SelectionDAGISel.cpp revision b56606274d43c7a3e01b18a08d1115fbf2889996
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "ScheduleDAGSDNodes.h"
17#include "SelectionDAGBuilder.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/TargetTransformInfo.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/FunctionLoweringInfo.h"
25#include "llvm/CodeGen/GCMetadata.h"
26#include "llvm/CodeGen/GCStrategy.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
33#include "llvm/CodeGen/SchedulerRegistry.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/DebugInfo.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/InlineAsm.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/IntrinsicInst.h"
41#include "llvm/IR/Intrinsics.h"
42#include "llvm/IR/LLVMContext.h"
43#include "llvm/IR/Module.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLibraryInfo.h"
52#include "llvm/Target/TargetLowering.h"
53#include "llvm/Target/TargetMachine.h"
54#include "llvm/Target/TargetOptions.h"
55#include "llvm/Target/TargetRegisterInfo.h"
56#include "llvm/Target/TargetSubtargetInfo.h"
57#include "llvm/Transforms/Utils/BasicBlockUtils.h"
58#include <algorithm>
59using namespace llvm;
60
61STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
62STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
63STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
64STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
65STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
66
67#ifndef NDEBUG
68static cl::opt<bool>
69EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
70          cl::desc("Enable extra verbose messages in the \"fast\" "
71                   "instruction selector"));
72  // Terminators
73STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
74STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
75STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
76STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
77STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
78STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
79STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
80
81  // Standard binary operators...
82STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
83STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
84STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
85STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
86STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
87STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
88STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
89STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
90STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
91STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
92STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
93STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
94
95  // Logical operators...
96STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
97STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
98STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
99
100  // Memory instructions...
101STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
102STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
103STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
104STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
105STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
106STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
107STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
108
109  // Convert instructions...
110STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
111STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
112STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
113STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
114STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
115STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
116STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
117STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
118STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
119STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
120STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
121STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
122
123  // Other instructions...
124STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
125STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
126STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
127STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
128STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
129STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
130STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
131STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
132STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
133STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
134STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
135STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
136STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
137STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
138STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
139#endif
140
141static cl::opt<bool>
142EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
143          cl::desc("Enable verbose messages in the \"fast\" "
144                   "instruction selector"));
145static cl::opt<bool>
146EnableFastISelAbort("fast-isel-abort", cl::Hidden,
147          cl::desc("Enable abort calls when \"fast\" instruction fails"));
148
149static cl::opt<bool>
150UseMBPI("use-mbpi",
151        cl::desc("use Machine Branch Probability Info"),
152        cl::init(true), cl::Hidden);
153
154#ifndef NDEBUG
155static cl::opt<bool>
156ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
157          cl::desc("Pop up a window to show dags before the first "
158                   "dag combine pass"));
159static cl::opt<bool>
160ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
161          cl::desc("Pop up a window to show dags before legalize types"));
162static cl::opt<bool>
163ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
164          cl::desc("Pop up a window to show dags before legalize"));
165static cl::opt<bool>
166ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
167          cl::desc("Pop up a window to show dags before the second "
168                   "dag combine pass"));
169static cl::opt<bool>
170ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
171          cl::desc("Pop up a window to show dags before the post legalize types"
172                   " dag combine pass"));
173static cl::opt<bool>
174ViewISelDAGs("view-isel-dags", cl::Hidden,
175          cl::desc("Pop up a window to show isel dags as they are selected"));
176static cl::opt<bool>
177ViewSchedDAGs("view-sched-dags", cl::Hidden,
178          cl::desc("Pop up a window to show sched dags as they are processed"));
179static cl::opt<bool>
180ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
181      cl::desc("Pop up a window to show SUnit dags after they are processed"));
182#else
183static const bool ViewDAGCombine1 = false,
184                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
185                  ViewDAGCombine2 = false,
186                  ViewDAGCombineLT = false,
187                  ViewISelDAGs = false, ViewSchedDAGs = false,
188                  ViewSUnitDAGs = false;
189#endif
190
191//===---------------------------------------------------------------------===//
192///
193/// RegisterScheduler class - Track the registration of instruction schedulers.
194///
195//===---------------------------------------------------------------------===//
196MachinePassRegistry RegisterScheduler::Registry;
197
198//===---------------------------------------------------------------------===//
199///
200/// ISHeuristic command line option for instruction schedulers.
201///
202//===---------------------------------------------------------------------===//
203static cl::opt<RegisterScheduler::FunctionPassCtor, false,
204               RegisterPassParser<RegisterScheduler> >
205ISHeuristic("pre-RA-sched",
206            cl::init(&createDefaultScheduler),
207            cl::desc("Instruction schedulers available (before register"
208                     " allocation):"));
209
210static RegisterScheduler
211defaultListDAGScheduler("default", "Best scheduler for the target",
212                        createDefaultScheduler);
213
214namespace llvm {
215  //===--------------------------------------------------------------------===//
216  /// createDefaultScheduler - This creates an instruction scheduler appropriate
217  /// for the target.
218  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
219                                             CodeGenOpt::Level OptLevel) {
220    const TargetLowering &TLI = IS->getTargetLowering();
221    const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
222
223    if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() ||
224        TLI.getSchedulingPreference() == Sched::Source)
225      return createSourceListDAGScheduler(IS, OptLevel);
226    if (TLI.getSchedulingPreference() == Sched::RegPressure)
227      return createBURRListDAGScheduler(IS, OptLevel);
228    if (TLI.getSchedulingPreference() == Sched::Hybrid)
229      return createHybridListDAGScheduler(IS, OptLevel);
230    if (TLI.getSchedulingPreference() == Sched::VLIW)
231      return createVLIWDAGScheduler(IS, OptLevel);
232    assert(TLI.getSchedulingPreference() == Sched::ILP &&
233           "Unknown sched type!");
234    return createILPListDAGScheduler(IS, OptLevel);
235  }
236}
237
238// EmitInstrWithCustomInserter - This method should be implemented by targets
239// that mark instructions with the 'usesCustomInserter' flag.  These
240// instructions are special in various ways, which require special support to
241// insert.  The specified MachineInstr is created but not inserted into any
242// basic blocks, and this method is called to expand it into a sequence of
243// instructions, potentially also creating new basic blocks and control flow.
244// When new basic blocks are inserted and the edges from MBB to its successors
245// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
246// DenseMap.
247MachineBasicBlock *
248TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
249                                            MachineBasicBlock *MBB) const {
250#ifndef NDEBUG
251  dbgs() << "If a target marks an instruction with "
252          "'usesCustomInserter', it must implement "
253          "TargetLowering::EmitInstrWithCustomInserter!";
254#endif
255  llvm_unreachable(0);
256}
257
258void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
259                                                   SDNode *Node) const {
260  assert(!MI->hasPostISelHook() &&
261         "If a target marks an instruction with 'hasPostISelHook', "
262         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
263}
264
265//===----------------------------------------------------------------------===//
266// SelectionDAGISel code
267//===----------------------------------------------------------------------===//
268
269SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
270                                   CodeGenOpt::Level OL) :
271  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
272  FuncInfo(new FunctionLoweringInfo(TLI)),
273  CurDAG(new SelectionDAG(tm, OL)),
274  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
275  GFI(),
276  OptLevel(OL),
277  DAGSize(0) {
278    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
279    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
280    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
281    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
282  }
283
284SelectionDAGISel::~SelectionDAGISel() {
285  delete SDB;
286  delete CurDAG;
287  delete FuncInfo;
288}
289
290void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
291  AU.addRequired<AliasAnalysis>();
292  AU.addPreserved<AliasAnalysis>();
293  AU.addRequired<GCModuleInfo>();
294  AU.addPreserved<GCModuleInfo>();
295  AU.addRequired<TargetLibraryInfo>();
296  if (UseMBPI && OptLevel != CodeGenOpt::None)
297    AU.addRequired<BranchProbabilityInfo>();
298  MachineFunctionPass::getAnalysisUsage(AU);
299}
300
301/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
302/// may trap on it.  In this case we have to split the edge so that the path
303/// through the predecessor block that doesn't go to the phi block doesn't
304/// execute the possibly trapping instruction.
305///
306/// This is required for correctness, so it must be done at -O0.
307///
308static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
309  // Loop for blocks with phi nodes.
310  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
311    PHINode *PN = dyn_cast<PHINode>(BB->begin());
312    if (PN == 0) continue;
313
314  ReprocessBlock:
315    // For each block with a PHI node, check to see if any of the input values
316    // are potentially trapping constant expressions.  Constant expressions are
317    // the only potentially trapping value that can occur as the argument to a
318    // PHI.
319    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
320      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
321        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
322        if (CE == 0 || !CE->canTrap()) continue;
323
324        // The only case we have to worry about is when the edge is critical.
325        // Since this block has a PHI Node, we assume it has multiple input
326        // edges: check to see if the pred has multiple successors.
327        BasicBlock *Pred = PN->getIncomingBlock(i);
328        if (Pred->getTerminator()->getNumSuccessors() == 1)
329          continue;
330
331        // Okay, we have to split this edge.
332        SplitCriticalEdge(Pred->getTerminator(),
333                          GetSuccessorNumber(Pred, BB), SDISel, true);
334        goto ReprocessBlock;
335      }
336  }
337}
338
339bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
340  // Do some sanity-checking on the command-line options.
341  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
342         "-fast-isel-verbose requires -fast-isel");
343  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
344         "-fast-isel-abort requires -fast-isel");
345
346  const Function &Fn = *mf.getFunction();
347  const TargetInstrInfo &TII = *TM.getInstrInfo();
348  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
349
350  MF = &mf;
351  RegInfo = &MF->getRegInfo();
352  AA = &getAnalysis<AliasAnalysis>();
353  LibInfo = &getAnalysis<TargetLibraryInfo>();
354  TTI = getAnalysisIfAvailable<TargetTransformInfo>();
355  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
356
357  TargetSubtargetInfo &ST =
358    const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
359  ST.resetSubtargetFeatures(MF);
360
361  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
362
363  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
364
365  CurDAG->init(*MF, TTI);
366  FuncInfo->set(Fn, *MF);
367
368  if (UseMBPI && OptLevel != CodeGenOpt::None)
369    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
370  else
371    FuncInfo->BPI = 0;
372
373  SDB->init(GFI, *AA, LibInfo);
374
375  SelectAllBasicBlocks(Fn);
376
377  // If the first basic block in the function has live ins that need to be
378  // copied into vregs, emit the copies into the top of the block before
379  // emitting the code for the block.
380  MachineBasicBlock *EntryMBB = MF->begin();
381  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
382
383  DenseMap<unsigned, unsigned> LiveInMap;
384  if (!FuncInfo->ArgDbgValues.empty())
385    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
386           E = RegInfo->livein_end(); LI != E; ++LI)
387      if (LI->second)
388        LiveInMap.insert(std::make_pair(LI->first, LI->second));
389
390  // Insert DBG_VALUE instructions for function arguments to the entry block.
391  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
392    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
393    unsigned Reg = MI->getOperand(0).getReg();
394    if (TargetRegisterInfo::isPhysicalRegister(Reg))
395      EntryMBB->insert(EntryMBB->begin(), MI);
396    else {
397      MachineInstr *Def = RegInfo->getVRegDef(Reg);
398      MachineBasicBlock::iterator InsertPos = Def;
399      // FIXME: VR def may not be in entry block.
400      Def->getParent()->insert(llvm::next(InsertPos), MI);
401    }
402
403    // If Reg is live-in then update debug info to track its copy in a vreg.
404    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
405    if (LDI != LiveInMap.end()) {
406      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
407      MachineBasicBlock::iterator InsertPos = Def;
408      const MDNode *Variable =
409        MI->getOperand(MI->getNumOperands()-1).getMetadata();
410      unsigned Offset = MI->getOperand(1).getImm();
411      // Def is never a terminator here, so it is ok to increment InsertPos.
412      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
413              TII.get(TargetOpcode::DBG_VALUE))
414        .addReg(LDI->second, RegState::Debug)
415        .addImm(Offset).addMetadata(Variable);
416
417      // If this vreg is directly copied into an exported register then
418      // that COPY instructions also need DBG_VALUE, if it is the only
419      // user of LDI->second.
420      MachineInstr *CopyUseMI = NULL;
421      for (MachineRegisterInfo::use_iterator
422             UI = RegInfo->use_begin(LDI->second);
423           MachineInstr *UseMI = UI.skipInstruction();) {
424        if (UseMI->isDebugValue()) continue;
425        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
426          CopyUseMI = UseMI; continue;
427        }
428        // Otherwise this is another use or second copy use.
429        CopyUseMI = NULL; break;
430      }
431      if (CopyUseMI) {
432        MachineInstr *NewMI =
433          BuildMI(*MF, CopyUseMI->getDebugLoc(),
434                  TII.get(TargetOpcode::DBG_VALUE))
435          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
436          .addImm(Offset).addMetadata(Variable);
437        MachineBasicBlock::iterator Pos = CopyUseMI;
438        EntryMBB->insertAfter(Pos, NewMI);
439      }
440    }
441  }
442
443  // Determine if there are any calls in this machine function.
444  MF->setHasMSInlineAsm(false);
445  MachineFrameInfo *MFI = MF->getFrameInfo();
446  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
447       ++I) {
448
449    if (MFI->hasCalls() && MF->hasMSInlineAsm())
450      break;
451
452    const MachineBasicBlock *MBB = I;
453    for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
454         II != IE; ++II) {
455      const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
456      if ((MCID.isCall() && !MCID.isReturn()) ||
457          II->isStackAligningInlineAsm()) {
458        MFI->setHasCalls(true);
459      }
460      if (II->isMSInlineAsm()) {
461        MF->setHasMSInlineAsm(true);
462      }
463    }
464  }
465
466  // Determine if there is a call to setjmp in the machine function.
467  MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
468
469  // Replace forward-declared registers with the registers containing
470  // the desired value.
471  MachineRegisterInfo &MRI = MF->getRegInfo();
472  for (DenseMap<unsigned, unsigned>::iterator
473       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
474       I != E; ++I) {
475    unsigned From = I->first;
476    unsigned To = I->second;
477    // If To is also scheduled to be replaced, find what its ultimate
478    // replacement is.
479    for (;;) {
480      DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
481      if (J == E) break;
482      To = J->second;
483    }
484    // Replace it.
485    MRI.replaceRegWith(From, To);
486  }
487
488  // Freeze the set of reserved registers now that MachineFrameInfo has been
489  // set up. All the information required by getReservedRegs() should be
490  // available now.
491  MRI.freezeReservedRegs(*MF);
492
493  // Release function-specific state. SDB and CurDAG are already cleared
494  // at this point.
495  FuncInfo->clear();
496
497  return true;
498}
499
500void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
501                                        BasicBlock::const_iterator End,
502                                        bool &HadTailCall) {
503  // Lower all of the non-terminator instructions. If a call is emitted
504  // as a tail call, cease emitting nodes for this block. Terminators
505  // are handled below.
506  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
507    SDB->visit(*I);
508
509  // Make sure the root of the DAG is up-to-date.
510  CurDAG->setRoot(SDB->getControlRoot());
511  HadTailCall = SDB->HasTailCall;
512  SDB->clear();
513
514  // Final step, emit the lowered DAG as machine code.
515  CodeGenAndEmitDAG();
516}
517
518void SelectionDAGISel::ComputeLiveOutVRegInfo() {
519  SmallPtrSet<SDNode*, 128> VisitedNodes;
520  SmallVector<SDNode*, 128> Worklist;
521
522  Worklist.push_back(CurDAG->getRoot().getNode());
523
524  APInt KnownZero;
525  APInt KnownOne;
526
527  do {
528    SDNode *N = Worklist.pop_back_val();
529
530    // If we've already seen this node, ignore it.
531    if (!VisitedNodes.insert(N))
532      continue;
533
534    // Otherwise, add all chain operands to the worklist.
535    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
536      if (N->getOperand(i).getValueType() == MVT::Other)
537        Worklist.push_back(N->getOperand(i).getNode());
538
539    // If this is a CopyToReg with a vreg dest, process it.
540    if (N->getOpcode() != ISD::CopyToReg)
541      continue;
542
543    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
544    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
545      continue;
546
547    // Ignore non-scalar or non-integer values.
548    SDValue Src = N->getOperand(2);
549    EVT SrcVT = Src.getValueType();
550    if (!SrcVT.isInteger() || SrcVT.isVector())
551      continue;
552
553    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
554    CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
555    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
556  } while (!Worklist.empty());
557}
558
559void SelectionDAGISel::CodeGenAndEmitDAG() {
560  std::string GroupName;
561  if (TimePassesIsEnabled)
562    GroupName = "Instruction Selection and Scheduling";
563  std::string BlockName;
564  int BlockNumber = -1;
565  (void)BlockNumber;
566#ifdef NDEBUG
567  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
568      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
569      ViewSUnitDAGs)
570#endif
571  {
572    BlockNumber = FuncInfo->MBB->getNumber();
573    BlockName = MF->getName().str() + ":" +
574                FuncInfo->MBB->getBasicBlock()->getName().str();
575  }
576  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
577        << " '" << BlockName << "'\n"; CurDAG->dump());
578
579  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
580
581  // Run the DAG combiner in pre-legalize mode.
582  {
583    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
584    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
585  }
586
587  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
588        << " '" << BlockName << "'\n"; CurDAG->dump());
589
590  // Second step, hack on the DAG until it only uses operations and types that
591  // the target supports.
592  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
593                                               BlockName);
594
595  bool Changed;
596  {
597    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
598    Changed = CurDAG->LegalizeTypes();
599  }
600
601  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
602        << " '" << BlockName << "'\n"; CurDAG->dump());
603
604  if (Changed) {
605    if (ViewDAGCombineLT)
606      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
607
608    // Run the DAG combiner in post-type-legalize mode.
609    {
610      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
611                         TimePassesIsEnabled);
612      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
613    }
614
615    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
616          << " '" << BlockName << "'\n"; CurDAG->dump());
617  }
618
619  {
620    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
621    Changed = CurDAG->LegalizeVectors();
622  }
623
624  if (Changed) {
625    {
626      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
627      CurDAG->LegalizeTypes();
628    }
629
630    if (ViewDAGCombineLT)
631      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
632
633    // Run the DAG combiner in post-type-legalize mode.
634    {
635      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
636                         TimePassesIsEnabled);
637      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
638    }
639
640    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
641          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
642  }
643
644  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
645
646  {
647    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
648    CurDAG->Legalize();
649  }
650
651  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
652        << " '" << BlockName << "'\n"; CurDAG->dump());
653
654  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
655
656  // Run the DAG combiner in post-legalize mode.
657  {
658    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
659    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
660  }
661
662  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
663        << " '" << BlockName << "'\n"; CurDAG->dump());
664
665  if (OptLevel != CodeGenOpt::None)
666    ComputeLiveOutVRegInfo();
667
668  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
669
670  // Third, instruction select all of the operations to machine code, adding the
671  // code to the MachineBasicBlock.
672  {
673    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
674    DoInstructionSelection();
675  }
676
677  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
678        << " '" << BlockName << "'\n"; CurDAG->dump());
679
680  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
681
682  // Schedule machine code.
683  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
684  {
685    NamedRegionTimer T("Instruction Scheduling", GroupName,
686                       TimePassesIsEnabled);
687    Scheduler->Run(CurDAG, FuncInfo->MBB);
688  }
689
690  if (ViewSUnitDAGs) Scheduler->viewGraph();
691
692  // Emit machine code to BB.  This can change 'BB' to the last block being
693  // inserted into.
694  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
695  {
696    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
697
698    // FuncInfo->InsertPt is passed by reference and set to the end of the
699    // scheduled instructions.
700    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
701  }
702
703  // If the block was split, make sure we update any references that are used to
704  // update PHI nodes later on.
705  if (FirstMBB != LastMBB)
706    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
707
708  // Free the scheduler state.
709  {
710    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
711                       TimePassesIsEnabled);
712    delete Scheduler;
713  }
714
715  // Free the SelectionDAG state, now that we're finished with it.
716  CurDAG->clear();
717}
718
719namespace {
720/// ISelUpdater - helper class to handle updates of the instruction selection
721/// graph.
722class ISelUpdater : public SelectionDAG::DAGUpdateListener {
723  SelectionDAG::allnodes_iterator &ISelPosition;
724public:
725  ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
726    : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
727
728  /// NodeDeleted - Handle nodes deleted from the graph. If the node being
729  /// deleted is the current ISelPosition node, update ISelPosition.
730  ///
731  virtual void NodeDeleted(SDNode *N, SDNode *E) {
732    if (ISelPosition == SelectionDAG::allnodes_iterator(N))
733      ++ISelPosition;
734  }
735};
736} // end anonymous namespace
737
738void SelectionDAGISel::DoInstructionSelection() {
739  DEBUG(errs() << "===== Instruction selection begins: BB#"
740        << FuncInfo->MBB->getNumber()
741        << " '" << FuncInfo->MBB->getName() << "'\n");
742
743  PreprocessISelDAG();
744
745  // Select target instructions for the DAG.
746  {
747    // Number all nodes with a topological order and set DAGSize.
748    DAGSize = CurDAG->AssignTopologicalOrder();
749
750    // Create a dummy node (which is not added to allnodes), that adds
751    // a reference to the root node, preventing it from being deleted,
752    // and tracking any changes of the root.
753    HandleSDNode Dummy(CurDAG->getRoot());
754    SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
755    ++ISelPosition;
756
757    // Make sure that ISelPosition gets properly updated when nodes are deleted
758    // in calls made from this function.
759    ISelUpdater ISU(*CurDAG, ISelPosition);
760
761    // The AllNodes list is now topological-sorted. Visit the
762    // nodes by starting at the end of the list (the root of the
763    // graph) and preceding back toward the beginning (the entry
764    // node).
765    while (ISelPosition != CurDAG->allnodes_begin()) {
766      SDNode *Node = --ISelPosition;
767      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
768      // but there are currently some corner cases that it misses. Also, this
769      // makes it theoretically possible to disable the DAGCombiner.
770      if (Node->use_empty())
771        continue;
772
773      SDNode *ResNode = Select(Node);
774
775      // FIXME: This is pretty gross.  'Select' should be changed to not return
776      // anything at all and this code should be nuked with a tactical strike.
777
778      // If node should not be replaced, continue with the next one.
779      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
780        continue;
781      // Replace node.
782      if (ResNode)
783        ReplaceUses(Node, ResNode);
784
785      // If after the replacement this node is not used any more,
786      // remove this dead node.
787      if (Node->use_empty()) // Don't delete EntryToken, etc.
788        CurDAG->RemoveDeadNode(Node);
789    }
790
791    CurDAG->setRoot(Dummy.getValue());
792  }
793
794  DEBUG(errs() << "===== Instruction selection ends:\n");
795
796  PostprocessISelDAG();
797}
798
799/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
800/// do other setup for EH landing-pad blocks.
801void SelectionDAGISel::PrepareEHLandingPad() {
802  MachineBasicBlock *MBB = FuncInfo->MBB;
803
804  // Add a label to mark the beginning of the landing pad.  Deletion of the
805  // landing pad can thus be detected via the MachineModuleInfo.
806  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
807
808  // Assign the call site to the landing pad's begin label.
809  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
810
811  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
812  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
813    .addSym(Label);
814
815  // Mark exception register as live in.
816  unsigned Reg = TLI.getExceptionPointerRegister();
817  if (Reg) MBB->addLiveIn(Reg);
818
819  // Mark exception selector register as live in.
820  Reg = TLI.getExceptionSelectorRegister();
821  if (Reg) MBB->addLiveIn(Reg);
822}
823
824/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
825/// load into the specified FoldInst.  Note that we could have a sequence where
826/// multiple LLVM IR instructions are folded into the same machineinstr.  For
827/// example we could have:
828///   A: x = load i32 *P
829///   B: y = icmp A, 42
830///   C: br y, ...
831///
832/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
833/// any other folded instructions) because it is between A and C.
834///
835/// If we succeed in folding the load into the operation, return true.
836///
837bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
838                                             const Instruction *FoldInst,
839                                             FastISel *FastIS) {
840  // We know that the load has a single use, but don't know what it is.  If it
841  // isn't one of the folded instructions, then we can't succeed here.  Handle
842  // this by scanning the single-use users of the load until we get to FoldInst.
843  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
844
845  const Instruction *TheUser = LI->use_back();
846  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
847         // Stay in the right block.
848         TheUser->getParent() == FoldInst->getParent() &&
849         --MaxUsers) {  // Don't scan too far.
850    // If there are multiple or no uses of this instruction, then bail out.
851    if (!TheUser->hasOneUse())
852      return false;
853
854    TheUser = TheUser->use_back();
855  }
856
857  // If we didn't find the fold instruction, then we failed to collapse the
858  // sequence.
859  if (TheUser != FoldInst)
860    return false;
861
862  // Don't try to fold volatile loads.  Target has to deal with alignment
863  // constraints.
864  if (LI->isVolatile()) return false;
865
866  // Figure out which vreg this is going into.  If there is no assigned vreg yet
867  // then there actually was no reference to it.  Perhaps the load is referenced
868  // by a dead instruction.
869  unsigned LoadReg = FastIS->getRegForValue(LI);
870  if (LoadReg == 0)
871    return false;
872
873  // Check to see what the uses of this vreg are.  If it has no uses, or more
874  // than one use (at the machine instr level) then we can't fold it.
875  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
876  if (RI == RegInfo->reg_end())
877    return false;
878
879  // See if there is exactly one use of the vreg.  If there are multiple uses,
880  // then the instruction got lowered to multiple machine instructions or the
881  // use of the loaded value ended up being multiple operands of the result, in
882  // either case, we can't fold this.
883  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
884  if (PostRI != RegInfo->reg_end())
885    return false;
886
887  assert(RI.getOperand().isUse() &&
888         "The only use of the vreg must be a use, we haven't emitted the def!");
889
890  MachineInstr *User = &*RI;
891
892  // Set the insertion point properly.  Folding the load can cause generation of
893  // other random instructions (like sign extends) for addressing modes, make
894  // sure they get inserted in a logical place before the new instruction.
895  FuncInfo->InsertPt = User;
896  FuncInfo->MBB = User->getParent();
897
898  // Ask the target to try folding the load.
899  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
900}
901
902/// isFoldedOrDeadInstruction - Return true if the specified instruction is
903/// side-effect free and is either dead or folded into a generated instruction.
904/// Return false if it needs to be emitted.
905static bool isFoldedOrDeadInstruction(const Instruction *I,
906                                      FunctionLoweringInfo *FuncInfo) {
907  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
908         !isa<TerminatorInst>(I) && // Terminators aren't folded.
909         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
910         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
911         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
912}
913
914#ifndef NDEBUG
915// Collect per Instruction statistics for fast-isel misses.  Only those
916// instructions that cause the bail are accounted for.  It does not account for
917// instructions higher in the block.  Thus, summing the per instructions stats
918// will not add up to what is reported by NumFastIselFailures.
919static void collectFailStats(const Instruction *I) {
920  switch (I->getOpcode()) {
921  default: assert (0 && "<Invalid operator> ");
922
923  // Terminators
924  case Instruction::Ret:         NumFastIselFailRet++; return;
925  case Instruction::Br:          NumFastIselFailBr++; return;
926  case Instruction::Switch:      NumFastIselFailSwitch++; return;
927  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
928  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
929  case Instruction::Resume:      NumFastIselFailResume++; return;
930  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
931
932  // Standard binary operators...
933  case Instruction::Add:  NumFastIselFailAdd++; return;
934  case Instruction::FAdd: NumFastIselFailFAdd++; return;
935  case Instruction::Sub:  NumFastIselFailSub++; return;
936  case Instruction::FSub: NumFastIselFailFSub++; return;
937  case Instruction::Mul:  NumFastIselFailMul++; return;
938  case Instruction::FMul: NumFastIselFailFMul++; return;
939  case Instruction::UDiv: NumFastIselFailUDiv++; return;
940  case Instruction::SDiv: NumFastIselFailSDiv++; return;
941  case Instruction::FDiv: NumFastIselFailFDiv++; return;
942  case Instruction::URem: NumFastIselFailURem++; return;
943  case Instruction::SRem: NumFastIselFailSRem++; return;
944  case Instruction::FRem: NumFastIselFailFRem++; return;
945
946  // Logical operators...
947  case Instruction::And: NumFastIselFailAnd++; return;
948  case Instruction::Or:  NumFastIselFailOr++; return;
949  case Instruction::Xor: NumFastIselFailXor++; return;
950
951  // Memory instructions...
952  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
953  case Instruction::Load:          NumFastIselFailLoad++; return;
954  case Instruction::Store:         NumFastIselFailStore++; return;
955  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
956  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
957  case Instruction::Fence:         NumFastIselFailFence++; return;
958  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
959
960  // Convert instructions...
961  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
962  case Instruction::ZExt:     NumFastIselFailZExt++; return;
963  case Instruction::SExt:     NumFastIselFailSExt++; return;
964  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
965  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
966  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
967  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
968  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
969  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
970  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
971  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
972  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
973
974  // Other instructions...
975  case Instruction::ICmp:           NumFastIselFailICmp++; return;
976  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
977  case Instruction::PHI:            NumFastIselFailPHI++; return;
978  case Instruction::Select:         NumFastIselFailSelect++; return;
979  case Instruction::Call:           NumFastIselFailCall++; return;
980  case Instruction::Shl:            NumFastIselFailShl++; return;
981  case Instruction::LShr:           NumFastIselFailLShr++; return;
982  case Instruction::AShr:           NumFastIselFailAShr++; return;
983  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
984  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
985  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
986  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
987  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
988  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
989  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
990  }
991}
992#endif
993
994void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
995  // Initialize the Fast-ISel state, if needed.
996  FastISel *FastIS = 0;
997  if (TM.Options.EnableFastISel)
998    FastIS = TLI.createFastISel(*FuncInfo, LibInfo);
999
1000  // Iterate over all basic blocks in the function.
1001  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
1002  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
1003       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
1004    const BasicBlock *LLVMBB = *I;
1005
1006    if (OptLevel != CodeGenOpt::None) {
1007      bool AllPredsVisited = true;
1008      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
1009           PI != PE; ++PI) {
1010        if (!FuncInfo->VisitedBBs.count(*PI)) {
1011          AllPredsVisited = false;
1012          break;
1013        }
1014      }
1015
1016      if (AllPredsVisited) {
1017        for (BasicBlock::const_iterator I = LLVMBB->begin();
1018             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1019          FuncInfo->ComputePHILiveOutRegInfo(PN);
1020      } else {
1021        for (BasicBlock::const_iterator I = LLVMBB->begin();
1022             const PHINode *PN = dyn_cast<PHINode>(I); ++I)
1023          FuncInfo->InvalidatePHILiveOutRegInfo(PN);
1024      }
1025
1026      FuncInfo->VisitedBBs.insert(LLVMBB);
1027    }
1028
1029    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1030    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1031
1032    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
1033    BasicBlock::const_iterator const End = LLVMBB->end();
1034    BasicBlock::const_iterator BI = End;
1035
1036    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1037
1038    // Setup an EH landing-pad block.
1039    if (FuncInfo->MBB->isLandingPad())
1040      PrepareEHLandingPad();
1041
1042    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1043    if (FastIS) {
1044      FastIS->startNewBlock();
1045
1046      // Emit code for any incoming arguments. This must happen before
1047      // beginning FastISel on the entry block.
1048      if (LLVMBB == &Fn.getEntryBlock()) {
1049        // Lower any arguments needed in this block if this is the entry block.
1050        if (!FastIS->LowerArguments()) {
1051          // Call target indepedent SDISel argument lowering code if the target
1052          // specific routine is not successful.
1053          LowerArguments(LLVMBB);
1054          CurDAG->setRoot(SDB->getControlRoot());
1055          SDB->clear();
1056          CodeGenAndEmitDAG();
1057        }
1058
1059        // If we inserted any instructions at the beginning, make a note of
1060        // where they are, so we can be sure to emit subsequent instructions
1061        // after them.
1062        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1063          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1064        else
1065          FastIS->setLastLocalValue(0);
1066      }
1067
1068      unsigned NumFastIselRemaining = std::distance(Begin, End);
1069      // Do FastISel on as many instructions as possible.
1070      for (; BI != Begin; --BI) {
1071        const Instruction *Inst = llvm::prior(BI);
1072
1073        // If we no longer require this instruction, skip it.
1074        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1075          --NumFastIselRemaining;
1076          continue;
1077        }
1078
1079        // Bottom-up: reset the insert pos at the top, after any local-value
1080        // instructions.
1081        FastIS->recomputeInsertPt();
1082
1083        // Try to select the instruction with FastISel.
1084        if (FastIS->SelectInstruction(Inst)) {
1085          --NumFastIselRemaining;
1086          ++NumFastIselSuccess;
1087          // If fast isel succeeded, skip over all the folded instructions, and
1088          // then see if there is a load right before the selected instructions.
1089          // Try to fold the load if so.
1090          const Instruction *BeforeInst = Inst;
1091          while (BeforeInst != Begin) {
1092            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1093            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1094              break;
1095          }
1096          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1097              BeforeInst->hasOneUse() &&
1098              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) {
1099            // If we succeeded, don't re-select the load.
1100            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1101            --NumFastIselRemaining;
1102            ++NumFastIselSuccess;
1103          }
1104          continue;
1105        }
1106
1107#ifndef NDEBUG
1108        if (EnableFastISelVerbose2)
1109          collectFailStats(Inst);
1110#endif
1111
1112        // Then handle certain instructions as single-LLVM-Instruction blocks.
1113        if (isa<CallInst>(Inst)) {
1114
1115          if (EnableFastISelVerbose || EnableFastISelAbort) {
1116            dbgs() << "FastISel missed call: ";
1117            Inst->dump();
1118          }
1119
1120          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1121            unsigned &R = FuncInfo->ValueMap[Inst];
1122            if (!R)
1123              R = FuncInfo->CreateRegs(Inst->getType());
1124          }
1125
1126          bool HadTailCall = false;
1127          MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
1128          SelectBasicBlock(Inst, BI, HadTailCall);
1129
1130          // If the call was emitted as a tail call, we're done with the block.
1131          // We also need to delete any previously emitted instructions.
1132          if (HadTailCall) {
1133            FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
1134            --BI;
1135            break;
1136          }
1137
1138          // Recompute NumFastIselRemaining as Selection DAG instruction
1139          // selection may have handled the call, input args, etc.
1140          unsigned RemainingNow = std::distance(Begin, BI);
1141          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1142          NumFastIselRemaining = RemainingNow;
1143          continue;
1144        }
1145
1146        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1147          // Don't abort, and use a different message for terminator misses.
1148          NumFastIselFailures += NumFastIselRemaining;
1149          if (EnableFastISelVerbose || EnableFastISelAbort) {
1150            dbgs() << "FastISel missed terminator: ";
1151            Inst->dump();
1152          }
1153        } else {
1154          NumFastIselFailures += NumFastIselRemaining;
1155          if (EnableFastISelVerbose || EnableFastISelAbort) {
1156            dbgs() << "FastISel miss: ";
1157            Inst->dump();
1158          }
1159          if (EnableFastISelAbort)
1160            // The "fast" selector couldn't handle something and bailed.
1161            // For the purpose of debugging, just abort.
1162            llvm_unreachable("FastISel didn't select the entire block");
1163        }
1164        break;
1165      }
1166
1167      FastIS->recomputeInsertPt();
1168    } else {
1169      // Lower any arguments needed in this block if this is the entry block.
1170      if (LLVMBB == &Fn.getEntryBlock())
1171        LowerArguments(LLVMBB);
1172    }
1173
1174    if (Begin != BI)
1175      ++NumDAGBlocks;
1176    else
1177      ++NumFastIselBlocks;
1178
1179    if (Begin != BI) {
1180      // Run SelectionDAG instruction selection on the remainder of the block
1181      // not handled by FastISel. If FastISel is not run, this is the entire
1182      // block.
1183      bool HadTailCall;
1184      SelectBasicBlock(Begin, BI, HadTailCall);
1185    }
1186
1187    FinishBasicBlock();
1188    FuncInfo->PHINodesToUpdate.clear();
1189  }
1190
1191  delete FastIS;
1192  SDB->clearDanglingDebugInfo();
1193}
1194
1195void
1196SelectionDAGISel::FinishBasicBlock() {
1197
1198  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1199               << FuncInfo->PHINodesToUpdate.size() << "\n";
1200        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1201          dbgs() << "Node " << i << " : ("
1202                 << FuncInfo->PHINodesToUpdate[i].first
1203                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1204
1205  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1206  // PHI nodes in successors.
1207  if (SDB->SwitchCases.empty() &&
1208      SDB->JTCases.empty() &&
1209      SDB->BitTestCases.empty()) {
1210    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1211      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1212      assert(PHI->isPHI() &&
1213             "This is not a machine PHI node that we are updating!");
1214      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1215        continue;
1216      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1217    }
1218    return;
1219  }
1220
1221  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1222    // Lower header first, if it wasn't already lowered
1223    if (!SDB->BitTestCases[i].Emitted) {
1224      // Set the current basic block to the mbb we wish to insert the code into
1225      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1226      FuncInfo->InsertPt = FuncInfo->MBB->end();
1227      // Emit the code
1228      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1229      CurDAG->setRoot(SDB->getRoot());
1230      SDB->clear();
1231      CodeGenAndEmitDAG();
1232    }
1233
1234    uint32_t UnhandledWeight = 0;
1235    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
1236      UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
1237
1238    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1239      UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
1240      // Set the current basic block to the mbb we wish to insert the code into
1241      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1242      FuncInfo->InsertPt = FuncInfo->MBB->end();
1243      // Emit the code
1244      if (j+1 != ej)
1245        SDB->visitBitTestCase(SDB->BitTestCases[i],
1246                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1247                              UnhandledWeight,
1248                              SDB->BitTestCases[i].Reg,
1249                              SDB->BitTestCases[i].Cases[j],
1250                              FuncInfo->MBB);
1251      else
1252        SDB->visitBitTestCase(SDB->BitTestCases[i],
1253                              SDB->BitTestCases[i].Default,
1254                              UnhandledWeight,
1255                              SDB->BitTestCases[i].Reg,
1256                              SDB->BitTestCases[i].Cases[j],
1257                              FuncInfo->MBB);
1258
1259
1260      CurDAG->setRoot(SDB->getRoot());
1261      SDB->clear();
1262      CodeGenAndEmitDAG();
1263    }
1264
1265    // Update PHI Nodes
1266    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1267         pi != pe; ++pi) {
1268      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1269      MachineBasicBlock *PHIBB = PHI->getParent();
1270      assert(PHI->isPHI() &&
1271             "This is not a machine PHI node that we are updating!");
1272      // This is "default" BB. We have two jumps to it. From "header" BB and
1273      // from last "case" BB.
1274      if (PHIBB == SDB->BitTestCases[i].Default)
1275        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1276           .addMBB(SDB->BitTestCases[i].Parent)
1277           .addReg(FuncInfo->PHINodesToUpdate[pi].second)
1278           .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
1279      // One of "cases" BB.
1280      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1281           j != ej; ++j) {
1282        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1283        if (cBB->isSuccessor(PHIBB))
1284          PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
1285      }
1286    }
1287  }
1288  SDB->BitTestCases.clear();
1289
1290  // If the JumpTable record is filled in, then we need to emit a jump table.
1291  // Updating the PHI nodes is tricky in this case, since we need to determine
1292  // whether the PHI is a successor of the range check MBB or the jump table MBB
1293  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1294    // Lower header first, if it wasn't already lowered
1295    if (!SDB->JTCases[i].first.Emitted) {
1296      // Set the current basic block to the mbb we wish to insert the code into
1297      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1298      FuncInfo->InsertPt = FuncInfo->MBB->end();
1299      // Emit the code
1300      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1301                                FuncInfo->MBB);
1302      CurDAG->setRoot(SDB->getRoot());
1303      SDB->clear();
1304      CodeGenAndEmitDAG();
1305    }
1306
1307    // Set the current basic block to the mbb we wish to insert the code into
1308    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1309    FuncInfo->InsertPt = FuncInfo->MBB->end();
1310    // Emit the code
1311    SDB->visitJumpTable(SDB->JTCases[i].second);
1312    CurDAG->setRoot(SDB->getRoot());
1313    SDB->clear();
1314    CodeGenAndEmitDAG();
1315
1316    // Update PHI Nodes
1317    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1318         pi != pe; ++pi) {
1319      MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
1320      MachineBasicBlock *PHIBB = PHI->getParent();
1321      assert(PHI->isPHI() &&
1322             "This is not a machine PHI node that we are updating!");
1323      // "default" BB. We can go there only from header BB.
1324      if (PHIBB == SDB->JTCases[i].second.Default)
1325        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
1326           .addMBB(SDB->JTCases[i].first.HeaderBB);
1327      // JT BB. Just iterate over successors here
1328      if (FuncInfo->MBB->isSuccessor(PHIBB))
1329        PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
1330    }
1331  }
1332  SDB->JTCases.clear();
1333
1334  // If the switch block involved a branch to one of the actual successors, we
1335  // need to update PHI nodes in that block.
1336  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1337    MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
1338    assert(PHI->isPHI() &&
1339           "This is not a machine PHI node that we are updating!");
1340    if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
1341      PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
1342  }
1343
1344  // If we generated any switch lowering information, build and codegen any
1345  // additional DAGs necessary.
1346  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1347    // Set the current basic block to the mbb we wish to insert the code into
1348    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1349    FuncInfo->InsertPt = FuncInfo->MBB->end();
1350
1351    // Determine the unique successors.
1352    SmallVector<MachineBasicBlock *, 2> Succs;
1353    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1354    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1355      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1356
1357    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1358    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1359    CurDAG->setRoot(SDB->getRoot());
1360    SDB->clear();
1361    CodeGenAndEmitDAG();
1362
1363    // Remember the last block, now that any splitting is done, for use in
1364    // populating PHI nodes in successors.
1365    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1366
1367    // Handle any PHI nodes in successors of this chunk, as if we were coming
1368    // from the original BB before switch expansion.  Note that PHI nodes can
1369    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1370    // handle them the right number of times.
1371    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1372      FuncInfo->MBB = Succs[i];
1373      FuncInfo->InsertPt = FuncInfo->MBB->end();
1374      // FuncInfo->MBB may have been removed from the CFG if a branch was
1375      // constant folded.
1376      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1377        for (MachineBasicBlock::iterator
1378             MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
1379             MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
1380          MachineInstrBuilder PHI(*MF, MBBI);
1381          // This value for this PHI node is recorded in PHINodesToUpdate.
1382          for (unsigned pn = 0; ; ++pn) {
1383            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1384                   "Didn't find PHI entry!");
1385            if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
1386              PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
1387              break;
1388            }
1389          }
1390        }
1391      }
1392    }
1393  }
1394  SDB->SwitchCases.clear();
1395}
1396
1397
1398/// Create the scheduler. If a specific scheduler was specified
1399/// via the SchedulerRegistry, use it, otherwise select the
1400/// one preferred by the target.
1401///
1402ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1403  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1404
1405  if (!Ctor) {
1406    Ctor = ISHeuristic;
1407    RegisterScheduler::setDefault(Ctor);
1408  }
1409
1410  return Ctor(this, OptLevel);
1411}
1412
1413//===----------------------------------------------------------------------===//
1414// Helper functions used by the generated instruction selector.
1415//===----------------------------------------------------------------------===//
1416// Calls to these methods are generated by tblgen.
1417
1418/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1419/// the dag combiner simplified the 255, we still want to match.  RHS is the
1420/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1421/// specified in the .td file (e.g. 255).
1422bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1423                                    int64_t DesiredMaskS) const {
1424  const APInt &ActualMask = RHS->getAPIntValue();
1425  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1426
1427  // If the actual mask exactly matches, success!
1428  if (ActualMask == DesiredMask)
1429    return true;
1430
1431  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1432  if (ActualMask.intersects(~DesiredMask))
1433    return false;
1434
1435  // Otherwise, the DAG Combiner may have proven that the value coming in is
1436  // either already zero or is not demanded.  Check for known zero input bits.
1437  APInt NeededMask = DesiredMask & ~ActualMask;
1438  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1439    return true;
1440
1441  // TODO: check to see if missing bits are just not demanded.
1442
1443  // Otherwise, this pattern doesn't match.
1444  return false;
1445}
1446
1447/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1448/// the dag combiner simplified the 255, we still want to match.  RHS is the
1449/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1450/// specified in the .td file (e.g. 255).
1451bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1452                                   int64_t DesiredMaskS) const {
1453  const APInt &ActualMask = RHS->getAPIntValue();
1454  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1455
1456  // If the actual mask exactly matches, success!
1457  if (ActualMask == DesiredMask)
1458    return true;
1459
1460  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1461  if (ActualMask.intersects(~DesiredMask))
1462    return false;
1463
1464  // Otherwise, the DAG Combiner may have proven that the value coming in is
1465  // either already zero or is not demanded.  Check for known zero input bits.
1466  APInt NeededMask = DesiredMask & ~ActualMask;
1467
1468  APInt KnownZero, KnownOne;
1469  CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
1470
1471  // If all the missing bits in the or are already known to be set, match!
1472  if ((NeededMask & KnownOne) == NeededMask)
1473    return true;
1474
1475  // TODO: check to see if missing bits are just not demanded.
1476
1477  // Otherwise, this pattern doesn't match.
1478  return false;
1479}
1480
1481
1482/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1483/// by tblgen.  Others should not call it.
1484void SelectionDAGISel::
1485SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1486  std::vector<SDValue> InOps;
1487  std::swap(InOps, Ops);
1488
1489  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1490  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1491  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1492  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1493
1494  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1495  if (InOps[e-1].getValueType() == MVT::Glue)
1496    --e;  // Don't process a glue operand if it is here.
1497
1498  while (i != e) {
1499    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1500    if (!InlineAsm::isMemKind(Flags)) {
1501      // Just skip over this operand, copying the operands verbatim.
1502      Ops.insert(Ops.end(), InOps.begin()+i,
1503                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1504      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1505    } else {
1506      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1507             "Memory operand with multiple values?");
1508      // Otherwise, this is a memory operand.  Ask the target to select it.
1509      std::vector<SDValue> SelOps;
1510      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1511        report_fatal_error("Could not match memory address.  Inline asm"
1512                           " failure!");
1513
1514      // Add this to the output node.
1515      unsigned NewFlags =
1516        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1517      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1518      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1519      i += 2;
1520    }
1521  }
1522
1523  // Add the glue input back if present.
1524  if (e != InOps.size())
1525    Ops.push_back(InOps.back());
1526}
1527
1528/// findGlueUse - Return use of MVT::Glue value produced by the specified
1529/// SDNode.
1530///
1531static SDNode *findGlueUse(SDNode *N) {
1532  unsigned FlagResNo = N->getNumValues()-1;
1533  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1534    SDUse &Use = I.getUse();
1535    if (Use.getResNo() == FlagResNo)
1536      return Use.getUser();
1537  }
1538  return NULL;
1539}
1540
1541/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1542/// This function recursively traverses up the operand chain, ignoring
1543/// certain nodes.
1544static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1545                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1546                          bool IgnoreChains) {
1547  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1548  // greater than all of its (recursive) operands.  If we scan to a point where
1549  // 'use' is smaller than the node we're scanning for, then we know we will
1550  // never find it.
1551  //
1552  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1553  // happen because we scan down to newly selected nodes in the case of glue
1554  // uses.
1555  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1556    return false;
1557
1558  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1559  // won't fail if we scan it again.
1560  if (!Visited.insert(Use))
1561    return false;
1562
1563  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1564    // Ignore chain uses, they are validated by HandleMergeInputChains.
1565    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1566      continue;
1567
1568    SDNode *N = Use->getOperand(i).getNode();
1569    if (N == Def) {
1570      if (Use == ImmedUse || Use == Root)
1571        continue;  // We are not looking for immediate use.
1572      assert(N != Root);
1573      return true;
1574    }
1575
1576    // Traverse up the operand chain.
1577    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1578      return true;
1579  }
1580  return false;
1581}
1582
1583/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1584/// operand node N of U during instruction selection that starts at Root.
1585bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1586                                          SDNode *Root) const {
1587  if (OptLevel == CodeGenOpt::None) return false;
1588  return N.hasOneUse();
1589}
1590
1591/// IsLegalToFold - Returns true if the specific operand node N of
1592/// U can be folded during instruction selection that starts at Root.
1593bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1594                                     CodeGenOpt::Level OptLevel,
1595                                     bool IgnoreChains) {
1596  if (OptLevel == CodeGenOpt::None) return false;
1597
1598  // If Root use can somehow reach N through a path that that doesn't contain
1599  // U then folding N would create a cycle. e.g. In the following
1600  // diagram, Root can reach N through X. If N is folded into into Root, then
1601  // X is both a predecessor and a successor of U.
1602  //
1603  //          [N*]           //
1604  //         ^   ^           //
1605  //        /     \          //
1606  //      [U*]    [X]?       //
1607  //        ^     ^          //
1608  //         \   /           //
1609  //          \ /            //
1610  //         [Root*]         //
1611  //
1612  // * indicates nodes to be folded together.
1613  //
1614  // If Root produces glue, then it gets (even more) interesting. Since it
1615  // will be "glued" together with its glue use in the scheduler, we need to
1616  // check if it might reach N.
1617  //
1618  //          [N*]           //
1619  //         ^   ^           //
1620  //        /     \          //
1621  //      [U*]    [X]?       //
1622  //        ^       ^        //
1623  //         \       \       //
1624  //          \      |       //
1625  //         [Root*] |       //
1626  //          ^      |       //
1627  //          f      |       //
1628  //          |      /       //
1629  //         [Y]    /        //
1630  //           ^   /         //
1631  //           f  /          //
1632  //           | /           //
1633  //          [GU]           //
1634  //
1635  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1636  // (call it Fold), then X is a predecessor of GU and a successor of
1637  // Fold. But since Fold and GU are glued together, this will create
1638  // a cycle in the scheduling graph.
1639
1640  // If the node has glue, walk down the graph to the "lowest" node in the
1641  // glueged set.
1642  EVT VT = Root->getValueType(Root->getNumValues()-1);
1643  while (VT == MVT::Glue) {
1644    SDNode *GU = findGlueUse(Root);
1645    if (GU == NULL)
1646      break;
1647    Root = GU;
1648    VT = Root->getValueType(Root->getNumValues()-1);
1649
1650    // If our query node has a glue result with a use, we've walked up it.  If
1651    // the user (which has already been selected) has a chain or indirectly uses
1652    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1653    // this, we cannot ignore chains in this predicate.
1654    IgnoreChains = false;
1655  }
1656
1657
1658  SmallPtrSet<SDNode*, 16> Visited;
1659  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1660}
1661
1662SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1663  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1664  SelectInlineAsmMemoryOperands(Ops);
1665
1666  std::vector<EVT> VTs;
1667  VTs.push_back(MVT::Other);
1668  VTs.push_back(MVT::Glue);
1669  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1670                                VTs, &Ops[0], Ops.size());
1671  New->setNodeId(-1);
1672  return New.getNode();
1673}
1674
1675SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1676  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1677}
1678
1679/// GetVBR - decode a vbr encoding whose top bit is set.
1680LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1681GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1682  assert(Val >= 128 && "Not a VBR");
1683  Val &= 127;  // Remove first vbr bit.
1684
1685  unsigned Shift = 7;
1686  uint64_t NextBits;
1687  do {
1688    NextBits = MatcherTable[Idx++];
1689    Val |= (NextBits&127) << Shift;
1690    Shift += 7;
1691  } while (NextBits & 128);
1692
1693  return Val;
1694}
1695
1696
1697/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1698/// interior glue and chain results to use the new glue and chain results.
1699void SelectionDAGISel::
1700UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1701                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1702                    SDValue InputGlue,
1703                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1704                    bool isMorphNodeTo) {
1705  SmallVector<SDNode*, 4> NowDeadNodes;
1706
1707  // Now that all the normal results are replaced, we replace the chain and
1708  // glue results if present.
1709  if (!ChainNodesMatched.empty()) {
1710    assert(InputChain.getNode() != 0 &&
1711           "Matched input chains but didn't produce a chain");
1712    // Loop over all of the nodes we matched that produced a chain result.
1713    // Replace all the chain results with the final chain we ended up with.
1714    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1715      SDNode *ChainNode = ChainNodesMatched[i];
1716
1717      // If this node was already deleted, don't look at it.
1718      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1719        continue;
1720
1721      // Don't replace the results of the root node if we're doing a
1722      // MorphNodeTo.
1723      if (ChainNode == NodeToMatch && isMorphNodeTo)
1724        continue;
1725
1726      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1727      if (ChainVal.getValueType() == MVT::Glue)
1728        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1729      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1730      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1731
1732      // If the node became dead and we haven't already seen it, delete it.
1733      if (ChainNode->use_empty() &&
1734          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1735        NowDeadNodes.push_back(ChainNode);
1736    }
1737  }
1738
1739  // If the result produces glue, update any glue results in the matched
1740  // pattern with the glue result.
1741  if (InputGlue.getNode() != 0) {
1742    // Handle any interior nodes explicitly marked.
1743    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1744      SDNode *FRN = GlueResultNodesMatched[i];
1745
1746      // If this node was already deleted, don't look at it.
1747      if (FRN->getOpcode() == ISD::DELETED_NODE)
1748        continue;
1749
1750      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1751             "Doesn't have a glue result");
1752      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1753                                        InputGlue);
1754
1755      // If the node became dead and we haven't already seen it, delete it.
1756      if (FRN->use_empty() &&
1757          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1758        NowDeadNodes.push_back(FRN);
1759    }
1760  }
1761
1762  if (!NowDeadNodes.empty())
1763    CurDAG->RemoveDeadNodes(NowDeadNodes);
1764
1765  DEBUG(errs() << "ISEL: Match complete!\n");
1766}
1767
1768enum ChainResult {
1769  CR_Simple,
1770  CR_InducesCycle,
1771  CR_LeadsToInteriorNode
1772};
1773
1774/// WalkChainUsers - Walk down the users of the specified chained node that is
1775/// part of the pattern we're matching, looking at all of the users we find.
1776/// This determines whether something is an interior node, whether we have a
1777/// non-pattern node in between two pattern nodes (which prevent folding because
1778/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1779/// between pattern nodes (in which case the TF becomes part of the pattern).
1780///
1781/// The walk we do here is guaranteed to be small because we quickly get down to
1782/// already selected nodes "below" us.
1783static ChainResult
1784WalkChainUsers(const SDNode *ChainedNode,
1785               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1786               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1787  ChainResult Result = CR_Simple;
1788
1789  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1790         E = ChainedNode->use_end(); UI != E; ++UI) {
1791    // Make sure the use is of the chain, not some other value we produce.
1792    if (UI.getUse().getValueType() != MVT::Other) continue;
1793
1794    SDNode *User = *UI;
1795
1796    // If we see an already-selected machine node, then we've gone beyond the
1797    // pattern that we're selecting down into the already selected chunk of the
1798    // DAG.
1799    if (User->isMachineOpcode() ||
1800        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1801      continue;
1802
1803    unsigned UserOpcode = User->getOpcode();
1804    if (UserOpcode == ISD::CopyToReg ||
1805        UserOpcode == ISD::CopyFromReg ||
1806        UserOpcode == ISD::INLINEASM ||
1807        UserOpcode == ISD::EH_LABEL ||
1808        UserOpcode == ISD::LIFETIME_START ||
1809        UserOpcode == ISD::LIFETIME_END) {
1810      // If their node ID got reset to -1 then they've already been selected.
1811      // Treat them like a MachineOpcode.
1812      if (User->getNodeId() == -1)
1813        continue;
1814    }
1815
1816    // If we have a TokenFactor, we handle it specially.
1817    if (User->getOpcode() != ISD::TokenFactor) {
1818      // If the node isn't a token factor and isn't part of our pattern, then it
1819      // must be a random chained node in between two nodes we're selecting.
1820      // This happens when we have something like:
1821      //   x = load ptr
1822      //   call
1823      //   y = x+4
1824      //   store y -> ptr
1825      // Because we structurally match the load/store as a read/modify/write,
1826      // but the call is chained between them.  We cannot fold in this case
1827      // because it would induce a cycle in the graph.
1828      if (!std::count(ChainedNodesInPattern.begin(),
1829                      ChainedNodesInPattern.end(), User))
1830        return CR_InducesCycle;
1831
1832      // Otherwise we found a node that is part of our pattern.  For example in:
1833      //   x = load ptr
1834      //   y = x+4
1835      //   store y -> ptr
1836      // This would happen when we're scanning down from the load and see the
1837      // store as a user.  Record that there is a use of ChainedNode that is
1838      // part of the pattern and keep scanning uses.
1839      Result = CR_LeadsToInteriorNode;
1840      InteriorChainedNodes.push_back(User);
1841      continue;
1842    }
1843
1844    // If we found a TokenFactor, there are two cases to consider: first if the
1845    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1846    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1847    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1848    //     [Load chain]
1849    //         ^
1850    //         |
1851    //       [Load]
1852    //       ^    ^
1853    //       |    \                    DAG's like cheese
1854    //      /       \                       do you?
1855    //     /         |
1856    // [TokenFactor] [Op]
1857    //     ^          ^
1858    //     |          |
1859    //      \        /
1860    //       \      /
1861    //       [Store]
1862    //
1863    // In this case, the TokenFactor becomes part of our match and we rewrite it
1864    // as a new TokenFactor.
1865    //
1866    // To distinguish these two cases, do a recursive walk down the uses.
1867    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1868    case CR_Simple:
1869      // If the uses of the TokenFactor are just already-selected nodes, ignore
1870      // it, it is "below" our pattern.
1871      continue;
1872    case CR_InducesCycle:
1873      // If the uses of the TokenFactor lead to nodes that are not part of our
1874      // pattern that are not selected, folding would turn this into a cycle,
1875      // bail out now.
1876      return CR_InducesCycle;
1877    case CR_LeadsToInteriorNode:
1878      break;  // Otherwise, keep processing.
1879    }
1880
1881    // Okay, we know we're in the interesting interior case.  The TokenFactor
1882    // is now going to be considered part of the pattern so that we rewrite its
1883    // uses (it may have uses that are not part of the pattern) with the
1884    // ultimate chain result of the generated code.  We will also add its chain
1885    // inputs as inputs to the ultimate TokenFactor we create.
1886    Result = CR_LeadsToInteriorNode;
1887    ChainedNodesInPattern.push_back(User);
1888    InteriorChainedNodes.push_back(User);
1889    continue;
1890  }
1891
1892  return Result;
1893}
1894
1895/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1896/// operation for when the pattern matched at least one node with a chains.  The
1897/// input vector contains a list of all of the chained nodes that we match.  We
1898/// must determine if this is a valid thing to cover (i.e. matching it won't
1899/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1900/// be used as the input node chain for the generated nodes.
1901static SDValue
1902HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1903                       SelectionDAG *CurDAG) {
1904  // Walk all of the chained nodes we've matched, recursively scanning down the
1905  // users of the chain result. This adds any TokenFactor nodes that are caught
1906  // in between chained nodes to the chained and interior nodes list.
1907  SmallVector<SDNode*, 3> InteriorChainedNodes;
1908  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1909    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1910                       InteriorChainedNodes) == CR_InducesCycle)
1911      return SDValue(); // Would induce a cycle.
1912  }
1913
1914  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1915  // that we are interested in.  Form our input TokenFactor node.
1916  SmallVector<SDValue, 3> InputChains;
1917  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1918    // Add the input chain of this node to the InputChains list (which will be
1919    // the operands of the generated TokenFactor) if it's not an interior node.
1920    SDNode *N = ChainNodesMatched[i];
1921    if (N->getOpcode() != ISD::TokenFactor) {
1922      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1923        continue;
1924
1925      // Otherwise, add the input chain.
1926      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1927      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1928      InputChains.push_back(InChain);
1929      continue;
1930    }
1931
1932    // If we have a token factor, we want to add all inputs of the token factor
1933    // that are not part of the pattern we're matching.
1934    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1935      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1936                      N->getOperand(op).getNode()))
1937        InputChains.push_back(N->getOperand(op));
1938    }
1939  }
1940
1941  SDValue Res;
1942  if (InputChains.size() == 1)
1943    return InputChains[0];
1944  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1945                         MVT::Other, &InputChains[0], InputChains.size());
1946}
1947
1948/// MorphNode - Handle morphing a node in place for the selector.
1949SDNode *SelectionDAGISel::
1950MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1951          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1952  // It is possible we're using MorphNodeTo to replace a node with no
1953  // normal results with one that has a normal result (or we could be
1954  // adding a chain) and the input could have glue and chains as well.
1955  // In this case we need to shift the operands down.
1956  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1957  // than the old isel though.
1958  int OldGlueResultNo = -1, OldChainResultNo = -1;
1959
1960  unsigned NTMNumResults = Node->getNumValues();
1961  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1962    OldGlueResultNo = NTMNumResults-1;
1963    if (NTMNumResults != 1 &&
1964        Node->getValueType(NTMNumResults-2) == MVT::Other)
1965      OldChainResultNo = NTMNumResults-2;
1966  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1967    OldChainResultNo = NTMNumResults-1;
1968
1969  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1970  // that this deletes operands of the old node that become dead.
1971  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1972
1973  // MorphNodeTo can operate in two ways: if an existing node with the
1974  // specified operands exists, it can just return it.  Otherwise, it
1975  // updates the node in place to have the requested operands.
1976  if (Res == Node) {
1977    // If we updated the node in place, reset the node ID.  To the isel,
1978    // this should be just like a newly allocated machine node.
1979    Res->setNodeId(-1);
1980  }
1981
1982  unsigned ResNumResults = Res->getNumValues();
1983  // Move the glue if needed.
1984  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1985      (unsigned)OldGlueResultNo != ResNumResults-1)
1986    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1987                                      SDValue(Res, ResNumResults-1));
1988
1989  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1990    --ResNumResults;
1991
1992  // Move the chain reference if needed.
1993  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1994      (unsigned)OldChainResultNo != ResNumResults-1)
1995    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1996                                      SDValue(Res, ResNumResults-1));
1997
1998  // Otherwise, no replacement happened because the node already exists. Replace
1999  // Uses of the old node with the new one.
2000  if (Res != Node)
2001    CurDAG->ReplaceAllUsesWith(Node, Res);
2002
2003  return Res;
2004}
2005
2006/// CheckSame - Implements OP_CheckSame.
2007LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2008CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2009          SDValue N,
2010          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2011  // Accept if it is exactly the same as a previously recorded node.
2012  unsigned RecNo = MatcherTable[MatcherIndex++];
2013  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2014  return N == RecordedNodes[RecNo].first;
2015}
2016
2017/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2018LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2019CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2020                      const SelectionDAGISel &SDISel) {
2021  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2022}
2023
2024/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2025LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2026CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2027                   const SelectionDAGISel &SDISel, SDNode *N) {
2028  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2029}
2030
2031LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2032CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2033            SDNode *N) {
2034  uint16_t Opc = MatcherTable[MatcherIndex++];
2035  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2036  return N->getOpcode() == Opc;
2037}
2038
2039LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2040CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2041          SDValue N, const TargetLowering &TLI) {
2042  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2043  if (N.getValueType() == VT) return true;
2044
2045  // Handle the case when VT is iPTR.
2046  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
2047}
2048
2049LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2050CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2051               SDValue N, const TargetLowering &TLI,
2052               unsigned ChildNo) {
2053  if (ChildNo >= N.getNumOperands())
2054    return false;  // Match fails if out of range child #.
2055  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2056}
2057
2058
2059LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2060CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2061              SDValue N) {
2062  return cast<CondCodeSDNode>(N)->get() ==
2063      (ISD::CondCode)MatcherTable[MatcherIndex++];
2064}
2065
2066LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2067CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2068               SDValue N, const TargetLowering &TLI) {
2069  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2070  if (cast<VTSDNode>(N)->getVT() == VT)
2071    return true;
2072
2073  // Handle the case when VT is iPTR.
2074  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
2075}
2076
2077LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2078CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2079             SDValue N) {
2080  int64_t Val = MatcherTable[MatcherIndex++];
2081  if (Val & 128)
2082    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2083
2084  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2085  return C != 0 && C->getSExtValue() == Val;
2086}
2087
2088LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2089CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2090            SDValue N, const SelectionDAGISel &SDISel) {
2091  int64_t Val = MatcherTable[MatcherIndex++];
2092  if (Val & 128)
2093    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2094
2095  if (N->getOpcode() != ISD::AND) return false;
2096
2097  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2098  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2099}
2100
2101LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2102CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2103           SDValue N, const SelectionDAGISel &SDISel) {
2104  int64_t Val = MatcherTable[MatcherIndex++];
2105  if (Val & 128)
2106    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2107
2108  if (N->getOpcode() != ISD::OR) return false;
2109
2110  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2111  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2112}
2113
2114/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2115/// scope, evaluate the current node.  If the current predicate is known to
2116/// fail, set Result=true and return anything.  If the current predicate is
2117/// known to pass, set Result=false and return the MatcherIndex to continue
2118/// with.  If the current predicate is unknown, set Result=false and return the
2119/// MatcherIndex to continue with.
2120static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2121                                       unsigned Index, SDValue N,
2122                                       bool &Result,
2123                                       const SelectionDAGISel &SDISel,
2124                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2125  switch (Table[Index++]) {
2126  default:
2127    Result = false;
2128    return Index-1;  // Could not evaluate this predicate.
2129  case SelectionDAGISel::OPC_CheckSame:
2130    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2131    return Index;
2132  case SelectionDAGISel::OPC_CheckPatternPredicate:
2133    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2134    return Index;
2135  case SelectionDAGISel::OPC_CheckPredicate:
2136    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2137    return Index;
2138  case SelectionDAGISel::OPC_CheckOpcode:
2139    Result = !::CheckOpcode(Table, Index, N.getNode());
2140    return Index;
2141  case SelectionDAGISel::OPC_CheckType:
2142    Result = !::CheckType(Table, Index, N, SDISel.TLI);
2143    return Index;
2144  case SelectionDAGISel::OPC_CheckChild0Type:
2145  case SelectionDAGISel::OPC_CheckChild1Type:
2146  case SelectionDAGISel::OPC_CheckChild2Type:
2147  case SelectionDAGISel::OPC_CheckChild3Type:
2148  case SelectionDAGISel::OPC_CheckChild4Type:
2149  case SelectionDAGISel::OPC_CheckChild5Type:
2150  case SelectionDAGISel::OPC_CheckChild6Type:
2151  case SelectionDAGISel::OPC_CheckChild7Type:
2152    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2153                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2154    return Index;
2155  case SelectionDAGISel::OPC_CheckCondCode:
2156    Result = !::CheckCondCode(Table, Index, N);
2157    return Index;
2158  case SelectionDAGISel::OPC_CheckValueType:
2159    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2160    return Index;
2161  case SelectionDAGISel::OPC_CheckInteger:
2162    Result = !::CheckInteger(Table, Index, N);
2163    return Index;
2164  case SelectionDAGISel::OPC_CheckAndImm:
2165    Result = !::CheckAndImm(Table, Index, N, SDISel);
2166    return Index;
2167  case SelectionDAGISel::OPC_CheckOrImm:
2168    Result = !::CheckOrImm(Table, Index, N, SDISel);
2169    return Index;
2170  }
2171}
2172
2173namespace {
2174
2175struct MatchScope {
2176  /// FailIndex - If this match fails, this is the index to continue with.
2177  unsigned FailIndex;
2178
2179  /// NodeStack - The node stack when the scope was formed.
2180  SmallVector<SDValue, 4> NodeStack;
2181
2182  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2183  unsigned NumRecordedNodes;
2184
2185  /// NumMatchedMemRefs - The number of matched memref entries.
2186  unsigned NumMatchedMemRefs;
2187
2188  /// InputChain/InputGlue - The current chain/glue
2189  SDValue InputChain, InputGlue;
2190
2191  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2192  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2193};
2194
2195}
2196
2197SDNode *SelectionDAGISel::
2198SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2199                 unsigned TableSize) {
2200  // FIXME: Should these even be selected?  Handle these cases in the caller?
2201  switch (NodeToMatch->getOpcode()) {
2202  default:
2203    break;
2204  case ISD::EntryToken:       // These nodes remain the same.
2205  case ISD::BasicBlock:
2206  case ISD::Register:
2207  case ISD::RegisterMask:
2208  //case ISD::VALUETYPE:
2209  //case ISD::CONDCODE:
2210  case ISD::HANDLENODE:
2211  case ISD::MDNODE_SDNODE:
2212  case ISD::TargetConstant:
2213  case ISD::TargetConstantFP:
2214  case ISD::TargetConstantPool:
2215  case ISD::TargetFrameIndex:
2216  case ISD::TargetExternalSymbol:
2217  case ISD::TargetBlockAddress:
2218  case ISD::TargetJumpTable:
2219  case ISD::TargetGlobalTLSAddress:
2220  case ISD::TargetGlobalAddress:
2221  case ISD::TokenFactor:
2222  case ISD::CopyFromReg:
2223  case ISD::CopyToReg:
2224  case ISD::EH_LABEL:
2225  case ISD::LIFETIME_START:
2226  case ISD::LIFETIME_END:
2227    NodeToMatch->setNodeId(-1); // Mark selected.
2228    return 0;
2229  case ISD::AssertSext:
2230  case ISD::AssertZext:
2231    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2232                                      NodeToMatch->getOperand(0));
2233    return 0;
2234  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2235  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2236  }
2237
2238  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2239
2240  // Set up the node stack with NodeToMatch as the only node on the stack.
2241  SmallVector<SDValue, 8> NodeStack;
2242  SDValue N = SDValue(NodeToMatch, 0);
2243  NodeStack.push_back(N);
2244
2245  // MatchScopes - Scopes used when matching, if a match failure happens, this
2246  // indicates where to continue checking.
2247  SmallVector<MatchScope, 8> MatchScopes;
2248
2249  // RecordedNodes - This is the set of nodes that have been recorded by the
2250  // state machine.  The second value is the parent of the node, or null if the
2251  // root is recorded.
2252  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2253
2254  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2255  // pattern.
2256  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2257
2258  // These are the current input chain and glue for use when generating nodes.
2259  // Various Emit operations change these.  For example, emitting a copytoreg
2260  // uses and updates these.
2261  SDValue InputChain, InputGlue;
2262
2263  // ChainNodesMatched - If a pattern matches nodes that have input/output
2264  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2265  // which ones they are.  The result is captured into this list so that we can
2266  // update the chain results when the pattern is complete.
2267  SmallVector<SDNode*, 3> ChainNodesMatched;
2268  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2269
2270  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2271        NodeToMatch->dump(CurDAG);
2272        errs() << '\n');
2273
2274  // Determine where to start the interpreter.  Normally we start at opcode #0,
2275  // but if the state machine starts with an OPC_SwitchOpcode, then we
2276  // accelerate the first lookup (which is guaranteed to be hot) with the
2277  // OpcodeOffset table.
2278  unsigned MatcherIndex = 0;
2279
2280  if (!OpcodeOffset.empty()) {
2281    // Already computed the OpcodeOffset table, just index into it.
2282    if (N.getOpcode() < OpcodeOffset.size())
2283      MatcherIndex = OpcodeOffset[N.getOpcode()];
2284    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2285
2286  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2287    // Otherwise, the table isn't computed, but the state machine does start
2288    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2289    // is the first time we're selecting an instruction.
2290    unsigned Idx = 1;
2291    while (1) {
2292      // Get the size of this case.
2293      unsigned CaseSize = MatcherTable[Idx++];
2294      if (CaseSize & 128)
2295        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2296      if (CaseSize == 0) break;
2297
2298      // Get the opcode, add the index to the table.
2299      uint16_t Opc = MatcherTable[Idx++];
2300      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2301      if (Opc >= OpcodeOffset.size())
2302        OpcodeOffset.resize((Opc+1)*2);
2303      OpcodeOffset[Opc] = Idx;
2304      Idx += CaseSize;
2305    }
2306
2307    // Okay, do the lookup for the first opcode.
2308    if (N.getOpcode() < OpcodeOffset.size())
2309      MatcherIndex = OpcodeOffset[N.getOpcode()];
2310  }
2311
2312  while (1) {
2313    assert(MatcherIndex < TableSize && "Invalid index");
2314#ifndef NDEBUG
2315    unsigned CurrentOpcodeIndex = MatcherIndex;
2316#endif
2317    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2318    switch (Opcode) {
2319    case OPC_Scope: {
2320      // Okay, the semantics of this operation are that we should push a scope
2321      // then evaluate the first child.  However, pushing a scope only to have
2322      // the first check fail (which then pops it) is inefficient.  If we can
2323      // determine immediately that the first check (or first several) will
2324      // immediately fail, don't even bother pushing a scope for them.
2325      unsigned FailIndex;
2326
2327      while (1) {
2328        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2329        if (NumToSkip & 128)
2330          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2331        // Found the end of the scope with no match.
2332        if (NumToSkip == 0) {
2333          FailIndex = 0;
2334          break;
2335        }
2336
2337        FailIndex = MatcherIndex+NumToSkip;
2338
2339        unsigned MatcherIndexOfPredicate = MatcherIndex;
2340        (void)MatcherIndexOfPredicate; // silence warning.
2341
2342        // If we can't evaluate this predicate without pushing a scope (e.g. if
2343        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2344        // push the scope and evaluate the full predicate chain.
2345        bool Result;
2346        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2347                                              Result, *this, RecordedNodes);
2348        if (!Result)
2349          break;
2350
2351        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2352                     << "index " << MatcherIndexOfPredicate
2353                     << ", continuing at " << FailIndex << "\n");
2354        ++NumDAGIselRetries;
2355
2356        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2357        // move to the next case.
2358        MatcherIndex = FailIndex;
2359      }
2360
2361      // If the whole scope failed to match, bail.
2362      if (FailIndex == 0) break;
2363
2364      // Push a MatchScope which indicates where to go if the first child fails
2365      // to match.
2366      MatchScope NewEntry;
2367      NewEntry.FailIndex = FailIndex;
2368      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2369      NewEntry.NumRecordedNodes = RecordedNodes.size();
2370      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2371      NewEntry.InputChain = InputChain;
2372      NewEntry.InputGlue = InputGlue;
2373      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2374      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2375      MatchScopes.push_back(NewEntry);
2376      continue;
2377    }
2378    case OPC_RecordNode: {
2379      // Remember this node, it may end up being an operand in the pattern.
2380      SDNode *Parent = 0;
2381      if (NodeStack.size() > 1)
2382        Parent = NodeStack[NodeStack.size()-2].getNode();
2383      RecordedNodes.push_back(std::make_pair(N, Parent));
2384      continue;
2385    }
2386
2387    case OPC_RecordChild0: case OPC_RecordChild1:
2388    case OPC_RecordChild2: case OPC_RecordChild3:
2389    case OPC_RecordChild4: case OPC_RecordChild5:
2390    case OPC_RecordChild6: case OPC_RecordChild7: {
2391      unsigned ChildNo = Opcode-OPC_RecordChild0;
2392      if (ChildNo >= N.getNumOperands())
2393        break;  // Match fails if out of range child #.
2394
2395      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2396                                             N.getNode()));
2397      continue;
2398    }
2399    case OPC_RecordMemRef:
2400      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2401      continue;
2402
2403    case OPC_CaptureGlueInput:
2404      // If the current node has an input glue, capture it in InputGlue.
2405      if (N->getNumOperands() != 0 &&
2406          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2407        InputGlue = N->getOperand(N->getNumOperands()-1);
2408      continue;
2409
2410    case OPC_MoveChild: {
2411      unsigned ChildNo = MatcherTable[MatcherIndex++];
2412      if (ChildNo >= N.getNumOperands())
2413        break;  // Match fails if out of range child #.
2414      N = N.getOperand(ChildNo);
2415      NodeStack.push_back(N);
2416      continue;
2417    }
2418
2419    case OPC_MoveParent:
2420      // Pop the current node off the NodeStack.
2421      NodeStack.pop_back();
2422      assert(!NodeStack.empty() && "Node stack imbalance!");
2423      N = NodeStack.back();
2424      continue;
2425
2426    case OPC_CheckSame:
2427      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2428      continue;
2429    case OPC_CheckPatternPredicate:
2430      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2431      continue;
2432    case OPC_CheckPredicate:
2433      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2434                                N.getNode()))
2435        break;
2436      continue;
2437    case OPC_CheckComplexPat: {
2438      unsigned CPNum = MatcherTable[MatcherIndex++];
2439      unsigned RecNo = MatcherTable[MatcherIndex++];
2440      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2441      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2442                               RecordedNodes[RecNo].first, CPNum,
2443                               RecordedNodes))
2444        break;
2445      continue;
2446    }
2447    case OPC_CheckOpcode:
2448      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2449      continue;
2450
2451    case OPC_CheckType:
2452      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2453      continue;
2454
2455    case OPC_SwitchOpcode: {
2456      unsigned CurNodeOpcode = N.getOpcode();
2457      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2458      unsigned CaseSize;
2459      while (1) {
2460        // Get the size of this case.
2461        CaseSize = MatcherTable[MatcherIndex++];
2462        if (CaseSize & 128)
2463          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2464        if (CaseSize == 0) break;
2465
2466        uint16_t Opc = MatcherTable[MatcherIndex++];
2467        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2468
2469        // If the opcode matches, then we will execute this case.
2470        if (CurNodeOpcode == Opc)
2471          break;
2472
2473        // Otherwise, skip over this case.
2474        MatcherIndex += CaseSize;
2475      }
2476
2477      // If no cases matched, bail out.
2478      if (CaseSize == 0) break;
2479
2480      // Otherwise, execute the case we found.
2481      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2482                   << " to " << MatcherIndex << "\n");
2483      continue;
2484    }
2485
2486    case OPC_SwitchType: {
2487      MVT CurNodeVT = N.getValueType().getSimpleVT();
2488      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2489      unsigned CaseSize;
2490      while (1) {
2491        // Get the size of this case.
2492        CaseSize = MatcherTable[MatcherIndex++];
2493        if (CaseSize & 128)
2494          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2495        if (CaseSize == 0) break;
2496
2497        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2498        if (CaseVT == MVT::iPTR)
2499          CaseVT = TLI.getPointerTy();
2500
2501        // If the VT matches, then we will execute this case.
2502        if (CurNodeVT == CaseVT)
2503          break;
2504
2505        // Otherwise, skip over this case.
2506        MatcherIndex += CaseSize;
2507      }
2508
2509      // If no cases matched, bail out.
2510      if (CaseSize == 0) break;
2511
2512      // Otherwise, execute the case we found.
2513      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2514                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2515      continue;
2516    }
2517    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2518    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2519    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2520    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2521      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2522                            Opcode-OPC_CheckChild0Type))
2523        break;
2524      continue;
2525    case OPC_CheckCondCode:
2526      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2527      continue;
2528    case OPC_CheckValueType:
2529      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2530      continue;
2531    case OPC_CheckInteger:
2532      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2533      continue;
2534    case OPC_CheckAndImm:
2535      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2536      continue;
2537    case OPC_CheckOrImm:
2538      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2539      continue;
2540
2541    case OPC_CheckFoldableChainNode: {
2542      assert(NodeStack.size() != 1 && "No parent node");
2543      // Verify that all intermediate nodes between the root and this one have
2544      // a single use.
2545      bool HasMultipleUses = false;
2546      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2547        if (!NodeStack[i].hasOneUse()) {
2548          HasMultipleUses = true;
2549          break;
2550        }
2551      if (HasMultipleUses) break;
2552
2553      // Check to see that the target thinks this is profitable to fold and that
2554      // we can fold it without inducing cycles in the graph.
2555      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2556                              NodeToMatch) ||
2557          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2558                         NodeToMatch, OptLevel,
2559                         true/*We validate our own chains*/))
2560        break;
2561
2562      continue;
2563    }
2564    case OPC_EmitInteger: {
2565      MVT::SimpleValueType VT =
2566        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2567      int64_t Val = MatcherTable[MatcherIndex++];
2568      if (Val & 128)
2569        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2570      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2571                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2572      continue;
2573    }
2574    case OPC_EmitRegister: {
2575      MVT::SimpleValueType VT =
2576        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2577      unsigned RegNo = MatcherTable[MatcherIndex++];
2578      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2579                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2580      continue;
2581    }
2582    case OPC_EmitRegister2: {
2583      // For targets w/ more than 256 register names, the register enum
2584      // values are stored in two bytes in the matcher table (just like
2585      // opcodes).
2586      MVT::SimpleValueType VT =
2587        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2588      unsigned RegNo = MatcherTable[MatcherIndex++];
2589      RegNo |= MatcherTable[MatcherIndex++] << 8;
2590      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2591                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2592      continue;
2593    }
2594
2595    case OPC_EmitConvertToTarget:  {
2596      // Convert from IMM/FPIMM to target version.
2597      unsigned RecNo = MatcherTable[MatcherIndex++];
2598      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2599      SDValue Imm = RecordedNodes[RecNo].first;
2600
2601      if (Imm->getOpcode() == ISD::Constant) {
2602        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2603        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2604      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2605        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2606        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2607      }
2608
2609      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2610      continue;
2611    }
2612
2613    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2614    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2615      // These are space-optimized forms of OPC_EmitMergeInputChains.
2616      assert(InputChain.getNode() == 0 &&
2617             "EmitMergeInputChains should be the first chain producing node");
2618      assert(ChainNodesMatched.empty() &&
2619             "Should only have one EmitMergeInputChains per match");
2620
2621      // Read all of the chained nodes.
2622      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2623      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2624      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2625
2626      // FIXME: What if other value results of the node have uses not matched
2627      // by this pattern?
2628      if (ChainNodesMatched.back() != NodeToMatch &&
2629          !RecordedNodes[RecNo].first.hasOneUse()) {
2630        ChainNodesMatched.clear();
2631        break;
2632      }
2633
2634      // Merge the input chains if they are not intra-pattern references.
2635      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2636
2637      if (InputChain.getNode() == 0)
2638        break;  // Failed to merge.
2639      continue;
2640    }
2641
2642    case OPC_EmitMergeInputChains: {
2643      assert(InputChain.getNode() == 0 &&
2644             "EmitMergeInputChains should be the first chain producing node");
2645      // This node gets a list of nodes we matched in the input that have
2646      // chains.  We want to token factor all of the input chains to these nodes
2647      // together.  However, if any of the input chains is actually one of the
2648      // nodes matched in this pattern, then we have an intra-match reference.
2649      // Ignore these because the newly token factored chain should not refer to
2650      // the old nodes.
2651      unsigned NumChains = MatcherTable[MatcherIndex++];
2652      assert(NumChains != 0 && "Can't TF zero chains");
2653
2654      assert(ChainNodesMatched.empty() &&
2655             "Should only have one EmitMergeInputChains per match");
2656
2657      // Read all of the chained nodes.
2658      for (unsigned i = 0; i != NumChains; ++i) {
2659        unsigned RecNo = MatcherTable[MatcherIndex++];
2660        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2661        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2662
2663        // FIXME: What if other value results of the node have uses not matched
2664        // by this pattern?
2665        if (ChainNodesMatched.back() != NodeToMatch &&
2666            !RecordedNodes[RecNo].first.hasOneUse()) {
2667          ChainNodesMatched.clear();
2668          break;
2669        }
2670      }
2671
2672      // If the inner loop broke out, the match fails.
2673      if (ChainNodesMatched.empty())
2674        break;
2675
2676      // Merge the input chains if they are not intra-pattern references.
2677      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2678
2679      if (InputChain.getNode() == 0)
2680        break;  // Failed to merge.
2681
2682      continue;
2683    }
2684
2685    case OPC_EmitCopyToReg: {
2686      unsigned RecNo = MatcherTable[MatcherIndex++];
2687      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2688      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2689
2690      if (InputChain.getNode() == 0)
2691        InputChain = CurDAG->getEntryNode();
2692
2693      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2694                                        DestPhysReg, RecordedNodes[RecNo].first,
2695                                        InputGlue);
2696
2697      InputGlue = InputChain.getValue(1);
2698      continue;
2699    }
2700
2701    case OPC_EmitNodeXForm: {
2702      unsigned XFormNo = MatcherTable[MatcherIndex++];
2703      unsigned RecNo = MatcherTable[MatcherIndex++];
2704      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2705      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2706      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2707      continue;
2708    }
2709
2710    case OPC_EmitNode:
2711    case OPC_MorphNodeTo: {
2712      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2713      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2714      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2715      // Get the result VT list.
2716      unsigned NumVTs = MatcherTable[MatcherIndex++];
2717      SmallVector<EVT, 4> VTs;
2718      for (unsigned i = 0; i != NumVTs; ++i) {
2719        MVT::SimpleValueType VT =
2720          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2721        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2722        VTs.push_back(VT);
2723      }
2724
2725      if (EmitNodeInfo & OPFL_Chain)
2726        VTs.push_back(MVT::Other);
2727      if (EmitNodeInfo & OPFL_GlueOutput)
2728        VTs.push_back(MVT::Glue);
2729
2730      // This is hot code, so optimize the two most common cases of 1 and 2
2731      // results.
2732      SDVTList VTList;
2733      if (VTs.size() == 1)
2734        VTList = CurDAG->getVTList(VTs[0]);
2735      else if (VTs.size() == 2)
2736        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2737      else
2738        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2739
2740      // Get the operand list.
2741      unsigned NumOps = MatcherTable[MatcherIndex++];
2742      SmallVector<SDValue, 8> Ops;
2743      for (unsigned i = 0; i != NumOps; ++i) {
2744        unsigned RecNo = MatcherTable[MatcherIndex++];
2745        if (RecNo & 128)
2746          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2747
2748        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2749        Ops.push_back(RecordedNodes[RecNo].first);
2750      }
2751
2752      // If there are variadic operands to add, handle them now.
2753      if (EmitNodeInfo & OPFL_VariadicInfo) {
2754        // Determine the start index to copy from.
2755        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2756        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2757        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2758               "Invalid variadic node");
2759        // Copy all of the variadic operands, not including a potential glue
2760        // input.
2761        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2762             i != e; ++i) {
2763          SDValue V = NodeToMatch->getOperand(i);
2764          if (V.getValueType() == MVT::Glue) break;
2765          Ops.push_back(V);
2766        }
2767      }
2768
2769      // If this has chain/glue inputs, add them.
2770      if (EmitNodeInfo & OPFL_Chain)
2771        Ops.push_back(InputChain);
2772      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2773        Ops.push_back(InputGlue);
2774
2775      // Create the node.
2776      SDNode *Res = 0;
2777      if (Opcode != OPC_MorphNodeTo) {
2778        // If this is a normal EmitNode command, just create the new node and
2779        // add the results to the RecordedNodes list.
2780        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2781                                     VTList, Ops.data(), Ops.size());
2782
2783        // Add all the non-glue/non-chain results to the RecordedNodes list.
2784        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2785          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2786          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2787                                                             (SDNode*) 0));
2788        }
2789
2790      } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
2791        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2792                        EmitNodeInfo);
2793      } else {
2794        // NodeToMatch was eliminated by CSE when the target changed the DAG.
2795        // We will visit the equivalent node later.
2796        DEBUG(dbgs() << "Node was eliminated by CSE\n");
2797        return 0;
2798      }
2799
2800      // If the node had chain/glue results, update our notion of the current
2801      // chain and glue.
2802      if (EmitNodeInfo & OPFL_GlueOutput) {
2803        InputGlue = SDValue(Res, VTs.size()-1);
2804        if (EmitNodeInfo & OPFL_Chain)
2805          InputChain = SDValue(Res, VTs.size()-2);
2806      } else if (EmitNodeInfo & OPFL_Chain)
2807        InputChain = SDValue(Res, VTs.size()-1);
2808
2809      // If the OPFL_MemRefs glue is set on this node, slap all of the
2810      // accumulated memrefs onto it.
2811      //
2812      // FIXME: This is vastly incorrect for patterns with multiple outputs
2813      // instructions that access memory and for ComplexPatterns that match
2814      // loads.
2815      if (EmitNodeInfo & OPFL_MemRefs) {
2816        // Only attach load or store memory operands if the generated
2817        // instruction may load or store.
2818        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2819        bool mayLoad = MCID.mayLoad();
2820        bool mayStore = MCID.mayStore();
2821
2822        unsigned NumMemRefs = 0;
2823        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2824             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2825          if ((*I)->isLoad()) {
2826            if (mayLoad)
2827              ++NumMemRefs;
2828          } else if ((*I)->isStore()) {
2829            if (mayStore)
2830              ++NumMemRefs;
2831          } else {
2832            ++NumMemRefs;
2833          }
2834        }
2835
2836        MachineSDNode::mmo_iterator MemRefs =
2837          MF->allocateMemRefsArray(NumMemRefs);
2838
2839        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2840        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2841             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2842          if ((*I)->isLoad()) {
2843            if (mayLoad)
2844              *MemRefsPos++ = *I;
2845          } else if ((*I)->isStore()) {
2846            if (mayStore)
2847              *MemRefsPos++ = *I;
2848          } else {
2849            *MemRefsPos++ = *I;
2850          }
2851        }
2852
2853        cast<MachineSDNode>(Res)
2854          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2855      }
2856
2857      DEBUG(errs() << "  "
2858                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2859                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2860
2861      // If this was a MorphNodeTo then we're completely done!
2862      if (Opcode == OPC_MorphNodeTo) {
2863        // Update chain and glue uses.
2864        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2865                            InputGlue, GlueResultNodesMatched, true);
2866        return Res;
2867      }
2868
2869      continue;
2870    }
2871
2872    case OPC_MarkGlueResults: {
2873      unsigned NumNodes = MatcherTable[MatcherIndex++];
2874
2875      // Read and remember all the glue-result nodes.
2876      for (unsigned i = 0; i != NumNodes; ++i) {
2877        unsigned RecNo = MatcherTable[MatcherIndex++];
2878        if (RecNo & 128)
2879          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2880
2881        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2882        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2883      }
2884      continue;
2885    }
2886
2887    case OPC_CompleteMatch: {
2888      // The match has been completed, and any new nodes (if any) have been
2889      // created.  Patch up references to the matched dag to use the newly
2890      // created nodes.
2891      unsigned NumResults = MatcherTable[MatcherIndex++];
2892
2893      for (unsigned i = 0; i != NumResults; ++i) {
2894        unsigned ResSlot = MatcherTable[MatcherIndex++];
2895        if (ResSlot & 128)
2896          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2897
2898        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2899        SDValue Res = RecordedNodes[ResSlot].first;
2900
2901        assert(i < NodeToMatch->getNumValues() &&
2902               NodeToMatch->getValueType(i) != MVT::Other &&
2903               NodeToMatch->getValueType(i) != MVT::Glue &&
2904               "Invalid number of results to complete!");
2905        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2906                NodeToMatch->getValueType(i) == MVT::iPTR ||
2907                Res.getValueType() == MVT::iPTR ||
2908                NodeToMatch->getValueType(i).getSizeInBits() ==
2909                    Res.getValueType().getSizeInBits()) &&
2910               "invalid replacement");
2911        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2912      }
2913
2914      // If the root node defines glue, add it to the glue nodes to update list.
2915      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2916        GlueResultNodesMatched.push_back(NodeToMatch);
2917
2918      // Update chain and glue uses.
2919      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2920                          InputGlue, GlueResultNodesMatched, false);
2921
2922      assert(NodeToMatch->use_empty() &&
2923             "Didn't replace all uses of the node?");
2924
2925      // FIXME: We just return here, which interacts correctly with SelectRoot
2926      // above.  We should fix this to not return an SDNode* anymore.
2927      return 0;
2928    }
2929    }
2930
2931    // If the code reached this point, then the match failed.  See if there is
2932    // another child to try in the current 'Scope', otherwise pop it until we
2933    // find a case to check.
2934    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2935    ++NumDAGIselRetries;
2936    while (1) {
2937      if (MatchScopes.empty()) {
2938        CannotYetSelect(NodeToMatch);
2939        return 0;
2940      }
2941
2942      // Restore the interpreter state back to the point where the scope was
2943      // formed.
2944      MatchScope &LastScope = MatchScopes.back();
2945      RecordedNodes.resize(LastScope.NumRecordedNodes);
2946      NodeStack.clear();
2947      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2948      N = NodeStack.back();
2949
2950      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2951        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2952      MatcherIndex = LastScope.FailIndex;
2953
2954      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2955
2956      InputChain = LastScope.InputChain;
2957      InputGlue = LastScope.InputGlue;
2958      if (!LastScope.HasChainNodesMatched)
2959        ChainNodesMatched.clear();
2960      if (!LastScope.HasGlueResultNodesMatched)
2961        GlueResultNodesMatched.clear();
2962
2963      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2964      // we have reached the end of this scope, otherwise we have another child
2965      // in the current scope to try.
2966      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2967      if (NumToSkip & 128)
2968        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2969
2970      // If we have another child in this scope to match, update FailIndex and
2971      // try it.
2972      if (NumToSkip != 0) {
2973        LastScope.FailIndex = MatcherIndex+NumToSkip;
2974        break;
2975      }
2976
2977      // End of this scope, pop it and try the next child in the containing
2978      // scope.
2979      MatchScopes.pop_back();
2980    }
2981  }
2982}
2983
2984
2985
2986void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2987  std::string msg;
2988  raw_string_ostream Msg(msg);
2989  Msg << "Cannot select: ";
2990
2991  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2992      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2993      N->getOpcode() != ISD::INTRINSIC_VOID) {
2994    N->printrFull(Msg, CurDAG);
2995    Msg << "\nIn function: " << MF->getName();
2996  } else {
2997    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2998    unsigned iid =
2999      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
3000    if (iid < Intrinsic::num_intrinsics)
3001      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
3002    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
3003      Msg << "target intrinsic %" << TII->getName(iid);
3004    else
3005      Msg << "unknown intrinsic #" << iid;
3006  }
3007  report_fatal_error(Msg.str());
3008}
3009
3010char SelectionDAGISel::ID = 0;
3011