SelectionDAGISel.cpp revision b13033f61c897224a0be2784faa721ff294c5254
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/Statistic.h"
50#include <algorithm>
51using namespace llvm;
52
53STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
54STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
55
56static cl::opt<bool>
57EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
58          cl::desc("Enable verbose messages in the \"fast\" "
59                   "instruction selector"));
60static cl::opt<bool>
61EnableFastISelAbort("fast-isel-abort", cl::Hidden,
62          cl::desc("Enable abort calls when \"fast\" instruction fails"));
63
64#ifndef NDEBUG
65static cl::opt<bool>
66ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
67          cl::desc("Pop up a window to show dags before the first "
68                   "dag combine pass"));
69static cl::opt<bool>
70ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
71          cl::desc("Pop up a window to show dags before legalize types"));
72static cl::opt<bool>
73ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
74          cl::desc("Pop up a window to show dags before legalize"));
75static cl::opt<bool>
76ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the second "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before the post legalize types"
82                   " dag combine pass"));
83static cl::opt<bool>
84ViewISelDAGs("view-isel-dags", cl::Hidden,
85          cl::desc("Pop up a window to show isel dags as they are selected"));
86static cl::opt<bool>
87ViewSchedDAGs("view-sched-dags", cl::Hidden,
88          cl::desc("Pop up a window to show sched dags as they are processed"));
89static cl::opt<bool>
90ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
91      cl::desc("Pop up a window to show SUnit dags after they are processed"));
92#else
93static const bool ViewDAGCombine1 = false,
94                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
95                  ViewDAGCombine2 = false,
96                  ViewDAGCombineLT = false,
97                  ViewISelDAGs = false, ViewSchedDAGs = false,
98                  ViewSUnitDAGs = false;
99#endif
100
101//===---------------------------------------------------------------------===//
102///
103/// RegisterScheduler class - Track the registration of instruction schedulers.
104///
105//===---------------------------------------------------------------------===//
106MachinePassRegistry RegisterScheduler::Registry;
107
108//===---------------------------------------------------------------------===//
109///
110/// ISHeuristic command line option for instruction schedulers.
111///
112//===---------------------------------------------------------------------===//
113static cl::opt<RegisterScheduler::FunctionPassCtor, false,
114               RegisterPassParser<RegisterScheduler> >
115ISHeuristic("pre-RA-sched",
116            cl::init(&createDefaultScheduler),
117            cl::desc("Instruction schedulers available (before register"
118                     " allocation):"));
119
120static RegisterScheduler
121defaultListDAGScheduler("default", "Best scheduler for the target",
122                        createDefaultScheduler);
123
124namespace llvm {
125  //===--------------------------------------------------------------------===//
126  /// createDefaultScheduler - This creates an instruction scheduler appropriate
127  /// for the target.
128  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
129                                             CodeGenOpt::Level OptLevel) {
130    const TargetLowering &TLI = IS->getTargetLowering();
131
132    if (OptLevel == CodeGenOpt::None)
133      return createFastDAGScheduler(IS, OptLevel);
134    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
135      return createTDListDAGScheduler(IS, OptLevel);
136    assert(TLI.getSchedulingPreference() ==
137           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
138    return createBURRListDAGScheduler(IS, OptLevel);
139  }
140}
141
142// EmitInstrWithCustomInserter - This method should be implemented by targets
143// that mark instructions with the 'usesCustomInserter' flag.  These
144// instructions are special in various ways, which require special support to
145// insert.  The specified MachineInstr is created but not inserted into any
146// basic blocks, and this method is called to expand it into a sequence of
147// instructions, potentially also creating new basic blocks and control flow.
148// When new basic blocks are inserted and the edges from MBB to its successors
149// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
150// DenseMap.
151MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
152                                                         MachineBasicBlock *MBB,
153                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
154#ifndef NDEBUG
155  dbgs() << "If a target marks an instruction with "
156          "'usesCustomInserter', it must implement "
157          "TargetLowering::EmitInstrWithCustomInserter!";
158#endif
159  llvm_unreachable(0);
160  return 0;
161}
162
163//===----------------------------------------------------------------------===//
164// SelectionDAGISel code
165//===----------------------------------------------------------------------===//
166
167SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
168  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
169  FuncInfo(new FunctionLoweringInfo(TLI)),
170  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
171  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
172  GFI(),
173  OptLevel(OL),
174  DAGSize(0)
175{}
176
177SelectionDAGISel::~SelectionDAGISel() {
178  delete SDB;
179  delete CurDAG;
180  delete FuncInfo;
181}
182
183unsigned SelectionDAGISel::MakeReg(EVT VT) {
184  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
185}
186
187void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
188  AU.addRequired<AliasAnalysis>();
189  AU.addPreserved<AliasAnalysis>();
190  AU.addRequired<GCModuleInfo>();
191  AU.addPreserved<GCModuleInfo>();
192  MachineFunctionPass::getAnalysisUsage(AU);
193}
194
195bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
196  // Do some sanity-checking on the command-line options.
197  assert((!EnableFastISelVerbose || EnableFastISel) &&
198         "-fast-isel-verbose requires -fast-isel");
199  assert((!EnableFastISelAbort || EnableFastISel) &&
200         "-fast-isel-abort requires -fast-isel");
201
202  Function &Fn = *mf.getFunction();
203  const TargetInstrInfo &TII = *TM.getInstrInfo();
204  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
205
206  MF = &mf;
207  RegInfo = &MF->getRegInfo();
208  AA = &getAnalysis<AliasAnalysis>();
209  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
210
211  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
212
213  CurDAG->init(*MF);
214  FuncInfo->set(Fn, *MF, EnableFastISel);
215  SDB->init(GFI, *AA);
216
217  SelectAllBasicBlocks(Fn, *MF, TII);
218
219  // If the first basic block in the function has live ins that need to be
220  // copied into vregs, emit the copies into the top of the block before
221  // emitting the code for the block.
222  RegInfo->EmitLiveInCopies(MF->begin(), TRI, TII);
223
224#ifndef NDEBUG
225  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
226         "Not all catch info was assigned to a landing pad!");
227#endif
228
229  FuncInfo->clear();
230
231  return true;
232}
233
234/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
235/// attached with this instruction.
236static void SetDebugLoc(Instruction *I, SelectionDAGBuilder *SDB,
237                        FastISel *FastIS, MachineFunction *MF) {
238  DebugLoc DL = I->getDebugLoc();
239  if (DL.isUnknown()) return;
240
241  SDB->setCurDebugLoc(DL);
242
243  if (FastIS)
244    FastIS->setCurDebugLoc(DL);
245
246  // If the function doesn't have a default debug location yet, set
247  // it. This is kind of a hack.
248  if (MF->getDefaultDebugLoc().isUnknown())
249    MF->setDefaultDebugLoc(DL);
250}
251
252/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
253static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
254  SDB->setCurDebugLoc(DebugLoc());
255  if (FastIS)
256    FastIS->setCurDebugLoc(DebugLoc());
257}
258
259void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
260                                        BasicBlock::iterator Begin,
261                                        BasicBlock::iterator End,
262                                        bool &HadTailCall) {
263  SDB->setCurrentBasicBlock(BB);
264
265  // Lower all of the non-terminator instructions. If a call is emitted
266  // as a tail call, cease emitting nodes for this block.
267  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
268    SetDebugLoc(I, SDB, 0, MF);
269
270    if (!isa<TerminatorInst>(I)) {
271      SDB->visit(*I);
272
273      // Set the current debug location back to "unknown" so that it doesn't
274      // spuriously apply to subsequent instructions.
275      ResetDebugLoc(SDB, 0);
276    }
277  }
278
279  if (!SDB->HasTailCall) {
280    // Ensure that all instructions which are used outside of their defining
281    // blocks are available as virtual registers.  Invoke is handled elsewhere.
282    for (BasicBlock::iterator I = Begin; I != End; ++I)
283      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
284        SDB->CopyToExportRegsIfNeeded(I);
285
286    // Handle PHI nodes in successor blocks.
287    if (End == LLVMBB->end()) {
288      HandlePHINodesInSuccessorBlocks(LLVMBB);
289
290      // Lower the terminator after the copies are emitted.
291      SetDebugLoc(LLVMBB->getTerminator(), SDB, 0, MF);
292      SDB->visit(*LLVMBB->getTerminator());
293      ResetDebugLoc(SDB, 0);
294    }
295  }
296
297  // Make sure the root of the DAG is up-to-date.
298  CurDAG->setRoot(SDB->getControlRoot());
299
300  // Final step, emit the lowered DAG as machine code.
301  CodeGenAndEmitDAG();
302  HadTailCall = SDB->HasTailCall;
303  SDB->clear();
304}
305
306namespace {
307/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
308/// nodes from the worklist.
309class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
310  SmallVector<SDNode*, 128> &Worklist;
311  SmallPtrSet<SDNode*, 128> &InWorklist;
312public:
313  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
314                       SmallPtrSet<SDNode*, 128> &inwl)
315    : Worklist(wl), InWorklist(inwl) {}
316
317  void RemoveFromWorklist(SDNode *N) {
318    if (!InWorklist.erase(N)) return;
319
320    SmallVector<SDNode*, 128>::iterator I =
321    std::find(Worklist.begin(), Worklist.end(), N);
322    assert(I != Worklist.end() && "Not in worklist");
323
324    *I = Worklist.back();
325    Worklist.pop_back();
326  }
327
328  virtual void NodeDeleted(SDNode *N, SDNode *E) {
329    RemoveFromWorklist(N);
330  }
331
332  virtual void NodeUpdated(SDNode *N) {
333    // Ignore updates.
334  }
335};
336}
337
338/// TrivialTruncElim - Eliminate some trivial nops that can result from
339/// ShrinkDemandedOps: (trunc (ext n)) -> n.
340static bool TrivialTruncElim(SDValue Op,
341                             TargetLowering::TargetLoweringOpt &TLO) {
342  SDValue N0 = Op.getOperand(0);
343  EVT VT = Op.getValueType();
344  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
345       N0.getOpcode() == ISD::SIGN_EXTEND ||
346       N0.getOpcode() == ISD::ANY_EXTEND) &&
347      N0.getOperand(0).getValueType() == VT) {
348    return TLO.CombineTo(Op, N0.getOperand(0));
349  }
350  return false;
351}
352
353/// ShrinkDemandedOps - A late transformation pass that shrink expressions
354/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
355/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
356void SelectionDAGISel::ShrinkDemandedOps() {
357  SmallVector<SDNode*, 128> Worklist;
358  SmallPtrSet<SDNode*, 128> InWorklist;
359
360  // Add all the dag nodes to the worklist.
361  Worklist.reserve(CurDAG->allnodes_size());
362  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
363       E = CurDAG->allnodes_end(); I != E; ++I) {
364    Worklist.push_back(I);
365    InWorklist.insert(I);
366  }
367
368  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
369  while (!Worklist.empty()) {
370    SDNode *N = Worklist.pop_back_val();
371    InWorklist.erase(N);
372
373    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
374      // Deleting this node may make its operands dead, add them to the worklist
375      // if they aren't already there.
376      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
377        if (InWorklist.insert(N->getOperand(i).getNode()))
378          Worklist.push_back(N->getOperand(i).getNode());
379
380      CurDAG->DeleteNode(N);
381      continue;
382    }
383
384    // Run ShrinkDemandedOp on scalar binary operations.
385    if (N->getNumValues() != 1 ||
386        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
387      continue;
388
389    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
390    APInt Demanded = APInt::getAllOnesValue(BitWidth);
391    APInt KnownZero, KnownOne;
392    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
393                                  KnownZero, KnownOne, TLO) &&
394        (N->getOpcode() != ISD::TRUNCATE ||
395         !TrivialTruncElim(SDValue(N, 0), TLO)))
396      continue;
397
398    // Revisit the node.
399    assert(!InWorklist.count(N) && "Already in worklist");
400    Worklist.push_back(N);
401    InWorklist.insert(N);
402
403    // Replace the old value with the new one.
404    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
405          TLO.Old.getNode()->dump(CurDAG);
406          errs() << "\nWith: ";
407          TLO.New.getNode()->dump(CurDAG);
408          errs() << '\n');
409
410    if (InWorklist.insert(TLO.New.getNode()))
411      Worklist.push_back(TLO.New.getNode());
412
413    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
414    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
415
416    if (!TLO.Old.getNode()->use_empty()) continue;
417
418    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
419         i != e; ++i) {
420      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
421      if (OpNode->hasOneUse()) {
422        // Add OpNode to the end of the list to revisit.
423        DeadNodes.RemoveFromWorklist(OpNode);
424        Worklist.push_back(OpNode);
425        InWorklist.insert(OpNode);
426      }
427    }
428
429    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
430    CurDAG->DeleteNode(TLO.Old.getNode());
431  }
432}
433
434void SelectionDAGISel::ComputeLiveOutVRegInfo() {
435  SmallPtrSet<SDNode*, 128> VisitedNodes;
436  SmallVector<SDNode*, 128> Worklist;
437
438  Worklist.push_back(CurDAG->getRoot().getNode());
439
440  APInt Mask;
441  APInt KnownZero;
442  APInt KnownOne;
443
444  do {
445    SDNode *N = Worklist.pop_back_val();
446
447    // If we've already seen this node, ignore it.
448    if (!VisitedNodes.insert(N))
449      continue;
450
451    // Otherwise, add all chain operands to the worklist.
452    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
453      if (N->getOperand(i).getValueType() == MVT::Other)
454        Worklist.push_back(N->getOperand(i).getNode());
455
456    // If this is a CopyToReg with a vreg dest, process it.
457    if (N->getOpcode() != ISD::CopyToReg)
458      continue;
459
460    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
461    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
462      continue;
463
464    // Ignore non-scalar or non-integer values.
465    SDValue Src = N->getOperand(2);
466    EVT SrcVT = Src.getValueType();
467    if (!SrcVT.isInteger() || SrcVT.isVector())
468      continue;
469
470    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
471    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
472    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
473
474    // Only install this information if it tells us something.
475    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
476      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
477      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
478        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
479      FunctionLoweringInfo::LiveOutInfo &LOI =
480        FuncInfo->LiveOutRegInfo[DestReg];
481      LOI.NumSignBits = NumSignBits;
482      LOI.KnownOne = KnownOne;
483      LOI.KnownZero = KnownZero;
484    }
485  } while (!Worklist.empty());
486}
487
488void SelectionDAGISel::CodeGenAndEmitDAG() {
489  std::string GroupName;
490  if (TimePassesIsEnabled)
491    GroupName = "Instruction Selection and Scheduling";
492  std::string BlockName;
493  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
494      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
495      ViewSUnitDAGs)
496    BlockName = MF->getFunction()->getNameStr() + ":" +
497                BB->getBasicBlock()->getNameStr();
498
499  DEBUG(dbgs() << "Initial selection DAG:\n");
500  DEBUG(CurDAG->dump());
501
502  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
503
504  // Run the DAG combiner in pre-legalize mode.
505  if (TimePassesIsEnabled) {
506    NamedRegionTimer T("DAG Combining 1", GroupName);
507    CurDAG->Combine(Unrestricted, *AA, OptLevel);
508  } else {
509    CurDAG->Combine(Unrestricted, *AA, OptLevel);
510  }
511
512  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
513  DEBUG(CurDAG->dump());
514
515  // Second step, hack on the DAG until it only uses operations and types that
516  // the target supports.
517  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
518                                               BlockName);
519
520  bool Changed;
521  if (TimePassesIsEnabled) {
522    NamedRegionTimer T("Type Legalization", GroupName);
523    Changed = CurDAG->LegalizeTypes();
524  } else {
525    Changed = CurDAG->LegalizeTypes();
526  }
527
528  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
529  DEBUG(CurDAG->dump());
530
531  if (Changed) {
532    if (ViewDAGCombineLT)
533      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
534
535    // Run the DAG combiner in post-type-legalize mode.
536    if (TimePassesIsEnabled) {
537      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
538      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
539    } else {
540      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
541    }
542
543    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
544    DEBUG(CurDAG->dump());
545  }
546
547  if (TimePassesIsEnabled) {
548    NamedRegionTimer T("Vector Legalization", GroupName);
549    Changed = CurDAG->LegalizeVectors();
550  } else {
551    Changed = CurDAG->LegalizeVectors();
552  }
553
554  if (Changed) {
555    if (TimePassesIsEnabled) {
556      NamedRegionTimer T("Type Legalization 2", GroupName);
557      CurDAG->LegalizeTypes();
558    } else {
559      CurDAG->LegalizeTypes();
560    }
561
562    if (ViewDAGCombineLT)
563      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
564
565    // Run the DAG combiner in post-type-legalize mode.
566    if (TimePassesIsEnabled) {
567      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
568      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
569    } else {
570      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
571    }
572
573    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
574    DEBUG(CurDAG->dump());
575  }
576
577  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
578
579  if (TimePassesIsEnabled) {
580    NamedRegionTimer T("DAG Legalization", GroupName);
581    CurDAG->Legalize(OptLevel);
582  } else {
583    CurDAG->Legalize(OptLevel);
584  }
585
586  DEBUG(dbgs() << "Legalized selection DAG:\n");
587  DEBUG(CurDAG->dump());
588
589  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
590
591  // Run the DAG combiner in post-legalize mode.
592  if (TimePassesIsEnabled) {
593    NamedRegionTimer T("DAG Combining 2", GroupName);
594    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
595  } else {
596    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
597  }
598
599  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
600  DEBUG(CurDAG->dump());
601
602  if (OptLevel != CodeGenOpt::None) {
603    ShrinkDemandedOps();
604    ComputeLiveOutVRegInfo();
605  }
606
607  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
608
609  // Third, instruction select all of the operations to machine code, adding the
610  // code to the MachineBasicBlock.
611  if (TimePassesIsEnabled) {
612    NamedRegionTimer T("Instruction Selection", GroupName);
613    DoInstructionSelection();
614  } else {
615    DoInstructionSelection();
616  }
617
618  DEBUG(dbgs() << "Selected selection DAG:\n");
619  DEBUG(CurDAG->dump());
620
621  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
622
623  // Schedule machine code.
624  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
625  if (TimePassesIsEnabled) {
626    NamedRegionTimer T("Instruction Scheduling", GroupName);
627    Scheduler->Run(CurDAG, BB, BB->end());
628  } else {
629    Scheduler->Run(CurDAG, BB, BB->end());
630  }
631
632  if (ViewSUnitDAGs) Scheduler->viewGraph();
633
634  // Emit machine code to BB.  This can change 'BB' to the last block being
635  // inserted into.
636  if (TimePassesIsEnabled) {
637    NamedRegionTimer T("Instruction Creation", GroupName);
638    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
639  } else {
640    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
641  }
642
643  // Free the scheduler state.
644  if (TimePassesIsEnabled) {
645    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
646    delete Scheduler;
647  } else {
648    delete Scheduler;
649  }
650
651  DEBUG(dbgs() << "Selected machine code:\n");
652  DEBUG(BB->dump());
653}
654
655void SelectionDAGISel::DoInstructionSelection() {
656  DEBUG(errs() << "===== Instruction selection begins:\n");
657
658  PreprocessISelDAG();
659
660  // Select target instructions for the DAG.
661  {
662    // Number all nodes with a topological order and set DAGSize.
663    DAGSize = CurDAG->AssignTopologicalOrder();
664
665    // Create a dummy node (which is not added to allnodes), that adds
666    // a reference to the root node, preventing it from being deleted,
667    // and tracking any changes of the root.
668    HandleSDNode Dummy(CurDAG->getRoot());
669    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
670    ++ISelPosition;
671
672    // The AllNodes list is now topological-sorted. Visit the
673    // nodes by starting at the end of the list (the root of the
674    // graph) and preceding back toward the beginning (the entry
675    // node).
676    while (ISelPosition != CurDAG->allnodes_begin()) {
677      SDNode *Node = --ISelPosition;
678      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
679      // but there are currently some corner cases that it misses. Also, this
680      // makes it theoretically possible to disable the DAGCombiner.
681      if (Node->use_empty())
682        continue;
683
684      SDNode *ResNode = Select(Node);
685
686      // FIXME: This is pretty gross.  'Select' should be changed to not return
687      // anything at all and this code should be nuked with a tactical strike.
688
689      // If node should not be replaced, continue with the next one.
690      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
691        continue;
692      // Replace node.
693      if (ResNode)
694        ReplaceUses(Node, ResNode);
695
696      // If after the replacement this node is not used any more,
697      // remove this dead node.
698      if (Node->use_empty()) { // Don't delete EntryToken, etc.
699        ISelUpdater ISU(ISelPosition);
700        CurDAG->RemoveDeadNode(Node, &ISU);
701      }
702    }
703
704    CurDAG->setRoot(Dummy.getValue());
705  }
706  DEBUG(errs() << "===== Instruction selection ends:\n");
707
708  PostprocessISelDAG();
709}
710
711
712void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
713                                            MachineFunction &MF,
714                                            const TargetInstrInfo &TII) {
715  // Initialize the Fast-ISel state, if needed.
716  FastISel *FastIS = 0;
717  if (EnableFastISel)
718    FastIS = TLI.createFastISel(MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
719                                FuncInfo->StaticAllocaMap
720#ifndef NDEBUG
721                                , FuncInfo->CatchInfoLost
722#endif
723                                );
724
725  // Iterate over all basic blocks in the function.
726  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
727    BasicBlock *LLVMBB = &*I;
728    BB = FuncInfo->MBBMap[LLVMBB];
729
730    BasicBlock::iterator const Begin = LLVMBB->begin();
731    BasicBlock::iterator const End = LLVMBB->end();
732    BasicBlock::iterator BI = Begin;
733
734    // Lower any arguments needed in this block if this is the entry block.
735    bool SuppressFastISel = false;
736    if (LLVMBB == &Fn.getEntryBlock()) {
737      LowerArguments(LLVMBB);
738
739      // If any of the arguments has the byval attribute, forgo
740      // fast-isel in the entry block.
741      if (FastIS) {
742        unsigned j = 1;
743        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
744             I != E; ++I, ++j)
745          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
746            if (EnableFastISelVerbose || EnableFastISelAbort)
747              dbgs() << "FastISel skips entry block due to byval argument\n";
748            SuppressFastISel = true;
749            break;
750          }
751      }
752    }
753
754    if (BB->isLandingPad()) {
755      // Add a label to mark the beginning of the landing pad.  Deletion of the
756      // landing pad can thus be detected via the MachineModuleInfo.
757      MCSymbol *Label = MF.getMMI().addLandingPad(BB);
758
759      const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL);
760      BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
761
762      // Mark exception register as live in.
763      unsigned Reg = TLI.getExceptionAddressRegister();
764      if (Reg) BB->addLiveIn(Reg);
765
766      // Mark exception selector register as live in.
767      Reg = TLI.getExceptionSelectorRegister();
768      if (Reg) BB->addLiveIn(Reg);
769
770      // FIXME: Hack around an exception handling flaw (PR1508): the personality
771      // function and list of typeids logically belong to the invoke (or, if you
772      // like, the basic block containing the invoke), and need to be associated
773      // with it in the dwarf exception handling tables.  Currently however the
774      // information is provided by an intrinsic (eh.selector) that can be moved
775      // to unexpected places by the optimizers: if the unwind edge is critical,
776      // then breaking it can result in the intrinsics being in the successor of
777      // the landing pad, not the landing pad itself.  This results
778      // in exceptions not being caught because no typeids are associated with
779      // the invoke.  This may not be the only way things can go wrong, but it
780      // is the only way we try to work around for the moment.
781      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
782
783      if (Br && Br->isUnconditional()) { // Critical edge?
784        BasicBlock::iterator I, E;
785        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
786          if (isa<EHSelectorInst>(I))
787            break;
788
789        if (I == E)
790          // No catch info found - try to extract some from the successor.
791          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF.getMMI(), *FuncInfo);
792      }
793    }
794
795    // Before doing SelectionDAG ISel, see if FastISel has been requested.
796    if (FastIS && !SuppressFastISel) {
797      // Emit code for any incoming arguments. This must happen before
798      // beginning FastISel on the entry block.
799      if (LLVMBB == &Fn.getEntryBlock()) {
800        CurDAG->setRoot(SDB->getControlRoot());
801        CodeGenAndEmitDAG();
802        SDB->clear();
803      }
804      FastIS->startNewBlock(BB);
805      // Do FastISel on as many instructions as possible.
806      for (; BI != End; ++BI) {
807        // Just before the terminator instruction, insert instructions to
808        // feed PHI nodes in successor blocks.
809        if (isa<TerminatorInst>(BI))
810          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
811            ++NumFastIselFailures;
812            ResetDebugLoc(SDB, FastIS);
813            if (EnableFastISelVerbose || EnableFastISelAbort) {
814              dbgs() << "FastISel miss: ";
815              BI->dump();
816            }
817            assert(!EnableFastISelAbort &&
818                   "FastISel didn't handle a PHI in a successor");
819            break;
820          }
821
822        SetDebugLoc(BI, SDB, FastIS, &MF);
823
824        // Try to select the instruction with FastISel.
825        if (FastIS->SelectInstruction(BI)) {
826          ResetDebugLoc(SDB, FastIS);
827          continue;
828        }
829
830        // Clear out the debug location so that it doesn't carry over to
831        // unrelated instructions.
832        ResetDebugLoc(SDB, FastIS);
833
834        // Then handle certain instructions as single-LLVM-Instruction blocks.
835        if (isa<CallInst>(BI)) {
836          ++NumFastIselFailures;
837          if (EnableFastISelVerbose || EnableFastISelAbort) {
838            dbgs() << "FastISel missed call: ";
839            BI->dump();
840          }
841
842          if (!BI->getType()->isVoidTy()) {
843            unsigned &R = FuncInfo->ValueMap[BI];
844            if (!R)
845              R = FuncInfo->CreateRegForValue(BI);
846          }
847
848          bool HadTailCall = false;
849          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
850
851          // If the call was emitted as a tail call, we're done with the block.
852          if (HadTailCall) {
853            BI = End;
854            break;
855          }
856
857          // If the instruction was codegen'd with multiple blocks,
858          // inform the FastISel object where to resume inserting.
859          FastIS->setCurrentBlock(BB);
860          continue;
861        }
862
863        // Otherwise, give up on FastISel for the rest of the block.
864        // For now, be a little lenient about non-branch terminators.
865        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
866          ++NumFastIselFailures;
867          if (EnableFastISelVerbose || EnableFastISelAbort) {
868            dbgs() << "FastISel miss: ";
869            BI->dump();
870          }
871          if (EnableFastISelAbort)
872            // The "fast" selector couldn't handle something and bailed.
873            // For the purpose of debugging, just abort.
874            llvm_unreachable("FastISel didn't select the entire block");
875        }
876        break;
877      }
878    }
879
880    // Run SelectionDAG instruction selection on the remainder of the block
881    // not handled by FastISel. If FastISel is not run, this is the entire
882    // block.
883    if (BI != End) {
884      bool HadTailCall;
885      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
886    }
887
888    FinishBasicBlock();
889  }
890
891  delete FastIS;
892}
893
894void
895SelectionDAGISel::FinishBasicBlock() {
896
897  DEBUG(dbgs() << "Target-post-processed machine code:\n");
898  DEBUG(BB->dump());
899
900  DEBUG(dbgs() << "Total amount of phi nodes to update: "
901               << SDB->PHINodesToUpdate.size() << "\n");
902  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
903          dbgs() << "Node " << i << " : ("
904                 << SDB->PHINodesToUpdate[i].first
905                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
906
907  // Next, now that we know what the last MBB the LLVM BB expanded is, update
908  // PHI nodes in successors.
909  if (SDB->SwitchCases.empty() &&
910      SDB->JTCases.empty() &&
911      SDB->BitTestCases.empty()) {
912    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
913      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
914      assert(PHI->isPHI() &&
915             "This is not a machine PHI node that we are updating!");
916      if (!BB->isSuccessor(PHI->getParent()))
917        continue;
918      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
919                                                false));
920      PHI->addOperand(MachineOperand::CreateMBB(BB));
921    }
922    SDB->PHINodesToUpdate.clear();
923    return;
924  }
925
926  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
927    // Lower header first, if it wasn't already lowered
928    if (!SDB->BitTestCases[i].Emitted) {
929      // Set the current basic block to the mbb we wish to insert the code into
930      BB = SDB->BitTestCases[i].Parent;
931      SDB->setCurrentBasicBlock(BB);
932      // Emit the code
933      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
934      CurDAG->setRoot(SDB->getRoot());
935      CodeGenAndEmitDAG();
936      SDB->clear();
937    }
938
939    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
940      // Set the current basic block to the mbb we wish to insert the code into
941      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
942      SDB->setCurrentBasicBlock(BB);
943      // Emit the code
944      if (j+1 != ej)
945        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
946                              SDB->BitTestCases[i].Reg,
947                              SDB->BitTestCases[i].Cases[j]);
948      else
949        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
950                              SDB->BitTestCases[i].Reg,
951                              SDB->BitTestCases[i].Cases[j]);
952
953
954      CurDAG->setRoot(SDB->getRoot());
955      CodeGenAndEmitDAG();
956      SDB->clear();
957    }
958
959    // Update PHI Nodes
960    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
961      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
962      MachineBasicBlock *PHIBB = PHI->getParent();
963      assert(PHI->isPHI() &&
964             "This is not a machine PHI node that we are updating!");
965      // This is "default" BB. We have two jumps to it. From "header" BB and
966      // from last "case" BB.
967      if (PHIBB == SDB->BitTestCases[i].Default) {
968        PHI->addOperand(MachineOperand::
969                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
970        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
971        PHI->addOperand(MachineOperand::
972                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
973        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
974                                                  back().ThisBB));
975      }
976      // One of "cases" BB.
977      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
978           j != ej; ++j) {
979        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
980        if (cBB->isSuccessor(PHIBB)) {
981          PHI->addOperand(MachineOperand::
982                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
983          PHI->addOperand(MachineOperand::CreateMBB(cBB));
984        }
985      }
986    }
987  }
988  SDB->BitTestCases.clear();
989
990  // If the JumpTable record is filled in, then we need to emit a jump table.
991  // Updating the PHI nodes is tricky in this case, since we need to determine
992  // whether the PHI is a successor of the range check MBB or the jump table MBB
993  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
994    // Lower header first, if it wasn't already lowered
995    if (!SDB->JTCases[i].first.Emitted) {
996      // Set the current basic block to the mbb we wish to insert the code into
997      BB = SDB->JTCases[i].first.HeaderBB;
998      SDB->setCurrentBasicBlock(BB);
999      // Emit the code
1000      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
1001      CurDAG->setRoot(SDB->getRoot());
1002      CodeGenAndEmitDAG();
1003      SDB->clear();
1004    }
1005
1006    // Set the current basic block to the mbb we wish to insert the code into
1007    BB = SDB->JTCases[i].second.MBB;
1008    SDB->setCurrentBasicBlock(BB);
1009    // Emit the code
1010    SDB->visitJumpTable(SDB->JTCases[i].second);
1011    CurDAG->setRoot(SDB->getRoot());
1012    CodeGenAndEmitDAG();
1013    SDB->clear();
1014
1015    // Update PHI Nodes
1016    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1017      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1018      MachineBasicBlock *PHIBB = PHI->getParent();
1019      assert(PHI->isPHI() &&
1020             "This is not a machine PHI node that we are updating!");
1021      // "default" BB. We can go there only from header BB.
1022      if (PHIBB == SDB->JTCases[i].second.Default) {
1023        PHI->addOperand
1024          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1025        PHI->addOperand
1026          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1027      }
1028      // JT BB. Just iterate over successors here
1029      if (BB->isSuccessor(PHIBB)) {
1030        PHI->addOperand
1031          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1032        PHI->addOperand(MachineOperand::CreateMBB(BB));
1033      }
1034    }
1035  }
1036  SDB->JTCases.clear();
1037
1038  // If the switch block involved a branch to one of the actual successors, we
1039  // need to update PHI nodes in that block.
1040  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1041    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1042    assert(PHI->isPHI() &&
1043           "This is not a machine PHI node that we are updating!");
1044    if (BB->isSuccessor(PHI->getParent())) {
1045      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1046                                                false));
1047      PHI->addOperand(MachineOperand::CreateMBB(BB));
1048    }
1049  }
1050
1051  // If we generated any switch lowering information, build and codegen any
1052  // additional DAGs necessary.
1053  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1054    // Set the current basic block to the mbb we wish to insert the code into
1055    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1056    SDB->setCurrentBasicBlock(BB);
1057
1058    // Emit the code
1059    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1060    CurDAG->setRoot(SDB->getRoot());
1061    CodeGenAndEmitDAG();
1062
1063    // Handle any PHI nodes in successors of this chunk, as if we were coming
1064    // from the original BB before switch expansion.  Note that PHI nodes can
1065    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1066    // handle them the right number of times.
1067    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1068      // If new BB's are created during scheduling, the edges may have been
1069      // updated. That is, the edge from ThisBB to BB may have been split and
1070      // BB's predecessor is now another block.
1071      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1072        SDB->EdgeMapping.find(BB);
1073      if (EI != SDB->EdgeMapping.end())
1074        ThisBB = EI->second;
1075
1076      // BB may have been removed from the CFG if a branch was constant folded.
1077      if (ThisBB->isSuccessor(BB)) {
1078        for (MachineBasicBlock::iterator Phi = BB->begin();
1079             Phi != BB->end() && Phi->isPHI();
1080             ++Phi) {
1081          // This value for this PHI node is recorded in PHINodesToUpdate.
1082          for (unsigned pn = 0; ; ++pn) {
1083            assert(pn != SDB->PHINodesToUpdate.size() &&
1084                   "Didn't find PHI entry!");
1085            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1086              Phi->addOperand(MachineOperand::
1087                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1088                                        false));
1089              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1090              break;
1091            }
1092          }
1093        }
1094      }
1095
1096      // Don't process RHS if same block as LHS.
1097      if (BB == SDB->SwitchCases[i].FalseBB)
1098        SDB->SwitchCases[i].FalseBB = 0;
1099
1100      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1101      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1102      SDB->SwitchCases[i].FalseBB = 0;
1103    }
1104    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1105    SDB->clear();
1106  }
1107  SDB->SwitchCases.clear();
1108
1109  SDB->PHINodesToUpdate.clear();
1110}
1111
1112
1113/// Create the scheduler. If a specific scheduler was specified
1114/// via the SchedulerRegistry, use it, otherwise select the
1115/// one preferred by the target.
1116///
1117ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1118  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1119
1120  if (!Ctor) {
1121    Ctor = ISHeuristic;
1122    RegisterScheduler::setDefault(Ctor);
1123  }
1124
1125  return Ctor(this, OptLevel);
1126}
1127
1128ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1129  return new ScheduleHazardRecognizer();
1130}
1131
1132//===----------------------------------------------------------------------===//
1133// Helper functions used by the generated instruction selector.
1134//===----------------------------------------------------------------------===//
1135// Calls to these methods are generated by tblgen.
1136
1137/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1138/// the dag combiner simplified the 255, we still want to match.  RHS is the
1139/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1140/// specified in the .td file (e.g. 255).
1141bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1142                                    int64_t DesiredMaskS) const {
1143  const APInt &ActualMask = RHS->getAPIntValue();
1144  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1145
1146  // If the actual mask exactly matches, success!
1147  if (ActualMask == DesiredMask)
1148    return true;
1149
1150  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1151  if (ActualMask.intersects(~DesiredMask))
1152    return false;
1153
1154  // Otherwise, the DAG Combiner may have proven that the value coming in is
1155  // either already zero or is not demanded.  Check for known zero input bits.
1156  APInt NeededMask = DesiredMask & ~ActualMask;
1157  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1158    return true;
1159
1160  // TODO: check to see if missing bits are just not demanded.
1161
1162  // Otherwise, this pattern doesn't match.
1163  return false;
1164}
1165
1166/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1167/// the dag combiner simplified the 255, we still want to match.  RHS is the
1168/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1169/// specified in the .td file (e.g. 255).
1170bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1171                                   int64_t DesiredMaskS) const {
1172  const APInt &ActualMask = RHS->getAPIntValue();
1173  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1174
1175  // If the actual mask exactly matches, success!
1176  if (ActualMask == DesiredMask)
1177    return true;
1178
1179  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1180  if (ActualMask.intersects(~DesiredMask))
1181    return false;
1182
1183  // Otherwise, the DAG Combiner may have proven that the value coming in is
1184  // either already zero or is not demanded.  Check for known zero input bits.
1185  APInt NeededMask = DesiredMask & ~ActualMask;
1186
1187  APInt KnownZero, KnownOne;
1188  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1189
1190  // If all the missing bits in the or are already known to be set, match!
1191  if ((NeededMask & KnownOne) == NeededMask)
1192    return true;
1193
1194  // TODO: check to see if missing bits are just not demanded.
1195
1196  // Otherwise, this pattern doesn't match.
1197  return false;
1198}
1199
1200
1201/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1202/// by tblgen.  Others should not call it.
1203void SelectionDAGISel::
1204SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1205  std::vector<SDValue> InOps;
1206  std::swap(InOps, Ops);
1207
1208  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1209  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1210  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1211
1212  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1213  if (InOps[e-1].getValueType() == MVT::Flag)
1214    --e;  // Don't process a flag operand if it is here.
1215
1216  while (i != e) {
1217    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1218    if (!InlineAsm::isMemKind(Flags)) {
1219      // Just skip over this operand, copying the operands verbatim.
1220      Ops.insert(Ops.end(), InOps.begin()+i,
1221                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1222      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1223    } else {
1224      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1225             "Memory operand with multiple values?");
1226      // Otherwise, this is a memory operand.  Ask the target to select it.
1227      std::vector<SDValue> SelOps;
1228      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1229        report_fatal_error("Could not match memory address.  Inline asm"
1230                           " failure!");
1231
1232      // Add this to the output node.
1233      unsigned NewFlags =
1234        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1235      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1236      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1237      i += 2;
1238    }
1239  }
1240
1241  // Add the flag input back if present.
1242  if (e != InOps.size())
1243    Ops.push_back(InOps.back());
1244}
1245
1246/// findFlagUse - Return use of EVT::Flag value produced by the specified
1247/// SDNode.
1248///
1249static SDNode *findFlagUse(SDNode *N) {
1250  unsigned FlagResNo = N->getNumValues()-1;
1251  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1252    SDUse &Use = I.getUse();
1253    if (Use.getResNo() == FlagResNo)
1254      return Use.getUser();
1255  }
1256  return NULL;
1257}
1258
1259/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1260/// This function recursively traverses up the operand chain, ignoring
1261/// certain nodes.
1262static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1263                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1264                          bool IgnoreChains) {
1265  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1266  // greater than all of its (recursive) operands.  If we scan to a point where
1267  // 'use' is smaller than the node we're scanning for, then we know we will
1268  // never find it.
1269  //
1270  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1271  // happen because we scan down to newly selected nodes in the case of flag
1272  // uses.
1273  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1274    return false;
1275
1276  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1277  // won't fail if we scan it again.
1278  if (!Visited.insert(Use))
1279    return false;
1280
1281  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1282    // Ignore chain uses, they are validated by HandleMergeInputChains.
1283    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1284      continue;
1285
1286    SDNode *N = Use->getOperand(i).getNode();
1287    if (N == Def) {
1288      if (Use == ImmedUse || Use == Root)
1289        continue;  // We are not looking for immediate use.
1290      assert(N != Root);
1291      return true;
1292    }
1293
1294    // Traverse up the operand chain.
1295    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1296      return true;
1297  }
1298  return false;
1299}
1300
1301/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1302/// operand node N of U during instruction selection that starts at Root.
1303bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1304                                          SDNode *Root) const {
1305  if (OptLevel == CodeGenOpt::None) return false;
1306  return N.hasOneUse();
1307}
1308
1309/// IsLegalToFold - Returns true if the specific operand node N of
1310/// U can be folded during instruction selection that starts at Root.
1311bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1312                                     bool IgnoreChains) const {
1313  if (OptLevel == CodeGenOpt::None) return false;
1314
1315  // If Root use can somehow reach N through a path that that doesn't contain
1316  // U then folding N would create a cycle. e.g. In the following
1317  // diagram, Root can reach N through X. If N is folded into into Root, then
1318  // X is both a predecessor and a successor of U.
1319  //
1320  //          [N*]           //
1321  //         ^   ^           //
1322  //        /     \          //
1323  //      [U*]    [X]?       //
1324  //        ^     ^          //
1325  //         \   /           //
1326  //          \ /            //
1327  //         [Root*]         //
1328  //
1329  // * indicates nodes to be folded together.
1330  //
1331  // If Root produces a flag, then it gets (even more) interesting. Since it
1332  // will be "glued" together with its flag use in the scheduler, we need to
1333  // check if it might reach N.
1334  //
1335  //          [N*]           //
1336  //         ^   ^           //
1337  //        /     \          //
1338  //      [U*]    [X]?       //
1339  //        ^       ^        //
1340  //         \       \       //
1341  //          \      |       //
1342  //         [Root*] |       //
1343  //          ^      |       //
1344  //          f      |       //
1345  //          |      /       //
1346  //         [Y]    /        //
1347  //           ^   /         //
1348  //           f  /          //
1349  //           | /           //
1350  //          [FU]           //
1351  //
1352  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1353  // (call it Fold), then X is a predecessor of FU and a successor of
1354  // Fold. But since Fold and FU are flagged together, this will create
1355  // a cycle in the scheduling graph.
1356
1357  // If the node has flags, walk down the graph to the "lowest" node in the
1358  // flagged set.
1359  EVT VT = Root->getValueType(Root->getNumValues()-1);
1360  while (VT == MVT::Flag) {
1361    SDNode *FU = findFlagUse(Root);
1362    if (FU == NULL)
1363      break;
1364    Root = FU;
1365    VT = Root->getValueType(Root->getNumValues()-1);
1366
1367    // If our query node has a flag result with a use, we've walked up it.  If
1368    // the user (which has already been selected) has a chain or indirectly uses
1369    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1370    // this, we cannot ignore chains in this predicate.
1371    IgnoreChains = false;
1372  }
1373
1374
1375  SmallPtrSet<SDNode*, 16> Visited;
1376  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1377}
1378
1379SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1380  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1381  SelectInlineAsmMemoryOperands(Ops);
1382
1383  std::vector<EVT> VTs;
1384  VTs.push_back(MVT::Other);
1385  VTs.push_back(MVT::Flag);
1386  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1387                                VTs, &Ops[0], Ops.size());
1388  New->setNodeId(-1);
1389  return New.getNode();
1390}
1391
1392SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1393  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1394}
1395
1396/// GetVBR - decode a vbr encoding whose top bit is set.
1397ALWAYS_INLINE static uint64_t
1398GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1399  assert(Val >= 128 && "Not a VBR");
1400  Val &= 127;  // Remove first vbr bit.
1401
1402  unsigned Shift = 7;
1403  uint64_t NextBits;
1404  do {
1405    NextBits = MatcherTable[Idx++];
1406    Val |= (NextBits&127) << Shift;
1407    Shift += 7;
1408  } while (NextBits & 128);
1409
1410  return Val;
1411}
1412
1413
1414/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1415/// interior flag and chain results to use the new flag and chain results.
1416void SelectionDAGISel::
1417UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1418                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1419                     SDValue InputFlag,
1420                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1421                     bool isMorphNodeTo) {
1422  SmallVector<SDNode*, 4> NowDeadNodes;
1423
1424  ISelUpdater ISU(ISelPosition);
1425
1426  // Now that all the normal results are replaced, we replace the chain and
1427  // flag results if present.
1428  if (!ChainNodesMatched.empty()) {
1429    assert(InputChain.getNode() != 0 &&
1430           "Matched input chains but didn't produce a chain");
1431    // Loop over all of the nodes we matched that produced a chain result.
1432    // Replace all the chain results with the final chain we ended up with.
1433    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1434      SDNode *ChainNode = ChainNodesMatched[i];
1435
1436      // If this node was already deleted, don't look at it.
1437      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1438        continue;
1439
1440      // Don't replace the results of the root node if we're doing a
1441      // MorphNodeTo.
1442      if (ChainNode == NodeToMatch && isMorphNodeTo)
1443        continue;
1444
1445      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1446      if (ChainVal.getValueType() == MVT::Flag)
1447        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1448      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1449      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1450
1451      // If the node became dead and we haven't already seen it, delete it.
1452      if (ChainNode->use_empty() &&
1453          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1454        NowDeadNodes.push_back(ChainNode);
1455    }
1456  }
1457
1458  // If the result produces a flag, update any flag results in the matched
1459  // pattern with the flag result.
1460  if (InputFlag.getNode() != 0) {
1461    // Handle any interior nodes explicitly marked.
1462    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1463      SDNode *FRN = FlagResultNodesMatched[i];
1464
1465      // If this node was already deleted, don't look at it.
1466      if (FRN->getOpcode() == ISD::DELETED_NODE)
1467        continue;
1468
1469      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1470             "Doesn't have a flag result");
1471      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1472                                        InputFlag, &ISU);
1473
1474      // If the node became dead and we haven't already seen it, delete it.
1475      if (FRN->use_empty() &&
1476          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1477        NowDeadNodes.push_back(FRN);
1478    }
1479  }
1480
1481  if (!NowDeadNodes.empty())
1482    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1483
1484  DEBUG(errs() << "ISEL: Match complete!\n");
1485}
1486
1487enum ChainResult {
1488  CR_Simple,
1489  CR_InducesCycle,
1490  CR_LeadsToInteriorNode
1491};
1492
1493/// WalkChainUsers - Walk down the users of the specified chained node that is
1494/// part of the pattern we're matching, looking at all of the users we find.
1495/// This determines whether something is an interior node, whether we have a
1496/// non-pattern node in between two pattern nodes (which prevent folding because
1497/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1498/// between pattern nodes (in which case the TF becomes part of the pattern).
1499///
1500/// The walk we do here is guaranteed to be small because we quickly get down to
1501/// already selected nodes "below" us.
1502static ChainResult
1503WalkChainUsers(SDNode *ChainedNode,
1504               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1505               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1506  ChainResult Result = CR_Simple;
1507
1508  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1509         E = ChainedNode->use_end(); UI != E; ++UI) {
1510    // Make sure the use is of the chain, not some other value we produce.
1511    if (UI.getUse().getValueType() != MVT::Other) continue;
1512
1513    SDNode *User = *UI;
1514
1515    // If we see an already-selected machine node, then we've gone beyond the
1516    // pattern that we're selecting down into the already selected chunk of the
1517    // DAG.
1518    if (User->isMachineOpcode() ||
1519        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1520      continue;
1521
1522    if (User->getOpcode() == ISD::CopyToReg ||
1523        User->getOpcode() == ISD::CopyFromReg ||
1524        User->getOpcode() == ISD::INLINEASM ||
1525        User->getOpcode() == ISD::EH_LABEL) {
1526      // If their node ID got reset to -1 then they've already been selected.
1527      // Treat them like a MachineOpcode.
1528      if (User->getNodeId() == -1)
1529        continue;
1530    }
1531
1532    // If we have a TokenFactor, we handle it specially.
1533    if (User->getOpcode() != ISD::TokenFactor) {
1534      // If the node isn't a token factor and isn't part of our pattern, then it
1535      // must be a random chained node in between two nodes we're selecting.
1536      // This happens when we have something like:
1537      //   x = load ptr
1538      //   call
1539      //   y = x+4
1540      //   store y -> ptr
1541      // Because we structurally match the load/store as a read/modify/write,
1542      // but the call is chained between them.  We cannot fold in this case
1543      // because it would induce a cycle in the graph.
1544      if (!std::count(ChainedNodesInPattern.begin(),
1545                      ChainedNodesInPattern.end(), User))
1546        return CR_InducesCycle;
1547
1548      // Otherwise we found a node that is part of our pattern.  For example in:
1549      //   x = load ptr
1550      //   y = x+4
1551      //   store y -> ptr
1552      // This would happen when we're scanning down from the load and see the
1553      // store as a user.  Record that there is a use of ChainedNode that is
1554      // part of the pattern and keep scanning uses.
1555      Result = CR_LeadsToInteriorNode;
1556      InteriorChainedNodes.push_back(User);
1557      continue;
1558    }
1559
1560    // If we found a TokenFactor, there are two cases to consider: first if the
1561    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1562    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1563    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1564    //     [Load chain]
1565    //         ^
1566    //         |
1567    //       [Load]
1568    //       ^    ^
1569    //       |    \                    DAG's like cheese
1570    //      /       \                       do you?
1571    //     /         |
1572    // [TokenFactor] [Op]
1573    //     ^          ^
1574    //     |          |
1575    //      \        /
1576    //       \      /
1577    //       [Store]
1578    //
1579    // In this case, the TokenFactor becomes part of our match and we rewrite it
1580    // as a new TokenFactor.
1581    //
1582    // To distinguish these two cases, do a recursive walk down the uses.
1583    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1584    case CR_Simple:
1585      // If the uses of the TokenFactor are just already-selected nodes, ignore
1586      // it, it is "below" our pattern.
1587      continue;
1588    case CR_InducesCycle:
1589      // If the uses of the TokenFactor lead to nodes that are not part of our
1590      // pattern that are not selected, folding would turn this into a cycle,
1591      // bail out now.
1592      return CR_InducesCycle;
1593    case CR_LeadsToInteriorNode:
1594      break;  // Otherwise, keep processing.
1595    }
1596
1597    // Okay, we know we're in the interesting interior case.  The TokenFactor
1598    // is now going to be considered part of the pattern so that we rewrite its
1599    // uses (it may have uses that are not part of the pattern) with the
1600    // ultimate chain result of the generated code.  We will also add its chain
1601    // inputs as inputs to the ultimate TokenFactor we create.
1602    Result = CR_LeadsToInteriorNode;
1603    ChainedNodesInPattern.push_back(User);
1604    InteriorChainedNodes.push_back(User);
1605    continue;
1606  }
1607
1608  return Result;
1609}
1610
1611/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1612/// operation for when the pattern matched at least one node with a chains.  The
1613/// input vector contains a list of all of the chained nodes that we match.  We
1614/// must determine if this is a valid thing to cover (i.e. matching it won't
1615/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1616/// be used as the input node chain for the generated nodes.
1617static SDValue
1618HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1619                       SelectionDAG *CurDAG) {
1620  // Walk all of the chained nodes we've matched, recursively scanning down the
1621  // users of the chain result. This adds any TokenFactor nodes that are caught
1622  // in between chained nodes to the chained and interior nodes list.
1623  SmallVector<SDNode*, 3> InteriorChainedNodes;
1624  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1625    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1626                       InteriorChainedNodes) == CR_InducesCycle)
1627      return SDValue(); // Would induce a cycle.
1628  }
1629
1630  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1631  // that we are interested in.  Form our input TokenFactor node.
1632  SmallVector<SDValue, 3> InputChains;
1633  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1634    // Add the input chain of this node to the InputChains list (which will be
1635    // the operands of the generated TokenFactor) if it's not an interior node.
1636    SDNode *N = ChainNodesMatched[i];
1637    if (N->getOpcode() != ISD::TokenFactor) {
1638      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1639        continue;
1640
1641      // Otherwise, add the input chain.
1642      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1643      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1644      InputChains.push_back(InChain);
1645      continue;
1646    }
1647
1648    // If we have a token factor, we want to add all inputs of the token factor
1649    // that are not part of the pattern we're matching.
1650    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1651      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1652                      N->getOperand(op).getNode()))
1653        InputChains.push_back(N->getOperand(op));
1654    }
1655  }
1656
1657  SDValue Res;
1658  if (InputChains.size() == 1)
1659    return InputChains[0];
1660  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1661                         MVT::Other, &InputChains[0], InputChains.size());
1662}
1663
1664/// MorphNode - Handle morphing a node in place for the selector.
1665SDNode *SelectionDAGISel::
1666MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1667          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1668  // It is possible we're using MorphNodeTo to replace a node with no
1669  // normal results with one that has a normal result (or we could be
1670  // adding a chain) and the input could have flags and chains as well.
1671  // In this case we need to shift the operands down.
1672  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1673  // than the old isel though.
1674  int OldFlagResultNo = -1, OldChainResultNo = -1;
1675
1676  unsigned NTMNumResults = Node->getNumValues();
1677  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1678    OldFlagResultNo = NTMNumResults-1;
1679    if (NTMNumResults != 1 &&
1680        Node->getValueType(NTMNumResults-2) == MVT::Other)
1681      OldChainResultNo = NTMNumResults-2;
1682  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1683    OldChainResultNo = NTMNumResults-1;
1684
1685  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1686  // that this deletes operands of the old node that become dead.
1687  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1688
1689  // MorphNodeTo can operate in two ways: if an existing node with the
1690  // specified operands exists, it can just return it.  Otherwise, it
1691  // updates the node in place to have the requested operands.
1692  if (Res == Node) {
1693    // If we updated the node in place, reset the node ID.  To the isel,
1694    // this should be just like a newly allocated machine node.
1695    Res->setNodeId(-1);
1696  }
1697
1698  unsigned ResNumResults = Res->getNumValues();
1699  // Move the flag if needed.
1700  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1701      (unsigned)OldFlagResultNo != ResNumResults-1)
1702    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1703                                      SDValue(Res, ResNumResults-1));
1704
1705  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1706  --ResNumResults;
1707
1708  // Move the chain reference if needed.
1709  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1710      (unsigned)OldChainResultNo != ResNumResults-1)
1711    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1712                                      SDValue(Res, ResNumResults-1));
1713
1714  // Otherwise, no replacement happened because the node already exists. Replace
1715  // Uses of the old node with the new one.
1716  if (Res != Node)
1717    CurDAG->ReplaceAllUsesWith(Node, Res);
1718
1719  return Res;
1720}
1721
1722/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1723ALWAYS_INLINE static bool
1724CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1725          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1726  // Accept if it is exactly the same as a previously recorded node.
1727  unsigned RecNo = MatcherTable[MatcherIndex++];
1728  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1729  return N == RecordedNodes[RecNo];
1730}
1731
1732/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1733ALWAYS_INLINE static bool
1734CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1735                      SelectionDAGISel &SDISel) {
1736  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1737}
1738
1739/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1740ALWAYS_INLINE static bool
1741CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1742                   SelectionDAGISel &SDISel, SDNode *N) {
1743  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1744}
1745
1746ALWAYS_INLINE static bool
1747CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1748            SDNode *N) {
1749  uint16_t Opc = MatcherTable[MatcherIndex++];
1750  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1751  return N->getOpcode() == Opc;
1752}
1753
1754ALWAYS_INLINE static bool
1755CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1756          SDValue N, const TargetLowering &TLI) {
1757  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1758  if (N.getValueType() == VT) return true;
1759
1760  // Handle the case when VT is iPTR.
1761  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1762}
1763
1764ALWAYS_INLINE static bool
1765CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1766               SDValue N, const TargetLowering &TLI,
1767               unsigned ChildNo) {
1768  if (ChildNo >= N.getNumOperands())
1769    return false;  // Match fails if out of range child #.
1770  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1771}
1772
1773
1774ALWAYS_INLINE static bool
1775CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1776              SDValue N) {
1777  return cast<CondCodeSDNode>(N)->get() ==
1778      (ISD::CondCode)MatcherTable[MatcherIndex++];
1779}
1780
1781ALWAYS_INLINE static bool
1782CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1783               SDValue N, const TargetLowering &TLI) {
1784  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1785  if (cast<VTSDNode>(N)->getVT() == VT)
1786    return true;
1787
1788  // Handle the case when VT is iPTR.
1789  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1790}
1791
1792ALWAYS_INLINE static bool
1793CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1794             SDValue N) {
1795  int64_t Val = MatcherTable[MatcherIndex++];
1796  if (Val & 128)
1797    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1798
1799  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1800  return C != 0 && C->getSExtValue() == Val;
1801}
1802
1803ALWAYS_INLINE static bool
1804CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1805            SDValue N, SelectionDAGISel &SDISel) {
1806  int64_t Val = MatcherTable[MatcherIndex++];
1807  if (Val & 128)
1808    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1809
1810  if (N->getOpcode() != ISD::AND) return false;
1811
1812  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1813  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1814}
1815
1816ALWAYS_INLINE static bool
1817CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1818           SDValue N, SelectionDAGISel &SDISel) {
1819  int64_t Val = MatcherTable[MatcherIndex++];
1820  if (Val & 128)
1821    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1822
1823  if (N->getOpcode() != ISD::OR) return false;
1824
1825  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1826  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1827}
1828
1829/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1830/// scope, evaluate the current node.  If the current predicate is known to
1831/// fail, set Result=true and return anything.  If the current predicate is
1832/// known to pass, set Result=false and return the MatcherIndex to continue
1833/// with.  If the current predicate is unknown, set Result=false and return the
1834/// MatcherIndex to continue with.
1835static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1836                                       unsigned Index, SDValue N,
1837                                       bool &Result, SelectionDAGISel &SDISel,
1838                                       SmallVectorImpl<SDValue> &RecordedNodes){
1839  switch (Table[Index++]) {
1840  default:
1841    Result = false;
1842    return Index-1;  // Could not evaluate this predicate.
1843  case SelectionDAGISel::OPC_CheckSame:
1844    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1845    return Index;
1846  case SelectionDAGISel::OPC_CheckPatternPredicate:
1847    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1848    return Index;
1849  case SelectionDAGISel::OPC_CheckPredicate:
1850    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1851    return Index;
1852  case SelectionDAGISel::OPC_CheckOpcode:
1853    Result = !::CheckOpcode(Table, Index, N.getNode());
1854    return Index;
1855  case SelectionDAGISel::OPC_CheckType:
1856    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1857    return Index;
1858  case SelectionDAGISel::OPC_CheckChild0Type:
1859  case SelectionDAGISel::OPC_CheckChild1Type:
1860  case SelectionDAGISel::OPC_CheckChild2Type:
1861  case SelectionDAGISel::OPC_CheckChild3Type:
1862  case SelectionDAGISel::OPC_CheckChild4Type:
1863  case SelectionDAGISel::OPC_CheckChild5Type:
1864  case SelectionDAGISel::OPC_CheckChild6Type:
1865  case SelectionDAGISel::OPC_CheckChild7Type:
1866    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1867                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1868    return Index;
1869  case SelectionDAGISel::OPC_CheckCondCode:
1870    Result = !::CheckCondCode(Table, Index, N);
1871    return Index;
1872  case SelectionDAGISel::OPC_CheckValueType:
1873    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1874    return Index;
1875  case SelectionDAGISel::OPC_CheckInteger:
1876    Result = !::CheckInteger(Table, Index, N);
1877    return Index;
1878  case SelectionDAGISel::OPC_CheckAndImm:
1879    Result = !::CheckAndImm(Table, Index, N, SDISel);
1880    return Index;
1881  case SelectionDAGISel::OPC_CheckOrImm:
1882    Result = !::CheckOrImm(Table, Index, N, SDISel);
1883    return Index;
1884  }
1885}
1886
1887
1888struct MatchScope {
1889  /// FailIndex - If this match fails, this is the index to continue with.
1890  unsigned FailIndex;
1891
1892  /// NodeStack - The node stack when the scope was formed.
1893  SmallVector<SDValue, 4> NodeStack;
1894
1895  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1896  unsigned NumRecordedNodes;
1897
1898  /// NumMatchedMemRefs - The number of matched memref entries.
1899  unsigned NumMatchedMemRefs;
1900
1901  /// InputChain/InputFlag - The current chain/flag
1902  SDValue InputChain, InputFlag;
1903
1904  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1905  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1906};
1907
1908SDNode *SelectionDAGISel::
1909SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1910                 unsigned TableSize) {
1911  // FIXME: Should these even be selected?  Handle these cases in the caller?
1912  switch (NodeToMatch->getOpcode()) {
1913  default:
1914    break;
1915  case ISD::EntryToken:       // These nodes remain the same.
1916  case ISD::BasicBlock:
1917  case ISD::Register:
1918  //case ISD::VALUETYPE:
1919  //case ISD::CONDCODE:
1920  case ISD::HANDLENODE:
1921  case ISD::MDNODE_SDNODE:
1922  case ISD::TargetConstant:
1923  case ISD::TargetConstantFP:
1924  case ISD::TargetConstantPool:
1925  case ISD::TargetFrameIndex:
1926  case ISD::TargetExternalSymbol:
1927  case ISD::TargetBlockAddress:
1928  case ISD::TargetJumpTable:
1929  case ISD::TargetGlobalTLSAddress:
1930  case ISD::TargetGlobalAddress:
1931  case ISD::TokenFactor:
1932  case ISD::CopyFromReg:
1933  case ISD::CopyToReg:
1934  case ISD::EH_LABEL:
1935    NodeToMatch->setNodeId(-1); // Mark selected.
1936    return 0;
1937  case ISD::AssertSext:
1938  case ISD::AssertZext:
1939    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1940                                      NodeToMatch->getOperand(0));
1941    return 0;
1942  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1943  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1944  }
1945
1946  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1947
1948  // Set up the node stack with NodeToMatch as the only node on the stack.
1949  SmallVector<SDValue, 8> NodeStack;
1950  SDValue N = SDValue(NodeToMatch, 0);
1951  NodeStack.push_back(N);
1952
1953  // MatchScopes - Scopes used when matching, if a match failure happens, this
1954  // indicates where to continue checking.
1955  SmallVector<MatchScope, 8> MatchScopes;
1956
1957  // RecordedNodes - This is the set of nodes that have been recorded by the
1958  // state machine.
1959  SmallVector<SDValue, 8> RecordedNodes;
1960
1961  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1962  // pattern.
1963  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1964
1965  // These are the current input chain and flag for use when generating nodes.
1966  // Various Emit operations change these.  For example, emitting a copytoreg
1967  // uses and updates these.
1968  SDValue InputChain, InputFlag;
1969
1970  // ChainNodesMatched - If a pattern matches nodes that have input/output
1971  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1972  // which ones they are.  The result is captured into this list so that we can
1973  // update the chain results when the pattern is complete.
1974  SmallVector<SDNode*, 3> ChainNodesMatched;
1975  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1976
1977  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1978        NodeToMatch->dump(CurDAG);
1979        errs() << '\n');
1980
1981  // Determine where to start the interpreter.  Normally we start at opcode #0,
1982  // but if the state machine starts with an OPC_SwitchOpcode, then we
1983  // accelerate the first lookup (which is guaranteed to be hot) with the
1984  // OpcodeOffset table.
1985  unsigned MatcherIndex = 0;
1986
1987  if (!OpcodeOffset.empty()) {
1988    // Already computed the OpcodeOffset table, just index into it.
1989    if (N.getOpcode() < OpcodeOffset.size())
1990      MatcherIndex = OpcodeOffset[N.getOpcode()];
1991    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1992
1993  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1994    // Otherwise, the table isn't computed, but the state machine does start
1995    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1996    // is the first time we're selecting an instruction.
1997    unsigned Idx = 1;
1998    while (1) {
1999      // Get the size of this case.
2000      unsigned CaseSize = MatcherTable[Idx++];
2001      if (CaseSize & 128)
2002        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2003      if (CaseSize == 0) break;
2004
2005      // Get the opcode, add the index to the table.
2006      uint16_t Opc = MatcherTable[Idx++];
2007      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2008      if (Opc >= OpcodeOffset.size())
2009        OpcodeOffset.resize((Opc+1)*2);
2010      OpcodeOffset[Opc] = Idx;
2011      Idx += CaseSize;
2012    }
2013
2014    // Okay, do the lookup for the first opcode.
2015    if (N.getOpcode() < OpcodeOffset.size())
2016      MatcherIndex = OpcodeOffset[N.getOpcode()];
2017  }
2018
2019  while (1) {
2020    assert(MatcherIndex < TableSize && "Invalid index");
2021#ifndef NDEBUG
2022    unsigned CurrentOpcodeIndex = MatcherIndex;
2023#endif
2024    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2025    switch (Opcode) {
2026    case OPC_Scope: {
2027      // Okay, the semantics of this operation are that we should push a scope
2028      // then evaluate the first child.  However, pushing a scope only to have
2029      // the first check fail (which then pops it) is inefficient.  If we can
2030      // determine immediately that the first check (or first several) will
2031      // immediately fail, don't even bother pushing a scope for them.
2032      unsigned FailIndex;
2033
2034      while (1) {
2035        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2036        if (NumToSkip & 128)
2037          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2038        // Found the end of the scope with no match.
2039        if (NumToSkip == 0) {
2040          FailIndex = 0;
2041          break;
2042        }
2043
2044        FailIndex = MatcherIndex+NumToSkip;
2045
2046        unsigned MatcherIndexOfPredicate = MatcherIndex;
2047        (void)MatcherIndexOfPredicate; // silence warning.
2048
2049        // If we can't evaluate this predicate without pushing a scope (e.g. if
2050        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2051        // push the scope and evaluate the full predicate chain.
2052        bool Result;
2053        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2054                                              Result, *this, RecordedNodes);
2055        if (!Result)
2056          break;
2057
2058        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2059                     << "index " << MatcherIndexOfPredicate
2060                     << ", continuing at " << FailIndex << "\n");
2061        ++NumDAGIselRetries;
2062
2063        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2064        // move to the next case.
2065        MatcherIndex = FailIndex;
2066      }
2067
2068      // If the whole scope failed to match, bail.
2069      if (FailIndex == 0) break;
2070
2071      // Push a MatchScope which indicates where to go if the first child fails
2072      // to match.
2073      MatchScope NewEntry;
2074      NewEntry.FailIndex = FailIndex;
2075      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2076      NewEntry.NumRecordedNodes = RecordedNodes.size();
2077      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2078      NewEntry.InputChain = InputChain;
2079      NewEntry.InputFlag = InputFlag;
2080      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2081      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2082      MatchScopes.push_back(NewEntry);
2083      continue;
2084    }
2085    case OPC_RecordNode:
2086      // Remember this node, it may end up being an operand in the pattern.
2087      RecordedNodes.push_back(N);
2088      continue;
2089
2090    case OPC_RecordChild0: case OPC_RecordChild1:
2091    case OPC_RecordChild2: case OPC_RecordChild3:
2092    case OPC_RecordChild4: case OPC_RecordChild5:
2093    case OPC_RecordChild6: case OPC_RecordChild7: {
2094      unsigned ChildNo = Opcode-OPC_RecordChild0;
2095      if (ChildNo >= N.getNumOperands())
2096        break;  // Match fails if out of range child #.
2097
2098      RecordedNodes.push_back(N->getOperand(ChildNo));
2099      continue;
2100    }
2101    case OPC_RecordMemRef:
2102      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2103      continue;
2104
2105    case OPC_CaptureFlagInput:
2106      // If the current node has an input flag, capture it in InputFlag.
2107      if (N->getNumOperands() != 0 &&
2108          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2109        InputFlag = N->getOperand(N->getNumOperands()-1);
2110      continue;
2111
2112    case OPC_MoveChild: {
2113      unsigned ChildNo = MatcherTable[MatcherIndex++];
2114      if (ChildNo >= N.getNumOperands())
2115        break;  // Match fails if out of range child #.
2116      N = N.getOperand(ChildNo);
2117      NodeStack.push_back(N);
2118      continue;
2119    }
2120
2121    case OPC_MoveParent:
2122      // Pop the current node off the NodeStack.
2123      NodeStack.pop_back();
2124      assert(!NodeStack.empty() && "Node stack imbalance!");
2125      N = NodeStack.back();
2126      continue;
2127
2128    case OPC_CheckSame:
2129      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2130      continue;
2131    case OPC_CheckPatternPredicate:
2132      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2133      continue;
2134    case OPC_CheckPredicate:
2135      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2136                                N.getNode()))
2137        break;
2138      continue;
2139    case OPC_CheckComplexPat: {
2140      unsigned CPNum = MatcherTable[MatcherIndex++];
2141      unsigned RecNo = MatcherTable[MatcherIndex++];
2142      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2143      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2144                               RecordedNodes))
2145        break;
2146      continue;
2147    }
2148    case OPC_CheckOpcode:
2149      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2150      continue;
2151
2152    case OPC_CheckType:
2153      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2154      continue;
2155
2156    case OPC_SwitchOpcode: {
2157      unsigned CurNodeOpcode = N.getOpcode();
2158      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2159      unsigned CaseSize;
2160      while (1) {
2161        // Get the size of this case.
2162        CaseSize = MatcherTable[MatcherIndex++];
2163        if (CaseSize & 128)
2164          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2165        if (CaseSize == 0) break;
2166
2167        uint16_t Opc = MatcherTable[MatcherIndex++];
2168        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2169
2170        // If the opcode matches, then we will execute this case.
2171        if (CurNodeOpcode == Opc)
2172          break;
2173
2174        // Otherwise, skip over this case.
2175        MatcherIndex += CaseSize;
2176      }
2177
2178      // If no cases matched, bail out.
2179      if (CaseSize == 0) break;
2180
2181      // Otherwise, execute the case we found.
2182      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2183                   << " to " << MatcherIndex << "\n");
2184      continue;
2185    }
2186
2187    case OPC_SwitchType: {
2188      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2189      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2190      unsigned CaseSize;
2191      while (1) {
2192        // Get the size of this case.
2193        CaseSize = MatcherTable[MatcherIndex++];
2194        if (CaseSize & 128)
2195          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2196        if (CaseSize == 0) break;
2197
2198        MVT::SimpleValueType CaseVT =
2199          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2200        if (CaseVT == MVT::iPTR)
2201          CaseVT = TLI.getPointerTy().SimpleTy;
2202
2203        // If the VT matches, then we will execute this case.
2204        if (CurNodeVT == CaseVT)
2205          break;
2206
2207        // Otherwise, skip over this case.
2208        MatcherIndex += CaseSize;
2209      }
2210
2211      // If no cases matched, bail out.
2212      if (CaseSize == 0) break;
2213
2214      // Otherwise, execute the case we found.
2215      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2216                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2217      continue;
2218    }
2219    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2220    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2221    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2222    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2223      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2224                            Opcode-OPC_CheckChild0Type))
2225        break;
2226      continue;
2227    case OPC_CheckCondCode:
2228      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2229      continue;
2230    case OPC_CheckValueType:
2231      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2232      continue;
2233    case OPC_CheckInteger:
2234      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2235      continue;
2236    case OPC_CheckAndImm:
2237      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2238      continue;
2239    case OPC_CheckOrImm:
2240      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2241      continue;
2242
2243    case OPC_CheckFoldableChainNode: {
2244      assert(NodeStack.size() != 1 && "No parent node");
2245      // Verify that all intermediate nodes between the root and this one have
2246      // a single use.
2247      bool HasMultipleUses = false;
2248      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2249        if (!NodeStack[i].hasOneUse()) {
2250          HasMultipleUses = true;
2251          break;
2252        }
2253      if (HasMultipleUses) break;
2254
2255      // Check to see that the target thinks this is profitable to fold and that
2256      // we can fold it without inducing cycles in the graph.
2257      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2258                              NodeToMatch) ||
2259          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2260                         NodeToMatch, true/*We validate our own chains*/))
2261        break;
2262
2263      continue;
2264    }
2265    case OPC_EmitInteger: {
2266      MVT::SimpleValueType VT =
2267        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2268      int64_t Val = MatcherTable[MatcherIndex++];
2269      if (Val & 128)
2270        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2271      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2272      continue;
2273    }
2274    case OPC_EmitRegister: {
2275      MVT::SimpleValueType VT =
2276        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2277      unsigned RegNo = MatcherTable[MatcherIndex++];
2278      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2279      continue;
2280    }
2281
2282    case OPC_EmitConvertToTarget:  {
2283      // Convert from IMM/FPIMM to target version.
2284      unsigned RecNo = MatcherTable[MatcherIndex++];
2285      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2286      SDValue Imm = RecordedNodes[RecNo];
2287
2288      if (Imm->getOpcode() == ISD::Constant) {
2289        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2290        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2291      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2292        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2293        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2294      }
2295
2296      RecordedNodes.push_back(Imm);
2297      continue;
2298    }
2299
2300    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2301    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2302      // These are space-optimized forms of OPC_EmitMergeInputChains.
2303      assert(InputChain.getNode() == 0 &&
2304             "EmitMergeInputChains should be the first chain producing node");
2305      assert(ChainNodesMatched.empty() &&
2306             "Should only have one EmitMergeInputChains per match");
2307
2308      // Read all of the chained nodes.
2309      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2310      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2311      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2312
2313      // FIXME: What if other value results of the node have uses not matched
2314      // by this pattern?
2315      if (ChainNodesMatched.back() != NodeToMatch &&
2316          !RecordedNodes[RecNo].hasOneUse()) {
2317        ChainNodesMatched.clear();
2318        break;
2319      }
2320
2321      // Merge the input chains if they are not intra-pattern references.
2322      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2323
2324      if (InputChain.getNode() == 0)
2325        break;  // Failed to merge.
2326      continue;
2327    }
2328
2329    case OPC_EmitMergeInputChains: {
2330      assert(InputChain.getNode() == 0 &&
2331             "EmitMergeInputChains should be the first chain producing node");
2332      // This node gets a list of nodes we matched in the input that have
2333      // chains.  We want to token factor all of the input chains to these nodes
2334      // together.  However, if any of the input chains is actually one of the
2335      // nodes matched in this pattern, then we have an intra-match reference.
2336      // Ignore these because the newly token factored chain should not refer to
2337      // the old nodes.
2338      unsigned NumChains = MatcherTable[MatcherIndex++];
2339      assert(NumChains != 0 && "Can't TF zero chains");
2340
2341      assert(ChainNodesMatched.empty() &&
2342             "Should only have one EmitMergeInputChains per match");
2343
2344      // Read all of the chained nodes.
2345      for (unsigned i = 0; i != NumChains; ++i) {
2346        unsigned RecNo = MatcherTable[MatcherIndex++];
2347        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2348        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2349
2350        // FIXME: What if other value results of the node have uses not matched
2351        // by this pattern?
2352        if (ChainNodesMatched.back() != NodeToMatch &&
2353            !RecordedNodes[RecNo].hasOneUse()) {
2354          ChainNodesMatched.clear();
2355          break;
2356        }
2357      }
2358
2359      // If the inner loop broke out, the match fails.
2360      if (ChainNodesMatched.empty())
2361        break;
2362
2363      // Merge the input chains if they are not intra-pattern references.
2364      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2365
2366      if (InputChain.getNode() == 0)
2367        break;  // Failed to merge.
2368
2369      continue;
2370    }
2371
2372    case OPC_EmitCopyToReg: {
2373      unsigned RecNo = MatcherTable[MatcherIndex++];
2374      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2375      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2376
2377      if (InputChain.getNode() == 0)
2378        InputChain = CurDAG->getEntryNode();
2379
2380      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2381                                        DestPhysReg, RecordedNodes[RecNo],
2382                                        InputFlag);
2383
2384      InputFlag = InputChain.getValue(1);
2385      continue;
2386    }
2387
2388    case OPC_EmitNodeXForm: {
2389      unsigned XFormNo = MatcherTable[MatcherIndex++];
2390      unsigned RecNo = MatcherTable[MatcherIndex++];
2391      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2392      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2393      continue;
2394    }
2395
2396    case OPC_EmitNode:
2397    case OPC_MorphNodeTo: {
2398      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2399      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2400      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2401      // Get the result VT list.
2402      unsigned NumVTs = MatcherTable[MatcherIndex++];
2403      SmallVector<EVT, 4> VTs;
2404      for (unsigned i = 0; i != NumVTs; ++i) {
2405        MVT::SimpleValueType VT =
2406          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2407        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2408        VTs.push_back(VT);
2409      }
2410
2411      if (EmitNodeInfo & OPFL_Chain)
2412        VTs.push_back(MVT::Other);
2413      if (EmitNodeInfo & OPFL_FlagOutput)
2414        VTs.push_back(MVT::Flag);
2415
2416      // This is hot code, so optimize the two most common cases of 1 and 2
2417      // results.
2418      SDVTList VTList;
2419      if (VTs.size() == 1)
2420        VTList = CurDAG->getVTList(VTs[0]);
2421      else if (VTs.size() == 2)
2422        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2423      else
2424        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2425
2426      // Get the operand list.
2427      unsigned NumOps = MatcherTable[MatcherIndex++];
2428      SmallVector<SDValue, 8> Ops;
2429      for (unsigned i = 0; i != NumOps; ++i) {
2430        unsigned RecNo = MatcherTable[MatcherIndex++];
2431        if (RecNo & 128)
2432          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2433
2434        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2435        Ops.push_back(RecordedNodes[RecNo]);
2436      }
2437
2438      // If there are variadic operands to add, handle them now.
2439      if (EmitNodeInfo & OPFL_VariadicInfo) {
2440        // Determine the start index to copy from.
2441        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2442        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2443        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2444               "Invalid variadic node");
2445        // Copy all of the variadic operands, not including a potential flag
2446        // input.
2447        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2448             i != e; ++i) {
2449          SDValue V = NodeToMatch->getOperand(i);
2450          if (V.getValueType() == MVT::Flag) break;
2451          Ops.push_back(V);
2452        }
2453      }
2454
2455      // If this has chain/flag inputs, add them.
2456      if (EmitNodeInfo & OPFL_Chain)
2457        Ops.push_back(InputChain);
2458      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2459        Ops.push_back(InputFlag);
2460
2461      // Create the node.
2462      SDNode *Res = 0;
2463      if (Opcode != OPC_MorphNodeTo) {
2464        // If this is a normal EmitNode command, just create the new node and
2465        // add the results to the RecordedNodes list.
2466        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2467                                     VTList, Ops.data(), Ops.size());
2468
2469        // Add all the non-flag/non-chain results to the RecordedNodes list.
2470        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2471          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2472          RecordedNodes.push_back(SDValue(Res, i));
2473        }
2474
2475      } else {
2476        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2477                        EmitNodeInfo);
2478      }
2479
2480      // If the node had chain/flag results, update our notion of the current
2481      // chain and flag.
2482      if (EmitNodeInfo & OPFL_FlagOutput) {
2483        InputFlag = SDValue(Res, VTs.size()-1);
2484        if (EmitNodeInfo & OPFL_Chain)
2485          InputChain = SDValue(Res, VTs.size()-2);
2486      } else if (EmitNodeInfo & OPFL_Chain)
2487        InputChain = SDValue(Res, VTs.size()-1);
2488
2489      // If the OPFL_MemRefs flag is set on this node, slap all of the
2490      // accumulated memrefs onto it.
2491      //
2492      // FIXME: This is vastly incorrect for patterns with multiple outputs
2493      // instructions that access memory and for ComplexPatterns that match
2494      // loads.
2495      if (EmitNodeInfo & OPFL_MemRefs) {
2496        MachineSDNode::mmo_iterator MemRefs =
2497          MF->allocateMemRefsArray(MatchedMemRefs.size());
2498        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2499        cast<MachineSDNode>(Res)
2500          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2501      }
2502
2503      DEBUG(errs() << "  "
2504                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2505                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2506
2507      // If this was a MorphNodeTo then we're completely done!
2508      if (Opcode == OPC_MorphNodeTo) {
2509        // Update chain and flag uses.
2510        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2511                             InputFlag, FlagResultNodesMatched, true);
2512        return Res;
2513      }
2514
2515      continue;
2516    }
2517
2518    case OPC_MarkFlagResults: {
2519      unsigned NumNodes = MatcherTable[MatcherIndex++];
2520
2521      // Read and remember all the flag-result nodes.
2522      for (unsigned i = 0; i != NumNodes; ++i) {
2523        unsigned RecNo = MatcherTable[MatcherIndex++];
2524        if (RecNo & 128)
2525          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2526
2527        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2528        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2529      }
2530      continue;
2531    }
2532
2533    case OPC_CompleteMatch: {
2534      // The match has been completed, and any new nodes (if any) have been
2535      // created.  Patch up references to the matched dag to use the newly
2536      // created nodes.
2537      unsigned NumResults = MatcherTable[MatcherIndex++];
2538
2539      for (unsigned i = 0; i != NumResults; ++i) {
2540        unsigned ResSlot = MatcherTable[MatcherIndex++];
2541        if (ResSlot & 128)
2542          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2543
2544        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2545        SDValue Res = RecordedNodes[ResSlot];
2546
2547        assert(i < NodeToMatch->getNumValues() &&
2548               NodeToMatch->getValueType(i) != MVT::Other &&
2549               NodeToMatch->getValueType(i) != MVT::Flag &&
2550               "Invalid number of results to complete!");
2551        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2552                NodeToMatch->getValueType(i) == MVT::iPTR ||
2553                Res.getValueType() == MVT::iPTR ||
2554                NodeToMatch->getValueType(i).getSizeInBits() ==
2555                    Res.getValueType().getSizeInBits()) &&
2556               "invalid replacement");
2557        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2558      }
2559
2560      // If the root node defines a flag, add it to the flag nodes to update
2561      // list.
2562      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2563        FlagResultNodesMatched.push_back(NodeToMatch);
2564
2565      // Update chain and flag uses.
2566      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2567                           InputFlag, FlagResultNodesMatched, false);
2568
2569      assert(NodeToMatch->use_empty() &&
2570             "Didn't replace all uses of the node?");
2571
2572      // FIXME: We just return here, which interacts correctly with SelectRoot
2573      // above.  We should fix this to not return an SDNode* anymore.
2574      return 0;
2575    }
2576    }
2577
2578    // If the code reached this point, then the match failed.  See if there is
2579    // another child to try in the current 'Scope', otherwise pop it until we
2580    // find a case to check.
2581    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2582    ++NumDAGIselRetries;
2583    while (1) {
2584      if (MatchScopes.empty()) {
2585        CannotYetSelect(NodeToMatch);
2586        return 0;
2587      }
2588
2589      // Restore the interpreter state back to the point where the scope was
2590      // formed.
2591      MatchScope &LastScope = MatchScopes.back();
2592      RecordedNodes.resize(LastScope.NumRecordedNodes);
2593      NodeStack.clear();
2594      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2595      N = NodeStack.back();
2596
2597      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2598        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2599      MatcherIndex = LastScope.FailIndex;
2600
2601      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2602
2603      InputChain = LastScope.InputChain;
2604      InputFlag = LastScope.InputFlag;
2605      if (!LastScope.HasChainNodesMatched)
2606        ChainNodesMatched.clear();
2607      if (!LastScope.HasFlagResultNodesMatched)
2608        FlagResultNodesMatched.clear();
2609
2610      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2611      // we have reached the end of this scope, otherwise we have another child
2612      // in the current scope to try.
2613      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2614      if (NumToSkip & 128)
2615        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2616
2617      // If we have another child in this scope to match, update FailIndex and
2618      // try it.
2619      if (NumToSkip != 0) {
2620        LastScope.FailIndex = MatcherIndex+NumToSkip;
2621        break;
2622      }
2623
2624      // End of this scope, pop it and try the next child in the containing
2625      // scope.
2626      MatchScopes.pop_back();
2627    }
2628  }
2629}
2630
2631
2632
2633void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2634  std::string msg;
2635  raw_string_ostream Msg(msg);
2636  Msg << "Cannot yet select: ";
2637
2638  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2639      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2640      N->getOpcode() != ISD::INTRINSIC_VOID) {
2641    N->printrFull(Msg, CurDAG);
2642  } else {
2643    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2644    unsigned iid =
2645      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2646    if (iid < Intrinsic::num_intrinsics)
2647      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2648    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2649      Msg << "target intrinsic %" << TII->getName(iid);
2650    else
2651      Msg << "unknown intrinsic #" << iid;
2652  }
2653  report_fatal_error(Msg.str());
2654}
2655
2656char SelectionDAGISel::ID = 0;
2657