SelectionDAGISel.cpp revision acddd4963d2f3b5fd94ab872b4fd393b34c80e5f
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/DebugInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/Module.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/GCStrategy.h"
32#include "llvm/CodeGen/GCMetadata.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39#include "llvm/CodeGen/SchedulerRegistry.h"
40#include "llvm/CodeGen/SelectionDAG.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetIntrinsicInfo.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLibraryInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Support/Compiler.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/Timer.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/ADT/PostOrderIterator.h"
55#include "llvm/ADT/Statistic.h"
56#include <algorithm>
57using namespace llvm;
58
59STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
60STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
61STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
62STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
63STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
64
65#ifndef NDEBUG
66static cl::opt<bool>
67EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
68          cl::desc("Enable extra verbose messages in the \"fast\" "
69                   "instruction selector"));
70  // Terminators
71STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
72STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
73STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
74STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
75STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
76STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
77STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
78
79  // Standard binary operators...
80STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
81STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
82STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
83STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
84STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
85STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
86STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
87STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
88STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
89STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
90STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
91STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
92
93  // Logical operators...
94STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
95STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
96STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
97
98  // Memory instructions...
99STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
100STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
101STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
102STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
103STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
104STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
105STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
106
107  // Convert instructions...
108STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
109STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
110STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
111STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
112STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
113STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
114STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
115STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
116STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
117STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
118STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
119STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
120
121  // Other instructions...
122STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
123STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
124STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
125STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
126STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
127STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
128STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
129STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
130STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
131STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
132STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
133STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
134STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
135STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
136STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
137#endif
138
139static cl::opt<bool>
140EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
141          cl::desc("Enable verbose messages in the \"fast\" "
142                   "instruction selector"));
143static cl::opt<bool>
144EnableFastISelAbort("fast-isel-abort", cl::Hidden,
145          cl::desc("Enable abort calls when \"fast\" instruction fails"));
146
147static cl::opt<bool>
148UseMBPI("use-mbpi",
149        cl::desc("use Machine Branch Probability Info"),
150        cl::init(true), cl::Hidden);
151
152#ifndef NDEBUG
153static cl::opt<bool>
154ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
155          cl::desc("Pop up a window to show dags before the first "
156                   "dag combine pass"));
157static cl::opt<bool>
158ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
159          cl::desc("Pop up a window to show dags before legalize types"));
160static cl::opt<bool>
161ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
162          cl::desc("Pop up a window to show dags before legalize"));
163static cl::opt<bool>
164ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
165          cl::desc("Pop up a window to show dags before the second "
166                   "dag combine pass"));
167static cl::opt<bool>
168ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
169          cl::desc("Pop up a window to show dags before the post legalize types"
170                   " dag combine pass"));
171static cl::opt<bool>
172ViewISelDAGs("view-isel-dags", cl::Hidden,
173          cl::desc("Pop up a window to show isel dags as they are selected"));
174static cl::opt<bool>
175ViewSchedDAGs("view-sched-dags", cl::Hidden,
176          cl::desc("Pop up a window to show sched dags as they are processed"));
177static cl::opt<bool>
178ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
179      cl::desc("Pop up a window to show SUnit dags after they are processed"));
180#else
181static const bool ViewDAGCombine1 = false,
182                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
183                  ViewDAGCombine2 = false,
184                  ViewDAGCombineLT = false,
185                  ViewISelDAGs = false, ViewSchedDAGs = false,
186                  ViewSUnitDAGs = false;
187#endif
188
189//===---------------------------------------------------------------------===//
190///
191/// RegisterScheduler class - Track the registration of instruction schedulers.
192///
193//===---------------------------------------------------------------------===//
194MachinePassRegistry RegisterScheduler::Registry;
195
196//===---------------------------------------------------------------------===//
197///
198/// ISHeuristic command line option for instruction schedulers.
199///
200//===---------------------------------------------------------------------===//
201static cl::opt<RegisterScheduler::FunctionPassCtor, false,
202               RegisterPassParser<RegisterScheduler> >
203ISHeuristic("pre-RA-sched",
204            cl::init(&createDefaultScheduler),
205            cl::desc("Instruction schedulers available (before register"
206                     " allocation):"));
207
208static RegisterScheduler
209defaultListDAGScheduler("default", "Best scheduler for the target",
210                        createDefaultScheduler);
211
212namespace llvm {
213  //===--------------------------------------------------------------------===//
214  /// createDefaultScheduler - This creates an instruction scheduler appropriate
215  /// for the target.
216  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
217                                             CodeGenOpt::Level OptLevel) {
218    const TargetLowering &TLI = IS->getTargetLowering();
219
220    if (OptLevel == CodeGenOpt::None ||
221        TLI.getSchedulingPreference() == Sched::Source)
222      return createSourceListDAGScheduler(IS, OptLevel);
223    if (TLI.getSchedulingPreference() == Sched::RegPressure)
224      return createBURRListDAGScheduler(IS, OptLevel);
225    if (TLI.getSchedulingPreference() == Sched::Hybrid)
226      return createHybridListDAGScheduler(IS, OptLevel);
227    if (TLI.getSchedulingPreference() == Sched::VLIW)
228      return createVLIWDAGScheduler(IS, OptLevel);
229    assert(TLI.getSchedulingPreference() == Sched::ILP &&
230           "Unknown sched type!");
231    return createILPListDAGScheduler(IS, OptLevel);
232  }
233}
234
235// EmitInstrWithCustomInserter - This method should be implemented by targets
236// that mark instructions with the 'usesCustomInserter' flag.  These
237// instructions are special in various ways, which require special support to
238// insert.  The specified MachineInstr is created but not inserted into any
239// basic blocks, and this method is called to expand it into a sequence of
240// instructions, potentially also creating new basic blocks and control flow.
241// When new basic blocks are inserted and the edges from MBB to its successors
242// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
243// DenseMap.
244MachineBasicBlock *
245TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
246                                            MachineBasicBlock *MBB) const {
247#ifndef NDEBUG
248  dbgs() << "If a target marks an instruction with "
249          "'usesCustomInserter', it must implement "
250          "TargetLowering::EmitInstrWithCustomInserter!";
251#endif
252  llvm_unreachable(0);
253}
254
255void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
256                                                   SDNode *Node) const {
257  assert(!MI->hasPostISelHook() &&
258         "If a target marks an instruction with 'hasPostISelHook', "
259         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
260}
261
262//===----------------------------------------------------------------------===//
263// SelectionDAGISel code
264//===----------------------------------------------------------------------===//
265
266void SelectionDAGISel::ISelUpdater::anchor() { }
267
268SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
269                                   CodeGenOpt::Level OL) :
270  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
271  FuncInfo(new FunctionLoweringInfo(TLI)),
272  CurDAG(new SelectionDAG(tm, OL)),
273  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
274  GFI(),
275  OptLevel(OL),
276  DAGSize(0) {
277    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
278    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
279    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
280    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
281  }
282
283SelectionDAGISel::~SelectionDAGISel() {
284  delete SDB;
285  delete CurDAG;
286  delete FuncInfo;
287}
288
289void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
290  AU.addRequired<AliasAnalysis>();
291  AU.addPreserved<AliasAnalysis>();
292  AU.addRequired<GCModuleInfo>();
293  AU.addPreserved<GCModuleInfo>();
294  AU.addRequired<TargetLibraryInfo>();
295  if (UseMBPI && OptLevel != CodeGenOpt::None)
296    AU.addRequired<BranchProbabilityInfo>();
297  MachineFunctionPass::getAnalysisUsage(AU);
298}
299
300/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
301/// may trap on it.  In this case we have to split the edge so that the path
302/// through the predecessor block that doesn't go to the phi block doesn't
303/// execute the possibly trapping instruction.
304///
305/// This is required for correctness, so it must be done at -O0.
306///
307static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
308  // Loop for blocks with phi nodes.
309  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
310    PHINode *PN = dyn_cast<PHINode>(BB->begin());
311    if (PN == 0) continue;
312
313  ReprocessBlock:
314    // For each block with a PHI node, check to see if any of the input values
315    // are potentially trapping constant expressions.  Constant expressions are
316    // the only potentially trapping value that can occur as the argument to a
317    // PHI.
318    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
319      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
320        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
321        if (CE == 0 || !CE->canTrap()) continue;
322
323        // The only case we have to worry about is when the edge is critical.
324        // Since this block has a PHI Node, we assume it has multiple input
325        // edges: check to see if the pred has multiple successors.
326        BasicBlock *Pred = PN->getIncomingBlock(i);
327        if (Pred->getTerminator()->getNumSuccessors() == 1)
328          continue;
329
330        // Okay, we have to split this edge.
331        SplitCriticalEdge(Pred->getTerminator(),
332                          GetSuccessorNumber(Pred, BB), SDISel, true);
333        goto ReprocessBlock;
334      }
335  }
336}
337
338bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
339  // Do some sanity-checking on the command-line options.
340  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
341         "-fast-isel-verbose requires -fast-isel");
342  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
343         "-fast-isel-abort requires -fast-isel");
344
345  const Function &Fn = *mf.getFunction();
346  const TargetInstrInfo &TII = *TM.getInstrInfo();
347  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
348
349  MF = &mf;
350  RegInfo = &MF->getRegInfo();
351  AA = &getAnalysis<AliasAnalysis>();
352  LibInfo = &getAnalysis<TargetLibraryInfo>();
353  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
354
355  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
356
357  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
358
359  CurDAG->init(*MF);
360  FuncInfo->set(Fn, *MF);
361
362  if (UseMBPI && OptLevel != CodeGenOpt::None)
363    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
364  else
365    FuncInfo->BPI = 0;
366
367  SDB->init(GFI, *AA, LibInfo);
368
369  SelectAllBasicBlocks(Fn);
370
371  // If the first basic block in the function has live ins that need to be
372  // copied into vregs, emit the copies into the top of the block before
373  // emitting the code for the block.
374  MachineBasicBlock *EntryMBB = MF->begin();
375  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
376
377  DenseMap<unsigned, unsigned> LiveInMap;
378  if (!FuncInfo->ArgDbgValues.empty())
379    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
380           E = RegInfo->livein_end(); LI != E; ++LI)
381      if (LI->second)
382        LiveInMap.insert(std::make_pair(LI->first, LI->second));
383
384  // Insert DBG_VALUE instructions for function arguments to the entry block.
385  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
386    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
387    unsigned Reg = MI->getOperand(0).getReg();
388    if (TargetRegisterInfo::isPhysicalRegister(Reg))
389      EntryMBB->insert(EntryMBB->begin(), MI);
390    else {
391      MachineInstr *Def = RegInfo->getVRegDef(Reg);
392      MachineBasicBlock::iterator InsertPos = Def;
393      // FIXME: VR def may not be in entry block.
394      Def->getParent()->insert(llvm::next(InsertPos), MI);
395    }
396
397    // If Reg is live-in then update debug info to track its copy in a vreg.
398    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
399    if (LDI != LiveInMap.end()) {
400      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
401      MachineBasicBlock::iterator InsertPos = Def;
402      const MDNode *Variable =
403        MI->getOperand(MI->getNumOperands()-1).getMetadata();
404      unsigned Offset = MI->getOperand(1).getImm();
405      // Def is never a terminator here, so it is ok to increment InsertPos.
406      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
407              TII.get(TargetOpcode::DBG_VALUE))
408        .addReg(LDI->second, RegState::Debug)
409        .addImm(Offset).addMetadata(Variable);
410
411      // If this vreg is directly copied into an exported register then
412      // that COPY instructions also need DBG_VALUE, if it is the only
413      // user of LDI->second.
414      MachineInstr *CopyUseMI = NULL;
415      for (MachineRegisterInfo::use_iterator
416             UI = RegInfo->use_begin(LDI->second);
417           MachineInstr *UseMI = UI.skipInstruction();) {
418        if (UseMI->isDebugValue()) continue;
419        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
420          CopyUseMI = UseMI; continue;
421        }
422        // Otherwise this is another use or second copy use.
423        CopyUseMI = NULL; break;
424      }
425      if (CopyUseMI) {
426        MachineInstr *NewMI =
427          BuildMI(*MF, CopyUseMI->getDebugLoc(),
428                  TII.get(TargetOpcode::DBG_VALUE))
429          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
430          .addImm(Offset).addMetadata(Variable);
431        MachineBasicBlock::iterator Pos = CopyUseMI;
432        EntryMBB->insertAfter(Pos, NewMI);
433      }
434    }
435  }
436
437  // Determine if there are any calls in this machine function.
438  MachineFrameInfo *MFI = MF->getFrameInfo();
439  if (!MFI->hasCalls()) {
440    for (MachineFunction::const_iterator
441           I = MF->begin(), E = MF->end(); I != E; ++I) {
442      const MachineBasicBlock *MBB = I;
443      for (MachineBasicBlock::const_iterator
444             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
445        const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
446
447        if ((MCID.isCall() && !MCID.isReturn()) ||
448            II->isStackAligningInlineAsm()) {
449          MFI->setHasCalls(true);
450          goto done;
451        }
452      }
453    }
454  done:;
455  }
456
457  // Determine if there is a call to setjmp in the machine function.
458  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
459
460  // Replace forward-declared registers with the registers containing
461  // the desired value.
462  MachineRegisterInfo &MRI = MF->getRegInfo();
463  for (DenseMap<unsigned, unsigned>::iterator
464       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
465       I != E; ++I) {
466    unsigned From = I->first;
467    unsigned To = I->second;
468    // If To is also scheduled to be replaced, find what its ultimate
469    // replacement is.
470    for (;;) {
471      DenseMap<unsigned, unsigned>::iterator J =
472        FuncInfo->RegFixups.find(To);
473      if (J == E) break;
474      To = J->second;
475    }
476    // Replace it.
477    MRI.replaceRegWith(From, To);
478  }
479
480  // Release function-specific state. SDB and CurDAG are already cleared
481  // at this point.
482  FuncInfo->clear();
483
484  return true;
485}
486
487void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
488                                        BasicBlock::const_iterator End,
489                                        bool &HadTailCall) {
490  // Lower all of the non-terminator instructions. If a call is emitted
491  // as a tail call, cease emitting nodes for this block. Terminators
492  // are handled below.
493  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
494    SDB->visit(*I);
495
496  // Make sure the root of the DAG is up-to-date.
497  CurDAG->setRoot(SDB->getControlRoot());
498  HadTailCall = SDB->HasTailCall;
499  SDB->clear();
500
501  // Final step, emit the lowered DAG as machine code.
502  CodeGenAndEmitDAG();
503}
504
505void SelectionDAGISel::ComputeLiveOutVRegInfo() {
506  SmallPtrSet<SDNode*, 128> VisitedNodes;
507  SmallVector<SDNode*, 128> Worklist;
508
509  Worklist.push_back(CurDAG->getRoot().getNode());
510
511  APInt Mask;
512  APInt KnownZero;
513  APInt KnownOne;
514
515  do {
516    SDNode *N = Worklist.pop_back_val();
517
518    // If we've already seen this node, ignore it.
519    if (!VisitedNodes.insert(N))
520      continue;
521
522    // Otherwise, add all chain operands to the worklist.
523    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
524      if (N->getOperand(i).getValueType() == MVT::Other)
525        Worklist.push_back(N->getOperand(i).getNode());
526
527    // If this is a CopyToReg with a vreg dest, process it.
528    if (N->getOpcode() != ISD::CopyToReg)
529      continue;
530
531    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
532    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
533      continue;
534
535    // Ignore non-scalar or non-integer values.
536    SDValue Src = N->getOperand(2);
537    EVT SrcVT = Src.getValueType();
538    if (!SrcVT.isInteger() || SrcVT.isVector())
539      continue;
540
541    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
542    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
543    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
544    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
545  } while (!Worklist.empty());
546}
547
548void SelectionDAGISel::CodeGenAndEmitDAG() {
549  std::string GroupName;
550  if (TimePassesIsEnabled)
551    GroupName = "Instruction Selection and Scheduling";
552  std::string BlockName;
553  int BlockNumber = -1;
554  (void)BlockNumber;
555#ifdef NDEBUG
556  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
557      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
558      ViewSUnitDAGs)
559#endif
560  {
561    BlockNumber = FuncInfo->MBB->getNumber();
562    BlockName = MF->getFunction()->getName().str() + ":" +
563                FuncInfo->MBB->getBasicBlock()->getName().str();
564  }
565  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
566        << " '" << BlockName << "'\n"; CurDAG->dump());
567
568  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
569
570  // Run the DAG combiner in pre-legalize mode.
571  {
572    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
573    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
574  }
575
576  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
577        << " '" << BlockName << "'\n"; CurDAG->dump());
578
579  // Second step, hack on the DAG until it only uses operations and types that
580  // the target supports.
581  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
582                                               BlockName);
583
584  bool Changed;
585  {
586    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
587    Changed = CurDAG->LegalizeTypes();
588  }
589
590  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
591        << " '" << BlockName << "'\n"; CurDAG->dump());
592
593  if (Changed) {
594    if (ViewDAGCombineLT)
595      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
596
597    // Run the DAG combiner in post-type-legalize mode.
598    {
599      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
600                         TimePassesIsEnabled);
601      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
602    }
603
604    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
605          << " '" << BlockName << "'\n"; CurDAG->dump());
606  }
607
608  {
609    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
610    Changed = CurDAG->LegalizeVectors();
611  }
612
613  if (Changed) {
614    {
615      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
616      CurDAG->LegalizeTypes();
617    }
618
619    if (ViewDAGCombineLT)
620      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
621
622    // Run the DAG combiner in post-type-legalize mode.
623    {
624      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
625                         TimePassesIsEnabled);
626      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
627    }
628
629    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
630          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
631  }
632
633  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
634
635  {
636    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
637    CurDAG->Legalize();
638  }
639
640  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
641        << " '" << BlockName << "'\n"; CurDAG->dump());
642
643  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
644
645  // Run the DAG combiner in post-legalize mode.
646  {
647    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
648    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
649  }
650
651  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
652        << " '" << BlockName << "'\n"; CurDAG->dump());
653
654  if (OptLevel != CodeGenOpt::None)
655    ComputeLiveOutVRegInfo();
656
657  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
658
659  // Third, instruction select all of the operations to machine code, adding the
660  // code to the MachineBasicBlock.
661  {
662    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
663    DoInstructionSelection();
664  }
665
666  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
667        << " '" << BlockName << "'\n"; CurDAG->dump());
668
669  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
670
671  // Schedule machine code.
672  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
673  {
674    NamedRegionTimer T("Instruction Scheduling", GroupName,
675                       TimePassesIsEnabled);
676    Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
677  }
678
679  if (ViewSUnitDAGs) Scheduler->viewGraph();
680
681  // Emit machine code to BB.  This can change 'BB' to the last block being
682  // inserted into.
683  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
684  {
685    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
686
687    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
688    FuncInfo->InsertPt = Scheduler->InsertPos;
689  }
690
691  // If the block was split, make sure we update any references that are used to
692  // update PHI nodes later on.
693  if (FirstMBB != LastMBB)
694    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
695
696  // Free the scheduler state.
697  {
698    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
699                       TimePassesIsEnabled);
700    delete Scheduler;
701  }
702
703  // Free the SelectionDAG state, now that we're finished with it.
704  CurDAG->clear();
705}
706
707void SelectionDAGISel::DoInstructionSelection() {
708  DEBUG(errs() << "===== Instruction selection begins: BB#"
709        << FuncInfo->MBB->getNumber()
710        << " '" << FuncInfo->MBB->getName() << "'\n");
711
712  PreprocessISelDAG();
713
714  // Select target instructions for the DAG.
715  {
716    // Number all nodes with a topological order and set DAGSize.
717    DAGSize = CurDAG->AssignTopologicalOrder();
718
719    // Create a dummy node (which is not added to allnodes), that adds
720    // a reference to the root node, preventing it from being deleted,
721    // and tracking any changes of the root.
722    HandleSDNode Dummy(CurDAG->getRoot());
723    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
724    ++ISelPosition;
725
726    // The AllNodes list is now topological-sorted. Visit the
727    // nodes by starting at the end of the list (the root of the
728    // graph) and preceding back toward the beginning (the entry
729    // node).
730    while (ISelPosition != CurDAG->allnodes_begin()) {
731      SDNode *Node = --ISelPosition;
732      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
733      // but there are currently some corner cases that it misses. Also, this
734      // makes it theoretically possible to disable the DAGCombiner.
735      if (Node->use_empty())
736        continue;
737
738      SDNode *ResNode = Select(Node);
739
740      // FIXME: This is pretty gross.  'Select' should be changed to not return
741      // anything at all and this code should be nuked with a tactical strike.
742
743      // If node should not be replaced, continue with the next one.
744      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
745        continue;
746      // Replace node.
747      if (ResNode)
748        ReplaceUses(Node, ResNode);
749
750      // If after the replacement this node is not used any more,
751      // remove this dead node.
752      if (Node->use_empty()) { // Don't delete EntryToken, etc.
753        ISelUpdater ISU(ISelPosition);
754        CurDAG->RemoveDeadNode(Node, &ISU);
755      }
756    }
757
758    CurDAG->setRoot(Dummy.getValue());
759  }
760
761  DEBUG(errs() << "===== Instruction selection ends:\n");
762
763  PostprocessISelDAG();
764}
765
766/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
767/// do other setup for EH landing-pad blocks.
768void SelectionDAGISel::PrepareEHLandingPad() {
769  MachineBasicBlock *MBB = FuncInfo->MBB;
770
771  // Add a label to mark the beginning of the landing pad.  Deletion of the
772  // landing pad can thus be detected via the MachineModuleInfo.
773  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
774
775  // Assign the call site to the landing pad's begin label.
776  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
777
778  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
779  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
780    .addSym(Label);
781
782  // Mark exception register as live in.
783  unsigned Reg = TLI.getExceptionPointerRegister();
784  if (Reg) MBB->addLiveIn(Reg);
785
786  // Mark exception selector register as live in.
787  Reg = TLI.getExceptionSelectorRegister();
788  if (Reg) MBB->addLiveIn(Reg);
789}
790
791/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
792/// load into the specified FoldInst.  Note that we could have a sequence where
793/// multiple LLVM IR instructions are folded into the same machineinstr.  For
794/// example we could have:
795///   A: x = load i32 *P
796///   B: y = icmp A, 42
797///   C: br y, ...
798///
799/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
800/// any other folded instructions) because it is between A and C.
801///
802/// If we succeed in folding the load into the operation, return true.
803///
804bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
805                                             const Instruction *FoldInst,
806                                             FastISel *FastIS) {
807  // We know that the load has a single use, but don't know what it is.  If it
808  // isn't one of the folded instructions, then we can't succeed here.  Handle
809  // this by scanning the single-use users of the load until we get to FoldInst.
810  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
811
812  const Instruction *TheUser = LI->use_back();
813  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
814         // Stay in the right block.
815         TheUser->getParent() == FoldInst->getParent() &&
816         --MaxUsers) {  // Don't scan too far.
817    // If there are multiple or no uses of this instruction, then bail out.
818    if (!TheUser->hasOneUse())
819      return false;
820
821    TheUser = TheUser->use_back();
822  }
823
824  // If we didn't find the fold instruction, then we failed to collapse the
825  // sequence.
826  if (TheUser != FoldInst)
827    return false;
828
829  // Don't try to fold volatile loads.  Target has to deal with alignment
830  // constraints.
831  if (LI->isVolatile()) return false;
832
833  // Figure out which vreg this is going into.  If there is no assigned vreg yet
834  // then there actually was no reference to it.  Perhaps the load is referenced
835  // by a dead instruction.
836  unsigned LoadReg = FastIS->getRegForValue(LI);
837  if (LoadReg == 0)
838    return false;
839
840  // Check to see what the uses of this vreg are.  If it has no uses, or more
841  // than one use (at the machine instr level) then we can't fold it.
842  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
843  if (RI == RegInfo->reg_end())
844    return false;
845
846  // See if there is exactly one use of the vreg.  If there are multiple uses,
847  // then the instruction got lowered to multiple machine instructions or the
848  // use of the loaded value ended up being multiple operands of the result, in
849  // either case, we can't fold this.
850  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
851  if (PostRI != RegInfo->reg_end())
852    return false;
853
854  assert(RI.getOperand().isUse() &&
855         "The only use of the vreg must be a use, we haven't emitted the def!");
856
857  MachineInstr *User = &*RI;
858
859  // Set the insertion point properly.  Folding the load can cause generation of
860  // other random instructions (like sign extends) for addressing modes, make
861  // sure they get inserted in a logical place before the new instruction.
862  FuncInfo->InsertPt = User;
863  FuncInfo->MBB = User->getParent();
864
865  // Ask the target to try folding the load.
866  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
867}
868
869/// isFoldedOrDeadInstruction - Return true if the specified instruction is
870/// side-effect free and is either dead or folded into a generated instruction.
871/// Return false if it needs to be emitted.
872static bool isFoldedOrDeadInstruction(const Instruction *I,
873                                      FunctionLoweringInfo *FuncInfo) {
874  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
875         !isa<TerminatorInst>(I) && // Terminators aren't folded.
876         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
877         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
878         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
879}
880
881#ifndef NDEBUG
882// Collect per Instruction statistics for fast-isel misses.  Only those
883// instructions that cause the bail are accounted for.  It does not account for
884// instructions higher in the block.  Thus, summing the per instructions stats
885// will not add up to what is reported by NumFastIselFailures.
886static void collectFailStats(const Instruction *I) {
887  switch (I->getOpcode()) {
888  default: assert (0 && "<Invalid operator> ");
889
890  // Terminators
891  case Instruction::Ret:         NumFastIselFailRet++; return;
892  case Instruction::Br:          NumFastIselFailBr++; return;
893  case Instruction::Switch:      NumFastIselFailSwitch++; return;
894  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
895  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
896  case Instruction::Resume:      NumFastIselFailResume++; return;
897  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
898
899  // Standard binary operators...
900  case Instruction::Add:  NumFastIselFailAdd++; return;
901  case Instruction::FAdd: NumFastIselFailFAdd++; return;
902  case Instruction::Sub:  NumFastIselFailSub++; return;
903  case Instruction::FSub: NumFastIselFailFSub++; return;
904  case Instruction::Mul:  NumFastIselFailMul++; return;
905  case Instruction::FMul: NumFastIselFailFMul++; return;
906  case Instruction::UDiv: NumFastIselFailUDiv++; return;
907  case Instruction::SDiv: NumFastIselFailSDiv++; return;
908  case Instruction::FDiv: NumFastIselFailFDiv++; return;
909  case Instruction::URem: NumFastIselFailURem++; return;
910  case Instruction::SRem: NumFastIselFailSRem++; return;
911  case Instruction::FRem: NumFastIselFailFRem++; return;
912
913  // Logical operators...
914  case Instruction::And: NumFastIselFailAnd++; return;
915  case Instruction::Or:  NumFastIselFailOr++; return;
916  case Instruction::Xor: NumFastIselFailXor++; return;
917
918  // Memory instructions...
919  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
920  case Instruction::Load:          NumFastIselFailLoad++; return;
921  case Instruction::Store:         NumFastIselFailStore++; return;
922  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
923  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
924  case Instruction::Fence:         NumFastIselFailFence++; return;
925  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
926
927  // Convert instructions...
928  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
929  case Instruction::ZExt:     NumFastIselFailZExt++; return;
930  case Instruction::SExt:     NumFastIselFailSExt++; return;
931  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
932  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
933  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
934  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
935  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
936  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
937  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
938  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
939  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
940
941  // Other instructions...
942  case Instruction::ICmp:           NumFastIselFailICmp++; return;
943  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
944  case Instruction::PHI:            NumFastIselFailPHI++; return;
945  case Instruction::Select:         NumFastIselFailSelect++; return;
946  case Instruction::Call:           NumFastIselFailCall++; return;
947  case Instruction::Shl:            NumFastIselFailShl++; return;
948  case Instruction::LShr:           NumFastIselFailLShr++; return;
949  case Instruction::AShr:           NumFastIselFailAShr++; return;
950  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
951  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
952  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
953  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
954  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
955  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
956  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
957  }
958}
959#endif
960
961void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
962  // Initialize the Fast-ISel state, if needed.
963  FastISel *FastIS = 0;
964  if (TM.Options.EnableFastISel)
965    FastIS = TLI.createFastISel(*FuncInfo);
966
967  // Iterate over all basic blocks in the function.
968  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
969  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
970       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
971    const BasicBlock *LLVMBB = *I;
972
973    if (OptLevel != CodeGenOpt::None) {
974      bool AllPredsVisited = true;
975      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
976           PI != PE; ++PI) {
977        if (!FuncInfo->VisitedBBs.count(*PI)) {
978          AllPredsVisited = false;
979          break;
980        }
981      }
982
983      if (AllPredsVisited) {
984        for (BasicBlock::const_iterator I = LLVMBB->begin();
985             isa<PHINode>(I); ++I)
986          FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
987      } else {
988        for (BasicBlock::const_iterator I = LLVMBB->begin();
989             isa<PHINode>(I); ++I)
990          FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
991      }
992
993      FuncInfo->VisitedBBs.insert(LLVMBB);
994    }
995
996    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
997    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
998
999    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
1000    BasicBlock::const_iterator const End = LLVMBB->end();
1001    BasicBlock::const_iterator BI = End;
1002
1003    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1004
1005    // Setup an EH landing-pad block.
1006    if (FuncInfo->MBB->isLandingPad())
1007      PrepareEHLandingPad();
1008
1009    // Lower any arguments needed in this block if this is the entry block.
1010    if (LLVMBB == &Fn.getEntryBlock())
1011      LowerArguments(LLVMBB);
1012
1013    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1014    if (FastIS) {
1015      FastIS->startNewBlock();
1016
1017      // Emit code for any incoming arguments. This must happen before
1018      // beginning FastISel on the entry block.
1019      if (LLVMBB == &Fn.getEntryBlock()) {
1020        CurDAG->setRoot(SDB->getControlRoot());
1021        SDB->clear();
1022        CodeGenAndEmitDAG();
1023
1024        // If we inserted any instructions at the beginning, make a note of
1025        // where they are, so we can be sure to emit subsequent instructions
1026        // after them.
1027        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1028          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1029        else
1030          FastIS->setLastLocalValue(0);
1031      }
1032
1033      unsigned NumFastIselRemaining = std::distance(Begin, End);
1034      // Do FastISel on as many instructions as possible.
1035      for (; BI != Begin; --BI) {
1036        const Instruction *Inst = llvm::prior(BI);
1037
1038        // If we no longer require this instruction, skip it.
1039        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1040          --NumFastIselRemaining;
1041          continue;
1042        }
1043
1044        // Bottom-up: reset the insert pos at the top, after any local-value
1045        // instructions.
1046        FastIS->recomputeInsertPt();
1047
1048        // Try to select the instruction with FastISel.
1049        if (FastIS->SelectInstruction(Inst)) {
1050          --NumFastIselRemaining;
1051          ++NumFastIselSuccess;
1052          // If fast isel succeeded, skip over all the folded instructions, and
1053          // then see if there is a load right before the selected instructions.
1054          // Try to fold the load if so.
1055          const Instruction *BeforeInst = Inst;
1056          while (BeforeInst != Begin) {
1057            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1058            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1059              break;
1060          }
1061          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1062              BeforeInst->hasOneUse() &&
1063              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) {
1064            // If we succeeded, don't re-select the load.
1065            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1066            --NumFastIselRemaining;
1067            ++NumFastIselSuccess;
1068          }
1069          continue;
1070        }
1071
1072#ifndef NDEBUG
1073        if (EnableFastISelVerbose2)
1074          collectFailStats(Inst);
1075#endif
1076
1077        // Then handle certain instructions as single-LLVM-Instruction blocks.
1078        if (isa<CallInst>(Inst)) {
1079
1080          if (EnableFastISelVerbose || EnableFastISelAbort) {
1081            dbgs() << "FastISel missed call: ";
1082            Inst->dump();
1083          }
1084
1085          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1086            unsigned &R = FuncInfo->ValueMap[Inst];
1087            if (!R)
1088              R = FuncInfo->CreateRegs(Inst->getType());
1089          }
1090
1091          bool HadTailCall = false;
1092          SelectBasicBlock(Inst, BI, HadTailCall);
1093
1094          // Recompute NumFastIselRemaining as Selection DAG instruction
1095          // selection may have handled the call, input args, etc.
1096          unsigned RemainingNow = std::distance(Begin, BI);
1097          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1098
1099          // If the call was emitted as a tail call, we're done with the block.
1100          if (HadTailCall) {
1101            --BI;
1102            break;
1103          }
1104
1105          NumFastIselRemaining = RemainingNow;
1106          continue;
1107        }
1108
1109        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1110          // Don't abort, and use a different message for terminator misses.
1111          NumFastIselFailures += NumFastIselRemaining;
1112          if (EnableFastISelVerbose || EnableFastISelAbort) {
1113            dbgs() << "FastISel missed terminator: ";
1114            Inst->dump();
1115          }
1116        } else {
1117          NumFastIselFailures += NumFastIselRemaining;
1118          if (EnableFastISelVerbose || EnableFastISelAbort) {
1119            dbgs() << "FastISel miss: ";
1120            Inst->dump();
1121          }
1122          if (EnableFastISelAbort)
1123            // The "fast" selector couldn't handle something and bailed.
1124            // For the purpose of debugging, just abort.
1125            llvm_unreachable("FastISel didn't select the entire block");
1126        }
1127        break;
1128      }
1129
1130      FastIS->recomputeInsertPt();
1131    }
1132
1133    if (Begin != BI)
1134      ++NumDAGBlocks;
1135    else
1136      ++NumFastIselBlocks;
1137
1138    if (Begin != BI) {
1139      // Run SelectionDAG instruction selection on the remainder of the block
1140      // not handled by FastISel. If FastISel is not run, this is the entire
1141      // block.
1142      bool HadTailCall;
1143      SelectBasicBlock(Begin, BI, HadTailCall);
1144    }
1145
1146    FinishBasicBlock();
1147    FuncInfo->PHINodesToUpdate.clear();
1148  }
1149
1150  delete FastIS;
1151  SDB->clearDanglingDebugInfo();
1152}
1153
1154void
1155SelectionDAGISel::FinishBasicBlock() {
1156
1157  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1158               << FuncInfo->PHINodesToUpdate.size() << "\n";
1159        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1160          dbgs() << "Node " << i << " : ("
1161                 << FuncInfo->PHINodesToUpdate[i].first
1162                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1163
1164  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1165  // PHI nodes in successors.
1166  if (SDB->SwitchCases.empty() &&
1167      SDB->JTCases.empty() &&
1168      SDB->BitTestCases.empty()) {
1169    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1170      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1171      assert(PHI->isPHI() &&
1172             "This is not a machine PHI node that we are updating!");
1173      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1174        continue;
1175      PHI->addOperand(
1176        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1177      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1178    }
1179    return;
1180  }
1181
1182  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1183    // Lower header first, if it wasn't already lowered
1184    if (!SDB->BitTestCases[i].Emitted) {
1185      // Set the current basic block to the mbb we wish to insert the code into
1186      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1187      FuncInfo->InsertPt = FuncInfo->MBB->end();
1188      // Emit the code
1189      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1190      CurDAG->setRoot(SDB->getRoot());
1191      SDB->clear();
1192      CodeGenAndEmitDAG();
1193    }
1194
1195    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1196      // Set the current basic block to the mbb we wish to insert the code into
1197      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1198      FuncInfo->InsertPt = FuncInfo->MBB->end();
1199      // Emit the code
1200      if (j+1 != ej)
1201        SDB->visitBitTestCase(SDB->BitTestCases[i],
1202                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1203                              SDB->BitTestCases[i].Reg,
1204                              SDB->BitTestCases[i].Cases[j],
1205                              FuncInfo->MBB);
1206      else
1207        SDB->visitBitTestCase(SDB->BitTestCases[i],
1208                              SDB->BitTestCases[i].Default,
1209                              SDB->BitTestCases[i].Reg,
1210                              SDB->BitTestCases[i].Cases[j],
1211                              FuncInfo->MBB);
1212
1213
1214      CurDAG->setRoot(SDB->getRoot());
1215      SDB->clear();
1216      CodeGenAndEmitDAG();
1217    }
1218
1219    // Update PHI Nodes
1220    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1221         pi != pe; ++pi) {
1222      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1223      MachineBasicBlock *PHIBB = PHI->getParent();
1224      assert(PHI->isPHI() &&
1225             "This is not a machine PHI node that we are updating!");
1226      // This is "default" BB. We have two jumps to it. From "header" BB and
1227      // from last "case" BB.
1228      if (PHIBB == SDB->BitTestCases[i].Default) {
1229        PHI->addOperand(MachineOperand::
1230                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1231                                  false));
1232        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1233        PHI->addOperand(MachineOperand::
1234                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1235                                  false));
1236        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1237                                                  back().ThisBB));
1238      }
1239      // One of "cases" BB.
1240      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1241           j != ej; ++j) {
1242        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1243        if (cBB->isSuccessor(PHIBB)) {
1244          PHI->addOperand(MachineOperand::
1245                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1246                                    false));
1247          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1248        }
1249      }
1250    }
1251  }
1252  SDB->BitTestCases.clear();
1253
1254  // If the JumpTable record is filled in, then we need to emit a jump table.
1255  // Updating the PHI nodes is tricky in this case, since we need to determine
1256  // whether the PHI is a successor of the range check MBB or the jump table MBB
1257  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1258    // Lower header first, if it wasn't already lowered
1259    if (!SDB->JTCases[i].first.Emitted) {
1260      // Set the current basic block to the mbb we wish to insert the code into
1261      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1262      FuncInfo->InsertPt = FuncInfo->MBB->end();
1263      // Emit the code
1264      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1265                                FuncInfo->MBB);
1266      CurDAG->setRoot(SDB->getRoot());
1267      SDB->clear();
1268      CodeGenAndEmitDAG();
1269    }
1270
1271    // Set the current basic block to the mbb we wish to insert the code into
1272    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1273    FuncInfo->InsertPt = FuncInfo->MBB->end();
1274    // Emit the code
1275    SDB->visitJumpTable(SDB->JTCases[i].second);
1276    CurDAG->setRoot(SDB->getRoot());
1277    SDB->clear();
1278    CodeGenAndEmitDAG();
1279
1280    // Update PHI Nodes
1281    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1282         pi != pe; ++pi) {
1283      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1284      MachineBasicBlock *PHIBB = PHI->getParent();
1285      assert(PHI->isPHI() &&
1286             "This is not a machine PHI node that we are updating!");
1287      // "default" BB. We can go there only from header BB.
1288      if (PHIBB == SDB->JTCases[i].second.Default) {
1289        PHI->addOperand
1290          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1291                                     false));
1292        PHI->addOperand
1293          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1294      }
1295      // JT BB. Just iterate over successors here
1296      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1297        PHI->addOperand
1298          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1299                                     false));
1300        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1301      }
1302    }
1303  }
1304  SDB->JTCases.clear();
1305
1306  // If the switch block involved a branch to one of the actual successors, we
1307  // need to update PHI nodes in that block.
1308  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1309    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1310    assert(PHI->isPHI() &&
1311           "This is not a machine PHI node that we are updating!");
1312    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1313      PHI->addOperand(
1314        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1315      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1316    }
1317  }
1318
1319  // If we generated any switch lowering information, build and codegen any
1320  // additional DAGs necessary.
1321  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1322    // Set the current basic block to the mbb we wish to insert the code into
1323    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1324    FuncInfo->InsertPt = FuncInfo->MBB->end();
1325
1326    // Determine the unique successors.
1327    SmallVector<MachineBasicBlock *, 2> Succs;
1328    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1329    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1330      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1331
1332    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1333    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1334    CurDAG->setRoot(SDB->getRoot());
1335    SDB->clear();
1336    CodeGenAndEmitDAG();
1337
1338    // Remember the last block, now that any splitting is done, for use in
1339    // populating PHI nodes in successors.
1340    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1341
1342    // Handle any PHI nodes in successors of this chunk, as if we were coming
1343    // from the original BB before switch expansion.  Note that PHI nodes can
1344    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1345    // handle them the right number of times.
1346    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1347      FuncInfo->MBB = Succs[i];
1348      FuncInfo->InsertPt = FuncInfo->MBB->end();
1349      // FuncInfo->MBB may have been removed from the CFG if a branch was
1350      // constant folded.
1351      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1352        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1353             Phi != FuncInfo->MBB->end() && Phi->isPHI();
1354             ++Phi) {
1355          // This value for this PHI node is recorded in PHINodesToUpdate.
1356          for (unsigned pn = 0; ; ++pn) {
1357            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1358                   "Didn't find PHI entry!");
1359            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1360              Phi->addOperand(MachineOperand::
1361                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1362                                        false));
1363              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1364              break;
1365            }
1366          }
1367        }
1368      }
1369    }
1370  }
1371  SDB->SwitchCases.clear();
1372}
1373
1374
1375/// Create the scheduler. If a specific scheduler was specified
1376/// via the SchedulerRegistry, use it, otherwise select the
1377/// one preferred by the target.
1378///
1379ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1380  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1381
1382  if (!Ctor) {
1383    Ctor = ISHeuristic;
1384    RegisterScheduler::setDefault(Ctor);
1385  }
1386
1387  return Ctor(this, OptLevel);
1388}
1389
1390//===----------------------------------------------------------------------===//
1391// Helper functions used by the generated instruction selector.
1392//===----------------------------------------------------------------------===//
1393// Calls to these methods are generated by tblgen.
1394
1395/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1396/// the dag combiner simplified the 255, we still want to match.  RHS is the
1397/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1398/// specified in the .td file (e.g. 255).
1399bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1400                                    int64_t DesiredMaskS) const {
1401  const APInt &ActualMask = RHS->getAPIntValue();
1402  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1403
1404  // If the actual mask exactly matches, success!
1405  if (ActualMask == DesiredMask)
1406    return true;
1407
1408  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1409  if (ActualMask.intersects(~DesiredMask))
1410    return false;
1411
1412  // Otherwise, the DAG Combiner may have proven that the value coming in is
1413  // either already zero or is not demanded.  Check for known zero input bits.
1414  APInt NeededMask = DesiredMask & ~ActualMask;
1415  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1416    return true;
1417
1418  // TODO: check to see if missing bits are just not demanded.
1419
1420  // Otherwise, this pattern doesn't match.
1421  return false;
1422}
1423
1424/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1425/// the dag combiner simplified the 255, we still want to match.  RHS is the
1426/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1427/// specified in the .td file (e.g. 255).
1428bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1429                                   int64_t DesiredMaskS) const {
1430  const APInt &ActualMask = RHS->getAPIntValue();
1431  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1432
1433  // If the actual mask exactly matches, success!
1434  if (ActualMask == DesiredMask)
1435    return true;
1436
1437  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1438  if (ActualMask.intersects(~DesiredMask))
1439    return false;
1440
1441  // Otherwise, the DAG Combiner may have proven that the value coming in is
1442  // either already zero or is not demanded.  Check for known zero input bits.
1443  APInt NeededMask = DesiredMask & ~ActualMask;
1444
1445  APInt KnownZero, KnownOne;
1446  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1447
1448  // If all the missing bits in the or are already known to be set, match!
1449  if ((NeededMask & KnownOne) == NeededMask)
1450    return true;
1451
1452  // TODO: check to see if missing bits are just not demanded.
1453
1454  // Otherwise, this pattern doesn't match.
1455  return false;
1456}
1457
1458
1459/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1460/// by tblgen.  Others should not call it.
1461void SelectionDAGISel::
1462SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1463  std::vector<SDValue> InOps;
1464  std::swap(InOps, Ops);
1465
1466  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1467  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1468  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1469  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1470
1471  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1472  if (InOps[e-1].getValueType() == MVT::Glue)
1473    --e;  // Don't process a glue operand if it is here.
1474
1475  while (i != e) {
1476    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1477    if (!InlineAsm::isMemKind(Flags)) {
1478      // Just skip over this operand, copying the operands verbatim.
1479      Ops.insert(Ops.end(), InOps.begin()+i,
1480                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1481      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1482    } else {
1483      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1484             "Memory operand with multiple values?");
1485      // Otherwise, this is a memory operand.  Ask the target to select it.
1486      std::vector<SDValue> SelOps;
1487      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1488        report_fatal_error("Could not match memory address.  Inline asm"
1489                           " failure!");
1490
1491      // Add this to the output node.
1492      unsigned NewFlags =
1493        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1494      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1495      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1496      i += 2;
1497    }
1498  }
1499
1500  // Add the glue input back if present.
1501  if (e != InOps.size())
1502    Ops.push_back(InOps.back());
1503}
1504
1505/// findGlueUse - Return use of MVT::Glue value produced by the specified
1506/// SDNode.
1507///
1508static SDNode *findGlueUse(SDNode *N) {
1509  unsigned FlagResNo = N->getNumValues()-1;
1510  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1511    SDUse &Use = I.getUse();
1512    if (Use.getResNo() == FlagResNo)
1513      return Use.getUser();
1514  }
1515  return NULL;
1516}
1517
1518/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1519/// This function recursively traverses up the operand chain, ignoring
1520/// certain nodes.
1521static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1522                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1523                          bool IgnoreChains) {
1524  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1525  // greater than all of its (recursive) operands.  If we scan to a point where
1526  // 'use' is smaller than the node we're scanning for, then we know we will
1527  // never find it.
1528  //
1529  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1530  // happen because we scan down to newly selected nodes in the case of glue
1531  // uses.
1532  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1533    return false;
1534
1535  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1536  // won't fail if we scan it again.
1537  if (!Visited.insert(Use))
1538    return false;
1539
1540  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1541    // Ignore chain uses, they are validated by HandleMergeInputChains.
1542    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1543      continue;
1544
1545    SDNode *N = Use->getOperand(i).getNode();
1546    if (N == Def) {
1547      if (Use == ImmedUse || Use == Root)
1548        continue;  // We are not looking for immediate use.
1549      assert(N != Root);
1550      return true;
1551    }
1552
1553    // Traverse up the operand chain.
1554    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1555      return true;
1556  }
1557  return false;
1558}
1559
1560/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1561/// operand node N of U during instruction selection that starts at Root.
1562bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1563                                          SDNode *Root) const {
1564  if (OptLevel == CodeGenOpt::None) return false;
1565  return N.hasOneUse();
1566}
1567
1568/// IsLegalToFold - Returns true if the specific operand node N of
1569/// U can be folded during instruction selection that starts at Root.
1570bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1571                                     CodeGenOpt::Level OptLevel,
1572                                     bool IgnoreChains) {
1573  if (OptLevel == CodeGenOpt::None) return false;
1574
1575  // If Root use can somehow reach N through a path that that doesn't contain
1576  // U then folding N would create a cycle. e.g. In the following
1577  // diagram, Root can reach N through X. If N is folded into into Root, then
1578  // X is both a predecessor and a successor of U.
1579  //
1580  //          [N*]           //
1581  //         ^   ^           //
1582  //        /     \          //
1583  //      [U*]    [X]?       //
1584  //        ^     ^          //
1585  //         \   /           //
1586  //          \ /            //
1587  //         [Root*]         //
1588  //
1589  // * indicates nodes to be folded together.
1590  //
1591  // If Root produces glue, then it gets (even more) interesting. Since it
1592  // will be "glued" together with its glue use in the scheduler, we need to
1593  // check if it might reach N.
1594  //
1595  //          [N*]           //
1596  //         ^   ^           //
1597  //        /     \          //
1598  //      [U*]    [X]?       //
1599  //        ^       ^        //
1600  //         \       \       //
1601  //          \      |       //
1602  //         [Root*] |       //
1603  //          ^      |       //
1604  //          f      |       //
1605  //          |      /       //
1606  //         [Y]    /        //
1607  //           ^   /         //
1608  //           f  /          //
1609  //           | /           //
1610  //          [GU]           //
1611  //
1612  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1613  // (call it Fold), then X is a predecessor of GU and a successor of
1614  // Fold. But since Fold and GU are glued together, this will create
1615  // a cycle in the scheduling graph.
1616
1617  // If the node has glue, walk down the graph to the "lowest" node in the
1618  // glueged set.
1619  EVT VT = Root->getValueType(Root->getNumValues()-1);
1620  while (VT == MVT::Glue) {
1621    SDNode *GU = findGlueUse(Root);
1622    if (GU == NULL)
1623      break;
1624    Root = GU;
1625    VT = Root->getValueType(Root->getNumValues()-1);
1626
1627    // If our query node has a glue result with a use, we've walked up it.  If
1628    // the user (which has already been selected) has a chain or indirectly uses
1629    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1630    // this, we cannot ignore chains in this predicate.
1631    IgnoreChains = false;
1632  }
1633
1634
1635  SmallPtrSet<SDNode*, 16> Visited;
1636  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1637}
1638
1639SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1640  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1641  SelectInlineAsmMemoryOperands(Ops);
1642
1643  std::vector<EVT> VTs;
1644  VTs.push_back(MVT::Other);
1645  VTs.push_back(MVT::Glue);
1646  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1647                                VTs, &Ops[0], Ops.size());
1648  New->setNodeId(-1);
1649  return New.getNode();
1650}
1651
1652SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1653  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1654}
1655
1656/// GetVBR - decode a vbr encoding whose top bit is set.
1657LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1658GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1659  assert(Val >= 128 && "Not a VBR");
1660  Val &= 127;  // Remove first vbr bit.
1661
1662  unsigned Shift = 7;
1663  uint64_t NextBits;
1664  do {
1665    NextBits = MatcherTable[Idx++];
1666    Val |= (NextBits&127) << Shift;
1667    Shift += 7;
1668  } while (NextBits & 128);
1669
1670  return Val;
1671}
1672
1673
1674/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1675/// interior glue and chain results to use the new glue and chain results.
1676void SelectionDAGISel::
1677UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1678                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1679                    SDValue InputGlue,
1680                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1681                    bool isMorphNodeTo) {
1682  SmallVector<SDNode*, 4> NowDeadNodes;
1683
1684  ISelUpdater ISU(ISelPosition);
1685
1686  // Now that all the normal results are replaced, we replace the chain and
1687  // glue results if present.
1688  if (!ChainNodesMatched.empty()) {
1689    assert(InputChain.getNode() != 0 &&
1690           "Matched input chains but didn't produce a chain");
1691    // Loop over all of the nodes we matched that produced a chain result.
1692    // Replace all the chain results with the final chain we ended up with.
1693    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1694      SDNode *ChainNode = ChainNodesMatched[i];
1695
1696      // If this node was already deleted, don't look at it.
1697      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1698        continue;
1699
1700      // Don't replace the results of the root node if we're doing a
1701      // MorphNodeTo.
1702      if (ChainNode == NodeToMatch && isMorphNodeTo)
1703        continue;
1704
1705      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1706      if (ChainVal.getValueType() == MVT::Glue)
1707        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1708      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1709      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1710
1711      // If the node became dead and we haven't already seen it, delete it.
1712      if (ChainNode->use_empty() &&
1713          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1714        NowDeadNodes.push_back(ChainNode);
1715    }
1716  }
1717
1718  // If the result produces glue, update any glue results in the matched
1719  // pattern with the glue result.
1720  if (InputGlue.getNode() != 0) {
1721    // Handle any interior nodes explicitly marked.
1722    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1723      SDNode *FRN = GlueResultNodesMatched[i];
1724
1725      // If this node was already deleted, don't look at it.
1726      if (FRN->getOpcode() == ISD::DELETED_NODE)
1727        continue;
1728
1729      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1730             "Doesn't have a glue result");
1731      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1732                                        InputGlue, &ISU);
1733
1734      // If the node became dead and we haven't already seen it, delete it.
1735      if (FRN->use_empty() &&
1736          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1737        NowDeadNodes.push_back(FRN);
1738    }
1739  }
1740
1741  if (!NowDeadNodes.empty())
1742    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1743
1744  DEBUG(errs() << "ISEL: Match complete!\n");
1745}
1746
1747enum ChainResult {
1748  CR_Simple,
1749  CR_InducesCycle,
1750  CR_LeadsToInteriorNode
1751};
1752
1753/// WalkChainUsers - Walk down the users of the specified chained node that is
1754/// part of the pattern we're matching, looking at all of the users we find.
1755/// This determines whether something is an interior node, whether we have a
1756/// non-pattern node in between two pattern nodes (which prevent folding because
1757/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1758/// between pattern nodes (in which case the TF becomes part of the pattern).
1759///
1760/// The walk we do here is guaranteed to be small because we quickly get down to
1761/// already selected nodes "below" us.
1762static ChainResult
1763WalkChainUsers(SDNode *ChainedNode,
1764               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1765               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1766  ChainResult Result = CR_Simple;
1767
1768  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1769         E = ChainedNode->use_end(); UI != E; ++UI) {
1770    // Make sure the use is of the chain, not some other value we produce.
1771    if (UI.getUse().getValueType() != MVT::Other) continue;
1772
1773    SDNode *User = *UI;
1774
1775    // If we see an already-selected machine node, then we've gone beyond the
1776    // pattern that we're selecting down into the already selected chunk of the
1777    // DAG.
1778    if (User->isMachineOpcode() ||
1779        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1780      continue;
1781
1782    if (User->getOpcode() == ISD::CopyToReg ||
1783        User->getOpcode() == ISD::CopyFromReg ||
1784        User->getOpcode() == ISD::INLINEASM ||
1785        User->getOpcode() == ISD::EH_LABEL) {
1786      // If their node ID got reset to -1 then they've already been selected.
1787      // Treat them like a MachineOpcode.
1788      if (User->getNodeId() == -1)
1789        continue;
1790    }
1791
1792    // If we have a TokenFactor, we handle it specially.
1793    if (User->getOpcode() != ISD::TokenFactor) {
1794      // If the node isn't a token factor and isn't part of our pattern, then it
1795      // must be a random chained node in between two nodes we're selecting.
1796      // This happens when we have something like:
1797      //   x = load ptr
1798      //   call
1799      //   y = x+4
1800      //   store y -> ptr
1801      // Because we structurally match the load/store as a read/modify/write,
1802      // but the call is chained between them.  We cannot fold in this case
1803      // because it would induce a cycle in the graph.
1804      if (!std::count(ChainedNodesInPattern.begin(),
1805                      ChainedNodesInPattern.end(), User))
1806        return CR_InducesCycle;
1807
1808      // Otherwise we found a node that is part of our pattern.  For example in:
1809      //   x = load ptr
1810      //   y = x+4
1811      //   store y -> ptr
1812      // This would happen when we're scanning down from the load and see the
1813      // store as a user.  Record that there is a use of ChainedNode that is
1814      // part of the pattern and keep scanning uses.
1815      Result = CR_LeadsToInteriorNode;
1816      InteriorChainedNodes.push_back(User);
1817      continue;
1818    }
1819
1820    // If we found a TokenFactor, there are two cases to consider: first if the
1821    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1822    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1823    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1824    //     [Load chain]
1825    //         ^
1826    //         |
1827    //       [Load]
1828    //       ^    ^
1829    //       |    \                    DAG's like cheese
1830    //      /       \                       do you?
1831    //     /         |
1832    // [TokenFactor] [Op]
1833    //     ^          ^
1834    //     |          |
1835    //      \        /
1836    //       \      /
1837    //       [Store]
1838    //
1839    // In this case, the TokenFactor becomes part of our match and we rewrite it
1840    // as a new TokenFactor.
1841    //
1842    // To distinguish these two cases, do a recursive walk down the uses.
1843    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1844    case CR_Simple:
1845      // If the uses of the TokenFactor are just already-selected nodes, ignore
1846      // it, it is "below" our pattern.
1847      continue;
1848    case CR_InducesCycle:
1849      // If the uses of the TokenFactor lead to nodes that are not part of our
1850      // pattern that are not selected, folding would turn this into a cycle,
1851      // bail out now.
1852      return CR_InducesCycle;
1853    case CR_LeadsToInteriorNode:
1854      break;  // Otherwise, keep processing.
1855    }
1856
1857    // Okay, we know we're in the interesting interior case.  The TokenFactor
1858    // is now going to be considered part of the pattern so that we rewrite its
1859    // uses (it may have uses that are not part of the pattern) with the
1860    // ultimate chain result of the generated code.  We will also add its chain
1861    // inputs as inputs to the ultimate TokenFactor we create.
1862    Result = CR_LeadsToInteriorNode;
1863    ChainedNodesInPattern.push_back(User);
1864    InteriorChainedNodes.push_back(User);
1865    continue;
1866  }
1867
1868  return Result;
1869}
1870
1871/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1872/// operation for when the pattern matched at least one node with a chains.  The
1873/// input vector contains a list of all of the chained nodes that we match.  We
1874/// must determine if this is a valid thing to cover (i.e. matching it won't
1875/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1876/// be used as the input node chain for the generated nodes.
1877static SDValue
1878HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1879                       SelectionDAG *CurDAG) {
1880  // Walk all of the chained nodes we've matched, recursively scanning down the
1881  // users of the chain result. This adds any TokenFactor nodes that are caught
1882  // in between chained nodes to the chained and interior nodes list.
1883  SmallVector<SDNode*, 3> InteriorChainedNodes;
1884  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1885    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1886                       InteriorChainedNodes) == CR_InducesCycle)
1887      return SDValue(); // Would induce a cycle.
1888  }
1889
1890  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1891  // that we are interested in.  Form our input TokenFactor node.
1892  SmallVector<SDValue, 3> InputChains;
1893  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1894    // Add the input chain of this node to the InputChains list (which will be
1895    // the operands of the generated TokenFactor) if it's not an interior node.
1896    SDNode *N = ChainNodesMatched[i];
1897    if (N->getOpcode() != ISD::TokenFactor) {
1898      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1899        continue;
1900
1901      // Otherwise, add the input chain.
1902      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1903      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1904      InputChains.push_back(InChain);
1905      continue;
1906    }
1907
1908    // If we have a token factor, we want to add all inputs of the token factor
1909    // that are not part of the pattern we're matching.
1910    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1911      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1912                      N->getOperand(op).getNode()))
1913        InputChains.push_back(N->getOperand(op));
1914    }
1915  }
1916
1917  SDValue Res;
1918  if (InputChains.size() == 1)
1919    return InputChains[0];
1920  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1921                         MVT::Other, &InputChains[0], InputChains.size());
1922}
1923
1924/// MorphNode - Handle morphing a node in place for the selector.
1925SDNode *SelectionDAGISel::
1926MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1927          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1928  // It is possible we're using MorphNodeTo to replace a node with no
1929  // normal results with one that has a normal result (or we could be
1930  // adding a chain) and the input could have glue and chains as well.
1931  // In this case we need to shift the operands down.
1932  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1933  // than the old isel though.
1934  int OldGlueResultNo = -1, OldChainResultNo = -1;
1935
1936  unsigned NTMNumResults = Node->getNumValues();
1937  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1938    OldGlueResultNo = NTMNumResults-1;
1939    if (NTMNumResults != 1 &&
1940        Node->getValueType(NTMNumResults-2) == MVT::Other)
1941      OldChainResultNo = NTMNumResults-2;
1942  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1943    OldChainResultNo = NTMNumResults-1;
1944
1945  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1946  // that this deletes operands of the old node that become dead.
1947  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1948
1949  // MorphNodeTo can operate in two ways: if an existing node with the
1950  // specified operands exists, it can just return it.  Otherwise, it
1951  // updates the node in place to have the requested operands.
1952  if (Res == Node) {
1953    // If we updated the node in place, reset the node ID.  To the isel,
1954    // this should be just like a newly allocated machine node.
1955    Res->setNodeId(-1);
1956  }
1957
1958  unsigned ResNumResults = Res->getNumValues();
1959  // Move the glue if needed.
1960  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1961      (unsigned)OldGlueResultNo != ResNumResults-1)
1962    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1963                                      SDValue(Res, ResNumResults-1));
1964
1965  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1966    --ResNumResults;
1967
1968  // Move the chain reference if needed.
1969  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1970      (unsigned)OldChainResultNo != ResNumResults-1)
1971    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1972                                      SDValue(Res, ResNumResults-1));
1973
1974  // Otherwise, no replacement happened because the node already exists. Replace
1975  // Uses of the old node with the new one.
1976  if (Res != Node)
1977    CurDAG->ReplaceAllUsesWith(Node, Res);
1978
1979  return Res;
1980}
1981
1982/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1983LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1984CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1985          SDValue N,
1986          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1987  // Accept if it is exactly the same as a previously recorded node.
1988  unsigned RecNo = MatcherTable[MatcherIndex++];
1989  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1990  return N == RecordedNodes[RecNo].first;
1991}
1992
1993/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1994LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1995CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1996                      SelectionDAGISel &SDISel) {
1997  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1998}
1999
2000/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2001LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2002CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2003                   SelectionDAGISel &SDISel, SDNode *N) {
2004  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2005}
2006
2007LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2008CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2009            SDNode *N) {
2010  uint16_t Opc = MatcherTable[MatcherIndex++];
2011  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2012  return N->getOpcode() == Opc;
2013}
2014
2015LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2016CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2017          SDValue N, const TargetLowering &TLI) {
2018  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2019  if (N.getValueType() == VT) return true;
2020
2021  // Handle the case when VT is iPTR.
2022  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
2023}
2024
2025LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2026CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2027               SDValue N, const TargetLowering &TLI,
2028               unsigned ChildNo) {
2029  if (ChildNo >= N.getNumOperands())
2030    return false;  // Match fails if out of range child #.
2031  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2032}
2033
2034
2035LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2036CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2037              SDValue N) {
2038  return cast<CondCodeSDNode>(N)->get() ==
2039      (ISD::CondCode)MatcherTable[MatcherIndex++];
2040}
2041
2042LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2043CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2044               SDValue N, const TargetLowering &TLI) {
2045  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2046  if (cast<VTSDNode>(N)->getVT() == VT)
2047    return true;
2048
2049  // Handle the case when VT is iPTR.
2050  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
2051}
2052
2053LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2054CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2055             SDValue N) {
2056  int64_t Val = MatcherTable[MatcherIndex++];
2057  if (Val & 128)
2058    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2059
2060  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2061  return C != 0 && C->getSExtValue() == Val;
2062}
2063
2064LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2065CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2066            SDValue N, SelectionDAGISel &SDISel) {
2067  int64_t Val = MatcherTable[MatcherIndex++];
2068  if (Val & 128)
2069    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2070
2071  if (N->getOpcode() != ISD::AND) return false;
2072
2073  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2074  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2075}
2076
2077LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2078CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2079           SDValue N, SelectionDAGISel &SDISel) {
2080  int64_t Val = MatcherTable[MatcherIndex++];
2081  if (Val & 128)
2082    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2083
2084  if (N->getOpcode() != ISD::OR) return false;
2085
2086  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2087  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2088}
2089
2090/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2091/// scope, evaluate the current node.  If the current predicate is known to
2092/// fail, set Result=true and return anything.  If the current predicate is
2093/// known to pass, set Result=false and return the MatcherIndex to continue
2094/// with.  If the current predicate is unknown, set Result=false and return the
2095/// MatcherIndex to continue with.
2096static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2097                                       unsigned Index, SDValue N,
2098                                       bool &Result, SelectionDAGISel &SDISel,
2099                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2100  switch (Table[Index++]) {
2101  default:
2102    Result = false;
2103    return Index-1;  // Could not evaluate this predicate.
2104  case SelectionDAGISel::OPC_CheckSame:
2105    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2106    return Index;
2107  case SelectionDAGISel::OPC_CheckPatternPredicate:
2108    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2109    return Index;
2110  case SelectionDAGISel::OPC_CheckPredicate:
2111    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2112    return Index;
2113  case SelectionDAGISel::OPC_CheckOpcode:
2114    Result = !::CheckOpcode(Table, Index, N.getNode());
2115    return Index;
2116  case SelectionDAGISel::OPC_CheckType:
2117    Result = !::CheckType(Table, Index, N, SDISel.TLI);
2118    return Index;
2119  case SelectionDAGISel::OPC_CheckChild0Type:
2120  case SelectionDAGISel::OPC_CheckChild1Type:
2121  case SelectionDAGISel::OPC_CheckChild2Type:
2122  case SelectionDAGISel::OPC_CheckChild3Type:
2123  case SelectionDAGISel::OPC_CheckChild4Type:
2124  case SelectionDAGISel::OPC_CheckChild5Type:
2125  case SelectionDAGISel::OPC_CheckChild6Type:
2126  case SelectionDAGISel::OPC_CheckChild7Type:
2127    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2128                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2129    return Index;
2130  case SelectionDAGISel::OPC_CheckCondCode:
2131    Result = !::CheckCondCode(Table, Index, N);
2132    return Index;
2133  case SelectionDAGISel::OPC_CheckValueType:
2134    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2135    return Index;
2136  case SelectionDAGISel::OPC_CheckInteger:
2137    Result = !::CheckInteger(Table, Index, N);
2138    return Index;
2139  case SelectionDAGISel::OPC_CheckAndImm:
2140    Result = !::CheckAndImm(Table, Index, N, SDISel);
2141    return Index;
2142  case SelectionDAGISel::OPC_CheckOrImm:
2143    Result = !::CheckOrImm(Table, Index, N, SDISel);
2144    return Index;
2145  }
2146}
2147
2148namespace {
2149
2150struct MatchScope {
2151  /// FailIndex - If this match fails, this is the index to continue with.
2152  unsigned FailIndex;
2153
2154  /// NodeStack - The node stack when the scope was formed.
2155  SmallVector<SDValue, 4> NodeStack;
2156
2157  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2158  unsigned NumRecordedNodes;
2159
2160  /// NumMatchedMemRefs - The number of matched memref entries.
2161  unsigned NumMatchedMemRefs;
2162
2163  /// InputChain/InputGlue - The current chain/glue
2164  SDValue InputChain, InputGlue;
2165
2166  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2167  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2168};
2169
2170}
2171
2172SDNode *SelectionDAGISel::
2173SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2174                 unsigned TableSize) {
2175  // FIXME: Should these even be selected?  Handle these cases in the caller?
2176  switch (NodeToMatch->getOpcode()) {
2177  default:
2178    break;
2179  case ISD::EntryToken:       // These nodes remain the same.
2180  case ISD::BasicBlock:
2181  case ISD::Register:
2182  case ISD::RegisterMask:
2183  //case ISD::VALUETYPE:
2184  //case ISD::CONDCODE:
2185  case ISD::HANDLENODE:
2186  case ISD::MDNODE_SDNODE:
2187  case ISD::TargetConstant:
2188  case ISD::TargetConstantFP:
2189  case ISD::TargetConstantPool:
2190  case ISD::TargetFrameIndex:
2191  case ISD::TargetExternalSymbol:
2192  case ISD::TargetBlockAddress:
2193  case ISD::TargetJumpTable:
2194  case ISD::TargetGlobalTLSAddress:
2195  case ISD::TargetGlobalAddress:
2196  case ISD::TokenFactor:
2197  case ISD::CopyFromReg:
2198  case ISD::CopyToReg:
2199  case ISD::EH_LABEL:
2200    NodeToMatch->setNodeId(-1); // Mark selected.
2201    return 0;
2202  case ISD::AssertSext:
2203  case ISD::AssertZext:
2204    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2205                                      NodeToMatch->getOperand(0));
2206    return 0;
2207  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2208  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2209  }
2210
2211  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2212
2213  // Set up the node stack with NodeToMatch as the only node on the stack.
2214  SmallVector<SDValue, 8> NodeStack;
2215  SDValue N = SDValue(NodeToMatch, 0);
2216  NodeStack.push_back(N);
2217
2218  // MatchScopes - Scopes used when matching, if a match failure happens, this
2219  // indicates where to continue checking.
2220  SmallVector<MatchScope, 8> MatchScopes;
2221
2222  // RecordedNodes - This is the set of nodes that have been recorded by the
2223  // state machine.  The second value is the parent of the node, or null if the
2224  // root is recorded.
2225  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2226
2227  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2228  // pattern.
2229  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2230
2231  // These are the current input chain and glue for use when generating nodes.
2232  // Various Emit operations change these.  For example, emitting a copytoreg
2233  // uses and updates these.
2234  SDValue InputChain, InputGlue;
2235
2236  // ChainNodesMatched - If a pattern matches nodes that have input/output
2237  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2238  // which ones they are.  The result is captured into this list so that we can
2239  // update the chain results when the pattern is complete.
2240  SmallVector<SDNode*, 3> ChainNodesMatched;
2241  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2242
2243  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2244        NodeToMatch->dump(CurDAG);
2245        errs() << '\n');
2246
2247  // Determine where to start the interpreter.  Normally we start at opcode #0,
2248  // but if the state machine starts with an OPC_SwitchOpcode, then we
2249  // accelerate the first lookup (which is guaranteed to be hot) with the
2250  // OpcodeOffset table.
2251  unsigned MatcherIndex = 0;
2252
2253  if (!OpcodeOffset.empty()) {
2254    // Already computed the OpcodeOffset table, just index into it.
2255    if (N.getOpcode() < OpcodeOffset.size())
2256      MatcherIndex = OpcodeOffset[N.getOpcode()];
2257    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2258
2259  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2260    // Otherwise, the table isn't computed, but the state machine does start
2261    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2262    // is the first time we're selecting an instruction.
2263    unsigned Idx = 1;
2264    while (1) {
2265      // Get the size of this case.
2266      unsigned CaseSize = MatcherTable[Idx++];
2267      if (CaseSize & 128)
2268        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2269      if (CaseSize == 0) break;
2270
2271      // Get the opcode, add the index to the table.
2272      uint16_t Opc = MatcherTable[Idx++];
2273      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2274      if (Opc >= OpcodeOffset.size())
2275        OpcodeOffset.resize((Opc+1)*2);
2276      OpcodeOffset[Opc] = Idx;
2277      Idx += CaseSize;
2278    }
2279
2280    // Okay, do the lookup for the first opcode.
2281    if (N.getOpcode() < OpcodeOffset.size())
2282      MatcherIndex = OpcodeOffset[N.getOpcode()];
2283  }
2284
2285  while (1) {
2286    assert(MatcherIndex < TableSize && "Invalid index");
2287#ifndef NDEBUG
2288    unsigned CurrentOpcodeIndex = MatcherIndex;
2289#endif
2290    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2291    switch (Opcode) {
2292    case OPC_Scope: {
2293      // Okay, the semantics of this operation are that we should push a scope
2294      // then evaluate the first child.  However, pushing a scope only to have
2295      // the first check fail (which then pops it) is inefficient.  If we can
2296      // determine immediately that the first check (or first several) will
2297      // immediately fail, don't even bother pushing a scope for them.
2298      unsigned FailIndex;
2299
2300      while (1) {
2301        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2302        if (NumToSkip & 128)
2303          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2304        // Found the end of the scope with no match.
2305        if (NumToSkip == 0) {
2306          FailIndex = 0;
2307          break;
2308        }
2309
2310        FailIndex = MatcherIndex+NumToSkip;
2311
2312        unsigned MatcherIndexOfPredicate = MatcherIndex;
2313        (void)MatcherIndexOfPredicate; // silence warning.
2314
2315        // If we can't evaluate this predicate without pushing a scope (e.g. if
2316        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2317        // push the scope and evaluate the full predicate chain.
2318        bool Result;
2319        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2320                                              Result, *this, RecordedNodes);
2321        if (!Result)
2322          break;
2323
2324        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2325                     << "index " << MatcherIndexOfPredicate
2326                     << ", continuing at " << FailIndex << "\n");
2327        ++NumDAGIselRetries;
2328
2329        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2330        // move to the next case.
2331        MatcherIndex = FailIndex;
2332      }
2333
2334      // If the whole scope failed to match, bail.
2335      if (FailIndex == 0) break;
2336
2337      // Push a MatchScope which indicates where to go if the first child fails
2338      // to match.
2339      MatchScope NewEntry;
2340      NewEntry.FailIndex = FailIndex;
2341      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2342      NewEntry.NumRecordedNodes = RecordedNodes.size();
2343      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2344      NewEntry.InputChain = InputChain;
2345      NewEntry.InputGlue = InputGlue;
2346      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2347      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2348      MatchScopes.push_back(NewEntry);
2349      continue;
2350    }
2351    case OPC_RecordNode: {
2352      // Remember this node, it may end up being an operand in the pattern.
2353      SDNode *Parent = 0;
2354      if (NodeStack.size() > 1)
2355        Parent = NodeStack[NodeStack.size()-2].getNode();
2356      RecordedNodes.push_back(std::make_pair(N, Parent));
2357      continue;
2358    }
2359
2360    case OPC_RecordChild0: case OPC_RecordChild1:
2361    case OPC_RecordChild2: case OPC_RecordChild3:
2362    case OPC_RecordChild4: case OPC_RecordChild5:
2363    case OPC_RecordChild6: case OPC_RecordChild7: {
2364      unsigned ChildNo = Opcode-OPC_RecordChild0;
2365      if (ChildNo >= N.getNumOperands())
2366        break;  // Match fails if out of range child #.
2367
2368      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2369                                             N.getNode()));
2370      continue;
2371    }
2372    case OPC_RecordMemRef:
2373      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2374      continue;
2375
2376    case OPC_CaptureGlueInput:
2377      // If the current node has an input glue, capture it in InputGlue.
2378      if (N->getNumOperands() != 0 &&
2379          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2380        InputGlue = N->getOperand(N->getNumOperands()-1);
2381      continue;
2382
2383    case OPC_MoveChild: {
2384      unsigned ChildNo = MatcherTable[MatcherIndex++];
2385      if (ChildNo >= N.getNumOperands())
2386        break;  // Match fails if out of range child #.
2387      N = N.getOperand(ChildNo);
2388      NodeStack.push_back(N);
2389      continue;
2390    }
2391
2392    case OPC_MoveParent:
2393      // Pop the current node off the NodeStack.
2394      NodeStack.pop_back();
2395      assert(!NodeStack.empty() && "Node stack imbalance!");
2396      N = NodeStack.back();
2397      continue;
2398
2399    case OPC_CheckSame:
2400      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2401      continue;
2402    case OPC_CheckPatternPredicate:
2403      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2404      continue;
2405    case OPC_CheckPredicate:
2406      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2407                                N.getNode()))
2408        break;
2409      continue;
2410    case OPC_CheckComplexPat: {
2411      unsigned CPNum = MatcherTable[MatcherIndex++];
2412      unsigned RecNo = MatcherTable[MatcherIndex++];
2413      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2414      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2415                               RecordedNodes[RecNo].first, CPNum,
2416                               RecordedNodes))
2417        break;
2418      continue;
2419    }
2420    case OPC_CheckOpcode:
2421      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2422      continue;
2423
2424    case OPC_CheckType:
2425      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2426      continue;
2427
2428    case OPC_SwitchOpcode: {
2429      unsigned CurNodeOpcode = N.getOpcode();
2430      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2431      unsigned CaseSize;
2432      while (1) {
2433        // Get the size of this case.
2434        CaseSize = MatcherTable[MatcherIndex++];
2435        if (CaseSize & 128)
2436          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2437        if (CaseSize == 0) break;
2438
2439        uint16_t Opc = MatcherTable[MatcherIndex++];
2440        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2441
2442        // If the opcode matches, then we will execute this case.
2443        if (CurNodeOpcode == Opc)
2444          break;
2445
2446        // Otherwise, skip over this case.
2447        MatcherIndex += CaseSize;
2448      }
2449
2450      // If no cases matched, bail out.
2451      if (CaseSize == 0) break;
2452
2453      // Otherwise, execute the case we found.
2454      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2455                   << " to " << MatcherIndex << "\n");
2456      continue;
2457    }
2458
2459    case OPC_SwitchType: {
2460      MVT CurNodeVT = N.getValueType().getSimpleVT();
2461      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2462      unsigned CaseSize;
2463      while (1) {
2464        // Get the size of this case.
2465        CaseSize = MatcherTable[MatcherIndex++];
2466        if (CaseSize & 128)
2467          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2468        if (CaseSize == 0) break;
2469
2470        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2471        if (CaseVT == MVT::iPTR)
2472          CaseVT = TLI.getPointerTy();
2473
2474        // If the VT matches, then we will execute this case.
2475        if (CurNodeVT == CaseVT)
2476          break;
2477
2478        // Otherwise, skip over this case.
2479        MatcherIndex += CaseSize;
2480      }
2481
2482      // If no cases matched, bail out.
2483      if (CaseSize == 0) break;
2484
2485      // Otherwise, execute the case we found.
2486      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2487                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2488      continue;
2489    }
2490    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2491    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2492    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2493    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2494      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2495                            Opcode-OPC_CheckChild0Type))
2496        break;
2497      continue;
2498    case OPC_CheckCondCode:
2499      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2500      continue;
2501    case OPC_CheckValueType:
2502      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2503      continue;
2504    case OPC_CheckInteger:
2505      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2506      continue;
2507    case OPC_CheckAndImm:
2508      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2509      continue;
2510    case OPC_CheckOrImm:
2511      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2512      continue;
2513
2514    case OPC_CheckFoldableChainNode: {
2515      assert(NodeStack.size() != 1 && "No parent node");
2516      // Verify that all intermediate nodes between the root and this one have
2517      // a single use.
2518      bool HasMultipleUses = false;
2519      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2520        if (!NodeStack[i].hasOneUse()) {
2521          HasMultipleUses = true;
2522          break;
2523        }
2524      if (HasMultipleUses) break;
2525
2526      // Check to see that the target thinks this is profitable to fold and that
2527      // we can fold it without inducing cycles in the graph.
2528      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2529                              NodeToMatch) ||
2530          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2531                         NodeToMatch, OptLevel,
2532                         true/*We validate our own chains*/))
2533        break;
2534
2535      continue;
2536    }
2537    case OPC_EmitInteger: {
2538      MVT::SimpleValueType VT =
2539        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2540      int64_t Val = MatcherTable[MatcherIndex++];
2541      if (Val & 128)
2542        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2543      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2544                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2545      continue;
2546    }
2547    case OPC_EmitRegister: {
2548      MVT::SimpleValueType VT =
2549        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2550      unsigned RegNo = MatcherTable[MatcherIndex++];
2551      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2552                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2553      continue;
2554    }
2555    case OPC_EmitRegister2: {
2556      // For targets w/ more than 256 register names, the register enum
2557      // values are stored in two bytes in the matcher table (just like
2558      // opcodes).
2559      MVT::SimpleValueType VT =
2560        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2561      unsigned RegNo = MatcherTable[MatcherIndex++];
2562      RegNo |= MatcherTable[MatcherIndex++] << 8;
2563      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2564                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2565      continue;
2566    }
2567
2568    case OPC_EmitConvertToTarget:  {
2569      // Convert from IMM/FPIMM to target version.
2570      unsigned RecNo = MatcherTable[MatcherIndex++];
2571      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2572      SDValue Imm = RecordedNodes[RecNo].first;
2573
2574      if (Imm->getOpcode() == ISD::Constant) {
2575        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2576        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2577      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2578        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2579        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2580      }
2581
2582      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2583      continue;
2584    }
2585
2586    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2587    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2588      // These are space-optimized forms of OPC_EmitMergeInputChains.
2589      assert(InputChain.getNode() == 0 &&
2590             "EmitMergeInputChains should be the first chain producing node");
2591      assert(ChainNodesMatched.empty() &&
2592             "Should only have one EmitMergeInputChains per match");
2593
2594      // Read all of the chained nodes.
2595      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2596      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2597      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2598
2599      // FIXME: What if other value results of the node have uses not matched
2600      // by this pattern?
2601      if (ChainNodesMatched.back() != NodeToMatch &&
2602          !RecordedNodes[RecNo].first.hasOneUse()) {
2603        ChainNodesMatched.clear();
2604        break;
2605      }
2606
2607      // Merge the input chains if they are not intra-pattern references.
2608      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2609
2610      if (InputChain.getNode() == 0)
2611        break;  // Failed to merge.
2612      continue;
2613    }
2614
2615    case OPC_EmitMergeInputChains: {
2616      assert(InputChain.getNode() == 0 &&
2617             "EmitMergeInputChains should be the first chain producing node");
2618      // This node gets a list of nodes we matched in the input that have
2619      // chains.  We want to token factor all of the input chains to these nodes
2620      // together.  However, if any of the input chains is actually one of the
2621      // nodes matched in this pattern, then we have an intra-match reference.
2622      // Ignore these because the newly token factored chain should not refer to
2623      // the old nodes.
2624      unsigned NumChains = MatcherTable[MatcherIndex++];
2625      assert(NumChains != 0 && "Can't TF zero chains");
2626
2627      assert(ChainNodesMatched.empty() &&
2628             "Should only have one EmitMergeInputChains per match");
2629
2630      // Read all of the chained nodes.
2631      for (unsigned i = 0; i != NumChains; ++i) {
2632        unsigned RecNo = MatcherTable[MatcherIndex++];
2633        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2634        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2635
2636        // FIXME: What if other value results of the node have uses not matched
2637        // by this pattern?
2638        if (ChainNodesMatched.back() != NodeToMatch &&
2639            !RecordedNodes[RecNo].first.hasOneUse()) {
2640          ChainNodesMatched.clear();
2641          break;
2642        }
2643      }
2644
2645      // If the inner loop broke out, the match fails.
2646      if (ChainNodesMatched.empty())
2647        break;
2648
2649      // Merge the input chains if they are not intra-pattern references.
2650      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2651
2652      if (InputChain.getNode() == 0)
2653        break;  // Failed to merge.
2654
2655      continue;
2656    }
2657
2658    case OPC_EmitCopyToReg: {
2659      unsigned RecNo = MatcherTable[MatcherIndex++];
2660      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2661      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2662
2663      if (InputChain.getNode() == 0)
2664        InputChain = CurDAG->getEntryNode();
2665
2666      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2667                                        DestPhysReg, RecordedNodes[RecNo].first,
2668                                        InputGlue);
2669
2670      InputGlue = InputChain.getValue(1);
2671      continue;
2672    }
2673
2674    case OPC_EmitNodeXForm: {
2675      unsigned XFormNo = MatcherTable[MatcherIndex++];
2676      unsigned RecNo = MatcherTable[MatcherIndex++];
2677      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2678      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2679      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2680      continue;
2681    }
2682
2683    case OPC_EmitNode:
2684    case OPC_MorphNodeTo: {
2685      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2686      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2687      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2688      // Get the result VT list.
2689      unsigned NumVTs = MatcherTable[MatcherIndex++];
2690      SmallVector<EVT, 4> VTs;
2691      for (unsigned i = 0; i != NumVTs; ++i) {
2692        MVT::SimpleValueType VT =
2693          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2694        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2695        VTs.push_back(VT);
2696      }
2697
2698      if (EmitNodeInfo & OPFL_Chain)
2699        VTs.push_back(MVT::Other);
2700      if (EmitNodeInfo & OPFL_GlueOutput)
2701        VTs.push_back(MVT::Glue);
2702
2703      // This is hot code, so optimize the two most common cases of 1 and 2
2704      // results.
2705      SDVTList VTList;
2706      if (VTs.size() == 1)
2707        VTList = CurDAG->getVTList(VTs[0]);
2708      else if (VTs.size() == 2)
2709        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2710      else
2711        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2712
2713      // Get the operand list.
2714      unsigned NumOps = MatcherTable[MatcherIndex++];
2715      SmallVector<SDValue, 8> Ops;
2716      for (unsigned i = 0; i != NumOps; ++i) {
2717        unsigned RecNo = MatcherTable[MatcherIndex++];
2718        if (RecNo & 128)
2719          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2720
2721        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2722        Ops.push_back(RecordedNodes[RecNo].first);
2723      }
2724
2725      // If there are variadic operands to add, handle them now.
2726      if (EmitNodeInfo & OPFL_VariadicInfo) {
2727        // Determine the start index to copy from.
2728        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2729        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2730        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2731               "Invalid variadic node");
2732        // Copy all of the variadic operands, not including a potential glue
2733        // input.
2734        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2735             i != e; ++i) {
2736          SDValue V = NodeToMatch->getOperand(i);
2737          if (V.getValueType() == MVT::Glue) break;
2738          Ops.push_back(V);
2739        }
2740      }
2741
2742      // If this has chain/glue inputs, add them.
2743      if (EmitNodeInfo & OPFL_Chain)
2744        Ops.push_back(InputChain);
2745      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2746        Ops.push_back(InputGlue);
2747
2748      // Create the node.
2749      SDNode *Res = 0;
2750      if (Opcode != OPC_MorphNodeTo) {
2751        // If this is a normal EmitNode command, just create the new node and
2752        // add the results to the RecordedNodes list.
2753        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2754                                     VTList, Ops.data(), Ops.size());
2755
2756        // Add all the non-glue/non-chain results to the RecordedNodes list.
2757        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2758          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2759          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2760                                                             (SDNode*) 0));
2761        }
2762
2763      } else {
2764        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2765                        EmitNodeInfo);
2766      }
2767
2768      // If the node had chain/glue results, update our notion of the current
2769      // chain and glue.
2770      if (EmitNodeInfo & OPFL_GlueOutput) {
2771        InputGlue = SDValue(Res, VTs.size()-1);
2772        if (EmitNodeInfo & OPFL_Chain)
2773          InputChain = SDValue(Res, VTs.size()-2);
2774      } else if (EmitNodeInfo & OPFL_Chain)
2775        InputChain = SDValue(Res, VTs.size()-1);
2776
2777      // If the OPFL_MemRefs glue is set on this node, slap all of the
2778      // accumulated memrefs onto it.
2779      //
2780      // FIXME: This is vastly incorrect for patterns with multiple outputs
2781      // instructions that access memory and for ComplexPatterns that match
2782      // loads.
2783      if (EmitNodeInfo & OPFL_MemRefs) {
2784        // Only attach load or store memory operands if the generated
2785        // instruction may load or store.
2786        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2787        bool mayLoad = MCID.mayLoad();
2788        bool mayStore = MCID.mayStore();
2789
2790        unsigned NumMemRefs = 0;
2791        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2792             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2793          if ((*I)->isLoad()) {
2794            if (mayLoad)
2795              ++NumMemRefs;
2796          } else if ((*I)->isStore()) {
2797            if (mayStore)
2798              ++NumMemRefs;
2799          } else {
2800            ++NumMemRefs;
2801          }
2802        }
2803
2804        MachineSDNode::mmo_iterator MemRefs =
2805          MF->allocateMemRefsArray(NumMemRefs);
2806
2807        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2808        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2809             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2810          if ((*I)->isLoad()) {
2811            if (mayLoad)
2812              *MemRefsPos++ = *I;
2813          } else if ((*I)->isStore()) {
2814            if (mayStore)
2815              *MemRefsPos++ = *I;
2816          } else {
2817            *MemRefsPos++ = *I;
2818          }
2819        }
2820
2821        cast<MachineSDNode>(Res)
2822          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2823      }
2824
2825      DEBUG(errs() << "  "
2826                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2827                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2828
2829      // If this was a MorphNodeTo then we're completely done!
2830      if (Opcode == OPC_MorphNodeTo) {
2831        // Update chain and glue uses.
2832        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2833                            InputGlue, GlueResultNodesMatched, true);
2834        return Res;
2835      }
2836
2837      continue;
2838    }
2839
2840    case OPC_MarkGlueResults: {
2841      unsigned NumNodes = MatcherTable[MatcherIndex++];
2842
2843      // Read and remember all the glue-result nodes.
2844      for (unsigned i = 0; i != NumNodes; ++i) {
2845        unsigned RecNo = MatcherTable[MatcherIndex++];
2846        if (RecNo & 128)
2847          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2848
2849        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2850        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2851      }
2852      continue;
2853    }
2854
2855    case OPC_CompleteMatch: {
2856      // The match has been completed, and any new nodes (if any) have been
2857      // created.  Patch up references to the matched dag to use the newly
2858      // created nodes.
2859      unsigned NumResults = MatcherTable[MatcherIndex++];
2860
2861      for (unsigned i = 0; i != NumResults; ++i) {
2862        unsigned ResSlot = MatcherTable[MatcherIndex++];
2863        if (ResSlot & 128)
2864          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2865
2866        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2867        SDValue Res = RecordedNodes[ResSlot].first;
2868
2869        assert(i < NodeToMatch->getNumValues() &&
2870               NodeToMatch->getValueType(i) != MVT::Other &&
2871               NodeToMatch->getValueType(i) != MVT::Glue &&
2872               "Invalid number of results to complete!");
2873        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2874                NodeToMatch->getValueType(i) == MVT::iPTR ||
2875                Res.getValueType() == MVT::iPTR ||
2876                NodeToMatch->getValueType(i).getSizeInBits() ==
2877                    Res.getValueType().getSizeInBits()) &&
2878               "invalid replacement");
2879        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2880      }
2881
2882      // If the root node defines glue, add it to the glue nodes to update list.
2883      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2884        GlueResultNodesMatched.push_back(NodeToMatch);
2885
2886      // Update chain and glue uses.
2887      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2888                          InputGlue, GlueResultNodesMatched, false);
2889
2890      assert(NodeToMatch->use_empty() &&
2891             "Didn't replace all uses of the node?");
2892
2893      // FIXME: We just return here, which interacts correctly with SelectRoot
2894      // above.  We should fix this to not return an SDNode* anymore.
2895      return 0;
2896    }
2897    }
2898
2899    // If the code reached this point, then the match failed.  See if there is
2900    // another child to try in the current 'Scope', otherwise pop it until we
2901    // find a case to check.
2902    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2903    ++NumDAGIselRetries;
2904    while (1) {
2905      if (MatchScopes.empty()) {
2906        CannotYetSelect(NodeToMatch);
2907        return 0;
2908      }
2909
2910      // Restore the interpreter state back to the point where the scope was
2911      // formed.
2912      MatchScope &LastScope = MatchScopes.back();
2913      RecordedNodes.resize(LastScope.NumRecordedNodes);
2914      NodeStack.clear();
2915      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2916      N = NodeStack.back();
2917
2918      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2919        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2920      MatcherIndex = LastScope.FailIndex;
2921
2922      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2923
2924      InputChain = LastScope.InputChain;
2925      InputGlue = LastScope.InputGlue;
2926      if (!LastScope.HasChainNodesMatched)
2927        ChainNodesMatched.clear();
2928      if (!LastScope.HasGlueResultNodesMatched)
2929        GlueResultNodesMatched.clear();
2930
2931      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2932      // we have reached the end of this scope, otherwise we have another child
2933      // in the current scope to try.
2934      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2935      if (NumToSkip & 128)
2936        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2937
2938      // If we have another child in this scope to match, update FailIndex and
2939      // try it.
2940      if (NumToSkip != 0) {
2941        LastScope.FailIndex = MatcherIndex+NumToSkip;
2942        break;
2943      }
2944
2945      // End of this scope, pop it and try the next child in the containing
2946      // scope.
2947      MatchScopes.pop_back();
2948    }
2949  }
2950}
2951
2952
2953
2954void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2955  std::string msg;
2956  raw_string_ostream Msg(msg);
2957  Msg << "Cannot select: ";
2958
2959  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2960      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2961      N->getOpcode() != ISD::INTRINSIC_VOID) {
2962    N->printrFull(Msg, CurDAG);
2963  } else {
2964    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2965    unsigned iid =
2966      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2967    if (iid < Intrinsic::num_intrinsics)
2968      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2969    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2970      Msg << "target intrinsic %" << TII->getName(iid);
2971    else
2972      Msg << "unknown intrinsic #" << iid;
2973  }
2974  report_fatal_error(Msg.str());
2975}
2976
2977char SelectionDAGISel::ID = 0;
2978