Unimp for now.
2857    assert(0 && "Cannot expand i64 -> i16 yet!");
2858  }
2859  return SDOperand();
2860}
2861
2862/// TargetLowering::LowerArguments - This is the default LowerArguments
2863/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
2864/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
2865/// integrated into SDISel.
2866std::vector<SDOperand>
2867TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
2868  const FunctionType *FTy = F.getFunctionType();
2869  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
2870  std::vector<SDOperand> Ops;
2871  Ops.push_back(DAG.getRoot());
2872  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
2873  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
2874
2875  // Add one result value for each formal argument.
2876  std::vector<MVT::ValueType> RetVals;
2877  unsigned j = 0;
2878  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
2879       I != E; ++I, ++j) {
2880    MVT::ValueType VT = getValueType(I->getType());
2881    bool isInReg = FTy->paramHasAttr(j, FunctionType::InRegAttribute);
2882    bool isSRet  = FTy->paramHasAttr(j, FunctionType::StructRetAttribute);
2883    unsigned Flags = (isInReg << 1) | (isSRet << 2);
2884
2885    switch (getTypeAction(VT)) {
2886    default: assert(0 && "Unknown type action!");
2887    case Legal:
2888      RetVals.push_back(VT);
2889      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
2890      break;
2891    case Promote:
2892      RetVals.push_back(getTypeToTransformTo(VT));
2893      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
2894      break;
2895    case Expand:
2896      if (VT != MVT::Vector) {
2897        // If this is a large integer, it needs to be broken up into small
2898        // integers.  Figure out what the destination type is and how many small
2899        // integers it turns into.
2900        MVT::ValueType NVT = getTypeToExpandTo(VT);
2901        unsigned NumVals = getNumElements(VT);
2902        for (unsigned i = 0; i != NumVals; ++i) {
2903          RetVals.push_back(NVT);
2904          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
2905        }
2906      } else {
2907        // Otherwise, this is a vector type.  We only support legal vectors
2908        // right now.
2909        unsigned NumElems = cast<PackedType>(I->getType())->getNumElements();
2910        const Type *EltTy = cast<PackedType>(I->getType())->getElementType();
2911
2912        // Figure out if there is a Packed type corresponding to this Vector
2913        // type.  If so, convert to the packed type.
2914        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2915        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2916          RetVals.push_back(TVT);
2917          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
2918        } else {
2919          assert(0 && "Don't support illegal by-val vector arguments yet!");
2920        }
2921      }
2922      break;
2923    }
2924  }
2925
2926  RetVals.push_back(MVT::Other);
2927
2928  // Create the node.
2929  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
2930                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
2931                               &Ops[0], Ops.size()).Val;
2932
2933  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
2934
2935  // Set up the return result vector.
2936  Ops.clear();
2937  unsigned i = 0;
2938  unsigned Idx = 1;
2939  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
2940      ++I, ++Idx) {
2941    MVT::ValueType VT = getValueType(I->getType());
2942
2943    switch (getTypeAction(VT)) {
2944    default: assert(0 && "Unknown type action!");
2945    case Legal:
2946      Ops.push_back(SDOperand(Result, i++));
2947      break;
2948    case Promote: {
2949      SDOperand Op(Result, i++);
2950      if (MVT::isInteger(VT)) {
2951        if (FTy->paramHasAttr(Idx, FunctionType::SExtAttribute))
2952          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
2953                           DAG.getValueType(VT));
2954        else if (FTy->paramHasAttr(Idx, FunctionType::ZExtAttribute))
2955          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
2956                           DAG.getValueType(VT));
2957        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2958      } else {
2959        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2960        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
2961      }
2962      Ops.push_back(Op);
2963      break;
2964    }
2965    case Expand:
2966      if (VT != MVT::Vector) {
2967        // If this is a large integer or a floating point node that needs to be
2968        // expanded, it needs to be reassembled from small integers.  Figure out
2969        // what the source elt type is and how many small integers it is.
2970        Ops.push_back(ExpandScalarFormalArgs(VT, Result, i, DAG, *this));
2971      } else {
2972        // Otherwise, this is a vector type.  We only support legal vectors
2973        // right now.
2974        const PackedType *PTy = cast<PackedType>(I->getType());
2975        unsigned NumElems = PTy->getNumElements();
2976        const Type *EltTy = PTy->getElementType();
2977
2978        // Figure out if there is a Packed type corresponding to this Vector
2979        // type.  If so, convert to the packed type.
2980        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2981        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2982          SDOperand N = SDOperand(Result, i++);
2983          // Handle copies from generic vectors to registers.
2984          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
2985                          DAG.getConstant(NumElems, MVT::i32),
2986                          DAG.getValueType(getValueType(EltTy)));
2987          Ops.push_back(N);
2988        } else {
2989          assert(0 && "Don't support illegal by-val vector arguments yet!");
2990          abort();
2991        }
2992      }
2993      break;
2994    }
2995  }
2996  return Ops;
2997}
2998
2999
3000/// ExpandScalarCallArgs - Recursively expand call argument node by
3001/// bit_converting it or extract a pair of elements from the larger  node.
3002static void ExpandScalarCallArgs(MVT::ValueType VT, SDOperand Arg,
3003                                 unsigned Flags,
3004                                 SmallVector<SDOperand, 32> &Ops,
3005                                 SelectionDAG &DAG,
3006                                 TargetLowering &TLI) {
3007  if (TLI.getTypeAction(VT) != TargetLowering::Expand) {
3008    Ops.push_back(Arg);
3009    Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3010    return;
3011  }
3012
3013  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3014  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3015  if (NumVals == 1) {
3016    Arg = DAG.getNode(ISD::BIT_CONVERT, EVT, Arg);
3017    ExpandScalarCallArgs(EVT, Arg, Flags, Ops, DAG, TLI);
3018  } else if (NumVals == 2) {
3019    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3020                               DAG.getConstant(0, TLI.getPointerTy()));
3021    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3022                               DAG.getConstant(1, TLI.getPointerTy()));
3023    if (!TLI.isLittleEndian())
3024      std::swap(Lo, Hi);
3025    ExpandScalarCallArgs(EVT, Lo, Flags, Ops, DAG, TLI);
3026    ExpandScalarCallArgs(EVT, Hi, Flags, Ops, DAG, TLI);
3027  } else {
3028    // Value scalarized into many values.  Unimp for now.
3029    assert(0 && "Cannot expand i64 -> i16 yet!");
3030  }
3031}
3032
3033/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3034/// implementation, which just inserts an ISD::CALL node, which is later custom
3035/// lowered by the target to something concrete.  FIXME: When all targets are
3036/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3037std::pair<SDOperand, SDOperand>
3038TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3039                            bool RetTyIsSigned, bool isVarArg,
3040                            unsigned CallingConv, bool isTailCall,
3041                            SDOperand Callee,
3042                            ArgListTy &Args, SelectionDAG &DAG) {
3043  SmallVector<SDOperand, 32> Ops;
3044  Ops.push_back(Chain);   // Op#0 - Chain
3045  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3046  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3047  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3048  Ops.push_back(Callee);
3049
3050  // Handle all of the outgoing arguments.
3051  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3052    MVT::ValueType VT = getValueType(Args[i].Ty);
3053    SDOperand Op = Args[i].Node;
3054    bool isSigned = Args[i].isSigned;
3055    bool isInReg = Args[i].isInReg;
3056    bool isSRet  = Args[i].isSRet;
3057    unsigned Flags = (isSRet << 2) | (isInReg << 1) | isSigned;
3058    switch (getTypeAction(VT)) {
3059    default: assert(0 && "Unknown type action!");
3060    case Legal:
3061      Ops.push_back(Op);
3062      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3063      break;
3064    case Promote:
3065      if (MVT::isInteger(VT)) {
3066        unsigned ExtOp = isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3067        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3068      } else {
3069        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3070        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
3071      }
3072      Ops.push_back(Op);
3073      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3074      break;
3075    case Expand:
3076      if (VT != MVT::Vector) {
3077        // If this is a large integer, it needs to be broken down into small
3078        // integers.  Figure out what the source elt type is and how many small
3079        // integers it is.
3080        ExpandScalarCallArgs(VT, Op, Flags, Ops, DAG, *this);
3081      } else {
3082        // Otherwise, this is a vector type.  We only support legal vectors
3083        // right now.
3084        const PackedType *PTy = cast<PackedType>(Args[i].Ty);
3085        unsigned NumElems = PTy->getNumElements();
3086        const Type *EltTy = PTy->getElementType();
3087
3088        // Figure out if there is a Packed type corresponding to this Vector
3089        // type.  If so, convert to the packed type.
3090        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3091        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3092          // Insert a VBIT_CONVERT of the MVT::Vector type to the packed type.
3093          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
3094          Ops.push_back(Op);
3095          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3096        } else {
3097          assert(0 && "Don't support illegal by-val vector call args yet!");
3098          abort();
3099        }
3100      }
3101      break;
3102    }
3103  }
3104
3105  // Figure out the result value types.
3106  SmallVector<MVT::ValueType, 4> RetTys;
3107
3108  if (RetTy != Type::VoidTy) {
3109    MVT::ValueType VT = getValueType(RetTy);
3110    switch (getTypeAction(VT)) {
3111    default: assert(0 && "Unknown type action!");
3112    case Legal:
3113      RetTys.push_back(VT);
3114      break;
3115    case Promote:
3116      RetTys.push_back(getTypeToTransformTo(VT));
3117      break;
3118    case Expand:
3119      if (VT != MVT::Vector) {
3120        // If this is a large integer, it needs to be reassembled from small
3121        // integers.  Figure out what the source elt type is and how many small
3122        // integers it is.
3123        MVT::ValueType NVT = getTypeToExpandTo(VT);
3124        unsigned NumVals = getNumElements(VT);
3125        for (unsigned i = 0; i != NumVals; ++i)
3126          RetTys.push_back(NVT);
3127      } else {
3128        // Otherwise, this is a vector type.  We only support legal vectors
3129        // right now.
3130        const PackedType *PTy = cast<PackedType>(RetTy);
3131        unsigned NumElems = PTy->getNumElements();
3132        const Type *EltTy = PTy->getElementType();
3133
3134        // Figure out if there is a Packed type corresponding to this Vector
3135        // type.  If so, convert to the packed type.
3136        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3137        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3138          RetTys.push_back(TVT);
3139        } else {
3140          assert(0 && "Don't support illegal by-val vector call results yet!");
3141          abort();
3142        }
3143      }
3144    }
3145  }
3146
3147  RetTys.push_back(MVT::Other);  // Always has a chain.
3148
3149  // Finally, create the CALL node.
3150  SDOperand Res = DAG.getNode(ISD::CALL,
3151                              DAG.getVTList(&RetTys[0], RetTys.size()),
3152                              &Ops[0], Ops.size());
3153
3154  // This returns a pair of operands.  The first element is the
3155  // return value for the function (if RetTy is not VoidTy).  The second
3156  // element is the outgoing token chain.
3157  SDOperand ResVal;
3158  if (RetTys.size() != 1) {
3159    MVT::ValueType VT = getValueType(RetTy);
3160    if (RetTys.size() == 2) {
3161      ResVal = Res;
3162
3163      // If this value was promoted, truncate it down.
3164      if (ResVal.getValueType() != VT) {
3165        if (VT == MVT::Vector) {
3166          // Insert a VBITCONVERT to convert from the packed result type to the
3167          // MVT::Vector type.
3168          unsigned NumElems = cast<PackedType>(RetTy)->getNumElements();
3169          const Type *EltTy = cast<PackedType>(RetTy)->getElementType();
3170
3171          // Figure out if there is a Packed type corresponding to this Vector
3172          // type.  If so, convert to the packed type.
3173          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3174          if (TVT != MVT::Other && isTypeLegal(TVT)) {
3175            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
3176            // "N x PTyElementVT" MVT::Vector type.
3177            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
3178                                 DAG.getConstant(NumElems, MVT::i32),
3179                                 DAG.getValueType(getValueType(EltTy)));
3180          } else {
3181            abort();
3182          }
3183        } else if (MVT::isInteger(VT)) {
3184          unsigned AssertOp = ISD::AssertSext;
3185          if (!RetTyIsSigned)
3186            AssertOp = ISD::AssertZext;
3187          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
3188                               DAG.getValueType(VT));
3189          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
3190        } else {
3191          assert(MVT::isFloatingPoint(VT));
3192          if (getTypeAction(VT) == Expand)
3193            ResVal = DAG.getNode(ISD::BIT_CONVERT, VT, ResVal);
3194          else
3195            ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
3196        }
3197      }
3198    } else if (RetTys.size() == 3) {
3199      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
3200                           Res.getValue(0), Res.getValue(1));
3201
3202    } else {
3203      assert(0 && "Case not handled yet!");
3204    }
3205  }
3206
3207  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
3208}
3209
3210
3211
3212// It is always conservatively correct for llvm.returnaddress and
3213// llvm.frameaddress to return 0.
3214//
3215// FIXME: Change this to insert a FRAMEADDR/RETURNADDR node, and have that be
3216// expanded to 0 if the target wants.
3217std::pair<SDOperand, SDOperand>
3218TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
3219                                        unsigned Depth, SelectionDAG &DAG) {
3220  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
3221}
3222
3223SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3224  assert(0 && "LowerOperation not implemented for this target!");
3225  abort();
3226  return SDOperand();
3227}
3228
3229SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
3230                                                 SelectionDAG &DAG) {
3231  assert(0 && "CustomPromoteOperation not implemented for this target!");
3232  abort();
3233  return SDOperand();
3234}
3235
3236void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
3237  unsigned Depth = (unsigned)cast<ConstantInt>(I.getOperand(1))->getZExtValue();
3238  std::pair<SDOperand,SDOperand> Result =
3239    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
3240  setValue(&I, Result.first);
3241  DAG.setRoot(Result.second);
3242}
3243
3244/// getMemsetValue - Vectorized representation of the memset value
3245/// operand.
3246static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
3247                                SelectionDAG &DAG) {
3248  MVT::ValueType CurVT = VT;
3249  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3250    uint64_t Val   = C->getValue() & 255;
3251    unsigned Shift = 8;
3252    while (CurVT != MVT::i8) {
3253      Val = (Val << Shift) | Val;
3254      Shift <<= 1;
3255      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3256    }
3257    return DAG.getConstant(Val, VT);
3258  } else {
3259    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
3260    unsigned Shift = 8;
3261    while (CurVT != MVT::i8) {
3262      Value =
3263        DAG.getNode(ISD::OR, VT,
3264                    DAG.getNode(ISD::SHL, VT, Value,
3265                                DAG.getConstant(Shift, MVT::i8)), Value);
3266      Shift <<= 1;
3267      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3268    }
3269
3270    return Value;
3271  }
3272}
3273
3274/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3275/// used when a memcpy is turned into a memset when the source is a constant
3276/// string ptr.
3277static SDOperand getMemsetStringVal(MVT::ValueType VT,
3278                                    SelectionDAG &DAG, TargetLowering &TLI,
3279                                    std::string &Str, unsigned Offset) {
3280  uint64_t Val = 0;
3281  unsigned MSB = getSizeInBits(VT) / 8;
3282  if (TLI.isLittleEndian())
3283    Offset = Offset + MSB - 1;
3284  for (unsigned i = 0; i != MSB; ++i) {
3285    Val = (Val << 8) | (unsigned char)Str[Offset];
3286    Offset += TLI.isLittleEndian() ? -1 : 1;
3287  }
3288  return DAG.getConstant(Val, VT);
3289}
3290
3291/// getMemBasePlusOffset - Returns base and offset node for the
3292static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
3293                                      SelectionDAG &DAG, TargetLowering &TLI) {
3294  MVT::ValueType VT = Base.getValueType();
3295  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
3296}
3297
3298/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3299/// to replace the memset / memcpy is below the threshold. It also returns the
3300/// types of the sequence of  memory ops to perform memset / memcpy.
3301static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
3302                                     unsigned Limit, uint64_t Size,
3303                                     unsigned Align, TargetLowering &TLI) {
3304  MVT::ValueType VT;
3305
3306  if (TLI.allowsUnalignedMemoryAccesses()) {
3307    VT = MVT::i64;
3308  } else {
3309    switch (Align & 7) {
3310    case 0:
3311      VT = MVT::i64;
3312      break;
3313    case 4:
3314      VT = MVT::i32;
3315      break;
3316    case 2:
3317      VT = MVT::i16;
3318      break;
3319    default:
3320      VT = MVT::i8;
3321      break;
3322    }
3323  }
3324
3325  MVT::ValueType LVT = MVT::i64;
3326  while (!TLI.isTypeLegal(LVT))
3327    LVT = (MVT::ValueType)((unsigned)LVT - 1);
3328  assert(MVT::isInteger(LVT));
3329
3330  if (VT > LVT)
3331    VT = LVT;
3332
3333  unsigned NumMemOps = 0;
3334  while (Size != 0) {
3335    unsigned VTSize = getSizeInBits(VT) / 8;
3336    while (VTSize > Size) {
3337      VT = (MVT::ValueType)((unsigned)VT - 1);
3338      VTSize >>= 1;
3339    }
3340    assert(MVT::isInteger(VT));
3341
3342    if (++NumMemOps > Limit)
3343      return false;
3344    MemOps.push_back(VT);
3345    Size -= VTSize;
3346  }
3347
3348  return true;
3349}
3350
3351void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
3352  SDOperand Op1 = getValue(I.getOperand(1));
3353  SDOperand Op2 = getValue(I.getOperand(2));
3354  SDOperand Op3 = getValue(I.getOperand(3));
3355  SDOperand Op4 = getValue(I.getOperand(4));
3356  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
3357  if (Align == 0) Align = 1;
3358
3359  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
3360    std::vector<MVT::ValueType> MemOps;
3361
3362    // Expand memset / memcpy to a series of load / store ops
3363    // if the size operand falls below a certain threshold.
3364    SmallVector<SDOperand, 8> OutChains;
3365    switch (Op) {
3366    default: break;  // Do nothing for now.
3367    case ISD::MEMSET: {
3368      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
3369                                   Size->getValue(), Align, TLI)) {
3370        unsigned NumMemOps = MemOps.size();
3371        unsigned Offset = 0;
3372        for (unsigned i = 0; i < NumMemOps; i++) {
3373          MVT::ValueType VT = MemOps[i];
3374          unsigned VTSize = getSizeInBits(VT) / 8;
3375          SDOperand Value = getMemsetValue(Op2, VT, DAG);
3376          SDOperand Store = DAG.getStore(getRoot(), Value,
3377                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
3378                                         I.getOperand(1), Offset);
3379          OutChains.push_back(Store);
3380          Offset += VTSize;
3381        }
3382      }
3383      break;
3384    }
3385    case ISD::MEMCPY: {
3386      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
3387                                   Size->getValue(), Align, TLI)) {
3388        unsigned NumMemOps = MemOps.size();
3389        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
3390        GlobalAddressSDNode *G = NULL;
3391        std::string Str;
3392        bool CopyFromStr = false;
3393
3394        if (Op2.getOpcode() == ISD::GlobalAddress)
3395          G = cast<GlobalAddressSDNode>(Op2);
3396        else if (Op2.getOpcode() == ISD::ADD &&
3397                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3398                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
3399          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
3400          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
3401        }
3402        if (G) {
3403          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3404          if (GV && GV->isConstant()) {
3405            Str = GV->getStringValue(false);
3406            if (!Str.empty()) {
3407              CopyFromStr = true;
3408              SrcOff += SrcDelta;
3409            }
3410          }
3411        }
3412
3413        for (unsigned i = 0; i < NumMemOps; i++) {
3414          MVT::ValueType VT = MemOps[i];
3415          unsigned VTSize = getSizeInBits(VT) / 8;
3416          SDOperand Value, Chain, Store;
3417
3418          if (CopyFromStr) {
3419            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3420            Chain = getRoot();
3421            Store =
3422              DAG.getStore(Chain, Value,
3423                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3424                           I.getOperand(1), DstOff);
3425          } else {
3426            Value = DAG.getLoad(VT, getRoot(),
3427                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
3428                        I.getOperand(2), SrcOff);
3429            Chain = Value.getValue(1);
3430            Store =
3431              DAG.getStore(Chain, Value,
3432                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3433                           I.getOperand(1), DstOff);
3434          }
3435          OutChains.push_back(Store);
3436          SrcOff += VTSize;
3437          DstOff += VTSize;
3438        }
3439      }
3440      break;
3441    }
3442    }
3443
3444    if (!OutChains.empty()) {
3445      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3446                  &OutChains[0], OutChains.size()));
3447      return;
3448    }
3449  }
3450
3451  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
3452}
3453
3454//===----------------------------------------------------------------------===//
3455// SelectionDAGISel code
3456//===----------------------------------------------------------------------===//
3457
3458unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
3459  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
3460}
3461
3462void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
3463  // FIXME: we only modify the CFG to split critical edges.  This
3464  // updates dom and loop info.
3465  AU.addRequired<AliasAnalysis>();
3466}
3467
3468
3469/// OptimizeNoopCopyExpression - We have determined that the specified cast
3470/// instruction is a noop copy (e.g. it's casting from one pointer type to
3471/// another, int->uint, or int->sbyte on PPC.
3472///
3473/// Return true if any changes are made.
3474static bool OptimizeNoopCopyExpression(CastInst *CI) {
3475  BasicBlock *DefBB = CI->getParent();
3476
3477  /// InsertedCasts - Only insert a cast in each block once.
3478  std::map<BasicBlock*, CastInst*> InsertedCasts;
3479
3480  bool MadeChange = false;
3481  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
3482       UI != E; ) {
3483    Use &TheUse = UI.getUse();
3484    Instruction *User = cast<Instruction>(*UI);
3485
3486    // Figure out which BB this cast is used in.  For PHI's this is the
3487    // appropriate predecessor block.
3488    BasicBlock *UserBB = User->getParent();
3489    if (PHINode *PN = dyn_cast<PHINode>(User)) {
3490      unsigned OpVal = UI.getOperandNo()/2;
3491      UserBB = PN->getIncomingBlock(OpVal);
3492    }
3493
3494    // Preincrement use iterator so we don't invalidate it.
3495    ++UI;
3496
3497    // If this user is in the same block as the cast, don't change the cast.
3498    if (UserBB == DefBB) continue;
3499
3500    // If we have already inserted a cast into this block, use it.
3501    CastInst *&InsertedCast = InsertedCasts[UserBB];
3502
3503    if (!InsertedCast) {
3504      BasicBlock::iterator InsertPt = UserBB->begin();
3505      while (isa<PHINode>(InsertPt)) ++InsertPt;
3506
3507      InsertedCast =
3508        CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
3509                         InsertPt);
3510      MadeChange = true;
3511    }
3512
3513    // Replace a use of the cast with a use of the new casat.
3514    TheUse = InsertedCast;
3515  }
3516
3517  // If we removed all uses, nuke the cast.
3518  if (CI->use_empty())
3519    CI->eraseFromParent();
3520
3521  return MadeChange;
3522}
3523
3524/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
3525/// casting to the type of GEPI.
3526static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
3527                                         Instruction *GEPI, Value *Ptr,
3528                                         Value *PtrOffset) {
3529  if (V) return V;   // Already computed.
3530
3531  // Figure out the insertion point
3532  BasicBlock::iterator InsertPt;
3533  if (BB == GEPI->getParent()) {
3534    // If GEP is already inserted into BB, insert right after the GEP.
3535    InsertPt = GEPI;
3536    ++InsertPt;
3537  } else {
3538    // Otherwise, insert at the top of BB, after any PHI nodes
3539    InsertPt = BB->begin();
3540    while (isa<PHINode>(InsertPt)) ++InsertPt;
3541  }
3542
3543  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
3544  // BB so that there is only one value live across basic blocks (the cast
3545  // operand).
3546  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
3547    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
3548      Ptr = CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(),
3549                             "", InsertPt);
3550
3551  // Add the offset, cast it to the right type.
3552  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
3553  // Ptr is an integer type, GEPI is pointer type ==> IntToPtr
3554  return V = CastInst::create(Instruction::IntToPtr, Ptr, GEPI->getType(),
3555                              "", InsertPt);
3556}
3557
3558/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
3559/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
3560/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
3561/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
3562/// sink PtrOffset into user blocks where doing so will likely allow us to fold
3563/// the constant add into a load or store instruction.  Additionally, if a user
3564/// is a pointer-pointer cast, we look through it to find its users.
3565static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
3566                                 Constant *PtrOffset, BasicBlock *DefBB,
3567                                 GetElementPtrInst *GEPI,
3568                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
3569  while (!RepPtr->use_empty()) {
3570    Instruction *User = cast<Instruction>(RepPtr->use_back());
3571
3572    // If the user is a Pointer-Pointer cast, recurse. Only BitCast can be
3573    // used for a Pointer-Pointer cast.
3574    if (isa<BitCastInst>(User)) {
3575      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3576
3577      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
3578      // could invalidate an iterator.
3579      User->setOperand(0, UndefValue::get(RepPtr->getType()));
3580      continue;
3581    }
3582
3583    // If this is a load of the pointer, or a store through the pointer, emit
3584    // the increment into the load/store block.
3585    Instruction *NewVal;
3586    if (isa<LoadInst>(User) ||
3587        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
3588      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
3589                                    User->getParent(), GEPI,
3590                                    Ptr, PtrOffset);
3591    } else {
3592      // If this use is not foldable into the addressing mode, use a version
3593      // emitted in the GEP block.
3594      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
3595                                    Ptr, PtrOffset);
3596    }
3597
3598    if (GEPI->getType() != RepPtr->getType()) {
3599      BasicBlock::iterator IP = NewVal;
3600      ++IP;
3601      // NewVal must be a GEP which must be pointer type, so BitCast
3602      NewVal = new BitCastInst(NewVal, RepPtr->getType(), "", IP);
3603    }
3604    User->replaceUsesOfWith(RepPtr, NewVal);
3605  }
3606}
3607
3608
3609/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
3610/// selection, we want to be a bit careful about some things.  In particular, if
3611/// we have a GEP instruction that is used in a different block than it is
3612/// defined, the addressing expression of the GEP cannot be folded into loads or
3613/// stores that use it.  In this case, decompose the GEP and move constant
3614/// indices into blocks that use it.
3615static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
3616                                  const TargetData *TD) {
3617  // If this GEP is only used inside the block it is defined in, there is no
3618  // need to rewrite it.
3619  bool isUsedOutsideDefBB = false;
3620  BasicBlock *DefBB = GEPI->getParent();
3621  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
3622       UI != E; ++UI) {
3623    if (cast<Instruction>(*UI)->getParent() != DefBB) {
3624      isUsedOutsideDefBB = true;
3625      break;
3626    }
3627  }
3628  if (!isUsedOutsideDefBB) return false;
3629
3630  // If this GEP has no non-zero constant indices, there is nothing we can do,
3631  // ignore it.
3632  bool hasConstantIndex = false;
3633  bool hasVariableIndex = false;
3634  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3635       E = GEPI->op_end(); OI != E; ++OI) {
3636    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
3637      if (CI->getZExtValue()) {
3638        hasConstantIndex = true;
3639        break;
3640      }
3641    } else {
3642      hasVariableIndex = true;
3643    }
3644  }
3645
3646  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
3647  if (!hasConstantIndex && !hasVariableIndex) {
3648    /// The GEP operand must be a pointer, so must its result -> BitCast
3649    Value *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
3650                             GEPI->getName(), GEPI);
3651    GEPI->replaceAllUsesWith(NC);
3652    GEPI->eraseFromParent();
3653    return true;
3654  }
3655
3656  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
3657  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
3658    return false;
3659
3660  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
3661  // constant offset (which we now know is non-zero) and deal with it later.
3662  uint64_t ConstantOffset = 0;
3663  const Type *UIntPtrTy = TD->getIntPtrType();
3664  Value *Ptr = new PtrToIntInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
3665  const Type *Ty = GEPI->getOperand(0)->getType();
3666
3667  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3668       E = GEPI->op_end(); OI != E; ++OI) {
3669    Value *Idx = *OI;
3670    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
3671      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3672      if (Field)
3673        ConstantOffset += TD->getStructLayout(StTy)->MemberOffsets[Field];
3674      Ty = StTy->getElementType(Field);
3675    } else {
3676      Ty = cast<SequentialType>(Ty)->getElementType();
3677
3678      // Handle constant subscripts.
3679      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3680        if (CI->getZExtValue() == 0) continue;
3681        ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CI->getSExtValue();
3682        continue;
3683      }
3684
3685      // Ptr = Ptr + Idx * ElementSize;
3686
3687      // Cast Idx to UIntPtrTy if needed.
3688      Idx = CastInst::createIntegerCast(Idx, UIntPtrTy, true/*SExt*/, "", GEPI);
3689
3690      uint64_t ElementSize = TD->getTypeSize(Ty);
3691      // Mask off bits that should not be set.
3692      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3693      Constant *SizeCst = ConstantInt::get(UIntPtrTy, ElementSize);
3694
3695      // Multiply by the element size and add to the base.
3696      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
3697      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
3698    }
3699  }
3700
3701  // Make sure that the offset fits in uintptr_t.
3702  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3703  Constant *PtrOffset = ConstantInt::get(UIntPtrTy, ConstantOffset);
3704
3705  // Okay, we have now emitted all of the variable index parts to the BB that
3706  // the GEP is defined in.  Loop over all of the using instructions, inserting
3707  // an "add Ptr, ConstantOffset" into each block that uses it and update the
3708  // instruction to use the newly computed value, making GEPI dead.  When the
3709  // user is a load or store instruction address, we emit the add into the user
3710  // block, otherwise we use a canonical version right next to the gep (these
3711  // won't be foldable as addresses, so we might as well share the computation).
3712
3713  std::map<BasicBlock*,Instruction*> InsertedExprs;
3714  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3715
3716  // Finally, the GEP is dead, remove it.
3717  GEPI->eraseFromParent();
3718
3719  return true;
3720}
3721
3722
3723/// SplitEdgeNicely - Split the critical edge from TI to it's specified
3724/// successor if it will improve codegen.  We only do this if the successor has
3725/// phi nodes (otherwise critical edges are ok).  If there is already another
3726/// predecessor of the succ that is empty (and thus has no phi nodes), use it
3727/// instead of introducing a new block.
3728static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
3729  BasicBlock *TIBB = TI->getParent();
3730  BasicBlock *Dest = TI->getSuccessor(SuccNum);
3731  assert(isa<PHINode>(Dest->begin()) &&
3732         "This should only be called if Dest has a PHI!");
3733
3734  /// TIPHIValues - This array is lazily computed to determine the values of
3735  /// PHIs in Dest that TI would provide.
3736  std::vector<Value*> TIPHIValues;
3737
3738  // Check to see if Dest has any blocks that can be used as a split edge for
3739  // this terminator.
3740  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
3741    BasicBlock *Pred = *PI;
3742    // To be usable, the pred has to end with an uncond branch to the dest.
3743    BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
3744    if (!PredBr || !PredBr->isUnconditional() ||
3745        // Must be empty other than the branch.
3746        &Pred->front() != PredBr)
3747      continue;
3748
3749    // Finally, since we know that Dest has phi nodes in it, we have to make
3750    // sure that jumping to Pred will have the same affect as going to Dest in
3751    // terms of PHI values.
3752    PHINode *PN;
3753    unsigned PHINo = 0;
3754    bool FoundMatch = true;
3755    for (BasicBlock::iterator I = Dest->begin();
3756         (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
3757      if (PHINo == TIPHIValues.size())
3758        TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
3759
3760      // If the PHI entry doesn't work, we can't use this pred.
3761      if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
3762        FoundMatch = false;
3763        break;
3764      }
3765    }
3766
3767    // If we found a workable predecessor, change TI to branch to Succ.
3768    if (FoundMatch) {
3769      Dest->removePredecessor(TIBB);
3770      TI->setSuccessor(SuccNum, Pred);
3771      return;
3772    }
3773  }
3774
3775  SplitCriticalEdge(TI, SuccNum, P, true);
3776}
3777
3778
3779bool SelectionDAGISel::runOnFunction(Function &Fn) {
3780  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
3781  RegMap = MF.getSSARegMap();
3782  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
3783
3784  // First, split all critical edges.
3785  //
3786  // In this pass we also look for GEP and cast instructions that are used
3787  // across basic blocks and rewrite them to improve basic-block-at-a-time
3788  // selection.
3789  //
3790  bool MadeChange = true;
3791  while (MadeChange) {
3792    MadeChange = false;
3793  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
3794    // Split all critical edges where the dest block has a PHI.
3795    TerminatorInst *BBTI = BB->getTerminator();
3796    if (BBTI->getNumSuccessors() > 1) {
3797      for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
3798        if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
3799            isCriticalEdge(BBTI, i, true))
3800          SplitEdgeNicely(BBTI, i, this);
3801    }
3802
3803
3804    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3805      Instruction *I = BBI++;
3806
3807      if (CallInst *CI = dyn_cast<CallInst>(I)) {
3808        // If we found an inline asm expession, and if the target knows how to
3809        // lower it to normal LLVM code, do so now.
3810        if (isa<InlineAsm>(CI->getCalledValue()))
3811          if (const TargetAsmInfo *TAI =
3812                TLI.getTargetMachine().getTargetAsmInfo()) {
3813            if (TAI->ExpandInlineAsm(CI))
3814              BBI = BB->begin();
3815          }
3816      } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
3817        MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
3818      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
3819        // If the source of the cast is a constant, then this should have
3820        // already been constant folded.  The only reason NOT to constant fold
3821        // it is if something (e.g. LSR) was careful to place the constant
3822        // evaluation in a block other than then one that uses it (e.g. to hoist
3823        // the address of globals out of a loop).  If this is the case, we don't
3824        // want to forward-subst the cast.
3825        if (isa<Constant>(CI->getOperand(0)))
3826          continue;
3827
3828        // If this is a noop copy, sink it into user blocks to reduce the number
3829        // of virtual registers that must be created and coallesced.
3830        MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
3831        MVT::ValueType DstVT = TLI.getValueType(CI->getType());
3832
3833        // This is an fp<->int conversion?
3834        if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
3835          continue;
3836
3837        // If this is an extension, it will be a zero or sign extension, which
3838        // isn't a noop.
3839        if (SrcVT < DstVT) continue;
3840
3841        // If these values will be promoted, find out what they will be promoted
3842        // to.  This helps us consider truncates on PPC as noop copies when they
3843        // are.
3844        if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
3845          SrcVT = TLI.getTypeToTransformTo(SrcVT);
3846        if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
3847          DstVT = TLI.getTypeToTransformTo(DstVT);
3848
3849        // If, after promotion, these are the same types, this is a noop copy.
3850        if (SrcVT == DstVT)
3851          MadeChange |= OptimizeNoopCopyExpression(CI);
3852      }
3853    }
3854  }
3855  }
3856
3857  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
3858
3859  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
3860    SelectBasicBlock(I, MF, FuncInfo);
3861
3862  return true;
3863}
3864
3865SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
3866                                                           unsigned Reg) {
3867  SDOperand Op = getValue(V);
3868  assert((Op.getOpcode() != ISD::CopyFromReg ||
3869          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
3870         "Copy from a reg to the same reg!");
3871
3872  // If this type is not legal, we must make sure to not create an invalid
3873  // register use.
3874  MVT::ValueType SrcVT = Op.getValueType();
3875  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
3876  if (SrcVT == DestVT) {
3877    return DAG.getCopyToReg(getRoot(), Reg, Op);
3878  } else if (SrcVT == MVT::Vector) {
3879    // Handle copies from generic vectors to registers.
3880    MVT::ValueType PTyElementVT, PTyLegalElementVT;
3881    unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
3882                                             PTyElementVT, PTyLegalElementVT);
3883
3884    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
3885    // MVT::Vector type.
3886    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
3887                     DAG.getConstant(NE, MVT::i32),
3888                     DAG.getValueType(PTyElementVT));
3889
3890    // Loop over all of the elements of the resultant vector,
3891    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
3892    // copying them into output registers.
3893    SmallVector<SDOperand, 8> OutChains;
3894    SDOperand Root = getRoot();
3895    for (unsigned i = 0; i != NE; ++i) {
3896      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
3897                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
3898      if (PTyElementVT == PTyLegalElementVT) {
3899        // Elements are legal.
3900        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3901      } else if (PTyLegalElementVT > PTyElementVT) {
3902        // Elements are promoted.
3903        if (MVT::isFloatingPoint(PTyLegalElementVT))
3904          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
3905        else
3906          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
3907        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3908      } else {
3909        // Elements are expanded.
3910        // The src value is expanded into multiple registers.
3911        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3912                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
3913        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3914                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
3915        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
3916        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
3917      }
3918    }
3919    return DAG.getNode(ISD::TokenFactor, MVT::Other,
3920                       &OutChains[0], OutChains.size());
3921  } else if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) {
3922    // The src value is promoted to the register.
3923    if (MVT::isFloatingPoint(SrcVT))
3924      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
3925    else
3926      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
3927    return DAG.getCopyToReg(getRoot(), Reg, Op);
3928  } else  {
3929    DestVT = TLI.getTypeToExpandTo(SrcVT);
3930    unsigned NumVals = TLI.getNumElements(SrcVT);
3931    if (NumVals == 1)
3932      return DAG.getCopyToReg(getRoot(), Reg,
3933                              DAG.getNode(ISD::BIT_CONVERT, DestVT, Op));
3934    assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
3935    // The src value is expanded into multiple registers.
3936    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3937                               Op, DAG.getConstant(0, TLI.getPointerTy()));
3938    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3939                               Op, DAG.getConstant(1, TLI.getPointerTy()));
3940    Op = DAG.getCopyToReg(getRoot(), Reg, Lo);
3941    return DAG.getCopyToReg(Op, Reg+1, Hi);
3942  }
3943}
3944
3945void SelectionDAGISel::
3946LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
3947               std::vector<SDOperand> &UnorderedChains) {
3948  // If this is the entry block, emit arguments.
3949  Function &F = *BB->getParent();
3950  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
3951  SDOperand OldRoot = SDL.DAG.getRoot();
3952  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
3953
3954  unsigned a = 0;
3955  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
3956       AI != E; ++AI, ++a)
3957    if (!AI->use_empty()) {
3958      SDL.setValue(AI, Args[a]);
3959
3960      // If this argument is live outside of the entry block, insert a copy from
3961      // whereever we got it to the vreg that other BB's will reference it as.
3962      if (FuncInfo.ValueMap.count(AI)) {
3963        SDOperand Copy =
3964          SDL.CopyValueToVirtualRegister(AI, FuncInfo.ValueMap[AI]);
3965        UnorderedChains.push_back(Copy);
3966      }
3967    }
3968
3969  // Finally, if the target has anything special to do, allow it to do so.
3970  // FIXME: this should insert code into the DAG!
3971  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
3972}
3973
3974void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
3975       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
3976                                         FunctionLoweringInfo &FuncInfo) {
3977  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
3978
3979  std::vector<SDOperand> UnorderedChains;
3980
3981  // Lower any arguments needed in this block if this is the entry block.
3982  if (LLVMBB == &LLVMBB->getParent()->front())
3983    LowerArguments(LLVMBB, SDL, UnorderedChains);
3984
3985  BB = FuncInfo.MBBMap[LLVMBB];
3986  SDL.setCurrentBasicBlock(BB);
3987
3988  // Lower all of the non-terminator instructions.
3989  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
3990       I != E; ++I)
3991    SDL.visit(*I);
3992
3993  // Ensure that all instructions which are used outside of their defining
3994  // blocks are available as virtual registers.
3995  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
3996    if (!I->use_empty() && !isa<PHINode>(I)) {
3997      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
3998      if (VMI != FuncInfo.ValueMap.end())
3999        UnorderedChains.push_back(
4000                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4001    }
4002
4003  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4004  // ensure constants are generated when needed.  Remember the virtual registers
4005  // that need to be added to the Machine PHI nodes as input.  We cannot just
4006  // directly add them, because expansion might result in multiple MBB's for one
4007  // BB.  As such, the start of the BB might correspond to a different MBB than
4008  // the end.
4009  //
4010  TerminatorInst *TI = LLVMBB->getTerminator();
4011
4012  // Emit constants only once even if used by multiple PHI nodes.
4013  std::map<Constant*, unsigned> ConstantsOut;
4014
4015  // Vector bool would be better, but vector<bool> is really slow.
4016  std::vector<unsigned char> SuccsHandled;
4017  if (TI->getNumSuccessors())
4018    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4019
4020  // Check successor nodes PHI nodes that expect a constant to be available from
4021  // this block.
4022  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4023    BasicBlock *SuccBB = TI->getSuccessor(succ);
4024    if (!isa<PHINode>(SuccBB->begin())) continue;
4025    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4026
4027    // If this terminator has multiple identical successors (common for
4028    // switches), only handle each succ once.
4029    unsigned SuccMBBNo = SuccMBB->getNumber();
4030    if (SuccsHandled[SuccMBBNo]) continue;
4031    SuccsHandled[SuccMBBNo] = true;
4032
4033    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4034    PHINode *PN;
4035
4036    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4037    // nodes and Machine PHI nodes, but the incoming operands have not been
4038    // emitted yet.
4039    for (BasicBlock::iterator I = SuccBB->begin();
4040         (PN = dyn_cast<PHINode>(I)); ++I) {
4041      // Ignore dead phi's.
4042      if (PN->use_empty()) continue;
4043
4044      unsigned Reg;
4045      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4046
4047      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4048        unsigned &RegOut = ConstantsOut[C];
4049        if (RegOut == 0) {
4050          RegOut = FuncInfo.CreateRegForValue(C);
4051          UnorderedChains.push_back(
4052                           SDL.CopyValueToVirtualRegister(C, RegOut));
4053        }
4054        Reg = RegOut;
4055      } else {
4056        Reg = FuncInfo.ValueMap[PHIOp];
4057        if (Reg == 0) {
4058          assert(isa<AllocaInst>(PHIOp) &&
4059                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4060                 "Didn't codegen value into a register!??");
4061          Reg = FuncInfo.CreateRegForValue(PHIOp);
4062          UnorderedChains.push_back(
4063                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4064        }
4065      }
4066
4067      // Remember that this register needs to added to the machine PHI node as
4068      // the input for this MBB.
4069      MVT::ValueType VT = TLI.getValueType(PN->getType());
4070      unsigned NumElements;
4071      if (VT != MVT::Vector)
4072        NumElements = TLI.getNumElements(VT);
4073      else {
4074        MVT::ValueType VT1,VT2;
4075        NumElements =
4076          TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
4077                                     VT1, VT2);
4078      }
4079      for (unsigned i = 0, e = NumElements; i != e; ++i)
4080        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4081    }
4082  }
4083  ConstantsOut.clear();
4084
4085  // Turn all of the unordered chains into one factored node.
4086  if (!UnorderedChains.empty()) {
4087    SDOperand Root = SDL.getRoot();
4088    if (Root.getOpcode() != ISD::EntryToken) {
4089      unsigned i = 0, e = UnorderedChains.size();
4090      for (; i != e; ++i) {
4091        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4092        if (UnorderedChains[i].Val->getOperand(0) == Root)
4093          break;  // Don't add the root if we already indirectly depend on it.
4094      }
4095
4096      if (i == e)
4097        UnorderedChains.push_back(Root);
4098    }
4099    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4100                            &UnorderedChains[0], UnorderedChains.size()));
4101  }
4102
4103  // Lower the terminator after the copies are emitted.
4104  SDL.visit(*LLVMBB->getTerminator());
4105
4106  // Copy over any CaseBlock records that may now exist due to SwitchInst
4107  // lowering, as well as any jump table information.
4108  SwitchCases.clear();
4109  SwitchCases = SDL.SwitchCases;
4110  JT = SDL.JT;
4111
4112  // Make sure the root of the DAG is up-to-date.
4113  DAG.setRoot(SDL.getRoot());
4114}
4115
4116void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4117  // Get alias analysis for load/store combining.
4118  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4119
4120  // Run the DAG combiner in pre-legalize mode.
4121  DAG.Combine(false, AA);
4122
4123  DOUT << "Lowered selection DAG:\n";
4124  DEBUG(DAG.dump());
4125
4126  // Second step, hack on the DAG until it only uses operations and types that
4127  // the target supports.
4128  DAG.Legalize();
4129
4130  DOUT << "Legalized selection DAG:\n";
4131  DEBUG(DAG.dump());
4132
4133  // Run the DAG combiner in post-legalize mode.
4134  DAG.Combine(true, AA);
4135
4136  if (ViewISelDAGs) DAG.viewGraph();
4137
4138  // Third, instruction select all of the operations to machine code, adding the
4139  // code to the MachineBasicBlock.
4140  InstructionSelectBasicBlock(DAG);
4141
4142  DOUT << "Selected machine code:\n";
4143  DEBUG(BB->dump());
4144}
4145
4146void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4147                                        FunctionLoweringInfo &FuncInfo) {
4148  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4149  {
4150    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4151    CurDAG = &DAG;
4152
4153    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4154    // types that are not supported by the target.
4155    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4156
4157    // Second step, emit the lowered DAG as machine code.
4158    CodeGenAndEmitDAG(DAG);
4159  }
4160
4161  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4162  // PHI nodes in successors.
4163  if (SwitchCases.empty() && JT.Reg == 0) {
4164    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4165      MachineInstr *PHI = PHINodesToUpdate[i].first;
4166      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4167             "This is not a machine PHI node that we are updating!");
4168      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4169      PHI->addMachineBasicBlockOperand(BB);
4170    }
4171    return;
4172  }
4173
4174  // If the JumpTable record is filled in, then we need to emit a jump table.
4175  // Updating the PHI nodes is tricky in this case, since we need to determine
4176  // whether the PHI is a successor of the range check MBB or the jump table MBB
4177  if (JT.Reg) {
4178    assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
4179    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4180    CurDAG = &SDAG;
4181    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4182    MachineBasicBlock *RangeBB = BB;
4183    // Set the current basic block to the mbb we wish to insert the code into
4184    BB = JT.MBB;
4185    SDL.setCurrentBasicBlock(BB);
4186    // Emit the code
4187    SDL.visitJumpTable(JT);
4188    SDAG.setRoot(SDL.getRoot());
4189    CodeGenAndEmitDAG(SDAG);
4190    // Update PHI Nodes
4191    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4192      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4193      MachineBasicBlock *PHIBB = PHI->getParent();
4194      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4195             "This is not a machine PHI node that we are updating!");
4196      if (PHIBB == JT.Default) {
4197        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4198        PHI->addMachineBasicBlockOperand(RangeBB);
4199      }
4200      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4201        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4202        PHI->addMachineBasicBlockOperand(BB);
4203      }
4204    }
4205    return;
4206  }
4207
4208  // If the switch block involved a branch to one of the actual successors, we
4209  // need to update PHI nodes in that block.
4210  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4211    MachineInstr *PHI = PHINodesToUpdate[i].first;
4212    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4213           "This is not a machine PHI node that we are updating!");
4214    if (BB->isSuccessor(PHI->getParent())) {
4215      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4216      PHI->addMachineBasicBlockOperand(BB);
4217    }
4218  }
4219
4220  // If we generated any switch lowering information, build and codegen any
4221  // additional DAGs necessary.
4222  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4223    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4224    CurDAG = &SDAG;
4225    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4226
4227    // Set the current basic block to the mbb we wish to insert the code into
4228    BB = SwitchCases[i].ThisBB;
4229    SDL.setCurrentBasicBlock(BB);
4230
4231    // Emit the code
4232    SDL.visitSwitchCase(SwitchCases[i]);
4233    SDAG.setRoot(SDL.getRoot());
4234    CodeGenAndEmitDAG(SDAG);
4235
4236    // Handle any PHI nodes in successors of this chunk, as if we were coming
4237    // from the original BB before switch expansion.  Note that PHI nodes can
4238    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4239    // handle them the right number of times.
4240    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4241      for (MachineBasicBlock::iterator Phi = BB->begin();
4242           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4243        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4244        for (unsigned pn = 0; ; ++pn) {
4245          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4246          if (PHINodesToUpdate[pn].first == Phi) {
4247            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4248            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4249            break;
4250          }
4251        }
4252      }
4253
4254      // Don't process RHS if same block as LHS.
4255      if (BB == SwitchCases[i].FalseBB)
4256        SwitchCases[i].FalseBB = 0;
4257
4258      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4259      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4260      SwitchCases[i].FalseBB = 0;
4261    }
4262    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4263  }
4264}
4265
4266
4267//===----------------------------------------------------------------------===//
4268/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4269/// target node in the graph.
4270void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4271  if (ViewSchedDAGs) DAG.viewGraph();
4272
4273  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4274
4275  if (!Ctor) {
4276    Ctor = ISHeuristic;
4277    RegisterScheduler::setDefault(Ctor);
4278  }
4279
4280  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4281  BB = SL->Run();
4282  delete SL;
4283}
4284
4285
4286HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4287  return new HazardRecognizer();
4288}
4289
4290//===----------------------------------------------------------------------===//
4291// Helper functions used by the generated instruction selector.
4292//===----------------------------------------------------------------------===//
4293// Calls to these methods are generated by tblgen.
4294
4295/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4296/// the dag combiner simplified the 255, we still want to match.  RHS is the
4297/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4298/// specified in the .td file (e.g. 255).
4299bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4300                                    int64_t DesiredMaskS) {
4301  uint64_t ActualMask = RHS->getValue();
4302  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4303
4304  // If the actual mask exactly matches, success!
4305  if (ActualMask == DesiredMask)
4306    return true;
4307
4308  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4309  if (ActualMask & ~DesiredMask)
4310    return false;
4311
4312  // Otherwise, the DAG Combiner may have proven that the value coming in is
4313  // either already zero or is not demanded.  Check for known zero input bits.
4314  uint64_t NeededMask = DesiredMask & ~ActualMask;
4315  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
4316    return true;
4317
4318  // TODO: check to see if missing bits are just not demanded.
4319
4320  // Otherwise, this pattern doesn't match.
4321  return false;
4322}
4323
4324/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4325/// the dag combiner simplified the 255, we still want to match.  RHS is the
4326/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4327/// specified in the .td file (e.g. 255).
4328bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4329                                    int64_t DesiredMaskS) {
4330  uint64_t ActualMask = RHS->getValue();
4331  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4332
4333  // If the actual mask exactly matches, success!
4334  if (ActualMask == DesiredMask)
4335    return true;
4336
4337  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4338  if (ActualMask & ~DesiredMask)
4339    return false;
4340
4341  // Otherwise, the DAG Combiner may have proven that the value coming in is
4342  // either already zero or is not demanded.  Check for known zero input bits.
4343  uint64_t NeededMask = DesiredMask & ~ActualMask;
4344
4345  uint64_t KnownZero, KnownOne;
4346  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4347
4348  // If all the missing bits in the or are already known to be set, match!
4349  if ((NeededMask & KnownOne) == NeededMask)
4350    return true;
4351
4352  // TODO: check to see if missing bits are just not demanded.
4353
4354  // Otherwise, this pattern doesn't match.
4355  return false;
4356}
4357
4358
4359/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4360/// by tblgen.  Others should not call it.
4361void SelectionDAGISel::
4362SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4363  std::vector<SDOperand> InOps;
4364  std::swap(InOps, Ops);
4365
4366  Ops.push_back(InOps[0]);  // input chain.
4367  Ops.push_back(InOps[1]);  // input asm string.
4368
4369  unsigned i = 2, e = InOps.size();
4370  if (InOps[e-1].getValueType() == MVT::Flag)
4371    --e;  // Don't process a flag operand if it is here.
4372
4373  while (i != e) {
4374    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4375    if ((Flags & 7) != 4 /*MEM*/) {
4376      // Just skip over this operand, copying the operands verbatim.
4377      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4378      i += (Flags >> 3) + 1;
4379    } else {
4380      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4381      // Otherwise, this is a memory operand.  Ask the target to select it.
4382      std::vector<SDOperand> SelOps;
4383      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4384        cerr << "Could not match memory address.  Inline asm failure!\n";
4385        exit(1);
4386      }
4387
4388      // Add this to the output node.
4389      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4390                                          MVT::i32));
4391      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4392      i += 2;
4393    }
4394  }
4395
4396  // Add the flag input back if present.
4397  if (e != InOps.size())
4398    Ops.push_back(InOps.back());
4399}
4400