SelectionDAGISel.cpp revision b3ac388fda3d4b5c6446603377af0a0f70b64b4b
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "SelectionDAGBuild.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleDAG.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Target/TargetFrameInfo.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLowering.h"
45#include "llvm/Target/TargetMachine.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/Timer.h"
51#include <algorithm>
52using namespace llvm;
53
54static cl::opt<bool>
55EnableValueProp("enable-value-prop", cl::Hidden);
56static cl::opt<bool>
57DisableLegalizeTypes("disable-legalize-types", cl::Hidden);
58static cl::opt<bool>
59EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
60          cl::desc("Enable verbose messages in the \"fast\" "
61                   "instruction selector"));
62static cl::opt<bool>
63EnableFastISelAbort("fast-isel-abort", cl::Hidden,
64          cl::desc("Enable abort calls when \"fast\" instruction fails"));
65static cl::opt<bool>
66SchedLiveInCopies("schedule-livein-copies",
67                  cl::desc("Schedule copies of livein registers"),
68                  cl::init(false));
69
70#ifndef NDEBUG
71static cl::opt<bool>
72ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
73          cl::desc("Pop up a window to show dags before the first "
74                   "dag combine pass"));
75static cl::opt<bool>
76ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before legalize types"));
78static cl::opt<bool>
79ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
80          cl::desc("Pop up a window to show dags before legalize"));
81static cl::opt<bool>
82ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before the second "
84                   "dag combine pass"));
85static cl::opt<bool>
86ViewISelDAGs("view-isel-dags", cl::Hidden,
87          cl::desc("Pop up a window to show isel dags as they are selected"));
88static cl::opt<bool>
89ViewSchedDAGs("view-sched-dags", cl::Hidden,
90          cl::desc("Pop up a window to show sched dags as they are processed"));
91static cl::opt<bool>
92ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
93      cl::desc("Pop up a window to show SUnit dags after they are processed"));
94#else
95static const bool ViewDAGCombine1 = false,
96                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
97                  ViewDAGCombine2 = false,
98                  ViewISelDAGs = false, ViewSchedDAGs = false,
99                  ViewSUnitDAGs = false;
100#endif
101
102//===---------------------------------------------------------------------===//
103///
104/// RegisterScheduler class - Track the registration of instruction schedulers.
105///
106//===---------------------------------------------------------------------===//
107MachinePassRegistry RegisterScheduler::Registry;
108
109//===---------------------------------------------------------------------===//
110///
111/// ISHeuristic command line option for instruction schedulers.
112///
113//===---------------------------------------------------------------------===//
114static cl::opt<RegisterScheduler::FunctionPassCtor, false,
115               RegisterPassParser<RegisterScheduler> >
116ISHeuristic("pre-RA-sched",
117            cl::init(&createDefaultScheduler),
118            cl::desc("Instruction schedulers available (before register"
119                     " allocation):"));
120
121static RegisterScheduler
122defaultListDAGScheduler("default", "Best scheduler for the target",
123                        createDefaultScheduler);
124
125namespace llvm {
126  //===--------------------------------------------------------------------===//
127  /// createDefaultScheduler - This creates an instruction scheduler appropriate
128  /// for the target.
129  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
130                                      SelectionDAG *DAG,
131                                      MachineBasicBlock *BB,
132                                      bool Fast) {
133    TargetLowering &TLI = IS->getTargetLowering();
134
135    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
136      return createTDListDAGScheduler(IS, DAG, BB, Fast);
137    } else {
138      assert(TLI.getSchedulingPreference() ==
139           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
140      return createBURRListDAGScheduler(IS, DAG, BB, Fast);
141    }
142  }
143}
144
145// EmitInstrWithCustomInserter - This method should be implemented by targets
146// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
147// instructions are special in various ways, which require special support to
148// insert.  The specified MachineInstr is created but not inserted into any
149// basic blocks, and the scheduler passes ownership of it to this method.
150MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
151                                                       MachineBasicBlock *MBB) {
152  cerr << "If a target marks an instruction with "
153       << "'usesCustomDAGSchedInserter', it must implement "
154       << "TargetLowering::EmitInstrWithCustomInserter!\n";
155  abort();
156  return 0;
157}
158
159/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
160/// physical register has only a single copy use, then coalesced the copy
161/// if possible.
162static void EmitLiveInCopy(MachineBasicBlock *MBB,
163                           MachineBasicBlock::iterator &InsertPos,
164                           unsigned VirtReg, unsigned PhysReg,
165                           const TargetRegisterClass *RC,
166                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
167                           const MachineRegisterInfo &MRI,
168                           const TargetRegisterInfo &TRI,
169                           const TargetInstrInfo &TII) {
170  unsigned NumUses = 0;
171  MachineInstr *UseMI = NULL;
172  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
173         UE = MRI.use_end(); UI != UE; ++UI) {
174    UseMI = &*UI;
175    if (++NumUses > 1)
176      break;
177  }
178
179  // If the number of uses is not one, or the use is not a move instruction,
180  // don't coalesce. Also, only coalesce away a virtual register to virtual
181  // register copy.
182  bool Coalesced = false;
183  unsigned SrcReg, DstReg;
184  if (NumUses == 1 &&
185      TII.isMoveInstr(*UseMI, SrcReg, DstReg) &&
186      TargetRegisterInfo::isVirtualRegister(DstReg)) {
187    VirtReg = DstReg;
188    Coalesced = true;
189  }
190
191  // Now find an ideal location to insert the copy.
192  MachineBasicBlock::iterator Pos = InsertPos;
193  while (Pos != MBB->begin()) {
194    MachineInstr *PrevMI = prior(Pos);
195    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
196    // copyRegToReg might emit multiple instructions to do a copy.
197    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
198    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
199      // This is what the BB looks like right now:
200      // r1024 = mov r0
201      // ...
202      // r1    = mov r1024
203      //
204      // We want to insert "r1025 = mov r1". Inserting this copy below the
205      // move to r1024 makes it impossible for that move to be coalesced.
206      //
207      // r1025 = mov r1
208      // r1024 = mov r0
209      // ...
210      // r1    = mov 1024
211      // r2    = mov 1025
212      break; // Woot! Found a good location.
213    --Pos;
214  }
215
216  TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
217  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
218  if (Coalesced) {
219    if (&*InsertPos == UseMI) ++InsertPos;
220    MBB->erase(UseMI);
221  }
222}
223
224/// EmitLiveInCopies - If this is the first basic block in the function,
225/// and if it has live ins that need to be copied into vregs, emit the
226/// copies into the block.
227static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
228                             const MachineRegisterInfo &MRI,
229                             const TargetRegisterInfo &TRI,
230                             const TargetInstrInfo &TII) {
231  if (SchedLiveInCopies) {
232    // Emit the copies at a heuristically-determined location in the block.
233    DenseMap<MachineInstr*, unsigned> CopyRegMap;
234    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
235    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
236           E = MRI.livein_end(); LI != E; ++LI)
237      if (LI->second) {
238        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
239        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
240                       RC, CopyRegMap, MRI, TRI, TII);
241      }
242  } else {
243    // Emit the copies into the top of the block.
244    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
245           E = MRI.livein_end(); LI != E; ++LI)
246      if (LI->second) {
247        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
248        TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
249                         LI->second, LI->first, RC, RC);
250      }
251  }
252}
253
254//===----------------------------------------------------------------------===//
255// SelectionDAGISel code
256//===----------------------------------------------------------------------===//
257
258SelectionDAGISel::SelectionDAGISel(TargetLowering &tli, bool fast) :
259  FunctionPass(&ID), TLI(tli),
260  FuncInfo(new FunctionLoweringInfo(TLI)),
261  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
262  SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo)),
263  GFI(),
264  Fast(fast),
265  DAGSize(0)
266{}
267
268SelectionDAGISel::~SelectionDAGISel() {
269  delete SDL;
270  delete CurDAG;
271  delete FuncInfo;
272}
273
274unsigned SelectionDAGISel::MakeReg(MVT VT) {
275  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
276}
277
278void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
279  AU.addRequired<AliasAnalysis>();
280  AU.addRequired<GCModuleInfo>();
281  AU.setPreservesAll();
282}
283
284bool SelectionDAGISel::runOnFunction(Function &Fn) {
285  // Do some sanity-checking on the command-line options.
286  assert((!EnableFastISelVerbose || EnableFastISel) &&
287         "-fast-isel-verbose requires -fast-isel");
288  assert((!EnableFastISelAbort || EnableFastISel) &&
289         "-fast-isel-abort requires -fast-isel");
290
291  // Get alias analysis for load/store combining.
292  AA = &getAnalysis<AliasAnalysis>();
293
294  TargetMachine &TM = TLI.getTargetMachine();
295  MachineFunction &MF = MachineFunction::construct(&Fn, TM);
296  const MachineRegisterInfo &MRI = MF.getRegInfo();
297  const TargetInstrInfo &TII = *TM.getInstrInfo();
298  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
299
300  if (MF.getFunction()->hasGC())
301    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(*MF.getFunction());
302  else
303    GFI = 0;
304  RegInfo = &MF.getRegInfo();
305  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
306
307  FuncInfo->set(Fn, MF, EnableFastISel);
308  MachineModuleInfo *MMI = getAnalysisToUpdate<MachineModuleInfo>();
309  CurDAG->init(MF, MMI);
310  SDL->init(GFI, *AA);
311
312  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
313    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
314      // Mark landing pad.
315      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
316
317  SelectAllBasicBlocks(Fn, MF, MMI, TII);
318
319  // If the first basic block in the function has live ins that need to be
320  // copied into vregs, emit the copies into the top of the block before
321  // emitting the code for the block.
322  EmitLiveInCopies(MF.begin(), MRI, TRI, TII);
323
324  // Add function live-ins to entry block live-in set.
325  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
326         E = RegInfo->livein_end(); I != E; ++I)
327    MF.begin()->addLiveIn(I->first);
328
329#ifndef NDEBUG
330  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
331         "Not all catch info was assigned to a landing pad!");
332#endif
333
334  FuncInfo->clear();
335
336  return true;
337}
338
339static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
340                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
341  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
342    if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
343      // Apply the catch info to DestBB.
344      AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
345#ifndef NDEBUG
346      if (!FLI.MBBMap[SrcBB]->isLandingPad())
347        FLI.CatchInfoFound.insert(EHSel);
348#endif
349    }
350}
351
352/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
353/// whether object offset >= 0.
354static bool
355IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDValue Op) {
356  if (!isa<FrameIndexSDNode>(Op)) return false;
357
358  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
359  int FrameIdx =  FrameIdxNode->getIndex();
360  return MFI->isFixedObjectIndex(FrameIdx) &&
361    MFI->getObjectOffset(FrameIdx) >= 0;
362}
363
364/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
365/// possibly be overwritten when lowering the outgoing arguments in a tail
366/// call. Currently the implementation of this call is very conservative and
367/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
368/// virtual registers would be overwritten by direct lowering.
369static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
370                                                    MachineFrameInfo * MFI) {
371  RegisterSDNode * OpReg = NULL;
372  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
373      (Op.getOpcode()== ISD::CopyFromReg &&
374       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
375       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
376      (Op.getOpcode() == ISD::LOAD &&
377       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
378      (Op.getOpcode() == ISD::MERGE_VALUES &&
379       Op.getOperand(Op.getResNo()).getOpcode() == ISD::LOAD &&
380       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.getResNo()).
381                                       getOperand(1))))
382    return true;
383  return false;
384}
385
386/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
387/// DAG and fixes their tailcall attribute operand.
388static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
389                                           TargetLowering& TLI) {
390  SDNode * Ret = NULL;
391  SDValue Terminator = DAG.getRoot();
392
393  // Find RET node.
394  if (Terminator.getOpcode() == ISD::RET) {
395    Ret = Terminator.getNode();
396  }
397
398  // Fix tail call attribute of CALL nodes.
399  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
400         BI = DAG.allnodes_end(); BI != BE; ) {
401    --BI;
402    if (CallSDNode *TheCall = dyn_cast<CallSDNode>(BI)) {
403      SDValue OpRet(Ret, 0);
404      SDValue OpCall(BI, 0);
405      bool isMarkedTailCall = TheCall->isTailCall();
406      // If CALL node has tail call attribute set to true and the call is not
407      // eligible (no RET or the target rejects) the attribute is fixed to
408      // false. The TargetLowering::IsEligibleForTailCallOptimization function
409      // must correctly identify tail call optimizable calls.
410      if (!isMarkedTailCall) continue;
411      if (Ret==NULL ||
412          !TLI.IsEligibleForTailCallOptimization(TheCall, OpRet, DAG)) {
413        // Not eligible. Mark CALL node as non tail call. Note that we
414        // can modify the call node in place since calls are not CSE'd.
415        TheCall->setNotTailCall();
416      } else {
417        // Look for tail call clobbered arguments. Emit a series of
418        // copyto/copyfrom virtual register nodes to protect them.
419        SmallVector<SDValue, 32> Ops;
420        SDValue Chain = TheCall->getChain(), InFlag;
421        Ops.push_back(Chain);
422        Ops.push_back(TheCall->getCallee());
423        for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; ++i) {
424          SDValue Arg = TheCall->getArg(i);
425          bool isByVal = TheCall->getArgFlags(i).isByVal();
426          MachineFunction &MF = DAG.getMachineFunction();
427          MachineFrameInfo *MFI = MF.getFrameInfo();
428          if (!isByVal &&
429              IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
430            MVT VT = Arg.getValueType();
431            unsigned VReg = MF.getRegInfo().
432              createVirtualRegister(TLI.getRegClassFor(VT));
433            Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
434            InFlag = Chain.getValue(1);
435            Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
436            Chain = Arg.getValue(1);
437            InFlag = Arg.getValue(2);
438          }
439          Ops.push_back(Arg);
440          Ops.push_back(TheCall->getArgFlagsVal(i));
441        }
442        // Link in chain of CopyTo/CopyFromReg.
443        Ops[0] = Chain;
444        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
445      }
446    }
447  }
448}
449
450void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
451                                        BasicBlock::iterator Begin,
452                                        BasicBlock::iterator End) {
453  SDL->setCurrentBasicBlock(BB);
454
455  // Lower all of the non-terminator instructions.
456  for (BasicBlock::iterator I = Begin; I != End; ++I)
457    if (!isa<TerminatorInst>(I))
458      SDL->visit(*I);
459
460  // Ensure that all instructions which are used outside of their defining
461  // blocks are available as virtual registers.  Invoke is handled elsewhere.
462  for (BasicBlock::iterator I = Begin; I != End; ++I)
463    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
464      DenseMap<const Value*,unsigned>::iterator VMI =FuncInfo->ValueMap.find(I);
465      if (VMI != FuncInfo->ValueMap.end())
466        SDL->CopyValueToVirtualRegister(I, VMI->second);
467    }
468
469  // Handle PHI nodes in successor blocks.
470  if (End == LLVMBB->end()) {
471    HandlePHINodesInSuccessorBlocks(LLVMBB);
472
473    // Lower the terminator after the copies are emitted.
474    SDL->visit(*LLVMBB->getTerminator());
475  }
476
477  // Make sure the root of the DAG is up-to-date.
478  CurDAG->setRoot(SDL->getControlRoot());
479
480  // Check whether calls in this block are real tail calls. Fix up CALL nodes
481  // with correct tailcall attribute so that the target can rely on the tailcall
482  // attribute indicating whether the call is really eligible for tail call
483  // optimization.
484  if (PerformTailCallOpt)
485    CheckDAGForTailCallsAndFixThem(*CurDAG, TLI);
486
487  // Final step, emit the lowered DAG as machine code.
488  CodeGenAndEmitDAG();
489  SDL->clear();
490}
491
492void SelectionDAGISel::ComputeLiveOutVRegInfo() {
493  SmallPtrSet<SDNode*, 128> VisitedNodes;
494  SmallVector<SDNode*, 128> Worklist;
495
496  Worklist.push_back(CurDAG->getRoot().getNode());
497
498  APInt Mask;
499  APInt KnownZero;
500  APInt KnownOne;
501
502  while (!Worklist.empty()) {
503    SDNode *N = Worklist.back();
504    Worklist.pop_back();
505
506    // If we've already seen this node, ignore it.
507    if (!VisitedNodes.insert(N))
508      continue;
509
510    // Otherwise, add all chain operands to the worklist.
511    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
512      if (N->getOperand(i).getValueType() == MVT::Other)
513        Worklist.push_back(N->getOperand(i).getNode());
514
515    // If this is a CopyToReg with a vreg dest, process it.
516    if (N->getOpcode() != ISD::CopyToReg)
517      continue;
518
519    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
520    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
521      continue;
522
523    // Ignore non-scalar or non-integer values.
524    SDValue Src = N->getOperand(2);
525    MVT SrcVT = Src.getValueType();
526    if (!SrcVT.isInteger() || SrcVT.isVector())
527      continue;
528
529    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
530    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
531    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
532
533    // Only install this information if it tells us something.
534    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
535      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
536      FunctionLoweringInfo &FLI = CurDAG->getFunctionLoweringInfo();
537      if (DestReg >= FLI.LiveOutRegInfo.size())
538        FLI.LiveOutRegInfo.resize(DestReg+1);
539      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
540      LOI.NumSignBits = NumSignBits;
541      LOI.KnownOne = NumSignBits;
542      LOI.KnownZero = NumSignBits;
543    }
544  }
545}
546
547void SelectionDAGISel::CodeGenAndEmitDAG() {
548  std::string GroupName;
549  if (TimePassesIsEnabled)
550    GroupName = "Instruction Selection and Scheduling";
551  std::string BlockName;
552  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
553      ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs)
554    BlockName = CurDAG->getMachineFunction().getFunction()->getName() + ':' +
555                BB->getBasicBlock()->getName();
556
557  DOUT << "Initial selection DAG:\n";
558  DEBUG(CurDAG->dump());
559
560  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
561
562  // Run the DAG combiner in pre-legalize mode.
563  if (TimePassesIsEnabled) {
564    NamedRegionTimer T("DAG Combining 1", GroupName);
565    CurDAG->Combine(false, *AA, Fast);
566  } else {
567    CurDAG->Combine(false, *AA, Fast);
568  }
569
570  DOUT << "Optimized lowered selection DAG:\n";
571  DEBUG(CurDAG->dump());
572
573  // Second step, hack on the DAG until it only uses operations and types that
574  // the target supports.
575  if (!DisableLegalizeTypes) {
576    if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
577                                                 BlockName);
578
579    if (TimePassesIsEnabled) {
580      NamedRegionTimer T("Type Legalization", GroupName);
581      CurDAG->LegalizeTypes();
582    } else {
583      CurDAG->LegalizeTypes();
584    }
585
586    DOUT << "Type-legalized selection DAG:\n";
587    DEBUG(CurDAG->dump());
588
589    // TODO: enable a dag combine pass here.
590  }
591
592  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
593
594  if (TimePassesIsEnabled) {
595    NamedRegionTimer T("DAG Legalization", GroupName);
596    CurDAG->Legalize();
597  } else {
598    CurDAG->Legalize();
599  }
600
601  DOUT << "Legalized selection DAG:\n";
602  DEBUG(CurDAG->dump());
603
604  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
605
606  // Run the DAG combiner in post-legalize mode.
607  if (TimePassesIsEnabled) {
608    NamedRegionTimer T("DAG Combining 2", GroupName);
609    CurDAG->Combine(true, *AA, Fast);
610  } else {
611    CurDAG->Combine(true, *AA, Fast);
612  }
613
614  DOUT << "Optimized legalized selection DAG:\n";
615  DEBUG(CurDAG->dump());
616
617  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
618
619  if (!Fast && EnableValueProp)
620    ComputeLiveOutVRegInfo();
621
622  // Third, instruction select all of the operations to machine code, adding the
623  // code to the MachineBasicBlock.
624  if (TimePassesIsEnabled) {
625    NamedRegionTimer T("Instruction Selection", GroupName);
626    InstructionSelect();
627  } else {
628    InstructionSelect();
629  }
630
631  DOUT << "Selected selection DAG:\n";
632  DEBUG(CurDAG->dump());
633
634  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
635
636  // Schedule machine code.
637  ScheduleDAG *Scheduler;
638  if (TimePassesIsEnabled) {
639    NamedRegionTimer T("Instruction Scheduling", GroupName);
640    Scheduler = Schedule();
641  } else {
642    Scheduler = Schedule();
643  }
644
645  if (ViewSUnitDAGs) Scheduler->viewGraph();
646
647  // Emit machine code to BB.  This can change 'BB' to the last block being
648  // inserted into.
649  if (TimePassesIsEnabled) {
650    NamedRegionTimer T("Instruction Creation", GroupName);
651    BB = Scheduler->EmitSchedule();
652  } else {
653    BB = Scheduler->EmitSchedule();
654  }
655
656  // Free the scheduler state.
657  if (TimePassesIsEnabled) {
658    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
659    delete Scheduler;
660  } else {
661    delete Scheduler;
662  }
663
664  DOUT << "Selected machine code:\n";
665  DEBUG(BB->dump());
666}
667
668void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF,
669                                            MachineModuleInfo *MMI,
670                                            const TargetInstrInfo &TII) {
671  // Initialize the Fast-ISel state, if needed.
672  FastISel *FastIS = 0;
673  if (EnableFastISel)
674    FastIS = TLI.createFastISel(*FuncInfo->MF, MMI,
675                                FuncInfo->ValueMap,
676                                FuncInfo->MBBMap,
677                                FuncInfo->StaticAllocaMap
678#ifndef NDEBUG
679                                , FuncInfo->CatchInfoLost
680#endif
681                                );
682
683  // Iterate over all basic blocks in the function.
684  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
685    BasicBlock *LLVMBB = &*I;
686    BB = FuncInfo->MBBMap[LLVMBB];
687
688    BasicBlock::iterator const Begin = LLVMBB->begin();
689    BasicBlock::iterator const End = LLVMBB->end();
690    BasicBlock::iterator BI = Begin;
691
692    // Lower any arguments needed in this block if this is the entry block.
693    bool SuppressFastISel = false;
694    if (LLVMBB == &Fn.getEntryBlock()) {
695      LowerArguments(LLVMBB);
696
697      // If any of the arguments has the byval attribute, forgo
698      // fast-isel in the entry block.
699      if (FastIS) {
700        unsigned j = 1;
701        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
702             I != E; ++I, ++j)
703          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
704            if (EnableFastISelVerbose || EnableFastISelAbort)
705              cerr << "FastISel skips entry block due to byval argument\n";
706            SuppressFastISel = true;
707            break;
708          }
709      }
710    }
711
712    if (MMI && BB->isLandingPad()) {
713      // Add a label to mark the beginning of the landing pad.  Deletion of the
714      // landing pad can thus be detected via the MachineModuleInfo.
715      unsigned LabelID = MMI->addLandingPad(BB);
716
717      const TargetInstrDesc &II = TII.get(TargetInstrInfo::EH_LABEL);
718      BuildMI(BB, II).addImm(LabelID);
719
720      // Mark exception register as live in.
721      unsigned Reg = TLI.getExceptionAddressRegister();
722      if (Reg) BB->addLiveIn(Reg);
723
724      // Mark exception selector register as live in.
725      Reg = TLI.getExceptionSelectorRegister();
726      if (Reg) BB->addLiveIn(Reg);
727
728      // FIXME: Hack around an exception handling flaw (PR1508): the personality
729      // function and list of typeids logically belong to the invoke (or, if you
730      // like, the basic block containing the invoke), and need to be associated
731      // with it in the dwarf exception handling tables.  Currently however the
732      // information is provided by an intrinsic (eh.selector) that can be moved
733      // to unexpected places by the optimizers: if the unwind edge is critical,
734      // then breaking it can result in the intrinsics being in the successor of
735      // the landing pad, not the landing pad itself.  This results in exceptions
736      // not being caught because no typeids are associated with the invoke.
737      // This may not be the only way things can go wrong, but it is the only way
738      // we try to work around for the moment.
739      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
740
741      if (Br && Br->isUnconditional()) { // Critical edge?
742        BasicBlock::iterator I, E;
743        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
744          if (isa<EHSelectorInst>(I))
745            break;
746
747        if (I == E)
748          // No catch info found - try to extract some from the successor.
749          copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
750      }
751    }
752
753    // Before doing SelectionDAG ISel, see if FastISel has been requested.
754    if (FastIS && !SuppressFastISel) {
755      // Emit code for any incoming arguments. This must happen before
756      // beginning FastISel on the entry block.
757      if (LLVMBB == &Fn.getEntryBlock()) {
758        CurDAG->setRoot(SDL->getControlRoot());
759        CodeGenAndEmitDAG();
760        SDL->clear();
761      }
762      FastIS->startNewBlock(BB);
763      // Do FastISel on as many instructions as possible.
764      for (; BI != End; ++BI) {
765        // Just before the terminator instruction, insert instructions to
766        // feed PHI nodes in successor blocks.
767        if (isa<TerminatorInst>(BI))
768          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
769            if (EnableFastISelVerbose || EnableFastISelAbort) {
770              cerr << "FastISel miss: ";
771              BI->dump();
772            }
773            if (EnableFastISelAbort)
774              assert(0 && "FastISel didn't handle a PHI in a successor");
775            break;
776          }
777
778        // First try normal tablegen-generated "fast" selection.
779        if (FastIS->SelectInstruction(BI))
780          continue;
781
782        // Next, try calling the target to attempt to handle the instruction.
783        if (FastIS->TargetSelectInstruction(BI))
784          continue;
785
786        // Then handle certain instructions as single-LLVM-Instruction blocks.
787        if (isa<CallInst>(BI)) {
788          if (EnableFastISelVerbose || EnableFastISelAbort) {
789            cerr << "FastISel missed call: ";
790            BI->dump();
791          }
792
793          if (BI->getType() != Type::VoidTy) {
794            unsigned &R = FuncInfo->ValueMap[BI];
795            if (!R)
796              R = FuncInfo->CreateRegForValue(BI);
797          }
798
799          SelectBasicBlock(LLVMBB, BI, next(BI));
800          // If the instruction was codegen'd with multiple blocks,
801          // inform the FastISel object where to resume inserting.
802          FastIS->setCurrentBlock(BB);
803          continue;
804        }
805
806        // Otherwise, give up on FastISel for the rest of the block.
807        // For now, be a little lenient about non-branch terminators.
808        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
809          if (EnableFastISelVerbose || EnableFastISelAbort) {
810            cerr << "FastISel miss: ";
811            BI->dump();
812          }
813          if (EnableFastISelAbort)
814            // The "fast" selector couldn't handle something and bailed.
815            // For the purpose of debugging, just abort.
816            assert(0 && "FastISel didn't select the entire block");
817        }
818        break;
819      }
820    }
821
822    // Run SelectionDAG instruction selection on the remainder of the block
823    // not handled by FastISel. If FastISel is not run, this is the entire
824    // block.
825    if (BI != End)
826      SelectBasicBlock(LLVMBB, BI, End);
827
828    FinishBasicBlock();
829  }
830
831  delete FastIS;
832}
833
834void
835SelectionDAGISel::FinishBasicBlock() {
836
837  // Perform target specific isel post processing.
838  InstructionSelectPostProcessing();
839
840  DOUT << "Target-post-processed machine code:\n";
841  DEBUG(BB->dump());
842
843  DOUT << "Total amount of phi nodes to update: "
844       << SDL->PHINodesToUpdate.size() << "\n";
845  DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
846          DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
847               << ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
848
849  // Next, now that we know what the last MBB the LLVM BB expanded is, update
850  // PHI nodes in successors.
851  if (SDL->SwitchCases.empty() &&
852      SDL->JTCases.empty() &&
853      SDL->BitTestCases.empty()) {
854    for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
855      MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
856      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
857             "This is not a machine PHI node that we are updating!");
858      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
859                                                false));
860      PHI->addOperand(MachineOperand::CreateMBB(BB));
861    }
862    SDL->PHINodesToUpdate.clear();
863    return;
864  }
865
866  for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) {
867    // Lower header first, if it wasn't already lowered
868    if (!SDL->BitTestCases[i].Emitted) {
869      // Set the current basic block to the mbb we wish to insert the code into
870      BB = SDL->BitTestCases[i].Parent;
871      SDL->setCurrentBasicBlock(BB);
872      // Emit the code
873      SDL->visitBitTestHeader(SDL->BitTestCases[i]);
874      CurDAG->setRoot(SDL->getRoot());
875      CodeGenAndEmitDAG();
876      SDL->clear();
877    }
878
879    for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
880      // Set the current basic block to the mbb we wish to insert the code into
881      BB = SDL->BitTestCases[i].Cases[j].ThisBB;
882      SDL->setCurrentBasicBlock(BB);
883      // Emit the code
884      if (j+1 != ej)
885        SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB,
886                              SDL->BitTestCases[i].Reg,
887                              SDL->BitTestCases[i].Cases[j]);
888      else
889        SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
890                              SDL->BitTestCases[i].Reg,
891                              SDL->BitTestCases[i].Cases[j]);
892
893
894      CurDAG->setRoot(SDL->getRoot());
895      CodeGenAndEmitDAG();
896      SDL->clear();
897    }
898
899    // Update PHI Nodes
900    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
901      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
902      MachineBasicBlock *PHIBB = PHI->getParent();
903      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
904             "This is not a machine PHI node that we are updating!");
905      // This is "default" BB. We have two jumps to it. From "header" BB and
906      // from last "case" BB.
907      if (PHIBB == SDL->BitTestCases[i].Default) {
908        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
909                                                  false));
910        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent));
911        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
912                                                  false));
913        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases.
914                                                  back().ThisBB));
915      }
916      // One of "cases" BB.
917      for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size();
918           j != ej; ++j) {
919        MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB;
920        if (cBB->succ_end() !=
921            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
922          PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
923                                                    false));
924          PHI->addOperand(MachineOperand::CreateMBB(cBB));
925        }
926      }
927    }
928  }
929  SDL->BitTestCases.clear();
930
931  // If the JumpTable record is filled in, then we need to emit a jump table.
932  // Updating the PHI nodes is tricky in this case, since we need to determine
933  // whether the PHI is a successor of the range check MBB or the jump table MBB
934  for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) {
935    // Lower header first, if it wasn't already lowered
936    if (!SDL->JTCases[i].first.Emitted) {
937      // Set the current basic block to the mbb we wish to insert the code into
938      BB = SDL->JTCases[i].first.HeaderBB;
939      SDL->setCurrentBasicBlock(BB);
940      // Emit the code
941      SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first);
942      CurDAG->setRoot(SDL->getRoot());
943      CodeGenAndEmitDAG();
944      SDL->clear();
945    }
946
947    // Set the current basic block to the mbb we wish to insert the code into
948    BB = SDL->JTCases[i].second.MBB;
949    SDL->setCurrentBasicBlock(BB);
950    // Emit the code
951    SDL->visitJumpTable(SDL->JTCases[i].second);
952    CurDAG->setRoot(SDL->getRoot());
953    CodeGenAndEmitDAG();
954    SDL->clear();
955
956    // Update PHI Nodes
957    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
958      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
959      MachineBasicBlock *PHIBB = PHI->getParent();
960      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
961             "This is not a machine PHI node that we are updating!");
962      // "default" BB. We can go there only from header BB.
963      if (PHIBB == SDL->JTCases[i].second.Default) {
964        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
965                                                  false));
966        PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
967      }
968      // JT BB. Just iterate over successors here
969      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
970        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
971                                                  false));
972        PHI->addOperand(MachineOperand::CreateMBB(BB));
973      }
974    }
975  }
976  SDL->JTCases.clear();
977
978  // If the switch block involved a branch to one of the actual successors, we
979  // need to update PHI nodes in that block.
980  for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
981    MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
982    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
983           "This is not a machine PHI node that we are updating!");
984    if (BB->isSuccessor(PHI->getParent())) {
985      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
986                                                false));
987      PHI->addOperand(MachineOperand::CreateMBB(BB));
988    }
989  }
990
991  // If we generated any switch lowering information, build and codegen any
992  // additional DAGs necessary.
993  for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
994    // Set the current basic block to the mbb we wish to insert the code into
995    BB = SDL->SwitchCases[i].ThisBB;
996    SDL->setCurrentBasicBlock(BB);
997
998    // Emit the code
999    SDL->visitSwitchCase(SDL->SwitchCases[i]);
1000    CurDAG->setRoot(SDL->getRoot());
1001    CodeGenAndEmitDAG();
1002    SDL->clear();
1003
1004    // Handle any PHI nodes in successors of this chunk, as if we were coming
1005    // from the original BB before switch expansion.  Note that PHI nodes can
1006    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1007    // handle them the right number of times.
1008    while ((BB = SDL->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1009      for (MachineBasicBlock::iterator Phi = BB->begin();
1010           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
1011        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
1012        for (unsigned pn = 0; ; ++pn) {
1013          assert(pn != SDL->PHINodesToUpdate.size() &&
1014                 "Didn't find PHI entry!");
1015          if (SDL->PHINodesToUpdate[pn].first == Phi) {
1016            Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
1017                                                      second, false));
1018            Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
1019            break;
1020          }
1021        }
1022      }
1023
1024      // Don't process RHS if same block as LHS.
1025      if (BB == SDL->SwitchCases[i].FalseBB)
1026        SDL->SwitchCases[i].FalseBB = 0;
1027
1028      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1029      SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
1030      SDL->SwitchCases[i].FalseBB = 0;
1031    }
1032    assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
1033  }
1034  SDL->SwitchCases.clear();
1035
1036  SDL->PHINodesToUpdate.clear();
1037}
1038
1039
1040/// Schedule - Pick a safe ordering for instructions for each
1041/// target node in the graph.
1042///
1043ScheduleDAG *SelectionDAGISel::Schedule() {
1044  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1045
1046  if (!Ctor) {
1047    Ctor = ISHeuristic;
1048    RegisterScheduler::setDefault(Ctor);
1049  }
1050
1051  ScheduleDAG *Scheduler = Ctor(this, CurDAG, BB, Fast);
1052  Scheduler->Run();
1053
1054  return Scheduler;
1055}
1056
1057
1058HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1059  return new HazardRecognizer();
1060}
1061
1062//===----------------------------------------------------------------------===//
1063// Helper functions used by the generated instruction selector.
1064//===----------------------------------------------------------------------===//
1065// Calls to these methods are generated by tblgen.
1066
1067/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1068/// the dag combiner simplified the 255, we still want to match.  RHS is the
1069/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1070/// specified in the .td file (e.g. 255).
1071bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1072                                    int64_t DesiredMaskS) const {
1073  const APInt &ActualMask = RHS->getAPIntValue();
1074  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1075
1076  // If the actual mask exactly matches, success!
1077  if (ActualMask == DesiredMask)
1078    return true;
1079
1080  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1081  if (ActualMask.intersects(~DesiredMask))
1082    return false;
1083
1084  // Otherwise, the DAG Combiner may have proven that the value coming in is
1085  // either already zero or is not demanded.  Check for known zero input bits.
1086  APInt NeededMask = DesiredMask & ~ActualMask;
1087  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1088    return true;
1089
1090  // TODO: check to see if missing bits are just not demanded.
1091
1092  // Otherwise, this pattern doesn't match.
1093  return false;
1094}
1095
1096/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1097/// the dag combiner simplified the 255, we still want to match.  RHS is the
1098/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1099/// specified in the .td file (e.g. 255).
1100bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1101                                   int64_t DesiredMaskS) const {
1102  const APInt &ActualMask = RHS->getAPIntValue();
1103  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1104
1105  // If the actual mask exactly matches, success!
1106  if (ActualMask == DesiredMask)
1107    return true;
1108
1109  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1110  if (ActualMask.intersects(~DesiredMask))
1111    return false;
1112
1113  // Otherwise, the DAG Combiner may have proven that the value coming in is
1114  // either already zero or is not demanded.  Check for known zero input bits.
1115  APInt NeededMask = DesiredMask & ~ActualMask;
1116
1117  APInt KnownZero, KnownOne;
1118  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1119
1120  // If all the missing bits in the or are already known to be set, match!
1121  if ((NeededMask & KnownOne) == NeededMask)
1122    return true;
1123
1124  // TODO: check to see if missing bits are just not demanded.
1125
1126  // Otherwise, this pattern doesn't match.
1127  return false;
1128}
1129
1130
1131/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1132/// by tblgen.  Others should not call it.
1133void SelectionDAGISel::
1134SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1135  std::vector<SDValue> InOps;
1136  std::swap(InOps, Ops);
1137
1138  Ops.push_back(InOps[0]);  // input chain.
1139  Ops.push_back(InOps[1]);  // input asm string.
1140
1141  unsigned i = 2, e = InOps.size();
1142  if (InOps[e-1].getValueType() == MVT::Flag)
1143    --e;  // Don't process a flag operand if it is here.
1144
1145  while (i != e) {
1146    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1147    if ((Flags & 7) != 4 /*MEM*/) {
1148      // Just skip over this operand, copying the operands verbatim.
1149      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
1150      i += (Flags >> 3) + 1;
1151    } else {
1152      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
1153      // Otherwise, this is a memory operand.  Ask the target to select it.
1154      std::vector<SDValue> SelOps;
1155      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1156        cerr << "Could not match memory address.  Inline asm failure!\n";
1157        exit(1);
1158      }
1159
1160      // Add this to the output node.
1161      MVT IntPtrTy = CurDAG->getTargetLoweringInfo().getPointerTy();
1162      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1163                                              IntPtrTy));
1164      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1165      i += 2;
1166    }
1167  }
1168
1169  // Add the flag input back if present.
1170  if (e != InOps.size())
1171    Ops.push_back(InOps.back());
1172}
1173
1174char SelectionDAGISel::ID = 0;
1175