SelectionDAGISel.cpp revision b11ac88a997a2d07c5400c43a2217225fc896ce2
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "SimpleBBISel.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/ScheduleDAG.h"
37#include "llvm/CodeGen/SchedulerRegistry.h"
38#include "llvm/CodeGen/SelectionDAG.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "llvm/Target/TargetData.h"
41#include "llvm/Target/TargetFrameInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Support/Compiler.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/MathExtras.h"
49#include "llvm/Support/Timer.h"
50#include <algorithm>
51using namespace llvm;
52
53static cl::opt<bool>
54EnableValueProp("enable-value-prop", cl::Hidden);
55static cl::opt<bool>
56EnableLegalizeTypes("enable-legalize-types", cl::Hidden);
57
58
59#ifndef NDEBUG
60static cl::opt<bool>
61ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
62          cl::desc("Pop up a window to show dags before the first "
63                   "dag combine pass"));
64static cl::opt<bool>
65ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
66          cl::desc("Pop up a window to show dags before legalize types"));
67static cl::opt<bool>
68ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
69          cl::desc("Pop up a window to show dags before legalize"));
70static cl::opt<bool>
71ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
72          cl::desc("Pop up a window to show dags before the second "
73                   "dag combine pass"));
74static cl::opt<bool>
75ViewISelDAGs("view-isel-dags", cl::Hidden,
76          cl::desc("Pop up a window to show isel dags as they are selected"));
77static cl::opt<bool>
78ViewSchedDAGs("view-sched-dags", cl::Hidden,
79          cl::desc("Pop up a window to show sched dags as they are processed"));
80static cl::opt<bool>
81ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
82      cl::desc("Pop up a window to show SUnit dags after they are processed"));
83#else
84static const bool ViewDAGCombine1 = false,
85                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
86                  ViewDAGCombine2 = false,
87                  ViewISelDAGs = false, ViewSchedDAGs = false,
88                  ViewSUnitDAGs = false;
89#endif
90
91//===---------------------------------------------------------------------===//
92///
93/// RegisterScheduler class - Track the registration of instruction schedulers.
94///
95//===---------------------------------------------------------------------===//
96MachinePassRegistry RegisterScheduler::Registry;
97
98//===---------------------------------------------------------------------===//
99///
100/// ISHeuristic command line option for instruction schedulers.
101///
102//===---------------------------------------------------------------------===//
103static cl::opt<RegisterScheduler::FunctionPassCtor, false,
104               RegisterPassParser<RegisterScheduler> >
105ISHeuristic("pre-RA-sched",
106            cl::init(&createDefaultScheduler),
107            cl::desc("Instruction schedulers available (before register"
108                     " allocation):"));
109
110static RegisterScheduler
111defaultListDAGScheduler("default", "  Best scheduler for the target",
112                        createDefaultScheduler);
113
114namespace { struct SDISelAsmOperandInfo; }
115
116/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
117/// insertvalue or extractvalue indices that identify a member, return
118/// the linearized index of the start of the member.
119///
120static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
121                                   const unsigned *Indices,
122                                   const unsigned *IndicesEnd,
123                                   unsigned CurIndex = 0) {
124  // Base case: We're done.
125  if (Indices && Indices == IndicesEnd)
126    return CurIndex;
127
128  // Given a struct type, recursively traverse the elements.
129  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
130    for (StructType::element_iterator EB = STy->element_begin(),
131                                      EI = EB,
132                                      EE = STy->element_end();
133        EI != EE; ++EI) {
134      if (Indices && *Indices == unsigned(EI - EB))
135        return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
136      CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
137    }
138  }
139  // Given an array type, recursively traverse the elements.
140  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
141    const Type *EltTy = ATy->getElementType();
142    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
143      if (Indices && *Indices == i)
144        return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
145      CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
146    }
147  }
148  // We haven't found the type we're looking for, so keep searching.
149  return CurIndex + 1;
150}
151
152/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
153/// MVTs that represent all the individual underlying
154/// non-aggregate types that comprise it.
155///
156/// If Offsets is non-null, it points to a vector to be filled in
157/// with the in-memory offsets of each of the individual values.
158///
159static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
160                            SmallVectorImpl<MVT> &ValueVTs,
161                            SmallVectorImpl<uint64_t> *Offsets = 0,
162                            uint64_t StartingOffset = 0) {
163  // Given a struct type, recursively traverse the elements.
164  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
165    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
166    for (StructType::element_iterator EB = STy->element_begin(),
167                                      EI = EB,
168                                      EE = STy->element_end();
169         EI != EE; ++EI)
170      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
171                      StartingOffset + SL->getElementOffset(EI - EB));
172    return;
173  }
174  // Given an array type, recursively traverse the elements.
175  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
176    const Type *EltTy = ATy->getElementType();
177    uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
178    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
179      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
180                      StartingOffset + i * EltSize);
181    return;
182  }
183  // Base case: we can get an MVT for this LLVM IR type.
184  ValueVTs.push_back(TLI.getValueType(Ty));
185  if (Offsets)
186    Offsets->push_back(StartingOffset);
187}
188
189namespace {
190  /// RegsForValue - This struct represents the registers (physical or virtual)
191  /// that a particular set of values is assigned, and the type information about
192  /// the value. The most common situation is to represent one value at a time,
193  /// but struct or array values are handled element-wise as multiple values.
194  /// The splitting of aggregates is performed recursively, so that we never
195  /// have aggregate-typed registers. The values at this point do not necessarily
196  /// have legal types, so each value may require one or more registers of some
197  /// legal type.
198  ///
199  struct VISIBILITY_HIDDEN RegsForValue {
200    /// TLI - The TargetLowering object.
201    ///
202    const TargetLowering *TLI;
203
204    /// ValueVTs - The value types of the values, which may not be legal, and
205    /// may need be promoted or synthesized from one or more registers.
206    ///
207    SmallVector<MVT, 4> ValueVTs;
208
209    /// RegVTs - The value types of the registers. This is the same size as
210    /// ValueVTs and it records, for each value, what the type of the assigned
211    /// register or registers are. (Individual values are never synthesized
212    /// from more than one type of register.)
213    ///
214    /// With virtual registers, the contents of RegVTs is redundant with TLI's
215    /// getRegisterType member function, however when with physical registers
216    /// it is necessary to have a separate record of the types.
217    ///
218    SmallVector<MVT, 4> RegVTs;
219
220    /// Regs - This list holds the registers assigned to the values.
221    /// Each legal or promoted value requires one register, and each
222    /// expanded value requires multiple registers.
223    ///
224    SmallVector<unsigned, 4> Regs;
225
226    RegsForValue() : TLI(0) {}
227
228    RegsForValue(const TargetLowering &tli,
229                 const SmallVector<unsigned, 4> &regs,
230                 MVT regvt, MVT valuevt)
231      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
232    RegsForValue(const TargetLowering &tli,
233                 const SmallVector<unsigned, 4> &regs,
234                 const SmallVector<MVT, 4> &regvts,
235                 const SmallVector<MVT, 4> &valuevts)
236      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
237    RegsForValue(const TargetLowering &tli,
238                 unsigned Reg, const Type *Ty) : TLI(&tli) {
239      ComputeValueVTs(tli, Ty, ValueVTs);
240
241      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
242        MVT ValueVT = ValueVTs[Value];
243        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
244        MVT RegisterVT = TLI->getRegisterType(ValueVT);
245        for (unsigned i = 0; i != NumRegs; ++i)
246          Regs.push_back(Reg + i);
247        RegVTs.push_back(RegisterVT);
248        Reg += NumRegs;
249      }
250    }
251
252    /// append - Add the specified values to this one.
253    void append(const RegsForValue &RHS) {
254      TLI = RHS.TLI;
255      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
256      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
257      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
258    }
259
260
261    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
262    /// this value and returns the result as a ValueVTs value.  This uses
263    /// Chain/Flag as the input and updates them for the output Chain/Flag.
264    /// If the Flag pointer is NULL, no flag is used.
265    SDValue getCopyFromRegs(SelectionDAG &DAG,
266                              SDValue &Chain, SDValue *Flag) const;
267
268    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
269    /// specified value into the registers specified by this object.  This uses
270    /// Chain/Flag as the input and updates them for the output Chain/Flag.
271    /// If the Flag pointer is NULL, no flag is used.
272    void getCopyToRegs(SDValue Val, SelectionDAG &DAG,
273                       SDValue &Chain, SDValue *Flag) const;
274
275    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
276    /// operand list.  This adds the code marker and includes the number of
277    /// values added into it.
278    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
279                              std::vector<SDValue> &Ops) const;
280  };
281}
282
283namespace llvm {
284  //===--------------------------------------------------------------------===//
285  /// createDefaultScheduler - This creates an instruction scheduler appropriate
286  /// for the target.
287  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
288                                      SelectionDAG *DAG,
289                                      MachineBasicBlock *BB,
290                                      bool Fast) {
291    TargetLowering &TLI = IS->getTargetLowering();
292
293    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
294      return createTDListDAGScheduler(IS, DAG, BB, Fast);
295    } else {
296      assert(TLI.getSchedulingPreference() ==
297           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
298      return createBURRListDAGScheduler(IS, DAG, BB, Fast);
299    }
300  }
301
302
303  //===--------------------------------------------------------------------===//
304  /// FunctionLoweringInfo - This contains information that is global to a
305  /// function that is used when lowering a region of the function.
306  class FunctionLoweringInfo {
307  public:
308    TargetLowering &TLI;
309    Function &Fn;
310    MachineFunction &MF;
311    MachineRegisterInfo &RegInfo;
312
313    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
314
315    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
316    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
317
318    /// ValueMap - Since we emit code for the function a basic block at a time,
319    /// we must remember which virtual registers hold the values for
320    /// cross-basic-block values.
321    DenseMap<const Value*, unsigned> ValueMap;
322
323    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
324    /// the entry block.  This allows the allocas to be efficiently referenced
325    /// anywhere in the function.
326    std::map<const AllocaInst*, int> StaticAllocaMap;
327
328#ifndef NDEBUG
329    SmallSet<Instruction*, 8> CatchInfoLost;
330    SmallSet<Instruction*, 8> CatchInfoFound;
331#endif
332
333    unsigned MakeReg(MVT VT) {
334      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
335    }
336
337    /// isExportedInst - Return true if the specified value is an instruction
338    /// exported from its block.
339    bool isExportedInst(const Value *V) {
340      return ValueMap.count(V);
341    }
342
343    unsigned CreateRegForValue(const Value *V);
344
345    unsigned InitializeRegForValue(const Value *V) {
346      unsigned &R = ValueMap[V];
347      assert(R == 0 && "Already initialized this value register!");
348      return R = CreateRegForValue(V);
349    }
350
351    struct LiveOutInfo {
352      unsigned NumSignBits;
353      APInt KnownOne, KnownZero;
354      LiveOutInfo() : NumSignBits(0) {}
355    };
356
357    /// LiveOutRegInfo - Information about live out vregs, indexed by their
358    /// register number offset by 'FirstVirtualRegister'.
359    std::vector<LiveOutInfo> LiveOutRegInfo;
360  };
361}
362
363/// isSelector - Return true if this instruction is a call to the
364/// eh.selector intrinsic.
365static bool isSelector(Instruction *I) {
366  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
367    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
368            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
369  return false;
370}
371
372/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
373/// PHI nodes or outside of the basic block that defines it, or used by a
374/// switch or atomic instruction, which may expand to multiple basic blocks.
375static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
376  if (isa<PHINode>(I)) return true;
377  BasicBlock *BB = I->getParent();
378  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
379    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
380        // FIXME: Remove switchinst special case.
381        isa<SwitchInst>(*UI))
382      return true;
383  return false;
384}
385
386/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
387/// entry block, return true.  This includes arguments used by switches, since
388/// the switch may expand into multiple basic blocks.
389static bool isOnlyUsedInEntryBlock(Argument *A) {
390  BasicBlock *Entry = A->getParent()->begin();
391  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
392    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
393      return false;  // Use not in entry block.
394  return true;
395}
396
397FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
398                                           Function &fn, MachineFunction &mf)
399    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
400
401  // Create a vreg for each argument register that is not dead and is used
402  // outside of the entry block for the function.
403  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
404       AI != E; ++AI)
405    if (!isOnlyUsedInEntryBlock(AI))
406      InitializeRegForValue(AI);
407
408  // Initialize the mapping of values to registers.  This is only set up for
409  // instruction values that are used outside of the block that defines
410  // them.
411  Function::iterator BB = Fn.begin(), EB = Fn.end();
412  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
413    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
414      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
415        const Type *Ty = AI->getAllocatedType();
416        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
417        unsigned Align =
418          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
419                   AI->getAlignment());
420
421        TySize *= CUI->getZExtValue();   // Get total allocated size.
422        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
423        StaticAllocaMap[AI] =
424          MF.getFrameInfo()->CreateStackObject(TySize, Align);
425      }
426
427  for (; BB != EB; ++BB)
428    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
429      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
430        if (!isa<AllocaInst>(I) ||
431            !StaticAllocaMap.count(cast<AllocaInst>(I)))
432          InitializeRegForValue(I);
433
434  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
435  // also creates the initial PHI MachineInstrs, though none of the input
436  // operands are populated.
437  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
438    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
439    MBBMap[BB] = MBB;
440    MF.push_back(MBB);
441
442    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
443    // appropriate.
444    PHINode *PN;
445    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
446      if (PN->use_empty()) continue;
447
448      unsigned PHIReg = ValueMap[PN];
449      assert(PHIReg && "PHI node does not have an assigned virtual register!");
450
451      SmallVector<MVT, 4> ValueVTs;
452      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
453      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
454        MVT VT = ValueVTs[vti];
455        unsigned NumRegisters = TLI.getNumRegisters(VT);
456        const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
457        for (unsigned i = 0; i != NumRegisters; ++i)
458          BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
459        PHIReg += NumRegisters;
460      }
461    }
462  }
463}
464
465/// CreateRegForValue - Allocate the appropriate number of virtual registers of
466/// the correctly promoted or expanded types.  Assign these registers
467/// consecutive vreg numbers and return the first assigned number.
468///
469/// In the case that the given value has struct or array type, this function
470/// will assign registers for each member or element.
471///
472unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
473  SmallVector<MVT, 4> ValueVTs;
474  ComputeValueVTs(TLI, V->getType(), ValueVTs);
475
476  unsigned FirstReg = 0;
477  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
478    MVT ValueVT = ValueVTs[Value];
479    MVT RegisterVT = TLI.getRegisterType(ValueVT);
480
481    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
482    for (unsigned i = 0; i != NumRegs; ++i) {
483      unsigned R = MakeReg(RegisterVT);
484      if (!FirstReg) FirstReg = R;
485    }
486  }
487  return FirstReg;
488}
489
490//===----------------------------------------------------------------------===//
491/// SelectionDAGLowering - This is the common target-independent lowering
492/// implementation that is parameterized by a TargetLowering object.
493/// Also, targets can overload any lowering method.
494///
495namespace llvm {
496class SelectionDAGLowering {
497  MachineBasicBlock *CurMBB;
498
499  DenseMap<const Value*, SDValue> NodeMap;
500
501  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
502  /// them up and then emit token factor nodes when possible.  This allows us to
503  /// get simple disambiguation between loads without worrying about alias
504  /// analysis.
505  SmallVector<SDValue, 8> PendingLoads;
506
507  /// PendingExports - CopyToReg nodes that copy values to virtual registers
508  /// for export to other blocks need to be emitted before any terminator
509  /// instruction, but they have no other ordering requirements. We bunch them
510  /// up and the emit a single tokenfactor for them just before terminator
511  /// instructions.
512  std::vector<SDValue> PendingExports;
513
514  /// Case - A struct to record the Value for a switch case, and the
515  /// case's target basic block.
516  struct Case {
517    Constant* Low;
518    Constant* High;
519    MachineBasicBlock* BB;
520
521    Case() : Low(0), High(0), BB(0) { }
522    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
523      Low(low), High(high), BB(bb) { }
524    uint64_t size() const {
525      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
526      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
527      return (rHigh - rLow + 1ULL);
528    }
529  };
530
531  struct CaseBits {
532    uint64_t Mask;
533    MachineBasicBlock* BB;
534    unsigned Bits;
535
536    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
537      Mask(mask), BB(bb), Bits(bits) { }
538  };
539
540  typedef std::vector<Case>           CaseVector;
541  typedef std::vector<CaseBits>       CaseBitsVector;
542  typedef CaseVector::iterator        CaseItr;
543  typedef std::pair<CaseItr, CaseItr> CaseRange;
544
545  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
546  /// of conditional branches.
547  struct CaseRec {
548    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
549    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
550
551    /// CaseBB - The MBB in which to emit the compare and branch
552    MachineBasicBlock *CaseBB;
553    /// LT, GE - If nonzero, we know the current case value must be less-than or
554    /// greater-than-or-equal-to these Constants.
555    Constant *LT;
556    Constant *GE;
557    /// Range - A pair of iterators representing the range of case values to be
558    /// processed at this point in the binary search tree.
559    CaseRange Range;
560  };
561
562  typedef std::vector<CaseRec> CaseRecVector;
563
564  /// The comparison function for sorting the switch case values in the vector.
565  /// WARNING: Case ranges should be disjoint!
566  struct CaseCmp {
567    bool operator () (const Case& C1, const Case& C2) {
568      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
569      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
570      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
571      return CI1->getValue().slt(CI2->getValue());
572    }
573  };
574
575  struct CaseBitsCmp {
576    bool operator () (const CaseBits& C1, const CaseBits& C2) {
577      return C1.Bits > C2.Bits;
578    }
579  };
580
581  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
582
583public:
584  // TLI - This is information that describes the available target features we
585  // need for lowering.  This indicates when operations are unavailable,
586  // implemented with a libcall, etc.
587  TargetLowering &TLI;
588  SelectionDAG &DAG;
589  const TargetData *TD;
590  AliasAnalysis &AA;
591
592  /// SwitchCases - Vector of CaseBlock structures used to communicate
593  /// SwitchInst code generation information.
594  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
595  /// JTCases - Vector of JumpTable structures used to communicate
596  /// SwitchInst code generation information.
597  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
598  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
599
600  /// FuncInfo - Information about the function as a whole.
601  ///
602  FunctionLoweringInfo &FuncInfo;
603
604  /// GCI - Garbage collection metadata for the function.
605  CollectorMetadata *GCI;
606
607  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
608                       AliasAnalysis &aa,
609                       FunctionLoweringInfo &funcinfo,
610                       CollectorMetadata *gci)
611    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
612      FuncInfo(funcinfo), GCI(gci) {
613  }
614
615  /// getRoot - Return the current virtual root of the Selection DAG,
616  /// flushing any PendingLoad items. This must be done before emitting
617  /// a store or any other node that may need to be ordered after any
618  /// prior load instructions.
619  ///
620  SDValue getRoot() {
621    if (PendingLoads.empty())
622      return DAG.getRoot();
623
624    if (PendingLoads.size() == 1) {
625      SDValue Root = PendingLoads[0];
626      DAG.setRoot(Root);
627      PendingLoads.clear();
628      return Root;
629    }
630
631    // Otherwise, we have to make a token factor node.
632    SDValue Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
633                                 &PendingLoads[0], PendingLoads.size());
634    PendingLoads.clear();
635    DAG.setRoot(Root);
636    return Root;
637  }
638
639  /// getControlRoot - Similar to getRoot, but instead of flushing all the
640  /// PendingLoad items, flush all the PendingExports items. It is necessary
641  /// to do this before emitting a terminator instruction.
642  ///
643  SDValue getControlRoot() {
644    SDValue Root = DAG.getRoot();
645
646    if (PendingExports.empty())
647      return Root;
648
649    // Turn all of the CopyToReg chains into one factored node.
650    if (Root.getOpcode() != ISD::EntryToken) {
651      unsigned i = 0, e = PendingExports.size();
652      for (; i != e; ++i) {
653        assert(PendingExports[i].Val->getNumOperands() > 1);
654        if (PendingExports[i].Val->getOperand(0) == Root)
655          break;  // Don't add the root if we already indirectly depend on it.
656      }
657
658      if (i == e)
659        PendingExports.push_back(Root);
660    }
661
662    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
663                       &PendingExports[0],
664                       PendingExports.size());
665    PendingExports.clear();
666    DAG.setRoot(Root);
667    return Root;
668  }
669
670  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
671
672  void visit(Instruction &I) { visit(I.getOpcode(), I); }
673
674  void visit(unsigned Opcode, User &I) {
675    // Note: this doesn't use InstVisitor, because it has to work with
676    // ConstantExpr's in addition to instructions.
677    switch (Opcode) {
678    default: assert(0 && "Unknown instruction type encountered!");
679             abort();
680      // Build the switch statement using the Instruction.def file.
681#define HANDLE_INST(NUM, OPCODE, CLASS) \
682    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
683#include "llvm/Instruction.def"
684    }
685  }
686
687  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
688
689  SDValue getValue(const Value *V);
690
691  void setValue(const Value *V, SDValue NewN) {
692    SDValue &N = NodeMap[V];
693    assert(N.Val == 0 && "Already set a value for this node!");
694    N = NewN;
695  }
696
697  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
698                            std::set<unsigned> &OutputRegs,
699                            std::set<unsigned> &InputRegs);
700
701  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
702                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
703                            unsigned Opc);
704  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
705  void ExportFromCurrentBlock(Value *V);
706  void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall,
707                   MachineBasicBlock *LandingPad = NULL);
708
709  // Terminator instructions.
710  void visitRet(ReturnInst &I);
711  void visitBr(BranchInst &I);
712  void visitSwitch(SwitchInst &I);
713  void visitUnreachable(UnreachableInst &I) { /* noop */ }
714
715  // Helpers for visitSwitch
716  bool handleSmallSwitchRange(CaseRec& CR,
717                              CaseRecVector& WorkList,
718                              Value* SV,
719                              MachineBasicBlock* Default);
720  bool handleJTSwitchCase(CaseRec& CR,
721                          CaseRecVector& WorkList,
722                          Value* SV,
723                          MachineBasicBlock* Default);
724  bool handleBTSplitSwitchCase(CaseRec& CR,
725                               CaseRecVector& WorkList,
726                               Value* SV,
727                               MachineBasicBlock* Default);
728  bool handleBitTestsSwitchCase(CaseRec& CR,
729                                CaseRecVector& WorkList,
730                                Value* SV,
731                                MachineBasicBlock* Default);
732  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
733  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
734  void visitBitTestCase(MachineBasicBlock* NextMBB,
735                        unsigned Reg,
736                        SelectionDAGISel::BitTestCase &B);
737  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
738  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
739                            SelectionDAGISel::JumpTableHeader &JTH);
740
741  // These all get lowered before this pass.
742  void visitInvoke(InvokeInst &I);
743  void visitUnwind(UnwindInst &I);
744
745  void visitBinary(User &I, unsigned OpCode);
746  void visitShift(User &I, unsigned Opcode);
747  void visitAdd(User &I) {
748    if (I.getType()->isFPOrFPVector())
749      visitBinary(I, ISD::FADD);
750    else
751      visitBinary(I, ISD::ADD);
752  }
753  void visitSub(User &I);
754  void visitMul(User &I) {
755    if (I.getType()->isFPOrFPVector())
756      visitBinary(I, ISD::FMUL);
757    else
758      visitBinary(I, ISD::MUL);
759  }
760  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
761  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
762  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
763  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
764  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
765  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
766  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
767  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
768  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
769  void visitShl (User &I) { visitShift(I, ISD::SHL); }
770  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
771  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
772  void visitICmp(User &I);
773  void visitFCmp(User &I);
774  void visitVICmp(User &I);
775  void visitVFCmp(User &I);
776  // Visit the conversion instructions
777  void visitTrunc(User &I);
778  void visitZExt(User &I);
779  void visitSExt(User &I);
780  void visitFPTrunc(User &I);
781  void visitFPExt(User &I);
782  void visitFPToUI(User &I);
783  void visitFPToSI(User &I);
784  void visitUIToFP(User &I);
785  void visitSIToFP(User &I);
786  void visitPtrToInt(User &I);
787  void visitIntToPtr(User &I);
788  void visitBitCast(User &I);
789
790  void visitExtractElement(User &I);
791  void visitInsertElement(User &I);
792  void visitShuffleVector(User &I);
793
794  void visitExtractValue(ExtractValueInst &I);
795  void visitInsertValue(InsertValueInst &I);
796
797  void visitGetElementPtr(User &I);
798  void visitSelect(User &I);
799
800  void visitMalloc(MallocInst &I);
801  void visitFree(FreeInst &I);
802  void visitAlloca(AllocaInst &I);
803  void visitLoad(LoadInst &I);
804  void visitStore(StoreInst &I);
805  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
806  void visitCall(CallInst &I);
807  void visitInlineAsm(CallSite CS);
808  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
809  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
810
811  void visitVAStart(CallInst &I);
812  void visitVAArg(VAArgInst &I);
813  void visitVAEnd(CallInst &I);
814  void visitVACopy(CallInst &I);
815
816  void visitUserOp1(Instruction &I) {
817    assert(0 && "UserOp1 should not exist at instruction selection time!");
818    abort();
819  }
820  void visitUserOp2(Instruction &I) {
821    assert(0 && "UserOp2 should not exist at instruction selection time!");
822    abort();
823  }
824
825private:
826  inline const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
827
828};
829} // end namespace llvm
830
831
832/// getCopyFromParts - Create a value that contains the specified legal parts
833/// combined into the value they represent.  If the parts combine to a type
834/// larger then ValueVT then AssertOp can be used to specify whether the extra
835/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
836/// (ISD::AssertSext).
837static SDValue getCopyFromParts(SelectionDAG &DAG,
838                                  const SDValue *Parts,
839                                  unsigned NumParts,
840                                  MVT PartVT,
841                                  MVT ValueVT,
842                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
843  assert(NumParts > 0 && "No parts to assemble!");
844  TargetLowering &TLI = DAG.getTargetLoweringInfo();
845  SDValue Val = Parts[0];
846
847  if (NumParts > 1) {
848    // Assemble the value from multiple parts.
849    if (!ValueVT.isVector()) {
850      unsigned PartBits = PartVT.getSizeInBits();
851      unsigned ValueBits = ValueVT.getSizeInBits();
852
853      // Assemble the power of 2 part.
854      unsigned RoundParts = NumParts & (NumParts - 1) ?
855        1 << Log2_32(NumParts) : NumParts;
856      unsigned RoundBits = PartBits * RoundParts;
857      MVT RoundVT = RoundBits == ValueBits ?
858        ValueVT : MVT::getIntegerVT(RoundBits);
859      SDValue Lo, Hi;
860
861      if (RoundParts > 2) {
862        MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
863        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
864        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
865                              PartVT, HalfVT);
866      } else {
867        Lo = Parts[0];
868        Hi = Parts[1];
869      }
870      if (TLI.isBigEndian())
871        std::swap(Lo, Hi);
872      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
873
874      if (RoundParts < NumParts) {
875        // Assemble the trailing non-power-of-2 part.
876        unsigned OddParts = NumParts - RoundParts;
877        MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
878        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
879
880        // Combine the round and odd parts.
881        Lo = Val;
882        if (TLI.isBigEndian())
883          std::swap(Lo, Hi);
884        MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
885        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
886        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
887                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
888                                         TLI.getShiftAmountTy()));
889        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
890        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
891      }
892    } else {
893      // Handle a multi-element vector.
894      MVT IntermediateVT, RegisterVT;
895      unsigned NumIntermediates;
896      unsigned NumRegs =
897        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
898                                   RegisterVT);
899      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
900      NumParts = NumRegs; // Silence a compiler warning.
901      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
902      assert(RegisterVT == Parts[0].getValueType() &&
903             "Part type doesn't match part!");
904
905      // Assemble the parts into intermediate operands.
906      SmallVector<SDValue, 8> Ops(NumIntermediates);
907      if (NumIntermediates == NumParts) {
908        // If the register was not expanded, truncate or copy the value,
909        // as appropriate.
910        for (unsigned i = 0; i != NumParts; ++i)
911          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
912                                    PartVT, IntermediateVT);
913      } else if (NumParts > 0) {
914        // If the intermediate type was expanded, build the intermediate operands
915        // from the parts.
916        assert(NumParts % NumIntermediates == 0 &&
917               "Must expand into a divisible number of parts!");
918        unsigned Factor = NumParts / NumIntermediates;
919        for (unsigned i = 0; i != NumIntermediates; ++i)
920          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
921                                    PartVT, IntermediateVT);
922      }
923
924      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
925      // operands.
926      Val = DAG.getNode(IntermediateVT.isVector() ?
927                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
928                        ValueVT, &Ops[0], NumIntermediates);
929    }
930  }
931
932  // There is now one part, held in Val.  Correct it to match ValueVT.
933  PartVT = Val.getValueType();
934
935  if (PartVT == ValueVT)
936    return Val;
937
938  if (PartVT.isVector()) {
939    assert(ValueVT.isVector() && "Unknown vector conversion!");
940    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
941  }
942
943  if (ValueVT.isVector()) {
944    assert(ValueVT.getVectorElementType() == PartVT &&
945           ValueVT.getVectorNumElements() == 1 &&
946           "Only trivial scalar-to-vector conversions should get here!");
947    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
948  }
949
950  if (PartVT.isInteger() &&
951      ValueVT.isInteger()) {
952    if (ValueVT.bitsLT(PartVT)) {
953      // For a truncate, see if we have any information to
954      // indicate whether the truncated bits will always be
955      // zero or sign-extension.
956      if (AssertOp != ISD::DELETED_NODE)
957        Val = DAG.getNode(AssertOp, PartVT, Val,
958                          DAG.getValueType(ValueVT));
959      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
960    } else {
961      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
962    }
963  }
964
965  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
966    if (ValueVT.bitsLT(Val.getValueType()))
967      // FP_ROUND's are always exact here.
968      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
969                         DAG.getIntPtrConstant(1));
970    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
971  }
972
973  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
974    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
975
976  assert(0 && "Unknown mismatch!");
977  return SDValue();
978}
979
980/// getCopyToParts - Create a series of nodes that contain the specified value
981/// split into legal parts.  If the parts contain more bits than Val, then, for
982/// integers, ExtendKind can be used to specify how to generate the extra bits.
983static void getCopyToParts(SelectionDAG &DAG,
984                           SDValue Val,
985                           SDValue *Parts,
986                           unsigned NumParts,
987                           MVT PartVT,
988                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
989  TargetLowering &TLI = DAG.getTargetLoweringInfo();
990  MVT PtrVT = TLI.getPointerTy();
991  MVT ValueVT = Val.getValueType();
992  unsigned PartBits = PartVT.getSizeInBits();
993  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
994
995  if (!NumParts)
996    return;
997
998  if (!ValueVT.isVector()) {
999    if (PartVT == ValueVT) {
1000      assert(NumParts == 1 && "No-op copy with multiple parts!");
1001      Parts[0] = Val;
1002      return;
1003    }
1004
1005    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
1006      // If the parts cover more bits than the value has, promote the value.
1007      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
1008        assert(NumParts == 1 && "Do not know what to promote to!");
1009        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
1010      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
1011        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1012        Val = DAG.getNode(ExtendKind, ValueVT, Val);
1013      } else {
1014        assert(0 && "Unknown mismatch!");
1015      }
1016    } else if (PartBits == ValueVT.getSizeInBits()) {
1017      // Different types of the same size.
1018      assert(NumParts == 1 && PartVT != ValueVT);
1019      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1020    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
1021      // If the parts cover less bits than value has, truncate the value.
1022      if (PartVT.isInteger() && ValueVT.isInteger()) {
1023        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1024        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1025      } else {
1026        assert(0 && "Unknown mismatch!");
1027      }
1028    }
1029
1030    // The value may have changed - recompute ValueVT.
1031    ValueVT = Val.getValueType();
1032    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
1033           "Failed to tile the value with PartVT!");
1034
1035    if (NumParts == 1) {
1036      assert(PartVT == ValueVT && "Type conversion failed!");
1037      Parts[0] = Val;
1038      return;
1039    }
1040
1041    // Expand the value into multiple parts.
1042    if (NumParts & (NumParts - 1)) {
1043      // The number of parts is not a power of 2.  Split off and copy the tail.
1044      assert(PartVT.isInteger() && ValueVT.isInteger() &&
1045             "Do not know what to expand to!");
1046      unsigned RoundParts = 1 << Log2_32(NumParts);
1047      unsigned RoundBits = RoundParts * PartBits;
1048      unsigned OddParts = NumParts - RoundParts;
1049      SDValue OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
1050                                     DAG.getConstant(RoundBits,
1051                                                     TLI.getShiftAmountTy()));
1052      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
1053      if (TLI.isBigEndian())
1054        // The odd parts were reversed by getCopyToParts - unreverse them.
1055        std::reverse(Parts + RoundParts, Parts + NumParts);
1056      NumParts = RoundParts;
1057      ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1058      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1059    }
1060
1061    // The number of parts is a power of 2.  Repeatedly bisect the value using
1062    // EXTRACT_ELEMENT.
1063    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
1064                           MVT::getIntegerVT(ValueVT.getSizeInBits()),
1065                           Val);
1066    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
1067      for (unsigned i = 0; i < NumParts; i += StepSize) {
1068        unsigned ThisBits = StepSize * PartBits / 2;
1069        MVT ThisVT = MVT::getIntegerVT (ThisBits);
1070        SDValue &Part0 = Parts[i];
1071        SDValue &Part1 = Parts[i+StepSize/2];
1072
1073        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1074                            DAG.getConstant(1, PtrVT));
1075        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1076                            DAG.getConstant(0, PtrVT));
1077
1078        if (ThisBits == PartBits && ThisVT != PartVT) {
1079          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
1080          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
1081        }
1082      }
1083    }
1084
1085    if (TLI.isBigEndian())
1086      std::reverse(Parts, Parts + NumParts);
1087
1088    return;
1089  }
1090
1091  // Vector ValueVT.
1092  if (NumParts == 1) {
1093    if (PartVT != ValueVT) {
1094      if (PartVT.isVector()) {
1095        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1096      } else {
1097        assert(ValueVT.getVectorElementType() == PartVT &&
1098               ValueVT.getVectorNumElements() == 1 &&
1099               "Only trivial vector-to-scalar conversions should get here!");
1100        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
1101                          DAG.getConstant(0, PtrVT));
1102      }
1103    }
1104
1105    Parts[0] = Val;
1106    return;
1107  }
1108
1109  // Handle a multi-element vector.
1110  MVT IntermediateVT, RegisterVT;
1111  unsigned NumIntermediates;
1112  unsigned NumRegs =
1113    DAG.getTargetLoweringInfo()
1114      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1115                              RegisterVT);
1116  unsigned NumElements = ValueVT.getVectorNumElements();
1117
1118  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1119  NumParts = NumRegs; // Silence a compiler warning.
1120  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1121
1122  // Split the vector into intermediate operands.
1123  SmallVector<SDValue, 8> Ops(NumIntermediates);
1124  for (unsigned i = 0; i != NumIntermediates; ++i)
1125    if (IntermediateVT.isVector())
1126      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
1127                           IntermediateVT, Val,
1128                           DAG.getConstant(i * (NumElements / NumIntermediates),
1129                                           PtrVT));
1130    else
1131      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
1132                           IntermediateVT, Val,
1133                           DAG.getConstant(i, PtrVT));
1134
1135  // Split the intermediate operands into legal parts.
1136  if (NumParts == NumIntermediates) {
1137    // If the register was not expanded, promote or copy the value,
1138    // as appropriate.
1139    for (unsigned i = 0; i != NumParts; ++i)
1140      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
1141  } else if (NumParts > 0) {
1142    // If the intermediate type was expanded, split each the value into
1143    // legal parts.
1144    assert(NumParts % NumIntermediates == 0 &&
1145           "Must expand into a divisible number of parts!");
1146    unsigned Factor = NumParts / NumIntermediates;
1147    for (unsigned i = 0; i != NumIntermediates; ++i)
1148      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
1149  }
1150}
1151
1152
1153SDValue SelectionDAGLowering::getValue(const Value *V) {
1154  SDValue &N = NodeMap[V];
1155  if (N.Val) return N;
1156
1157  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
1158    MVT VT = TLI.getValueType(V->getType(), true);
1159
1160    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1161      return N = DAG.getConstant(CI->getValue(), VT);
1162
1163    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
1164      return N = DAG.getGlobalAddress(GV, VT);
1165
1166    if (isa<ConstantPointerNull>(C))
1167      return N = DAG.getConstant(0, TLI.getPointerTy());
1168
1169    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1170      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
1171
1172    if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
1173        !V->getType()->isAggregateType())
1174      return N = DAG.getNode(ISD::UNDEF, VT);
1175
1176    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1177      visit(CE->getOpcode(), *CE);
1178      SDValue N1 = NodeMap[V];
1179      assert(N1.Val && "visit didn't populate the ValueMap!");
1180      return N1;
1181    }
1182
1183    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1184      SmallVector<SDValue, 4> Constants;
1185      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1186           OI != OE; ++OI) {
1187        SDNode *Val = getValue(*OI).Val;
1188        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1189          Constants.push_back(SDValue(Val, i));
1190      }
1191      return DAG.getMergeValues(&Constants[0], Constants.size());
1192    }
1193
1194    if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
1195      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1196             "Unknown struct or array constant!");
1197
1198      SmallVector<MVT, 4> ValueVTs;
1199      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1200      unsigned NumElts = ValueVTs.size();
1201      if (NumElts == 0)
1202        return SDValue(); // empty struct
1203      SmallVector<SDValue, 4> Constants(NumElts);
1204      for (unsigned i = 0; i != NumElts; ++i) {
1205        MVT EltVT = ValueVTs[i];
1206        if (isa<UndefValue>(C))
1207          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1208        else if (EltVT.isFloatingPoint())
1209          Constants[i] = DAG.getConstantFP(0, EltVT);
1210        else
1211          Constants[i] = DAG.getConstant(0, EltVT);
1212      }
1213      return DAG.getMergeValues(&Constants[0], NumElts);
1214    }
1215
1216    const VectorType *VecTy = cast<VectorType>(V->getType());
1217    unsigned NumElements = VecTy->getNumElements();
1218
1219    // Now that we know the number and type of the elements, get that number of
1220    // elements into the Ops array based on what kind of constant it is.
1221    SmallVector<SDValue, 16> Ops;
1222    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1223      for (unsigned i = 0; i != NumElements; ++i)
1224        Ops.push_back(getValue(CP->getOperand(i)));
1225    } else {
1226      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1227             "Unknown vector constant!");
1228      MVT EltVT = TLI.getValueType(VecTy->getElementType());
1229
1230      SDValue Op;
1231      if (isa<UndefValue>(C))
1232        Op = DAG.getNode(ISD::UNDEF, EltVT);
1233      else if (EltVT.isFloatingPoint())
1234        Op = DAG.getConstantFP(0, EltVT);
1235      else
1236        Op = DAG.getConstant(0, EltVT);
1237      Ops.assign(NumElements, Op);
1238    }
1239
1240    // Create a BUILD_VECTOR node.
1241    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1242  }
1243
1244  // If this is a static alloca, generate it as the frameindex instead of
1245  // computation.
1246  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1247    std::map<const AllocaInst*, int>::iterator SI =
1248      FuncInfo.StaticAllocaMap.find(AI);
1249    if (SI != FuncInfo.StaticAllocaMap.end())
1250      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1251  }
1252
1253  unsigned InReg = FuncInfo.ValueMap[V];
1254  assert(InReg && "Value not in map!");
1255
1256  RegsForValue RFV(TLI, InReg, V->getType());
1257  SDValue Chain = DAG.getEntryNode();
1258  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1259}
1260
1261
1262void SelectionDAGLowering::visitRet(ReturnInst &I) {
1263  if (I.getNumOperands() == 0) {
1264    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
1265    return;
1266  }
1267
1268  SmallVector<SDValue, 8> NewValues;
1269  NewValues.push_back(getControlRoot());
1270  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1271    SDValue RetOp = getValue(I.getOperand(i));
1272
1273    SmallVector<MVT, 4> ValueVTs;
1274    ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
1275    for (unsigned j = 0, f = ValueVTs.size(); j != f; ++j) {
1276      MVT VT = ValueVTs[j];
1277
1278      // FIXME: C calling convention requires the return type to be promoted to
1279      // at least 32-bit. But this is not necessary for non-C calling conventions.
1280      if (VT.isInteger()) {
1281        MVT MinVT = TLI.getRegisterType(MVT::i32);
1282        if (VT.bitsLT(MinVT))
1283          VT = MinVT;
1284      }
1285
1286      unsigned NumParts = TLI.getNumRegisters(VT);
1287      MVT PartVT = TLI.getRegisterType(VT);
1288      SmallVector<SDValue, 4> Parts(NumParts);
1289      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1290
1291      const Function *F = I.getParent()->getParent();
1292      if (F->paramHasAttr(0, ParamAttr::SExt))
1293        ExtendKind = ISD::SIGN_EXTEND;
1294      else if (F->paramHasAttr(0, ParamAttr::ZExt))
1295        ExtendKind = ISD::ZERO_EXTEND;
1296
1297      getCopyToParts(DAG, SDValue(RetOp.Val, RetOp.ResNo + j),
1298                     &Parts[0], NumParts, PartVT, ExtendKind);
1299
1300      for (unsigned i = 0; i < NumParts; ++i) {
1301        NewValues.push_back(Parts[i]);
1302        NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
1303      }
1304    }
1305  }
1306  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1307                          &NewValues[0], NewValues.size()));
1308}
1309
1310/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1311/// the current basic block, add it to ValueMap now so that we'll get a
1312/// CopyTo/FromReg.
1313void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1314  // No need to export constants.
1315  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1316
1317  // Already exported?
1318  if (FuncInfo.isExportedInst(V)) return;
1319
1320  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1321  CopyValueToVirtualRegister(V, Reg);
1322}
1323
1324bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1325                                                    const BasicBlock *FromBB) {
1326  // The operands of the setcc have to be in this block.  We don't know
1327  // how to export them from some other block.
1328  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1329    // Can export from current BB.
1330    if (VI->getParent() == FromBB)
1331      return true;
1332
1333    // Is already exported, noop.
1334    return FuncInfo.isExportedInst(V);
1335  }
1336
1337  // If this is an argument, we can export it if the BB is the entry block or
1338  // if it is already exported.
1339  if (isa<Argument>(V)) {
1340    if (FromBB == &FromBB->getParent()->getEntryBlock())
1341      return true;
1342
1343    // Otherwise, can only export this if it is already exported.
1344    return FuncInfo.isExportedInst(V);
1345  }
1346
1347  // Otherwise, constants can always be exported.
1348  return true;
1349}
1350
1351static bool InBlock(const Value *V, const BasicBlock *BB) {
1352  if (const Instruction *I = dyn_cast<Instruction>(V))
1353    return I->getParent() == BB;
1354  return true;
1355}
1356
1357/// FindMergedConditions - If Cond is an expression like
1358void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1359                                                MachineBasicBlock *TBB,
1360                                                MachineBasicBlock *FBB,
1361                                                MachineBasicBlock *CurBB,
1362                                                unsigned Opc) {
1363  // If this node is not part of the or/and tree, emit it as a branch.
1364  Instruction *BOp = dyn_cast<Instruction>(Cond);
1365
1366  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1367      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1368      BOp->getParent() != CurBB->getBasicBlock() ||
1369      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1370      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1371    const BasicBlock *BB = CurBB->getBasicBlock();
1372
1373    // If the leaf of the tree is a comparison, merge the condition into
1374    // the caseblock.
1375    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1376        // The operands of the cmp have to be in this block.  We don't know
1377        // how to export them from some other block.  If this is the first block
1378        // of the sequence, no exporting is needed.
1379        (CurBB == CurMBB ||
1380         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1381          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1382      BOp = cast<Instruction>(Cond);
1383      ISD::CondCode Condition;
1384      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1385        switch (IC->getPredicate()) {
1386        default: assert(0 && "Unknown icmp predicate opcode!");
1387        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1388        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1389        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1390        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1391        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1392        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1393        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1394        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1395        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1396        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1397        }
1398      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1399        ISD::CondCode FPC, FOC;
1400        switch (FC->getPredicate()) {
1401        default: assert(0 && "Unknown fcmp predicate opcode!");
1402        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1403        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1404        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1405        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1406        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1407        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1408        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1409        case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
1410        case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
1411        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1412        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1413        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1414        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1415        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1416        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1417        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1418        }
1419        if (FiniteOnlyFPMath())
1420          Condition = FOC;
1421        else
1422          Condition = FPC;
1423      } else {
1424        Condition = ISD::SETEQ; // silence warning.
1425        assert(0 && "Unknown compare instruction");
1426      }
1427
1428      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1429                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1430      SwitchCases.push_back(CB);
1431      return;
1432    }
1433
1434    // Create a CaseBlock record representing this branch.
1435    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1436                                   NULL, TBB, FBB, CurBB);
1437    SwitchCases.push_back(CB);
1438    return;
1439  }
1440
1441
1442  //  Create TmpBB after CurBB.
1443  MachineFunction::iterator BBI = CurBB;
1444  MachineFunction &MF = DAG.getMachineFunction();
1445  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1446  CurBB->getParent()->insert(++BBI, TmpBB);
1447
1448  if (Opc == Instruction::Or) {
1449    // Codegen X | Y as:
1450    //   jmp_if_X TBB
1451    //   jmp TmpBB
1452    // TmpBB:
1453    //   jmp_if_Y TBB
1454    //   jmp FBB
1455    //
1456
1457    // Emit the LHS condition.
1458    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1459
1460    // Emit the RHS condition into TmpBB.
1461    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1462  } else {
1463    assert(Opc == Instruction::And && "Unknown merge op!");
1464    // Codegen X & Y as:
1465    //   jmp_if_X TmpBB
1466    //   jmp FBB
1467    // TmpBB:
1468    //   jmp_if_Y TBB
1469    //   jmp FBB
1470    //
1471    //  This requires creation of TmpBB after CurBB.
1472
1473    // Emit the LHS condition.
1474    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1475
1476    // Emit the RHS condition into TmpBB.
1477    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1478  }
1479}
1480
1481/// If the set of cases should be emitted as a series of branches, return true.
1482/// If we should emit this as a bunch of and/or'd together conditions, return
1483/// false.
1484static bool
1485ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1486  if (Cases.size() != 2) return true;
1487
1488  // If this is two comparisons of the same values or'd or and'd together, they
1489  // will get folded into a single comparison, so don't emit two blocks.
1490  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1491       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1492      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1493       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1494    return false;
1495  }
1496
1497  return true;
1498}
1499
1500void SelectionDAGLowering::visitBr(BranchInst &I) {
1501  // Update machine-CFG edges.
1502  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1503
1504  // Figure out which block is immediately after the current one.
1505  MachineBasicBlock *NextBlock = 0;
1506  MachineFunction::iterator BBI = CurMBB;
1507  if (++BBI != CurMBB->getParent()->end())
1508    NextBlock = BBI;
1509
1510  if (I.isUnconditional()) {
1511    // Update machine-CFG edges.
1512    CurMBB->addSuccessor(Succ0MBB);
1513
1514    // If this is not a fall-through branch, emit the branch.
1515    if (Succ0MBB != NextBlock)
1516      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1517                              DAG.getBasicBlock(Succ0MBB)));
1518    return;
1519  }
1520
1521  // If this condition is one of the special cases we handle, do special stuff
1522  // now.
1523  Value *CondVal = I.getCondition();
1524  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1525
1526  // If this is a series of conditions that are or'd or and'd together, emit
1527  // this as a sequence of branches instead of setcc's with and/or operations.
1528  // For example, instead of something like:
1529  //     cmp A, B
1530  //     C = seteq
1531  //     cmp D, E
1532  //     F = setle
1533  //     or C, F
1534  //     jnz foo
1535  // Emit:
1536  //     cmp A, B
1537  //     je foo
1538  //     cmp D, E
1539  //     jle foo
1540  //
1541  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1542    if (BOp->hasOneUse() &&
1543        (BOp->getOpcode() == Instruction::And ||
1544         BOp->getOpcode() == Instruction::Or)) {
1545      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1546      // If the compares in later blocks need to use values not currently
1547      // exported from this block, export them now.  This block should always
1548      // be the first entry.
1549      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1550
1551      // Allow some cases to be rejected.
1552      if (ShouldEmitAsBranches(SwitchCases)) {
1553        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1554          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1555          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1556        }
1557
1558        // Emit the branch for this block.
1559        visitSwitchCase(SwitchCases[0]);
1560        SwitchCases.erase(SwitchCases.begin());
1561        return;
1562      }
1563
1564      // Okay, we decided not to do this, remove any inserted MBB's and clear
1565      // SwitchCases.
1566      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1567        CurMBB->getParent()->erase(SwitchCases[i].ThisBB);
1568
1569      SwitchCases.clear();
1570    }
1571  }
1572
1573  // Create a CaseBlock record representing this branch.
1574  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1575                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1576  // Use visitSwitchCase to actually insert the fast branch sequence for this
1577  // cond branch.
1578  visitSwitchCase(CB);
1579}
1580
1581/// visitSwitchCase - Emits the necessary code to represent a single node in
1582/// the binary search tree resulting from lowering a switch instruction.
1583void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1584  SDValue Cond;
1585  SDValue CondLHS = getValue(CB.CmpLHS);
1586
1587  // Build the setcc now.
1588  if (CB.CmpMHS == NULL) {
1589    // Fold "(X == true)" to X and "(X == false)" to !X to
1590    // handle common cases produced by branch lowering.
1591    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1592      Cond = CondLHS;
1593    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1594      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1595      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1596    } else
1597      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1598  } else {
1599    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1600
1601    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1602    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1603
1604    SDValue CmpOp = getValue(CB.CmpMHS);
1605    MVT VT = CmpOp.getValueType();
1606
1607    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1608      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1609    } else {
1610      SDValue SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1611      Cond = DAG.getSetCC(MVT::i1, SUB,
1612                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1613    }
1614  }
1615
1616  // Update successor info
1617  CurMBB->addSuccessor(CB.TrueBB);
1618  CurMBB->addSuccessor(CB.FalseBB);
1619
1620  // Set NextBlock to be the MBB immediately after the current one, if any.
1621  // This is used to avoid emitting unnecessary branches to the next block.
1622  MachineBasicBlock *NextBlock = 0;
1623  MachineFunction::iterator BBI = CurMBB;
1624  if (++BBI != CurMBB->getParent()->end())
1625    NextBlock = BBI;
1626
1627  // If the lhs block is the next block, invert the condition so that we can
1628  // fall through to the lhs instead of the rhs block.
1629  if (CB.TrueBB == NextBlock) {
1630    std::swap(CB.TrueBB, CB.FalseBB);
1631    SDValue True = DAG.getConstant(1, Cond.getValueType());
1632    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1633  }
1634  SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1635                                 DAG.getBasicBlock(CB.TrueBB));
1636
1637  // If the branch was constant folded, fix up the CFG.
1638  if (BrCond.getOpcode() == ISD::BR) {
1639    CurMBB->removeSuccessor(CB.FalseBB);
1640    DAG.setRoot(BrCond);
1641  } else {
1642    // Otherwise, go ahead and insert the false branch.
1643    if (BrCond == getControlRoot())
1644      CurMBB->removeSuccessor(CB.TrueBB);
1645
1646    if (CB.FalseBB == NextBlock)
1647      DAG.setRoot(BrCond);
1648    else
1649      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1650                              DAG.getBasicBlock(CB.FalseBB)));
1651  }
1652}
1653
1654/// visitJumpTable - Emit JumpTable node in the current MBB
1655void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1656  // Emit the code for the jump table
1657  assert(JT.Reg != -1U && "Should lower JT Header first!");
1658  MVT PTy = TLI.getPointerTy();
1659  SDValue Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1660  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1661  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1662                          Table, Index));
1663  return;
1664}
1665
1666/// visitJumpTableHeader - This function emits necessary code to produce index
1667/// in the JumpTable from switch case.
1668void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1669                                         SelectionDAGISel::JumpTableHeader &JTH) {
1670  // Subtract the lowest switch case value from the value being switched on
1671  // and conditional branch to default mbb if the result is greater than the
1672  // difference between smallest and largest cases.
1673  SDValue SwitchOp = getValue(JTH.SValue);
1674  MVT VT = SwitchOp.getValueType();
1675  SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1676                              DAG.getConstant(JTH.First, VT));
1677
1678  // The SDNode we just created, which holds the value being switched on
1679  // minus the the smallest case value, needs to be copied to a virtual
1680  // register so it can be used as an index into the jump table in a
1681  // subsequent basic block.  This value may be smaller or larger than the
1682  // target's pointer type, and therefore require extension or truncating.
1683  if (VT.bitsGT(TLI.getPointerTy()))
1684    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1685  else
1686    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1687
1688  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1689  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1690  JT.Reg = JumpTableReg;
1691
1692  // Emit the range check for the jump table, and branch to the default
1693  // block for the switch statement if the value being switched on exceeds
1694  // the largest case in the switch.
1695  SDValue CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1696                               DAG.getConstant(JTH.Last-JTH.First,VT),
1697                               ISD::SETUGT);
1698
1699  // Set NextBlock to be the MBB immediately after the current one, if any.
1700  // This is used to avoid emitting unnecessary branches to the next block.
1701  MachineBasicBlock *NextBlock = 0;
1702  MachineFunction::iterator BBI = CurMBB;
1703  if (++BBI != CurMBB->getParent()->end())
1704    NextBlock = BBI;
1705
1706  SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1707                                 DAG.getBasicBlock(JT.Default));
1708
1709  if (JT.MBB == NextBlock)
1710    DAG.setRoot(BrCond);
1711  else
1712    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1713                            DAG.getBasicBlock(JT.MBB)));
1714
1715  return;
1716}
1717
1718/// visitBitTestHeader - This function emits necessary code to produce value
1719/// suitable for "bit tests"
1720void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1721  // Subtract the minimum value
1722  SDValue SwitchOp = getValue(B.SValue);
1723  MVT VT = SwitchOp.getValueType();
1724  SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1725                              DAG.getConstant(B.First, VT));
1726
1727  // Check range
1728  SDValue RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1729                                    DAG.getConstant(B.Range, VT),
1730                                    ISD::SETUGT);
1731
1732  SDValue ShiftOp;
1733  if (VT.bitsGT(TLI.getShiftAmountTy()))
1734    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1735  else
1736    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1737
1738  // Make desired shift
1739  SDValue SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1740                                    DAG.getConstant(1, TLI.getPointerTy()),
1741                                    ShiftOp);
1742
1743  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1744  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1745  B.Reg = SwitchReg;
1746
1747  // Set NextBlock to be the MBB immediately after the current one, if any.
1748  // This is used to avoid emitting unnecessary branches to the next block.
1749  MachineBasicBlock *NextBlock = 0;
1750  MachineFunction::iterator BBI = CurMBB;
1751  if (++BBI != CurMBB->getParent()->end())
1752    NextBlock = BBI;
1753
1754  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1755
1756  CurMBB->addSuccessor(B.Default);
1757  CurMBB->addSuccessor(MBB);
1758
1759  SDValue BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1760                                  DAG.getBasicBlock(B.Default));
1761
1762  if (MBB == NextBlock)
1763    DAG.setRoot(BrRange);
1764  else
1765    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1766                            DAG.getBasicBlock(MBB)));
1767
1768  return;
1769}
1770
1771/// visitBitTestCase - this function produces one "bit test"
1772void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1773                                            unsigned Reg,
1774                                            SelectionDAGISel::BitTestCase &B) {
1775  // Emit bit tests and jumps
1776  SDValue SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
1777                                           TLI.getPointerTy());
1778
1779  SDValue AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
1780                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1781  SDValue AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1782                                  DAG.getConstant(0, TLI.getPointerTy()),
1783                                  ISD::SETNE);
1784
1785  CurMBB->addSuccessor(B.TargetBB);
1786  CurMBB->addSuccessor(NextMBB);
1787
1788  SDValue BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1789                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1790
1791  // Set NextBlock to be the MBB immediately after the current one, if any.
1792  // This is used to avoid emitting unnecessary branches to the next block.
1793  MachineBasicBlock *NextBlock = 0;
1794  MachineFunction::iterator BBI = CurMBB;
1795  if (++BBI != CurMBB->getParent()->end())
1796    NextBlock = BBI;
1797
1798  if (NextMBB == NextBlock)
1799    DAG.setRoot(BrAnd);
1800  else
1801    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1802                            DAG.getBasicBlock(NextMBB)));
1803
1804  return;
1805}
1806
1807void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1808  // Retrieve successors.
1809  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1810  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1811
1812  if (isa<InlineAsm>(I.getCalledValue()))
1813    visitInlineAsm(&I);
1814  else
1815    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1816
1817  // If the value of the invoke is used outside of its defining block, make it
1818  // available as a virtual register.
1819  if (!I.use_empty()) {
1820    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1821    if (VMI != FuncInfo.ValueMap.end())
1822      CopyValueToVirtualRegister(&I, VMI->second);
1823  }
1824
1825  // Update successor info
1826  CurMBB->addSuccessor(Return);
1827  CurMBB->addSuccessor(LandingPad);
1828
1829  // Drop into normal successor.
1830  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1831                          DAG.getBasicBlock(Return)));
1832}
1833
1834void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1835}
1836
1837/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1838/// small case ranges).
1839bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1840                                                  CaseRecVector& WorkList,
1841                                                  Value* SV,
1842                                                  MachineBasicBlock* Default) {
1843  Case& BackCase  = *(CR.Range.second-1);
1844
1845  // Size is the number of Cases represented by this range.
1846  unsigned Size = CR.Range.second - CR.Range.first;
1847  if (Size > 3)
1848    return false;
1849
1850  // Get the MachineFunction which holds the current MBB.  This is used when
1851  // inserting any additional MBBs necessary to represent the switch.
1852  MachineFunction *CurMF = CurMBB->getParent();
1853
1854  // Figure out which block is immediately after the current one.
1855  MachineBasicBlock *NextBlock = 0;
1856  MachineFunction::iterator BBI = CR.CaseBB;
1857
1858  if (++BBI != CurMBB->getParent()->end())
1859    NextBlock = BBI;
1860
1861  // TODO: If any two of the cases has the same destination, and if one value
1862  // is the same as the other, but has one bit unset that the other has set,
1863  // use bit manipulation to do two compares at once.  For example:
1864  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1865
1866  // Rearrange the case blocks so that the last one falls through if possible.
1867  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1868    // The last case block won't fall through into 'NextBlock' if we emit the
1869    // branches in this order.  See if rearranging a case value would help.
1870    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1871      if (I->BB == NextBlock) {
1872        std::swap(*I, BackCase);
1873        break;
1874      }
1875    }
1876  }
1877
1878  // Create a CaseBlock record representing a conditional branch to
1879  // the Case's target mbb if the value being switched on SV is equal
1880  // to C.
1881  MachineBasicBlock *CurBlock = CR.CaseBB;
1882  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1883    MachineBasicBlock *FallThrough;
1884    if (I != E-1) {
1885      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1886      CurMF->insert(BBI, FallThrough);
1887    } else {
1888      // If the last case doesn't match, go to the default block.
1889      FallThrough = Default;
1890    }
1891
1892    Value *RHS, *LHS, *MHS;
1893    ISD::CondCode CC;
1894    if (I->High == I->Low) {
1895      // This is just small small case range :) containing exactly 1 case
1896      CC = ISD::SETEQ;
1897      LHS = SV; RHS = I->High; MHS = NULL;
1898    } else {
1899      CC = ISD::SETLE;
1900      LHS = I->Low; MHS = SV; RHS = I->High;
1901    }
1902    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1903                                   I->BB, FallThrough, CurBlock);
1904
1905    // If emitting the first comparison, just call visitSwitchCase to emit the
1906    // code into the current block.  Otherwise, push the CaseBlock onto the
1907    // vector to be later processed by SDISel, and insert the node's MBB
1908    // before the next MBB.
1909    if (CurBlock == CurMBB)
1910      visitSwitchCase(CB);
1911    else
1912      SwitchCases.push_back(CB);
1913
1914    CurBlock = FallThrough;
1915  }
1916
1917  return true;
1918}
1919
1920static inline bool areJTsAllowed(const TargetLowering &TLI) {
1921  return !DisableJumpTables &&
1922          (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1923           TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1924}
1925
1926/// handleJTSwitchCase - Emit jumptable for current switch case range
1927bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1928                                              CaseRecVector& WorkList,
1929                                              Value* SV,
1930                                              MachineBasicBlock* Default) {
1931  Case& FrontCase = *CR.Range.first;
1932  Case& BackCase  = *(CR.Range.second-1);
1933
1934  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1935  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1936
1937  uint64_t TSize = 0;
1938  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1939       I!=E; ++I)
1940    TSize += I->size();
1941
1942  if (!areJTsAllowed(TLI) || TSize <= 3)
1943    return false;
1944
1945  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1946  if (Density < 0.4)
1947    return false;
1948
1949  DOUT << "Lowering jump table\n"
1950       << "First entry: " << First << ". Last entry: " << Last << "\n"
1951       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1952
1953  // Get the MachineFunction which holds the current MBB.  This is used when
1954  // inserting any additional MBBs necessary to represent the switch.
1955  MachineFunction *CurMF = CurMBB->getParent();
1956
1957  // Figure out which block is immediately after the current one.
1958  MachineBasicBlock *NextBlock = 0;
1959  MachineFunction::iterator BBI = CR.CaseBB;
1960
1961  if (++BBI != CurMBB->getParent()->end())
1962    NextBlock = BBI;
1963
1964  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1965
1966  // Create a new basic block to hold the code for loading the address
1967  // of the jump table, and jumping to it.  Update successor information;
1968  // we will either branch to the default case for the switch, or the jump
1969  // table.
1970  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1971  CurMF->insert(BBI, JumpTableBB);
1972  CR.CaseBB->addSuccessor(Default);
1973  CR.CaseBB->addSuccessor(JumpTableBB);
1974
1975  // Build a vector of destination BBs, corresponding to each target
1976  // of the jump table. If the value of the jump table slot corresponds to
1977  // a case statement, push the case's BB onto the vector, otherwise, push
1978  // the default BB.
1979  std::vector<MachineBasicBlock*> DestBBs;
1980  int64_t TEI = First;
1981  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1982    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1983    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1984
1985    if ((Low <= TEI) && (TEI <= High)) {
1986      DestBBs.push_back(I->BB);
1987      if (TEI==High)
1988        ++I;
1989    } else {
1990      DestBBs.push_back(Default);
1991    }
1992  }
1993
1994  // Update successor info. Add one edge to each unique successor.
1995  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1996  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1997         E = DestBBs.end(); I != E; ++I) {
1998    if (!SuccsHandled[(*I)->getNumber()]) {
1999      SuccsHandled[(*I)->getNumber()] = true;
2000      JumpTableBB->addSuccessor(*I);
2001    }
2002  }
2003
2004  // Create a jump table index for this jump table, or return an existing
2005  // one.
2006  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
2007
2008  // Set the jump table information so that we can codegen it as a second
2009  // MachineBasicBlock
2010  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
2011  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
2012                                        (CR.CaseBB == CurMBB));
2013  if (CR.CaseBB == CurMBB)
2014    visitJumpTableHeader(JT, JTH);
2015
2016  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
2017
2018  return true;
2019}
2020
2021/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2022/// 2 subtrees.
2023bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
2024                                                   CaseRecVector& WorkList,
2025                                                   Value* SV,
2026                                                   MachineBasicBlock* Default) {
2027  // Get the MachineFunction which holds the current MBB.  This is used when
2028  // inserting any additional MBBs necessary to represent the switch.
2029  MachineFunction *CurMF = CurMBB->getParent();
2030
2031  // Figure out which block is immediately after the current one.
2032  MachineBasicBlock *NextBlock = 0;
2033  MachineFunction::iterator BBI = CR.CaseBB;
2034
2035  if (++BBI != CurMBB->getParent()->end())
2036    NextBlock = BBI;
2037
2038  Case& FrontCase = *CR.Range.first;
2039  Case& BackCase  = *(CR.Range.second-1);
2040  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2041
2042  // Size is the number of Cases represented by this range.
2043  unsigned Size = CR.Range.second - CR.Range.first;
2044
2045  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
2046  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
2047  double FMetric = 0;
2048  CaseItr Pivot = CR.Range.first + Size/2;
2049
2050  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2051  // (heuristically) allow us to emit JumpTable's later.
2052  uint64_t TSize = 0;
2053  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2054       I!=E; ++I)
2055    TSize += I->size();
2056
2057  uint64_t LSize = FrontCase.size();
2058  uint64_t RSize = TSize-LSize;
2059  DOUT << "Selecting best pivot: \n"
2060       << "First: " << First << ", Last: " << Last <<"\n"
2061       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
2062  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2063       J!=E; ++I, ++J) {
2064    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
2065    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
2066    assert((RBegin-LEnd>=1) && "Invalid case distance");
2067    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
2068    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
2069    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
2070    // Should always split in some non-trivial place
2071    DOUT <<"=>Step\n"
2072         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
2073         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
2074         << "Metric: " << Metric << "\n";
2075    if (FMetric < Metric) {
2076      Pivot = J;
2077      FMetric = Metric;
2078      DOUT << "Current metric set to: " << FMetric << "\n";
2079    }
2080
2081    LSize += J->size();
2082    RSize -= J->size();
2083  }
2084  if (areJTsAllowed(TLI)) {
2085    // If our case is dense we *really* should handle it earlier!
2086    assert((FMetric > 0) && "Should handle dense range earlier!");
2087  } else {
2088    Pivot = CR.Range.first + Size/2;
2089  }
2090
2091  CaseRange LHSR(CR.Range.first, Pivot);
2092  CaseRange RHSR(Pivot, CR.Range.second);
2093  Constant *C = Pivot->Low;
2094  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2095
2096  // We know that we branch to the LHS if the Value being switched on is
2097  // less than the Pivot value, C.  We use this to optimize our binary
2098  // tree a bit, by recognizing that if SV is greater than or equal to the
2099  // LHS's Case Value, and that Case Value is exactly one less than the
2100  // Pivot's Value, then we can branch directly to the LHS's Target,
2101  // rather than creating a leaf node for it.
2102  if ((LHSR.second - LHSR.first) == 1 &&
2103      LHSR.first->High == CR.GE &&
2104      cast<ConstantInt>(C)->getSExtValue() ==
2105      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
2106    TrueBB = LHSR.first->BB;
2107  } else {
2108    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2109    CurMF->insert(BBI, TrueBB);
2110    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2111  }
2112
2113  // Similar to the optimization above, if the Value being switched on is
2114  // known to be less than the Constant CR.LT, and the current Case Value
2115  // is CR.LT - 1, then we can branch directly to the target block for
2116  // the current Case Value, rather than emitting a RHS leaf node for it.
2117  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2118      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
2119      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
2120    FalseBB = RHSR.first->BB;
2121  } else {
2122    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2123    CurMF->insert(BBI, FalseBB);
2124    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2125  }
2126
2127  // Create a CaseBlock record representing a conditional branch to
2128  // the LHS node if the value being switched on SV is less than C.
2129  // Otherwise, branch to LHS.
2130  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
2131                                 TrueBB, FalseBB, CR.CaseBB);
2132
2133  if (CR.CaseBB == CurMBB)
2134    visitSwitchCase(CB);
2135  else
2136    SwitchCases.push_back(CB);
2137
2138  return true;
2139}
2140
2141/// handleBitTestsSwitchCase - if current case range has few destination and
2142/// range span less, than machine word bitwidth, encode case range into series
2143/// of masks and emit bit tests with these masks.
2144bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
2145                                                    CaseRecVector& WorkList,
2146                                                    Value* SV,
2147                                                    MachineBasicBlock* Default){
2148  unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
2149
2150  Case& FrontCase = *CR.Range.first;
2151  Case& BackCase  = *(CR.Range.second-1);
2152
2153  // Get the MachineFunction which holds the current MBB.  This is used when
2154  // inserting any additional MBBs necessary to represent the switch.
2155  MachineFunction *CurMF = CurMBB->getParent();
2156
2157  unsigned numCmps = 0;
2158  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2159       I!=E; ++I) {
2160    // Single case counts one, case range - two.
2161    if (I->Low == I->High)
2162      numCmps +=1;
2163    else
2164      numCmps +=2;
2165  }
2166
2167  // Count unique destinations
2168  SmallSet<MachineBasicBlock*, 4> Dests;
2169  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2170    Dests.insert(I->BB);
2171    if (Dests.size() > 3)
2172      // Don't bother the code below, if there are too much unique destinations
2173      return false;
2174  }
2175  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
2176       << "Total number of comparisons: " << numCmps << "\n";
2177
2178  // Compute span of values.
2179  Constant* minValue = FrontCase.Low;
2180  Constant* maxValue = BackCase.High;
2181  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
2182                   cast<ConstantInt>(minValue)->getSExtValue();
2183  DOUT << "Compare range: " << range << "\n"
2184       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
2185       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
2186
2187  if (range>=IntPtrBits ||
2188      (!(Dests.size() == 1 && numCmps >= 3) &&
2189       !(Dests.size() == 2 && numCmps >= 5) &&
2190       !(Dests.size() >= 3 && numCmps >= 6)))
2191    return false;
2192
2193  DOUT << "Emitting bit tests\n";
2194  int64_t lowBound = 0;
2195
2196  // Optimize the case where all the case values fit in a
2197  // word without having to subtract minValue. In this case,
2198  // we can optimize away the subtraction.
2199  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
2200      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
2201    range = cast<ConstantInt>(maxValue)->getSExtValue();
2202  } else {
2203    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
2204  }
2205
2206  CaseBitsVector CasesBits;
2207  unsigned i, count = 0;
2208
2209  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2210    MachineBasicBlock* Dest = I->BB;
2211    for (i = 0; i < count; ++i)
2212      if (Dest == CasesBits[i].BB)
2213        break;
2214
2215    if (i == count) {
2216      assert((count < 3) && "Too much destinations to test!");
2217      CasesBits.push_back(CaseBits(0, Dest, 0));
2218      count++;
2219    }
2220
2221    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2222    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2223
2224    for (uint64_t j = lo; j <= hi; j++) {
2225      CasesBits[i].Mask |=  1ULL << j;
2226      CasesBits[i].Bits++;
2227    }
2228
2229  }
2230  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2231
2232  SelectionDAGISel::BitTestInfo BTC;
2233
2234  // Figure out which block is immediately after the current one.
2235  MachineFunction::iterator BBI = CR.CaseBB;
2236  ++BBI;
2237
2238  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2239
2240  DOUT << "Cases:\n";
2241  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2242    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2243         << ", BB: " << CasesBits[i].BB << "\n";
2244
2245    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2246    CurMF->insert(BBI, CaseBB);
2247    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
2248                                                CaseBB,
2249                                                CasesBits[i].BB));
2250  }
2251
2252  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
2253                                     -1U, (CR.CaseBB == CurMBB),
2254                                     CR.CaseBB, Default, BTC);
2255
2256  if (CR.CaseBB == CurMBB)
2257    visitBitTestHeader(BTB);
2258
2259  BitTestCases.push_back(BTB);
2260
2261  return true;
2262}
2263
2264
2265/// Clusterify - Transform simple list of Cases into list of CaseRange's
2266unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2267                                          const SwitchInst& SI) {
2268  unsigned numCmps = 0;
2269
2270  // Start with "simple" cases
2271  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2272    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2273    Cases.push_back(Case(SI.getSuccessorValue(i),
2274                         SI.getSuccessorValue(i),
2275                         SMBB));
2276  }
2277  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2278
2279  // Merge case into clusters
2280  if (Cases.size()>=2)
2281    // Must recompute end() each iteration because it may be
2282    // invalidated by erase if we hold on to it
2283    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2284      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2285      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2286      MachineBasicBlock* nextBB = J->BB;
2287      MachineBasicBlock* currentBB = I->BB;
2288
2289      // If the two neighboring cases go to the same destination, merge them
2290      // into a single case.
2291      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2292        I->High = J->High;
2293        J = Cases.erase(J);
2294      } else {
2295        I = J++;
2296      }
2297    }
2298
2299  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2300    if (I->Low != I->High)
2301      // A range counts double, since it requires two compares.
2302      ++numCmps;
2303  }
2304
2305  return numCmps;
2306}
2307
2308void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2309  // Figure out which block is immediately after the current one.
2310  MachineBasicBlock *NextBlock = 0;
2311  MachineFunction::iterator BBI = CurMBB;
2312
2313  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2314
2315  // If there is only the default destination, branch to it if it is not the
2316  // next basic block.  Otherwise, just fall through.
2317  if (SI.getNumOperands() == 2) {
2318    // Update machine-CFG edges.
2319
2320    // If this is not a fall-through branch, emit the branch.
2321    CurMBB->addSuccessor(Default);
2322    if (Default != NextBlock)
2323      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2324                              DAG.getBasicBlock(Default)));
2325
2326    return;
2327  }
2328
2329  // If there are any non-default case statements, create a vector of Cases
2330  // representing each one, and sort the vector so that we can efficiently
2331  // create a binary search tree from them.
2332  CaseVector Cases;
2333  unsigned numCmps = Clusterify(Cases, SI);
2334  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2335       << ". Total compares: " << numCmps << "\n";
2336
2337  // Get the Value to be switched on and default basic blocks, which will be
2338  // inserted into CaseBlock records, representing basic blocks in the binary
2339  // search tree.
2340  Value *SV = SI.getOperand(0);
2341
2342  // Push the initial CaseRec onto the worklist
2343  CaseRecVector WorkList;
2344  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2345
2346  while (!WorkList.empty()) {
2347    // Grab a record representing a case range to process off the worklist
2348    CaseRec CR = WorkList.back();
2349    WorkList.pop_back();
2350
2351    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2352      continue;
2353
2354    // If the range has few cases (two or less) emit a series of specific
2355    // tests.
2356    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2357      continue;
2358
2359    // If the switch has more than 5 blocks, and at least 40% dense, and the
2360    // target supports indirect branches, then emit a jump table rather than
2361    // lowering the switch to a binary tree of conditional branches.
2362    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2363      continue;
2364
2365    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2366    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2367    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2368  }
2369}
2370
2371
2372void SelectionDAGLowering::visitSub(User &I) {
2373  // -0.0 - X --> fneg
2374  const Type *Ty = I.getType();
2375  if (isa<VectorType>(Ty)) {
2376    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2377      const VectorType *DestTy = cast<VectorType>(I.getType());
2378      const Type *ElTy = DestTy->getElementType();
2379      if (ElTy->isFloatingPoint()) {
2380        unsigned VL = DestTy->getNumElements();
2381        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2382        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2383        if (CV == CNZ) {
2384          SDValue Op2 = getValue(I.getOperand(1));
2385          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2386          return;
2387        }
2388      }
2389    }
2390  }
2391  if (Ty->isFloatingPoint()) {
2392    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2393      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2394        SDValue Op2 = getValue(I.getOperand(1));
2395        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2396        return;
2397      }
2398  }
2399
2400  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2401}
2402
2403void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2404  SDValue Op1 = getValue(I.getOperand(0));
2405  SDValue Op2 = getValue(I.getOperand(1));
2406
2407  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2408}
2409
2410void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2411  SDValue Op1 = getValue(I.getOperand(0));
2412  SDValue Op2 = getValue(I.getOperand(1));
2413  if (!isa<VectorType>(I.getType())) {
2414    if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
2415      Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2416    else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
2417      Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2418  }
2419
2420  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2421}
2422
2423void SelectionDAGLowering::visitICmp(User &I) {
2424  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2425  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2426    predicate = IC->getPredicate();
2427  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2428    predicate = ICmpInst::Predicate(IC->getPredicate());
2429  SDValue Op1 = getValue(I.getOperand(0));
2430  SDValue Op2 = getValue(I.getOperand(1));
2431  ISD::CondCode Opcode;
2432  switch (predicate) {
2433    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2434    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2435    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2436    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2437    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2438    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2439    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2440    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2441    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2442    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2443    default:
2444      assert(!"Invalid ICmp predicate value");
2445      Opcode = ISD::SETEQ;
2446      break;
2447  }
2448  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2449}
2450
2451void SelectionDAGLowering::visitFCmp(User &I) {
2452  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2453  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2454    predicate = FC->getPredicate();
2455  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2456    predicate = FCmpInst::Predicate(FC->getPredicate());
2457  SDValue Op1 = getValue(I.getOperand(0));
2458  SDValue Op2 = getValue(I.getOperand(1));
2459  ISD::CondCode Condition, FOC, FPC;
2460  switch (predicate) {
2461    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2462    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2463    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2464    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2465    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2466    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2467    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2468    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2469    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2470    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2471    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2472    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2473    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2474    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2475    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2476    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2477    default:
2478      assert(!"Invalid FCmp predicate value");
2479      FOC = FPC = ISD::SETFALSE;
2480      break;
2481  }
2482  if (FiniteOnlyFPMath())
2483    Condition = FOC;
2484  else
2485    Condition = FPC;
2486  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2487}
2488
2489void SelectionDAGLowering::visitVICmp(User &I) {
2490  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2491  if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2492    predicate = IC->getPredicate();
2493  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2494    predicate = ICmpInst::Predicate(IC->getPredicate());
2495  SDValue Op1 = getValue(I.getOperand(0));
2496  SDValue Op2 = getValue(I.getOperand(1));
2497  ISD::CondCode Opcode;
2498  switch (predicate) {
2499    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2500    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2501    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2502    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2503    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2504    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2505    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2506    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2507    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2508    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2509    default:
2510      assert(!"Invalid ICmp predicate value");
2511      Opcode = ISD::SETEQ;
2512      break;
2513  }
2514  setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2515}
2516
2517void SelectionDAGLowering::visitVFCmp(User &I) {
2518  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2519  if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2520    predicate = FC->getPredicate();
2521  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2522    predicate = FCmpInst::Predicate(FC->getPredicate());
2523  SDValue Op1 = getValue(I.getOperand(0));
2524  SDValue Op2 = getValue(I.getOperand(1));
2525  ISD::CondCode Condition, FOC, FPC;
2526  switch (predicate) {
2527    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2528    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2529    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2530    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2531    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2532    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2533    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2534    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2535    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2536    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2537    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2538    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2539    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2540    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2541    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2542    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2543    default:
2544      assert(!"Invalid VFCmp predicate value");
2545      FOC = FPC = ISD::SETFALSE;
2546      break;
2547  }
2548  if (FiniteOnlyFPMath())
2549    Condition = FOC;
2550  else
2551    Condition = FPC;
2552
2553  MVT DestVT = TLI.getValueType(I.getType());
2554
2555  setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2556}
2557
2558void SelectionDAGLowering::visitSelect(User &I) {
2559  SDValue Cond     = getValue(I.getOperand(0));
2560  SDValue TrueVal  = getValue(I.getOperand(1));
2561  SDValue FalseVal = getValue(I.getOperand(2));
2562  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2563                           TrueVal, FalseVal));
2564}
2565
2566
2567void SelectionDAGLowering::visitTrunc(User &I) {
2568  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2569  SDValue N = getValue(I.getOperand(0));
2570  MVT DestVT = TLI.getValueType(I.getType());
2571  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2572}
2573
2574void SelectionDAGLowering::visitZExt(User &I) {
2575  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2576  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2577  SDValue N = getValue(I.getOperand(0));
2578  MVT DestVT = TLI.getValueType(I.getType());
2579  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2580}
2581
2582void SelectionDAGLowering::visitSExt(User &I) {
2583  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2584  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2585  SDValue N = getValue(I.getOperand(0));
2586  MVT DestVT = TLI.getValueType(I.getType());
2587  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2588}
2589
2590void SelectionDAGLowering::visitFPTrunc(User &I) {
2591  // FPTrunc is never a no-op cast, no need to check
2592  SDValue N = getValue(I.getOperand(0));
2593  MVT DestVT = TLI.getValueType(I.getType());
2594  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2595}
2596
2597void SelectionDAGLowering::visitFPExt(User &I){
2598  // FPTrunc is never a no-op cast, no need to check
2599  SDValue N = getValue(I.getOperand(0));
2600  MVT DestVT = TLI.getValueType(I.getType());
2601  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2602}
2603
2604void SelectionDAGLowering::visitFPToUI(User &I) {
2605  // FPToUI is never a no-op cast, no need to check
2606  SDValue N = getValue(I.getOperand(0));
2607  MVT DestVT = TLI.getValueType(I.getType());
2608  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2609}
2610
2611void SelectionDAGLowering::visitFPToSI(User &I) {
2612  // FPToSI is never a no-op cast, no need to check
2613  SDValue N = getValue(I.getOperand(0));
2614  MVT DestVT = TLI.getValueType(I.getType());
2615  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2616}
2617
2618void SelectionDAGLowering::visitUIToFP(User &I) {
2619  // UIToFP is never a no-op cast, no need to check
2620  SDValue N = getValue(I.getOperand(0));
2621  MVT DestVT = TLI.getValueType(I.getType());
2622  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2623}
2624
2625void SelectionDAGLowering::visitSIToFP(User &I){
2626  // UIToFP is never a no-op cast, no need to check
2627  SDValue N = getValue(I.getOperand(0));
2628  MVT DestVT = TLI.getValueType(I.getType());
2629  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2630}
2631
2632void SelectionDAGLowering::visitPtrToInt(User &I) {
2633  // What to do depends on the size of the integer and the size of the pointer.
2634  // We can either truncate, zero extend, or no-op, accordingly.
2635  SDValue N = getValue(I.getOperand(0));
2636  MVT SrcVT = N.getValueType();
2637  MVT DestVT = TLI.getValueType(I.getType());
2638  SDValue Result;
2639  if (DestVT.bitsLT(SrcVT))
2640    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2641  else
2642    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2643    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2644  setValue(&I, Result);
2645}
2646
2647void SelectionDAGLowering::visitIntToPtr(User &I) {
2648  // What to do depends on the size of the integer and the size of the pointer.
2649  // We can either truncate, zero extend, or no-op, accordingly.
2650  SDValue N = getValue(I.getOperand(0));
2651  MVT SrcVT = N.getValueType();
2652  MVT DestVT = TLI.getValueType(I.getType());
2653  if (DestVT.bitsLT(SrcVT))
2654    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2655  else
2656    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2657    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2658}
2659
2660void SelectionDAGLowering::visitBitCast(User &I) {
2661  SDValue N = getValue(I.getOperand(0));
2662  MVT DestVT = TLI.getValueType(I.getType());
2663
2664  // BitCast assures us that source and destination are the same size so this
2665  // is either a BIT_CONVERT or a no-op.
2666  if (DestVT != N.getValueType())
2667    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2668  else
2669    setValue(&I, N); // noop cast.
2670}
2671
2672void SelectionDAGLowering::visitInsertElement(User &I) {
2673  SDValue InVec = getValue(I.getOperand(0));
2674  SDValue InVal = getValue(I.getOperand(1));
2675  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2676                                getValue(I.getOperand(2)));
2677
2678  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2679                           TLI.getValueType(I.getType()),
2680                           InVec, InVal, InIdx));
2681}
2682
2683void SelectionDAGLowering::visitExtractElement(User &I) {
2684  SDValue InVec = getValue(I.getOperand(0));
2685  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2686                                getValue(I.getOperand(1)));
2687  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2688                           TLI.getValueType(I.getType()), InVec, InIdx));
2689}
2690
2691void SelectionDAGLowering::visitShuffleVector(User &I) {
2692  SDValue V1   = getValue(I.getOperand(0));
2693  SDValue V2   = getValue(I.getOperand(1));
2694  SDValue Mask = getValue(I.getOperand(2));
2695
2696  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2697                           TLI.getValueType(I.getType()),
2698                           V1, V2, Mask));
2699}
2700
2701void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
2702  const Value *Op0 = I.getOperand(0);
2703  const Value *Op1 = I.getOperand(1);
2704  const Type *AggTy = I.getType();
2705  const Type *ValTy = Op1->getType();
2706  bool IntoUndef = isa<UndefValue>(Op0);
2707  bool FromUndef = isa<UndefValue>(Op1);
2708
2709  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2710                                            I.idx_begin(), I.idx_end());
2711
2712  SmallVector<MVT, 4> AggValueVTs;
2713  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2714  SmallVector<MVT, 4> ValValueVTs;
2715  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2716
2717  unsigned NumAggValues = AggValueVTs.size();
2718  unsigned NumValValues = ValValueVTs.size();
2719  SmallVector<SDValue, 4> Values(NumAggValues);
2720
2721  SDValue Agg = getValue(Op0);
2722  SDValue Val = getValue(Op1);
2723  unsigned i = 0;
2724  // Copy the beginning value(s) from the original aggregate.
2725  for (; i != LinearIndex; ++i)
2726    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2727                SDValue(Agg.Val, Agg.ResNo + i);
2728  // Copy values from the inserted value(s).
2729  for (; i != LinearIndex + NumValValues; ++i)
2730    Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2731                SDValue(Val.Val, Val.ResNo + i - LinearIndex);
2732  // Copy remaining value(s) from the original aggregate.
2733  for (; i != NumAggValues; ++i)
2734    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2735                SDValue(Agg.Val, Agg.ResNo + i);
2736
2737  setValue(&I, DAG.getMergeValues(DAG.getVTList(&AggValueVTs[0], NumAggValues),
2738                                  &Values[0], NumAggValues));
2739}
2740
2741void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
2742  const Value *Op0 = I.getOperand(0);
2743  const Type *AggTy = Op0->getType();
2744  const Type *ValTy = I.getType();
2745  bool OutOfUndef = isa<UndefValue>(Op0);
2746
2747  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2748                                            I.idx_begin(), I.idx_end());
2749
2750  SmallVector<MVT, 4> ValValueVTs;
2751  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2752
2753  unsigned NumValValues = ValValueVTs.size();
2754  SmallVector<SDValue, 4> Values(NumValValues);
2755
2756  SDValue Agg = getValue(Op0);
2757  // Copy out the selected value(s).
2758  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2759    Values[i - LinearIndex] =
2760      OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.Val->getValueType(Agg.ResNo + i)) :
2761                   SDValue(Agg.Val, Agg.ResNo + i);
2762
2763  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValValueVTs[0], NumValValues),
2764                                  &Values[0], NumValValues));
2765}
2766
2767
2768void SelectionDAGLowering::visitGetElementPtr(User &I) {
2769  SDValue N = getValue(I.getOperand(0));
2770  const Type *Ty = I.getOperand(0)->getType();
2771
2772  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2773       OI != E; ++OI) {
2774    Value *Idx = *OI;
2775    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2776      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2777      if (Field) {
2778        // N = N + Offset
2779        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2780        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2781                        DAG.getIntPtrConstant(Offset));
2782      }
2783      Ty = StTy->getElementType(Field);
2784    } else {
2785      Ty = cast<SequentialType>(Ty)->getElementType();
2786
2787      // If this is a constant subscript, handle it quickly.
2788      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2789        if (CI->getZExtValue() == 0) continue;
2790        uint64_t Offs =
2791            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2792        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2793                        DAG.getIntPtrConstant(Offs));
2794        continue;
2795      }
2796
2797      // N = N + Idx * ElementSize;
2798      uint64_t ElementSize = TD->getABITypeSize(Ty);
2799      SDValue IdxN = getValue(Idx);
2800
2801      // If the index is smaller or larger than intptr_t, truncate or extend
2802      // it.
2803      if (IdxN.getValueType().bitsLT(N.getValueType())) {
2804        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2805      } else if (IdxN.getValueType().bitsGT(N.getValueType()))
2806        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2807
2808      // If this is a multiply by a power of two, turn it into a shl
2809      // immediately.  This is a very common case.
2810      if (isPowerOf2_64(ElementSize)) {
2811        unsigned Amt = Log2_64(ElementSize);
2812        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2813                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2814        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2815        continue;
2816      }
2817
2818      SDValue Scale = DAG.getIntPtrConstant(ElementSize);
2819      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2820      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2821    }
2822  }
2823  setValue(&I, N);
2824}
2825
2826void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2827  // If this is a fixed sized alloca in the entry block of the function,
2828  // allocate it statically on the stack.
2829  if (FuncInfo.StaticAllocaMap.count(&I))
2830    return;   // getValue will auto-populate this.
2831
2832  const Type *Ty = I.getAllocatedType();
2833  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2834  unsigned Align =
2835    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2836             I.getAlignment());
2837
2838  SDValue AllocSize = getValue(I.getArraySize());
2839  MVT IntPtr = TLI.getPointerTy();
2840  if (IntPtr.bitsLT(AllocSize.getValueType()))
2841    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2842  else if (IntPtr.bitsGT(AllocSize.getValueType()))
2843    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2844
2845  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2846                          DAG.getIntPtrConstant(TySize));
2847
2848  // Handle alignment.  If the requested alignment is less than or equal to
2849  // the stack alignment, ignore it.  If the size is greater than or equal to
2850  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2851  unsigned StackAlign =
2852    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2853  if (Align <= StackAlign)
2854    Align = 0;
2855
2856  // Round the size of the allocation up to the stack alignment size
2857  // by add SA-1 to the size.
2858  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2859                          DAG.getIntPtrConstant(StackAlign-1));
2860  // Mask out the low bits for alignment purposes.
2861  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2862                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2863
2864  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2865  const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2866                                                    MVT::Other);
2867  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2868  setValue(&I, DSA);
2869  DAG.setRoot(DSA.getValue(1));
2870
2871  // Inform the Frame Information that we have just allocated a variable-sized
2872  // object.
2873  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2874}
2875
2876void SelectionDAGLowering::visitLoad(LoadInst &I) {
2877  const Value *SV = I.getOperand(0);
2878  SDValue Ptr = getValue(SV);
2879
2880  const Type *Ty = I.getType();
2881  bool isVolatile = I.isVolatile();
2882  unsigned Alignment = I.getAlignment();
2883
2884  SmallVector<MVT, 4> ValueVTs;
2885  SmallVector<uint64_t, 4> Offsets;
2886  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2887  unsigned NumValues = ValueVTs.size();
2888  if (NumValues == 0)
2889    return;
2890
2891  SDValue Root;
2892  bool ConstantMemory = false;
2893  if (I.isVolatile())
2894    // Serialize volatile loads with other side effects.
2895    Root = getRoot();
2896  else if (AA.pointsToConstantMemory(SV)) {
2897    // Do not serialize (non-volatile) loads of constant memory with anything.
2898    Root = DAG.getEntryNode();
2899    ConstantMemory = true;
2900  } else {
2901    // Do not serialize non-volatile loads against each other.
2902    Root = DAG.getRoot();
2903  }
2904
2905  SmallVector<SDValue, 4> Values(NumValues);
2906  SmallVector<SDValue, 4> Chains(NumValues);
2907  MVT PtrVT = Ptr.getValueType();
2908  for (unsigned i = 0; i != NumValues; ++i) {
2909    SDValue L = DAG.getLoad(ValueVTs[i], Root,
2910                              DAG.getNode(ISD::ADD, PtrVT, Ptr,
2911                                          DAG.getConstant(Offsets[i], PtrVT)),
2912                              SV, Offsets[i],
2913                              isVolatile, Alignment);
2914    Values[i] = L;
2915    Chains[i] = L.getValue(1);
2916  }
2917
2918  if (!ConstantMemory) {
2919    SDValue Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2920                                  &Chains[0], NumValues);
2921    if (isVolatile)
2922      DAG.setRoot(Chain);
2923    else
2924      PendingLoads.push_back(Chain);
2925  }
2926
2927  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues),
2928                                  &Values[0], NumValues));
2929}
2930
2931
2932void SelectionDAGLowering::visitStore(StoreInst &I) {
2933  Value *SrcV = I.getOperand(0);
2934  Value *PtrV = I.getOperand(1);
2935
2936  SmallVector<MVT, 4> ValueVTs;
2937  SmallVector<uint64_t, 4> Offsets;
2938  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2939  unsigned NumValues = ValueVTs.size();
2940  if (NumValues == 0)
2941    return;
2942
2943  // Get the lowered operands. Note that we do this after
2944  // checking if NumResults is zero, because with zero results
2945  // the operands won't have values in the map.
2946  SDValue Src = getValue(SrcV);
2947  SDValue Ptr = getValue(PtrV);
2948
2949  SDValue Root = getRoot();
2950  SmallVector<SDValue, 4> Chains(NumValues);
2951  MVT PtrVT = Ptr.getValueType();
2952  bool isVolatile = I.isVolatile();
2953  unsigned Alignment = I.getAlignment();
2954  for (unsigned i = 0; i != NumValues; ++i)
2955    Chains[i] = DAG.getStore(Root, SDValue(Src.Val, Src.ResNo + i),
2956                             DAG.getNode(ISD::ADD, PtrVT, Ptr,
2957                                         DAG.getConstant(Offsets[i], PtrVT)),
2958                             PtrV, Offsets[i],
2959                             isVolatile, Alignment);
2960
2961  DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
2962}
2963
2964/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2965/// node.
2966void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2967                                                unsigned Intrinsic) {
2968  bool HasChain = !I.doesNotAccessMemory();
2969  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2970
2971  // Build the operand list.
2972  SmallVector<SDValue, 8> Ops;
2973  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2974    if (OnlyLoad) {
2975      // We don't need to serialize loads against other loads.
2976      Ops.push_back(DAG.getRoot());
2977    } else {
2978      Ops.push_back(getRoot());
2979    }
2980  }
2981
2982  // Add the intrinsic ID as an integer operand.
2983  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2984
2985  // Add all operands of the call to the operand list.
2986  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2987    SDValue Op = getValue(I.getOperand(i));
2988    assert(TLI.isTypeLegal(Op.getValueType()) &&
2989           "Intrinsic uses a non-legal type?");
2990    Ops.push_back(Op);
2991  }
2992
2993  std::vector<MVT> VTs;
2994  if (I.getType() != Type::VoidTy) {
2995    MVT VT = TLI.getValueType(I.getType());
2996    if (VT.isVector()) {
2997      const VectorType *DestTy = cast<VectorType>(I.getType());
2998      MVT EltVT = TLI.getValueType(DestTy->getElementType());
2999
3000      VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
3001      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
3002    }
3003
3004    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
3005    VTs.push_back(VT);
3006  }
3007  if (HasChain)
3008    VTs.push_back(MVT::Other);
3009
3010  const MVT *VTList = DAG.getNodeValueTypes(VTs);
3011
3012  // Create the node.
3013  SDValue Result;
3014  if (!HasChain)
3015    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
3016                         &Ops[0], Ops.size());
3017  else if (I.getType() != Type::VoidTy)
3018    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
3019                         &Ops[0], Ops.size());
3020  else
3021    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
3022                         &Ops[0], Ops.size());
3023
3024  if (HasChain) {
3025    SDValue Chain = Result.getValue(Result.Val->getNumValues()-1);
3026    if (OnlyLoad)
3027      PendingLoads.push_back(Chain);
3028    else
3029      DAG.setRoot(Chain);
3030  }
3031  if (I.getType() != Type::VoidTy) {
3032    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3033      MVT VT = TLI.getValueType(PTy);
3034      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
3035    }
3036    setValue(&I, Result);
3037  }
3038}
3039
3040/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
3041static GlobalVariable *ExtractTypeInfo (Value *V) {
3042  V = V->stripPointerCasts();
3043  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3044  assert ((GV || isa<ConstantPointerNull>(V)) &&
3045          "TypeInfo must be a global variable or NULL");
3046  return GV;
3047}
3048
3049/// addCatchInfo - Extract the personality and type infos from an eh.selector
3050/// call, and add them to the specified machine basic block.
3051static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
3052                         MachineBasicBlock *MBB) {
3053  // Inform the MachineModuleInfo of the personality for this landing pad.
3054  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
3055  assert(CE->getOpcode() == Instruction::BitCast &&
3056         isa<Function>(CE->getOperand(0)) &&
3057         "Personality should be a function");
3058  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
3059
3060  // Gather all the type infos for this landing pad and pass them along to
3061  // MachineModuleInfo.
3062  std::vector<GlobalVariable *> TyInfo;
3063  unsigned N = I.getNumOperands();
3064
3065  for (unsigned i = N - 1; i > 2; --i) {
3066    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
3067      unsigned FilterLength = CI->getZExtValue();
3068      unsigned FirstCatch = i + FilterLength + !FilterLength;
3069      assert (FirstCatch <= N && "Invalid filter length");
3070
3071      if (FirstCatch < N) {
3072        TyInfo.reserve(N - FirstCatch);
3073        for (unsigned j = FirstCatch; j < N; ++j)
3074          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3075        MMI->addCatchTypeInfo(MBB, TyInfo);
3076        TyInfo.clear();
3077      }
3078
3079      if (!FilterLength) {
3080        // Cleanup.
3081        MMI->addCleanup(MBB);
3082      } else {
3083        // Filter.
3084        TyInfo.reserve(FilterLength - 1);
3085        for (unsigned j = i + 1; j < FirstCatch; ++j)
3086          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3087        MMI->addFilterTypeInfo(MBB, TyInfo);
3088        TyInfo.clear();
3089      }
3090
3091      N = i;
3092    }
3093  }
3094
3095  if (N > 3) {
3096    TyInfo.reserve(N - 3);
3097    for (unsigned j = 3; j < N; ++j)
3098      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3099    MMI->addCatchTypeInfo(MBB, TyInfo);
3100  }
3101}
3102
3103
3104/// Inlined utility function to implement binary input atomic intrinsics for
3105// visitIntrinsicCall: I is a call instruction
3106//                     Op is the associated NodeType for I
3107const char *
3108SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3109  SDValue Root = getRoot();
3110  SDValue L = DAG.getAtomic(Op, Root,
3111                              getValue(I.getOperand(1)),
3112                              getValue(I.getOperand(2)),
3113                              I.getOperand(1));
3114  setValue(&I, L);
3115  DAG.setRoot(L.getValue(1));
3116  return 0;
3117}
3118
3119/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3120/// we want to emit this as a call to a named external function, return the name
3121/// otherwise lower it and return null.
3122const char *
3123SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3124  switch (Intrinsic) {
3125  default:
3126    // By default, turn this into a target intrinsic node.
3127    visitTargetIntrinsic(I, Intrinsic);
3128    return 0;
3129  case Intrinsic::vastart:  visitVAStart(I); return 0;
3130  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3131  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3132  case Intrinsic::returnaddress:
3133    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
3134                             getValue(I.getOperand(1))));
3135    return 0;
3136  case Intrinsic::frameaddress:
3137    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
3138                             getValue(I.getOperand(1))));
3139    return 0;
3140  case Intrinsic::setjmp:
3141    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3142    break;
3143  case Intrinsic::longjmp:
3144    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3145    break;
3146  case Intrinsic::memcpy_i32:
3147  case Intrinsic::memcpy_i64: {
3148    SDValue Op1 = getValue(I.getOperand(1));
3149    SDValue Op2 = getValue(I.getOperand(2));
3150    SDValue Op3 = getValue(I.getOperand(3));
3151    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3152    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3153                              I.getOperand(1), 0, I.getOperand(2), 0));
3154    return 0;
3155  }
3156  case Intrinsic::memset_i32:
3157  case Intrinsic::memset_i64: {
3158    SDValue Op1 = getValue(I.getOperand(1));
3159    SDValue Op2 = getValue(I.getOperand(2));
3160    SDValue Op3 = getValue(I.getOperand(3));
3161    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3162    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
3163                              I.getOperand(1), 0));
3164    return 0;
3165  }
3166  case Intrinsic::memmove_i32:
3167  case Intrinsic::memmove_i64: {
3168    SDValue Op1 = getValue(I.getOperand(1));
3169    SDValue Op2 = getValue(I.getOperand(2));
3170    SDValue Op3 = getValue(I.getOperand(3));
3171    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3172
3173    // If the source and destination are known to not be aliases, we can
3174    // lower memmove as memcpy.
3175    uint64_t Size = -1ULL;
3176    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3177      Size = C->getValue();
3178    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3179        AliasAnalysis::NoAlias) {
3180      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3181                                I.getOperand(1), 0, I.getOperand(2), 0));
3182      return 0;
3183    }
3184
3185    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
3186                               I.getOperand(1), 0, I.getOperand(2), 0));
3187    return 0;
3188  }
3189  case Intrinsic::dbg_stoppoint: {
3190    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3191    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3192    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
3193      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
3194      assert(DD && "Not a debug information descriptor");
3195      DAG.setRoot(DAG.getDbgStopPoint(getRoot(),
3196                                      SPI.getLine(),
3197                                      SPI.getColumn(),
3198                                      cast<CompileUnitDesc>(DD)));
3199    }
3200
3201    return 0;
3202  }
3203  case Intrinsic::dbg_region_start: {
3204    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3205    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
3206    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
3207      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
3208      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3209    }
3210
3211    return 0;
3212  }
3213  case Intrinsic::dbg_region_end: {
3214    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3215    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
3216    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
3217      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
3218      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3219    }
3220
3221    return 0;
3222  }
3223  case Intrinsic::dbg_func_start: {
3224    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3225    if (!MMI) return 0;
3226    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
3227    Value *SP = FSI.getSubprogram();
3228    if (SP && MMI->Verify(SP)) {
3229      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3230      // what (most?) gdb expects.
3231      DebugInfoDesc *DD = MMI->getDescFor(SP);
3232      assert(DD && "Not a debug information descriptor");
3233      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
3234      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
3235      unsigned SrcFile = MMI->RecordSource(CompileUnit);
3236      // Record the source line but does create a label. It will be emitted
3237      // at asm emission time.
3238      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
3239    }
3240
3241    return 0;
3242  }
3243  case Intrinsic::dbg_declare: {
3244    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3245    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3246    Value *Variable = DI.getVariable();
3247    if (MMI && Variable && MMI->Verify(Variable))
3248      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3249                              getValue(DI.getAddress()), getValue(Variable)));
3250    return 0;
3251  }
3252
3253  case Intrinsic::eh_exception: {
3254    if (!CurMBB->isLandingPad()) {
3255      // FIXME: Mark exception register as live in.  Hack for PR1508.
3256      unsigned Reg = TLI.getExceptionAddressRegister();
3257      if (Reg) CurMBB->addLiveIn(Reg);
3258    }
3259    // Insert the EXCEPTIONADDR instruction.
3260    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3261    SDValue Ops[1];
3262    Ops[0] = DAG.getRoot();
3263    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3264    setValue(&I, Op);
3265    DAG.setRoot(Op.getValue(1));
3266    return 0;
3267  }
3268
3269  case Intrinsic::eh_selector_i32:
3270  case Intrinsic::eh_selector_i64: {
3271    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3272    MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3273                         MVT::i32 : MVT::i64);
3274
3275    if (MMI) {
3276      if (CurMBB->isLandingPad())
3277        addCatchInfo(I, MMI, CurMBB);
3278      else {
3279#ifndef NDEBUG
3280        FuncInfo.CatchInfoLost.insert(&I);
3281#endif
3282        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3283        unsigned Reg = TLI.getExceptionSelectorRegister();
3284        if (Reg) CurMBB->addLiveIn(Reg);
3285      }
3286
3287      // Insert the EHSELECTION instruction.
3288      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3289      SDValue Ops[2];
3290      Ops[0] = getValue(I.getOperand(1));
3291      Ops[1] = getRoot();
3292      SDValue Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3293      setValue(&I, Op);
3294      DAG.setRoot(Op.getValue(1));
3295    } else {
3296      setValue(&I, DAG.getConstant(0, VT));
3297    }
3298
3299    return 0;
3300  }
3301
3302  case Intrinsic::eh_typeid_for_i32:
3303  case Intrinsic::eh_typeid_for_i64: {
3304    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3305    MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3306                         MVT::i32 : MVT::i64);
3307
3308    if (MMI) {
3309      // Find the type id for the given typeinfo.
3310      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3311
3312      unsigned TypeID = MMI->getTypeIDFor(GV);
3313      setValue(&I, DAG.getConstant(TypeID, VT));
3314    } else {
3315      // Return something different to eh_selector.
3316      setValue(&I, DAG.getConstant(1, VT));
3317    }
3318
3319    return 0;
3320  }
3321
3322  case Intrinsic::eh_return: {
3323    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3324
3325    if (MMI) {
3326      MMI->setCallsEHReturn(true);
3327      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3328                              MVT::Other,
3329                              getControlRoot(),
3330                              getValue(I.getOperand(1)),
3331                              getValue(I.getOperand(2))));
3332    } else {
3333      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3334    }
3335
3336    return 0;
3337  }
3338
3339   case Intrinsic::eh_unwind_init: {
3340     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3341       MMI->setCallsUnwindInit(true);
3342     }
3343
3344     return 0;
3345   }
3346
3347   case Intrinsic::eh_dwarf_cfa: {
3348     MVT VT = getValue(I.getOperand(1)).getValueType();
3349     SDValue CfaArg;
3350     if (VT.bitsGT(TLI.getPointerTy()))
3351       CfaArg = DAG.getNode(ISD::TRUNCATE,
3352                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3353     else
3354       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3355                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3356
3357     SDValue Offset = DAG.getNode(ISD::ADD,
3358                                    TLI.getPointerTy(),
3359                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3360                                                TLI.getPointerTy()),
3361                                    CfaArg);
3362     setValue(&I, DAG.getNode(ISD::ADD,
3363                              TLI.getPointerTy(),
3364                              DAG.getNode(ISD::FRAMEADDR,
3365                                          TLI.getPointerTy(),
3366                                          DAG.getConstant(0,
3367                                                          TLI.getPointerTy())),
3368                              Offset));
3369     return 0;
3370  }
3371
3372  case Intrinsic::sqrt:
3373    setValue(&I, DAG.getNode(ISD::FSQRT,
3374                             getValue(I.getOperand(1)).getValueType(),
3375                             getValue(I.getOperand(1))));
3376    return 0;
3377  case Intrinsic::powi:
3378    setValue(&I, DAG.getNode(ISD::FPOWI,
3379                             getValue(I.getOperand(1)).getValueType(),
3380                             getValue(I.getOperand(1)),
3381                             getValue(I.getOperand(2))));
3382    return 0;
3383  case Intrinsic::sin:
3384    setValue(&I, DAG.getNode(ISD::FSIN,
3385                             getValue(I.getOperand(1)).getValueType(),
3386                             getValue(I.getOperand(1))));
3387    return 0;
3388  case Intrinsic::cos:
3389    setValue(&I, DAG.getNode(ISD::FCOS,
3390                             getValue(I.getOperand(1)).getValueType(),
3391                             getValue(I.getOperand(1))));
3392    return 0;
3393  case Intrinsic::pow:
3394    setValue(&I, DAG.getNode(ISD::FPOW,
3395                             getValue(I.getOperand(1)).getValueType(),
3396                             getValue(I.getOperand(1)),
3397                             getValue(I.getOperand(2))));
3398    return 0;
3399  case Intrinsic::pcmarker: {
3400    SDValue Tmp = getValue(I.getOperand(1));
3401    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3402    return 0;
3403  }
3404  case Intrinsic::readcyclecounter: {
3405    SDValue Op = getRoot();
3406    SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3407                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3408                                &Op, 1);
3409    setValue(&I, Tmp);
3410    DAG.setRoot(Tmp.getValue(1));
3411    return 0;
3412  }
3413  case Intrinsic::part_select: {
3414    // Currently not implemented: just abort
3415    assert(0 && "part_select intrinsic not implemented");
3416    abort();
3417  }
3418  case Intrinsic::part_set: {
3419    // Currently not implemented: just abort
3420    assert(0 && "part_set intrinsic not implemented");
3421    abort();
3422  }
3423  case Intrinsic::bswap:
3424    setValue(&I, DAG.getNode(ISD::BSWAP,
3425                             getValue(I.getOperand(1)).getValueType(),
3426                             getValue(I.getOperand(1))));
3427    return 0;
3428  case Intrinsic::cttz: {
3429    SDValue Arg = getValue(I.getOperand(1));
3430    MVT Ty = Arg.getValueType();
3431    SDValue result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3432    setValue(&I, result);
3433    return 0;
3434  }
3435  case Intrinsic::ctlz: {
3436    SDValue Arg = getValue(I.getOperand(1));
3437    MVT Ty = Arg.getValueType();
3438    SDValue result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3439    setValue(&I, result);
3440    return 0;
3441  }
3442  case Intrinsic::ctpop: {
3443    SDValue Arg = getValue(I.getOperand(1));
3444    MVT Ty = Arg.getValueType();
3445    SDValue result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3446    setValue(&I, result);
3447    return 0;
3448  }
3449  case Intrinsic::stacksave: {
3450    SDValue Op = getRoot();
3451    SDValue Tmp = DAG.getNode(ISD::STACKSAVE,
3452              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3453    setValue(&I, Tmp);
3454    DAG.setRoot(Tmp.getValue(1));
3455    return 0;
3456  }
3457  case Intrinsic::stackrestore: {
3458    SDValue Tmp = getValue(I.getOperand(1));
3459    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3460    return 0;
3461  }
3462  case Intrinsic::var_annotation:
3463    // Discard annotate attributes
3464    return 0;
3465
3466  case Intrinsic::init_trampoline: {
3467    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
3468
3469    SDValue Ops[6];
3470    Ops[0] = getRoot();
3471    Ops[1] = getValue(I.getOperand(1));
3472    Ops[2] = getValue(I.getOperand(2));
3473    Ops[3] = getValue(I.getOperand(3));
3474    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3475    Ops[5] = DAG.getSrcValue(F);
3476
3477    SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE,
3478                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3479                                                      MVT::Other), 2,
3480                                Ops, 6);
3481
3482    setValue(&I, Tmp);
3483    DAG.setRoot(Tmp.getValue(1));
3484    return 0;
3485  }
3486
3487  case Intrinsic::gcroot:
3488    if (GCI) {
3489      Value *Alloca = I.getOperand(1);
3490      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3491
3492      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3493      GCI->addStackRoot(FI->getIndex(), TypeMap);
3494    }
3495    return 0;
3496
3497  case Intrinsic::gcread:
3498  case Intrinsic::gcwrite:
3499    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3500    return 0;
3501
3502  case Intrinsic::flt_rounds: {
3503    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3504    return 0;
3505  }
3506
3507  case Intrinsic::trap: {
3508    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3509    return 0;
3510  }
3511  case Intrinsic::prefetch: {
3512    SDValue Ops[4];
3513    Ops[0] = getRoot();
3514    Ops[1] = getValue(I.getOperand(1));
3515    Ops[2] = getValue(I.getOperand(2));
3516    Ops[3] = getValue(I.getOperand(3));
3517    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3518    return 0;
3519  }
3520
3521  case Intrinsic::memory_barrier: {
3522    SDValue Ops[6];
3523    Ops[0] = getRoot();
3524    for (int x = 1; x < 6; ++x)
3525      Ops[x] = getValue(I.getOperand(x));
3526
3527    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3528    return 0;
3529  }
3530  case Intrinsic::atomic_cmp_swap: {
3531    SDValue Root = getRoot();
3532    SDValue L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, Root,
3533                                getValue(I.getOperand(1)),
3534                                getValue(I.getOperand(2)),
3535                                getValue(I.getOperand(3)),
3536                                I.getOperand(1));
3537    setValue(&I, L);
3538    DAG.setRoot(L.getValue(1));
3539    return 0;
3540  }
3541  case Intrinsic::atomic_load_add:
3542    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
3543  case Intrinsic::atomic_load_sub:
3544    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
3545  case Intrinsic::atomic_load_and:
3546    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
3547  case Intrinsic::atomic_load_or:
3548    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
3549  case Intrinsic::atomic_load_xor:
3550    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
3551  case Intrinsic::atomic_load_nand:
3552    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
3553  case Intrinsic::atomic_load_min:
3554    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
3555  case Intrinsic::atomic_load_max:
3556    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
3557  case Intrinsic::atomic_load_umin:
3558    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
3559  case Intrinsic::atomic_load_umax:
3560      return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
3561  case Intrinsic::atomic_swap:
3562    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
3563  }
3564}
3565
3566
3567void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
3568                                       bool IsTailCall,
3569                                       MachineBasicBlock *LandingPad) {
3570  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3571  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3572  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3573  unsigned BeginLabel = 0, EndLabel = 0;
3574
3575  TargetLowering::ArgListTy Args;
3576  TargetLowering::ArgListEntry Entry;
3577  Args.reserve(CS.arg_size());
3578  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3579       i != e; ++i) {
3580    SDValue ArgNode = getValue(*i);
3581    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3582
3583    unsigned attrInd = i - CS.arg_begin() + 1;
3584    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3585    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3586    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3587    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3588    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3589    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3590    Entry.Alignment = CS.getParamAlignment(attrInd);
3591    Args.push_back(Entry);
3592  }
3593
3594  if (LandingPad && MMI) {
3595    // Insert a label before the invoke call to mark the try range.  This can be
3596    // used to detect deletion of the invoke via the MachineModuleInfo.
3597    BeginLabel = MMI->NextLabelID();
3598    // Both PendingLoads and PendingExports must be flushed here;
3599    // this call might not return.
3600    (void)getRoot();
3601    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel));
3602  }
3603
3604  std::pair<SDValue,SDValue> Result =
3605    TLI.LowerCallTo(getRoot(), CS.getType(),
3606                    CS.paramHasAttr(0, ParamAttr::SExt),
3607                    CS.paramHasAttr(0, ParamAttr::ZExt),
3608                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3609                    Callee, Args, DAG);
3610  if (CS.getType() != Type::VoidTy)
3611    setValue(CS.getInstruction(), Result.first);
3612  DAG.setRoot(Result.second);
3613
3614  if (LandingPad && MMI) {
3615    // Insert a label at the end of the invoke call to mark the try range.  This
3616    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3617    EndLabel = MMI->NextLabelID();
3618    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel));
3619
3620    // Inform MachineModuleInfo of range.
3621    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3622  }
3623}
3624
3625
3626void SelectionDAGLowering::visitCall(CallInst &I) {
3627  const char *RenameFn = 0;
3628  if (Function *F = I.getCalledFunction()) {
3629    if (F->isDeclaration()) {
3630      if (unsigned IID = F->getIntrinsicID()) {
3631        RenameFn = visitIntrinsicCall(I, IID);
3632        if (!RenameFn)
3633          return;
3634      }
3635    }
3636
3637    // Check for well-known libc/libm calls.  If the function is internal, it
3638    // can't be a library call.
3639    unsigned NameLen = F->getNameLen();
3640    if (!F->hasInternalLinkage() && NameLen) {
3641      const char *NameStr = F->getNameStart();
3642      if (NameStr[0] == 'c' &&
3643          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3644           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3645        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3646            I.getOperand(1)->getType()->isFloatingPoint() &&
3647            I.getType() == I.getOperand(1)->getType() &&
3648            I.getType() == I.getOperand(2)->getType()) {
3649          SDValue LHS = getValue(I.getOperand(1));
3650          SDValue RHS = getValue(I.getOperand(2));
3651          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3652                                   LHS, RHS));
3653          return;
3654        }
3655      } else if (NameStr[0] == 'f' &&
3656                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3657                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3658                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3659        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3660            I.getOperand(1)->getType()->isFloatingPoint() &&
3661            I.getType() == I.getOperand(1)->getType()) {
3662          SDValue Tmp = getValue(I.getOperand(1));
3663          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3664          return;
3665        }
3666      } else if (NameStr[0] == 's' &&
3667                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3668                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3669                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3670        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3671            I.getOperand(1)->getType()->isFloatingPoint() &&
3672            I.getType() == I.getOperand(1)->getType()) {
3673          SDValue Tmp = getValue(I.getOperand(1));
3674          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3675          return;
3676        }
3677      } else if (NameStr[0] == 'c' &&
3678                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3679                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3680                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3681        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3682            I.getOperand(1)->getType()->isFloatingPoint() &&
3683            I.getType() == I.getOperand(1)->getType()) {
3684          SDValue Tmp = getValue(I.getOperand(1));
3685          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3686          return;
3687        }
3688      }
3689    }
3690  } else if (isa<InlineAsm>(I.getOperand(0))) {
3691    visitInlineAsm(&I);
3692    return;
3693  }
3694
3695  SDValue Callee;
3696  if (!RenameFn)
3697    Callee = getValue(I.getOperand(0));
3698  else
3699    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3700
3701  LowerCallTo(&I, Callee, I.isTailCall());
3702}
3703
3704
3705/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3706/// this value and returns the result as a ValueVT value.  This uses
3707/// Chain/Flag as the input and updates them for the output Chain/Flag.
3708/// If the Flag pointer is NULL, no flag is used.
3709SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3710                                      SDValue &Chain,
3711                                      SDValue *Flag) const {
3712  // Assemble the legal parts into the final values.
3713  SmallVector<SDValue, 4> Values(ValueVTs.size());
3714  SmallVector<SDValue, 8> Parts;
3715  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3716    // Copy the legal parts from the registers.
3717    MVT ValueVT = ValueVTs[Value];
3718    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
3719    MVT RegisterVT = RegVTs[Value];
3720
3721    Parts.resize(NumRegs);
3722    for (unsigned i = 0; i != NumRegs; ++i) {
3723      SDValue P;
3724      if (Flag == 0)
3725        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
3726      else {
3727        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
3728        *Flag = P.getValue(2);
3729      }
3730      Chain = P.getValue(1);
3731
3732      // If the source register was virtual and if we know something about it,
3733      // add an assert node.
3734      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
3735          RegisterVT.isInteger() && !RegisterVT.isVector()) {
3736        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
3737        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
3738        if (FLI.LiveOutRegInfo.size() > SlotNo) {
3739          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
3740
3741          unsigned RegSize = RegisterVT.getSizeInBits();
3742          unsigned NumSignBits = LOI.NumSignBits;
3743          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
3744
3745          // FIXME: We capture more information than the dag can represent.  For
3746          // now, just use the tightest assertzext/assertsext possible.
3747          bool isSExt = true;
3748          MVT FromVT(MVT::Other);
3749          if (NumSignBits == RegSize)
3750            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
3751          else if (NumZeroBits >= RegSize-1)
3752            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
3753          else if (NumSignBits > RegSize-8)
3754            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
3755          else if (NumZeroBits >= RegSize-9)
3756            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
3757          else if (NumSignBits > RegSize-16)
3758            isSExt = true, FromVT = MVT::i16;   // ASSERT SEXT 16
3759          else if (NumZeroBits >= RegSize-17)
3760            isSExt = false, FromVT = MVT::i16;  // ASSERT ZEXT 16
3761          else if (NumSignBits > RegSize-32)
3762            isSExt = true, FromVT = MVT::i32;   // ASSERT SEXT 32
3763          else if (NumZeroBits >= RegSize-33)
3764            isSExt = false, FromVT = MVT::i32;  // ASSERT ZEXT 32
3765
3766          if (FromVT != MVT::Other) {
3767            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
3768                            RegisterVT, P, DAG.getValueType(FromVT));
3769
3770          }
3771        }
3772      }
3773
3774      Parts[Part+i] = P;
3775    }
3776
3777    Values[Value] = getCopyFromParts(DAG, &Parts[Part], NumRegs, RegisterVT,
3778                                     ValueVT);
3779    Part += NumRegs;
3780  }
3781
3782  return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
3783                            &Values[0], ValueVTs.size());
3784}
3785
3786/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3787/// specified value into the registers specified by this object.  This uses
3788/// Chain/Flag as the input and updates them for the output Chain/Flag.
3789/// If the Flag pointer is NULL, no flag is used.
3790void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
3791                                 SDValue &Chain, SDValue *Flag) const {
3792  // Get the list of the values's legal parts.
3793  unsigned NumRegs = Regs.size();
3794  SmallVector<SDValue, 8> Parts(NumRegs);
3795  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3796    MVT ValueVT = ValueVTs[Value];
3797    unsigned NumParts = TLI->getNumRegisters(ValueVT);
3798    MVT RegisterVT = RegVTs[Value];
3799
3800    getCopyToParts(DAG, Val.getValue(Val.ResNo + Value),
3801                   &Parts[Part], NumParts, RegisterVT);
3802    Part += NumParts;
3803  }
3804
3805  // Copy the parts into the registers.
3806  SmallVector<SDValue, 8> Chains(NumRegs);
3807  for (unsigned i = 0; i != NumRegs; ++i) {
3808    SDValue Part;
3809    if (Flag == 0)
3810      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3811    else {
3812      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
3813      *Flag = Part.getValue(1);
3814    }
3815    Chains[i] = Part.getValue(0);
3816  }
3817
3818  if (NumRegs == 1 || Flag)
3819    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
3820    // flagged to it. That is the CopyToReg nodes and the user are considered
3821    // a single scheduling unit. If we create a TokenFactor and return it as
3822    // chain, then the TokenFactor is both a predecessor (operand) of the
3823    // user as well as a successor (the TF operands are flagged to the user).
3824    // c1, f1 = CopyToReg
3825    // c2, f2 = CopyToReg
3826    // c3     = TokenFactor c1, c2
3827    // ...
3828    //        = op c3, ..., f2
3829    Chain = Chains[NumRegs-1];
3830  else
3831    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
3832}
3833
3834/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3835/// operand list.  This adds the code marker and includes the number of
3836/// values added into it.
3837void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3838                                        std::vector<SDValue> &Ops) const {
3839  MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3840  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3841  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
3842    unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
3843    MVT RegisterVT = RegVTs[Value];
3844    for (unsigned i = 0; i != NumRegs; ++i)
3845      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
3846  }
3847}
3848
3849/// isAllocatableRegister - If the specified register is safe to allocate,
3850/// i.e. it isn't a stack pointer or some other special register, return the
3851/// register class for the register.  Otherwise, return null.
3852static const TargetRegisterClass *
3853isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3854                      const TargetLowering &TLI,
3855                      const TargetRegisterInfo *TRI) {
3856  MVT FoundVT = MVT::Other;
3857  const TargetRegisterClass *FoundRC = 0;
3858  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3859       E = TRI->regclass_end(); RCI != E; ++RCI) {
3860    MVT ThisVT = MVT::Other;
3861
3862    const TargetRegisterClass *RC = *RCI;
3863    // If none of the the value types for this register class are valid, we
3864    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3865    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3866         I != E; ++I) {
3867      if (TLI.isTypeLegal(*I)) {
3868        // If we have already found this register in a different register class,
3869        // choose the one with the largest VT specified.  For example, on
3870        // PowerPC, we favor f64 register classes over f32.
3871        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
3872          ThisVT = *I;
3873          break;
3874        }
3875      }
3876    }
3877
3878    if (ThisVT == MVT::Other) continue;
3879
3880    // NOTE: This isn't ideal.  In particular, this might allocate the
3881    // frame pointer in functions that need it (due to them not being taken
3882    // out of allocation, because a variable sized allocation hasn't been seen
3883    // yet).  This is a slight code pessimization, but should still work.
3884    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3885         E = RC->allocation_order_end(MF); I != E; ++I)
3886      if (*I == Reg) {
3887        // We found a matching register class.  Keep looking at others in case
3888        // we find one with larger registers that this physreg is also in.
3889        FoundRC = RC;
3890        FoundVT = ThisVT;
3891        break;
3892      }
3893  }
3894  return FoundRC;
3895}
3896
3897
3898namespace {
3899/// AsmOperandInfo - This contains information for each constraint that we are
3900/// lowering.
3901struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
3902  /// CallOperand - If this is the result output operand or a clobber
3903  /// this is null, otherwise it is the incoming operand to the CallInst.
3904  /// This gets modified as the asm is processed.
3905  SDValue CallOperand;
3906
3907  /// AssignedRegs - If this is a register or register class operand, this
3908  /// contains the set of register corresponding to the operand.
3909  RegsForValue AssignedRegs;
3910
3911  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3912    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
3913  }
3914
3915  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3916  /// busy in OutputRegs/InputRegs.
3917  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3918                         std::set<unsigned> &OutputRegs,
3919                         std::set<unsigned> &InputRegs,
3920                         const TargetRegisterInfo &TRI) const {
3921    if (isOutReg) {
3922      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3923        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3924    }
3925    if (isInReg) {
3926      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3927        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3928    }
3929  }
3930
3931private:
3932  /// MarkRegAndAliases - Mark the specified register and all aliases in the
3933  /// specified set.
3934  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3935                                const TargetRegisterInfo &TRI) {
3936    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3937    Regs.insert(Reg);
3938    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3939      for (; *Aliases; ++Aliases)
3940        Regs.insert(*Aliases);
3941  }
3942};
3943} // end anon namespace.
3944
3945
3946/// GetRegistersForValue - Assign registers (virtual or physical) for the
3947/// specified operand.  We prefer to assign virtual registers, to allow the
3948/// register allocator handle the assignment process.  However, if the asm uses
3949/// features that we can't model on machineinstrs, we have SDISel do the
3950/// allocation.  This produces generally horrible, but correct, code.
3951///
3952///   OpInfo describes the operand.
3953///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
3954///     or any explicitly clobbered registers.
3955///   Input and OutputRegs are the set of already allocated physical registers.
3956///
3957void SelectionDAGLowering::
3958GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
3959                     std::set<unsigned> &OutputRegs,
3960                     std::set<unsigned> &InputRegs) {
3961  // Compute whether this value requires an input register, an output register,
3962  // or both.
3963  bool isOutReg = false;
3964  bool isInReg = false;
3965  switch (OpInfo.Type) {
3966  case InlineAsm::isOutput:
3967    isOutReg = true;
3968
3969    // If this is an early-clobber output, or if there is an input
3970    // constraint that matches this, we need to reserve the input register
3971    // so no other inputs allocate to it.
3972    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3973    break;
3974  case InlineAsm::isInput:
3975    isInReg = true;
3976    isOutReg = false;
3977    break;
3978  case InlineAsm::isClobber:
3979    isOutReg = true;
3980    isInReg = true;
3981    break;
3982  }
3983
3984
3985  MachineFunction &MF = DAG.getMachineFunction();
3986  SmallVector<unsigned, 4> Regs;
3987
3988  // If this is a constraint for a single physreg, or a constraint for a
3989  // register class, find it.
3990  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3991    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3992                                     OpInfo.ConstraintVT);
3993
3994  unsigned NumRegs = 1;
3995  if (OpInfo.ConstraintVT != MVT::Other)
3996    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3997  MVT RegVT;
3998  MVT ValueVT = OpInfo.ConstraintVT;
3999
4000
4001  // If this is a constraint for a specific physical register, like {r17},
4002  // assign it now.
4003  if (PhysReg.first) {
4004    if (OpInfo.ConstraintVT == MVT::Other)
4005      ValueVT = *PhysReg.second->vt_begin();
4006
4007    // Get the actual register value type.  This is important, because the user
4008    // may have asked for (e.g.) the AX register in i32 type.  We need to
4009    // remember that AX is actually i16 to get the right extension.
4010    RegVT = *PhysReg.second->vt_begin();
4011
4012    // This is a explicit reference to a physical register.
4013    Regs.push_back(PhysReg.first);
4014
4015    // If this is an expanded reference, add the rest of the regs to Regs.
4016    if (NumRegs != 1) {
4017      TargetRegisterClass::iterator I = PhysReg.second->begin();
4018      for (; *I != PhysReg.first; ++I)
4019        assert(I != PhysReg.second->end() && "Didn't find reg!");
4020
4021      // Already added the first reg.
4022      --NumRegs; ++I;
4023      for (; NumRegs; --NumRegs, ++I) {
4024        assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
4025        Regs.push_back(*I);
4026      }
4027    }
4028    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4029    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4030    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4031    return;
4032  }
4033
4034  // Otherwise, if this was a reference to an LLVM register class, create vregs
4035  // for this reference.
4036  std::vector<unsigned> RegClassRegs;
4037  const TargetRegisterClass *RC = PhysReg.second;
4038  if (RC) {
4039    // If this is an early clobber or tied register, our regalloc doesn't know
4040    // how to maintain the constraint.  If it isn't, go ahead and create vreg
4041    // and let the regalloc do the right thing.
4042    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
4043        // If there is some other early clobber and this is an input register,
4044        // then we are forced to pre-allocate the input reg so it doesn't
4045        // conflict with the earlyclobber.
4046        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
4047      RegVT = *PhysReg.second->vt_begin();
4048
4049      if (OpInfo.ConstraintVT == MVT::Other)
4050        ValueVT = RegVT;
4051
4052      // Create the appropriate number of virtual registers.
4053      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4054      for (; NumRegs; --NumRegs)
4055        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
4056
4057      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4058      return;
4059    }
4060
4061    // Otherwise, we can't allocate it.  Let the code below figure out how to
4062    // maintain these constraints.
4063    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
4064
4065  } else {
4066    // This is a reference to a register class that doesn't directly correspond
4067    // to an LLVM register class.  Allocate NumRegs consecutive, available,
4068    // registers from the class.
4069    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
4070                                                         OpInfo.ConstraintVT);
4071  }
4072
4073  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4074  unsigned NumAllocated = 0;
4075  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
4076    unsigned Reg = RegClassRegs[i];
4077    // See if this register is available.
4078    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
4079        (isInReg  && InputRegs.count(Reg))) {    // Already used.
4080      // Make sure we find consecutive registers.
4081      NumAllocated = 0;
4082      continue;
4083    }
4084
4085    // Check to see if this register is allocatable (i.e. don't give out the
4086    // stack pointer).
4087    if (RC == 0) {
4088      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
4089      if (!RC) {        // Couldn't allocate this register.
4090        // Reset NumAllocated to make sure we return consecutive registers.
4091        NumAllocated = 0;
4092        continue;
4093      }
4094    }
4095
4096    // Okay, this register is good, we can use it.
4097    ++NumAllocated;
4098
4099    // If we allocated enough consecutive registers, succeed.
4100    if (NumAllocated == NumRegs) {
4101      unsigned RegStart = (i-NumAllocated)+1;
4102      unsigned RegEnd   = i+1;
4103      // Mark all of the allocated registers used.
4104      for (unsigned i = RegStart; i != RegEnd; ++i)
4105        Regs.push_back(RegClassRegs[i]);
4106
4107      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
4108                                         OpInfo.ConstraintVT);
4109      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4110      return;
4111    }
4112  }
4113
4114  // Otherwise, we couldn't allocate enough registers for this.
4115}
4116
4117
4118/// visitInlineAsm - Handle a call to an InlineAsm object.
4119///
4120void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
4121  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4122
4123  /// ConstraintOperands - Information about all of the constraints.
4124  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
4125
4126  SDValue Chain = getRoot();
4127  SDValue Flag;
4128
4129  std::set<unsigned> OutputRegs, InputRegs;
4130
4131  // Do a prepass over the constraints, canonicalizing them, and building up the
4132  // ConstraintOperands list.
4133  std::vector<InlineAsm::ConstraintInfo>
4134    ConstraintInfos = IA->ParseConstraints();
4135
4136  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
4137  // constraint.  If so, we can't let the register allocator allocate any input
4138  // registers, because it will not know to avoid the earlyclobbered output reg.
4139  bool SawEarlyClobber = false;
4140
4141  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
4142  unsigned ResNo = 0;   // ResNo - The result number of the next output.
4143  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4144    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
4145    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
4146
4147    MVT OpVT = MVT::Other;
4148
4149    // Compute the value type for each operand.
4150    switch (OpInfo.Type) {
4151    case InlineAsm::isOutput:
4152      // Indirect outputs just consume an argument.
4153      if (OpInfo.isIndirect) {
4154        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4155        break;
4156      }
4157      // The return value of the call is this value.  As such, there is no
4158      // corresponding argument.
4159      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4160      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
4161        OpVT = TLI.getValueType(STy->getElementType(ResNo));
4162      } else {
4163        assert(ResNo == 0 && "Asm only has one result!");
4164        OpVT = TLI.getValueType(CS.getType());
4165      }
4166      ++ResNo;
4167      break;
4168    case InlineAsm::isInput:
4169      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4170      break;
4171    case InlineAsm::isClobber:
4172      // Nothing to do.
4173      break;
4174    }
4175
4176    // If this is an input or an indirect output, process the call argument.
4177    // BasicBlocks are labels, currently appearing only in asm's.
4178    if (OpInfo.CallOperandVal) {
4179      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
4180        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
4181      else {
4182        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
4183        const Type *OpTy = OpInfo.CallOperandVal->getType();
4184        // If this is an indirect operand, the operand is a pointer to the
4185        // accessed type.
4186        if (OpInfo.isIndirect)
4187          OpTy = cast<PointerType>(OpTy)->getElementType();
4188
4189        // If OpTy is not a single value, it may be a struct/union that we
4190        // can tile with integers.
4191        if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4192          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4193          switch (BitSize) {
4194          default: break;
4195          case 1:
4196          case 8:
4197          case 16:
4198          case 32:
4199          case 64:
4200            OpTy = IntegerType::get(BitSize);
4201            break;
4202          }
4203        }
4204
4205        OpVT = TLI.getValueType(OpTy, true);
4206      }
4207    }
4208
4209    OpInfo.ConstraintVT = OpVT;
4210
4211    // Compute the constraint code and ConstraintType to use.
4212    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
4213
4214    // Keep track of whether we see an earlyclobber.
4215    SawEarlyClobber |= OpInfo.isEarlyClobber;
4216
4217    // If we see a clobber of a register, it is an early clobber.
4218    if (!SawEarlyClobber &&
4219        OpInfo.Type == InlineAsm::isClobber &&
4220        OpInfo.ConstraintType == TargetLowering::C_Register) {
4221      // Note that we want to ignore things that we don't trick here, like
4222      // dirflag, fpsr, flags, etc.
4223      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4224        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4225                                         OpInfo.ConstraintVT);
4226      if (PhysReg.first || PhysReg.second) {
4227        // This is a register we know of.
4228        SawEarlyClobber = true;
4229      }
4230    }
4231
4232    // If this is a memory input, and if the operand is not indirect, do what we
4233    // need to to provide an address for the memory input.
4234    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4235        !OpInfo.isIndirect) {
4236      assert(OpInfo.Type == InlineAsm::isInput &&
4237             "Can only indirectify direct input operands!");
4238
4239      // Memory operands really want the address of the value.  If we don't have
4240      // an indirect input, put it in the constpool if we can, otherwise spill
4241      // it to a stack slot.
4242
4243      // If the operand is a float, integer, or vector constant, spill to a
4244      // constant pool entry to get its address.
4245      Value *OpVal = OpInfo.CallOperandVal;
4246      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
4247          isa<ConstantVector>(OpVal)) {
4248        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
4249                                                 TLI.getPointerTy());
4250      } else {
4251        // Otherwise, create a stack slot and emit a store to it before the
4252        // asm.
4253        const Type *Ty = OpVal->getType();
4254        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
4255        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
4256        MachineFunction &MF = DAG.getMachineFunction();
4257        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
4258        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4259        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
4260        OpInfo.CallOperand = StackSlot;
4261      }
4262
4263      // There is no longer a Value* corresponding to this operand.
4264      OpInfo.CallOperandVal = 0;
4265      // It is now an indirect operand.
4266      OpInfo.isIndirect = true;
4267    }
4268
4269    // If this constraint is for a specific register, allocate it before
4270    // anything else.
4271    if (OpInfo.ConstraintType == TargetLowering::C_Register)
4272      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4273  }
4274  ConstraintInfos.clear();
4275
4276
4277  // Second pass - Loop over all of the operands, assigning virtual or physregs
4278  // to registerclass operands.
4279  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4280    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4281
4282    // C_Register operands have already been allocated, Other/Memory don't need
4283    // to be.
4284    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
4285      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4286  }
4287
4288  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
4289  std::vector<SDValue> AsmNodeOperands;
4290  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
4291  AsmNodeOperands.push_back(
4292          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
4293
4294
4295  // Loop over all of the inputs, copying the operand values into the
4296  // appropriate registers and processing the output regs.
4297  RegsForValue RetValRegs;
4298
4299  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
4300  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
4301
4302  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4303    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4304
4305    switch (OpInfo.Type) {
4306    case InlineAsm::isOutput: {
4307      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
4308          OpInfo.ConstraintType != TargetLowering::C_Register) {
4309        // Memory output, or 'other' output (e.g. 'X' constraint).
4310        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
4311
4312        // Add information to the INLINEASM node to know about this output.
4313        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4314        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4315                                                        TLI.getPointerTy()));
4316        AsmNodeOperands.push_back(OpInfo.CallOperand);
4317        break;
4318      }
4319
4320      // Otherwise, this is a register or register class output.
4321
4322      // Copy the output from the appropriate register.  Find a register that
4323      // we can use.
4324      if (OpInfo.AssignedRegs.Regs.empty()) {
4325        cerr << "Couldn't allocate output reg for constraint '"
4326             << OpInfo.ConstraintCode << "'!\n";
4327        exit(1);
4328      }
4329
4330      // If this is an indirect operand, store through the pointer after the
4331      // asm.
4332      if (OpInfo.isIndirect) {
4333        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
4334                                                      OpInfo.CallOperandVal));
4335      } else {
4336        // This is the result value of the call.
4337        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4338        // Concatenate this output onto the outputs list.
4339        RetValRegs.append(OpInfo.AssignedRegs);
4340      }
4341
4342      // Add information to the INLINEASM node to know that this register is
4343      // set.
4344      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
4345                                               AsmNodeOperands);
4346      break;
4347    }
4348    case InlineAsm::isInput: {
4349      SDValue InOperandVal = OpInfo.CallOperand;
4350
4351      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
4352        // If this is required to match an output register we have already set,
4353        // just use its register.
4354        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
4355
4356        // Scan until we find the definition we already emitted of this operand.
4357        // When we find it, create a RegsForValue operand.
4358        unsigned CurOp = 2;  // The first operand.
4359        for (; OperandNo; --OperandNo) {
4360          // Advance to the next operand.
4361          unsigned NumOps =
4362            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4363          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
4364                  (NumOps & 7) == 4 /*MEM*/) &&
4365                 "Skipped past definitions?");
4366          CurOp += (NumOps>>3)+1;
4367        }
4368
4369        unsigned NumOps =
4370          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4371        if ((NumOps & 7) == 2 /*REGDEF*/) {
4372          // Add NumOps>>3 registers to MatchedRegs.
4373          RegsForValue MatchedRegs;
4374          MatchedRegs.TLI = &TLI;
4375          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
4376          MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
4377          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
4378            unsigned Reg =
4379              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4380            MatchedRegs.Regs.push_back(Reg);
4381          }
4382
4383          // Use the produced MatchedRegs object to
4384          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4385          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
4386          break;
4387        } else {
4388          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
4389          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4390          // Add information to the INLINEASM node to know about this input.
4391          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4392          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4393                                                          TLI.getPointerTy()));
4394          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4395          break;
4396        }
4397      }
4398
4399      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4400        assert(!OpInfo.isIndirect &&
4401               "Don't know how to handle indirect other inputs yet!");
4402
4403        std::vector<SDValue> Ops;
4404        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
4405                                         Ops, DAG);
4406        if (Ops.empty()) {
4407          cerr << "Invalid operand for inline asm constraint '"
4408               << OpInfo.ConstraintCode << "'!\n";
4409          exit(1);
4410        }
4411
4412        // Add information to the INLINEASM node to know about this input.
4413        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4414        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4415                                                        TLI.getPointerTy()));
4416        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4417        break;
4418      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4419        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4420        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4421               "Memory operands expect pointer values");
4422
4423        // Add information to the INLINEASM node to know about this input.
4424        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4425        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4426                                                        TLI.getPointerTy()));
4427        AsmNodeOperands.push_back(InOperandVal);
4428        break;
4429      }
4430
4431      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4432              OpInfo.ConstraintType == TargetLowering::C_Register) &&
4433             "Unknown constraint type!");
4434      assert(!OpInfo.isIndirect &&
4435             "Don't know how to handle indirect register inputs yet!");
4436
4437      // Copy the input into the appropriate registers.
4438      assert(!OpInfo.AssignedRegs.Regs.empty() &&
4439             "Couldn't allocate input reg!");
4440
4441      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4442
4443      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
4444                                               AsmNodeOperands);
4445      break;
4446    }
4447    case InlineAsm::isClobber: {
4448      // Add the clobbered value to the operand list, so that the register
4449      // allocator is aware that the physreg got clobbered.
4450      if (!OpInfo.AssignedRegs.Regs.empty())
4451        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
4452                                                 AsmNodeOperands);
4453      break;
4454    }
4455    }
4456  }
4457
4458  // Finish up input operands.
4459  AsmNodeOperands[0] = Chain;
4460  if (Flag.Val) AsmNodeOperands.push_back(Flag);
4461
4462  Chain = DAG.getNode(ISD::INLINEASM,
4463                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4464                      &AsmNodeOperands[0], AsmNodeOperands.size());
4465  Flag = Chain.getValue(1);
4466
4467  // If this asm returns a register value, copy the result from that register
4468  // and set it as the value of the call.
4469  if (!RetValRegs.Regs.empty()) {
4470    SDValue Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4471
4472    // If any of the results of the inline asm is a vector, it may have the
4473    // wrong width/num elts.  This can happen for register classes that can
4474    // contain multiple different value types.  The preg or vreg allocated may
4475    // not have the same VT as was expected.  Convert it to the right type with
4476    // bit_convert.
4477    if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
4478      for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
4479        if (Val.Val->getValueType(i).isVector())
4480          Val = DAG.getNode(ISD::BIT_CONVERT,
4481                            TLI.getValueType(ResSTy->getElementType(i)), Val);
4482      }
4483    } else {
4484      if (Val.getValueType().isVector())
4485        Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
4486                          Val);
4487    }
4488
4489    setValue(CS.getInstruction(), Val);
4490  }
4491
4492  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
4493
4494  // Process indirect outputs, first output all of the flagged copies out of
4495  // physregs.
4496  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4497    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4498    Value *Ptr = IndirectStoresToEmit[i].second;
4499    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4500    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4501  }
4502
4503  // Emit the non-flagged stores from the physregs.
4504  SmallVector<SDValue, 8> OutChains;
4505  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4506    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4507                                    getValue(StoresToEmit[i].second),
4508                                    StoresToEmit[i].second, 0));
4509  if (!OutChains.empty())
4510    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4511                        &OutChains[0], OutChains.size());
4512  DAG.setRoot(Chain);
4513}
4514
4515
4516void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4517  SDValue Src = getValue(I.getOperand(0));
4518
4519  MVT IntPtr = TLI.getPointerTy();
4520
4521  if (IntPtr.bitsLT(Src.getValueType()))
4522    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4523  else if (IntPtr.bitsGT(Src.getValueType()))
4524    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4525
4526  // Scale the source by the type size.
4527  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4528  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4529                    Src, DAG.getIntPtrConstant(ElementSize));
4530
4531  TargetLowering::ArgListTy Args;
4532  TargetLowering::ArgListEntry Entry;
4533  Entry.Node = Src;
4534  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4535  Args.push_back(Entry);
4536
4537  std::pair<SDValue,SDValue> Result =
4538    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4539                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4540  setValue(&I, Result.first);  // Pointers always fit in registers
4541  DAG.setRoot(Result.second);
4542}
4543
4544void SelectionDAGLowering::visitFree(FreeInst &I) {
4545  TargetLowering::ArgListTy Args;
4546  TargetLowering::ArgListEntry Entry;
4547  Entry.Node = getValue(I.getOperand(0));
4548  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4549  Args.push_back(Entry);
4550  MVT IntPtr = TLI.getPointerTy();
4551  std::pair<SDValue,SDValue> Result =
4552    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4553                    CallingConv::C, true,
4554                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4555  DAG.setRoot(Result.second);
4556}
4557
4558// EmitInstrWithCustomInserter - This method should be implemented by targets
4559// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4560// instructions are special in various ways, which require special support to
4561// insert.  The specified MachineInstr is created but not inserted into any
4562// basic blocks, and the scheduler passes ownership of it to this method.
4563MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4564                                                       MachineBasicBlock *MBB) {
4565  cerr << "If a target marks an instruction with "
4566       << "'usesCustomDAGSchedInserter', it must implement "
4567       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4568  abort();
4569  return 0;
4570}
4571
4572void SelectionDAGLowering::visitVAStart(CallInst &I) {
4573  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4574                          getValue(I.getOperand(1)),
4575                          DAG.getSrcValue(I.getOperand(1))));
4576}
4577
4578void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4579  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4580                             getValue(I.getOperand(0)),
4581                             DAG.getSrcValue(I.getOperand(0)));
4582  setValue(&I, V);
4583  DAG.setRoot(V.getValue(1));
4584}
4585
4586void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4587  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4588                          getValue(I.getOperand(1)),
4589                          DAG.getSrcValue(I.getOperand(1))));
4590}
4591
4592void SelectionDAGLowering::visitVACopy(CallInst &I) {
4593  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4594                          getValue(I.getOperand(1)),
4595                          getValue(I.getOperand(2)),
4596                          DAG.getSrcValue(I.getOperand(1)),
4597                          DAG.getSrcValue(I.getOperand(2))));
4598}
4599
4600/// TargetLowering::LowerArguments - This is the default LowerArguments
4601/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4602/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4603/// integrated into SDISel.
4604void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
4605                                    SmallVectorImpl<SDValue> &ArgValues) {
4606  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4607  SmallVector<SDValue, 3+16> Ops;
4608  Ops.push_back(DAG.getRoot());
4609  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4610  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4611
4612  // Add one result value for each formal argument.
4613  SmallVector<MVT, 16> RetVals;
4614  unsigned j = 1;
4615  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4616       I != E; ++I, ++j) {
4617    SmallVector<MVT, 4> ValueVTs;
4618    ComputeValueVTs(*this, I->getType(), ValueVTs);
4619    for (unsigned Value = 0, NumValues = ValueVTs.size();
4620         Value != NumValues; ++Value) {
4621      MVT VT = ValueVTs[Value];
4622      const Type *ArgTy = VT.getTypeForMVT();
4623      ISD::ArgFlagsTy Flags;
4624      unsigned OriginalAlignment =
4625        getTargetData()->getABITypeAlignment(ArgTy);
4626
4627      if (F.paramHasAttr(j, ParamAttr::ZExt))
4628        Flags.setZExt();
4629      if (F.paramHasAttr(j, ParamAttr::SExt))
4630        Flags.setSExt();
4631      if (F.paramHasAttr(j, ParamAttr::InReg))
4632        Flags.setInReg();
4633      if (F.paramHasAttr(j, ParamAttr::StructRet))
4634        Flags.setSRet();
4635      if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4636        Flags.setByVal();
4637        const PointerType *Ty = cast<PointerType>(I->getType());
4638        const Type *ElementTy = Ty->getElementType();
4639        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4640        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4641        // For ByVal, alignment should be passed from FE.  BE will guess if
4642        // this info is not there but there are cases it cannot get right.
4643        if (F.getParamAlignment(j))
4644          FrameAlign = F.getParamAlignment(j);
4645        Flags.setByValAlign(FrameAlign);
4646        Flags.setByValSize(FrameSize);
4647      }
4648      if (F.paramHasAttr(j, ParamAttr::Nest))
4649        Flags.setNest();
4650      Flags.setOrigAlign(OriginalAlignment);
4651
4652      MVT RegisterVT = getRegisterType(VT);
4653      unsigned NumRegs = getNumRegisters(VT);
4654      for (unsigned i = 0; i != NumRegs; ++i) {
4655        RetVals.push_back(RegisterVT);
4656        ISD::ArgFlagsTy MyFlags = Flags;
4657        if (NumRegs > 1 && i == 0)
4658          MyFlags.setSplit();
4659        // if it isn't first piece, alignment must be 1
4660        else if (i > 0)
4661          MyFlags.setOrigAlign(1);
4662        Ops.push_back(DAG.getArgFlags(MyFlags));
4663      }
4664    }
4665  }
4666
4667  RetVals.push_back(MVT::Other);
4668
4669  // Create the node.
4670  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4671                               DAG.getVTList(&RetVals[0], RetVals.size()),
4672                               &Ops[0], Ops.size()).Val;
4673
4674  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4675  // allows exposing the loads that may be part of the argument access to the
4676  // first DAGCombiner pass.
4677  SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG);
4678
4679  // The number of results should match up, except that the lowered one may have
4680  // an extra flag result.
4681  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4682          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4683           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4684         && "Lowering produced unexpected number of results!");
4685
4686  // The FORMAL_ARGUMENTS node itself is likely no longer needed.
4687  if (Result != TmpRes.Val && Result->use_empty()) {
4688    HandleSDNode Dummy(DAG.getRoot());
4689    DAG.RemoveDeadNode(Result);
4690  }
4691
4692  Result = TmpRes.Val;
4693
4694  unsigned NumArgRegs = Result->getNumValues() - 1;
4695  DAG.setRoot(SDValue(Result, NumArgRegs));
4696
4697  // Set up the return result vector.
4698  unsigned i = 0;
4699  unsigned Idx = 1;
4700  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4701      ++I, ++Idx) {
4702    SmallVector<MVT, 4> ValueVTs;
4703    ComputeValueVTs(*this, I->getType(), ValueVTs);
4704    for (unsigned Value = 0, NumValues = ValueVTs.size();
4705         Value != NumValues; ++Value) {
4706      MVT VT = ValueVTs[Value];
4707      MVT PartVT = getRegisterType(VT);
4708
4709      unsigned NumParts = getNumRegisters(VT);
4710      SmallVector<SDValue, 4> Parts(NumParts);
4711      for (unsigned j = 0; j != NumParts; ++j)
4712        Parts[j] = SDValue(Result, i++);
4713
4714      ISD::NodeType AssertOp = ISD::DELETED_NODE;
4715      if (F.paramHasAttr(Idx, ParamAttr::SExt))
4716        AssertOp = ISD::AssertSext;
4717      else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4718        AssertOp = ISD::AssertZext;
4719
4720      ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4721                                           AssertOp));
4722    }
4723  }
4724  assert(i == NumArgRegs && "Argument register count mismatch!");
4725}
4726
4727
4728/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4729/// implementation, which just inserts an ISD::CALL node, which is later custom
4730/// lowered by the target to something concrete.  FIXME: When all targets are
4731/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4732std::pair<SDValue, SDValue>
4733TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
4734                            bool RetSExt, bool RetZExt, bool isVarArg,
4735                            unsigned CallingConv, bool isTailCall,
4736                            SDValue Callee,
4737                            ArgListTy &Args, SelectionDAG &DAG) {
4738  SmallVector<SDValue, 32> Ops;
4739  Ops.push_back(Chain);   // Op#0 - Chain
4740  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4741  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4742  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4743  Ops.push_back(Callee);
4744
4745  // Handle all of the outgoing arguments.
4746  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4747    SmallVector<MVT, 4> ValueVTs;
4748    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
4749    for (unsigned Value = 0, NumValues = ValueVTs.size();
4750         Value != NumValues; ++Value) {
4751      MVT VT = ValueVTs[Value];
4752      const Type *ArgTy = VT.getTypeForMVT();
4753      SDValue Op = SDValue(Args[i].Node.Val, Args[i].Node.ResNo + Value);
4754      ISD::ArgFlagsTy Flags;
4755      unsigned OriginalAlignment =
4756        getTargetData()->getABITypeAlignment(ArgTy);
4757
4758      if (Args[i].isZExt)
4759        Flags.setZExt();
4760      if (Args[i].isSExt)
4761        Flags.setSExt();
4762      if (Args[i].isInReg)
4763        Flags.setInReg();
4764      if (Args[i].isSRet)
4765        Flags.setSRet();
4766      if (Args[i].isByVal) {
4767        Flags.setByVal();
4768        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4769        const Type *ElementTy = Ty->getElementType();
4770        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4771        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4772        // For ByVal, alignment should come from FE.  BE will guess if this
4773        // info is not there but there are cases it cannot get right.
4774        if (Args[i].Alignment)
4775          FrameAlign = Args[i].Alignment;
4776        Flags.setByValAlign(FrameAlign);
4777        Flags.setByValSize(FrameSize);
4778      }
4779      if (Args[i].isNest)
4780        Flags.setNest();
4781      Flags.setOrigAlign(OriginalAlignment);
4782
4783      MVT PartVT = getRegisterType(VT);
4784      unsigned NumParts = getNumRegisters(VT);
4785      SmallVector<SDValue, 4> Parts(NumParts);
4786      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4787
4788      if (Args[i].isSExt)
4789        ExtendKind = ISD::SIGN_EXTEND;
4790      else if (Args[i].isZExt)
4791        ExtendKind = ISD::ZERO_EXTEND;
4792
4793      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4794
4795      for (unsigned i = 0; i != NumParts; ++i) {
4796        // if it isn't first piece, alignment must be 1
4797        ISD::ArgFlagsTy MyFlags = Flags;
4798        if (NumParts > 1 && i == 0)
4799          MyFlags.setSplit();
4800        else if (i != 0)
4801          MyFlags.setOrigAlign(1);
4802
4803        Ops.push_back(Parts[i]);
4804        Ops.push_back(DAG.getArgFlags(MyFlags));
4805      }
4806    }
4807  }
4808
4809  // Figure out the result value types. We start by making a list of
4810  // the potentially illegal return value types.
4811  SmallVector<MVT, 4> LoweredRetTys;
4812  SmallVector<MVT, 4> RetTys;
4813  ComputeValueVTs(*this, RetTy, RetTys);
4814
4815  // Then we translate that to a list of legal types.
4816  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4817    MVT VT = RetTys[I];
4818    MVT RegisterVT = getRegisterType(VT);
4819    unsigned NumRegs = getNumRegisters(VT);
4820    for (unsigned i = 0; i != NumRegs; ++i)
4821      LoweredRetTys.push_back(RegisterVT);
4822  }
4823
4824  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
4825
4826  // Create the CALL node.
4827  SDValue Res = DAG.getNode(ISD::CALL,
4828                              DAG.getVTList(&LoweredRetTys[0],
4829                                            LoweredRetTys.size()),
4830                              &Ops[0], Ops.size());
4831  Chain = Res.getValue(LoweredRetTys.size() - 1);
4832
4833  // Gather up the call result into a single value.
4834  if (RetTy != Type::VoidTy) {
4835    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4836
4837    if (RetSExt)
4838      AssertOp = ISD::AssertSext;
4839    else if (RetZExt)
4840      AssertOp = ISD::AssertZext;
4841
4842    SmallVector<SDValue, 4> ReturnValues;
4843    unsigned RegNo = 0;
4844    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4845      MVT VT = RetTys[I];
4846      MVT RegisterVT = getRegisterType(VT);
4847      unsigned NumRegs = getNumRegisters(VT);
4848      unsigned RegNoEnd = NumRegs + RegNo;
4849      SmallVector<SDValue, 4> Results;
4850      for (; RegNo != RegNoEnd; ++RegNo)
4851        Results.push_back(Res.getValue(RegNo));
4852      SDValue ReturnValue =
4853        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4854                         AssertOp);
4855      ReturnValues.push_back(ReturnValue);
4856    }
4857    Res = DAG.getMergeValues(DAG.getVTList(&RetTys[0], RetTys.size()),
4858                             &ReturnValues[0], ReturnValues.size());
4859  }
4860
4861  return std::make_pair(Res, Chain);
4862}
4863
4864SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
4865  assert(0 && "LowerOperation not implemented for this target!");
4866  abort();
4867  return SDValue();
4868}
4869
4870
4871//===----------------------------------------------------------------------===//
4872// SelectionDAGISel code
4873//===----------------------------------------------------------------------===//
4874
4875unsigned SelectionDAGISel::MakeReg(MVT VT) {
4876  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4877}
4878
4879void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4880  AU.addRequired<AliasAnalysis>();
4881  AU.addRequired<CollectorModuleMetadata>();
4882  AU.setPreservesAll();
4883}
4884
4885bool SelectionDAGISel::runOnFunction(Function &Fn) {
4886  // Get alias analysis for load/store combining.
4887  AA = &getAnalysis<AliasAnalysis>();
4888
4889  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4890  if (MF.getFunction()->hasCollector())
4891    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4892  else
4893    GCI = 0;
4894  RegInfo = &MF.getRegInfo();
4895  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4896
4897  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4898
4899  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4900    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4901      // Mark landing pad.
4902      FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4903
4904  SelectAllBasicBlocks(Fn, MF, FuncInfo);
4905
4906  // Add function live-ins to entry block live-in set.
4907  BasicBlock *EntryBB = &Fn.getEntryBlock();
4908  BB = FuncInfo.MBBMap[EntryBB];
4909  if (!RegInfo->livein_empty())
4910    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4911           E = RegInfo->livein_end(); I != E; ++I)
4912      BB->addLiveIn(I->first);
4913
4914#ifndef NDEBUG
4915  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4916         "Not all catch info was assigned to a landing pad!");
4917#endif
4918
4919  return true;
4920}
4921
4922void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
4923  SDValue Op = getValue(V);
4924  assert((Op.getOpcode() != ISD::CopyFromReg ||
4925          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4926         "Copy from a reg to the same reg!");
4927  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
4928
4929  RegsForValue RFV(TLI, Reg, V->getType());
4930  SDValue Chain = DAG.getEntryNode();
4931  RFV.getCopyToRegs(Op, DAG, Chain, 0);
4932  PendingExports.push_back(Chain);
4933}
4934
4935void SelectionDAGISel::
4936LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) {
4937  // If this is the entry block, emit arguments.
4938  Function &F = *LLVMBB->getParent();
4939  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4940  SDValue OldRoot = SDL.DAG.getRoot();
4941  SmallVector<SDValue, 16> Args;
4942  TLI.LowerArguments(F, SDL.DAG, Args);
4943
4944  unsigned a = 0;
4945  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4946       AI != E; ++AI) {
4947    SmallVector<MVT, 4> ValueVTs;
4948    ComputeValueVTs(TLI, AI->getType(), ValueVTs);
4949    unsigned NumValues = ValueVTs.size();
4950    if (!AI->use_empty()) {
4951      SDL.setValue(AI, SDL.DAG.getMergeValues(&Args[a], NumValues));
4952      // If this argument is live outside of the entry block, insert a copy from
4953      // whereever we got it to the vreg that other BB's will reference it as.
4954      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4955      if (VMI != FuncInfo.ValueMap.end()) {
4956        SDL.CopyValueToVirtualRegister(AI, VMI->second);
4957      }
4958    }
4959    a += NumValues;
4960  }
4961
4962  // Finally, if the target has anything special to do, allow it to do so.
4963  // FIXME: this should insert code into the DAG!
4964  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4965}
4966
4967static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4968                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4969  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4970    if (isSelector(I)) {
4971      // Apply the catch info to DestBB.
4972      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4973#ifndef NDEBUG
4974      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4975        FLI.CatchInfoFound.insert(I);
4976#endif
4977    }
4978}
4979
4980/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
4981/// whether object offset >= 0.
4982static bool
4983IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDValue Op) {
4984  if (!isa<FrameIndexSDNode>(Op)) return false;
4985
4986  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
4987  int FrameIdx =  FrameIdxNode->getIndex();
4988  return MFI->isFixedObjectIndex(FrameIdx) &&
4989    MFI->getObjectOffset(FrameIdx) >= 0;
4990}
4991
4992/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
4993/// possibly be overwritten when lowering the outgoing arguments in a tail
4994/// call. Currently the implementation of this call is very conservative and
4995/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
4996/// virtual registers would be overwritten by direct lowering.
4997static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
4998                                                    MachineFrameInfo * MFI) {
4999  RegisterSDNode * OpReg = NULL;
5000  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
5001      (Op.getOpcode()== ISD::CopyFromReg &&
5002       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
5003       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
5004      (Op.getOpcode() == ISD::LOAD &&
5005       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
5006      (Op.getOpcode() == ISD::MERGE_VALUES &&
5007       Op.getOperand(Op.ResNo).getOpcode() == ISD::LOAD &&
5008       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.ResNo).
5009                                       getOperand(1))))
5010    return true;
5011  return false;
5012}
5013
5014/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
5015/// DAG and fixes their tailcall attribute operand.
5016static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
5017                                           TargetLowering& TLI) {
5018  SDNode * Ret = NULL;
5019  SDValue Terminator = DAG.getRoot();
5020
5021  // Find RET node.
5022  if (Terminator.getOpcode() == ISD::RET) {
5023    Ret = Terminator.Val;
5024  }
5025
5026  // Fix tail call attribute of CALL nodes.
5027  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
5028         BI = DAG.allnodes_end(); BI != BE; ) {
5029    --BI;
5030    if (BI->getOpcode() == ISD::CALL) {
5031      SDValue OpRet(Ret, 0);
5032      SDValue OpCall(BI, 0);
5033      bool isMarkedTailCall =
5034        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
5035      // If CALL node has tail call attribute set to true and the call is not
5036      // eligible (no RET or the target rejects) the attribute is fixed to
5037      // false. The TargetLowering::IsEligibleForTailCallOptimization function
5038      // must correctly identify tail call optimizable calls.
5039      if (!isMarkedTailCall) continue;
5040      if (Ret==NULL ||
5041          !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
5042        // Not eligible. Mark CALL node as non tail call.
5043        SmallVector<SDValue, 32> Ops;
5044        unsigned idx=0;
5045        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
5046              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5047          if (idx!=3)
5048            Ops.push_back(*I);
5049          else
5050            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
5051        }
5052        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5053      } else {
5054        // Look for tail call clobbered arguments. Emit a series of
5055        // copyto/copyfrom virtual register nodes to protect them.
5056        SmallVector<SDValue, 32> Ops;
5057        SDValue Chain = OpCall.getOperand(0), InFlag;
5058        unsigned idx=0;
5059        for(SDNode::op_iterator I = OpCall.Val->op_begin(),
5060              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5061          SDValue Arg = *I;
5062          if (idx > 4 && (idx % 2)) {
5063            bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
5064              getArgFlags().isByVal();
5065            MachineFunction &MF = DAG.getMachineFunction();
5066            MachineFrameInfo *MFI = MF.getFrameInfo();
5067            if (!isByVal &&
5068                IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
5069              MVT VT = Arg.getValueType();
5070              unsigned VReg = MF.getRegInfo().
5071                createVirtualRegister(TLI.getRegClassFor(VT));
5072              Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
5073              InFlag = Chain.getValue(1);
5074              Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
5075              Chain = Arg.getValue(1);
5076              InFlag = Arg.getValue(2);
5077            }
5078          }
5079          Ops.push_back(Arg);
5080        }
5081        // Link in chain of CopyTo/CopyFromReg.
5082        Ops[0] = Chain;
5083        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5084      }
5085    }
5086  }
5087}
5088
5089void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
5090       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
5091                                         FunctionLoweringInfo &FuncInfo) {
5092  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
5093
5094  // Lower any arguments needed in this block if this is the entry block.
5095  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
5096    LowerArguments(LLVMBB, SDL);
5097
5098  BB = FuncInfo.MBBMap[LLVMBB];
5099  SDL.setCurrentBasicBlock(BB);
5100
5101  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
5102
5103  if (MMI && BB->isLandingPad()) {
5104    // Add a label to mark the beginning of the landing pad.  Deletion of the
5105    // landing pad can thus be detected via the MachineModuleInfo.
5106    unsigned LabelID = MMI->addLandingPad(BB);
5107    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, DAG.getEntryNode(), LabelID));
5108
5109    // Mark exception register as live in.
5110    unsigned Reg = TLI.getExceptionAddressRegister();
5111    if (Reg) BB->addLiveIn(Reg);
5112
5113    // Mark exception selector register as live in.
5114    Reg = TLI.getExceptionSelectorRegister();
5115    if (Reg) BB->addLiveIn(Reg);
5116
5117    // FIXME: Hack around an exception handling flaw (PR1508): the personality
5118    // function and list of typeids logically belong to the invoke (or, if you
5119    // like, the basic block containing the invoke), and need to be associated
5120    // with it in the dwarf exception handling tables.  Currently however the
5121    // information is provided by an intrinsic (eh.selector) that can be moved
5122    // to unexpected places by the optimizers: if the unwind edge is critical,
5123    // then breaking it can result in the intrinsics being in the successor of
5124    // the landing pad, not the landing pad itself.  This results in exceptions
5125    // not being caught because no typeids are associated with the invoke.
5126    // This may not be the only way things can go wrong, but it is the only way
5127    // we try to work around for the moment.
5128    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
5129
5130    if (Br && Br->isUnconditional()) { // Critical edge?
5131      BasicBlock::iterator I, E;
5132      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
5133        if (isSelector(I))
5134          break;
5135
5136      if (I == E)
5137        // No catch info found - try to extract some from the successor.
5138        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
5139    }
5140  }
5141
5142  // Lower all of the non-terminator instructions.
5143  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
5144       I != E; ++I)
5145    SDL.visit(*I);
5146
5147  // Ensure that all instructions which are used outside of their defining
5148  // blocks are available as virtual registers.  Invoke is handled elsewhere.
5149  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
5150    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
5151      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
5152      if (VMI != FuncInfo.ValueMap.end())
5153        SDL.CopyValueToVirtualRegister(I, VMI->second);
5154    }
5155
5156  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
5157  // ensure constants are generated when needed.  Remember the virtual registers
5158  // that need to be added to the Machine PHI nodes as input.  We cannot just
5159  // directly add them, because expansion might result in multiple MBB's for one
5160  // BB.  As such, the start of the BB might correspond to a different MBB than
5161  // the end.
5162  //
5163  TerminatorInst *TI = LLVMBB->getTerminator();
5164
5165  // Emit constants only once even if used by multiple PHI nodes.
5166  std::map<Constant*, unsigned> ConstantsOut;
5167
5168  // Vector bool would be better, but vector<bool> is really slow.
5169  std::vector<unsigned char> SuccsHandled;
5170  if (TI->getNumSuccessors())
5171    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
5172
5173  // Check successor nodes' PHI nodes that expect a constant to be available
5174  // from this block.
5175  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5176    BasicBlock *SuccBB = TI->getSuccessor(succ);
5177    if (!isa<PHINode>(SuccBB->begin())) continue;
5178    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
5179
5180    // If this terminator has multiple identical successors (common for
5181    // switches), only handle each succ once.
5182    unsigned SuccMBBNo = SuccMBB->getNumber();
5183    if (SuccsHandled[SuccMBBNo]) continue;
5184    SuccsHandled[SuccMBBNo] = true;
5185
5186    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5187    PHINode *PN;
5188
5189    // At this point we know that there is a 1-1 correspondence between LLVM PHI
5190    // nodes and Machine PHI nodes, but the incoming operands have not been
5191    // emitted yet.
5192    for (BasicBlock::iterator I = SuccBB->begin();
5193         (PN = dyn_cast<PHINode>(I)); ++I) {
5194      // Ignore dead phi's.
5195      if (PN->use_empty()) continue;
5196
5197      unsigned Reg;
5198      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5199
5200      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5201        unsigned &RegOut = ConstantsOut[C];
5202        if (RegOut == 0) {
5203          RegOut = FuncInfo.CreateRegForValue(C);
5204          SDL.CopyValueToVirtualRegister(C, RegOut);
5205        }
5206        Reg = RegOut;
5207      } else {
5208        Reg = FuncInfo.ValueMap[PHIOp];
5209        if (Reg == 0) {
5210          assert(isa<AllocaInst>(PHIOp) &&
5211                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5212                 "Didn't codegen value into a register!??");
5213          Reg = FuncInfo.CreateRegForValue(PHIOp);
5214          SDL.CopyValueToVirtualRegister(PHIOp, Reg);
5215        }
5216      }
5217
5218      // Remember that this register needs to added to the machine PHI node as
5219      // the input for this MBB.
5220      SmallVector<MVT, 4> ValueVTs;
5221      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
5222      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
5223        MVT VT = ValueVTs[vti];
5224        unsigned NumRegisters = TLI.getNumRegisters(VT);
5225        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5226          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5227        Reg += NumRegisters;
5228      }
5229    }
5230  }
5231  ConstantsOut.clear();
5232
5233  // Lower the terminator after the copies are emitted.
5234  SDL.visit(*LLVMBB->getTerminator());
5235
5236  // Copy over any CaseBlock records that may now exist due to SwitchInst
5237  // lowering, as well as any jump table information.
5238  SwitchCases.clear();
5239  SwitchCases = SDL.SwitchCases;
5240  JTCases.clear();
5241  JTCases = SDL.JTCases;
5242  BitTestCases.clear();
5243  BitTestCases = SDL.BitTestCases;
5244
5245  // Make sure the root of the DAG is up-to-date.
5246  DAG.setRoot(SDL.getControlRoot());
5247
5248  // Check whether calls in this block are real tail calls. Fix up CALL nodes
5249  // with correct tailcall attribute so that the target can rely on the tailcall
5250  // attribute indicating whether the call is really eligible for tail call
5251  // optimization.
5252  CheckDAGForTailCallsAndFixThem(DAG, TLI);
5253}
5254
5255void SelectionDAGISel::ComputeLiveOutVRegInfo(SelectionDAG &DAG) {
5256  SmallPtrSet<SDNode*, 128> VisitedNodes;
5257  SmallVector<SDNode*, 128> Worklist;
5258
5259  Worklist.push_back(DAG.getRoot().Val);
5260
5261  APInt Mask;
5262  APInt KnownZero;
5263  APInt KnownOne;
5264
5265  while (!Worklist.empty()) {
5266    SDNode *N = Worklist.back();
5267    Worklist.pop_back();
5268
5269    // If we've already seen this node, ignore it.
5270    if (!VisitedNodes.insert(N))
5271      continue;
5272
5273    // Otherwise, add all chain operands to the worklist.
5274    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5275      if (N->getOperand(i).getValueType() == MVT::Other)
5276        Worklist.push_back(N->getOperand(i).Val);
5277
5278    // If this is a CopyToReg with a vreg dest, process it.
5279    if (N->getOpcode() != ISD::CopyToReg)
5280      continue;
5281
5282    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
5283    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
5284      continue;
5285
5286    // Ignore non-scalar or non-integer values.
5287    SDValue Src = N->getOperand(2);
5288    MVT SrcVT = Src.getValueType();
5289    if (!SrcVT.isInteger() || SrcVT.isVector())
5290      continue;
5291
5292    unsigned NumSignBits = DAG.ComputeNumSignBits(Src);
5293    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
5294    DAG.ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
5295
5296    // Only install this information if it tells us something.
5297    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
5298      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
5299      FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5300      if (DestReg >= FLI.LiveOutRegInfo.size())
5301        FLI.LiveOutRegInfo.resize(DestReg+1);
5302      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
5303      LOI.NumSignBits = NumSignBits;
5304      LOI.KnownOne = NumSignBits;
5305      LOI.KnownZero = NumSignBits;
5306    }
5307  }
5308}
5309
5310void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
5311  std::string GroupName;
5312  if (TimePassesIsEnabled)
5313    GroupName = "Instruction Selection and Scheduling";
5314  std::string BlockName;
5315  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
5316      ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs)
5317    BlockName = DAG.getMachineFunction().getFunction()->getName() + ':' +
5318                BB->getBasicBlock()->getName();
5319
5320  DOUT << "Initial selection DAG:\n";
5321  DEBUG(DAG.dump());
5322
5323  if (ViewDAGCombine1) DAG.viewGraph("dag-combine1 input for " + BlockName);
5324
5325  // Run the DAG combiner in pre-legalize mode.
5326  if (TimePassesIsEnabled) {
5327    NamedRegionTimer T("DAG Combining 1", GroupName);
5328    DAG.Combine(false, *AA);
5329  } else {
5330    DAG.Combine(false, *AA);
5331  }
5332
5333  DOUT << "Optimized lowered selection DAG:\n";
5334  DEBUG(DAG.dump());
5335
5336  // Second step, hack on the DAG until it only uses operations and types that
5337  // the target supports.
5338  if (EnableLegalizeTypes) {// Enable this some day.
5339    if (ViewLegalizeTypesDAGs) DAG.viewGraph("legalize-types input for " +
5340                                             BlockName);
5341
5342    if (TimePassesIsEnabled) {
5343      NamedRegionTimer T("Type Legalization", GroupName);
5344      DAG.LegalizeTypes();
5345    } else {
5346      DAG.LegalizeTypes();
5347    }
5348
5349    DOUT << "Type-legalized selection DAG:\n";
5350    DEBUG(DAG.dump());
5351
5352    // TODO: enable a dag combine pass here.
5353  }
5354
5355  if (ViewLegalizeDAGs) DAG.viewGraph("legalize input for " + BlockName);
5356
5357  if (TimePassesIsEnabled) {
5358    NamedRegionTimer T("DAG Legalization", GroupName);
5359    DAG.Legalize();
5360  } else {
5361    DAG.Legalize();
5362  }
5363
5364  DOUT << "Legalized selection DAG:\n";
5365  DEBUG(DAG.dump());
5366
5367  if (ViewDAGCombine2) DAG.viewGraph("dag-combine2 input for " + BlockName);
5368
5369  // Run the DAG combiner in post-legalize mode.
5370  if (TimePassesIsEnabled) {
5371    NamedRegionTimer T("DAG Combining 2", GroupName);
5372    DAG.Combine(true, *AA);
5373  } else {
5374    DAG.Combine(true, *AA);
5375  }
5376
5377  DOUT << "Optimized legalized selection DAG:\n";
5378  DEBUG(DAG.dump());
5379
5380  if (ViewISelDAGs) DAG.viewGraph("isel input for " + BlockName);
5381
5382  if (!FastISel && EnableValueProp)
5383    ComputeLiveOutVRegInfo(DAG);
5384
5385  // Third, instruction select all of the operations to machine code, adding the
5386  // code to the MachineBasicBlock.
5387  if (TimePassesIsEnabled) {
5388    NamedRegionTimer T("Instruction Selection", GroupName);
5389    InstructionSelect(DAG);
5390  } else {
5391    InstructionSelect(DAG);
5392  }
5393
5394  DOUT << "Selected selection DAG:\n";
5395  DEBUG(DAG.dump());
5396
5397  if (ViewSchedDAGs) DAG.viewGraph("scheduler input for " + BlockName);
5398
5399  // Schedule machine code.
5400  ScheduleDAG *Scheduler;
5401  if (TimePassesIsEnabled) {
5402    NamedRegionTimer T("Instruction Scheduling", GroupName);
5403    Scheduler = Schedule(DAG);
5404  } else {
5405    Scheduler = Schedule(DAG);
5406  }
5407
5408  if (ViewSUnitDAGs) Scheduler->viewGraph();
5409
5410  // Emit machine code to BB.  This can change 'BB' to the last block being
5411  // inserted into.
5412  if (TimePassesIsEnabled) {
5413    NamedRegionTimer T("Instruction Creation", GroupName);
5414    BB = Scheduler->EmitSchedule();
5415  } else {
5416    BB = Scheduler->EmitSchedule();
5417  }
5418
5419  // Free the scheduler state.
5420  if (TimePassesIsEnabled) {
5421    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
5422    delete Scheduler;
5423  } else {
5424    delete Scheduler;
5425  }
5426
5427  // Perform target specific isel post processing.
5428  if (TimePassesIsEnabled) {
5429    NamedRegionTimer T("Instruction Selection Post Processing", GroupName);
5430    InstructionSelectPostProcessing();
5431  } else {
5432    InstructionSelectPostProcessing();
5433  }
5434
5435  DOUT << "Selected machine code:\n";
5436  DEBUG(BB->dump());
5437}
5438
5439void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF,
5440                                            FunctionLoweringInfo &FuncInfo) {
5441  // Define NodeAllocator here so that memory allocation is reused for
5442  // each basic block.
5443  NodeAllocatorType NodeAllocator;
5444
5445  SimpleBBISel SISel(MF, TLI);
5446  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
5447  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
5448    BasicBlock *LLVMBB = &*I;
5449    PHINodesToUpdate.clear();
5450
5451    if (!FastISel || !SISel.SelectBasicBlock(LLVMBB,  FuncInfo.MBBMap[LLVMBB]))
5452      SelectBasicBlock(LLVMBB, MF, FuncInfo, PHINodesToUpdate, NodeAllocator);
5453    FinishBasicBlock(LLVMBB, MF, FuncInfo, PHINodesToUpdate, NodeAllocator);
5454  }
5455}
5456
5457void
5458SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
5459                                   FunctionLoweringInfo &FuncInfo,
5460             std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
5461                                   NodeAllocatorType &NodeAllocator) {
5462  SelectionDAG DAG(TLI, MF, FuncInfo,
5463                   getAnalysisToUpdate<MachineModuleInfo>(),
5464                   NodeAllocator);
5465  CurDAG = &DAG;
5466
5467  // First step, lower LLVM code to some DAG.  This DAG may use operations and
5468  // types that are not supported by the target.
5469  BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
5470
5471  // Second step, emit the lowered DAG as machine code.
5472  CodeGenAndEmitDAG(DAG);
5473}
5474
5475void
5476SelectionDAGISel::FinishBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
5477                                   FunctionLoweringInfo &FuncInfo,
5478             std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
5479                                   NodeAllocatorType &NodeAllocator) {
5480  DOUT << "Total amount of phi nodes to update: "
5481       << PHINodesToUpdate.size() << "\n";
5482  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
5483          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
5484               << ", " << PHINodesToUpdate[i].second << ")\n";);
5485
5486  // Next, now that we know what the last MBB the LLVM BB expanded is, update
5487  // PHI nodes in successors.
5488  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
5489    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5490      MachineInstr *PHI = PHINodesToUpdate[i].first;
5491      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5492             "This is not a machine PHI node that we are updating!");
5493      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5494                                                false));
5495      PHI->addOperand(MachineOperand::CreateMBB(BB));
5496    }
5497    return;
5498  }
5499
5500  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
5501    // Lower header first, if it wasn't already lowered
5502    if (!BitTestCases[i].Emitted) {
5503      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5504                         getAnalysisToUpdate<MachineModuleInfo>(),
5505                         NodeAllocator);
5506      CurDAG = &HSDAG;
5507      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5508      // Set the current basic block to the mbb we wish to insert the code into
5509      BB = BitTestCases[i].Parent;
5510      HSDL.setCurrentBasicBlock(BB);
5511      // Emit the code
5512      HSDL.visitBitTestHeader(BitTestCases[i]);
5513      HSDAG.setRoot(HSDL.getRoot());
5514      CodeGenAndEmitDAG(HSDAG);
5515    }
5516
5517    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5518      SelectionDAG BSDAG(TLI, MF, FuncInfo,
5519                         getAnalysisToUpdate<MachineModuleInfo>(),
5520                         NodeAllocator);
5521      CurDAG = &BSDAG;
5522      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
5523      // Set the current basic block to the mbb we wish to insert the code into
5524      BB = BitTestCases[i].Cases[j].ThisBB;
5525      BSDL.setCurrentBasicBlock(BB);
5526      // Emit the code
5527      if (j+1 != ej)
5528        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
5529                              BitTestCases[i].Reg,
5530                              BitTestCases[i].Cases[j]);
5531      else
5532        BSDL.visitBitTestCase(BitTestCases[i].Default,
5533                              BitTestCases[i].Reg,
5534                              BitTestCases[i].Cases[j]);
5535
5536
5537      BSDAG.setRoot(BSDL.getRoot());
5538      CodeGenAndEmitDAG(BSDAG);
5539    }
5540
5541    // Update PHI Nodes
5542    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5543      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5544      MachineBasicBlock *PHIBB = PHI->getParent();
5545      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5546             "This is not a machine PHI node that we are updating!");
5547      // This is "default" BB. We have two jumps to it. From "header" BB and
5548      // from last "case" BB.
5549      if (PHIBB == BitTestCases[i].Default) {
5550        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5551                                                  false));
5552        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
5553        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5554                                                  false));
5555        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
5556                                                  back().ThisBB));
5557      }
5558      // One of "cases" BB.
5559      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5560        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
5561        if (cBB->succ_end() !=
5562            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
5563          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5564                                                    false));
5565          PHI->addOperand(MachineOperand::CreateMBB(cBB));
5566        }
5567      }
5568    }
5569  }
5570
5571  // If the JumpTable record is filled in, then we need to emit a jump table.
5572  // Updating the PHI nodes is tricky in this case, since we need to determine
5573  // whether the PHI is a successor of the range check MBB or the jump table MBB
5574  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
5575    // Lower header first, if it wasn't already lowered
5576    if (!JTCases[i].first.Emitted) {
5577      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5578                         getAnalysisToUpdate<MachineModuleInfo>(),
5579                         NodeAllocator);
5580      CurDAG = &HSDAG;
5581      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5582      // Set the current basic block to the mbb we wish to insert the code into
5583      BB = JTCases[i].first.HeaderBB;
5584      HSDL.setCurrentBasicBlock(BB);
5585      // Emit the code
5586      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
5587      HSDAG.setRoot(HSDL.getRoot());
5588      CodeGenAndEmitDAG(HSDAG);
5589    }
5590
5591    SelectionDAG JSDAG(TLI, MF, FuncInfo,
5592                       getAnalysisToUpdate<MachineModuleInfo>(),
5593                       NodeAllocator);
5594    CurDAG = &JSDAG;
5595    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
5596    // Set the current basic block to the mbb we wish to insert the code into
5597    BB = JTCases[i].second.MBB;
5598    JSDL.setCurrentBasicBlock(BB);
5599    // Emit the code
5600    JSDL.visitJumpTable(JTCases[i].second);
5601    JSDAG.setRoot(JSDL.getRoot());
5602    CodeGenAndEmitDAG(JSDAG);
5603
5604    // Update PHI Nodes
5605    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5606      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5607      MachineBasicBlock *PHIBB = PHI->getParent();
5608      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5609             "This is not a machine PHI node that we are updating!");
5610      // "default" BB. We can go there only from header BB.
5611      if (PHIBB == JTCases[i].second.Default) {
5612        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5613                                                  false));
5614        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
5615      }
5616      // JT BB. Just iterate over successors here
5617      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
5618        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5619                                                  false));
5620        PHI->addOperand(MachineOperand::CreateMBB(BB));
5621      }
5622    }
5623  }
5624
5625  // If the switch block involved a branch to one of the actual successors, we
5626  // need to update PHI nodes in that block.
5627  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5628    MachineInstr *PHI = PHINodesToUpdate[i].first;
5629    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5630           "This is not a machine PHI node that we are updating!");
5631    if (BB->isSuccessor(PHI->getParent())) {
5632      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5633                                                false));
5634      PHI->addOperand(MachineOperand::CreateMBB(BB));
5635    }
5636  }
5637
5638  // If we generated any switch lowering information, build and codegen any
5639  // additional DAGs necessary.
5640  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
5641    SelectionDAG SDAG(TLI, MF, FuncInfo,
5642                      getAnalysisToUpdate<MachineModuleInfo>(),
5643                      NodeAllocator);
5644    CurDAG = &SDAG;
5645    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
5646
5647    // Set the current basic block to the mbb we wish to insert the code into
5648    BB = SwitchCases[i].ThisBB;
5649    SDL.setCurrentBasicBlock(BB);
5650
5651    // Emit the code
5652    SDL.visitSwitchCase(SwitchCases[i]);
5653    SDAG.setRoot(SDL.getRoot());
5654    CodeGenAndEmitDAG(SDAG);
5655
5656    // Handle any PHI nodes in successors of this chunk, as if we were coming
5657    // from the original BB before switch expansion.  Note that PHI nodes can
5658    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5659    // handle them the right number of times.
5660    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5661      for (MachineBasicBlock::iterator Phi = BB->begin();
5662           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5663        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5664        for (unsigned pn = 0; ; ++pn) {
5665          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5666          if (PHINodesToUpdate[pn].first == Phi) {
5667            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5668                                                      second, false));
5669            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5670            break;
5671          }
5672        }
5673      }
5674
5675      // Don't process RHS if same block as LHS.
5676      if (BB == SwitchCases[i].FalseBB)
5677        SwitchCases[i].FalseBB = 0;
5678
5679      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5680      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5681      SwitchCases[i].FalseBB = 0;
5682    }
5683    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5684  }
5685}
5686
5687
5688/// Schedule - Pick a safe ordering for instructions for each
5689/// target node in the graph.
5690///
5691ScheduleDAG *SelectionDAGISel::Schedule(SelectionDAG &DAG) {
5692  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5693
5694  if (!Ctor) {
5695    Ctor = ISHeuristic;
5696    RegisterScheduler::setDefault(Ctor);
5697  }
5698
5699  ScheduleDAG *Scheduler = Ctor(this, &DAG, BB, FastISel);
5700  Scheduler->Run();
5701
5702  return Scheduler;
5703}
5704
5705
5706HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5707  return new HazardRecognizer();
5708}
5709
5710//===----------------------------------------------------------------------===//
5711// Helper functions used by the generated instruction selector.
5712//===----------------------------------------------------------------------===//
5713// Calls to these methods are generated by tblgen.
5714
5715/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5716/// the dag combiner simplified the 255, we still want to match.  RHS is the
5717/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5718/// specified in the .td file (e.g. 255).
5719bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
5720                                    int64_t DesiredMaskS) const {
5721  const APInt &ActualMask = RHS->getAPIntValue();
5722  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5723
5724  // If the actual mask exactly matches, success!
5725  if (ActualMask == DesiredMask)
5726    return true;
5727
5728  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5729  if (ActualMask.intersects(~DesiredMask))
5730    return false;
5731
5732  // Otherwise, the DAG Combiner may have proven that the value coming in is
5733  // either already zero or is not demanded.  Check for known zero input bits.
5734  APInt NeededMask = DesiredMask & ~ActualMask;
5735  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5736    return true;
5737
5738  // TODO: check to see if missing bits are just not demanded.
5739
5740  // Otherwise, this pattern doesn't match.
5741  return false;
5742}
5743
5744/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5745/// the dag combiner simplified the 255, we still want to match.  RHS is the
5746/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5747/// specified in the .td file (e.g. 255).
5748bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
5749                                   int64_t DesiredMaskS) const {
5750  const APInt &ActualMask = RHS->getAPIntValue();
5751  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5752
5753  // If the actual mask exactly matches, success!
5754  if (ActualMask == DesiredMask)
5755    return true;
5756
5757  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5758  if (ActualMask.intersects(~DesiredMask))
5759    return false;
5760
5761  // Otherwise, the DAG Combiner may have proven that the value coming in is
5762  // either already zero or is not demanded.  Check for known zero input bits.
5763  APInt NeededMask = DesiredMask & ~ActualMask;
5764
5765  APInt KnownZero, KnownOne;
5766  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5767
5768  // If all the missing bits in the or are already known to be set, match!
5769  if ((NeededMask & KnownOne) == NeededMask)
5770    return true;
5771
5772  // TODO: check to see if missing bits are just not demanded.
5773
5774  // Otherwise, this pattern doesn't match.
5775  return false;
5776}
5777
5778
5779/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5780/// by tblgen.  Others should not call it.
5781void SelectionDAGISel::
5782SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, SelectionDAG &DAG) {
5783  std::vector<SDValue> InOps;
5784  std::swap(InOps, Ops);
5785
5786  Ops.push_back(InOps[0]);  // input chain.
5787  Ops.push_back(InOps[1]);  // input asm string.
5788
5789  unsigned i = 2, e = InOps.size();
5790  if (InOps[e-1].getValueType() == MVT::Flag)
5791    --e;  // Don't process a flag operand if it is here.
5792
5793  while (i != e) {
5794    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5795    if ((Flags & 7) != 4 /*MEM*/) {
5796      // Just skip over this operand, copying the operands verbatim.
5797      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5798      i += (Flags >> 3) + 1;
5799    } else {
5800      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5801      // Otherwise, this is a memory operand.  Ask the target to select it.
5802      std::vector<SDValue> SelOps;
5803      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5804        cerr << "Could not match memory address.  Inline asm failure!\n";
5805        exit(1);
5806      }
5807
5808      // Add this to the output node.
5809      MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5810      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5811                                          IntPtrTy));
5812      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5813      i += 2;
5814    }
5815  }
5816
5817  // Add the flag input back if present.
5818  if (e != InOps.size())
5819    Ops.push_back(InOps.back());
5820}
5821
5822char SelectionDAGISel::ID = 0;
5823