SelectionDAGISel.cpp revision ad3f65b502541717f90991f3bcf10adb3e845c94
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/Statistic.h"
50#include <algorithm>
51using namespace llvm;
52
53STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
54STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
55
56static cl::opt<bool>
57EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
58          cl::desc("Enable verbose messages in the \"fast\" "
59                   "instruction selector"));
60static cl::opt<bool>
61EnableFastISelAbort("fast-isel-abort", cl::Hidden,
62          cl::desc("Enable abort calls when \"fast\" instruction fails"));
63
64#ifndef NDEBUG
65static cl::opt<bool>
66ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
67          cl::desc("Pop up a window to show dags before the first "
68                   "dag combine pass"));
69static cl::opt<bool>
70ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
71          cl::desc("Pop up a window to show dags before legalize types"));
72static cl::opt<bool>
73ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
74          cl::desc("Pop up a window to show dags before legalize"));
75static cl::opt<bool>
76ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the second "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before the post legalize types"
82                   " dag combine pass"));
83static cl::opt<bool>
84ViewISelDAGs("view-isel-dags", cl::Hidden,
85          cl::desc("Pop up a window to show isel dags as they are selected"));
86static cl::opt<bool>
87ViewSchedDAGs("view-sched-dags", cl::Hidden,
88          cl::desc("Pop up a window to show sched dags as they are processed"));
89static cl::opt<bool>
90ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
91      cl::desc("Pop up a window to show SUnit dags after they are processed"));
92#else
93static const bool ViewDAGCombine1 = false,
94                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
95                  ViewDAGCombine2 = false,
96                  ViewDAGCombineLT = false,
97                  ViewISelDAGs = false, ViewSchedDAGs = false,
98                  ViewSUnitDAGs = false;
99#endif
100
101//===---------------------------------------------------------------------===//
102///
103/// RegisterScheduler class - Track the registration of instruction schedulers.
104///
105//===---------------------------------------------------------------------===//
106MachinePassRegistry RegisterScheduler::Registry;
107
108//===---------------------------------------------------------------------===//
109///
110/// ISHeuristic command line option for instruction schedulers.
111///
112//===---------------------------------------------------------------------===//
113static cl::opt<RegisterScheduler::FunctionPassCtor, false,
114               RegisterPassParser<RegisterScheduler> >
115ISHeuristic("pre-RA-sched",
116            cl::init(&createDefaultScheduler),
117            cl::desc("Instruction schedulers available (before register"
118                     " allocation):"));
119
120static RegisterScheduler
121defaultListDAGScheduler("default", "Best scheduler for the target",
122                        createDefaultScheduler);
123
124namespace llvm {
125  //===--------------------------------------------------------------------===//
126  /// createDefaultScheduler - This creates an instruction scheduler appropriate
127  /// for the target.
128  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
129                                             CodeGenOpt::Level OptLevel) {
130    const TargetLowering &TLI = IS->getTargetLowering();
131
132    if (OptLevel == CodeGenOpt::None)
133      return createFastDAGScheduler(IS, OptLevel);
134    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
135      return createTDListDAGScheduler(IS, OptLevel);
136    assert(TLI.getSchedulingPreference() ==
137           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
138    return createBURRListDAGScheduler(IS, OptLevel);
139  }
140}
141
142// EmitInstrWithCustomInserter - This method should be implemented by targets
143// that mark instructions with the 'usesCustomInserter' flag.  These
144// instructions are special in various ways, which require special support to
145// insert.  The specified MachineInstr is created but not inserted into any
146// basic blocks, and this method is called to expand it into a sequence of
147// instructions, potentially also creating new basic blocks and control flow.
148// When new basic blocks are inserted and the edges from MBB to its successors
149// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
150// DenseMap.
151MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
152                                                         MachineBasicBlock *MBB,
153                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
154#ifndef NDEBUG
155  dbgs() << "If a target marks an instruction with "
156          "'usesCustomInserter', it must implement "
157          "TargetLowering::EmitInstrWithCustomInserter!";
158#endif
159  llvm_unreachable(0);
160  return 0;
161}
162
163//===----------------------------------------------------------------------===//
164// SelectionDAGISel code
165//===----------------------------------------------------------------------===//
166
167SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
168  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
169  FuncInfo(new FunctionLoweringInfo(TLI)),
170  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
171  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
172  GFI(),
173  OptLevel(OL),
174  DAGSize(0)
175{}
176
177SelectionDAGISel::~SelectionDAGISel() {
178  delete SDB;
179  delete CurDAG;
180  delete FuncInfo;
181}
182
183void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
184  AU.addRequired<AliasAnalysis>();
185  AU.addPreserved<AliasAnalysis>();
186  AU.addRequired<GCModuleInfo>();
187  AU.addPreserved<GCModuleInfo>();
188  MachineFunctionPass::getAnalysisUsage(AU);
189}
190
191bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
192  // Do some sanity-checking on the command-line options.
193  assert((!EnableFastISelVerbose || EnableFastISel) &&
194         "-fast-isel-verbose requires -fast-isel");
195  assert((!EnableFastISelAbort || EnableFastISel) &&
196         "-fast-isel-abort requires -fast-isel");
197
198  Function &Fn = *mf.getFunction();
199  const TargetInstrInfo &TII = *TM.getInstrInfo();
200  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
201
202  MF = &mf;
203  RegInfo = &MF->getRegInfo();
204  AA = &getAnalysis<AliasAnalysis>();
205  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
206
207  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
208
209  CurDAG->init(*MF);
210  FuncInfo->set(Fn, *MF, EnableFastISel);
211  SDB->init(GFI, *AA);
212
213  SelectAllBasicBlocks(Fn, *MF, TII);
214
215  // Release function-specific state. SDB and CurDAG are already cleared
216  // at this point.
217  FuncInfo->clear();
218
219  // If the first basic block in the function has live ins that need to be
220  // copied into vregs, emit the copies into the top of the block before
221  // emitting the code for the block.
222  RegInfo->EmitLiveInCopies(MF->begin(), TRI, TII);
223
224  return true;
225}
226
227/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
228/// attached with this instruction.
229static void SetDebugLoc(Instruction *I, SelectionDAGBuilder *SDB,
230                        FastISel *FastIS, MachineFunction *MF) {
231  DebugLoc DL = I->getDebugLoc();
232  if (DL.isUnknown()) return;
233
234  SDB->setCurDebugLoc(DL);
235
236  if (FastIS)
237    FastIS->setCurDebugLoc(DL);
238
239  // If the function doesn't have a default debug location yet, set
240  // it. This is kind of a hack.
241  if (MF->getDefaultDebugLoc().isUnknown())
242    MF->setDefaultDebugLoc(DL);
243}
244
245/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
246static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
247  SDB->setCurDebugLoc(DebugLoc());
248  if (FastIS)
249    FastIS->setCurDebugLoc(DebugLoc());
250}
251
252void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
253                                        BasicBlock::iterator Begin,
254                                        BasicBlock::iterator End,
255                                        bool &HadTailCall) {
256  SDB->setCurrentBasicBlock(BB);
257
258  // Lower all of the non-terminator instructions. If a call is emitted
259  // as a tail call, cease emitting nodes for this block.
260  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
261    SetDebugLoc(I, SDB, 0, MF);
262
263    if (!isa<TerminatorInst>(I)) {
264      SDB->visit(*I);
265
266      // Set the current debug location back to "unknown" so that it doesn't
267      // spuriously apply to subsequent instructions.
268      ResetDebugLoc(SDB, 0);
269    }
270  }
271
272  if (!SDB->HasTailCall) {
273    // Ensure that all instructions which are used outside of their defining
274    // blocks are available as virtual registers.  Invoke is handled elsewhere.
275    for (BasicBlock::iterator I = Begin; I != End; ++I)
276      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
277        SDB->CopyToExportRegsIfNeeded(I);
278
279    // Handle PHI nodes in successor blocks.
280    if (End == LLVMBB->end()) {
281      HandlePHINodesInSuccessorBlocks(LLVMBB);
282
283      // Lower the terminator after the copies are emitted.
284      SetDebugLoc(LLVMBB->getTerminator(), SDB, 0, MF);
285      SDB->visit(*LLVMBB->getTerminator());
286      ResetDebugLoc(SDB, 0);
287    }
288  }
289
290  // Make sure the root of the DAG is up-to-date.
291  CurDAG->setRoot(SDB->getControlRoot());
292
293  // Final step, emit the lowered DAG as machine code.
294  CodeGenAndEmitDAG();
295  HadTailCall = SDB->HasTailCall;
296  SDB->clear();
297}
298
299namespace {
300/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
301/// nodes from the worklist.
302class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
303  SmallVector<SDNode*, 128> &Worklist;
304  SmallPtrSet<SDNode*, 128> &InWorklist;
305public:
306  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
307                       SmallPtrSet<SDNode*, 128> &inwl)
308    : Worklist(wl), InWorklist(inwl) {}
309
310  void RemoveFromWorklist(SDNode *N) {
311    if (!InWorklist.erase(N)) return;
312
313    SmallVector<SDNode*, 128>::iterator I =
314    std::find(Worklist.begin(), Worklist.end(), N);
315    assert(I != Worklist.end() && "Not in worklist");
316
317    *I = Worklist.back();
318    Worklist.pop_back();
319  }
320
321  virtual void NodeDeleted(SDNode *N, SDNode *E) {
322    RemoveFromWorklist(N);
323  }
324
325  virtual void NodeUpdated(SDNode *N) {
326    // Ignore updates.
327  }
328};
329}
330
331/// TrivialTruncElim - Eliminate some trivial nops that can result from
332/// ShrinkDemandedOps: (trunc (ext n)) -> n.
333static bool TrivialTruncElim(SDValue Op,
334                             TargetLowering::TargetLoweringOpt &TLO) {
335  SDValue N0 = Op.getOperand(0);
336  EVT VT = Op.getValueType();
337  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
338       N0.getOpcode() == ISD::SIGN_EXTEND ||
339       N0.getOpcode() == ISD::ANY_EXTEND) &&
340      N0.getOperand(0).getValueType() == VT) {
341    return TLO.CombineTo(Op, N0.getOperand(0));
342  }
343  return false;
344}
345
346/// ShrinkDemandedOps - A late transformation pass that shrink expressions
347/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
348/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
349void SelectionDAGISel::ShrinkDemandedOps() {
350  SmallVector<SDNode*, 128> Worklist;
351  SmallPtrSet<SDNode*, 128> InWorklist;
352
353  // Add all the dag nodes to the worklist.
354  Worklist.reserve(CurDAG->allnodes_size());
355  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
356       E = CurDAG->allnodes_end(); I != E; ++I) {
357    Worklist.push_back(I);
358    InWorklist.insert(I);
359  }
360
361  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
362  while (!Worklist.empty()) {
363    SDNode *N = Worklist.pop_back_val();
364    InWorklist.erase(N);
365
366    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
367      // Deleting this node may make its operands dead, add them to the worklist
368      // if they aren't already there.
369      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
370        if (InWorklist.insert(N->getOperand(i).getNode()))
371          Worklist.push_back(N->getOperand(i).getNode());
372
373      CurDAG->DeleteNode(N);
374      continue;
375    }
376
377    // Run ShrinkDemandedOp on scalar binary operations.
378    if (N->getNumValues() != 1 ||
379        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
380      continue;
381
382    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
383    APInt Demanded = APInt::getAllOnesValue(BitWidth);
384    APInt KnownZero, KnownOne;
385    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
386                                  KnownZero, KnownOne, TLO) &&
387        (N->getOpcode() != ISD::TRUNCATE ||
388         !TrivialTruncElim(SDValue(N, 0), TLO)))
389      continue;
390
391    // Revisit the node.
392    assert(!InWorklist.count(N) && "Already in worklist");
393    Worklist.push_back(N);
394    InWorklist.insert(N);
395
396    // Replace the old value with the new one.
397    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
398          TLO.Old.getNode()->dump(CurDAG);
399          errs() << "\nWith: ";
400          TLO.New.getNode()->dump(CurDAG);
401          errs() << '\n');
402
403    if (InWorklist.insert(TLO.New.getNode()))
404      Worklist.push_back(TLO.New.getNode());
405
406    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
407    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
408
409    if (!TLO.Old.getNode()->use_empty()) continue;
410
411    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
412         i != e; ++i) {
413      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
414      if (OpNode->hasOneUse()) {
415        // Add OpNode to the end of the list to revisit.
416        DeadNodes.RemoveFromWorklist(OpNode);
417        Worklist.push_back(OpNode);
418        InWorklist.insert(OpNode);
419      }
420    }
421
422    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
423    CurDAG->DeleteNode(TLO.Old.getNode());
424  }
425}
426
427void SelectionDAGISel::ComputeLiveOutVRegInfo() {
428  SmallPtrSet<SDNode*, 128> VisitedNodes;
429  SmallVector<SDNode*, 128> Worklist;
430
431  Worklist.push_back(CurDAG->getRoot().getNode());
432
433  APInt Mask;
434  APInt KnownZero;
435  APInt KnownOne;
436
437  do {
438    SDNode *N = Worklist.pop_back_val();
439
440    // If we've already seen this node, ignore it.
441    if (!VisitedNodes.insert(N))
442      continue;
443
444    // Otherwise, add all chain operands to the worklist.
445    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
446      if (N->getOperand(i).getValueType() == MVT::Other)
447        Worklist.push_back(N->getOperand(i).getNode());
448
449    // If this is a CopyToReg with a vreg dest, process it.
450    if (N->getOpcode() != ISD::CopyToReg)
451      continue;
452
453    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
454    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
455      continue;
456
457    // Ignore non-scalar or non-integer values.
458    SDValue Src = N->getOperand(2);
459    EVT SrcVT = Src.getValueType();
460    if (!SrcVT.isInteger() || SrcVT.isVector())
461      continue;
462
463    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
464    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
465    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
466
467    // Only install this information if it tells us something.
468    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
469      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
470      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
471        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
472      FunctionLoweringInfo::LiveOutInfo &LOI =
473        FuncInfo->LiveOutRegInfo[DestReg];
474      LOI.NumSignBits = NumSignBits;
475      LOI.KnownOne = KnownOne;
476      LOI.KnownZero = KnownZero;
477    }
478  } while (!Worklist.empty());
479}
480
481void SelectionDAGISel::CodeGenAndEmitDAG() {
482  std::string GroupName;
483  if (TimePassesIsEnabled)
484    GroupName = "Instruction Selection and Scheduling";
485  std::string BlockName;
486  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
487      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
488      ViewSUnitDAGs)
489    BlockName = MF->getFunction()->getNameStr() + ":" +
490                BB->getBasicBlock()->getNameStr();
491
492  DEBUG(dbgs() << "Initial selection DAG:\n");
493  DEBUG(CurDAG->dump());
494
495  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
496
497  // Run the DAG combiner in pre-legalize mode.
498  if (TimePassesIsEnabled) {
499    NamedRegionTimer T("DAG Combining 1", GroupName);
500    CurDAG->Combine(Unrestricted, *AA, OptLevel);
501  } else {
502    CurDAG->Combine(Unrestricted, *AA, OptLevel);
503  }
504
505  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
506  DEBUG(CurDAG->dump());
507
508  // Second step, hack on the DAG until it only uses operations and types that
509  // the target supports.
510  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
511                                               BlockName);
512
513  bool Changed;
514  if (TimePassesIsEnabled) {
515    NamedRegionTimer T("Type Legalization", GroupName);
516    Changed = CurDAG->LegalizeTypes();
517  } else {
518    Changed = CurDAG->LegalizeTypes();
519  }
520
521  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
522  DEBUG(CurDAG->dump());
523
524  if (Changed) {
525    if (ViewDAGCombineLT)
526      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
527
528    // Run the DAG combiner in post-type-legalize mode.
529    if (TimePassesIsEnabled) {
530      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
531      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
532    } else {
533      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
534    }
535
536    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
537    DEBUG(CurDAG->dump());
538  }
539
540  if (TimePassesIsEnabled) {
541    NamedRegionTimer T("Vector Legalization", GroupName);
542    Changed = CurDAG->LegalizeVectors();
543  } else {
544    Changed = CurDAG->LegalizeVectors();
545  }
546
547  if (Changed) {
548    if (TimePassesIsEnabled) {
549      NamedRegionTimer T("Type Legalization 2", GroupName);
550      CurDAG->LegalizeTypes();
551    } else {
552      CurDAG->LegalizeTypes();
553    }
554
555    if (ViewDAGCombineLT)
556      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
557
558    // Run the DAG combiner in post-type-legalize mode.
559    if (TimePassesIsEnabled) {
560      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
561      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
562    } else {
563      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
564    }
565
566    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
567    DEBUG(CurDAG->dump());
568  }
569
570  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
571
572  if (TimePassesIsEnabled) {
573    NamedRegionTimer T("DAG Legalization", GroupName);
574    CurDAG->Legalize(OptLevel);
575  } else {
576    CurDAG->Legalize(OptLevel);
577  }
578
579  DEBUG(dbgs() << "Legalized selection DAG:\n");
580  DEBUG(CurDAG->dump());
581
582  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
583
584  // Run the DAG combiner in post-legalize mode.
585  if (TimePassesIsEnabled) {
586    NamedRegionTimer T("DAG Combining 2", GroupName);
587    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
588  } else {
589    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
590  }
591
592  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
593  DEBUG(CurDAG->dump());
594
595  if (OptLevel != CodeGenOpt::None) {
596    ShrinkDemandedOps();
597    ComputeLiveOutVRegInfo();
598  }
599
600  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
601
602  // Third, instruction select all of the operations to machine code, adding the
603  // code to the MachineBasicBlock.
604  if (TimePassesIsEnabled) {
605    NamedRegionTimer T("Instruction Selection", GroupName);
606    DoInstructionSelection();
607  } else {
608    DoInstructionSelection();
609  }
610
611  DEBUG(dbgs() << "Selected selection DAG:\n");
612  DEBUG(CurDAG->dump());
613
614  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
615
616  // Schedule machine code.
617  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
618  if (TimePassesIsEnabled) {
619    NamedRegionTimer T("Instruction Scheduling", GroupName);
620    Scheduler->Run(CurDAG, BB, BB->end());
621  } else {
622    Scheduler->Run(CurDAG, BB, BB->end());
623  }
624
625  if (ViewSUnitDAGs) Scheduler->viewGraph();
626
627  // Emit machine code to BB.  This can change 'BB' to the last block being
628  // inserted into.
629  if (TimePassesIsEnabled) {
630    NamedRegionTimer T("Instruction Creation", GroupName);
631    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
632  } else {
633    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
634  }
635
636  // Free the scheduler state.
637  if (TimePassesIsEnabled) {
638    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
639    delete Scheduler;
640  } else {
641    delete Scheduler;
642  }
643
644  DEBUG(dbgs() << "Selected machine code:\n");
645  DEBUG(BB->dump());
646}
647
648void SelectionDAGISel::DoInstructionSelection() {
649  DEBUG(errs() << "===== Instruction selection begins:\n");
650
651  PreprocessISelDAG();
652
653  // Select target instructions for the DAG.
654  {
655    // Number all nodes with a topological order and set DAGSize.
656    DAGSize = CurDAG->AssignTopologicalOrder();
657
658    // Create a dummy node (which is not added to allnodes), that adds
659    // a reference to the root node, preventing it from being deleted,
660    // and tracking any changes of the root.
661    HandleSDNode Dummy(CurDAG->getRoot());
662    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
663    ++ISelPosition;
664
665    // The AllNodes list is now topological-sorted. Visit the
666    // nodes by starting at the end of the list (the root of the
667    // graph) and preceding back toward the beginning (the entry
668    // node).
669    while (ISelPosition != CurDAG->allnodes_begin()) {
670      SDNode *Node = --ISelPosition;
671      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
672      // but there are currently some corner cases that it misses. Also, this
673      // makes it theoretically possible to disable the DAGCombiner.
674      if (Node->use_empty())
675        continue;
676
677      SDNode *ResNode = Select(Node);
678
679      // FIXME: This is pretty gross.  'Select' should be changed to not return
680      // anything at all and this code should be nuked with a tactical strike.
681
682      // If node should not be replaced, continue with the next one.
683      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
684        continue;
685      // Replace node.
686      if (ResNode)
687        ReplaceUses(Node, ResNode);
688
689      // If after the replacement this node is not used any more,
690      // remove this dead node.
691      if (Node->use_empty()) { // Don't delete EntryToken, etc.
692        ISelUpdater ISU(ISelPosition);
693        CurDAG->RemoveDeadNode(Node, &ISU);
694      }
695    }
696
697    CurDAG->setRoot(Dummy.getValue());
698  }
699  DEBUG(errs() << "===== Instruction selection ends:\n");
700
701  PostprocessISelDAG();
702}
703
704
705void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
706                                            MachineFunction &MF,
707                                            const TargetInstrInfo &TII) {
708  // Initialize the Fast-ISel state, if needed.
709  FastISel *FastIS = 0;
710  if (EnableFastISel)
711    FastIS = TLI.createFastISel(MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
712                                FuncInfo->StaticAllocaMap
713#ifndef NDEBUG
714                                , FuncInfo->CatchInfoLost
715#endif
716                                );
717
718  // Iterate over all basic blocks in the function.
719  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
720    BasicBlock *LLVMBB = &*I;
721    BB = FuncInfo->MBBMap[LLVMBB];
722
723    BasicBlock::iterator const Begin = LLVMBB->begin();
724    BasicBlock::iterator const End = LLVMBB->end();
725    BasicBlock::iterator BI = Begin;
726
727    // Lower any arguments needed in this block if this is the entry block.
728    bool SuppressFastISel = false;
729    if (LLVMBB == &Fn.getEntryBlock()) {
730      LowerArguments(LLVMBB);
731
732      // If any of the arguments has the byval attribute, forgo
733      // fast-isel in the entry block.
734      if (FastIS) {
735        unsigned j = 1;
736        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
737             I != E; ++I, ++j)
738          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
739            if (EnableFastISelVerbose || EnableFastISelAbort)
740              dbgs() << "FastISel skips entry block due to byval argument\n";
741            SuppressFastISel = true;
742            break;
743          }
744      }
745    }
746
747    if (BB->isLandingPad()) {
748      // Add a label to mark the beginning of the landing pad.  Deletion of the
749      // landing pad can thus be detected via the MachineModuleInfo.
750      MCSymbol *Label = MF.getMMI().addLandingPad(BB);
751
752      const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL);
753      BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
754
755      // Mark exception register as live in.
756      unsigned Reg = TLI.getExceptionAddressRegister();
757      if (Reg) BB->addLiveIn(Reg);
758
759      // Mark exception selector register as live in.
760      Reg = TLI.getExceptionSelectorRegister();
761      if (Reg) BB->addLiveIn(Reg);
762
763      // FIXME: Hack around an exception handling flaw (PR1508): the personality
764      // function and list of typeids logically belong to the invoke (or, if you
765      // like, the basic block containing the invoke), and need to be associated
766      // with it in the dwarf exception handling tables.  Currently however the
767      // information is provided by an intrinsic (eh.selector) that can be moved
768      // to unexpected places by the optimizers: if the unwind edge is critical,
769      // then breaking it can result in the intrinsics being in the successor of
770      // the landing pad, not the landing pad itself.  This results
771      // in exceptions not being caught because no typeids are associated with
772      // the invoke.  This may not be the only way things can go wrong, but it
773      // is the only way we try to work around for the moment.
774      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
775
776      if (Br && Br->isUnconditional()) { // Critical edge?
777        BasicBlock::iterator I, E;
778        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
779          if (isa<EHSelectorInst>(I))
780            break;
781
782        if (I == E)
783          // No catch info found - try to extract some from the successor.
784          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF.getMMI(), *FuncInfo);
785      }
786    }
787
788    // Before doing SelectionDAG ISel, see if FastISel has been requested.
789    if (FastIS && !SuppressFastISel) {
790      // Emit code for any incoming arguments. This must happen before
791      // beginning FastISel on the entry block.
792      if (LLVMBB == &Fn.getEntryBlock()) {
793        CurDAG->setRoot(SDB->getControlRoot());
794        CodeGenAndEmitDAG();
795        SDB->clear();
796      }
797      FastIS->startNewBlock(BB);
798      // Do FastISel on as many instructions as possible.
799      for (; BI != End; ++BI) {
800        // Just before the terminator instruction, insert instructions to
801        // feed PHI nodes in successor blocks.
802        if (isa<TerminatorInst>(BI))
803          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
804            ++NumFastIselFailures;
805            ResetDebugLoc(SDB, FastIS);
806            if (EnableFastISelVerbose || EnableFastISelAbort) {
807              dbgs() << "FastISel miss: ";
808              BI->dump();
809            }
810            assert(!EnableFastISelAbort &&
811                   "FastISel didn't handle a PHI in a successor");
812            break;
813          }
814
815        SetDebugLoc(BI, SDB, FastIS, &MF);
816
817        // Try to select the instruction with FastISel.
818        if (FastIS->SelectInstruction(BI)) {
819          ResetDebugLoc(SDB, FastIS);
820          continue;
821        }
822
823        // Clear out the debug location so that it doesn't carry over to
824        // unrelated instructions.
825        ResetDebugLoc(SDB, FastIS);
826
827        // Then handle certain instructions as single-LLVM-Instruction blocks.
828        if (isa<CallInst>(BI)) {
829          ++NumFastIselFailures;
830          if (EnableFastISelVerbose || EnableFastISelAbort) {
831            dbgs() << "FastISel missed call: ";
832            BI->dump();
833          }
834
835          if (!BI->getType()->isVoidTy()) {
836            unsigned &R = FuncInfo->ValueMap[BI];
837            if (!R)
838              R = FuncInfo->CreateRegForValue(BI);
839          }
840
841          bool HadTailCall = false;
842          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
843
844          // If the call was emitted as a tail call, we're done with the block.
845          if (HadTailCall) {
846            BI = End;
847            break;
848          }
849
850          // If the instruction was codegen'd with multiple blocks,
851          // inform the FastISel object where to resume inserting.
852          FastIS->setCurrentBlock(BB);
853          continue;
854        }
855
856        // Otherwise, give up on FastISel for the rest of the block.
857        // For now, be a little lenient about non-branch terminators.
858        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
859          ++NumFastIselFailures;
860          if (EnableFastISelVerbose || EnableFastISelAbort) {
861            dbgs() << "FastISel miss: ";
862            BI->dump();
863          }
864          if (EnableFastISelAbort)
865            // The "fast" selector couldn't handle something and bailed.
866            // For the purpose of debugging, just abort.
867            llvm_unreachable("FastISel didn't select the entire block");
868        }
869        break;
870      }
871    }
872
873    // Run SelectionDAG instruction selection on the remainder of the block
874    // not handled by FastISel. If FastISel is not run, this is the entire
875    // block.
876    if (BI != End) {
877      bool HadTailCall;
878      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
879    }
880
881    FinishBasicBlock();
882  }
883
884  delete FastIS;
885}
886
887void
888SelectionDAGISel::FinishBasicBlock() {
889
890  DEBUG(dbgs() << "Target-post-processed machine code:\n");
891  DEBUG(BB->dump());
892
893  DEBUG(dbgs() << "Total amount of phi nodes to update: "
894               << SDB->PHINodesToUpdate.size() << "\n");
895  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
896          dbgs() << "Node " << i << " : ("
897                 << SDB->PHINodesToUpdate[i].first
898                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
899
900  // Next, now that we know what the last MBB the LLVM BB expanded is, update
901  // PHI nodes in successors.
902  if (SDB->SwitchCases.empty() &&
903      SDB->JTCases.empty() &&
904      SDB->BitTestCases.empty()) {
905    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
906      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
907      assert(PHI->isPHI() &&
908             "This is not a machine PHI node that we are updating!");
909      if (!BB->isSuccessor(PHI->getParent()))
910        continue;
911      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
912                                                false));
913      PHI->addOperand(MachineOperand::CreateMBB(BB));
914    }
915    SDB->PHINodesToUpdate.clear();
916    return;
917  }
918
919  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
920    // Lower header first, if it wasn't already lowered
921    if (!SDB->BitTestCases[i].Emitted) {
922      // Set the current basic block to the mbb we wish to insert the code into
923      BB = SDB->BitTestCases[i].Parent;
924      SDB->setCurrentBasicBlock(BB);
925      // Emit the code
926      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
927      CurDAG->setRoot(SDB->getRoot());
928      CodeGenAndEmitDAG();
929      SDB->clear();
930    }
931
932    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
933      // Set the current basic block to the mbb we wish to insert the code into
934      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
935      SDB->setCurrentBasicBlock(BB);
936      // Emit the code
937      if (j+1 != ej)
938        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
939                              SDB->BitTestCases[i].Reg,
940                              SDB->BitTestCases[i].Cases[j]);
941      else
942        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
943                              SDB->BitTestCases[i].Reg,
944                              SDB->BitTestCases[i].Cases[j]);
945
946
947      CurDAG->setRoot(SDB->getRoot());
948      CodeGenAndEmitDAG();
949      SDB->clear();
950    }
951
952    // Update PHI Nodes
953    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
954      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
955      MachineBasicBlock *PHIBB = PHI->getParent();
956      assert(PHI->isPHI() &&
957             "This is not a machine PHI node that we are updating!");
958      // This is "default" BB. We have two jumps to it. From "header" BB and
959      // from last "case" BB.
960      if (PHIBB == SDB->BitTestCases[i].Default) {
961        PHI->addOperand(MachineOperand::
962                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
963        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
964        PHI->addOperand(MachineOperand::
965                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
966        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
967                                                  back().ThisBB));
968      }
969      // One of "cases" BB.
970      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
971           j != ej; ++j) {
972        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
973        if (cBB->isSuccessor(PHIBB)) {
974          PHI->addOperand(MachineOperand::
975                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
976          PHI->addOperand(MachineOperand::CreateMBB(cBB));
977        }
978      }
979    }
980  }
981  SDB->BitTestCases.clear();
982
983  // If the JumpTable record is filled in, then we need to emit a jump table.
984  // Updating the PHI nodes is tricky in this case, since we need to determine
985  // whether the PHI is a successor of the range check MBB or the jump table MBB
986  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
987    // Lower header first, if it wasn't already lowered
988    if (!SDB->JTCases[i].first.Emitted) {
989      // Set the current basic block to the mbb we wish to insert the code into
990      BB = SDB->JTCases[i].first.HeaderBB;
991      SDB->setCurrentBasicBlock(BB);
992      // Emit the code
993      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
994      CurDAG->setRoot(SDB->getRoot());
995      CodeGenAndEmitDAG();
996      SDB->clear();
997    }
998
999    // Set the current basic block to the mbb we wish to insert the code into
1000    BB = SDB->JTCases[i].second.MBB;
1001    SDB->setCurrentBasicBlock(BB);
1002    // Emit the code
1003    SDB->visitJumpTable(SDB->JTCases[i].second);
1004    CurDAG->setRoot(SDB->getRoot());
1005    CodeGenAndEmitDAG();
1006    SDB->clear();
1007
1008    // Update PHI Nodes
1009    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1010      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1011      MachineBasicBlock *PHIBB = PHI->getParent();
1012      assert(PHI->isPHI() &&
1013             "This is not a machine PHI node that we are updating!");
1014      // "default" BB. We can go there only from header BB.
1015      if (PHIBB == SDB->JTCases[i].second.Default) {
1016        PHI->addOperand
1017          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1018        PHI->addOperand
1019          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1020      }
1021      // JT BB. Just iterate over successors here
1022      if (BB->isSuccessor(PHIBB)) {
1023        PHI->addOperand
1024          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1025        PHI->addOperand(MachineOperand::CreateMBB(BB));
1026      }
1027    }
1028  }
1029  SDB->JTCases.clear();
1030
1031  // If the switch block involved a branch to one of the actual successors, we
1032  // need to update PHI nodes in that block.
1033  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1034    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1035    assert(PHI->isPHI() &&
1036           "This is not a machine PHI node that we are updating!");
1037    if (BB->isSuccessor(PHI->getParent())) {
1038      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1039                                                false));
1040      PHI->addOperand(MachineOperand::CreateMBB(BB));
1041    }
1042  }
1043
1044  // If we generated any switch lowering information, build and codegen any
1045  // additional DAGs necessary.
1046  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1047    // Set the current basic block to the mbb we wish to insert the code into
1048    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1049    SDB->setCurrentBasicBlock(BB);
1050
1051    // Emit the code
1052    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1053    CurDAG->setRoot(SDB->getRoot());
1054    CodeGenAndEmitDAG();
1055
1056    // Handle any PHI nodes in successors of this chunk, as if we were coming
1057    // from the original BB before switch expansion.  Note that PHI nodes can
1058    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1059    // handle them the right number of times.
1060    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1061      // If new BB's are created during scheduling, the edges may have been
1062      // updated. That is, the edge from ThisBB to BB may have been split and
1063      // BB's predecessor is now another block.
1064      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1065        SDB->EdgeMapping.find(BB);
1066      if (EI != SDB->EdgeMapping.end())
1067        ThisBB = EI->second;
1068
1069      // BB may have been removed from the CFG if a branch was constant folded.
1070      if (ThisBB->isSuccessor(BB)) {
1071        for (MachineBasicBlock::iterator Phi = BB->begin();
1072             Phi != BB->end() && Phi->isPHI();
1073             ++Phi) {
1074          // This value for this PHI node is recorded in PHINodesToUpdate.
1075          for (unsigned pn = 0; ; ++pn) {
1076            assert(pn != SDB->PHINodesToUpdate.size() &&
1077                   "Didn't find PHI entry!");
1078            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1079              Phi->addOperand(MachineOperand::
1080                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1081                                        false));
1082              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1083              break;
1084            }
1085          }
1086        }
1087      }
1088
1089      // Don't process RHS if same block as LHS.
1090      if (BB == SDB->SwitchCases[i].FalseBB)
1091        SDB->SwitchCases[i].FalseBB = 0;
1092
1093      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1094      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1095      SDB->SwitchCases[i].FalseBB = 0;
1096    }
1097    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1098    SDB->clear();
1099  }
1100  SDB->SwitchCases.clear();
1101
1102  SDB->PHINodesToUpdate.clear();
1103}
1104
1105
1106/// Create the scheduler. If a specific scheduler was specified
1107/// via the SchedulerRegistry, use it, otherwise select the
1108/// one preferred by the target.
1109///
1110ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1111  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1112
1113  if (!Ctor) {
1114    Ctor = ISHeuristic;
1115    RegisterScheduler::setDefault(Ctor);
1116  }
1117
1118  return Ctor(this, OptLevel);
1119}
1120
1121ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1122  return new ScheduleHazardRecognizer();
1123}
1124
1125//===----------------------------------------------------------------------===//
1126// Helper functions used by the generated instruction selector.
1127//===----------------------------------------------------------------------===//
1128// Calls to these methods are generated by tblgen.
1129
1130/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1131/// the dag combiner simplified the 255, we still want to match.  RHS is the
1132/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1133/// specified in the .td file (e.g. 255).
1134bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1135                                    int64_t DesiredMaskS) const {
1136  const APInt &ActualMask = RHS->getAPIntValue();
1137  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1138
1139  // If the actual mask exactly matches, success!
1140  if (ActualMask == DesiredMask)
1141    return true;
1142
1143  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1144  if (ActualMask.intersects(~DesiredMask))
1145    return false;
1146
1147  // Otherwise, the DAG Combiner may have proven that the value coming in is
1148  // either already zero or is not demanded.  Check for known zero input bits.
1149  APInt NeededMask = DesiredMask & ~ActualMask;
1150  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1151    return true;
1152
1153  // TODO: check to see if missing bits are just not demanded.
1154
1155  // Otherwise, this pattern doesn't match.
1156  return false;
1157}
1158
1159/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1160/// the dag combiner simplified the 255, we still want to match.  RHS is the
1161/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1162/// specified in the .td file (e.g. 255).
1163bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1164                                   int64_t DesiredMaskS) const {
1165  const APInt &ActualMask = RHS->getAPIntValue();
1166  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1167
1168  // If the actual mask exactly matches, success!
1169  if (ActualMask == DesiredMask)
1170    return true;
1171
1172  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1173  if (ActualMask.intersects(~DesiredMask))
1174    return false;
1175
1176  // Otherwise, the DAG Combiner may have proven that the value coming in is
1177  // either already zero or is not demanded.  Check for known zero input bits.
1178  APInt NeededMask = DesiredMask & ~ActualMask;
1179
1180  APInt KnownZero, KnownOne;
1181  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1182
1183  // If all the missing bits in the or are already known to be set, match!
1184  if ((NeededMask & KnownOne) == NeededMask)
1185    return true;
1186
1187  // TODO: check to see if missing bits are just not demanded.
1188
1189  // Otherwise, this pattern doesn't match.
1190  return false;
1191}
1192
1193
1194/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1195/// by tblgen.  Others should not call it.
1196void SelectionDAGISel::
1197SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1198  std::vector<SDValue> InOps;
1199  std::swap(InOps, Ops);
1200
1201  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1202  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1203  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1204
1205  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1206  if (InOps[e-1].getValueType() == MVT::Flag)
1207    --e;  // Don't process a flag operand if it is here.
1208
1209  while (i != e) {
1210    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1211    if (!InlineAsm::isMemKind(Flags)) {
1212      // Just skip over this operand, copying the operands verbatim.
1213      Ops.insert(Ops.end(), InOps.begin()+i,
1214                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1215      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1216    } else {
1217      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1218             "Memory operand with multiple values?");
1219      // Otherwise, this is a memory operand.  Ask the target to select it.
1220      std::vector<SDValue> SelOps;
1221      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1222        report_fatal_error("Could not match memory address.  Inline asm"
1223                           " failure!");
1224
1225      // Add this to the output node.
1226      unsigned NewFlags =
1227        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1228      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1229      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1230      i += 2;
1231    }
1232  }
1233
1234  // Add the flag input back if present.
1235  if (e != InOps.size())
1236    Ops.push_back(InOps.back());
1237}
1238
1239/// findFlagUse - Return use of EVT::Flag value produced by the specified
1240/// SDNode.
1241///
1242static SDNode *findFlagUse(SDNode *N) {
1243  unsigned FlagResNo = N->getNumValues()-1;
1244  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1245    SDUse &Use = I.getUse();
1246    if (Use.getResNo() == FlagResNo)
1247      return Use.getUser();
1248  }
1249  return NULL;
1250}
1251
1252/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1253/// This function recursively traverses up the operand chain, ignoring
1254/// certain nodes.
1255static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1256                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1257                          bool IgnoreChains) {
1258  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1259  // greater than all of its (recursive) operands.  If we scan to a point where
1260  // 'use' is smaller than the node we're scanning for, then we know we will
1261  // never find it.
1262  //
1263  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1264  // happen because we scan down to newly selected nodes in the case of flag
1265  // uses.
1266  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1267    return false;
1268
1269  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1270  // won't fail if we scan it again.
1271  if (!Visited.insert(Use))
1272    return false;
1273
1274  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1275    // Ignore chain uses, they are validated by HandleMergeInputChains.
1276    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1277      continue;
1278
1279    SDNode *N = Use->getOperand(i).getNode();
1280    if (N == Def) {
1281      if (Use == ImmedUse || Use == Root)
1282        continue;  // We are not looking for immediate use.
1283      assert(N != Root);
1284      return true;
1285    }
1286
1287    // Traverse up the operand chain.
1288    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1289      return true;
1290  }
1291  return false;
1292}
1293
1294/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1295/// operand node N of U during instruction selection that starts at Root.
1296bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1297                                          SDNode *Root) const {
1298  if (OptLevel == CodeGenOpt::None) return false;
1299  return N.hasOneUse();
1300}
1301
1302/// IsLegalToFold - Returns true if the specific operand node N of
1303/// U can be folded during instruction selection that starts at Root.
1304bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1305                                     bool IgnoreChains) const {
1306  if (OptLevel == CodeGenOpt::None) return false;
1307
1308  // If Root use can somehow reach N through a path that that doesn't contain
1309  // U then folding N would create a cycle. e.g. In the following
1310  // diagram, Root can reach N through X. If N is folded into into Root, then
1311  // X is both a predecessor and a successor of U.
1312  //
1313  //          [N*]           //
1314  //         ^   ^           //
1315  //        /     \          //
1316  //      [U*]    [X]?       //
1317  //        ^     ^          //
1318  //         \   /           //
1319  //          \ /            //
1320  //         [Root*]         //
1321  //
1322  // * indicates nodes to be folded together.
1323  //
1324  // If Root produces a flag, then it gets (even more) interesting. Since it
1325  // will be "glued" together with its flag use in the scheduler, we need to
1326  // check if it might reach N.
1327  //
1328  //          [N*]           //
1329  //         ^   ^           //
1330  //        /     \          //
1331  //      [U*]    [X]?       //
1332  //        ^       ^        //
1333  //         \       \       //
1334  //          \      |       //
1335  //         [Root*] |       //
1336  //          ^      |       //
1337  //          f      |       //
1338  //          |      /       //
1339  //         [Y]    /        //
1340  //           ^   /         //
1341  //           f  /          //
1342  //           | /           //
1343  //          [FU]           //
1344  //
1345  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1346  // (call it Fold), then X is a predecessor of FU and a successor of
1347  // Fold. But since Fold and FU are flagged together, this will create
1348  // a cycle in the scheduling graph.
1349
1350  // If the node has flags, walk down the graph to the "lowest" node in the
1351  // flagged set.
1352  EVT VT = Root->getValueType(Root->getNumValues()-1);
1353  while (VT == MVT::Flag) {
1354    SDNode *FU = findFlagUse(Root);
1355    if (FU == NULL)
1356      break;
1357    Root = FU;
1358    VT = Root->getValueType(Root->getNumValues()-1);
1359
1360    // If our query node has a flag result with a use, we've walked up it.  If
1361    // the user (which has already been selected) has a chain or indirectly uses
1362    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1363    // this, we cannot ignore chains in this predicate.
1364    IgnoreChains = false;
1365  }
1366
1367
1368  SmallPtrSet<SDNode*, 16> Visited;
1369  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1370}
1371
1372SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1373  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1374  SelectInlineAsmMemoryOperands(Ops);
1375
1376  std::vector<EVT> VTs;
1377  VTs.push_back(MVT::Other);
1378  VTs.push_back(MVT::Flag);
1379  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1380                                VTs, &Ops[0], Ops.size());
1381  New->setNodeId(-1);
1382  return New.getNode();
1383}
1384
1385SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1386  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1387}
1388
1389/// GetVBR - decode a vbr encoding whose top bit is set.
1390ALWAYS_INLINE static uint64_t
1391GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1392  assert(Val >= 128 && "Not a VBR");
1393  Val &= 127;  // Remove first vbr bit.
1394
1395  unsigned Shift = 7;
1396  uint64_t NextBits;
1397  do {
1398    NextBits = MatcherTable[Idx++];
1399    Val |= (NextBits&127) << Shift;
1400    Shift += 7;
1401  } while (NextBits & 128);
1402
1403  return Val;
1404}
1405
1406
1407/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1408/// interior flag and chain results to use the new flag and chain results.
1409void SelectionDAGISel::
1410UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1411                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1412                     SDValue InputFlag,
1413                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1414                     bool isMorphNodeTo) {
1415  SmallVector<SDNode*, 4> NowDeadNodes;
1416
1417  ISelUpdater ISU(ISelPosition);
1418
1419  // Now that all the normal results are replaced, we replace the chain and
1420  // flag results if present.
1421  if (!ChainNodesMatched.empty()) {
1422    assert(InputChain.getNode() != 0 &&
1423           "Matched input chains but didn't produce a chain");
1424    // Loop over all of the nodes we matched that produced a chain result.
1425    // Replace all the chain results with the final chain we ended up with.
1426    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1427      SDNode *ChainNode = ChainNodesMatched[i];
1428
1429      // If this node was already deleted, don't look at it.
1430      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1431        continue;
1432
1433      // Don't replace the results of the root node if we're doing a
1434      // MorphNodeTo.
1435      if (ChainNode == NodeToMatch && isMorphNodeTo)
1436        continue;
1437
1438      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1439      if (ChainVal.getValueType() == MVT::Flag)
1440        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1441      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1442      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1443
1444      // If the node became dead and we haven't already seen it, delete it.
1445      if (ChainNode->use_empty() &&
1446          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1447        NowDeadNodes.push_back(ChainNode);
1448    }
1449  }
1450
1451  // If the result produces a flag, update any flag results in the matched
1452  // pattern with the flag result.
1453  if (InputFlag.getNode() != 0) {
1454    // Handle any interior nodes explicitly marked.
1455    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1456      SDNode *FRN = FlagResultNodesMatched[i];
1457
1458      // If this node was already deleted, don't look at it.
1459      if (FRN->getOpcode() == ISD::DELETED_NODE)
1460        continue;
1461
1462      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1463             "Doesn't have a flag result");
1464      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1465                                        InputFlag, &ISU);
1466
1467      // If the node became dead and we haven't already seen it, delete it.
1468      if (FRN->use_empty() &&
1469          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1470        NowDeadNodes.push_back(FRN);
1471    }
1472  }
1473
1474  if (!NowDeadNodes.empty())
1475    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1476
1477  DEBUG(errs() << "ISEL: Match complete!\n");
1478}
1479
1480enum ChainResult {
1481  CR_Simple,
1482  CR_InducesCycle,
1483  CR_LeadsToInteriorNode
1484};
1485
1486/// WalkChainUsers - Walk down the users of the specified chained node that is
1487/// part of the pattern we're matching, looking at all of the users we find.
1488/// This determines whether something is an interior node, whether we have a
1489/// non-pattern node in between two pattern nodes (which prevent folding because
1490/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1491/// between pattern nodes (in which case the TF becomes part of the pattern).
1492///
1493/// The walk we do here is guaranteed to be small because we quickly get down to
1494/// already selected nodes "below" us.
1495static ChainResult
1496WalkChainUsers(SDNode *ChainedNode,
1497               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1498               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1499  ChainResult Result = CR_Simple;
1500
1501  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1502         E = ChainedNode->use_end(); UI != E; ++UI) {
1503    // Make sure the use is of the chain, not some other value we produce.
1504    if (UI.getUse().getValueType() != MVT::Other) continue;
1505
1506    SDNode *User = *UI;
1507
1508    // If we see an already-selected machine node, then we've gone beyond the
1509    // pattern that we're selecting down into the already selected chunk of the
1510    // DAG.
1511    if (User->isMachineOpcode() ||
1512        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1513      continue;
1514
1515    if (User->getOpcode() == ISD::CopyToReg ||
1516        User->getOpcode() == ISD::CopyFromReg ||
1517        User->getOpcode() == ISD::INLINEASM ||
1518        User->getOpcode() == ISD::EH_LABEL) {
1519      // If their node ID got reset to -1 then they've already been selected.
1520      // Treat them like a MachineOpcode.
1521      if (User->getNodeId() == -1)
1522        continue;
1523    }
1524
1525    // If we have a TokenFactor, we handle it specially.
1526    if (User->getOpcode() != ISD::TokenFactor) {
1527      // If the node isn't a token factor and isn't part of our pattern, then it
1528      // must be a random chained node in between two nodes we're selecting.
1529      // This happens when we have something like:
1530      //   x = load ptr
1531      //   call
1532      //   y = x+4
1533      //   store y -> ptr
1534      // Because we structurally match the load/store as a read/modify/write,
1535      // but the call is chained between them.  We cannot fold in this case
1536      // because it would induce a cycle in the graph.
1537      if (!std::count(ChainedNodesInPattern.begin(),
1538                      ChainedNodesInPattern.end(), User))
1539        return CR_InducesCycle;
1540
1541      // Otherwise we found a node that is part of our pattern.  For example in:
1542      //   x = load ptr
1543      //   y = x+4
1544      //   store y -> ptr
1545      // This would happen when we're scanning down from the load and see the
1546      // store as a user.  Record that there is a use of ChainedNode that is
1547      // part of the pattern and keep scanning uses.
1548      Result = CR_LeadsToInteriorNode;
1549      InteriorChainedNodes.push_back(User);
1550      continue;
1551    }
1552
1553    // If we found a TokenFactor, there are two cases to consider: first if the
1554    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1555    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1556    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1557    //     [Load chain]
1558    //         ^
1559    //         |
1560    //       [Load]
1561    //       ^    ^
1562    //       |    \                    DAG's like cheese
1563    //      /       \                       do you?
1564    //     /         |
1565    // [TokenFactor] [Op]
1566    //     ^          ^
1567    //     |          |
1568    //      \        /
1569    //       \      /
1570    //       [Store]
1571    //
1572    // In this case, the TokenFactor becomes part of our match and we rewrite it
1573    // as a new TokenFactor.
1574    //
1575    // To distinguish these two cases, do a recursive walk down the uses.
1576    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1577    case CR_Simple:
1578      // If the uses of the TokenFactor are just already-selected nodes, ignore
1579      // it, it is "below" our pattern.
1580      continue;
1581    case CR_InducesCycle:
1582      // If the uses of the TokenFactor lead to nodes that are not part of our
1583      // pattern that are not selected, folding would turn this into a cycle,
1584      // bail out now.
1585      return CR_InducesCycle;
1586    case CR_LeadsToInteriorNode:
1587      break;  // Otherwise, keep processing.
1588    }
1589
1590    // Okay, we know we're in the interesting interior case.  The TokenFactor
1591    // is now going to be considered part of the pattern so that we rewrite its
1592    // uses (it may have uses that are not part of the pattern) with the
1593    // ultimate chain result of the generated code.  We will also add its chain
1594    // inputs as inputs to the ultimate TokenFactor we create.
1595    Result = CR_LeadsToInteriorNode;
1596    ChainedNodesInPattern.push_back(User);
1597    InteriorChainedNodes.push_back(User);
1598    continue;
1599  }
1600
1601  return Result;
1602}
1603
1604/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1605/// operation for when the pattern matched at least one node with a chains.  The
1606/// input vector contains a list of all of the chained nodes that we match.  We
1607/// must determine if this is a valid thing to cover (i.e. matching it won't
1608/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1609/// be used as the input node chain for the generated nodes.
1610static SDValue
1611HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1612                       SelectionDAG *CurDAG) {
1613  // Walk all of the chained nodes we've matched, recursively scanning down the
1614  // users of the chain result. This adds any TokenFactor nodes that are caught
1615  // in between chained nodes to the chained and interior nodes list.
1616  SmallVector<SDNode*, 3> InteriorChainedNodes;
1617  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1618    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1619                       InteriorChainedNodes) == CR_InducesCycle)
1620      return SDValue(); // Would induce a cycle.
1621  }
1622
1623  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1624  // that we are interested in.  Form our input TokenFactor node.
1625  SmallVector<SDValue, 3> InputChains;
1626  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1627    // Add the input chain of this node to the InputChains list (which will be
1628    // the operands of the generated TokenFactor) if it's not an interior node.
1629    SDNode *N = ChainNodesMatched[i];
1630    if (N->getOpcode() != ISD::TokenFactor) {
1631      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1632        continue;
1633
1634      // Otherwise, add the input chain.
1635      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1636      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1637      InputChains.push_back(InChain);
1638      continue;
1639    }
1640
1641    // If we have a token factor, we want to add all inputs of the token factor
1642    // that are not part of the pattern we're matching.
1643    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1644      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1645                      N->getOperand(op).getNode()))
1646        InputChains.push_back(N->getOperand(op));
1647    }
1648  }
1649
1650  SDValue Res;
1651  if (InputChains.size() == 1)
1652    return InputChains[0];
1653  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1654                         MVT::Other, &InputChains[0], InputChains.size());
1655}
1656
1657/// MorphNode - Handle morphing a node in place for the selector.
1658SDNode *SelectionDAGISel::
1659MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1660          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1661  // It is possible we're using MorphNodeTo to replace a node with no
1662  // normal results with one that has a normal result (or we could be
1663  // adding a chain) and the input could have flags and chains as well.
1664  // In this case we need to shift the operands down.
1665  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1666  // than the old isel though.
1667  int OldFlagResultNo = -1, OldChainResultNo = -1;
1668
1669  unsigned NTMNumResults = Node->getNumValues();
1670  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1671    OldFlagResultNo = NTMNumResults-1;
1672    if (NTMNumResults != 1 &&
1673        Node->getValueType(NTMNumResults-2) == MVT::Other)
1674      OldChainResultNo = NTMNumResults-2;
1675  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1676    OldChainResultNo = NTMNumResults-1;
1677
1678  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1679  // that this deletes operands of the old node that become dead.
1680  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1681
1682  // MorphNodeTo can operate in two ways: if an existing node with the
1683  // specified operands exists, it can just return it.  Otherwise, it
1684  // updates the node in place to have the requested operands.
1685  if (Res == Node) {
1686    // If we updated the node in place, reset the node ID.  To the isel,
1687    // this should be just like a newly allocated machine node.
1688    Res->setNodeId(-1);
1689  }
1690
1691  unsigned ResNumResults = Res->getNumValues();
1692  // Move the flag if needed.
1693  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1694      (unsigned)OldFlagResultNo != ResNumResults-1)
1695    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1696                                      SDValue(Res, ResNumResults-1));
1697
1698  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1699  --ResNumResults;
1700
1701  // Move the chain reference if needed.
1702  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1703      (unsigned)OldChainResultNo != ResNumResults-1)
1704    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1705                                      SDValue(Res, ResNumResults-1));
1706
1707  // Otherwise, no replacement happened because the node already exists. Replace
1708  // Uses of the old node with the new one.
1709  if (Res != Node)
1710    CurDAG->ReplaceAllUsesWith(Node, Res);
1711
1712  return Res;
1713}
1714
1715/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1716ALWAYS_INLINE static bool
1717CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1718          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1719  // Accept if it is exactly the same as a previously recorded node.
1720  unsigned RecNo = MatcherTable[MatcherIndex++];
1721  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1722  return N == RecordedNodes[RecNo];
1723}
1724
1725/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1726ALWAYS_INLINE static bool
1727CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1728                      SelectionDAGISel &SDISel) {
1729  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1730}
1731
1732/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1733ALWAYS_INLINE static bool
1734CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1735                   SelectionDAGISel &SDISel, SDNode *N) {
1736  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1737}
1738
1739ALWAYS_INLINE static bool
1740CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1741            SDNode *N) {
1742  uint16_t Opc = MatcherTable[MatcherIndex++];
1743  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1744  return N->getOpcode() == Opc;
1745}
1746
1747ALWAYS_INLINE static bool
1748CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1749          SDValue N, const TargetLowering &TLI) {
1750  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1751  if (N.getValueType() == VT) return true;
1752
1753  // Handle the case when VT is iPTR.
1754  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1755}
1756
1757ALWAYS_INLINE static bool
1758CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1759               SDValue N, const TargetLowering &TLI,
1760               unsigned ChildNo) {
1761  if (ChildNo >= N.getNumOperands())
1762    return false;  // Match fails if out of range child #.
1763  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1764}
1765
1766
1767ALWAYS_INLINE static bool
1768CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1769              SDValue N) {
1770  return cast<CondCodeSDNode>(N)->get() ==
1771      (ISD::CondCode)MatcherTable[MatcherIndex++];
1772}
1773
1774ALWAYS_INLINE static bool
1775CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1776               SDValue N, const TargetLowering &TLI) {
1777  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1778  if (cast<VTSDNode>(N)->getVT() == VT)
1779    return true;
1780
1781  // Handle the case when VT is iPTR.
1782  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1783}
1784
1785ALWAYS_INLINE static bool
1786CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1787             SDValue N) {
1788  int64_t Val = MatcherTable[MatcherIndex++];
1789  if (Val & 128)
1790    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1791
1792  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1793  return C != 0 && C->getSExtValue() == Val;
1794}
1795
1796ALWAYS_INLINE static bool
1797CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1798            SDValue N, SelectionDAGISel &SDISel) {
1799  int64_t Val = MatcherTable[MatcherIndex++];
1800  if (Val & 128)
1801    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1802
1803  if (N->getOpcode() != ISD::AND) return false;
1804
1805  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1806  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1807}
1808
1809ALWAYS_INLINE static bool
1810CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1811           SDValue N, SelectionDAGISel &SDISel) {
1812  int64_t Val = MatcherTable[MatcherIndex++];
1813  if (Val & 128)
1814    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1815
1816  if (N->getOpcode() != ISD::OR) return false;
1817
1818  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1819  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1820}
1821
1822/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1823/// scope, evaluate the current node.  If the current predicate is known to
1824/// fail, set Result=true and return anything.  If the current predicate is
1825/// known to pass, set Result=false and return the MatcherIndex to continue
1826/// with.  If the current predicate is unknown, set Result=false and return the
1827/// MatcherIndex to continue with.
1828static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1829                                       unsigned Index, SDValue N,
1830                                       bool &Result, SelectionDAGISel &SDISel,
1831                                       SmallVectorImpl<SDValue> &RecordedNodes){
1832  switch (Table[Index++]) {
1833  default:
1834    Result = false;
1835    return Index-1;  // Could not evaluate this predicate.
1836  case SelectionDAGISel::OPC_CheckSame:
1837    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1838    return Index;
1839  case SelectionDAGISel::OPC_CheckPatternPredicate:
1840    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1841    return Index;
1842  case SelectionDAGISel::OPC_CheckPredicate:
1843    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1844    return Index;
1845  case SelectionDAGISel::OPC_CheckOpcode:
1846    Result = !::CheckOpcode(Table, Index, N.getNode());
1847    return Index;
1848  case SelectionDAGISel::OPC_CheckType:
1849    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1850    return Index;
1851  case SelectionDAGISel::OPC_CheckChild0Type:
1852  case SelectionDAGISel::OPC_CheckChild1Type:
1853  case SelectionDAGISel::OPC_CheckChild2Type:
1854  case SelectionDAGISel::OPC_CheckChild3Type:
1855  case SelectionDAGISel::OPC_CheckChild4Type:
1856  case SelectionDAGISel::OPC_CheckChild5Type:
1857  case SelectionDAGISel::OPC_CheckChild6Type:
1858  case SelectionDAGISel::OPC_CheckChild7Type:
1859    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1860                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1861    return Index;
1862  case SelectionDAGISel::OPC_CheckCondCode:
1863    Result = !::CheckCondCode(Table, Index, N);
1864    return Index;
1865  case SelectionDAGISel::OPC_CheckValueType:
1866    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1867    return Index;
1868  case SelectionDAGISel::OPC_CheckInteger:
1869    Result = !::CheckInteger(Table, Index, N);
1870    return Index;
1871  case SelectionDAGISel::OPC_CheckAndImm:
1872    Result = !::CheckAndImm(Table, Index, N, SDISel);
1873    return Index;
1874  case SelectionDAGISel::OPC_CheckOrImm:
1875    Result = !::CheckOrImm(Table, Index, N, SDISel);
1876    return Index;
1877  }
1878}
1879
1880
1881struct MatchScope {
1882  /// FailIndex - If this match fails, this is the index to continue with.
1883  unsigned FailIndex;
1884
1885  /// NodeStack - The node stack when the scope was formed.
1886  SmallVector<SDValue, 4> NodeStack;
1887
1888  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1889  unsigned NumRecordedNodes;
1890
1891  /// NumMatchedMemRefs - The number of matched memref entries.
1892  unsigned NumMatchedMemRefs;
1893
1894  /// InputChain/InputFlag - The current chain/flag
1895  SDValue InputChain, InputFlag;
1896
1897  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1898  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1899};
1900
1901SDNode *SelectionDAGISel::
1902SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1903                 unsigned TableSize) {
1904  // FIXME: Should these even be selected?  Handle these cases in the caller?
1905  switch (NodeToMatch->getOpcode()) {
1906  default:
1907    break;
1908  case ISD::EntryToken:       // These nodes remain the same.
1909  case ISD::BasicBlock:
1910  case ISD::Register:
1911  //case ISD::VALUETYPE:
1912  //case ISD::CONDCODE:
1913  case ISD::HANDLENODE:
1914  case ISD::MDNODE_SDNODE:
1915  case ISD::TargetConstant:
1916  case ISD::TargetConstantFP:
1917  case ISD::TargetConstantPool:
1918  case ISD::TargetFrameIndex:
1919  case ISD::TargetExternalSymbol:
1920  case ISD::TargetBlockAddress:
1921  case ISD::TargetJumpTable:
1922  case ISD::TargetGlobalTLSAddress:
1923  case ISD::TargetGlobalAddress:
1924  case ISD::TokenFactor:
1925  case ISD::CopyFromReg:
1926  case ISD::CopyToReg:
1927  case ISD::EH_LABEL:
1928    NodeToMatch->setNodeId(-1); // Mark selected.
1929    return 0;
1930  case ISD::AssertSext:
1931  case ISD::AssertZext:
1932    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1933                                      NodeToMatch->getOperand(0));
1934    return 0;
1935  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1936  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1937  }
1938
1939  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1940
1941  // Set up the node stack with NodeToMatch as the only node on the stack.
1942  SmallVector<SDValue, 8> NodeStack;
1943  SDValue N = SDValue(NodeToMatch, 0);
1944  NodeStack.push_back(N);
1945
1946  // MatchScopes - Scopes used when matching, if a match failure happens, this
1947  // indicates where to continue checking.
1948  SmallVector<MatchScope, 8> MatchScopes;
1949
1950  // RecordedNodes - This is the set of nodes that have been recorded by the
1951  // state machine.
1952  SmallVector<SDValue, 8> RecordedNodes;
1953
1954  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1955  // pattern.
1956  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1957
1958  // These are the current input chain and flag for use when generating nodes.
1959  // Various Emit operations change these.  For example, emitting a copytoreg
1960  // uses and updates these.
1961  SDValue InputChain, InputFlag;
1962
1963  // ChainNodesMatched - If a pattern matches nodes that have input/output
1964  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1965  // which ones they are.  The result is captured into this list so that we can
1966  // update the chain results when the pattern is complete.
1967  SmallVector<SDNode*, 3> ChainNodesMatched;
1968  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1969
1970  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1971        NodeToMatch->dump(CurDAG);
1972        errs() << '\n');
1973
1974  // Determine where to start the interpreter.  Normally we start at opcode #0,
1975  // but if the state machine starts with an OPC_SwitchOpcode, then we
1976  // accelerate the first lookup (which is guaranteed to be hot) with the
1977  // OpcodeOffset table.
1978  unsigned MatcherIndex = 0;
1979
1980  if (!OpcodeOffset.empty()) {
1981    // Already computed the OpcodeOffset table, just index into it.
1982    if (N.getOpcode() < OpcodeOffset.size())
1983      MatcherIndex = OpcodeOffset[N.getOpcode()];
1984    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1985
1986  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1987    // Otherwise, the table isn't computed, but the state machine does start
1988    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1989    // is the first time we're selecting an instruction.
1990    unsigned Idx = 1;
1991    while (1) {
1992      // Get the size of this case.
1993      unsigned CaseSize = MatcherTable[Idx++];
1994      if (CaseSize & 128)
1995        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1996      if (CaseSize == 0) break;
1997
1998      // Get the opcode, add the index to the table.
1999      uint16_t Opc = MatcherTable[Idx++];
2000      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2001      if (Opc >= OpcodeOffset.size())
2002        OpcodeOffset.resize((Opc+1)*2);
2003      OpcodeOffset[Opc] = Idx;
2004      Idx += CaseSize;
2005    }
2006
2007    // Okay, do the lookup for the first opcode.
2008    if (N.getOpcode() < OpcodeOffset.size())
2009      MatcherIndex = OpcodeOffset[N.getOpcode()];
2010  }
2011
2012  while (1) {
2013    assert(MatcherIndex < TableSize && "Invalid index");
2014#ifndef NDEBUG
2015    unsigned CurrentOpcodeIndex = MatcherIndex;
2016#endif
2017    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2018    switch (Opcode) {
2019    case OPC_Scope: {
2020      // Okay, the semantics of this operation are that we should push a scope
2021      // then evaluate the first child.  However, pushing a scope only to have
2022      // the first check fail (which then pops it) is inefficient.  If we can
2023      // determine immediately that the first check (or first several) will
2024      // immediately fail, don't even bother pushing a scope for them.
2025      unsigned FailIndex;
2026
2027      while (1) {
2028        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2029        if (NumToSkip & 128)
2030          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2031        // Found the end of the scope with no match.
2032        if (NumToSkip == 0) {
2033          FailIndex = 0;
2034          break;
2035        }
2036
2037        FailIndex = MatcherIndex+NumToSkip;
2038
2039        unsigned MatcherIndexOfPredicate = MatcherIndex;
2040        (void)MatcherIndexOfPredicate; // silence warning.
2041
2042        // If we can't evaluate this predicate without pushing a scope (e.g. if
2043        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2044        // push the scope and evaluate the full predicate chain.
2045        bool Result;
2046        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2047                                              Result, *this, RecordedNodes);
2048        if (!Result)
2049          break;
2050
2051        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2052                     << "index " << MatcherIndexOfPredicate
2053                     << ", continuing at " << FailIndex << "\n");
2054        ++NumDAGIselRetries;
2055
2056        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2057        // move to the next case.
2058        MatcherIndex = FailIndex;
2059      }
2060
2061      // If the whole scope failed to match, bail.
2062      if (FailIndex == 0) break;
2063
2064      // Push a MatchScope which indicates where to go if the first child fails
2065      // to match.
2066      MatchScope NewEntry;
2067      NewEntry.FailIndex = FailIndex;
2068      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2069      NewEntry.NumRecordedNodes = RecordedNodes.size();
2070      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2071      NewEntry.InputChain = InputChain;
2072      NewEntry.InputFlag = InputFlag;
2073      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2074      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2075      MatchScopes.push_back(NewEntry);
2076      continue;
2077    }
2078    case OPC_RecordNode:
2079      // Remember this node, it may end up being an operand in the pattern.
2080      RecordedNodes.push_back(N);
2081      continue;
2082
2083    case OPC_RecordChild0: case OPC_RecordChild1:
2084    case OPC_RecordChild2: case OPC_RecordChild3:
2085    case OPC_RecordChild4: case OPC_RecordChild5:
2086    case OPC_RecordChild6: case OPC_RecordChild7: {
2087      unsigned ChildNo = Opcode-OPC_RecordChild0;
2088      if (ChildNo >= N.getNumOperands())
2089        break;  // Match fails if out of range child #.
2090
2091      RecordedNodes.push_back(N->getOperand(ChildNo));
2092      continue;
2093    }
2094    case OPC_RecordMemRef:
2095      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2096      continue;
2097
2098    case OPC_CaptureFlagInput:
2099      // If the current node has an input flag, capture it in InputFlag.
2100      if (N->getNumOperands() != 0 &&
2101          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2102        InputFlag = N->getOperand(N->getNumOperands()-1);
2103      continue;
2104
2105    case OPC_MoveChild: {
2106      unsigned ChildNo = MatcherTable[MatcherIndex++];
2107      if (ChildNo >= N.getNumOperands())
2108        break;  // Match fails if out of range child #.
2109      N = N.getOperand(ChildNo);
2110      NodeStack.push_back(N);
2111      continue;
2112    }
2113
2114    case OPC_MoveParent:
2115      // Pop the current node off the NodeStack.
2116      NodeStack.pop_back();
2117      assert(!NodeStack.empty() && "Node stack imbalance!");
2118      N = NodeStack.back();
2119      continue;
2120
2121    case OPC_CheckSame:
2122      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2123      continue;
2124    case OPC_CheckPatternPredicate:
2125      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2126      continue;
2127    case OPC_CheckPredicate:
2128      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2129                                N.getNode()))
2130        break;
2131      continue;
2132    case OPC_CheckComplexPat: {
2133      unsigned CPNum = MatcherTable[MatcherIndex++];
2134      unsigned RecNo = MatcherTable[MatcherIndex++];
2135      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2136      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2137                               RecordedNodes))
2138        break;
2139      continue;
2140    }
2141    case OPC_CheckOpcode:
2142      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2143      continue;
2144
2145    case OPC_CheckType:
2146      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2147      continue;
2148
2149    case OPC_SwitchOpcode: {
2150      unsigned CurNodeOpcode = N.getOpcode();
2151      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2152      unsigned CaseSize;
2153      while (1) {
2154        // Get the size of this case.
2155        CaseSize = MatcherTable[MatcherIndex++];
2156        if (CaseSize & 128)
2157          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2158        if (CaseSize == 0) break;
2159
2160        uint16_t Opc = MatcherTable[MatcherIndex++];
2161        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2162
2163        // If the opcode matches, then we will execute this case.
2164        if (CurNodeOpcode == Opc)
2165          break;
2166
2167        // Otherwise, skip over this case.
2168        MatcherIndex += CaseSize;
2169      }
2170
2171      // If no cases matched, bail out.
2172      if (CaseSize == 0) break;
2173
2174      // Otherwise, execute the case we found.
2175      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2176                   << " to " << MatcherIndex << "\n");
2177      continue;
2178    }
2179
2180    case OPC_SwitchType: {
2181      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2182      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2183      unsigned CaseSize;
2184      while (1) {
2185        // Get the size of this case.
2186        CaseSize = MatcherTable[MatcherIndex++];
2187        if (CaseSize & 128)
2188          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2189        if (CaseSize == 0) break;
2190
2191        MVT::SimpleValueType CaseVT =
2192          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2193        if (CaseVT == MVT::iPTR)
2194          CaseVT = TLI.getPointerTy().SimpleTy;
2195
2196        // If the VT matches, then we will execute this case.
2197        if (CurNodeVT == CaseVT)
2198          break;
2199
2200        // Otherwise, skip over this case.
2201        MatcherIndex += CaseSize;
2202      }
2203
2204      // If no cases matched, bail out.
2205      if (CaseSize == 0) break;
2206
2207      // Otherwise, execute the case we found.
2208      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2209                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2210      continue;
2211    }
2212    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2213    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2214    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2215    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2216      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2217                            Opcode-OPC_CheckChild0Type))
2218        break;
2219      continue;
2220    case OPC_CheckCondCode:
2221      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2222      continue;
2223    case OPC_CheckValueType:
2224      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2225      continue;
2226    case OPC_CheckInteger:
2227      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2228      continue;
2229    case OPC_CheckAndImm:
2230      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2231      continue;
2232    case OPC_CheckOrImm:
2233      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2234      continue;
2235
2236    case OPC_CheckFoldableChainNode: {
2237      assert(NodeStack.size() != 1 && "No parent node");
2238      // Verify that all intermediate nodes between the root and this one have
2239      // a single use.
2240      bool HasMultipleUses = false;
2241      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2242        if (!NodeStack[i].hasOneUse()) {
2243          HasMultipleUses = true;
2244          break;
2245        }
2246      if (HasMultipleUses) break;
2247
2248      // Check to see that the target thinks this is profitable to fold and that
2249      // we can fold it without inducing cycles in the graph.
2250      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2251                              NodeToMatch) ||
2252          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2253                         NodeToMatch, true/*We validate our own chains*/))
2254        break;
2255
2256      continue;
2257    }
2258    case OPC_EmitInteger: {
2259      MVT::SimpleValueType VT =
2260        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2261      int64_t Val = MatcherTable[MatcherIndex++];
2262      if (Val & 128)
2263        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2264      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2265      continue;
2266    }
2267    case OPC_EmitRegister: {
2268      MVT::SimpleValueType VT =
2269        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2270      unsigned RegNo = MatcherTable[MatcherIndex++];
2271      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2272      continue;
2273    }
2274
2275    case OPC_EmitConvertToTarget:  {
2276      // Convert from IMM/FPIMM to target version.
2277      unsigned RecNo = MatcherTable[MatcherIndex++];
2278      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2279      SDValue Imm = RecordedNodes[RecNo];
2280
2281      if (Imm->getOpcode() == ISD::Constant) {
2282        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2283        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2284      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2285        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2286        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2287      }
2288
2289      RecordedNodes.push_back(Imm);
2290      continue;
2291    }
2292
2293    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2294    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2295      // These are space-optimized forms of OPC_EmitMergeInputChains.
2296      assert(InputChain.getNode() == 0 &&
2297             "EmitMergeInputChains should be the first chain producing node");
2298      assert(ChainNodesMatched.empty() &&
2299             "Should only have one EmitMergeInputChains per match");
2300
2301      // Read all of the chained nodes.
2302      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2303      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2304      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2305
2306      // FIXME: What if other value results of the node have uses not matched
2307      // by this pattern?
2308      if (ChainNodesMatched.back() != NodeToMatch &&
2309          !RecordedNodes[RecNo].hasOneUse()) {
2310        ChainNodesMatched.clear();
2311        break;
2312      }
2313
2314      // Merge the input chains if they are not intra-pattern references.
2315      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2316
2317      if (InputChain.getNode() == 0)
2318        break;  // Failed to merge.
2319      continue;
2320    }
2321
2322    case OPC_EmitMergeInputChains: {
2323      assert(InputChain.getNode() == 0 &&
2324             "EmitMergeInputChains should be the first chain producing node");
2325      // This node gets a list of nodes we matched in the input that have
2326      // chains.  We want to token factor all of the input chains to these nodes
2327      // together.  However, if any of the input chains is actually one of the
2328      // nodes matched in this pattern, then we have an intra-match reference.
2329      // Ignore these because the newly token factored chain should not refer to
2330      // the old nodes.
2331      unsigned NumChains = MatcherTable[MatcherIndex++];
2332      assert(NumChains != 0 && "Can't TF zero chains");
2333
2334      assert(ChainNodesMatched.empty() &&
2335             "Should only have one EmitMergeInputChains per match");
2336
2337      // Read all of the chained nodes.
2338      for (unsigned i = 0; i != NumChains; ++i) {
2339        unsigned RecNo = MatcherTable[MatcherIndex++];
2340        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2341        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2342
2343        // FIXME: What if other value results of the node have uses not matched
2344        // by this pattern?
2345        if (ChainNodesMatched.back() != NodeToMatch &&
2346            !RecordedNodes[RecNo].hasOneUse()) {
2347          ChainNodesMatched.clear();
2348          break;
2349        }
2350      }
2351
2352      // If the inner loop broke out, the match fails.
2353      if (ChainNodesMatched.empty())
2354        break;
2355
2356      // Merge the input chains if they are not intra-pattern references.
2357      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2358
2359      if (InputChain.getNode() == 0)
2360        break;  // Failed to merge.
2361
2362      continue;
2363    }
2364
2365    case OPC_EmitCopyToReg: {
2366      unsigned RecNo = MatcherTable[MatcherIndex++];
2367      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2368      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2369
2370      if (InputChain.getNode() == 0)
2371        InputChain = CurDAG->getEntryNode();
2372
2373      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2374                                        DestPhysReg, RecordedNodes[RecNo],
2375                                        InputFlag);
2376
2377      InputFlag = InputChain.getValue(1);
2378      continue;
2379    }
2380
2381    case OPC_EmitNodeXForm: {
2382      unsigned XFormNo = MatcherTable[MatcherIndex++];
2383      unsigned RecNo = MatcherTable[MatcherIndex++];
2384      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2385      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2386      continue;
2387    }
2388
2389    case OPC_EmitNode:
2390    case OPC_MorphNodeTo: {
2391      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2392      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2393      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2394      // Get the result VT list.
2395      unsigned NumVTs = MatcherTable[MatcherIndex++];
2396      SmallVector<EVT, 4> VTs;
2397      for (unsigned i = 0; i != NumVTs; ++i) {
2398        MVT::SimpleValueType VT =
2399          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2400        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2401        VTs.push_back(VT);
2402      }
2403
2404      if (EmitNodeInfo & OPFL_Chain)
2405        VTs.push_back(MVT::Other);
2406      if (EmitNodeInfo & OPFL_FlagOutput)
2407        VTs.push_back(MVT::Flag);
2408
2409      // This is hot code, so optimize the two most common cases of 1 and 2
2410      // results.
2411      SDVTList VTList;
2412      if (VTs.size() == 1)
2413        VTList = CurDAG->getVTList(VTs[0]);
2414      else if (VTs.size() == 2)
2415        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2416      else
2417        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2418
2419      // Get the operand list.
2420      unsigned NumOps = MatcherTable[MatcherIndex++];
2421      SmallVector<SDValue, 8> Ops;
2422      for (unsigned i = 0; i != NumOps; ++i) {
2423        unsigned RecNo = MatcherTable[MatcherIndex++];
2424        if (RecNo & 128)
2425          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2426
2427        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2428        Ops.push_back(RecordedNodes[RecNo]);
2429      }
2430
2431      // If there are variadic operands to add, handle them now.
2432      if (EmitNodeInfo & OPFL_VariadicInfo) {
2433        // Determine the start index to copy from.
2434        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2435        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2436        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2437               "Invalid variadic node");
2438        // Copy all of the variadic operands, not including a potential flag
2439        // input.
2440        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2441             i != e; ++i) {
2442          SDValue V = NodeToMatch->getOperand(i);
2443          if (V.getValueType() == MVT::Flag) break;
2444          Ops.push_back(V);
2445        }
2446      }
2447
2448      // If this has chain/flag inputs, add them.
2449      if (EmitNodeInfo & OPFL_Chain)
2450        Ops.push_back(InputChain);
2451      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2452        Ops.push_back(InputFlag);
2453
2454      // Create the node.
2455      SDNode *Res = 0;
2456      if (Opcode != OPC_MorphNodeTo) {
2457        // If this is a normal EmitNode command, just create the new node and
2458        // add the results to the RecordedNodes list.
2459        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2460                                     VTList, Ops.data(), Ops.size());
2461
2462        // Add all the non-flag/non-chain results to the RecordedNodes list.
2463        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2464          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2465          RecordedNodes.push_back(SDValue(Res, i));
2466        }
2467
2468      } else {
2469        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2470                        EmitNodeInfo);
2471      }
2472
2473      // If the node had chain/flag results, update our notion of the current
2474      // chain and flag.
2475      if (EmitNodeInfo & OPFL_FlagOutput) {
2476        InputFlag = SDValue(Res, VTs.size()-1);
2477        if (EmitNodeInfo & OPFL_Chain)
2478          InputChain = SDValue(Res, VTs.size()-2);
2479      } else if (EmitNodeInfo & OPFL_Chain)
2480        InputChain = SDValue(Res, VTs.size()-1);
2481
2482      // If the OPFL_MemRefs flag is set on this node, slap all of the
2483      // accumulated memrefs onto it.
2484      //
2485      // FIXME: This is vastly incorrect for patterns with multiple outputs
2486      // instructions that access memory and for ComplexPatterns that match
2487      // loads.
2488      if (EmitNodeInfo & OPFL_MemRefs) {
2489        MachineSDNode::mmo_iterator MemRefs =
2490          MF->allocateMemRefsArray(MatchedMemRefs.size());
2491        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2492        cast<MachineSDNode>(Res)
2493          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2494      }
2495
2496      DEBUG(errs() << "  "
2497                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2498                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2499
2500      // If this was a MorphNodeTo then we're completely done!
2501      if (Opcode == OPC_MorphNodeTo) {
2502        // Update chain and flag uses.
2503        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2504                             InputFlag, FlagResultNodesMatched, true);
2505        return Res;
2506      }
2507
2508      continue;
2509    }
2510
2511    case OPC_MarkFlagResults: {
2512      unsigned NumNodes = MatcherTable[MatcherIndex++];
2513
2514      // Read and remember all the flag-result nodes.
2515      for (unsigned i = 0; i != NumNodes; ++i) {
2516        unsigned RecNo = MatcherTable[MatcherIndex++];
2517        if (RecNo & 128)
2518          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2519
2520        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2521        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2522      }
2523      continue;
2524    }
2525
2526    case OPC_CompleteMatch: {
2527      // The match has been completed, and any new nodes (if any) have been
2528      // created.  Patch up references to the matched dag to use the newly
2529      // created nodes.
2530      unsigned NumResults = MatcherTable[MatcherIndex++];
2531
2532      for (unsigned i = 0; i != NumResults; ++i) {
2533        unsigned ResSlot = MatcherTable[MatcherIndex++];
2534        if (ResSlot & 128)
2535          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2536
2537        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2538        SDValue Res = RecordedNodes[ResSlot];
2539
2540        assert(i < NodeToMatch->getNumValues() &&
2541               NodeToMatch->getValueType(i) != MVT::Other &&
2542               NodeToMatch->getValueType(i) != MVT::Flag &&
2543               "Invalid number of results to complete!");
2544        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2545                NodeToMatch->getValueType(i) == MVT::iPTR ||
2546                Res.getValueType() == MVT::iPTR ||
2547                NodeToMatch->getValueType(i).getSizeInBits() ==
2548                    Res.getValueType().getSizeInBits()) &&
2549               "invalid replacement");
2550        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2551      }
2552
2553      // If the root node defines a flag, add it to the flag nodes to update
2554      // list.
2555      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2556        FlagResultNodesMatched.push_back(NodeToMatch);
2557
2558      // Update chain and flag uses.
2559      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2560                           InputFlag, FlagResultNodesMatched, false);
2561
2562      assert(NodeToMatch->use_empty() &&
2563             "Didn't replace all uses of the node?");
2564
2565      // FIXME: We just return here, which interacts correctly with SelectRoot
2566      // above.  We should fix this to not return an SDNode* anymore.
2567      return 0;
2568    }
2569    }
2570
2571    // If the code reached this point, then the match failed.  See if there is
2572    // another child to try in the current 'Scope', otherwise pop it until we
2573    // find a case to check.
2574    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2575    ++NumDAGIselRetries;
2576    while (1) {
2577      if (MatchScopes.empty()) {
2578        CannotYetSelect(NodeToMatch);
2579        return 0;
2580      }
2581
2582      // Restore the interpreter state back to the point where the scope was
2583      // formed.
2584      MatchScope &LastScope = MatchScopes.back();
2585      RecordedNodes.resize(LastScope.NumRecordedNodes);
2586      NodeStack.clear();
2587      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2588      N = NodeStack.back();
2589
2590      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2591        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2592      MatcherIndex = LastScope.FailIndex;
2593
2594      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2595
2596      InputChain = LastScope.InputChain;
2597      InputFlag = LastScope.InputFlag;
2598      if (!LastScope.HasChainNodesMatched)
2599        ChainNodesMatched.clear();
2600      if (!LastScope.HasFlagResultNodesMatched)
2601        FlagResultNodesMatched.clear();
2602
2603      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2604      // we have reached the end of this scope, otherwise we have another child
2605      // in the current scope to try.
2606      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2607      if (NumToSkip & 128)
2608        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2609
2610      // If we have another child in this scope to match, update FailIndex and
2611      // try it.
2612      if (NumToSkip != 0) {
2613        LastScope.FailIndex = MatcherIndex+NumToSkip;
2614        break;
2615      }
2616
2617      // End of this scope, pop it and try the next child in the containing
2618      // scope.
2619      MatchScopes.pop_back();
2620    }
2621  }
2622}
2623
2624
2625
2626void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2627  std::string msg;
2628  raw_string_ostream Msg(msg);
2629  Msg << "Cannot yet select: ";
2630
2631  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2632      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2633      N->getOpcode() != ISD::INTRINSIC_VOID) {
2634    N->printrFull(Msg, CurDAG);
2635  } else {
2636    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2637    unsigned iid =
2638      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2639    if (iid < Intrinsic::num_intrinsics)
2640      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2641    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2642      Msg << "target intrinsic %" << TII->getName(iid);
2643    else
2644      Msg << "unknown intrinsic #" << iid;
2645  }
2646  report_fatal_error(Msg.str());
2647}
2648
2649char SelectionDAGISel::ID = 0;
2650