SelectionDAGISel.cpp revision b20d4f8d499c4c5315de69bd22c652665a7e3ab8
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/Compiler.h"
48#include <algorithm>
49using namespace llvm;
50
51#ifndef NDEBUG
52static cl::opt<bool>
53ViewISelDAGs("view-isel-dags", cl::Hidden,
54          cl::desc("Pop up a window to show isel dags as they are selected"));
55static cl::opt<bool>
56ViewSchedDAGs("view-sched-dags", cl::Hidden,
57          cl::desc("Pop up a window to show sched dags as they are processed"));
58static cl::opt<bool>
59ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
60      cl::desc("Pop up a window to show SUnit dags after they are processed"));
61#else
62static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
63#endif
64
65//===---------------------------------------------------------------------===//
66///
67/// RegisterScheduler class - Track the registration of instruction schedulers.
68///
69//===---------------------------------------------------------------------===//
70MachinePassRegistry RegisterScheduler::Registry;
71
72//===---------------------------------------------------------------------===//
73///
74/// ISHeuristic command line option for instruction schedulers.
75///
76//===---------------------------------------------------------------------===//
77namespace {
78  cl::opt<RegisterScheduler::FunctionPassCtor, false,
79          RegisterPassParser<RegisterScheduler> >
80  ISHeuristic("pre-RA-sched",
81              cl::init(&createDefaultScheduler),
82              cl::desc("Instruction schedulers available (before register"
83                       " allocation):"));
84
85  static RegisterScheduler
86  defaultListDAGScheduler("default", "  Best scheduler for the target",
87                          createDefaultScheduler);
88} // namespace
89
90namespace { struct SDISelAsmOperandInfo; }
91
92/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
93/// MVT::ValueTypes that represent all the individual underlying
94/// non-aggregate types that comprise it.
95static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
96                            SmallVectorImpl<MVT::ValueType> &ValueVTs) {
97  // Given a struct type, recursively traverse the elements.
98  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
99    for (StructType::element_iterator EI = STy->element_begin(),
100                                      EB = STy->element_end();
101        EI != EB; ++EI)
102      ComputeValueVTs(TLI, *EI, ValueVTs);
103    return;
104  }
105  // Given an array type, recursively traverse the elements.
106  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
107    const Type *EltTy = ATy->getElementType();
108    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
109      ComputeValueVTs(TLI, EltTy, ValueVTs);
110    return;
111  }
112  // Base case: we can get an MVT::ValueType for this LLVM IR type.
113  ValueVTs.push_back(TLI.getValueType(Ty));
114}
115
116namespace {
117  /// RegsForValue - This struct represents the physical registers that a
118  /// particular value is assigned and the type information about the value.
119  /// This is needed because values can be promoted into larger registers and
120  /// expanded into multiple smaller registers than the value.
121  struct VISIBILITY_HIDDEN RegsForValue {
122    /// TLI - The TargetLowering object.
123    const TargetLowering *TLI;
124
125    /// Regs - This list holds the register (for legal and promoted values)
126    /// or register set (for expanded values) that the value should be assigned
127    /// to.
128    SmallVector<unsigned, 4> Regs;
129
130    /// RegVTs - The value types of the registers. This is the same size
131    /// as ValueVTs; every register contributing to a given value must
132    /// have the same type. When Regs contains all virtual registers, the
133    /// contents of RegVTs is redundant with TLI's getRegisterType member
134    /// function, however when Regs contains physical registers, it is
135    /// necessary to have a separate record of the types.
136    ///
137    SmallVector<MVT::ValueType, 4> RegVTs;
138
139    /// ValueVTs - The value types of the values, which may be promoted
140    /// or synthesized from one or more registers.
141    SmallVector<MVT::ValueType, 4> ValueVTs;
142
143    RegsForValue() : TLI(0) {}
144
145    RegsForValue(const TargetLowering &tli,
146                 unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
147      : TLI(&tli), Regs(1, Reg), RegVTs(1, regvt), ValueVTs(1, valuevt) {}
148    RegsForValue(const TargetLowering &tli,
149                 const SmallVector<unsigned, 4> &regs,
150                 MVT::ValueType regvt, MVT::ValueType valuevt)
151      : TLI(&tli), Regs(regs), RegVTs(1, regvt), ValueVTs(1, valuevt) {}
152    RegsForValue(const TargetLowering &tli,
153                 const SmallVector<unsigned, 4> &regs,
154                 const SmallVector<MVT::ValueType, 4> &regvts,
155                 const SmallVector<MVT::ValueType, 4> &valuevts)
156      : TLI(&tli), Regs(regs), RegVTs(regvts), ValueVTs(valuevts) {}
157    RegsForValue(const TargetLowering &tli,
158                 unsigned Reg, const Type *Ty) : TLI(&tli) {
159      ComputeValueVTs(tli, Ty, ValueVTs);
160
161      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
162        MVT::ValueType ValueVT = ValueVTs[Value];
163        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
164        MVT::ValueType RegisterVT = TLI->getRegisterType(ValueVT);
165        for (unsigned i = 0; i != NumRegs; ++i)
166          Regs.push_back(Reg + i);
167        RegVTs.push_back(RegisterVT);
168        Reg += NumRegs;
169      }
170    }
171
172    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
173    /// this value and returns the result as a ValueVTs value.  This uses
174    /// Chain/Flag as the input and updates them for the output Chain/Flag.
175    /// If the Flag pointer is NULL, no flag is used.
176    SDOperand getCopyFromRegs(SelectionDAG &DAG,
177                              SDOperand &Chain, SDOperand *Flag) const;
178
179    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
180    /// specified value into the registers specified by this object.  This uses
181    /// Chain/Flag as the input and updates them for the output Chain/Flag.
182    /// If the Flag pointer is NULL, no flag is used.
183    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
184                       SDOperand &Chain, SDOperand *Flag) const;
185
186    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
187    /// operand list.  This adds the code marker and includes the number of
188    /// values added into it.
189    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
190                              std::vector<SDOperand> &Ops) const;
191  };
192}
193
194namespace llvm {
195  //===--------------------------------------------------------------------===//
196  /// createDefaultScheduler - This creates an instruction scheduler appropriate
197  /// for the target.
198  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
199                                      SelectionDAG *DAG,
200                                      MachineBasicBlock *BB) {
201    TargetLowering &TLI = IS->getTargetLowering();
202
203    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
204      return createTDListDAGScheduler(IS, DAG, BB);
205    } else {
206      assert(TLI.getSchedulingPreference() ==
207           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
208      return createBURRListDAGScheduler(IS, DAG, BB);
209    }
210  }
211
212
213  //===--------------------------------------------------------------------===//
214  /// FunctionLoweringInfo - This contains information that is global to a
215  /// function that is used when lowering a region of the function.
216  class FunctionLoweringInfo {
217  public:
218    TargetLowering &TLI;
219    Function &Fn;
220    MachineFunction &MF;
221    MachineRegisterInfo &RegInfo;
222
223    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
224
225    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
226    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
227
228    /// ValueMap - Since we emit code for the function a basic block at a time,
229    /// we must remember which virtual registers hold the values for
230    /// cross-basic-block values.
231    DenseMap<const Value*, unsigned> ValueMap;
232
233    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
234    /// the entry block.  This allows the allocas to be efficiently referenced
235    /// anywhere in the function.
236    std::map<const AllocaInst*, int> StaticAllocaMap;
237
238#ifndef NDEBUG
239    SmallSet<Instruction*, 8> CatchInfoLost;
240    SmallSet<Instruction*, 8> CatchInfoFound;
241#endif
242
243    unsigned MakeReg(MVT::ValueType VT) {
244      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
245    }
246
247    /// isExportedInst - Return true if the specified value is an instruction
248    /// exported from its block.
249    bool isExportedInst(const Value *V) {
250      return ValueMap.count(V);
251    }
252
253    unsigned CreateRegForValue(const Value *V);
254
255    unsigned InitializeRegForValue(const Value *V) {
256      unsigned &R = ValueMap[V];
257      assert(R == 0 && "Already initialized this value register!");
258      return R = CreateRegForValue(V);
259    }
260  };
261}
262
263/// isSelector - Return true if this instruction is a call to the
264/// eh.selector intrinsic.
265static bool isSelector(Instruction *I) {
266  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
267    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
268            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
269  return false;
270}
271
272/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
273/// PHI nodes or outside of the basic block that defines it, or used by a
274/// switch or atomic instruction, which may expand to multiple basic blocks.
275static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
276  if (isa<PHINode>(I)) return true;
277  BasicBlock *BB = I->getParent();
278  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
279    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
280        // FIXME: Remove switchinst special case.
281        isa<SwitchInst>(*UI))
282      return true;
283  return false;
284}
285
286/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
287/// entry block, return true.  This includes arguments used by switches, since
288/// the switch may expand into multiple basic blocks.
289static bool isOnlyUsedInEntryBlock(Argument *A) {
290  BasicBlock *Entry = A->getParent()->begin();
291  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
292    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
293      return false;  // Use not in entry block.
294  return true;
295}
296
297FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
298                                           Function &fn, MachineFunction &mf)
299    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
300
301  // Create a vreg for each argument register that is not dead and is used
302  // outside of the entry block for the function.
303  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
304       AI != E; ++AI)
305    if (!isOnlyUsedInEntryBlock(AI))
306      InitializeRegForValue(AI);
307
308  // Initialize the mapping of values to registers.  This is only set up for
309  // instruction values that are used outside of the block that defines
310  // them.
311  Function::iterator BB = Fn.begin(), EB = Fn.end();
312  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
313    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
314      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
315        const Type *Ty = AI->getAllocatedType();
316        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
317        unsigned Align =
318          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
319                   AI->getAlignment());
320
321        TySize *= CUI->getZExtValue();   // Get total allocated size.
322        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
323        StaticAllocaMap[AI] =
324          MF.getFrameInfo()->CreateStackObject(TySize, Align);
325      }
326
327  for (; BB != EB; ++BB)
328    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
329      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
330        if (!isa<AllocaInst>(I) ||
331            !StaticAllocaMap.count(cast<AllocaInst>(I)))
332          InitializeRegForValue(I);
333
334  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
335  // also creates the initial PHI MachineInstrs, though none of the input
336  // operands are populated.
337  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
338    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
339    MBBMap[BB] = MBB;
340    MF.getBasicBlockList().push_back(MBB);
341
342    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
343    // appropriate.
344    PHINode *PN;
345    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
346      if (PN->use_empty()) continue;
347
348      MVT::ValueType VT = TLI.getValueType(PN->getType());
349      unsigned NumRegisters = TLI.getNumRegisters(VT);
350      unsigned PHIReg = ValueMap[PN];
351      assert(PHIReg && "PHI node does not have an assigned virtual register!");
352      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
353      for (unsigned i = 0; i != NumRegisters; ++i)
354        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
355    }
356  }
357}
358
359/// CreateRegForValue - Allocate the appropriate number of virtual registers of
360/// the correctly promoted or expanded types.  Assign these registers
361/// consecutive vreg numbers and return the first assigned number.
362unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
363  SmallVector<MVT::ValueType, 4> ValueVTs;
364  ComputeValueVTs(TLI, V->getType(), ValueVTs);
365
366  unsigned FirstReg = 0;
367  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
368    MVT::ValueType ValueVT = ValueVTs[Value];
369    MVT::ValueType RegisterVT = TLI.getRegisterType(ValueVT);
370
371    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
372    for (unsigned i = 0; i != NumRegs; ++i) {
373      unsigned R = MakeReg(RegisterVT);
374      if (!FirstReg) FirstReg = R;
375    }
376  }
377  return FirstReg;
378}
379
380//===----------------------------------------------------------------------===//
381/// SelectionDAGLowering - This is the common target-independent lowering
382/// implementation that is parameterized by a TargetLowering object.
383/// Also, targets can overload any lowering method.
384///
385namespace llvm {
386class SelectionDAGLowering {
387  MachineBasicBlock *CurMBB;
388
389  DenseMap<const Value*, SDOperand> NodeMap;
390
391  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
392  /// them up and then emit token factor nodes when possible.  This allows us to
393  /// get simple disambiguation between loads without worrying about alias
394  /// analysis.
395  std::vector<SDOperand> PendingLoads;
396
397  /// PendingExports - CopyToReg nodes that copy values to virtual registers
398  /// for export to other blocks need to be emitted before any terminator
399  /// instruction, but they have no other ordering requirements. We bunch them
400  /// up and the emit a single tokenfactor for them just before terminator
401  /// instructions.
402  std::vector<SDOperand> PendingExports;
403
404  /// Case - A struct to record the Value for a switch case, and the
405  /// case's target basic block.
406  struct Case {
407    Constant* Low;
408    Constant* High;
409    MachineBasicBlock* BB;
410
411    Case() : Low(0), High(0), BB(0) { }
412    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
413      Low(low), High(high), BB(bb) { }
414    uint64_t size() const {
415      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
416      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
417      return (rHigh - rLow + 1ULL);
418    }
419  };
420
421  struct CaseBits {
422    uint64_t Mask;
423    MachineBasicBlock* BB;
424    unsigned Bits;
425
426    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
427      Mask(mask), BB(bb), Bits(bits) { }
428  };
429
430  typedef std::vector<Case>           CaseVector;
431  typedef std::vector<CaseBits>       CaseBitsVector;
432  typedef CaseVector::iterator        CaseItr;
433  typedef std::pair<CaseItr, CaseItr> CaseRange;
434
435  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
436  /// of conditional branches.
437  struct CaseRec {
438    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
439    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
440
441    /// CaseBB - The MBB in which to emit the compare and branch
442    MachineBasicBlock *CaseBB;
443    /// LT, GE - If nonzero, we know the current case value must be less-than or
444    /// greater-than-or-equal-to these Constants.
445    Constant *LT;
446    Constant *GE;
447    /// Range - A pair of iterators representing the range of case values to be
448    /// processed at this point in the binary search tree.
449    CaseRange Range;
450  };
451
452  typedef std::vector<CaseRec> CaseRecVector;
453
454  /// The comparison function for sorting the switch case values in the vector.
455  /// WARNING: Case ranges should be disjoint!
456  struct CaseCmp {
457    bool operator () (const Case& C1, const Case& C2) {
458      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
459      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
460      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
461      return CI1->getValue().slt(CI2->getValue());
462    }
463  };
464
465  struct CaseBitsCmp {
466    bool operator () (const CaseBits& C1, const CaseBits& C2) {
467      return C1.Bits > C2.Bits;
468    }
469  };
470
471  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
472
473public:
474  // TLI - This is information that describes the available target features we
475  // need for lowering.  This indicates when operations are unavailable,
476  // implemented with a libcall, etc.
477  TargetLowering &TLI;
478  SelectionDAG &DAG;
479  const TargetData *TD;
480  AliasAnalysis &AA;
481
482  /// SwitchCases - Vector of CaseBlock structures used to communicate
483  /// SwitchInst code generation information.
484  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
485  /// JTCases - Vector of JumpTable structures used to communicate
486  /// SwitchInst code generation information.
487  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
488  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
489
490  /// FuncInfo - Information about the function as a whole.
491  ///
492  FunctionLoweringInfo &FuncInfo;
493
494  /// GCI - Garbage collection metadata for the function.
495  CollectorMetadata *GCI;
496
497  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
498                       AliasAnalysis &aa,
499                       FunctionLoweringInfo &funcinfo,
500                       CollectorMetadata *gci)
501    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
502      FuncInfo(funcinfo), GCI(gci) {
503  }
504
505  /// getRoot - Return the current virtual root of the Selection DAG,
506  /// flushing any PendingLoad items. This must be done before emitting
507  /// a store or any other node that may need to be ordered after any
508  /// prior load instructions.
509  ///
510  SDOperand getRoot() {
511    if (PendingLoads.empty())
512      return DAG.getRoot();
513
514    if (PendingLoads.size() == 1) {
515      SDOperand Root = PendingLoads[0];
516      DAG.setRoot(Root);
517      PendingLoads.clear();
518      return Root;
519    }
520
521    // Otherwise, we have to make a token factor node.
522    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
523                                 &PendingLoads[0], PendingLoads.size());
524    PendingLoads.clear();
525    DAG.setRoot(Root);
526    return Root;
527  }
528
529  /// getControlRoot - Similar to getRoot, but instead of flushing all the
530  /// PendingLoad items, flush all the PendingExports items. It is necessary
531  /// to do this before emitting a terminator instruction.
532  ///
533  SDOperand getControlRoot() {
534    SDOperand Root = DAG.getRoot();
535
536    if (PendingExports.empty())
537      return Root;
538
539    // Turn all of the CopyToReg chains into one factored node.
540    if (Root.getOpcode() != ISD::EntryToken) {
541      unsigned i = 0, e = PendingExports.size();
542      for (; i != e; ++i) {
543        assert(PendingExports[i].Val->getNumOperands() > 1);
544        if (PendingExports[i].Val->getOperand(0) == Root)
545          break;  // Don't add the root if we already indirectly depend on it.
546      }
547
548      if (i == e)
549        PendingExports.push_back(Root);
550    }
551
552    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
553                       &PendingExports[0],
554                       PendingExports.size());
555    PendingExports.clear();
556    DAG.setRoot(Root);
557    return Root;
558  }
559
560  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
561
562  void visit(Instruction &I) { visit(I.getOpcode(), I); }
563
564  void visit(unsigned Opcode, User &I) {
565    // Note: this doesn't use InstVisitor, because it has to work with
566    // ConstantExpr's in addition to instructions.
567    switch (Opcode) {
568    default: assert(0 && "Unknown instruction type encountered!");
569             abort();
570      // Build the switch statement using the Instruction.def file.
571#define HANDLE_INST(NUM, OPCODE, CLASS) \
572    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
573#include "llvm/Instruction.def"
574    }
575  }
576
577  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
578
579  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
580                        const Value *SV, SDOperand Root,
581                        bool isVolatile, unsigned Alignment);
582
583  SDOperand getValue(const Value *V);
584
585  void setValue(const Value *V, SDOperand NewN) {
586    SDOperand &N = NodeMap[V];
587    assert(N.Val == 0 && "Already set a value for this node!");
588    N = NewN;
589  }
590
591  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
592                            std::set<unsigned> &OutputRegs,
593                            std::set<unsigned> &InputRegs);
594
595  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
596                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
597                            unsigned Opc);
598  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
599  void ExportFromCurrentBlock(Value *V);
600  void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
601                   MachineBasicBlock *LandingPad = NULL);
602
603  // Terminator instructions.
604  void visitRet(ReturnInst &I);
605  void visitBr(BranchInst &I);
606  void visitSwitch(SwitchInst &I);
607  void visitUnreachable(UnreachableInst &I) { /* noop */ }
608
609  // Helpers for visitSwitch
610  bool handleSmallSwitchRange(CaseRec& CR,
611                              CaseRecVector& WorkList,
612                              Value* SV,
613                              MachineBasicBlock* Default);
614  bool handleJTSwitchCase(CaseRec& CR,
615                          CaseRecVector& WorkList,
616                          Value* SV,
617                          MachineBasicBlock* Default);
618  bool handleBTSplitSwitchCase(CaseRec& CR,
619                               CaseRecVector& WorkList,
620                               Value* SV,
621                               MachineBasicBlock* Default);
622  bool handleBitTestsSwitchCase(CaseRec& CR,
623                                CaseRecVector& WorkList,
624                                Value* SV,
625                                MachineBasicBlock* Default);
626  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
627  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
628  void visitBitTestCase(MachineBasicBlock* NextMBB,
629                        unsigned Reg,
630                        SelectionDAGISel::BitTestCase &B);
631  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
632  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
633                            SelectionDAGISel::JumpTableHeader &JTH);
634
635  // These all get lowered before this pass.
636  void visitInvoke(InvokeInst &I);
637  void visitUnwind(UnwindInst &I);
638
639  void visitBinary(User &I, unsigned OpCode);
640  void visitShift(User &I, unsigned Opcode);
641  void visitAdd(User &I) {
642    if (I.getType()->isFPOrFPVector())
643      visitBinary(I, ISD::FADD);
644    else
645      visitBinary(I, ISD::ADD);
646  }
647  void visitSub(User &I);
648  void visitMul(User &I) {
649    if (I.getType()->isFPOrFPVector())
650      visitBinary(I, ISD::FMUL);
651    else
652      visitBinary(I, ISD::MUL);
653  }
654  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
655  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
656  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
657  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
658  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
659  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
660  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
661  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
662  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
663  void visitShl (User &I) { visitShift(I, ISD::SHL); }
664  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
665  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
666  void visitICmp(User &I);
667  void visitFCmp(User &I);
668  // Visit the conversion instructions
669  void visitTrunc(User &I);
670  void visitZExt(User &I);
671  void visitSExt(User &I);
672  void visitFPTrunc(User &I);
673  void visitFPExt(User &I);
674  void visitFPToUI(User &I);
675  void visitFPToSI(User &I);
676  void visitUIToFP(User &I);
677  void visitSIToFP(User &I);
678  void visitPtrToInt(User &I);
679  void visitIntToPtr(User &I);
680  void visitBitCast(User &I);
681
682  void visitExtractElement(User &I);
683  void visitInsertElement(User &I);
684  void visitShuffleVector(User &I);
685
686  void visitGetElementPtr(User &I);
687  void visitSelect(User &I);
688
689  void visitMalloc(MallocInst &I);
690  void visitFree(FreeInst &I);
691  void visitAlloca(AllocaInst &I);
692  void visitLoad(LoadInst &I);
693  void visitStore(StoreInst &I);
694  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
695  void visitCall(CallInst &I);
696  void visitInlineAsm(CallSite CS);
697  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
698  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
699
700  void visitVAStart(CallInst &I);
701  void visitVAArg(VAArgInst &I);
702  void visitVAEnd(CallInst &I);
703  void visitVACopy(CallInst &I);
704
705  void visitGetResult(GetResultInst &I);
706
707  void visitUserOp1(Instruction &I) {
708    assert(0 && "UserOp1 should not exist at instruction selection time!");
709    abort();
710  }
711  void visitUserOp2(Instruction &I) {
712    assert(0 && "UserOp2 should not exist at instruction selection time!");
713    abort();
714  }
715};
716} // end namespace llvm
717
718
719/// getCopyFromParts - Create a value that contains the specified legal parts
720/// combined into the value they represent.  If the parts combine to a type
721/// larger then ValueVT then AssertOp can be used to specify whether the extra
722/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
723/// (ISD::AssertSext).
724static SDOperand getCopyFromParts(SelectionDAG &DAG,
725                                  const SDOperand *Parts,
726                                  unsigned NumParts,
727                                  MVT::ValueType PartVT,
728                                  MVT::ValueType ValueVT,
729                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
730  assert(NumParts > 0 && "No parts to assemble!");
731  TargetLowering &TLI = DAG.getTargetLoweringInfo();
732  SDOperand Val = Parts[0];
733
734  if (NumParts > 1) {
735    // Assemble the value from multiple parts.
736    if (!MVT::isVector(ValueVT)) {
737      unsigned PartBits = MVT::getSizeInBits(PartVT);
738      unsigned ValueBits = MVT::getSizeInBits(ValueVT);
739
740      // Assemble the power of 2 part.
741      unsigned RoundParts = NumParts & (NumParts - 1) ?
742        1 << Log2_32(NumParts) : NumParts;
743      unsigned RoundBits = PartBits * RoundParts;
744      MVT::ValueType RoundVT = RoundBits == ValueBits ?
745        ValueVT : MVT::getIntegerType(RoundBits);
746      SDOperand Lo, Hi;
747
748      if (RoundParts > 2) {
749        MVT::ValueType HalfVT = MVT::getIntegerType(RoundBits/2);
750        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
751        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
752                              PartVT, HalfVT);
753      } else {
754        Lo = Parts[0];
755        Hi = Parts[1];
756      }
757      if (TLI.isBigEndian())
758        std::swap(Lo, Hi);
759      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
760
761      if (RoundParts < NumParts) {
762        // Assemble the trailing non-power-of-2 part.
763        unsigned OddParts = NumParts - RoundParts;
764        MVT::ValueType OddVT = MVT::getIntegerType(OddParts * PartBits);
765        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
766
767        // Combine the round and odd parts.
768        Lo = Val;
769        if (TLI.isBigEndian())
770          std::swap(Lo, Hi);
771        MVT::ValueType TotalVT = MVT::getIntegerType(NumParts * PartBits);
772        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
773        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
774                         DAG.getConstant(MVT::getSizeInBits(Lo.getValueType()),
775                                         TLI.getShiftAmountTy()));
776        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
777        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
778      }
779    } else {
780      // Handle a multi-element vector.
781      MVT::ValueType IntermediateVT, RegisterVT;
782      unsigned NumIntermediates;
783      unsigned NumRegs =
784        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
785                                   RegisterVT);
786
787      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
788      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
789      assert(RegisterVT == Parts[0].getValueType() &&
790             "Part type doesn't match part!");
791
792      // Assemble the parts into intermediate operands.
793      SmallVector<SDOperand, 8> Ops(NumIntermediates);
794      if (NumIntermediates == NumParts) {
795        // If the register was not expanded, truncate or copy the value,
796        // as appropriate.
797        for (unsigned i = 0; i != NumParts; ++i)
798          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
799                                    PartVT, IntermediateVT);
800      } else if (NumParts > 0) {
801        // If the intermediate type was expanded, build the intermediate operands
802        // from the parts.
803        assert(NumParts % NumIntermediates == 0 &&
804               "Must expand into a divisible number of parts!");
805        unsigned Factor = NumParts / NumIntermediates;
806        for (unsigned i = 0; i != NumIntermediates; ++i)
807          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
808                                    PartVT, IntermediateVT);
809      }
810
811      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
812      // operands.
813      Val = DAG.getNode(MVT::isVector(IntermediateVT) ?
814                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
815                        ValueVT, &Ops[0], NumIntermediates);
816    }
817  }
818
819  // There is now one part, held in Val.  Correct it to match ValueVT.
820  PartVT = Val.getValueType();
821
822  if (PartVT == ValueVT)
823    return Val;
824
825  if (MVT::isVector(PartVT)) {
826    assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
827    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
828  }
829
830  if (MVT::isVector(ValueVT)) {
831    assert(MVT::getVectorElementType(ValueVT) == PartVT &&
832           MVT::getVectorNumElements(ValueVT) == 1 &&
833           "Only trivial scalar-to-vector conversions should get here!");
834    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
835  }
836
837  if (MVT::isInteger(PartVT) &&
838      MVT::isInteger(ValueVT)) {
839    if (MVT::getSizeInBits(ValueVT) < MVT::getSizeInBits(PartVT)) {
840      // For a truncate, see if we have any information to
841      // indicate whether the truncated bits will always be
842      // zero or sign-extension.
843      if (AssertOp != ISD::DELETED_NODE)
844        Val = DAG.getNode(AssertOp, PartVT, Val,
845                          DAG.getValueType(ValueVT));
846      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
847    } else {
848      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
849    }
850  }
851
852  if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT)) {
853    if (ValueVT < Val.getValueType())
854      // FP_ROUND's are always exact here.
855      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
856                         DAG.getIntPtrConstant(1));
857    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
858  }
859
860  if (MVT::getSizeInBits(PartVT) == MVT::getSizeInBits(ValueVT))
861    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
862
863  assert(0 && "Unknown mismatch!");
864  return SDOperand();
865}
866
867/// getCopyToParts - Create a series of nodes that contain the specified value
868/// split into legal parts.  If the parts contain more bits than Val, then, for
869/// integers, ExtendKind can be used to specify how to generate the extra bits.
870static void getCopyToParts(SelectionDAG &DAG,
871                           SDOperand Val,
872                           SDOperand *Parts,
873                           unsigned NumParts,
874                           MVT::ValueType PartVT,
875                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
876  TargetLowering &TLI = DAG.getTargetLoweringInfo();
877  MVT::ValueType PtrVT = TLI.getPointerTy();
878  MVT::ValueType ValueVT = Val.getValueType();
879  unsigned PartBits = MVT::getSizeInBits(PartVT);
880  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
881
882  if (!NumParts)
883    return;
884
885  if (!MVT::isVector(ValueVT)) {
886    if (PartVT == ValueVT) {
887      assert(NumParts == 1 && "No-op copy with multiple parts!");
888      Parts[0] = Val;
889      return;
890    }
891
892    if (NumParts * PartBits > MVT::getSizeInBits(ValueVT)) {
893      // If the parts cover more bits than the value has, promote the value.
894      if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT)) {
895        assert(NumParts == 1 && "Do not know what to promote to!");
896        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
897      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
898        ValueVT = MVT::getIntegerType(NumParts * PartBits);
899        Val = DAG.getNode(ExtendKind, ValueVT, Val);
900      } else {
901        assert(0 && "Unknown mismatch!");
902      }
903    } else if (PartBits == MVT::getSizeInBits(ValueVT)) {
904      // Different types of the same size.
905      assert(NumParts == 1 && PartVT != ValueVT);
906      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
907    } else if (NumParts * PartBits < MVT::getSizeInBits(ValueVT)) {
908      // If the parts cover less bits than value has, truncate the value.
909      if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
910        ValueVT = MVT::getIntegerType(NumParts * PartBits);
911        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
912      } else {
913        assert(0 && "Unknown mismatch!");
914      }
915    }
916
917    // The value may have changed - recompute ValueVT.
918    ValueVT = Val.getValueType();
919    assert(NumParts * PartBits == MVT::getSizeInBits(ValueVT) &&
920           "Failed to tile the value with PartVT!");
921
922    if (NumParts == 1) {
923      assert(PartVT == ValueVT && "Type conversion failed!");
924      Parts[0] = Val;
925      return;
926    }
927
928    // Expand the value into multiple parts.
929    if (NumParts & (NumParts - 1)) {
930      // The number of parts is not a power of 2.  Split off and copy the tail.
931      assert(MVT::isInteger(PartVT) && MVT::isInteger(ValueVT) &&
932             "Do not know what to expand to!");
933      unsigned RoundParts = 1 << Log2_32(NumParts);
934      unsigned RoundBits = RoundParts * PartBits;
935      unsigned OddParts = NumParts - RoundParts;
936      SDOperand OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
937                                     DAG.getConstant(RoundBits,
938                                                     TLI.getShiftAmountTy()));
939      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
940      if (TLI.isBigEndian())
941        // The odd parts were reversed by getCopyToParts - unreverse them.
942        std::reverse(Parts + RoundParts, Parts + NumParts);
943      NumParts = RoundParts;
944      ValueVT = MVT::getIntegerType(NumParts * PartBits);
945      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
946    }
947
948    // The number of parts is a power of 2.  Repeatedly bisect the value using
949    // EXTRACT_ELEMENT.
950    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
951                           MVT::getIntegerType(MVT::getSizeInBits(ValueVT)),
952                           Val);
953    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
954      for (unsigned i = 0; i < NumParts; i += StepSize) {
955        unsigned ThisBits = StepSize * PartBits / 2;
956        MVT::ValueType ThisVT = MVT::getIntegerType (ThisBits);
957        SDOperand &Part0 = Parts[i];
958        SDOperand &Part1 = Parts[i+StepSize/2];
959
960        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
961                            DAG.getConstant(1, PtrVT));
962        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
963                            DAG.getConstant(0, PtrVT));
964
965        if (ThisBits == PartBits && ThisVT != PartVT) {
966          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
967          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
968        }
969      }
970    }
971
972    if (TLI.isBigEndian())
973      std::reverse(Parts, Parts + NumParts);
974
975    return;
976  }
977
978  // Vector ValueVT.
979  if (NumParts == 1) {
980    if (PartVT != ValueVT) {
981      if (MVT::isVector(PartVT)) {
982        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
983      } else {
984        assert(MVT::getVectorElementType(ValueVT) == PartVT &&
985               MVT::getVectorNumElements(ValueVT) == 1 &&
986               "Only trivial vector-to-scalar conversions should get here!");
987        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
988                          DAG.getConstant(0, PtrVT));
989      }
990    }
991
992    Parts[0] = Val;
993    return;
994  }
995
996  // Handle a multi-element vector.
997  MVT::ValueType IntermediateVT, RegisterVT;
998  unsigned NumIntermediates;
999  unsigned NumRegs =
1000    DAG.getTargetLoweringInfo()
1001      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1002                              RegisterVT);
1003  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
1004
1005  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1006  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1007
1008  // Split the vector into intermediate operands.
1009  SmallVector<SDOperand, 8> Ops(NumIntermediates);
1010  for (unsigned i = 0; i != NumIntermediates; ++i)
1011    if (MVT::isVector(IntermediateVT))
1012      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
1013                           IntermediateVT, Val,
1014                           DAG.getConstant(i * (NumElements / NumIntermediates),
1015                                           PtrVT));
1016    else
1017      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
1018                           IntermediateVT, Val,
1019                           DAG.getConstant(i, PtrVT));
1020
1021  // Split the intermediate operands into legal parts.
1022  if (NumParts == NumIntermediates) {
1023    // If the register was not expanded, promote or copy the value,
1024    // as appropriate.
1025    for (unsigned i = 0; i != NumParts; ++i)
1026      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
1027  } else if (NumParts > 0) {
1028    // If the intermediate type was expanded, split each the value into
1029    // legal parts.
1030    assert(NumParts % NumIntermediates == 0 &&
1031           "Must expand into a divisible number of parts!");
1032    unsigned Factor = NumParts / NumIntermediates;
1033    for (unsigned i = 0; i != NumIntermediates; ++i)
1034      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
1035  }
1036}
1037
1038
1039SDOperand SelectionDAGLowering::getValue(const Value *V) {
1040  SDOperand &N = NodeMap[V];
1041  if (N.Val) return N;
1042
1043  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
1044    MVT::ValueType VT = TLI.getValueType(V->getType(), true);
1045
1046    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1047      return N = DAG.getConstant(CI->getValue(), VT);
1048
1049    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
1050      return N = DAG.getGlobalAddress(GV, VT);
1051
1052    if (isa<ConstantPointerNull>(C))
1053      return N = DAG.getConstant(0, TLI.getPointerTy());
1054
1055    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1056      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
1057
1058    if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()))
1059      return N = DAG.getNode(ISD::UNDEF, VT);
1060
1061    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1062      visit(CE->getOpcode(), *CE);
1063      SDOperand N1 = NodeMap[V];
1064      assert(N1.Val && "visit didn't populate the ValueMap!");
1065      return N1;
1066    }
1067
1068    const VectorType *VecTy = cast<VectorType>(V->getType());
1069    unsigned NumElements = VecTy->getNumElements();
1070
1071    // Now that we know the number and type of the elements, get that number of
1072    // elements into the Ops array based on what kind of constant it is.
1073    SmallVector<SDOperand, 16> Ops;
1074    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1075      for (unsigned i = 0; i != NumElements; ++i)
1076        Ops.push_back(getValue(CP->getOperand(i)));
1077    } else {
1078      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1079             "Unknown vector constant!");
1080      MVT::ValueType EltVT = TLI.getValueType(VecTy->getElementType());
1081
1082      SDOperand Op;
1083      if (isa<UndefValue>(C))
1084        Op = DAG.getNode(ISD::UNDEF, EltVT);
1085      else if (MVT::isFloatingPoint(EltVT))
1086        Op = DAG.getConstantFP(0, EltVT);
1087      else
1088        Op = DAG.getConstant(0, EltVT);
1089      Ops.assign(NumElements, Op);
1090    }
1091
1092    // Create a BUILD_VECTOR node.
1093    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1094  }
1095
1096  // If this is a static alloca, generate it as the frameindex instead of
1097  // computation.
1098  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1099    std::map<const AllocaInst*, int>::iterator SI =
1100      FuncInfo.StaticAllocaMap.find(AI);
1101    if (SI != FuncInfo.StaticAllocaMap.end())
1102      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1103  }
1104
1105  unsigned InReg = FuncInfo.ValueMap[V];
1106  assert(InReg && "Value not in map!");
1107
1108  RegsForValue RFV(TLI, InReg, V->getType());
1109  SDOperand Chain = DAG.getEntryNode();
1110  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1111}
1112
1113
1114void SelectionDAGLowering::visitRet(ReturnInst &I) {
1115  if (I.getNumOperands() == 0) {
1116    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
1117    return;
1118  }
1119
1120  SmallVector<SDOperand, 8> NewValues;
1121  NewValues.push_back(getControlRoot());
1122  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1123    SDOperand RetOp = getValue(I.getOperand(i));
1124    MVT::ValueType VT = RetOp.getValueType();
1125
1126    // FIXME: C calling convention requires the return type to be promoted to
1127    // at least 32-bit. But this is not necessary for non-C calling conventions.
1128    if (MVT::isInteger(VT)) {
1129      MVT::ValueType MinVT = TLI.getRegisterType(MVT::i32);
1130      if (MVT::getSizeInBits(VT) < MVT::getSizeInBits(MinVT))
1131        VT = MinVT;
1132    }
1133
1134    unsigned NumParts = TLI.getNumRegisters(VT);
1135    MVT::ValueType PartVT = TLI.getRegisterType(VT);
1136    SmallVector<SDOperand, 4> Parts(NumParts);
1137    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1138
1139    const Function *F = I.getParent()->getParent();
1140    if (F->paramHasAttr(0, ParamAttr::SExt))
1141      ExtendKind = ISD::SIGN_EXTEND;
1142    else if (F->paramHasAttr(0, ParamAttr::ZExt))
1143      ExtendKind = ISD::ZERO_EXTEND;
1144
1145    getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT, ExtendKind);
1146
1147    for (unsigned i = 0; i < NumParts; ++i) {
1148      NewValues.push_back(Parts[i]);
1149      NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
1150    }
1151  }
1152  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1153                          &NewValues[0], NewValues.size()));
1154}
1155
1156/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1157/// the current basic block, add it to ValueMap now so that we'll get a
1158/// CopyTo/FromReg.
1159void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1160  // No need to export constants.
1161  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1162
1163  // Already exported?
1164  if (FuncInfo.isExportedInst(V)) return;
1165
1166  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1167  CopyValueToVirtualRegister(V, Reg);
1168}
1169
1170bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1171                                                    const BasicBlock *FromBB) {
1172  // The operands of the setcc have to be in this block.  We don't know
1173  // how to export them from some other block.
1174  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1175    // Can export from current BB.
1176    if (VI->getParent() == FromBB)
1177      return true;
1178
1179    // Is already exported, noop.
1180    return FuncInfo.isExportedInst(V);
1181  }
1182
1183  // If this is an argument, we can export it if the BB is the entry block or
1184  // if it is already exported.
1185  if (isa<Argument>(V)) {
1186    if (FromBB == &FromBB->getParent()->getEntryBlock())
1187      return true;
1188
1189    // Otherwise, can only export this if it is already exported.
1190    return FuncInfo.isExportedInst(V);
1191  }
1192
1193  // Otherwise, constants can always be exported.
1194  return true;
1195}
1196
1197static bool InBlock(const Value *V, const BasicBlock *BB) {
1198  if (const Instruction *I = dyn_cast<Instruction>(V))
1199    return I->getParent() == BB;
1200  return true;
1201}
1202
1203/// FindMergedConditions - If Cond is an expression like
1204void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1205                                                MachineBasicBlock *TBB,
1206                                                MachineBasicBlock *FBB,
1207                                                MachineBasicBlock *CurBB,
1208                                                unsigned Opc) {
1209  // If this node is not part of the or/and tree, emit it as a branch.
1210  Instruction *BOp = dyn_cast<Instruction>(Cond);
1211
1212  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1213      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1214      BOp->getParent() != CurBB->getBasicBlock() ||
1215      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1216      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1217    const BasicBlock *BB = CurBB->getBasicBlock();
1218
1219    // If the leaf of the tree is a comparison, merge the condition into
1220    // the caseblock.
1221    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1222        // The operands of the cmp have to be in this block.  We don't know
1223        // how to export them from some other block.  If this is the first block
1224        // of the sequence, no exporting is needed.
1225        (CurBB == CurMBB ||
1226         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1227          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1228      BOp = cast<Instruction>(Cond);
1229      ISD::CondCode Condition;
1230      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1231        switch (IC->getPredicate()) {
1232        default: assert(0 && "Unknown icmp predicate opcode!");
1233        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1234        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1235        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1236        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1237        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1238        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1239        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1240        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1241        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1242        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1243        }
1244      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1245        ISD::CondCode FPC, FOC;
1246        switch (FC->getPredicate()) {
1247        default: assert(0 && "Unknown fcmp predicate opcode!");
1248        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1249        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1250        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1251        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1252        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1253        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1254        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1255        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1256        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1257        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1258        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1259        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1260        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1261        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1262        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1263        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1264        }
1265        if (FiniteOnlyFPMath())
1266          Condition = FOC;
1267        else
1268          Condition = FPC;
1269      } else {
1270        Condition = ISD::SETEQ; // silence warning.
1271        assert(0 && "Unknown compare instruction");
1272      }
1273
1274      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1275                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1276      SwitchCases.push_back(CB);
1277      return;
1278    }
1279
1280    // Create a CaseBlock record representing this branch.
1281    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1282                                   NULL, TBB, FBB, CurBB);
1283    SwitchCases.push_back(CB);
1284    return;
1285  }
1286
1287
1288  //  Create TmpBB after CurBB.
1289  MachineFunction::iterator BBI = CurBB;
1290  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1291  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1292
1293  if (Opc == Instruction::Or) {
1294    // Codegen X | Y as:
1295    //   jmp_if_X TBB
1296    //   jmp TmpBB
1297    // TmpBB:
1298    //   jmp_if_Y TBB
1299    //   jmp FBB
1300    //
1301
1302    // Emit the LHS condition.
1303    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1304
1305    // Emit the RHS condition into TmpBB.
1306    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1307  } else {
1308    assert(Opc == Instruction::And && "Unknown merge op!");
1309    // Codegen X & Y as:
1310    //   jmp_if_X TmpBB
1311    //   jmp FBB
1312    // TmpBB:
1313    //   jmp_if_Y TBB
1314    //   jmp FBB
1315    //
1316    //  This requires creation of TmpBB after CurBB.
1317
1318    // Emit the LHS condition.
1319    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1320
1321    // Emit the RHS condition into TmpBB.
1322    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1323  }
1324}
1325
1326/// If the set of cases should be emitted as a series of branches, return true.
1327/// If we should emit this as a bunch of and/or'd together conditions, return
1328/// false.
1329static bool
1330ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1331  if (Cases.size() != 2) return true;
1332
1333  // If this is two comparisons of the same values or'd or and'd together, they
1334  // will get folded into a single comparison, so don't emit two blocks.
1335  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1336       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1337      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1338       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1339    return false;
1340  }
1341
1342  return true;
1343}
1344
1345void SelectionDAGLowering::visitBr(BranchInst &I) {
1346  // Update machine-CFG edges.
1347  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1348
1349  // Figure out which block is immediately after the current one.
1350  MachineBasicBlock *NextBlock = 0;
1351  MachineFunction::iterator BBI = CurMBB;
1352  if (++BBI != CurMBB->getParent()->end())
1353    NextBlock = BBI;
1354
1355  if (I.isUnconditional()) {
1356    // If this is not a fall-through branch, emit the branch.
1357    if (Succ0MBB != NextBlock)
1358      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1359                              DAG.getBasicBlock(Succ0MBB)));
1360
1361    // Update machine-CFG edges.
1362    CurMBB->addSuccessor(Succ0MBB);
1363    return;
1364  }
1365
1366  // If this condition is one of the special cases we handle, do special stuff
1367  // now.
1368  Value *CondVal = I.getCondition();
1369  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1370
1371  // If this is a series of conditions that are or'd or and'd together, emit
1372  // this as a sequence of branches instead of setcc's with and/or operations.
1373  // For example, instead of something like:
1374  //     cmp A, B
1375  //     C = seteq
1376  //     cmp D, E
1377  //     F = setle
1378  //     or C, F
1379  //     jnz foo
1380  // Emit:
1381  //     cmp A, B
1382  //     je foo
1383  //     cmp D, E
1384  //     jle foo
1385  //
1386  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1387    if (BOp->hasOneUse() &&
1388        (BOp->getOpcode() == Instruction::And ||
1389         BOp->getOpcode() == Instruction::Or)) {
1390      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1391      // If the compares in later blocks need to use values not currently
1392      // exported from this block, export them now.  This block should always
1393      // be the first entry.
1394      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1395
1396      // Allow some cases to be rejected.
1397      if (ShouldEmitAsBranches(SwitchCases)) {
1398        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1399          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1400          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1401        }
1402
1403        // Emit the branch for this block.
1404        visitSwitchCase(SwitchCases[0]);
1405        SwitchCases.erase(SwitchCases.begin());
1406        return;
1407      }
1408
1409      // Okay, we decided not to do this, remove any inserted MBB's and clear
1410      // SwitchCases.
1411      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1412        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1413
1414      SwitchCases.clear();
1415    }
1416  }
1417
1418  // Create a CaseBlock record representing this branch.
1419  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1420                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1421  // Use visitSwitchCase to actually insert the fast branch sequence for this
1422  // cond branch.
1423  visitSwitchCase(CB);
1424}
1425
1426/// visitSwitchCase - Emits the necessary code to represent a single node in
1427/// the binary search tree resulting from lowering a switch instruction.
1428void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1429  SDOperand Cond;
1430  SDOperand CondLHS = getValue(CB.CmpLHS);
1431
1432  // Build the setcc now.
1433  if (CB.CmpMHS == NULL) {
1434    // Fold "(X == true)" to X and "(X == false)" to !X to
1435    // handle common cases produced by branch lowering.
1436    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1437      Cond = CondLHS;
1438    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1439      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1440      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1441    } else
1442      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1443  } else {
1444    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1445
1446    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1447    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1448
1449    SDOperand CmpOp = getValue(CB.CmpMHS);
1450    MVT::ValueType VT = CmpOp.getValueType();
1451
1452    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1453      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1454    } else {
1455      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1456      Cond = DAG.getSetCC(MVT::i1, SUB,
1457                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1458    }
1459
1460  }
1461
1462  // Set NextBlock to be the MBB immediately after the current one, if any.
1463  // This is used to avoid emitting unnecessary branches to the next block.
1464  MachineBasicBlock *NextBlock = 0;
1465  MachineFunction::iterator BBI = CurMBB;
1466  if (++BBI != CurMBB->getParent()->end())
1467    NextBlock = BBI;
1468
1469  // If the lhs block is the next block, invert the condition so that we can
1470  // fall through to the lhs instead of the rhs block.
1471  if (CB.TrueBB == NextBlock) {
1472    std::swap(CB.TrueBB, CB.FalseBB);
1473    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1474    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1475  }
1476  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1477                                 DAG.getBasicBlock(CB.TrueBB));
1478  if (CB.FalseBB == NextBlock)
1479    DAG.setRoot(BrCond);
1480  else
1481    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1482                            DAG.getBasicBlock(CB.FalseBB)));
1483  // Update successor info
1484  CurMBB->addSuccessor(CB.TrueBB);
1485  CurMBB->addSuccessor(CB.FalseBB);
1486}
1487
1488/// visitJumpTable - Emit JumpTable node in the current MBB
1489void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1490  // Emit the code for the jump table
1491  assert(JT.Reg != -1U && "Should lower JT Header first!");
1492  MVT::ValueType PTy = TLI.getPointerTy();
1493  SDOperand Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1494  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1495  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1496                          Table, Index));
1497  return;
1498}
1499
1500/// visitJumpTableHeader - This function emits necessary code to produce index
1501/// in the JumpTable from switch case.
1502void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1503                                         SelectionDAGISel::JumpTableHeader &JTH) {
1504  // Subtract the lowest switch case value from the value being switched on
1505  // and conditional branch to default mbb if the result is greater than the
1506  // difference between smallest and largest cases.
1507  SDOperand SwitchOp = getValue(JTH.SValue);
1508  MVT::ValueType VT = SwitchOp.getValueType();
1509  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1510                              DAG.getConstant(JTH.First, VT));
1511
1512  // The SDNode we just created, which holds the value being switched on
1513  // minus the the smallest case value, needs to be copied to a virtual
1514  // register so it can be used as an index into the jump table in a
1515  // subsequent basic block.  This value may be smaller or larger than the
1516  // target's pointer type, and therefore require extension or truncating.
1517  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1518    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1519  else
1520    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1521
1522  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1523  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1524  JT.Reg = JumpTableReg;
1525
1526  // Emit the range check for the jump table, and branch to the default
1527  // block for the switch statement if the value being switched on exceeds
1528  // the largest case in the switch.
1529  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1530                               DAG.getConstant(JTH.Last-JTH.First,VT),
1531                               ISD::SETUGT);
1532
1533  // Set NextBlock to be the MBB immediately after the current one, if any.
1534  // This is used to avoid emitting unnecessary branches to the next block.
1535  MachineBasicBlock *NextBlock = 0;
1536  MachineFunction::iterator BBI = CurMBB;
1537  if (++BBI != CurMBB->getParent()->end())
1538    NextBlock = BBI;
1539
1540  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1541                                 DAG.getBasicBlock(JT.Default));
1542
1543  if (JT.MBB == NextBlock)
1544    DAG.setRoot(BrCond);
1545  else
1546    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1547                            DAG.getBasicBlock(JT.MBB)));
1548
1549  return;
1550}
1551
1552/// visitBitTestHeader - This function emits necessary code to produce value
1553/// suitable for "bit tests"
1554void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1555  // Subtract the minimum value
1556  SDOperand SwitchOp = getValue(B.SValue);
1557  MVT::ValueType VT = SwitchOp.getValueType();
1558  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1559                              DAG.getConstant(B.First, VT));
1560
1561  // Check range
1562  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1563                                    DAG.getConstant(B.Range, VT),
1564                                    ISD::SETUGT);
1565
1566  SDOperand ShiftOp;
1567  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1568    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1569  else
1570    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1571
1572  // Make desired shift
1573  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1574                                    DAG.getConstant(1, TLI.getPointerTy()),
1575                                    ShiftOp);
1576
1577  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1578  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1579  B.Reg = SwitchReg;
1580
1581  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1582                                  DAG.getBasicBlock(B.Default));
1583
1584  // Set NextBlock to be the MBB immediately after the current one, if any.
1585  // This is used to avoid emitting unnecessary branches to the next block.
1586  MachineBasicBlock *NextBlock = 0;
1587  MachineFunction::iterator BBI = CurMBB;
1588  if (++BBI != CurMBB->getParent()->end())
1589    NextBlock = BBI;
1590
1591  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1592  if (MBB == NextBlock)
1593    DAG.setRoot(BrRange);
1594  else
1595    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1596                            DAG.getBasicBlock(MBB)));
1597
1598  CurMBB->addSuccessor(B.Default);
1599  CurMBB->addSuccessor(MBB);
1600
1601  return;
1602}
1603
1604/// visitBitTestCase - this function produces one "bit test"
1605void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1606                                            unsigned Reg,
1607                                            SelectionDAGISel::BitTestCase &B) {
1608  // Emit bit tests and jumps
1609  SDOperand SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg, TLI.getPointerTy());
1610
1611  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1612                                SwitchVal,
1613                                DAG.getConstant(B.Mask,
1614                                                TLI.getPointerTy()));
1615  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1616                                  DAG.getConstant(0, TLI.getPointerTy()),
1617                                  ISD::SETNE);
1618  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1619                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1620
1621  // Set NextBlock to be the MBB immediately after the current one, if any.
1622  // This is used to avoid emitting unnecessary branches to the next block.
1623  MachineBasicBlock *NextBlock = 0;
1624  MachineFunction::iterator BBI = CurMBB;
1625  if (++BBI != CurMBB->getParent()->end())
1626    NextBlock = BBI;
1627
1628  if (NextMBB == NextBlock)
1629    DAG.setRoot(BrAnd);
1630  else
1631    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1632                            DAG.getBasicBlock(NextMBB)));
1633
1634  CurMBB->addSuccessor(B.TargetBB);
1635  CurMBB->addSuccessor(NextMBB);
1636
1637  return;
1638}
1639
1640void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1641  // Retrieve successors.
1642  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1643  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1644
1645  if (isa<InlineAsm>(I.getCalledValue()))
1646    visitInlineAsm(&I);
1647  else
1648    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1649
1650  // If the value of the invoke is used outside of its defining block, make it
1651  // available as a virtual register.
1652  if (!I.use_empty()) {
1653    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1654    if (VMI != FuncInfo.ValueMap.end())
1655      CopyValueToVirtualRegister(&I, VMI->second);
1656  }
1657
1658  // Drop into normal successor.
1659  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1660                          DAG.getBasicBlock(Return)));
1661
1662  // Update successor info
1663  CurMBB->addSuccessor(Return);
1664  CurMBB->addSuccessor(LandingPad);
1665}
1666
1667void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1668}
1669
1670/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1671/// small case ranges).
1672bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1673                                                  CaseRecVector& WorkList,
1674                                                  Value* SV,
1675                                                  MachineBasicBlock* Default) {
1676  Case& BackCase  = *(CR.Range.second-1);
1677
1678  // Size is the number of Cases represented by this range.
1679  unsigned Size = CR.Range.second - CR.Range.first;
1680  if (Size > 3)
1681    return false;
1682
1683  // Get the MachineFunction which holds the current MBB.  This is used when
1684  // inserting any additional MBBs necessary to represent the switch.
1685  MachineFunction *CurMF = CurMBB->getParent();
1686
1687  // Figure out which block is immediately after the current one.
1688  MachineBasicBlock *NextBlock = 0;
1689  MachineFunction::iterator BBI = CR.CaseBB;
1690
1691  if (++BBI != CurMBB->getParent()->end())
1692    NextBlock = BBI;
1693
1694  // TODO: If any two of the cases has the same destination, and if one value
1695  // is the same as the other, but has one bit unset that the other has set,
1696  // use bit manipulation to do two compares at once.  For example:
1697  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1698
1699  // Rearrange the case blocks so that the last one falls through if possible.
1700  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1701    // The last case block won't fall through into 'NextBlock' if we emit the
1702    // branches in this order.  See if rearranging a case value would help.
1703    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1704      if (I->BB == NextBlock) {
1705        std::swap(*I, BackCase);
1706        break;
1707      }
1708    }
1709  }
1710
1711  // Create a CaseBlock record representing a conditional branch to
1712  // the Case's target mbb if the value being switched on SV is equal
1713  // to C.
1714  MachineBasicBlock *CurBlock = CR.CaseBB;
1715  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1716    MachineBasicBlock *FallThrough;
1717    if (I != E-1) {
1718      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1719      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1720    } else {
1721      // If the last case doesn't match, go to the default block.
1722      FallThrough = Default;
1723    }
1724
1725    Value *RHS, *LHS, *MHS;
1726    ISD::CondCode CC;
1727    if (I->High == I->Low) {
1728      // This is just small small case range :) containing exactly 1 case
1729      CC = ISD::SETEQ;
1730      LHS = SV; RHS = I->High; MHS = NULL;
1731    } else {
1732      CC = ISD::SETLE;
1733      LHS = I->Low; MHS = SV; RHS = I->High;
1734    }
1735    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1736                                   I->BB, FallThrough, CurBlock);
1737
1738    // If emitting the first comparison, just call visitSwitchCase to emit the
1739    // code into the current block.  Otherwise, push the CaseBlock onto the
1740    // vector to be later processed by SDISel, and insert the node's MBB
1741    // before the next MBB.
1742    if (CurBlock == CurMBB)
1743      visitSwitchCase(CB);
1744    else
1745      SwitchCases.push_back(CB);
1746
1747    CurBlock = FallThrough;
1748  }
1749
1750  return true;
1751}
1752
1753static inline bool areJTsAllowed(const TargetLowering &TLI) {
1754  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1755          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1756}
1757
1758/// handleJTSwitchCase - Emit jumptable for current switch case range
1759bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1760                                              CaseRecVector& WorkList,
1761                                              Value* SV,
1762                                              MachineBasicBlock* Default) {
1763  Case& FrontCase = *CR.Range.first;
1764  Case& BackCase  = *(CR.Range.second-1);
1765
1766  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1767  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1768
1769  uint64_t TSize = 0;
1770  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1771       I!=E; ++I)
1772    TSize += I->size();
1773
1774  if (!areJTsAllowed(TLI) || TSize <= 3)
1775    return false;
1776
1777  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1778  if (Density < 0.4)
1779    return false;
1780
1781  DOUT << "Lowering jump table\n"
1782       << "First entry: " << First << ". Last entry: " << Last << "\n"
1783       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1784
1785  // Get the MachineFunction which holds the current MBB.  This is used when
1786  // inserting any additional MBBs necessary to represent the switch.
1787  MachineFunction *CurMF = CurMBB->getParent();
1788
1789  // Figure out which block is immediately after the current one.
1790  MachineBasicBlock *NextBlock = 0;
1791  MachineFunction::iterator BBI = CR.CaseBB;
1792
1793  if (++BBI != CurMBB->getParent()->end())
1794    NextBlock = BBI;
1795
1796  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1797
1798  // Create a new basic block to hold the code for loading the address
1799  // of the jump table, and jumping to it.  Update successor information;
1800  // we will either branch to the default case for the switch, or the jump
1801  // table.
1802  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1803  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1804  CR.CaseBB->addSuccessor(Default);
1805  CR.CaseBB->addSuccessor(JumpTableBB);
1806
1807  // Build a vector of destination BBs, corresponding to each target
1808  // of the jump table. If the value of the jump table slot corresponds to
1809  // a case statement, push the case's BB onto the vector, otherwise, push
1810  // the default BB.
1811  std::vector<MachineBasicBlock*> DestBBs;
1812  int64_t TEI = First;
1813  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1814    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1815    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1816
1817    if ((Low <= TEI) && (TEI <= High)) {
1818      DestBBs.push_back(I->BB);
1819      if (TEI==High)
1820        ++I;
1821    } else {
1822      DestBBs.push_back(Default);
1823    }
1824  }
1825
1826  // Update successor info. Add one edge to each unique successor.
1827  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1828  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1829         E = DestBBs.end(); I != E; ++I) {
1830    if (!SuccsHandled[(*I)->getNumber()]) {
1831      SuccsHandled[(*I)->getNumber()] = true;
1832      JumpTableBB->addSuccessor(*I);
1833    }
1834  }
1835
1836  // Create a jump table index for this jump table, or return an existing
1837  // one.
1838  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1839
1840  // Set the jump table information so that we can codegen it as a second
1841  // MachineBasicBlock
1842  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1843  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1844                                        (CR.CaseBB == CurMBB));
1845  if (CR.CaseBB == CurMBB)
1846    visitJumpTableHeader(JT, JTH);
1847
1848  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1849
1850  return true;
1851}
1852
1853/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1854/// 2 subtrees.
1855bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1856                                                   CaseRecVector& WorkList,
1857                                                   Value* SV,
1858                                                   MachineBasicBlock* Default) {
1859  // Get the MachineFunction which holds the current MBB.  This is used when
1860  // inserting any additional MBBs necessary to represent the switch.
1861  MachineFunction *CurMF = CurMBB->getParent();
1862
1863  // Figure out which block is immediately after the current one.
1864  MachineBasicBlock *NextBlock = 0;
1865  MachineFunction::iterator BBI = CR.CaseBB;
1866
1867  if (++BBI != CurMBB->getParent()->end())
1868    NextBlock = BBI;
1869
1870  Case& FrontCase = *CR.Range.first;
1871  Case& BackCase  = *(CR.Range.second-1);
1872  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1873
1874  // Size is the number of Cases represented by this range.
1875  unsigned Size = CR.Range.second - CR.Range.first;
1876
1877  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1878  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1879  double FMetric = 0;
1880  CaseItr Pivot = CR.Range.first + Size/2;
1881
1882  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1883  // (heuristically) allow us to emit JumpTable's later.
1884  uint64_t TSize = 0;
1885  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1886       I!=E; ++I)
1887    TSize += I->size();
1888
1889  uint64_t LSize = FrontCase.size();
1890  uint64_t RSize = TSize-LSize;
1891  DOUT << "Selecting best pivot: \n"
1892       << "First: " << First << ", Last: " << Last <<"\n"
1893       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1894  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1895       J!=E; ++I, ++J) {
1896    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1897    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1898    assert((RBegin-LEnd>=1) && "Invalid case distance");
1899    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1900    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1901    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1902    // Should always split in some non-trivial place
1903    DOUT <<"=>Step\n"
1904         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1905         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1906         << "Metric: " << Metric << "\n";
1907    if (FMetric < Metric) {
1908      Pivot = J;
1909      FMetric = Metric;
1910      DOUT << "Current metric set to: " << FMetric << "\n";
1911    }
1912
1913    LSize += J->size();
1914    RSize -= J->size();
1915  }
1916  if (areJTsAllowed(TLI)) {
1917    // If our case is dense we *really* should handle it earlier!
1918    assert((FMetric > 0) && "Should handle dense range earlier!");
1919  } else {
1920    Pivot = CR.Range.first + Size/2;
1921  }
1922
1923  CaseRange LHSR(CR.Range.first, Pivot);
1924  CaseRange RHSR(Pivot, CR.Range.second);
1925  Constant *C = Pivot->Low;
1926  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1927
1928  // We know that we branch to the LHS if the Value being switched on is
1929  // less than the Pivot value, C.  We use this to optimize our binary
1930  // tree a bit, by recognizing that if SV is greater than or equal to the
1931  // LHS's Case Value, and that Case Value is exactly one less than the
1932  // Pivot's Value, then we can branch directly to the LHS's Target,
1933  // rather than creating a leaf node for it.
1934  if ((LHSR.second - LHSR.first) == 1 &&
1935      LHSR.first->High == CR.GE &&
1936      cast<ConstantInt>(C)->getSExtValue() ==
1937      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1938    TrueBB = LHSR.first->BB;
1939  } else {
1940    TrueBB = new MachineBasicBlock(LLVMBB);
1941    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1942    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1943  }
1944
1945  // Similar to the optimization above, if the Value being switched on is
1946  // known to be less than the Constant CR.LT, and the current Case Value
1947  // is CR.LT - 1, then we can branch directly to the target block for
1948  // the current Case Value, rather than emitting a RHS leaf node for it.
1949  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1950      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1951      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1952    FalseBB = RHSR.first->BB;
1953  } else {
1954    FalseBB = new MachineBasicBlock(LLVMBB);
1955    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1956    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1957  }
1958
1959  // Create a CaseBlock record representing a conditional branch to
1960  // the LHS node if the value being switched on SV is less than C.
1961  // Otherwise, branch to LHS.
1962  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1963                                 TrueBB, FalseBB, CR.CaseBB);
1964
1965  if (CR.CaseBB == CurMBB)
1966    visitSwitchCase(CB);
1967  else
1968    SwitchCases.push_back(CB);
1969
1970  return true;
1971}
1972
1973/// handleBitTestsSwitchCase - if current case range has few destination and
1974/// range span less, than machine word bitwidth, encode case range into series
1975/// of masks and emit bit tests with these masks.
1976bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1977                                                    CaseRecVector& WorkList,
1978                                                    Value* SV,
1979                                                    MachineBasicBlock* Default){
1980  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1981
1982  Case& FrontCase = *CR.Range.first;
1983  Case& BackCase  = *(CR.Range.second-1);
1984
1985  // Get the MachineFunction which holds the current MBB.  This is used when
1986  // inserting any additional MBBs necessary to represent the switch.
1987  MachineFunction *CurMF = CurMBB->getParent();
1988
1989  unsigned numCmps = 0;
1990  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1991       I!=E; ++I) {
1992    // Single case counts one, case range - two.
1993    if (I->Low == I->High)
1994      numCmps +=1;
1995    else
1996      numCmps +=2;
1997  }
1998
1999  // Count unique destinations
2000  SmallSet<MachineBasicBlock*, 4> Dests;
2001  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2002    Dests.insert(I->BB);
2003    if (Dests.size() > 3)
2004      // Don't bother the code below, if there are too much unique destinations
2005      return false;
2006  }
2007  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
2008       << "Total number of comparisons: " << numCmps << "\n";
2009
2010  // Compute span of values.
2011  Constant* minValue = FrontCase.Low;
2012  Constant* maxValue = BackCase.High;
2013  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
2014                   cast<ConstantInt>(minValue)->getSExtValue();
2015  DOUT << "Compare range: " << range << "\n"
2016       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
2017       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
2018
2019  if (range>=IntPtrBits ||
2020      (!(Dests.size() == 1 && numCmps >= 3) &&
2021       !(Dests.size() == 2 && numCmps >= 5) &&
2022       !(Dests.size() >= 3 && numCmps >= 6)))
2023    return false;
2024
2025  DOUT << "Emitting bit tests\n";
2026  int64_t lowBound = 0;
2027
2028  // Optimize the case where all the case values fit in a
2029  // word without having to subtract minValue. In this case,
2030  // we can optimize away the subtraction.
2031  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
2032      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
2033    range = cast<ConstantInt>(maxValue)->getSExtValue();
2034  } else {
2035    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
2036  }
2037
2038  CaseBitsVector CasesBits;
2039  unsigned i, count = 0;
2040
2041  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2042    MachineBasicBlock* Dest = I->BB;
2043    for (i = 0; i < count; ++i)
2044      if (Dest == CasesBits[i].BB)
2045        break;
2046
2047    if (i == count) {
2048      assert((count < 3) && "Too much destinations to test!");
2049      CasesBits.push_back(CaseBits(0, Dest, 0));
2050      count++;
2051    }
2052
2053    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2054    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2055
2056    for (uint64_t j = lo; j <= hi; j++) {
2057      CasesBits[i].Mask |=  1ULL << j;
2058      CasesBits[i].Bits++;
2059    }
2060
2061  }
2062  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2063
2064  SelectionDAGISel::BitTestInfo BTC;
2065
2066  // Figure out which block is immediately after the current one.
2067  MachineFunction::iterator BBI = CR.CaseBB;
2068  ++BBI;
2069
2070  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2071
2072  DOUT << "Cases:\n";
2073  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2074    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2075         << ", BB: " << CasesBits[i].BB << "\n";
2076
2077    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
2078    CurMF->getBasicBlockList().insert(BBI, CaseBB);
2079    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
2080                                                CaseBB,
2081                                                CasesBits[i].BB));
2082  }
2083
2084  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
2085                                     -1U, (CR.CaseBB == CurMBB),
2086                                     CR.CaseBB, Default, BTC);
2087
2088  if (CR.CaseBB == CurMBB)
2089    visitBitTestHeader(BTB);
2090
2091  BitTestCases.push_back(BTB);
2092
2093  return true;
2094}
2095
2096
2097/// Clusterify - Transform simple list of Cases into list of CaseRange's
2098unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2099                                          const SwitchInst& SI) {
2100  unsigned numCmps = 0;
2101
2102  // Start with "simple" cases
2103  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2104    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2105    Cases.push_back(Case(SI.getSuccessorValue(i),
2106                         SI.getSuccessorValue(i),
2107                         SMBB));
2108  }
2109  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2110
2111  // Merge case into clusters
2112  if (Cases.size()>=2)
2113    // Must recompute end() each iteration because it may be
2114    // invalidated by erase if we hold on to it
2115    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2116      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2117      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2118      MachineBasicBlock* nextBB = J->BB;
2119      MachineBasicBlock* currentBB = I->BB;
2120
2121      // If the two neighboring cases go to the same destination, merge them
2122      // into a single case.
2123      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2124        I->High = J->High;
2125        J = Cases.erase(J);
2126      } else {
2127        I = J++;
2128      }
2129    }
2130
2131  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2132    if (I->Low != I->High)
2133      // A range counts double, since it requires two compares.
2134      ++numCmps;
2135  }
2136
2137  return numCmps;
2138}
2139
2140void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2141  // Figure out which block is immediately after the current one.
2142  MachineBasicBlock *NextBlock = 0;
2143  MachineFunction::iterator BBI = CurMBB;
2144
2145  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2146
2147  // If there is only the default destination, branch to it if it is not the
2148  // next basic block.  Otherwise, just fall through.
2149  if (SI.getNumOperands() == 2) {
2150    // Update machine-CFG edges.
2151
2152    // If this is not a fall-through branch, emit the branch.
2153    if (Default != NextBlock)
2154      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2155                              DAG.getBasicBlock(Default)));
2156
2157    CurMBB->addSuccessor(Default);
2158    return;
2159  }
2160
2161  // If there are any non-default case statements, create a vector of Cases
2162  // representing each one, and sort the vector so that we can efficiently
2163  // create a binary search tree from them.
2164  CaseVector Cases;
2165  unsigned numCmps = Clusterify(Cases, SI);
2166  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2167       << ". Total compares: " << numCmps << "\n";
2168
2169  // Get the Value to be switched on and default basic blocks, which will be
2170  // inserted into CaseBlock records, representing basic blocks in the binary
2171  // search tree.
2172  Value *SV = SI.getOperand(0);
2173
2174  // Push the initial CaseRec onto the worklist
2175  CaseRecVector WorkList;
2176  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2177
2178  while (!WorkList.empty()) {
2179    // Grab a record representing a case range to process off the worklist
2180    CaseRec CR = WorkList.back();
2181    WorkList.pop_back();
2182
2183    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2184      continue;
2185
2186    // If the range has few cases (two or less) emit a series of specific
2187    // tests.
2188    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2189      continue;
2190
2191    // If the switch has more than 5 blocks, and at least 40% dense, and the
2192    // target supports indirect branches, then emit a jump table rather than
2193    // lowering the switch to a binary tree of conditional branches.
2194    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2195      continue;
2196
2197    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2198    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2199    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2200  }
2201}
2202
2203
2204void SelectionDAGLowering::visitSub(User &I) {
2205  // -0.0 - X --> fneg
2206  const Type *Ty = I.getType();
2207  if (isa<VectorType>(Ty)) {
2208    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2209      const VectorType *DestTy = cast<VectorType>(I.getType());
2210      const Type *ElTy = DestTy->getElementType();
2211      if (ElTy->isFloatingPoint()) {
2212        unsigned VL = DestTy->getNumElements();
2213        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2214        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2215        if (CV == CNZ) {
2216          SDOperand Op2 = getValue(I.getOperand(1));
2217          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2218          return;
2219        }
2220      }
2221    }
2222  }
2223  if (Ty->isFloatingPoint()) {
2224    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2225      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2226        SDOperand Op2 = getValue(I.getOperand(1));
2227        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2228        return;
2229      }
2230  }
2231
2232  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2233}
2234
2235void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2236  SDOperand Op1 = getValue(I.getOperand(0));
2237  SDOperand Op2 = getValue(I.getOperand(1));
2238
2239  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2240}
2241
2242void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2243  SDOperand Op1 = getValue(I.getOperand(0));
2244  SDOperand Op2 = getValue(I.getOperand(1));
2245
2246  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2247      MVT::getSizeInBits(Op2.getValueType()))
2248    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2249  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2250    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2251
2252  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2253}
2254
2255void SelectionDAGLowering::visitICmp(User &I) {
2256  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2257  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2258    predicate = IC->getPredicate();
2259  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2260    predicate = ICmpInst::Predicate(IC->getPredicate());
2261  SDOperand Op1 = getValue(I.getOperand(0));
2262  SDOperand Op2 = getValue(I.getOperand(1));
2263  ISD::CondCode Opcode;
2264  switch (predicate) {
2265    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2266    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2267    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2268    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2269    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2270    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2271    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2272    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2273    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2274    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2275    default:
2276      assert(!"Invalid ICmp predicate value");
2277      Opcode = ISD::SETEQ;
2278      break;
2279  }
2280  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2281}
2282
2283void SelectionDAGLowering::visitFCmp(User &I) {
2284  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2285  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2286    predicate = FC->getPredicate();
2287  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2288    predicate = FCmpInst::Predicate(FC->getPredicate());
2289  SDOperand Op1 = getValue(I.getOperand(0));
2290  SDOperand Op2 = getValue(I.getOperand(1));
2291  ISD::CondCode Condition, FOC, FPC;
2292  switch (predicate) {
2293    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2294    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2295    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2296    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2297    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2298    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2299    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2300    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2301    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2302    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2303    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2304    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2305    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2306    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2307    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2308    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2309    default:
2310      assert(!"Invalid FCmp predicate value");
2311      FOC = FPC = ISD::SETFALSE;
2312      break;
2313  }
2314  if (FiniteOnlyFPMath())
2315    Condition = FOC;
2316  else
2317    Condition = FPC;
2318  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2319}
2320
2321void SelectionDAGLowering::visitSelect(User &I) {
2322  SDOperand Cond     = getValue(I.getOperand(0));
2323  SDOperand TrueVal  = getValue(I.getOperand(1));
2324  SDOperand FalseVal = getValue(I.getOperand(2));
2325  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2326                           TrueVal, FalseVal));
2327}
2328
2329
2330void SelectionDAGLowering::visitTrunc(User &I) {
2331  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2332  SDOperand N = getValue(I.getOperand(0));
2333  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2334  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2335}
2336
2337void SelectionDAGLowering::visitZExt(User &I) {
2338  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2339  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2340  SDOperand N = getValue(I.getOperand(0));
2341  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2342  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2343}
2344
2345void SelectionDAGLowering::visitSExt(User &I) {
2346  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2347  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2348  SDOperand N = getValue(I.getOperand(0));
2349  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2350  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2351}
2352
2353void SelectionDAGLowering::visitFPTrunc(User &I) {
2354  // FPTrunc is never a no-op cast, no need to check
2355  SDOperand N = getValue(I.getOperand(0));
2356  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2357  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2358}
2359
2360void SelectionDAGLowering::visitFPExt(User &I){
2361  // FPTrunc is never a no-op cast, no need to check
2362  SDOperand N = getValue(I.getOperand(0));
2363  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2364  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2365}
2366
2367void SelectionDAGLowering::visitFPToUI(User &I) {
2368  // FPToUI is never a no-op cast, no need to check
2369  SDOperand N = getValue(I.getOperand(0));
2370  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2371  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2372}
2373
2374void SelectionDAGLowering::visitFPToSI(User &I) {
2375  // FPToSI is never a no-op cast, no need to check
2376  SDOperand N = getValue(I.getOperand(0));
2377  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2378  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2379}
2380
2381void SelectionDAGLowering::visitUIToFP(User &I) {
2382  // UIToFP is never a no-op cast, no need to check
2383  SDOperand N = getValue(I.getOperand(0));
2384  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2385  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2386}
2387
2388void SelectionDAGLowering::visitSIToFP(User &I){
2389  // UIToFP is never a no-op cast, no need to check
2390  SDOperand N = getValue(I.getOperand(0));
2391  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2392  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2393}
2394
2395void SelectionDAGLowering::visitPtrToInt(User &I) {
2396  // What to do depends on the size of the integer and the size of the pointer.
2397  // We can either truncate, zero extend, or no-op, accordingly.
2398  SDOperand N = getValue(I.getOperand(0));
2399  MVT::ValueType SrcVT = N.getValueType();
2400  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2401  SDOperand Result;
2402  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2403    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2404  else
2405    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2406    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2407  setValue(&I, Result);
2408}
2409
2410void SelectionDAGLowering::visitIntToPtr(User &I) {
2411  // What to do depends on the size of the integer and the size of the pointer.
2412  // We can either truncate, zero extend, or no-op, accordingly.
2413  SDOperand N = getValue(I.getOperand(0));
2414  MVT::ValueType SrcVT = N.getValueType();
2415  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2416  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2417    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2418  else
2419    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2420    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2421}
2422
2423void SelectionDAGLowering::visitBitCast(User &I) {
2424  SDOperand N = getValue(I.getOperand(0));
2425  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2426
2427  // BitCast assures us that source and destination are the same size so this
2428  // is either a BIT_CONVERT or a no-op.
2429  if (DestVT != N.getValueType())
2430    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2431  else
2432    setValue(&I, N); // noop cast.
2433}
2434
2435void SelectionDAGLowering::visitInsertElement(User &I) {
2436  SDOperand InVec = getValue(I.getOperand(0));
2437  SDOperand InVal = getValue(I.getOperand(1));
2438  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2439                                getValue(I.getOperand(2)));
2440
2441  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2442                           TLI.getValueType(I.getType()),
2443                           InVec, InVal, InIdx));
2444}
2445
2446void SelectionDAGLowering::visitExtractElement(User &I) {
2447  SDOperand InVec = getValue(I.getOperand(0));
2448  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2449                                getValue(I.getOperand(1)));
2450  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2451                           TLI.getValueType(I.getType()), InVec, InIdx));
2452}
2453
2454void SelectionDAGLowering::visitShuffleVector(User &I) {
2455  SDOperand V1   = getValue(I.getOperand(0));
2456  SDOperand V2   = getValue(I.getOperand(1));
2457  SDOperand Mask = getValue(I.getOperand(2));
2458
2459  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2460                           TLI.getValueType(I.getType()),
2461                           V1, V2, Mask));
2462}
2463
2464
2465void SelectionDAGLowering::visitGetElementPtr(User &I) {
2466  SDOperand N = getValue(I.getOperand(0));
2467  const Type *Ty = I.getOperand(0)->getType();
2468
2469  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2470       OI != E; ++OI) {
2471    Value *Idx = *OI;
2472    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2473      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2474      if (Field) {
2475        // N = N + Offset
2476        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2477        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2478                        DAG.getIntPtrConstant(Offset));
2479      }
2480      Ty = StTy->getElementType(Field);
2481    } else {
2482      Ty = cast<SequentialType>(Ty)->getElementType();
2483
2484      // If this is a constant subscript, handle it quickly.
2485      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2486        if (CI->getZExtValue() == 0) continue;
2487        uint64_t Offs =
2488            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2489        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2490                        DAG.getIntPtrConstant(Offs));
2491        continue;
2492      }
2493
2494      // N = N + Idx * ElementSize;
2495      uint64_t ElementSize = TD->getABITypeSize(Ty);
2496      SDOperand IdxN = getValue(Idx);
2497
2498      // If the index is smaller or larger than intptr_t, truncate or extend
2499      // it.
2500      if (IdxN.getValueType() < N.getValueType()) {
2501        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2502      } else if (IdxN.getValueType() > N.getValueType())
2503        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2504
2505      // If this is a multiply by a power of two, turn it into a shl
2506      // immediately.  This is a very common case.
2507      if (isPowerOf2_64(ElementSize)) {
2508        unsigned Amt = Log2_64(ElementSize);
2509        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2510                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2511        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2512        continue;
2513      }
2514
2515      SDOperand Scale = DAG.getIntPtrConstant(ElementSize);
2516      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2517      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2518    }
2519  }
2520  setValue(&I, N);
2521}
2522
2523void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2524  // If this is a fixed sized alloca in the entry block of the function,
2525  // allocate it statically on the stack.
2526  if (FuncInfo.StaticAllocaMap.count(&I))
2527    return;   // getValue will auto-populate this.
2528
2529  const Type *Ty = I.getAllocatedType();
2530  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2531  unsigned Align =
2532    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2533             I.getAlignment());
2534
2535  SDOperand AllocSize = getValue(I.getArraySize());
2536  MVT::ValueType IntPtr = TLI.getPointerTy();
2537  if (IntPtr < AllocSize.getValueType())
2538    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2539  else if (IntPtr > AllocSize.getValueType())
2540    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2541
2542  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2543                          DAG.getIntPtrConstant(TySize));
2544
2545  // Handle alignment.  If the requested alignment is less than or equal to
2546  // the stack alignment, ignore it.  If the size is greater than or equal to
2547  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2548  unsigned StackAlign =
2549    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2550  if (Align <= StackAlign)
2551    Align = 0;
2552
2553  // Round the size of the allocation up to the stack alignment size
2554  // by add SA-1 to the size.
2555  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2556                          DAG.getIntPtrConstant(StackAlign-1));
2557  // Mask out the low bits for alignment purposes.
2558  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2559                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2560
2561  SDOperand Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2562  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2563                                                    MVT::Other);
2564  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2565  setValue(&I, DSA);
2566  DAG.setRoot(DSA.getValue(1));
2567
2568  // Inform the Frame Information that we have just allocated a variable-sized
2569  // object.
2570  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2571}
2572
2573void SelectionDAGLowering::visitLoad(LoadInst &I) {
2574  SDOperand Ptr = getValue(I.getOperand(0));
2575
2576  SDOperand Root;
2577  if (I.isVolatile())
2578    Root = getRoot();
2579  else {
2580    // Do not serialize non-volatile loads against each other.
2581    Root = DAG.getRoot();
2582  }
2583
2584  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2585                           Root, I.isVolatile(), I.getAlignment()));
2586}
2587
2588SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2589                                            const Value *SV, SDOperand Root,
2590                                            bool isVolatile,
2591                                            unsigned Alignment) {
2592  SDOperand L =
2593    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2594                isVolatile, Alignment);
2595
2596  if (isVolatile)
2597    DAG.setRoot(L.getValue(1));
2598  else
2599    PendingLoads.push_back(L.getValue(1));
2600
2601  return L;
2602}
2603
2604
2605void SelectionDAGLowering::visitStore(StoreInst &I) {
2606  Value *SrcV = I.getOperand(0);
2607  SDOperand Src = getValue(SrcV);
2608  SDOperand Ptr = getValue(I.getOperand(1));
2609  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2610                           I.isVolatile(), I.getAlignment()));
2611}
2612
2613/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2614/// node.
2615void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2616                                                unsigned Intrinsic) {
2617  bool HasChain = !I.doesNotAccessMemory();
2618  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2619
2620  // Build the operand list.
2621  SmallVector<SDOperand, 8> Ops;
2622  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2623    if (OnlyLoad) {
2624      // We don't need to serialize loads against other loads.
2625      Ops.push_back(DAG.getRoot());
2626    } else {
2627      Ops.push_back(getRoot());
2628    }
2629  }
2630
2631  // Add the intrinsic ID as an integer operand.
2632  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2633
2634  // Add all operands of the call to the operand list.
2635  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2636    SDOperand Op = getValue(I.getOperand(i));
2637    assert(TLI.isTypeLegal(Op.getValueType()) &&
2638           "Intrinsic uses a non-legal type?");
2639    Ops.push_back(Op);
2640  }
2641
2642  std::vector<MVT::ValueType> VTs;
2643  if (I.getType() != Type::VoidTy) {
2644    MVT::ValueType VT = TLI.getValueType(I.getType());
2645    if (MVT::isVector(VT)) {
2646      const VectorType *DestTy = cast<VectorType>(I.getType());
2647      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2648
2649      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2650      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2651    }
2652
2653    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2654    VTs.push_back(VT);
2655  }
2656  if (HasChain)
2657    VTs.push_back(MVT::Other);
2658
2659  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2660
2661  // Create the node.
2662  SDOperand Result;
2663  if (!HasChain)
2664    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2665                         &Ops[0], Ops.size());
2666  else if (I.getType() != Type::VoidTy)
2667    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2668                         &Ops[0], Ops.size());
2669  else
2670    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2671                         &Ops[0], Ops.size());
2672
2673  if (HasChain) {
2674    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2675    if (OnlyLoad)
2676      PendingLoads.push_back(Chain);
2677    else
2678      DAG.setRoot(Chain);
2679  }
2680  if (I.getType() != Type::VoidTy) {
2681    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2682      MVT::ValueType VT = TLI.getValueType(PTy);
2683      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2684    }
2685    setValue(&I, Result);
2686  }
2687}
2688
2689/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2690static GlobalVariable *ExtractTypeInfo (Value *V) {
2691  V = IntrinsicInst::StripPointerCasts(V);
2692  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2693  assert ((GV || isa<ConstantPointerNull>(V)) &&
2694          "TypeInfo must be a global variable or NULL");
2695  return GV;
2696}
2697
2698/// addCatchInfo - Extract the personality and type infos from an eh.selector
2699/// call, and add them to the specified machine basic block.
2700static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2701                         MachineBasicBlock *MBB) {
2702  // Inform the MachineModuleInfo of the personality for this landing pad.
2703  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2704  assert(CE->getOpcode() == Instruction::BitCast &&
2705         isa<Function>(CE->getOperand(0)) &&
2706         "Personality should be a function");
2707  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2708
2709  // Gather all the type infos for this landing pad and pass them along to
2710  // MachineModuleInfo.
2711  std::vector<GlobalVariable *> TyInfo;
2712  unsigned N = I.getNumOperands();
2713
2714  for (unsigned i = N - 1; i > 2; --i) {
2715    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2716      unsigned FilterLength = CI->getZExtValue();
2717      unsigned FirstCatch = i + FilterLength + !FilterLength;
2718      assert (FirstCatch <= N && "Invalid filter length");
2719
2720      if (FirstCatch < N) {
2721        TyInfo.reserve(N - FirstCatch);
2722        for (unsigned j = FirstCatch; j < N; ++j)
2723          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2724        MMI->addCatchTypeInfo(MBB, TyInfo);
2725        TyInfo.clear();
2726      }
2727
2728      if (!FilterLength) {
2729        // Cleanup.
2730        MMI->addCleanup(MBB);
2731      } else {
2732        // Filter.
2733        TyInfo.reserve(FilterLength - 1);
2734        for (unsigned j = i + 1; j < FirstCatch; ++j)
2735          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2736        MMI->addFilterTypeInfo(MBB, TyInfo);
2737        TyInfo.clear();
2738      }
2739
2740      N = i;
2741    }
2742  }
2743
2744  if (N > 3) {
2745    TyInfo.reserve(N - 3);
2746    for (unsigned j = 3; j < N; ++j)
2747      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2748    MMI->addCatchTypeInfo(MBB, TyInfo);
2749  }
2750}
2751
2752/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2753/// we want to emit this as a call to a named external function, return the name
2754/// otherwise lower it and return null.
2755const char *
2756SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2757  switch (Intrinsic) {
2758  default:
2759    // By default, turn this into a target intrinsic node.
2760    visitTargetIntrinsic(I, Intrinsic);
2761    return 0;
2762  case Intrinsic::vastart:  visitVAStart(I); return 0;
2763  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2764  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2765  case Intrinsic::returnaddress:
2766    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2767                             getValue(I.getOperand(1))));
2768    return 0;
2769  case Intrinsic::frameaddress:
2770    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2771                             getValue(I.getOperand(1))));
2772    return 0;
2773  case Intrinsic::setjmp:
2774    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2775    break;
2776  case Intrinsic::longjmp:
2777    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2778    break;
2779  case Intrinsic::memcpy_i32:
2780  case Intrinsic::memcpy_i64: {
2781    SDOperand Op1 = getValue(I.getOperand(1));
2782    SDOperand Op2 = getValue(I.getOperand(2));
2783    SDOperand Op3 = getValue(I.getOperand(3));
2784    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
2785    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
2786                              I.getOperand(1), 0, I.getOperand(2), 0));
2787    return 0;
2788  }
2789  case Intrinsic::memset_i32:
2790  case Intrinsic::memset_i64: {
2791    SDOperand Op1 = getValue(I.getOperand(1));
2792    SDOperand Op2 = getValue(I.getOperand(2));
2793    SDOperand Op3 = getValue(I.getOperand(3));
2794    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
2795    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
2796                              I.getOperand(1), 0));
2797    return 0;
2798  }
2799  case Intrinsic::memmove_i32:
2800  case Intrinsic::memmove_i64: {
2801    SDOperand Op1 = getValue(I.getOperand(1));
2802    SDOperand Op2 = getValue(I.getOperand(2));
2803    SDOperand Op3 = getValue(I.getOperand(3));
2804    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
2805
2806    // If the source and destination are known to not be aliases, we can
2807    // lower memmove as memcpy.
2808    uint64_t Size = -1ULL;
2809    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
2810      Size = C->getValue();
2811    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
2812        AliasAnalysis::NoAlias) {
2813      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
2814                                I.getOperand(1), 0, I.getOperand(2), 0));
2815      return 0;
2816    }
2817
2818    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
2819                               I.getOperand(1), 0, I.getOperand(2), 0));
2820    return 0;
2821  }
2822  case Intrinsic::dbg_stoppoint: {
2823    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2824    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2825    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2826      SDOperand Ops[5];
2827
2828      Ops[0] = getRoot();
2829      Ops[1] = getValue(SPI.getLineValue());
2830      Ops[2] = getValue(SPI.getColumnValue());
2831
2832      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2833      assert(DD && "Not a debug information descriptor");
2834      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2835
2836      Ops[3] = DAG.getString(CompileUnit->getFileName());
2837      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2838
2839      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2840    }
2841
2842    return 0;
2843  }
2844  case Intrinsic::dbg_region_start: {
2845    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2846    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2847    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2848      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2849      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2850                              DAG.getConstant(LabelID, MVT::i32),
2851                              DAG.getConstant(0, MVT::i32)));
2852    }
2853
2854    return 0;
2855  }
2856  case Intrinsic::dbg_region_end: {
2857    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2858    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2859    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2860      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2861      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2862                              DAG.getConstant(LabelID, MVT::i32),
2863                              DAG.getConstant(0, MVT::i32)));
2864    }
2865
2866    return 0;
2867  }
2868  case Intrinsic::dbg_func_start: {
2869    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2870    if (!MMI) return 0;
2871    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2872    Value *SP = FSI.getSubprogram();
2873    if (SP && MMI->Verify(SP)) {
2874      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
2875      // what (most?) gdb expects.
2876      DebugInfoDesc *DD = MMI->getDescFor(SP);
2877      assert(DD && "Not a debug information descriptor");
2878      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
2879      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
2880      unsigned SrcFile = MMI->RecordSource(CompileUnit->getDirectory(),
2881                                           CompileUnit->getFileName());
2882      // Record the source line but does create a label. It will be emitted
2883      // at asm emission time.
2884      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
2885    }
2886
2887    return 0;
2888  }
2889  case Intrinsic::dbg_declare: {
2890    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2891    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2892    Value *Variable = DI.getVariable();
2893    if (MMI && Variable && MMI->Verify(Variable))
2894      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
2895                              getValue(DI.getAddress()), getValue(Variable)));
2896    return 0;
2897  }
2898
2899  case Intrinsic::eh_exception: {
2900    if (!CurMBB->isLandingPad()) {
2901      // FIXME: Mark exception register as live in.  Hack for PR1508.
2902      unsigned Reg = TLI.getExceptionAddressRegister();
2903      if (Reg) CurMBB->addLiveIn(Reg);
2904    }
2905    // Insert the EXCEPTIONADDR instruction.
2906    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2907    SDOperand Ops[1];
2908    Ops[0] = DAG.getRoot();
2909    SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2910    setValue(&I, Op);
2911    DAG.setRoot(Op.getValue(1));
2912    return 0;
2913  }
2914
2915  case Intrinsic::eh_selector_i32:
2916  case Intrinsic::eh_selector_i64: {
2917    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2918    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2919                         MVT::i32 : MVT::i64);
2920
2921    if (MMI) {
2922      if (CurMBB->isLandingPad())
2923        addCatchInfo(I, MMI, CurMBB);
2924      else {
2925#ifndef NDEBUG
2926        FuncInfo.CatchInfoLost.insert(&I);
2927#endif
2928        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
2929        unsigned Reg = TLI.getExceptionSelectorRegister();
2930        if (Reg) CurMBB->addLiveIn(Reg);
2931      }
2932
2933      // Insert the EHSELECTION instruction.
2934      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2935      SDOperand Ops[2];
2936      Ops[0] = getValue(I.getOperand(1));
2937      Ops[1] = getRoot();
2938      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2939      setValue(&I, Op);
2940      DAG.setRoot(Op.getValue(1));
2941    } else {
2942      setValue(&I, DAG.getConstant(0, VT));
2943    }
2944
2945    return 0;
2946  }
2947
2948  case Intrinsic::eh_typeid_for_i32:
2949  case Intrinsic::eh_typeid_for_i64: {
2950    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2951    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2952                         MVT::i32 : MVT::i64);
2953
2954    if (MMI) {
2955      // Find the type id for the given typeinfo.
2956      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2957
2958      unsigned TypeID = MMI->getTypeIDFor(GV);
2959      setValue(&I, DAG.getConstant(TypeID, VT));
2960    } else {
2961      // Return something different to eh_selector.
2962      setValue(&I, DAG.getConstant(1, VT));
2963    }
2964
2965    return 0;
2966  }
2967
2968  case Intrinsic::eh_return: {
2969    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2970
2971    if (MMI) {
2972      MMI->setCallsEHReturn(true);
2973      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2974                              MVT::Other,
2975                              getControlRoot(),
2976                              getValue(I.getOperand(1)),
2977                              getValue(I.getOperand(2))));
2978    } else {
2979      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2980    }
2981
2982    return 0;
2983  }
2984
2985   case Intrinsic::eh_unwind_init: {
2986     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2987       MMI->setCallsUnwindInit(true);
2988     }
2989
2990     return 0;
2991   }
2992
2993   case Intrinsic::eh_dwarf_cfa: {
2994     MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
2995     SDOperand CfaArg;
2996     if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2997       CfaArg = DAG.getNode(ISD::TRUNCATE,
2998                            TLI.getPointerTy(), getValue(I.getOperand(1)));
2999     else
3000       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3001                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3002
3003     SDOperand Offset = DAG.getNode(ISD::ADD,
3004                                    TLI.getPointerTy(),
3005                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3006                                                TLI.getPointerTy()),
3007                                    CfaArg);
3008     setValue(&I, DAG.getNode(ISD::ADD,
3009                              TLI.getPointerTy(),
3010                              DAG.getNode(ISD::FRAMEADDR,
3011                                          TLI.getPointerTy(),
3012                                          DAG.getConstant(0,
3013                                                          TLI.getPointerTy())),
3014                              Offset));
3015     return 0;
3016  }
3017
3018  case Intrinsic::sqrt:
3019    setValue(&I, DAG.getNode(ISD::FSQRT,
3020                             getValue(I.getOperand(1)).getValueType(),
3021                             getValue(I.getOperand(1))));
3022    return 0;
3023  case Intrinsic::powi:
3024    setValue(&I, DAG.getNode(ISD::FPOWI,
3025                             getValue(I.getOperand(1)).getValueType(),
3026                             getValue(I.getOperand(1)),
3027                             getValue(I.getOperand(2))));
3028    return 0;
3029  case Intrinsic::sin:
3030    setValue(&I, DAG.getNode(ISD::FSIN,
3031                             getValue(I.getOperand(1)).getValueType(),
3032                             getValue(I.getOperand(1))));
3033    return 0;
3034  case Intrinsic::cos:
3035    setValue(&I, DAG.getNode(ISD::FCOS,
3036                             getValue(I.getOperand(1)).getValueType(),
3037                             getValue(I.getOperand(1))));
3038    return 0;
3039  case Intrinsic::pow:
3040    setValue(&I, DAG.getNode(ISD::FPOW,
3041                             getValue(I.getOperand(1)).getValueType(),
3042                             getValue(I.getOperand(1)),
3043                             getValue(I.getOperand(2))));
3044    return 0;
3045  case Intrinsic::pcmarker: {
3046    SDOperand Tmp = getValue(I.getOperand(1));
3047    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3048    return 0;
3049  }
3050  case Intrinsic::readcyclecounter: {
3051    SDOperand Op = getRoot();
3052    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3053                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3054                                &Op, 1);
3055    setValue(&I, Tmp);
3056    DAG.setRoot(Tmp.getValue(1));
3057    return 0;
3058  }
3059  case Intrinsic::part_select: {
3060    // Currently not implemented: just abort
3061    assert(0 && "part_select intrinsic not implemented");
3062    abort();
3063  }
3064  case Intrinsic::part_set: {
3065    // Currently not implemented: just abort
3066    assert(0 && "part_set intrinsic not implemented");
3067    abort();
3068  }
3069  case Intrinsic::bswap:
3070    setValue(&I, DAG.getNode(ISD::BSWAP,
3071                             getValue(I.getOperand(1)).getValueType(),
3072                             getValue(I.getOperand(1))));
3073    return 0;
3074  case Intrinsic::cttz: {
3075    SDOperand Arg = getValue(I.getOperand(1));
3076    MVT::ValueType Ty = Arg.getValueType();
3077    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3078    setValue(&I, result);
3079    return 0;
3080  }
3081  case Intrinsic::ctlz: {
3082    SDOperand Arg = getValue(I.getOperand(1));
3083    MVT::ValueType Ty = Arg.getValueType();
3084    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3085    setValue(&I, result);
3086    return 0;
3087  }
3088  case Intrinsic::ctpop: {
3089    SDOperand Arg = getValue(I.getOperand(1));
3090    MVT::ValueType Ty = Arg.getValueType();
3091    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3092    setValue(&I, result);
3093    return 0;
3094  }
3095  case Intrinsic::stacksave: {
3096    SDOperand Op = getRoot();
3097    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
3098              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3099    setValue(&I, Tmp);
3100    DAG.setRoot(Tmp.getValue(1));
3101    return 0;
3102  }
3103  case Intrinsic::stackrestore: {
3104    SDOperand Tmp = getValue(I.getOperand(1));
3105    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3106    return 0;
3107  }
3108  case Intrinsic::var_annotation:
3109    // Discard annotate attributes
3110    return 0;
3111
3112  case Intrinsic::init_trampoline: {
3113    const Function *F =
3114      cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
3115
3116    SDOperand Ops[6];
3117    Ops[0] = getRoot();
3118    Ops[1] = getValue(I.getOperand(1));
3119    Ops[2] = getValue(I.getOperand(2));
3120    Ops[3] = getValue(I.getOperand(3));
3121    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3122    Ops[5] = DAG.getSrcValue(F);
3123
3124    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
3125                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3126                                                      MVT::Other), 2,
3127                                Ops, 6);
3128
3129    setValue(&I, Tmp);
3130    DAG.setRoot(Tmp.getValue(1));
3131    return 0;
3132  }
3133
3134  case Intrinsic::gcroot:
3135    if (GCI) {
3136      Value *Alloca = I.getOperand(1);
3137      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3138
3139      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3140      GCI->addStackRoot(FI->getIndex(), TypeMap);
3141    }
3142    return 0;
3143
3144  case Intrinsic::gcread:
3145  case Intrinsic::gcwrite:
3146    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3147    return 0;
3148
3149  case Intrinsic::flt_rounds: {
3150    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3151    return 0;
3152  }
3153
3154  case Intrinsic::trap: {
3155    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3156    return 0;
3157  }
3158  case Intrinsic::prefetch: {
3159    SDOperand Ops[4];
3160    Ops[0] = getRoot();
3161    Ops[1] = getValue(I.getOperand(1));
3162    Ops[2] = getValue(I.getOperand(2));
3163    Ops[3] = getValue(I.getOperand(3));
3164    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3165    return 0;
3166  }
3167
3168  case Intrinsic::memory_barrier: {
3169    SDOperand Ops[6];
3170    Ops[0] = getRoot();
3171    for (int x = 1; x < 6; ++x)
3172      Ops[x] = getValue(I.getOperand(x));
3173
3174    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3175    return 0;
3176  }
3177  case Intrinsic::atomic_lcs: {
3178    SDOperand Root = getRoot();
3179    SDOperand O3 = getValue(I.getOperand(3));
3180    SDOperand L = DAG.getAtomic(ISD::ATOMIC_LCS, Root,
3181                                getValue(I.getOperand(1)),
3182                                getValue(I.getOperand(2)),
3183                                O3, O3.getValueType());
3184    setValue(&I, L);
3185    DAG.setRoot(L.getValue(1));
3186    return 0;
3187  }
3188  case Intrinsic::atomic_las: {
3189    SDOperand Root = getRoot();
3190    SDOperand O2 = getValue(I.getOperand(2));
3191    SDOperand L = DAG.getAtomic(ISD::ATOMIC_LAS, Root,
3192                                getValue(I.getOperand(1)),
3193                                O2, O2.getValueType());
3194    setValue(&I, L);
3195    DAG.setRoot(L.getValue(1));
3196    return 0;
3197  }
3198  case Intrinsic::atomic_swap: {
3199    SDOperand Root = getRoot();
3200    SDOperand O2 = getValue(I.getOperand(2));
3201    SDOperand L = DAG.getAtomic(ISD::ATOMIC_SWAP, Root,
3202                                getValue(I.getOperand(1)),
3203                                O2, O2.getValueType());
3204    setValue(&I, L);
3205    DAG.setRoot(L.getValue(1));
3206    return 0;
3207  }
3208
3209  }
3210}
3211
3212
3213void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
3214                                       bool IsTailCall,
3215                                       MachineBasicBlock *LandingPad) {
3216  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3217  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3218  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3219  unsigned BeginLabel = 0, EndLabel = 0;
3220
3221  TargetLowering::ArgListTy Args;
3222  TargetLowering::ArgListEntry Entry;
3223  Args.reserve(CS.arg_size());
3224  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3225       i != e; ++i) {
3226    SDOperand ArgNode = getValue(*i);
3227    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3228
3229    unsigned attrInd = i - CS.arg_begin() + 1;
3230    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3231    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3232    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3233    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3234    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3235    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3236    Entry.Alignment = CS.getParamAlignment(attrInd);
3237    Args.push_back(Entry);
3238  }
3239
3240  if (LandingPad && MMI) {
3241    // Insert a label before the invoke call to mark the try range.  This can be
3242    // used to detect deletion of the invoke via the MachineModuleInfo.
3243    BeginLabel = MMI->NextLabelID();
3244    // Both PendingLoads and PendingExports must be flushed here;
3245    // this call might not return.
3246    (void)getRoot();
3247    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getControlRoot(),
3248                            DAG.getConstant(BeginLabel, MVT::i32),
3249                            DAG.getConstant(1, MVT::i32)));
3250  }
3251
3252  std::pair<SDOperand,SDOperand> Result =
3253    TLI.LowerCallTo(getRoot(), CS.getType(),
3254                    CS.paramHasAttr(0, ParamAttr::SExt),
3255                    CS.paramHasAttr(0, ParamAttr::ZExt),
3256                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3257                    Callee, Args, DAG);
3258  if (CS.getType() != Type::VoidTy)
3259    setValue(CS.getInstruction(), Result.first);
3260  DAG.setRoot(Result.second);
3261
3262  if (LandingPad && MMI) {
3263    // Insert a label at the end of the invoke call to mark the try range.  This
3264    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3265    EndLabel = MMI->NextLabelID();
3266    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3267                            DAG.getConstant(EndLabel, MVT::i32),
3268                            DAG.getConstant(1, MVT::i32)));
3269
3270    // Inform MachineModuleInfo of range.
3271    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3272  }
3273}
3274
3275
3276void SelectionDAGLowering::visitCall(CallInst &I) {
3277  const char *RenameFn = 0;
3278  if (Function *F = I.getCalledFunction()) {
3279    if (F->isDeclaration()) {
3280      if (unsigned IID = F->getIntrinsicID()) {
3281        RenameFn = visitIntrinsicCall(I, IID);
3282        if (!RenameFn)
3283          return;
3284      }
3285    }
3286
3287    // Check for well-known libc/libm calls.  If the function is internal, it
3288    // can't be a library call.
3289    unsigned NameLen = F->getNameLen();
3290    if (!F->hasInternalLinkage() && NameLen) {
3291      const char *NameStr = F->getNameStart();
3292      if (NameStr[0] == 'c' &&
3293          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3294           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3295        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3296            I.getOperand(1)->getType()->isFloatingPoint() &&
3297            I.getType() == I.getOperand(1)->getType() &&
3298            I.getType() == I.getOperand(2)->getType()) {
3299          SDOperand LHS = getValue(I.getOperand(1));
3300          SDOperand RHS = getValue(I.getOperand(2));
3301          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3302                                   LHS, RHS));
3303          return;
3304        }
3305      } else if (NameStr[0] == 'f' &&
3306                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3307                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3308                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3309        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3310            I.getOperand(1)->getType()->isFloatingPoint() &&
3311            I.getType() == I.getOperand(1)->getType()) {
3312          SDOperand Tmp = getValue(I.getOperand(1));
3313          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3314          return;
3315        }
3316      } else if (NameStr[0] == 's' &&
3317                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3318                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3319                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3320        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3321            I.getOperand(1)->getType()->isFloatingPoint() &&
3322            I.getType() == I.getOperand(1)->getType()) {
3323          SDOperand Tmp = getValue(I.getOperand(1));
3324          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3325          return;
3326        }
3327      } else if (NameStr[0] == 'c' &&
3328                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3329                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3330                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3331        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3332            I.getOperand(1)->getType()->isFloatingPoint() &&
3333            I.getType() == I.getOperand(1)->getType()) {
3334          SDOperand Tmp = getValue(I.getOperand(1));
3335          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3336          return;
3337        }
3338      }
3339    }
3340  } else if (isa<InlineAsm>(I.getOperand(0))) {
3341    visitInlineAsm(&I);
3342    return;
3343  }
3344
3345  SDOperand Callee;
3346  if (!RenameFn)
3347    Callee = getValue(I.getOperand(0));
3348  else
3349    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3350
3351  LowerCallTo(&I, Callee, I.isTailCall());
3352}
3353
3354
3355void SelectionDAGLowering::visitGetResult(GetResultInst &I) {
3356  if (isa<UndefValue>(I.getOperand(0))) {
3357    SDOperand Undef = DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()));
3358    setValue(&I, Undef);
3359    return;
3360  }
3361
3362  // To add support for individual return values with aggregate types,
3363  // we'd need a way to take a getresult index and determine which
3364  // values of the Call SDNode are associated with it.
3365  assert(TLI.getValueType(I.getType(), true) != MVT::Other &&
3366         "Individual return values must not be aggregates!");
3367
3368  SDOperand Call = getValue(I.getOperand(0));
3369  setValue(&I, SDOperand(Call.Val, I.getIndex()));
3370}
3371
3372
3373/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3374/// this value and returns the result as a ValueVT value.  This uses
3375/// Chain/Flag as the input and updates them for the output Chain/Flag.
3376/// If the Flag pointer is NULL, no flag is used.
3377SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3378                                        SDOperand &Chain,
3379                                        SDOperand *Flag) const {
3380  // Assemble the legal parts into the final values.
3381  SmallVector<SDOperand, 4> Values(ValueVTs.size());
3382  SmallVector<SDOperand, 8> Parts;
3383  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3384    // Copy the legal parts from the registers.
3385    MVT::ValueType ValueVT = ValueVTs[Value];
3386    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
3387    MVT::ValueType RegisterVT = RegVTs[Value];
3388
3389    Parts.resize(NumRegs);
3390    for (unsigned i = 0; i != NumRegs; ++i) {
3391      SDOperand P;
3392      if (Flag == 0)
3393        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
3394      else {
3395        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
3396        *Flag = P.getValue(2);
3397      }
3398      Chain = P.getValue(1);
3399      Parts[Part+i] = P;
3400    }
3401
3402    Values[Value] = getCopyFromParts(DAG, &Parts[Part], NumRegs, RegisterVT,
3403                                     ValueVT);
3404    Part += NumRegs;
3405  }
3406
3407  if (ValueVTs.size() == 1)
3408    return Values[0];
3409
3410  return DAG.getNode(ISD::MERGE_VALUES,
3411                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
3412                     &Values[0], ValueVTs.size());
3413}
3414
3415/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3416/// specified value into the registers specified by this object.  This uses
3417/// Chain/Flag as the input and updates them for the output Chain/Flag.
3418/// If the Flag pointer is NULL, no flag is used.
3419void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3420                                 SDOperand &Chain, SDOperand *Flag) const {
3421  // Get the list of the values's legal parts.
3422  unsigned NumRegs = Regs.size();
3423  SmallVector<SDOperand, 8> Parts(NumRegs);
3424  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3425    MVT::ValueType ValueVT = ValueVTs[Value];
3426    unsigned NumParts = TLI->getNumRegisters(ValueVT);
3427    MVT::ValueType RegisterVT = RegVTs[Value];
3428
3429    getCopyToParts(DAG, Val.getValue(Val.ResNo + Value),
3430                   &Parts[Part], NumParts, RegisterVT);
3431    Part += NumParts;
3432  }
3433
3434  // Copy the parts into the registers.
3435  SmallVector<SDOperand, 8> Chains(NumRegs);
3436  for (unsigned i = 0; i != NumRegs; ++i) {
3437    SDOperand Part;
3438    if (Flag == 0)
3439      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3440    else {
3441      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
3442      *Flag = Part.getValue(1);
3443    }
3444    Chains[i] = Part.getValue(0);
3445  }
3446
3447  if (NumRegs == 1)
3448    Chain = Chains[0];
3449  else
3450    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
3451}
3452
3453/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3454/// operand list.  This adds the code marker and includes the number of
3455/// values added into it.
3456void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3457                                        std::vector<SDOperand> &Ops) const {
3458  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3459  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3460  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
3461    unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
3462    MVT::ValueType RegisterVT = RegVTs[Value];
3463    for (unsigned i = 0; i != NumRegs; ++i)
3464      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
3465  }
3466}
3467
3468/// isAllocatableRegister - If the specified register is safe to allocate,
3469/// i.e. it isn't a stack pointer or some other special register, return the
3470/// register class for the register.  Otherwise, return null.
3471static const TargetRegisterClass *
3472isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3473                      const TargetLowering &TLI,
3474                      const TargetRegisterInfo *TRI) {
3475  MVT::ValueType FoundVT = MVT::Other;
3476  const TargetRegisterClass *FoundRC = 0;
3477  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3478       E = TRI->regclass_end(); RCI != E; ++RCI) {
3479    MVT::ValueType ThisVT = MVT::Other;
3480
3481    const TargetRegisterClass *RC = *RCI;
3482    // If none of the the value types for this register class are valid, we
3483    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3484    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3485         I != E; ++I) {
3486      if (TLI.isTypeLegal(*I)) {
3487        // If we have already found this register in a different register class,
3488        // choose the one with the largest VT specified.  For example, on
3489        // PowerPC, we favor f64 register classes over f32.
3490        if (FoundVT == MVT::Other ||
3491            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3492          ThisVT = *I;
3493          break;
3494        }
3495      }
3496    }
3497
3498    if (ThisVT == MVT::Other) continue;
3499
3500    // NOTE: This isn't ideal.  In particular, this might allocate the
3501    // frame pointer in functions that need it (due to them not being taken
3502    // out of allocation, because a variable sized allocation hasn't been seen
3503    // yet).  This is a slight code pessimization, but should still work.
3504    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3505         E = RC->allocation_order_end(MF); I != E; ++I)
3506      if (*I == Reg) {
3507        // We found a matching register class.  Keep looking at others in case
3508        // we find one with larger registers that this physreg is also in.
3509        FoundRC = RC;
3510        FoundVT = ThisVT;
3511        break;
3512      }
3513  }
3514  return FoundRC;
3515}
3516
3517
3518namespace {
3519/// AsmOperandInfo - This contains information for each constraint that we are
3520/// lowering.
3521struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
3522  /// CallOperand - If this is the result output operand or a clobber
3523  /// this is null, otherwise it is the incoming operand to the CallInst.
3524  /// This gets modified as the asm is processed.
3525  SDOperand CallOperand;
3526
3527  /// AssignedRegs - If this is a register or register class operand, this
3528  /// contains the set of register corresponding to the operand.
3529  RegsForValue AssignedRegs;
3530
3531  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3532    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
3533  }
3534
3535  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3536  /// busy in OutputRegs/InputRegs.
3537  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3538                         std::set<unsigned> &OutputRegs,
3539                         std::set<unsigned> &InputRegs,
3540                         const TargetRegisterInfo &TRI) const {
3541    if (isOutReg) {
3542      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3543        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3544    }
3545    if (isInReg) {
3546      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3547        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3548    }
3549  }
3550
3551private:
3552  /// MarkRegAndAliases - Mark the specified register and all aliases in the
3553  /// specified set.
3554  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3555                                const TargetRegisterInfo &TRI) {
3556    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3557    Regs.insert(Reg);
3558    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3559      for (; *Aliases; ++Aliases)
3560        Regs.insert(*Aliases);
3561  }
3562};
3563} // end anon namespace.
3564
3565
3566/// GetRegistersForValue - Assign registers (virtual or physical) for the
3567/// specified operand.  We prefer to assign virtual registers, to allow the
3568/// register allocator handle the assignment process.  However, if the asm uses
3569/// features that we can't model on machineinstrs, we have SDISel do the
3570/// allocation.  This produces generally horrible, but correct, code.
3571///
3572///   OpInfo describes the operand.
3573///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
3574///     or any explicitly clobbered registers.
3575///   Input and OutputRegs are the set of already allocated physical registers.
3576///
3577void SelectionDAGLowering::
3578GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
3579                     std::set<unsigned> &OutputRegs,
3580                     std::set<unsigned> &InputRegs) {
3581  // Compute whether this value requires an input register, an output register,
3582  // or both.
3583  bool isOutReg = false;
3584  bool isInReg = false;
3585  switch (OpInfo.Type) {
3586  case InlineAsm::isOutput:
3587    isOutReg = true;
3588
3589    // If this is an early-clobber output, or if there is an input
3590    // constraint that matches this, we need to reserve the input register
3591    // so no other inputs allocate to it.
3592    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3593    break;
3594  case InlineAsm::isInput:
3595    isInReg = true;
3596    isOutReg = false;
3597    break;
3598  case InlineAsm::isClobber:
3599    isOutReg = true;
3600    isInReg = true;
3601    break;
3602  }
3603
3604
3605  MachineFunction &MF = DAG.getMachineFunction();
3606  SmallVector<unsigned, 4> Regs;
3607
3608  // If this is a constraint for a single physreg, or a constraint for a
3609  // register class, find it.
3610  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3611    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3612                                     OpInfo.ConstraintVT);
3613
3614  unsigned NumRegs = 1;
3615  if (OpInfo.ConstraintVT != MVT::Other)
3616    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3617  MVT::ValueType RegVT;
3618  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3619
3620
3621  // If this is a constraint for a specific physical register, like {r17},
3622  // assign it now.
3623  if (PhysReg.first) {
3624    if (OpInfo.ConstraintVT == MVT::Other)
3625      ValueVT = *PhysReg.second->vt_begin();
3626
3627    // Get the actual register value type.  This is important, because the user
3628    // may have asked for (e.g.) the AX register in i32 type.  We need to
3629    // remember that AX is actually i16 to get the right extension.
3630    RegVT = *PhysReg.second->vt_begin();
3631
3632    // This is a explicit reference to a physical register.
3633    Regs.push_back(PhysReg.first);
3634
3635    // If this is an expanded reference, add the rest of the regs to Regs.
3636    if (NumRegs != 1) {
3637      TargetRegisterClass::iterator I = PhysReg.second->begin();
3638      TargetRegisterClass::iterator E = PhysReg.second->end();
3639      for (; *I != PhysReg.first; ++I)
3640        assert(I != E && "Didn't find reg!");
3641
3642      // Already added the first reg.
3643      --NumRegs; ++I;
3644      for (; NumRegs; --NumRegs, ++I) {
3645        assert(I != E && "Ran out of registers to allocate!");
3646        Regs.push_back(*I);
3647      }
3648    }
3649    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
3650    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3651    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
3652    return;
3653  }
3654
3655  // Otherwise, if this was a reference to an LLVM register class, create vregs
3656  // for this reference.
3657  std::vector<unsigned> RegClassRegs;
3658  const TargetRegisterClass *RC = PhysReg.second;
3659  if (RC) {
3660    // If this is an early clobber or tied register, our regalloc doesn't know
3661    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3662    // and let the regalloc do the right thing.
3663    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3664        // If there is some other early clobber and this is an input register,
3665        // then we are forced to pre-allocate the input reg so it doesn't
3666        // conflict with the earlyclobber.
3667        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3668      RegVT = *PhysReg.second->vt_begin();
3669
3670      if (OpInfo.ConstraintVT == MVT::Other)
3671        ValueVT = RegVT;
3672
3673      // Create the appropriate number of virtual registers.
3674      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3675      for (; NumRegs; --NumRegs)
3676        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
3677
3678      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
3679      return;
3680    }
3681
3682    // Otherwise, we can't allocate it.  Let the code below figure out how to
3683    // maintain these constraints.
3684    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3685
3686  } else {
3687    // This is a reference to a register class that doesn't directly correspond
3688    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3689    // registers from the class.
3690    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3691                                                         OpInfo.ConstraintVT);
3692  }
3693
3694  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3695  unsigned NumAllocated = 0;
3696  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3697    unsigned Reg = RegClassRegs[i];
3698    // See if this register is available.
3699    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3700        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3701      // Make sure we find consecutive registers.
3702      NumAllocated = 0;
3703      continue;
3704    }
3705
3706    // Check to see if this register is allocatable (i.e. don't give out the
3707    // stack pointer).
3708    if (RC == 0) {
3709      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
3710      if (!RC) {        // Couldn't allocate this register.
3711        // Reset NumAllocated to make sure we return consecutive registers.
3712        NumAllocated = 0;
3713        continue;
3714      }
3715    }
3716
3717    // Okay, this register is good, we can use it.
3718    ++NumAllocated;
3719
3720    // If we allocated enough consecutive registers, succeed.
3721    if (NumAllocated == NumRegs) {
3722      unsigned RegStart = (i-NumAllocated)+1;
3723      unsigned RegEnd   = i+1;
3724      // Mark all of the allocated registers used.
3725      for (unsigned i = RegStart; i != RegEnd; ++i)
3726        Regs.push_back(RegClassRegs[i]);
3727
3728      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
3729                                         OpInfo.ConstraintVT);
3730      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
3731      return;
3732    }
3733  }
3734
3735  // Otherwise, we couldn't allocate enough registers for this.
3736  return;
3737}
3738
3739
3740/// visitInlineAsm - Handle a call to an InlineAsm object.
3741///
3742void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
3743  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3744
3745  /// ConstraintOperands - Information about all of the constraints.
3746  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
3747
3748  SDOperand Chain = getRoot();
3749  SDOperand Flag;
3750
3751  std::set<unsigned> OutputRegs, InputRegs;
3752
3753  // Do a prepass over the constraints, canonicalizing them, and building up the
3754  // ConstraintOperands list.
3755  std::vector<InlineAsm::ConstraintInfo>
3756    ConstraintInfos = IA->ParseConstraints();
3757
3758  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3759  // constraint.  If so, we can't let the register allocator allocate any input
3760  // registers, because it will not know to avoid the earlyclobbered output reg.
3761  bool SawEarlyClobber = false;
3762
3763  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3764  unsigned ResNo = 0;   // ResNo - The result number of the next output.
3765  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3766    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
3767    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
3768
3769    MVT::ValueType OpVT = MVT::Other;
3770
3771    // Compute the value type for each operand.
3772    switch (OpInfo.Type) {
3773    case InlineAsm::isOutput:
3774      // Indirect outputs just consume an argument.
3775      if (OpInfo.isIndirect) {
3776        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3777        break;
3778      }
3779      // The return value of the call is this value.  As such, there is no
3780      // corresponding argument.
3781      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3782      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
3783        OpVT = TLI.getValueType(STy->getElementType(ResNo));
3784      } else {
3785        assert(ResNo == 0 && "Asm only has one result!");
3786        OpVT = TLI.getValueType(CS.getType());
3787      }
3788      ++ResNo;
3789      break;
3790    case InlineAsm::isInput:
3791      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3792      break;
3793    case InlineAsm::isClobber:
3794      // Nothing to do.
3795      break;
3796    }
3797
3798    // If this is an input or an indirect output, process the call argument.
3799    // BasicBlocks are labels, currently appearing only in asm's.
3800    if (OpInfo.CallOperandVal) {
3801      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
3802        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
3803      else {
3804        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3805        const Type *OpTy = OpInfo.CallOperandVal->getType();
3806        // If this is an indirect operand, the operand is a pointer to the
3807        // accessed type.
3808        if (OpInfo.isIndirect)
3809          OpTy = cast<PointerType>(OpTy)->getElementType();
3810
3811        // If OpTy is not a first-class value, it may be a struct/union that we
3812        // can tile with integers.
3813        if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3814          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3815          switch (BitSize) {
3816          default: break;
3817          case 1:
3818          case 8:
3819          case 16:
3820          case 32:
3821          case 64:
3822            OpTy = IntegerType::get(BitSize);
3823            break;
3824          }
3825        }
3826
3827        OpVT = TLI.getValueType(OpTy, true);
3828      }
3829    }
3830
3831    OpInfo.ConstraintVT = OpVT;
3832
3833    // Compute the constraint code and ConstraintType to use.
3834    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
3835
3836    // Keep track of whether we see an earlyclobber.
3837    SawEarlyClobber |= OpInfo.isEarlyClobber;
3838
3839    // If we see a clobber of a register, it is an early clobber.
3840    if (!SawEarlyClobber &&
3841        OpInfo.Type == InlineAsm::isClobber &&
3842        OpInfo.ConstraintType == TargetLowering::C_Register) {
3843      // Note that we want to ignore things that we don't trick here, like
3844      // dirflag, fpsr, flags, etc.
3845      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3846        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3847                                         OpInfo.ConstraintVT);
3848      if (PhysReg.first || PhysReg.second) {
3849        // This is a register we know of.
3850        SawEarlyClobber = true;
3851      }
3852    }
3853
3854    // If this is a memory input, and if the operand is not indirect, do what we
3855    // need to to provide an address for the memory input.
3856    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3857        !OpInfo.isIndirect) {
3858      assert(OpInfo.Type == InlineAsm::isInput &&
3859             "Can only indirectify direct input operands!");
3860
3861      // Memory operands really want the address of the value.  If we don't have
3862      // an indirect input, put it in the constpool if we can, otherwise spill
3863      // it to a stack slot.
3864
3865      // If the operand is a float, integer, or vector constant, spill to a
3866      // constant pool entry to get its address.
3867      Value *OpVal = OpInfo.CallOperandVal;
3868      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3869          isa<ConstantVector>(OpVal)) {
3870        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3871                                                 TLI.getPointerTy());
3872      } else {
3873        // Otherwise, create a stack slot and emit a store to it before the
3874        // asm.
3875        const Type *Ty = OpVal->getType();
3876        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
3877        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3878        MachineFunction &MF = DAG.getMachineFunction();
3879        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3880        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3881        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3882        OpInfo.CallOperand = StackSlot;
3883      }
3884
3885      // There is no longer a Value* corresponding to this operand.
3886      OpInfo.CallOperandVal = 0;
3887      // It is now an indirect operand.
3888      OpInfo.isIndirect = true;
3889    }
3890
3891    // If this constraint is for a specific register, allocate it before
3892    // anything else.
3893    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3894      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3895  }
3896  ConstraintInfos.clear();
3897
3898
3899  // Second pass - Loop over all of the operands, assigning virtual or physregs
3900  // to registerclass operands.
3901  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3902    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
3903
3904    // C_Register operands have already been allocated, Other/Memory don't need
3905    // to be.
3906    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3907      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3908  }
3909
3910  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3911  std::vector<SDOperand> AsmNodeOperands;
3912  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3913  AsmNodeOperands.push_back(
3914          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3915
3916
3917  // Loop over all of the inputs, copying the operand values into the
3918  // appropriate registers and processing the output regs.
3919  RegsForValue RetValRegs;
3920
3921  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3922  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3923
3924  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3925    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
3926
3927    switch (OpInfo.Type) {
3928    case InlineAsm::isOutput: {
3929      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3930          OpInfo.ConstraintType != TargetLowering::C_Register) {
3931        // Memory output, or 'other' output (e.g. 'X' constraint).
3932        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3933
3934        // Add information to the INLINEASM node to know about this output.
3935        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3936        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3937                                                        TLI.getPointerTy()));
3938        AsmNodeOperands.push_back(OpInfo.CallOperand);
3939        break;
3940      }
3941
3942      // Otherwise, this is a register or register class output.
3943
3944      // Copy the output from the appropriate register.  Find a register that
3945      // we can use.
3946      if (OpInfo.AssignedRegs.Regs.empty()) {
3947        cerr << "Couldn't allocate output reg for contraint '"
3948             << OpInfo.ConstraintCode << "'!\n";
3949        exit(1);
3950      }
3951
3952      if (!OpInfo.isIndirect) {
3953        // This is the result value of the call.
3954        assert(RetValRegs.Regs.empty() &&
3955               "Cannot have multiple output constraints yet!");
3956        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3957        RetValRegs = OpInfo.AssignedRegs;
3958      } else {
3959        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3960                                                      OpInfo.CallOperandVal));
3961      }
3962
3963      // Add information to the INLINEASM node to know that this register is
3964      // set.
3965      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3966                                               AsmNodeOperands);
3967      break;
3968    }
3969    case InlineAsm::isInput: {
3970      SDOperand InOperandVal = OpInfo.CallOperand;
3971
3972      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3973        // If this is required to match an output register we have already set,
3974        // just use its register.
3975        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3976
3977        // Scan until we find the definition we already emitted of this operand.
3978        // When we find it, create a RegsForValue operand.
3979        unsigned CurOp = 2;  // The first operand.
3980        for (; OperandNo; --OperandNo) {
3981          // Advance to the next operand.
3982          unsigned NumOps =
3983            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3984          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3985                  (NumOps & 7) == 4 /*MEM*/) &&
3986                 "Skipped past definitions?");
3987          CurOp += (NumOps>>3)+1;
3988        }
3989
3990        unsigned NumOps =
3991          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3992        if ((NumOps & 7) == 2 /*REGDEF*/) {
3993          // Add NumOps>>3 registers to MatchedRegs.
3994          RegsForValue MatchedRegs;
3995          MatchedRegs.TLI = &TLI;
3996          MatchedRegs.ValueVTs.resize(1, InOperandVal.getValueType());
3997          MatchedRegs.RegVTs.resize(1, AsmNodeOperands[CurOp+1].getValueType());
3998          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3999            unsigned Reg =
4000              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4001            MatchedRegs.Regs.push_back(Reg);
4002          }
4003
4004          // Use the produced MatchedRegs object to
4005          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4006          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
4007          break;
4008        } else {
4009          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
4010          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4011          // Add information to the INLINEASM node to know about this input.
4012          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4013          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4014                                                          TLI.getPointerTy()));
4015          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4016          break;
4017        }
4018      }
4019
4020      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4021        assert(!OpInfo.isIndirect &&
4022               "Don't know how to handle indirect other inputs yet!");
4023
4024        std::vector<SDOperand> Ops;
4025        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
4026                                         Ops, DAG);
4027        if (Ops.empty()) {
4028          cerr << "Invalid operand for inline asm constraint '"
4029               << OpInfo.ConstraintCode << "'!\n";
4030          exit(1);
4031        }
4032
4033        // Add information to the INLINEASM node to know about this input.
4034        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4035        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4036                                                        TLI.getPointerTy()));
4037        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4038        break;
4039      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4040        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4041        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4042               "Memory operands expect pointer values");
4043
4044        // Add information to the INLINEASM node to know about this input.
4045        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4046        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4047                                                        TLI.getPointerTy()));
4048        AsmNodeOperands.push_back(InOperandVal);
4049        break;
4050      }
4051
4052      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4053              OpInfo.ConstraintType == TargetLowering::C_Register) &&
4054             "Unknown constraint type!");
4055      assert(!OpInfo.isIndirect &&
4056             "Don't know how to handle indirect register inputs yet!");
4057
4058      // Copy the input into the appropriate registers.
4059      assert(!OpInfo.AssignedRegs.Regs.empty() &&
4060             "Couldn't allocate input reg!");
4061
4062      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4063
4064      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
4065                                               AsmNodeOperands);
4066      break;
4067    }
4068    case InlineAsm::isClobber: {
4069      // Add the clobbered value to the operand list, so that the register
4070      // allocator is aware that the physreg got clobbered.
4071      if (!OpInfo.AssignedRegs.Regs.empty())
4072        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
4073                                                 AsmNodeOperands);
4074      break;
4075    }
4076    }
4077  }
4078
4079  // Finish up input operands.
4080  AsmNodeOperands[0] = Chain;
4081  if (Flag.Val) AsmNodeOperands.push_back(Flag);
4082
4083  Chain = DAG.getNode(ISD::INLINEASM,
4084                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4085                      &AsmNodeOperands[0], AsmNodeOperands.size());
4086  Flag = Chain.getValue(1);
4087
4088  // If this asm returns a register value, copy the result from that register
4089  // and set it as the value of the call.
4090  if (!RetValRegs.Regs.empty()) {
4091    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4092
4093    // If the result of the inline asm is a vector, it may have the wrong
4094    // width/num elts.  Make sure to convert it to the right type with
4095    // bit_convert.
4096    if (MVT::isVector(Val.getValueType())) {
4097      const VectorType *VTy = cast<VectorType>(CS.getType());
4098      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
4099
4100      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
4101    }
4102
4103    setValue(CS.getInstruction(), Val);
4104  }
4105
4106  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
4107
4108  // Process indirect outputs, first output all of the flagged copies out of
4109  // physregs.
4110  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4111    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4112    Value *Ptr = IndirectStoresToEmit[i].second;
4113    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4114    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4115  }
4116
4117  // Emit the non-flagged stores from the physregs.
4118  SmallVector<SDOperand, 8> OutChains;
4119  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4120    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4121                                    getValue(StoresToEmit[i].second),
4122                                    StoresToEmit[i].second, 0));
4123  if (!OutChains.empty())
4124    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4125                        &OutChains[0], OutChains.size());
4126  DAG.setRoot(Chain);
4127}
4128
4129
4130void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4131  SDOperand Src = getValue(I.getOperand(0));
4132
4133  MVT::ValueType IntPtr = TLI.getPointerTy();
4134
4135  if (IntPtr < Src.getValueType())
4136    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4137  else if (IntPtr > Src.getValueType())
4138    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4139
4140  // Scale the source by the type size.
4141  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4142  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4143                    Src, DAG.getIntPtrConstant(ElementSize));
4144
4145  TargetLowering::ArgListTy Args;
4146  TargetLowering::ArgListEntry Entry;
4147  Entry.Node = Src;
4148  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4149  Args.push_back(Entry);
4150
4151  std::pair<SDOperand,SDOperand> Result =
4152    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4153                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4154  setValue(&I, Result.first);  // Pointers always fit in registers
4155  DAG.setRoot(Result.second);
4156}
4157
4158void SelectionDAGLowering::visitFree(FreeInst &I) {
4159  TargetLowering::ArgListTy Args;
4160  TargetLowering::ArgListEntry Entry;
4161  Entry.Node = getValue(I.getOperand(0));
4162  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4163  Args.push_back(Entry);
4164  MVT::ValueType IntPtr = TLI.getPointerTy();
4165  std::pair<SDOperand,SDOperand> Result =
4166    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4167                    CallingConv::C, true,
4168                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4169  DAG.setRoot(Result.second);
4170}
4171
4172// EmitInstrWithCustomInserter - This method should be implemented by targets
4173// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4174// instructions are special in various ways, which require special support to
4175// insert.  The specified MachineInstr is created but not inserted into any
4176// basic blocks, and the scheduler passes ownership of it to this method.
4177MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4178                                                       MachineBasicBlock *MBB) {
4179  cerr << "If a target marks an instruction with "
4180       << "'usesCustomDAGSchedInserter', it must implement "
4181       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4182  abort();
4183  return 0;
4184}
4185
4186void SelectionDAGLowering::visitVAStart(CallInst &I) {
4187  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4188                          getValue(I.getOperand(1)),
4189                          DAG.getSrcValue(I.getOperand(1))));
4190}
4191
4192void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4193  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4194                             getValue(I.getOperand(0)),
4195                             DAG.getSrcValue(I.getOperand(0)));
4196  setValue(&I, V);
4197  DAG.setRoot(V.getValue(1));
4198}
4199
4200void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4201  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4202                          getValue(I.getOperand(1)),
4203                          DAG.getSrcValue(I.getOperand(1))));
4204}
4205
4206void SelectionDAGLowering::visitVACopy(CallInst &I) {
4207  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4208                          getValue(I.getOperand(1)),
4209                          getValue(I.getOperand(2)),
4210                          DAG.getSrcValue(I.getOperand(1)),
4211                          DAG.getSrcValue(I.getOperand(2))));
4212}
4213
4214/// TargetLowering::LowerArguments - This is the default LowerArguments
4215/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4216/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4217/// integrated into SDISel.
4218std::vector<SDOperand>
4219TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
4220  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4221  std::vector<SDOperand> Ops;
4222  Ops.push_back(DAG.getRoot());
4223  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4224  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4225
4226  // Add one result value for each formal argument.
4227  std::vector<MVT::ValueType> RetVals;
4228  unsigned j = 1;
4229  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4230       I != E; ++I, ++j) {
4231    MVT::ValueType VT = getValueType(I->getType());
4232    ISD::ArgFlagsTy Flags;
4233    unsigned OriginalAlignment =
4234      getTargetData()->getABITypeAlignment(I->getType());
4235
4236    if (F.paramHasAttr(j, ParamAttr::ZExt))
4237      Flags.setZExt();
4238    if (F.paramHasAttr(j, ParamAttr::SExt))
4239      Flags.setSExt();
4240    if (F.paramHasAttr(j, ParamAttr::InReg))
4241      Flags.setInReg();
4242    if (F.paramHasAttr(j, ParamAttr::StructRet))
4243      Flags.setSRet();
4244    if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4245      Flags.setByVal();
4246      const PointerType *Ty = cast<PointerType>(I->getType());
4247      const Type *ElementTy = Ty->getElementType();
4248      unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4249      unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4250      // For ByVal, alignment should be passed from FE.  BE will guess if
4251      // this info is not there but there are cases it cannot get right.
4252      if (F.getParamAlignment(j))
4253        FrameAlign = F.getParamAlignment(j);
4254      Flags.setByValAlign(FrameAlign);
4255      Flags.setByValSize(FrameSize);
4256    }
4257    if (F.paramHasAttr(j, ParamAttr::Nest))
4258      Flags.setNest();
4259    Flags.setOrigAlign(OriginalAlignment);
4260
4261    MVT::ValueType RegisterVT = getRegisterType(VT);
4262    unsigned NumRegs = getNumRegisters(VT);
4263    for (unsigned i = 0; i != NumRegs; ++i) {
4264      RetVals.push_back(RegisterVT);
4265      ISD::ArgFlagsTy MyFlags = Flags;
4266      if (NumRegs > 1 && i == 0)
4267        MyFlags.setSplit();
4268      // if it isn't first piece, alignment must be 1
4269      else if (i > 0)
4270        MyFlags.setOrigAlign(1);
4271      Ops.push_back(DAG.getArgFlags(MyFlags));
4272    }
4273  }
4274
4275  RetVals.push_back(MVT::Other);
4276
4277  // Create the node.
4278  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4279                               DAG.getVTList(&RetVals[0], RetVals.size()),
4280                               &Ops[0], Ops.size()).Val;
4281
4282  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4283  // allows exposing the loads that may be part of the argument access to the
4284  // first DAGCombiner pass.
4285  SDOperand TmpRes = LowerOperation(SDOperand(Result, 0), DAG);
4286
4287  // The number of results should match up, except that the lowered one may have
4288  // an extra flag result.
4289  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4290          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4291           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4292         && "Lowering produced unexpected number of results!");
4293  Result = TmpRes.Val;
4294
4295  unsigned NumArgRegs = Result->getNumValues() - 1;
4296  DAG.setRoot(SDOperand(Result, NumArgRegs));
4297
4298  // Set up the return result vector.
4299  Ops.clear();
4300  unsigned i = 0;
4301  unsigned Idx = 1;
4302  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4303      ++I, ++Idx) {
4304    MVT::ValueType VT = getValueType(I->getType());
4305    MVT::ValueType PartVT = getRegisterType(VT);
4306
4307    unsigned NumParts = getNumRegisters(VT);
4308    SmallVector<SDOperand, 4> Parts(NumParts);
4309    for (unsigned j = 0; j != NumParts; ++j)
4310      Parts[j] = SDOperand(Result, i++);
4311
4312    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4313    if (F.paramHasAttr(Idx, ParamAttr::SExt))
4314      AssertOp = ISD::AssertSext;
4315    else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4316      AssertOp = ISD::AssertZext;
4317
4318    Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4319                                   AssertOp));
4320  }
4321  assert(i == NumArgRegs && "Argument register count mismatch!");
4322  return Ops;
4323}
4324
4325
4326/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4327/// implementation, which just inserts an ISD::CALL node, which is later custom
4328/// lowered by the target to something concrete.  FIXME: When all targets are
4329/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4330std::pair<SDOperand, SDOperand>
4331TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4332                            bool RetSExt, bool RetZExt, bool isVarArg,
4333                            unsigned CallingConv, bool isTailCall,
4334                            SDOperand Callee,
4335                            ArgListTy &Args, SelectionDAG &DAG) {
4336  SmallVector<SDOperand, 32> Ops;
4337  Ops.push_back(Chain);   // Op#0 - Chain
4338  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4339  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4340  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4341  Ops.push_back(Callee);
4342
4343  // Handle all of the outgoing arguments.
4344  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4345    MVT::ValueType VT = getValueType(Args[i].Ty);
4346    SDOperand Op = Args[i].Node;
4347    ISD::ArgFlagsTy Flags;
4348    unsigned OriginalAlignment =
4349      getTargetData()->getABITypeAlignment(Args[i].Ty);
4350
4351    if (Args[i].isZExt)
4352      Flags.setZExt();
4353    if (Args[i].isSExt)
4354      Flags.setSExt();
4355    if (Args[i].isInReg)
4356      Flags.setInReg();
4357    if (Args[i].isSRet)
4358      Flags.setSRet();
4359    if (Args[i].isByVal) {
4360      Flags.setByVal();
4361      const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4362      const Type *ElementTy = Ty->getElementType();
4363      unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4364      unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4365      // For ByVal, alignment should come from FE.  BE will guess if this
4366      // info is not there but there are cases it cannot get right.
4367      if (Args[i].Alignment)
4368        FrameAlign = Args[i].Alignment;
4369      Flags.setByValAlign(FrameAlign);
4370      Flags.setByValSize(FrameSize);
4371    }
4372    if (Args[i].isNest)
4373      Flags.setNest();
4374    Flags.setOrigAlign(OriginalAlignment);
4375
4376    MVT::ValueType PartVT = getRegisterType(VT);
4377    unsigned NumParts = getNumRegisters(VT);
4378    SmallVector<SDOperand, 4> Parts(NumParts);
4379    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4380
4381    if (Args[i].isSExt)
4382      ExtendKind = ISD::SIGN_EXTEND;
4383    else if (Args[i].isZExt)
4384      ExtendKind = ISD::ZERO_EXTEND;
4385
4386    getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4387
4388    for (unsigned i = 0; i != NumParts; ++i) {
4389      // if it isn't first piece, alignment must be 1
4390      ISD::ArgFlagsTy MyFlags = Flags;
4391      if (NumParts > 1 && i == 0)
4392        MyFlags.setSplit();
4393      else if (i != 0)
4394        MyFlags.setOrigAlign(1);
4395
4396      Ops.push_back(Parts[i]);
4397      Ops.push_back(DAG.getArgFlags(MyFlags));
4398    }
4399  }
4400
4401  // Figure out the result value types. We start by making a list of
4402  // the potentially illegal return value types.
4403  SmallVector<MVT::ValueType, 4> LoweredRetTys;
4404  SmallVector<MVT::ValueType, 4> RetTys;
4405  ComputeValueVTs(*this, RetTy, RetTys);
4406
4407  // Then we translate that to a list of legal types.
4408  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4409    MVT::ValueType VT = RetTys[I];
4410    MVT::ValueType RegisterVT = getRegisterType(VT);
4411    unsigned NumRegs = getNumRegisters(VT);
4412    for (unsigned i = 0; i != NumRegs; ++i)
4413      LoweredRetTys.push_back(RegisterVT);
4414  }
4415
4416  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
4417
4418  // Create the CALL node.
4419  SDOperand Res = DAG.getNode(ISD::CALL,
4420                              DAG.getVTList(&LoweredRetTys[0],
4421                                            LoweredRetTys.size()),
4422                              &Ops[0], Ops.size());
4423  Chain = Res.getValue(LoweredRetTys.size() - 1);
4424
4425  // Gather up the call result into a single value.
4426  if (RetTy != Type::VoidTy) {
4427    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4428
4429    if (RetSExt)
4430      AssertOp = ISD::AssertSext;
4431    else if (RetZExt)
4432      AssertOp = ISD::AssertZext;
4433
4434    SmallVector<SDOperand, 4> ReturnValues;
4435    unsigned RegNo = 0;
4436    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4437      MVT::ValueType VT = RetTys[I];
4438      MVT::ValueType RegisterVT = getRegisterType(VT);
4439      unsigned NumRegs = getNumRegisters(VT);
4440      unsigned RegNoEnd = NumRegs + RegNo;
4441      SmallVector<SDOperand, 4> Results;
4442      for (; RegNo != RegNoEnd; ++RegNo)
4443        Results.push_back(Res.getValue(RegNo));
4444      SDOperand ReturnValue =
4445        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4446                         AssertOp);
4447      ReturnValues.push_back(ReturnValue);
4448    }
4449    Res = ReturnValues.size() == 1 ? ReturnValues.front() :
4450          DAG.getNode(ISD::MERGE_VALUES,
4451                      DAG.getVTList(&RetTys[0], RetTys.size()),
4452                      &ReturnValues[0], ReturnValues.size());
4453  }
4454
4455  return std::make_pair(Res, Chain);
4456}
4457
4458SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4459  assert(0 && "LowerOperation not implemented for this target!");
4460  abort();
4461  return SDOperand();
4462}
4463
4464SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4465                                                 SelectionDAG &DAG) {
4466  assert(0 && "CustomPromoteOperation not implemented for this target!");
4467  abort();
4468  return SDOperand();
4469}
4470
4471//===----------------------------------------------------------------------===//
4472// SelectionDAGISel code
4473//===----------------------------------------------------------------------===//
4474
4475unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4476  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4477}
4478
4479void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4480  AU.addRequired<AliasAnalysis>();
4481  AU.addRequired<CollectorModuleMetadata>();
4482  AU.setPreservesAll();
4483}
4484
4485
4486
4487bool SelectionDAGISel::runOnFunction(Function &Fn) {
4488  // Get alias analysis for load/store combining.
4489  AA = &getAnalysis<AliasAnalysis>();
4490
4491  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4492  if (MF.getFunction()->hasCollector())
4493    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4494  else
4495    GCI = 0;
4496  RegInfo = &MF.getRegInfo();
4497  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4498
4499  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4500
4501  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4502    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4503      // Mark landing pad.
4504      FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4505
4506  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4507    SelectBasicBlock(I, MF, FuncInfo);
4508
4509  // Add function live-ins to entry block live-in set.
4510  BasicBlock *EntryBB = &Fn.getEntryBlock();
4511  BB = FuncInfo.MBBMap[EntryBB];
4512  if (!RegInfo->livein_empty())
4513    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4514           E = RegInfo->livein_end(); I != E; ++I)
4515      BB->addLiveIn(I->first);
4516
4517#ifndef NDEBUG
4518  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4519         "Not all catch info was assigned to a landing pad!");
4520#endif
4521
4522  return true;
4523}
4524
4525void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
4526  SDOperand Op = getValue(V);
4527  assert((Op.getOpcode() != ISD::CopyFromReg ||
4528          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4529         "Copy from a reg to the same reg!");
4530  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
4531
4532  RegsForValue RFV(TLI, Reg, V->getType());
4533  SDOperand Chain = DAG.getEntryNode();
4534  RFV.getCopyToRegs(Op, DAG, Chain, 0);
4535  PendingExports.push_back(Chain);
4536}
4537
4538void SelectionDAGISel::
4539LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) {
4540  // If this is the entry block, emit arguments.
4541  Function &F = *LLVMBB->getParent();
4542  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4543  SDOperand OldRoot = SDL.DAG.getRoot();
4544  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4545
4546  unsigned a = 0;
4547  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4548       AI != E; ++AI, ++a)
4549    if (!AI->use_empty()) {
4550      SDL.setValue(AI, Args[a]);
4551
4552      // If this argument is live outside of the entry block, insert a copy from
4553      // whereever we got it to the vreg that other BB's will reference it as.
4554      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4555      if (VMI != FuncInfo.ValueMap.end()) {
4556        SDL.CopyValueToVirtualRegister(AI, VMI->second);
4557      }
4558    }
4559
4560  // Finally, if the target has anything special to do, allow it to do so.
4561  // FIXME: this should insert code into the DAG!
4562  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4563}
4564
4565static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4566                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4567  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4568    if (isSelector(I)) {
4569      // Apply the catch info to DestBB.
4570      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4571#ifndef NDEBUG
4572      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4573        FLI.CatchInfoFound.insert(I);
4574#endif
4575    }
4576}
4577
4578/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
4579/// DAG and fixes their tailcall attribute operand.
4580static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4581                                           TargetLowering& TLI) {
4582  SDNode * Ret = NULL;
4583  SDOperand Terminator = DAG.getRoot();
4584
4585  // Find RET node.
4586  if (Terminator.getOpcode() == ISD::RET) {
4587    Ret = Terminator.Val;
4588  }
4589
4590  // Fix tail call attribute of CALL nodes.
4591  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4592         BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4593    if (BI->getOpcode() == ISD::CALL) {
4594      SDOperand OpRet(Ret, 0);
4595      SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4596      bool isMarkedTailCall =
4597        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4598      // If CALL node has tail call attribute set to true and the call is not
4599      // eligible (no RET or the target rejects) the attribute is fixed to
4600      // false. The TargetLowering::IsEligibleForTailCallOptimization function
4601      // must correctly identify tail call optimizable calls.
4602      if (isMarkedTailCall &&
4603          (Ret==NULL ||
4604           !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
4605        SmallVector<SDOperand, 32> Ops;
4606        unsigned idx=0;
4607        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4608              E=OpCall.Val->op_end(); I!=E; I++, idx++) {
4609          if (idx!=3)
4610            Ops.push_back(*I);
4611          else
4612            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4613        }
4614        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4615      }
4616    }
4617  }
4618}
4619
4620void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4621       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4622                                         FunctionLoweringInfo &FuncInfo) {
4623  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
4624
4625  // Lower any arguments needed in this block if this is the entry block.
4626  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4627    LowerArguments(LLVMBB, SDL);
4628
4629  BB = FuncInfo.MBBMap[LLVMBB];
4630  SDL.setCurrentBasicBlock(BB);
4631
4632  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4633
4634  if (MMI && BB->isLandingPad()) {
4635    // Add a label to mark the beginning of the landing pad.  Deletion of the
4636    // landing pad can thus be detected via the MachineModuleInfo.
4637    unsigned LabelID = MMI->addLandingPad(BB);
4638    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4639                            DAG.getConstant(LabelID, MVT::i32),
4640                            DAG.getConstant(1, MVT::i32)));
4641
4642    // Mark exception register as live in.
4643    unsigned Reg = TLI.getExceptionAddressRegister();
4644    if (Reg) BB->addLiveIn(Reg);
4645
4646    // Mark exception selector register as live in.
4647    Reg = TLI.getExceptionSelectorRegister();
4648    if (Reg) BB->addLiveIn(Reg);
4649
4650    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4651    // function and list of typeids logically belong to the invoke (or, if you
4652    // like, the basic block containing the invoke), and need to be associated
4653    // with it in the dwarf exception handling tables.  Currently however the
4654    // information is provided by an intrinsic (eh.selector) that can be moved
4655    // to unexpected places by the optimizers: if the unwind edge is critical,
4656    // then breaking it can result in the intrinsics being in the successor of
4657    // the landing pad, not the landing pad itself.  This results in exceptions
4658    // not being caught because no typeids are associated with the invoke.
4659    // This may not be the only way things can go wrong, but it is the only way
4660    // we try to work around for the moment.
4661    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4662
4663    if (Br && Br->isUnconditional()) { // Critical edge?
4664      BasicBlock::iterator I, E;
4665      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4666        if (isSelector(I))
4667          break;
4668
4669      if (I == E)
4670        // No catch info found - try to extract some from the successor.
4671        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4672    }
4673  }
4674
4675  // Lower all of the non-terminator instructions.
4676  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4677       I != E; ++I)
4678    SDL.visit(*I);
4679
4680  // Ensure that all instructions which are used outside of their defining
4681  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4682  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4683    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4684      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4685      if (VMI != FuncInfo.ValueMap.end())
4686        SDL.CopyValueToVirtualRegister(I, VMI->second);
4687    }
4688
4689  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4690  // ensure constants are generated when needed.  Remember the virtual registers
4691  // that need to be added to the Machine PHI nodes as input.  We cannot just
4692  // directly add them, because expansion might result in multiple MBB's for one
4693  // BB.  As such, the start of the BB might correspond to a different MBB than
4694  // the end.
4695  //
4696  TerminatorInst *TI = LLVMBB->getTerminator();
4697
4698  // Emit constants only once even if used by multiple PHI nodes.
4699  std::map<Constant*, unsigned> ConstantsOut;
4700
4701  // Vector bool would be better, but vector<bool> is really slow.
4702  std::vector<unsigned char> SuccsHandled;
4703  if (TI->getNumSuccessors())
4704    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4705
4706  // Check successor nodes' PHI nodes that expect a constant to be available
4707  // from this block.
4708  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4709    BasicBlock *SuccBB = TI->getSuccessor(succ);
4710    if (!isa<PHINode>(SuccBB->begin())) continue;
4711    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4712
4713    // If this terminator has multiple identical successors (common for
4714    // switches), only handle each succ once.
4715    unsigned SuccMBBNo = SuccMBB->getNumber();
4716    if (SuccsHandled[SuccMBBNo]) continue;
4717    SuccsHandled[SuccMBBNo] = true;
4718
4719    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4720    PHINode *PN;
4721
4722    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4723    // nodes and Machine PHI nodes, but the incoming operands have not been
4724    // emitted yet.
4725    for (BasicBlock::iterator I = SuccBB->begin();
4726         (PN = dyn_cast<PHINode>(I)); ++I) {
4727      // Ignore dead phi's.
4728      if (PN->use_empty()) continue;
4729
4730      unsigned Reg;
4731      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4732
4733      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4734        unsigned &RegOut = ConstantsOut[C];
4735        if (RegOut == 0) {
4736          RegOut = FuncInfo.CreateRegForValue(C);
4737          SDL.CopyValueToVirtualRegister(C, RegOut);
4738        }
4739        Reg = RegOut;
4740      } else {
4741        Reg = FuncInfo.ValueMap[PHIOp];
4742        if (Reg == 0) {
4743          assert(isa<AllocaInst>(PHIOp) &&
4744                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4745                 "Didn't codegen value into a register!??");
4746          Reg = FuncInfo.CreateRegForValue(PHIOp);
4747          SDL.CopyValueToVirtualRegister(PHIOp, Reg);
4748        }
4749      }
4750
4751      // Remember that this register needs to added to the machine PHI node as
4752      // the input for this MBB.
4753      MVT::ValueType VT = TLI.getValueType(PN->getType());
4754      unsigned NumRegisters = TLI.getNumRegisters(VT);
4755      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4756        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4757    }
4758  }
4759  ConstantsOut.clear();
4760
4761  // Lower the terminator after the copies are emitted.
4762  SDL.visit(*LLVMBB->getTerminator());
4763
4764  // Copy over any CaseBlock records that may now exist due to SwitchInst
4765  // lowering, as well as any jump table information.
4766  SwitchCases.clear();
4767  SwitchCases = SDL.SwitchCases;
4768  JTCases.clear();
4769  JTCases = SDL.JTCases;
4770  BitTestCases.clear();
4771  BitTestCases = SDL.BitTestCases;
4772
4773  // Make sure the root of the DAG is up-to-date.
4774  DAG.setRoot(SDL.getControlRoot());
4775
4776  // Check whether calls in this block are real tail calls. Fix up CALL nodes
4777  // with correct tailcall attribute so that the target can rely on the tailcall
4778  // attribute indicating whether the call is really eligible for tail call
4779  // optimization.
4780  CheckDAGForTailCallsAndFixThem(DAG, TLI);
4781}
4782
4783void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4784  DOUT << "Lowered selection DAG:\n";
4785  DEBUG(DAG.dump());
4786
4787  // Run the DAG combiner in pre-legalize mode.
4788  DAG.Combine(false, *AA);
4789
4790  DOUT << "Optimized lowered selection DAG:\n";
4791  DEBUG(DAG.dump());
4792
4793  // Second step, hack on the DAG until it only uses operations and types that
4794  // the target supports.
4795#if 0  // Enable this some day.
4796  DAG.LegalizeTypes();
4797  // Someday even later, enable a dag combine pass here.
4798#endif
4799  DAG.Legalize();
4800
4801  DOUT << "Legalized selection DAG:\n";
4802  DEBUG(DAG.dump());
4803
4804  // Run the DAG combiner in post-legalize mode.
4805  DAG.Combine(true, *AA);
4806
4807  DOUT << "Optimized legalized selection DAG:\n";
4808  DEBUG(DAG.dump());
4809
4810  if (ViewISelDAGs) DAG.viewGraph();
4811
4812  // Third, instruction select all of the operations to machine code, adding the
4813  // code to the MachineBasicBlock.
4814  InstructionSelectBasicBlock(DAG);
4815
4816  DOUT << "Selected machine code:\n";
4817  DEBUG(BB->dump());
4818}
4819
4820void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4821                                        FunctionLoweringInfo &FuncInfo) {
4822  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4823  {
4824    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4825    CurDAG = &DAG;
4826
4827    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4828    // types that are not supported by the target.
4829    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4830
4831    // Second step, emit the lowered DAG as machine code.
4832    CodeGenAndEmitDAG(DAG);
4833  }
4834
4835  DOUT << "Total amount of phi nodes to update: "
4836       << PHINodesToUpdate.size() << "\n";
4837  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4838          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4839               << ", " << PHINodesToUpdate[i].second << ")\n";);
4840
4841  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4842  // PHI nodes in successors.
4843  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4844    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4845      MachineInstr *PHI = PHINodesToUpdate[i].first;
4846      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4847             "This is not a machine PHI node that we are updating!");
4848      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4849                                                false));
4850      PHI->addOperand(MachineOperand::CreateMBB(BB));
4851    }
4852    return;
4853  }
4854
4855  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4856    // Lower header first, if it wasn't already lowered
4857    if (!BitTestCases[i].Emitted) {
4858      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4859      CurDAG = &HSDAG;
4860      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
4861      // Set the current basic block to the mbb we wish to insert the code into
4862      BB = BitTestCases[i].Parent;
4863      HSDL.setCurrentBasicBlock(BB);
4864      // Emit the code
4865      HSDL.visitBitTestHeader(BitTestCases[i]);
4866      HSDAG.setRoot(HSDL.getRoot());
4867      CodeGenAndEmitDAG(HSDAG);
4868    }
4869
4870    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4871      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4872      CurDAG = &BSDAG;
4873      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
4874      // Set the current basic block to the mbb we wish to insert the code into
4875      BB = BitTestCases[i].Cases[j].ThisBB;
4876      BSDL.setCurrentBasicBlock(BB);
4877      // Emit the code
4878      if (j+1 != ej)
4879        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4880                              BitTestCases[i].Reg,
4881                              BitTestCases[i].Cases[j]);
4882      else
4883        BSDL.visitBitTestCase(BitTestCases[i].Default,
4884                              BitTestCases[i].Reg,
4885                              BitTestCases[i].Cases[j]);
4886
4887
4888      BSDAG.setRoot(BSDL.getRoot());
4889      CodeGenAndEmitDAG(BSDAG);
4890    }
4891
4892    // Update PHI Nodes
4893    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4894      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4895      MachineBasicBlock *PHIBB = PHI->getParent();
4896      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4897             "This is not a machine PHI node that we are updating!");
4898      // This is "default" BB. We have two jumps to it. From "header" BB and
4899      // from last "case" BB.
4900      if (PHIBB == BitTestCases[i].Default) {
4901        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4902                                                  false));
4903        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
4904        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4905                                                  false));
4906        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
4907                                                  back().ThisBB));
4908      }
4909      // One of "cases" BB.
4910      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4911        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4912        if (cBB->succ_end() !=
4913            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4914          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4915                                                    false));
4916          PHI->addOperand(MachineOperand::CreateMBB(cBB));
4917        }
4918      }
4919    }
4920  }
4921
4922  // If the JumpTable record is filled in, then we need to emit a jump table.
4923  // Updating the PHI nodes is tricky in this case, since we need to determine
4924  // whether the PHI is a successor of the range check MBB or the jump table MBB
4925  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4926    // Lower header first, if it wasn't already lowered
4927    if (!JTCases[i].first.Emitted) {
4928      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4929      CurDAG = &HSDAG;
4930      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
4931      // Set the current basic block to the mbb we wish to insert the code into
4932      BB = JTCases[i].first.HeaderBB;
4933      HSDL.setCurrentBasicBlock(BB);
4934      // Emit the code
4935      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4936      HSDAG.setRoot(HSDL.getRoot());
4937      CodeGenAndEmitDAG(HSDAG);
4938    }
4939
4940    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4941    CurDAG = &JSDAG;
4942    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
4943    // Set the current basic block to the mbb we wish to insert the code into
4944    BB = JTCases[i].second.MBB;
4945    JSDL.setCurrentBasicBlock(BB);
4946    // Emit the code
4947    JSDL.visitJumpTable(JTCases[i].second);
4948    JSDAG.setRoot(JSDL.getRoot());
4949    CodeGenAndEmitDAG(JSDAG);
4950
4951    // Update PHI Nodes
4952    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4953      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4954      MachineBasicBlock *PHIBB = PHI->getParent();
4955      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4956             "This is not a machine PHI node that we are updating!");
4957      // "default" BB. We can go there only from header BB.
4958      if (PHIBB == JTCases[i].second.Default) {
4959        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4960                                                  false));
4961        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
4962      }
4963      // JT BB. Just iterate over successors here
4964      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4965        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4966                                                  false));
4967        PHI->addOperand(MachineOperand::CreateMBB(BB));
4968      }
4969    }
4970  }
4971
4972  // If the switch block involved a branch to one of the actual successors, we
4973  // need to update PHI nodes in that block.
4974  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4975    MachineInstr *PHI = PHINodesToUpdate[i].first;
4976    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4977           "This is not a machine PHI node that we are updating!");
4978    if (BB->isSuccessor(PHI->getParent())) {
4979      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4980                                                false));
4981      PHI->addOperand(MachineOperand::CreateMBB(BB));
4982    }
4983  }
4984
4985  // If we generated any switch lowering information, build and codegen any
4986  // additional DAGs necessary.
4987  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4988    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4989    CurDAG = &SDAG;
4990    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
4991
4992    // Set the current basic block to the mbb we wish to insert the code into
4993    BB = SwitchCases[i].ThisBB;
4994    SDL.setCurrentBasicBlock(BB);
4995
4996    // Emit the code
4997    SDL.visitSwitchCase(SwitchCases[i]);
4998    SDAG.setRoot(SDL.getRoot());
4999    CodeGenAndEmitDAG(SDAG);
5000
5001    // Handle any PHI nodes in successors of this chunk, as if we were coming
5002    // from the original BB before switch expansion.  Note that PHI nodes can
5003    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5004    // handle them the right number of times.
5005    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5006      for (MachineBasicBlock::iterator Phi = BB->begin();
5007           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5008        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5009        for (unsigned pn = 0; ; ++pn) {
5010          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5011          if (PHINodesToUpdate[pn].first == Phi) {
5012            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5013                                                      second, false));
5014            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5015            break;
5016          }
5017        }
5018      }
5019
5020      // Don't process RHS if same block as LHS.
5021      if (BB == SwitchCases[i].FalseBB)
5022        SwitchCases[i].FalseBB = 0;
5023
5024      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5025      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5026      SwitchCases[i].FalseBB = 0;
5027    }
5028    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5029  }
5030}
5031
5032
5033//===----------------------------------------------------------------------===//
5034/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
5035/// target node in the graph.
5036void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
5037  if (ViewSchedDAGs) DAG.viewGraph();
5038
5039  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5040
5041  if (!Ctor) {
5042    Ctor = ISHeuristic;
5043    RegisterScheduler::setDefault(Ctor);
5044  }
5045
5046  ScheduleDAG *SL = Ctor(this, &DAG, BB);
5047  BB = SL->Run();
5048
5049  if (ViewSUnitDAGs) SL->viewGraph();
5050
5051  delete SL;
5052}
5053
5054
5055HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5056  return new HazardRecognizer();
5057}
5058
5059//===----------------------------------------------------------------------===//
5060// Helper functions used by the generated instruction selector.
5061//===----------------------------------------------------------------------===//
5062// Calls to these methods are generated by tblgen.
5063
5064/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5065/// the dag combiner simplified the 255, we still want to match.  RHS is the
5066/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5067/// specified in the .td file (e.g. 255).
5068bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
5069                                    int64_t DesiredMaskS) const {
5070  const APInt &ActualMask = RHS->getAPIntValue();
5071  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5072
5073  // If the actual mask exactly matches, success!
5074  if (ActualMask == DesiredMask)
5075    return true;
5076
5077  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5078  if (ActualMask.intersects(~DesiredMask))
5079    return false;
5080
5081  // Otherwise, the DAG Combiner may have proven that the value coming in is
5082  // either already zero or is not demanded.  Check for known zero input bits.
5083  APInt NeededMask = DesiredMask & ~ActualMask;
5084  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5085    return true;
5086
5087  // TODO: check to see if missing bits are just not demanded.
5088
5089  // Otherwise, this pattern doesn't match.
5090  return false;
5091}
5092
5093/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5094/// the dag combiner simplified the 255, we still want to match.  RHS is the
5095/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5096/// specified in the .td file (e.g. 255).
5097bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5098                                   int64_t DesiredMaskS) const {
5099  const APInt &ActualMask = RHS->getAPIntValue();
5100  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5101
5102  // If the actual mask exactly matches, success!
5103  if (ActualMask == DesiredMask)
5104    return true;
5105
5106  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5107  if (ActualMask.intersects(~DesiredMask))
5108    return false;
5109
5110  // Otherwise, the DAG Combiner may have proven that the value coming in is
5111  // either already zero or is not demanded.  Check for known zero input bits.
5112  APInt NeededMask = DesiredMask & ~ActualMask;
5113
5114  APInt KnownZero, KnownOne;
5115  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5116
5117  // If all the missing bits in the or are already known to be set, match!
5118  if ((NeededMask & KnownOne) == NeededMask)
5119    return true;
5120
5121  // TODO: check to see if missing bits are just not demanded.
5122
5123  // Otherwise, this pattern doesn't match.
5124  return false;
5125}
5126
5127
5128/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5129/// by tblgen.  Others should not call it.
5130void SelectionDAGISel::
5131SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5132  std::vector<SDOperand> InOps;
5133  std::swap(InOps, Ops);
5134
5135  Ops.push_back(InOps[0]);  // input chain.
5136  Ops.push_back(InOps[1]);  // input asm string.
5137
5138  unsigned i = 2, e = InOps.size();
5139  if (InOps[e-1].getValueType() == MVT::Flag)
5140    --e;  // Don't process a flag operand if it is here.
5141
5142  while (i != e) {
5143    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5144    if ((Flags & 7) != 4 /*MEM*/) {
5145      // Just skip over this operand, copying the operands verbatim.
5146      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5147      i += (Flags >> 3) + 1;
5148    } else {
5149      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5150      // Otherwise, this is a memory operand.  Ask the target to select it.
5151      std::vector<SDOperand> SelOps;
5152      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5153        cerr << "Could not match memory address.  Inline asm failure!\n";
5154        exit(1);
5155      }
5156
5157      // Add this to the output node.
5158      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5159      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5160                                          IntPtrTy));
5161      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5162      i += 2;
5163    }
5164  }
5165
5166  // Add the flag input back if present.
5167  if (e != InOps.size())
5168    Ops.push_back(InOps.back());
5169}
5170
5171char SelectionDAGISel::ID = 0;
5172