SelectionDAGISel.cpp revision b6d3f2514f08b9451a7b7fb8599c87aba6f0cb7f
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
37#include "llvm/CodeGen/SchedulerRegistry.h"
38#include "llvm/CodeGen/SelectionDAG.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "llvm/Target/TargetIntrinsicInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/Timer.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/ADT/Statistic.h"
51#include <algorithm>
52using namespace llvm;
53
54STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
55STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
56
57static cl::opt<bool>
58EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
59          cl::desc("Enable verbose messages in the \"fast\" "
60                   "instruction selector"));
61static cl::opt<bool>
62EnableFastISelAbort("fast-isel-abort", cl::Hidden,
63          cl::desc("Enable abort calls when \"fast\" instruction fails"));
64
65#ifndef NDEBUG
66static cl::opt<bool>
67ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
68          cl::desc("Pop up a window to show dags before the first "
69                   "dag combine pass"));
70static cl::opt<bool>
71ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
72          cl::desc("Pop up a window to show dags before legalize types"));
73static cl::opt<bool>
74ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
75          cl::desc("Pop up a window to show dags before legalize"));
76static cl::opt<bool>
77ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
78          cl::desc("Pop up a window to show dags before the second "
79                   "dag combine pass"));
80static cl::opt<bool>
81ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
82          cl::desc("Pop up a window to show dags before the post legalize types"
83                   " dag combine pass"));
84static cl::opt<bool>
85ViewISelDAGs("view-isel-dags", cl::Hidden,
86          cl::desc("Pop up a window to show isel dags as they are selected"));
87static cl::opt<bool>
88ViewSchedDAGs("view-sched-dags", cl::Hidden,
89          cl::desc("Pop up a window to show sched dags as they are processed"));
90static cl::opt<bool>
91ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
92      cl::desc("Pop up a window to show SUnit dags after they are processed"));
93#else
94static const bool ViewDAGCombine1 = false,
95                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
96                  ViewDAGCombine2 = false,
97                  ViewDAGCombineLT = false,
98                  ViewISelDAGs = false, ViewSchedDAGs = false,
99                  ViewSUnitDAGs = false;
100#endif
101
102//===---------------------------------------------------------------------===//
103///
104/// RegisterScheduler class - Track the registration of instruction schedulers.
105///
106//===---------------------------------------------------------------------===//
107MachinePassRegistry RegisterScheduler::Registry;
108
109//===---------------------------------------------------------------------===//
110///
111/// ISHeuristic command line option for instruction schedulers.
112///
113//===---------------------------------------------------------------------===//
114static cl::opt<RegisterScheduler::FunctionPassCtor, false,
115               RegisterPassParser<RegisterScheduler> >
116ISHeuristic("pre-RA-sched",
117            cl::init(&createDefaultScheduler),
118            cl::desc("Instruction schedulers available (before register"
119                     " allocation):"));
120
121static RegisterScheduler
122defaultListDAGScheduler("default", "Best scheduler for the target",
123                        createDefaultScheduler);
124
125namespace llvm {
126  //===--------------------------------------------------------------------===//
127  /// createDefaultScheduler - This creates an instruction scheduler appropriate
128  /// for the target.
129  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
130                                             CodeGenOpt::Level OptLevel) {
131    const TargetLowering &TLI = IS->getTargetLowering();
132
133    if (OptLevel == CodeGenOpt::None)
134      return createFastDAGScheduler(IS, OptLevel);
135    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
136      return createTDListDAGScheduler(IS, OptLevel);
137    assert(TLI.getSchedulingPreference() ==
138           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
139    return createBURRListDAGScheduler(IS, OptLevel);
140  }
141}
142
143// EmitInstrWithCustomInserter - This method should be implemented by targets
144// that mark instructions with the 'usesCustomInserter' flag.  These
145// instructions are special in various ways, which require special support to
146// insert.  The specified MachineInstr is created but not inserted into any
147// basic blocks, and this method is called to expand it into a sequence of
148// instructions, potentially also creating new basic blocks and control flow.
149// When new basic blocks are inserted and the edges from MBB to its successors
150// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
151// DenseMap.
152MachineBasicBlock *
153TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
154                                            MachineBasicBlock *MBB) const {
155#ifndef NDEBUG
156  dbgs() << "If a target marks an instruction with "
157          "'usesCustomInserter', it must implement "
158          "TargetLowering::EmitInstrWithCustomInserter!";
159#endif
160  llvm_unreachable(0);
161  return 0;
162}
163
164//===----------------------------------------------------------------------===//
165// SelectionDAGISel code
166//===----------------------------------------------------------------------===//
167
168SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
169  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
170  FuncInfo(new FunctionLoweringInfo(TLI)),
171  CurDAG(new SelectionDAG(tm, *FuncInfo)),
172  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
173  GFI(),
174  OptLevel(OL),
175  DAGSize(0)
176{}
177
178SelectionDAGISel::~SelectionDAGISel() {
179  delete SDB;
180  delete CurDAG;
181  delete FuncInfo;
182}
183
184void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
185  AU.addRequired<AliasAnalysis>();
186  AU.addPreserved<AliasAnalysis>();
187  AU.addRequired<GCModuleInfo>();
188  AU.addPreserved<GCModuleInfo>();
189  MachineFunctionPass::getAnalysisUsage(AU);
190}
191
192bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
193  // Do some sanity-checking on the command-line options.
194  assert((!EnableFastISelVerbose || EnableFastISel) &&
195         "-fast-isel-verbose requires -fast-isel");
196  assert((!EnableFastISelAbort || EnableFastISel) &&
197         "-fast-isel-abort requires -fast-isel");
198
199  const Function &Fn = *mf.getFunction();
200  const TargetInstrInfo &TII = *TM.getInstrInfo();
201  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
202
203  MF = &mf;
204  RegInfo = &MF->getRegInfo();
205  AA = &getAnalysis<AliasAnalysis>();
206  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
207
208  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
209
210  CurDAG->init(*MF);
211  FuncInfo->set(Fn, *MF, EnableFastISel);
212  SDB->init(GFI, *AA);
213
214  SelectAllBasicBlocks(Fn);
215
216  // If the first basic block in the function has live ins that need to be
217  // copied into vregs, emit the copies into the top of the block before
218  // emitting the code for the block.
219  MachineBasicBlock *EntryMBB = MF->begin();
220  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
221
222  // Insert DBG_VALUE instructions for function arguments to the entry block.
223  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
224    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
225    unsigned Reg = MI->getOperand(0).getReg();
226    if (TargetRegisterInfo::isPhysicalRegister(Reg))
227      EntryMBB->insert(EntryMBB->begin(), MI);
228    else {
229      MachineInstr *Def = RegInfo->getVRegDef(Reg);
230      MachineBasicBlock::iterator InsertPos = Def;
231      // FIXME: VR def may not be in entry block.
232      Def->getParent()->insert(llvm::next(InsertPos), MI);
233    }
234  }
235
236  // Release function-specific state. SDB and CurDAG are already cleared
237  // at this point.
238  FuncInfo->clear();
239
240  return true;
241}
242
243MachineBasicBlock *
244SelectionDAGISel::SelectBasicBlock(MachineBasicBlock *BB,
245                                   const BasicBlock *LLVMBB,
246                                   BasicBlock::const_iterator Begin,
247                                   BasicBlock::const_iterator End,
248                                   bool &HadTailCall) {
249  // Lower all of the non-terminator instructions. If a call is emitted
250  // as a tail call, cease emitting nodes for this block. Terminators
251  // are handled below.
252  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
253    SDB->visit(*I);
254
255  // Make sure the root of the DAG is up-to-date.
256  CurDAG->setRoot(SDB->getControlRoot());
257  HadTailCall = SDB->HasTailCall;
258  SDB->clear();
259
260  // Final step, emit the lowered DAG as machine code.
261  return CodeGenAndEmitDAG(BB);
262}
263
264namespace {
265/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
266/// nodes from the worklist.
267class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
268  SmallVector<SDNode*, 128> &Worklist;
269  SmallPtrSet<SDNode*, 128> &InWorklist;
270public:
271  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
272                       SmallPtrSet<SDNode*, 128> &inwl)
273    : Worklist(wl), InWorklist(inwl) {}
274
275  void RemoveFromWorklist(SDNode *N) {
276    if (!InWorklist.erase(N)) return;
277
278    SmallVector<SDNode*, 128>::iterator I =
279    std::find(Worklist.begin(), Worklist.end(), N);
280    assert(I != Worklist.end() && "Not in worklist");
281
282    *I = Worklist.back();
283    Worklist.pop_back();
284  }
285
286  virtual void NodeDeleted(SDNode *N, SDNode *E) {
287    RemoveFromWorklist(N);
288  }
289
290  virtual void NodeUpdated(SDNode *N) {
291    // Ignore updates.
292  }
293};
294}
295
296/// TrivialTruncElim - Eliminate some trivial nops that can result from
297/// ShrinkDemandedOps: (trunc (ext n)) -> n.
298static bool TrivialTruncElim(SDValue Op,
299                             TargetLowering::TargetLoweringOpt &TLO) {
300  SDValue N0 = Op.getOperand(0);
301  EVT VT = Op.getValueType();
302  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
303       N0.getOpcode() == ISD::SIGN_EXTEND ||
304       N0.getOpcode() == ISD::ANY_EXTEND) &&
305      N0.getOperand(0).getValueType() == VT) {
306    return TLO.CombineTo(Op, N0.getOperand(0));
307  }
308  return false;
309}
310
311/// ShrinkDemandedOps - A late transformation pass that shrink expressions
312/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
313/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
314void SelectionDAGISel::ShrinkDemandedOps() {
315  SmallVector<SDNode*, 128> Worklist;
316  SmallPtrSet<SDNode*, 128> InWorklist;
317
318  // Add all the dag nodes to the worklist.
319  Worklist.reserve(CurDAG->allnodes_size());
320  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
321       E = CurDAG->allnodes_end(); I != E; ++I) {
322    Worklist.push_back(I);
323    InWorklist.insert(I);
324  }
325
326  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true, true, true);
327  while (!Worklist.empty()) {
328    SDNode *N = Worklist.pop_back_val();
329    InWorklist.erase(N);
330
331    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
332      // Deleting this node may make its operands dead, add them to the worklist
333      // if they aren't already there.
334      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
335        if (InWorklist.insert(N->getOperand(i).getNode()))
336          Worklist.push_back(N->getOperand(i).getNode());
337
338      CurDAG->DeleteNode(N);
339      continue;
340    }
341
342    // Run ShrinkDemandedOp on scalar binary operations.
343    if (N->getNumValues() != 1 ||
344        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
345      continue;
346
347    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
348    APInt Demanded = APInt::getAllOnesValue(BitWidth);
349    APInt KnownZero, KnownOne;
350    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
351                                  KnownZero, KnownOne, TLO) &&
352        (N->getOpcode() != ISD::TRUNCATE ||
353         !TrivialTruncElim(SDValue(N, 0), TLO)))
354      continue;
355
356    // Revisit the node.
357    assert(!InWorklist.count(N) && "Already in worklist");
358    Worklist.push_back(N);
359    InWorklist.insert(N);
360
361    // Replace the old value with the new one.
362    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
363          TLO.Old.getNode()->dump(CurDAG);
364          errs() << "\nWith: ";
365          TLO.New.getNode()->dump(CurDAG);
366          errs() << '\n');
367
368    if (InWorklist.insert(TLO.New.getNode()))
369      Worklist.push_back(TLO.New.getNode());
370
371    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
372    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
373
374    if (!TLO.Old.getNode()->use_empty()) continue;
375
376    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
377         i != e; ++i) {
378      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
379      if (OpNode->hasOneUse()) {
380        // Add OpNode to the end of the list to revisit.
381        DeadNodes.RemoveFromWorklist(OpNode);
382        Worklist.push_back(OpNode);
383        InWorklist.insert(OpNode);
384      }
385    }
386
387    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
388    CurDAG->DeleteNode(TLO.Old.getNode());
389  }
390}
391
392void SelectionDAGISel::ComputeLiveOutVRegInfo() {
393  SmallPtrSet<SDNode*, 128> VisitedNodes;
394  SmallVector<SDNode*, 128> Worklist;
395
396  Worklist.push_back(CurDAG->getRoot().getNode());
397
398  APInt Mask;
399  APInt KnownZero;
400  APInt KnownOne;
401
402  do {
403    SDNode *N = Worklist.pop_back_val();
404
405    // If we've already seen this node, ignore it.
406    if (!VisitedNodes.insert(N))
407      continue;
408
409    // Otherwise, add all chain operands to the worklist.
410    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
411      if (N->getOperand(i).getValueType() == MVT::Other)
412        Worklist.push_back(N->getOperand(i).getNode());
413
414    // If this is a CopyToReg with a vreg dest, process it.
415    if (N->getOpcode() != ISD::CopyToReg)
416      continue;
417
418    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
419    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
420      continue;
421
422    // Ignore non-scalar or non-integer values.
423    SDValue Src = N->getOperand(2);
424    EVT SrcVT = Src.getValueType();
425    if (!SrcVT.isInteger() || SrcVT.isVector())
426      continue;
427
428    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
429    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
430    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
431
432    // Only install this information if it tells us something.
433    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
434      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
435      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
436        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
437      FunctionLoweringInfo::LiveOutInfo &LOI =
438        FuncInfo->LiveOutRegInfo[DestReg];
439      LOI.NumSignBits = NumSignBits;
440      LOI.KnownOne = KnownOne;
441      LOI.KnownZero = KnownZero;
442    }
443  } while (!Worklist.empty());
444}
445
446MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
447  std::string GroupName;
448  if (TimePassesIsEnabled)
449    GroupName = "Instruction Selection and Scheduling";
450  std::string BlockName;
451  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
452      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
453      ViewSUnitDAGs)
454    BlockName = MF->getFunction()->getNameStr() + ":" +
455                BB->getBasicBlock()->getNameStr();
456
457  DEBUG(dbgs() << "Initial selection DAG:\n");
458  DEBUG(CurDAG->dump());
459
460  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
461
462  // Run the DAG combiner in pre-legalize mode.
463  if (TimePassesIsEnabled) {
464    NamedRegionTimer T("DAG Combining 1", GroupName);
465    CurDAG->Combine(Unrestricted, *AA, OptLevel);
466  } else {
467    CurDAG->Combine(Unrestricted, *AA, OptLevel);
468  }
469
470  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
471  DEBUG(CurDAG->dump());
472
473  // Second step, hack on the DAG until it only uses operations and types that
474  // the target supports.
475  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
476                                               BlockName);
477
478  bool Changed;
479  if (TimePassesIsEnabled) {
480    NamedRegionTimer T("Type Legalization", GroupName);
481    Changed = CurDAG->LegalizeTypes();
482  } else {
483    Changed = CurDAG->LegalizeTypes();
484  }
485
486  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
487  DEBUG(CurDAG->dump());
488
489  if (Changed) {
490    if (ViewDAGCombineLT)
491      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
492
493    // Run the DAG combiner in post-type-legalize mode.
494    if (TimePassesIsEnabled) {
495      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
496      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
497    } else {
498      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
499    }
500
501    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
502    DEBUG(CurDAG->dump());
503  }
504
505  if (TimePassesIsEnabled) {
506    NamedRegionTimer T("Vector Legalization", GroupName);
507    Changed = CurDAG->LegalizeVectors();
508  } else {
509    Changed = CurDAG->LegalizeVectors();
510  }
511
512  if (Changed) {
513    if (TimePassesIsEnabled) {
514      NamedRegionTimer T("Type Legalization 2", GroupName);
515      CurDAG->LegalizeTypes();
516    } else {
517      CurDAG->LegalizeTypes();
518    }
519
520    if (ViewDAGCombineLT)
521      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
522
523    // Run the DAG combiner in post-type-legalize mode.
524    if (TimePassesIsEnabled) {
525      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
526      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
527    } else {
528      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
529    }
530
531    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
532    DEBUG(CurDAG->dump());
533  }
534
535  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
536
537  if (TimePassesIsEnabled) {
538    NamedRegionTimer T("DAG Legalization", GroupName);
539    CurDAG->Legalize(OptLevel);
540  } else {
541    CurDAG->Legalize(OptLevel);
542  }
543
544  DEBUG(dbgs() << "Legalized selection DAG:\n");
545  DEBUG(CurDAG->dump());
546
547  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
548
549  // Run the DAG combiner in post-legalize mode.
550  if (TimePassesIsEnabled) {
551    NamedRegionTimer T("DAG Combining 2", GroupName);
552    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
553  } else {
554    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
555  }
556
557  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
558  DEBUG(CurDAG->dump());
559
560  if (OptLevel != CodeGenOpt::None) {
561    ShrinkDemandedOps();
562    ComputeLiveOutVRegInfo();
563  }
564
565  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
566
567  // Third, instruction select all of the operations to machine code, adding the
568  // code to the MachineBasicBlock.
569  if (TimePassesIsEnabled) {
570    NamedRegionTimer T("Instruction Selection", GroupName);
571    DoInstructionSelection();
572  } else {
573    DoInstructionSelection();
574  }
575
576  DEBUG(dbgs() << "Selected selection DAG:\n");
577  DEBUG(CurDAG->dump());
578
579  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
580
581  // Schedule machine code.
582  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
583  if (TimePassesIsEnabled) {
584    NamedRegionTimer T("Instruction Scheduling", GroupName);
585    Scheduler->Run(CurDAG, BB, BB->end());
586  } else {
587    Scheduler->Run(CurDAG, BB, BB->end());
588  }
589
590  if (ViewSUnitDAGs) Scheduler->viewGraph();
591
592  // Emit machine code to BB.  This can change 'BB' to the last block being
593  // inserted into.
594  if (TimePassesIsEnabled) {
595    NamedRegionTimer T("Instruction Creation", GroupName);
596    BB = Scheduler->EmitSchedule();
597  } else {
598    BB = Scheduler->EmitSchedule();
599  }
600
601  // Free the scheduler state.
602  if (TimePassesIsEnabled) {
603    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
604    delete Scheduler;
605  } else {
606    delete Scheduler;
607  }
608
609  // Determine if there are any calls in this machine function.
610  MachineFrameInfo *MFI = MF->getFrameInfo();
611  if (!MFI->hasCalls()) {
612    for (MachineBasicBlock::iterator
613           I = BB->begin(), E = BB->end(); I != E; ++I) {
614      const TargetInstrDesc &TID = TM.getInstrInfo()->get(I->getOpcode());
615      if (I->isInlineAsm() || (TID.isCall() && !TID.isReturn())) {
616        MFI->setHasCalls(true);
617        break;
618      }
619    }
620  }
621
622  // Free the SelectionDAG state, now that we're finished with it.
623  CurDAG->clear();
624
625  return BB;
626}
627
628void SelectionDAGISel::DoInstructionSelection() {
629  DEBUG(errs() << "===== Instruction selection begins:\n");
630
631  PreprocessISelDAG();
632
633  // Select target instructions for the DAG.
634  {
635    // Number all nodes with a topological order and set DAGSize.
636    DAGSize = CurDAG->AssignTopologicalOrder();
637
638    // Create a dummy node (which is not added to allnodes), that adds
639    // a reference to the root node, preventing it from being deleted,
640    // and tracking any changes of the root.
641    HandleSDNode Dummy(CurDAG->getRoot());
642    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
643    ++ISelPosition;
644
645    // The AllNodes list is now topological-sorted. Visit the
646    // nodes by starting at the end of the list (the root of the
647    // graph) and preceding back toward the beginning (the entry
648    // node).
649    while (ISelPosition != CurDAG->allnodes_begin()) {
650      SDNode *Node = --ISelPosition;
651      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
652      // but there are currently some corner cases that it misses. Also, this
653      // makes it theoretically possible to disable the DAGCombiner.
654      if (Node->use_empty())
655        continue;
656
657      SDNode *ResNode = Select(Node);
658
659      // FIXME: This is pretty gross.  'Select' should be changed to not return
660      // anything at all and this code should be nuked with a tactical strike.
661
662      // If node should not be replaced, continue with the next one.
663      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
664        continue;
665      // Replace node.
666      if (ResNode)
667        ReplaceUses(Node, ResNode);
668
669      // If after the replacement this node is not used any more,
670      // remove this dead node.
671      if (Node->use_empty()) { // Don't delete EntryToken, etc.
672        ISelUpdater ISU(ISelPosition);
673        CurDAG->RemoveDeadNode(Node, &ISU);
674      }
675    }
676
677    CurDAG->setRoot(Dummy.getValue());
678  }
679  DEBUG(errs() << "===== Instruction selection ends:\n");
680
681  PostprocessISelDAG();
682}
683
684/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
685/// do other setup for EH landing-pad blocks.
686void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
687  // Add a label to mark the beginning of the landing pad.  Deletion of the
688  // landing pad can thus be detected via the MachineModuleInfo.
689  MCSymbol *Label = MF->getMMI().addLandingPad(BB);
690
691  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
692  BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
693
694  // Mark exception register as live in.
695  unsigned Reg = TLI.getExceptionAddressRegister();
696  if (Reg) BB->addLiveIn(Reg);
697
698  // Mark exception selector register as live in.
699  Reg = TLI.getExceptionSelectorRegister();
700  if (Reg) BB->addLiveIn(Reg);
701
702  // FIXME: Hack around an exception handling flaw (PR1508): the personality
703  // function and list of typeids logically belong to the invoke (or, if you
704  // like, the basic block containing the invoke), and need to be associated
705  // with it in the dwarf exception handling tables.  Currently however the
706  // information is provided by an intrinsic (eh.selector) that can be moved
707  // to unexpected places by the optimizers: if the unwind edge is critical,
708  // then breaking it can result in the intrinsics being in the successor of
709  // the landing pad, not the landing pad itself.  This results
710  // in exceptions not being caught because no typeids are associated with
711  // the invoke.  This may not be the only way things can go wrong, but it
712  // is the only way we try to work around for the moment.
713  const BasicBlock *LLVMBB = BB->getBasicBlock();
714  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
715
716  if (Br && Br->isUnconditional()) { // Critical edge?
717    BasicBlock::const_iterator I, E;
718    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
719      if (isa<EHSelectorInst>(I))
720        break;
721
722    if (I == E)
723      // No catch info found - try to extract some from the successor.
724      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
725  }
726}
727
728void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
729  // Initialize the Fast-ISel state, if needed.
730  FastISel *FastIS = 0;
731  if (EnableFastISel)
732    FastIS = TLI.createFastISel(*MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
733                                FuncInfo->StaticAllocaMap,
734                                FuncInfo->PHINodesToUpdate
735#ifndef NDEBUG
736                                , FuncInfo->CatchInfoLost
737#endif
738                                );
739
740  // Iterate over all basic blocks in the function.
741  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
742    const BasicBlock *LLVMBB = &*I;
743    MachineBasicBlock *BB = FuncInfo->MBBMap[LLVMBB];
744
745    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
746    BasicBlock::const_iterator const End = LLVMBB->end();
747    BasicBlock::const_iterator BI = Begin;
748
749    // Lower any arguments needed in this block if this is the entry block.
750    if (LLVMBB == &Fn.getEntryBlock())
751      LowerArguments(LLVMBB);
752
753    // Setup an EH landing-pad block.
754    if (BB->isLandingPad())
755      PrepareEHLandingPad(BB);
756
757    // Before doing SelectionDAG ISel, see if FastISel has been requested.
758    if (FastIS) {
759      // Emit code for any incoming arguments. This must happen before
760      // beginning FastISel on the entry block.
761      if (LLVMBB == &Fn.getEntryBlock()) {
762        CurDAG->setRoot(SDB->getControlRoot());
763        SDB->clear();
764        BB = CodeGenAndEmitDAG(BB);
765      }
766      FastIS->startNewBlock(BB);
767      // Do FastISel on as many instructions as possible.
768      for (; BI != End; ++BI) {
769        // Try to select the instruction with FastISel.
770        if (FastIS->SelectInstruction(BI))
771          continue;
772
773        // Then handle certain instructions as single-LLVM-Instruction blocks.
774        if (isa<CallInst>(BI)) {
775          ++NumFastIselFailures;
776          if (EnableFastISelVerbose || EnableFastISelAbort) {
777            dbgs() << "FastISel missed call: ";
778            BI->dump();
779          }
780
781          if (!BI->getType()->isVoidTy() && !BI->use_empty()) {
782            unsigned &R = FuncInfo->ValueMap[BI];
783            if (!R)
784              R = FuncInfo->CreateRegForValue(BI);
785          }
786
787          bool HadTailCall = false;
788          BB = SelectBasicBlock(BB, LLVMBB, BI, llvm::next(BI), HadTailCall);
789
790          // If the call was emitted as a tail call, we're done with the block.
791          if (HadTailCall) {
792            BI = End;
793            break;
794          }
795
796          // If the instruction was codegen'd with multiple blocks,
797          // inform the FastISel object where to resume inserting.
798          FastIS->setCurrentBlock(BB);
799          continue;
800        }
801
802        // Otherwise, give up on FastISel for the rest of the block.
803        // For now, be a little lenient about non-branch terminators.
804        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
805          ++NumFastIselFailures;
806          if (EnableFastISelVerbose || EnableFastISelAbort) {
807            dbgs() << "FastISel miss: ";
808            BI->dump();
809          }
810          if (EnableFastISelAbort)
811            // The "fast" selector couldn't handle something and bailed.
812            // For the purpose of debugging, just abort.
813            llvm_unreachable("FastISel didn't select the entire block");
814        }
815        break;
816      }
817    }
818
819    // Run SelectionDAG instruction selection on the remainder of the block
820    // not handled by FastISel. If FastISel is not run, this is the entire
821    // block.
822    if (BI != End) {
823      bool HadTailCall;
824      BB = SelectBasicBlock(BB, LLVMBB, BI, End, HadTailCall);
825    }
826
827    FinishBasicBlock(BB);
828    FuncInfo->PHINodesToUpdate.clear();
829  }
830
831  delete FastIS;
832}
833
834void
835SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
836
837  DEBUG(dbgs() << "Total amount of phi nodes to update: "
838               << FuncInfo->PHINodesToUpdate.size() << "\n");
839  DEBUG(for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
840          dbgs() << "Node " << i << " : ("
841                 << FuncInfo->PHINodesToUpdate[i].first
842                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
843
844  // Next, now that we know what the last MBB the LLVM BB expanded is, update
845  // PHI nodes in successors.
846  if (SDB->SwitchCases.empty() &&
847      SDB->JTCases.empty() &&
848      SDB->BitTestCases.empty()) {
849    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
850      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
851      assert(PHI->isPHI() &&
852             "This is not a machine PHI node that we are updating!");
853      if (!BB->isSuccessor(PHI->getParent()))
854        continue;
855      PHI->addOperand(
856        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
857      PHI->addOperand(MachineOperand::CreateMBB(BB));
858    }
859    return;
860  }
861
862  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
863    // Lower header first, if it wasn't already lowered
864    if (!SDB->BitTestCases[i].Emitted) {
865      // Set the current basic block to the mbb we wish to insert the code into
866      BB = SDB->BitTestCases[i].Parent;
867      // Emit the code
868      SDB->visitBitTestHeader(SDB->BitTestCases[i], BB);
869      CurDAG->setRoot(SDB->getRoot());
870      SDB->clear();
871      BB = CodeGenAndEmitDAG(BB);
872    }
873
874    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
875      // Set the current basic block to the mbb we wish to insert the code into
876      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
877      // Emit the code
878      if (j+1 != ej)
879        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
880                              SDB->BitTestCases[i].Reg,
881                              SDB->BitTestCases[i].Cases[j],
882                              BB);
883      else
884        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
885                              SDB->BitTestCases[i].Reg,
886                              SDB->BitTestCases[i].Cases[j],
887                              BB);
888
889
890      CurDAG->setRoot(SDB->getRoot());
891      SDB->clear();
892      BB = CodeGenAndEmitDAG(BB);
893    }
894
895    // Update PHI Nodes
896    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
897         pi != pe; ++pi) {
898      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
899      MachineBasicBlock *PHIBB = PHI->getParent();
900      assert(PHI->isPHI() &&
901             "This is not a machine PHI node that we are updating!");
902      // This is "default" BB. We have two jumps to it. From "header" BB and
903      // from last "case" BB.
904      if (PHIBB == SDB->BitTestCases[i].Default) {
905        PHI->addOperand(MachineOperand::
906                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
907                                  false));
908        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
909        PHI->addOperand(MachineOperand::
910                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
911                                  false));
912        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
913                                                  back().ThisBB));
914      }
915      // One of "cases" BB.
916      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
917           j != ej; ++j) {
918        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
919        if (cBB->isSuccessor(PHIBB)) {
920          PHI->addOperand(MachineOperand::
921                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
922                                    false));
923          PHI->addOperand(MachineOperand::CreateMBB(cBB));
924        }
925      }
926    }
927  }
928  SDB->BitTestCases.clear();
929
930  // If the JumpTable record is filled in, then we need to emit a jump table.
931  // Updating the PHI nodes is tricky in this case, since we need to determine
932  // whether the PHI is a successor of the range check MBB or the jump table MBB
933  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
934    // Lower header first, if it wasn't already lowered
935    if (!SDB->JTCases[i].first.Emitted) {
936      // Set the current basic block to the mbb we wish to insert the code into
937      BB = SDB->JTCases[i].first.HeaderBB;
938      // Emit the code
939      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
940                                BB);
941      CurDAG->setRoot(SDB->getRoot());
942      SDB->clear();
943      BB = CodeGenAndEmitDAG(BB);
944    }
945
946    // Set the current basic block to the mbb we wish to insert the code into
947    BB = SDB->JTCases[i].second.MBB;
948    // Emit the code
949    SDB->visitJumpTable(SDB->JTCases[i].second);
950    CurDAG->setRoot(SDB->getRoot());
951    SDB->clear();
952    BB = CodeGenAndEmitDAG(BB);
953
954    // Update PHI Nodes
955    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
956         pi != pe; ++pi) {
957      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
958      MachineBasicBlock *PHIBB = PHI->getParent();
959      assert(PHI->isPHI() &&
960             "This is not a machine PHI node that we are updating!");
961      // "default" BB. We can go there only from header BB.
962      if (PHIBB == SDB->JTCases[i].second.Default) {
963        PHI->addOperand
964          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
965                                     false));
966        PHI->addOperand
967          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
968      }
969      // JT BB. Just iterate over successors here
970      if (BB->isSuccessor(PHIBB)) {
971        PHI->addOperand
972          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
973                                     false));
974        PHI->addOperand(MachineOperand::CreateMBB(BB));
975      }
976    }
977  }
978  SDB->JTCases.clear();
979
980  // If the switch block involved a branch to one of the actual successors, we
981  // need to update PHI nodes in that block.
982  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
983    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
984    assert(PHI->isPHI() &&
985           "This is not a machine PHI node that we are updating!");
986    if (BB->isSuccessor(PHI->getParent())) {
987      PHI->addOperand(
988        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
989      PHI->addOperand(MachineOperand::CreateMBB(BB));
990    }
991  }
992
993  // If we generated any switch lowering information, build and codegen any
994  // additional DAGs necessary.
995  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
996    // Set the current basic block to the mbb we wish to insert the code into
997    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
998
999    // Determine the unique successors.
1000    SmallVector<MachineBasicBlock *, 2> Succs;
1001    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1002    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1003      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1004
1005    // Emit the code. Note that this could result in ThisBB being split, so
1006    // we need to check for updates.
1007    SDB->visitSwitchCase(SDB->SwitchCases[i], BB);
1008    CurDAG->setRoot(SDB->getRoot());
1009    SDB->clear();
1010    ThisBB = CodeGenAndEmitDAG(BB);
1011
1012    // Handle any PHI nodes in successors of this chunk, as if we were coming
1013    // from the original BB before switch expansion.  Note that PHI nodes can
1014    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1015    // handle them the right number of times.
1016    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1017      BB = Succs[i];
1018      // BB may have been removed from the CFG if a branch was constant folded.
1019      if (ThisBB->isSuccessor(BB)) {
1020        for (MachineBasicBlock::iterator Phi = BB->begin();
1021             Phi != BB->end() && Phi->isPHI();
1022             ++Phi) {
1023          // This value for this PHI node is recorded in PHINodesToUpdate.
1024          for (unsigned pn = 0; ; ++pn) {
1025            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1026                   "Didn't find PHI entry!");
1027            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1028              Phi->addOperand(MachineOperand::
1029                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1030                                        false));
1031              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1032              break;
1033            }
1034          }
1035        }
1036      }
1037    }
1038  }
1039  SDB->SwitchCases.clear();
1040}
1041
1042
1043/// Create the scheduler. If a specific scheduler was specified
1044/// via the SchedulerRegistry, use it, otherwise select the
1045/// one preferred by the target.
1046///
1047ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1048  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1049
1050  if (!Ctor) {
1051    Ctor = ISHeuristic;
1052    RegisterScheduler::setDefault(Ctor);
1053  }
1054
1055  return Ctor(this, OptLevel);
1056}
1057
1058ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1059  return new ScheduleHazardRecognizer();
1060}
1061
1062//===----------------------------------------------------------------------===//
1063// Helper functions used by the generated instruction selector.
1064//===----------------------------------------------------------------------===//
1065// Calls to these methods are generated by tblgen.
1066
1067/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1068/// the dag combiner simplified the 255, we still want to match.  RHS is the
1069/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1070/// specified in the .td file (e.g. 255).
1071bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1072                                    int64_t DesiredMaskS) const {
1073  const APInt &ActualMask = RHS->getAPIntValue();
1074  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1075
1076  // If the actual mask exactly matches, success!
1077  if (ActualMask == DesiredMask)
1078    return true;
1079
1080  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1081  if (ActualMask.intersects(~DesiredMask))
1082    return false;
1083
1084  // Otherwise, the DAG Combiner may have proven that the value coming in is
1085  // either already zero or is not demanded.  Check for known zero input bits.
1086  APInt NeededMask = DesiredMask & ~ActualMask;
1087  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1088    return true;
1089
1090  // TODO: check to see if missing bits are just not demanded.
1091
1092  // Otherwise, this pattern doesn't match.
1093  return false;
1094}
1095
1096/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1097/// the dag combiner simplified the 255, we still want to match.  RHS is the
1098/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1099/// specified in the .td file (e.g. 255).
1100bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1101                                   int64_t DesiredMaskS) const {
1102  const APInt &ActualMask = RHS->getAPIntValue();
1103  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1104
1105  // If the actual mask exactly matches, success!
1106  if (ActualMask == DesiredMask)
1107    return true;
1108
1109  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1110  if (ActualMask.intersects(~DesiredMask))
1111    return false;
1112
1113  // Otherwise, the DAG Combiner may have proven that the value coming in is
1114  // either already zero or is not demanded.  Check for known zero input bits.
1115  APInt NeededMask = DesiredMask & ~ActualMask;
1116
1117  APInt KnownZero, KnownOne;
1118  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1119
1120  // If all the missing bits in the or are already known to be set, match!
1121  if ((NeededMask & KnownOne) == NeededMask)
1122    return true;
1123
1124  // TODO: check to see if missing bits are just not demanded.
1125
1126  // Otherwise, this pattern doesn't match.
1127  return false;
1128}
1129
1130
1131/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1132/// by tblgen.  Others should not call it.
1133void SelectionDAGISel::
1134SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1135  std::vector<SDValue> InOps;
1136  std::swap(InOps, Ops);
1137
1138  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1139  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1140  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1141
1142  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1143  if (InOps[e-1].getValueType() == MVT::Flag)
1144    --e;  // Don't process a flag operand if it is here.
1145
1146  while (i != e) {
1147    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1148    if (!InlineAsm::isMemKind(Flags)) {
1149      // Just skip over this operand, copying the operands verbatim.
1150      Ops.insert(Ops.end(), InOps.begin()+i,
1151                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1152      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1153    } else {
1154      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1155             "Memory operand with multiple values?");
1156      // Otherwise, this is a memory operand.  Ask the target to select it.
1157      std::vector<SDValue> SelOps;
1158      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1159        report_fatal_error("Could not match memory address.  Inline asm"
1160                           " failure!");
1161
1162      // Add this to the output node.
1163      unsigned NewFlags =
1164        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1165      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1166      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1167      i += 2;
1168    }
1169  }
1170
1171  // Add the flag input back if present.
1172  if (e != InOps.size())
1173    Ops.push_back(InOps.back());
1174}
1175
1176/// findFlagUse - Return use of EVT::Flag value produced by the specified
1177/// SDNode.
1178///
1179static SDNode *findFlagUse(SDNode *N) {
1180  unsigned FlagResNo = N->getNumValues()-1;
1181  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1182    SDUse &Use = I.getUse();
1183    if (Use.getResNo() == FlagResNo)
1184      return Use.getUser();
1185  }
1186  return NULL;
1187}
1188
1189/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1190/// This function recursively traverses up the operand chain, ignoring
1191/// certain nodes.
1192static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1193                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1194                          bool IgnoreChains) {
1195  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1196  // greater than all of its (recursive) operands.  If we scan to a point where
1197  // 'use' is smaller than the node we're scanning for, then we know we will
1198  // never find it.
1199  //
1200  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1201  // happen because we scan down to newly selected nodes in the case of flag
1202  // uses.
1203  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1204    return false;
1205
1206  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1207  // won't fail if we scan it again.
1208  if (!Visited.insert(Use))
1209    return false;
1210
1211  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1212    // Ignore chain uses, they are validated by HandleMergeInputChains.
1213    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1214      continue;
1215
1216    SDNode *N = Use->getOperand(i).getNode();
1217    if (N == Def) {
1218      if (Use == ImmedUse || Use == Root)
1219        continue;  // We are not looking for immediate use.
1220      assert(N != Root);
1221      return true;
1222    }
1223
1224    // Traverse up the operand chain.
1225    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1226      return true;
1227  }
1228  return false;
1229}
1230
1231/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1232/// operand node N of U during instruction selection that starts at Root.
1233bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1234                                          SDNode *Root) const {
1235  if (OptLevel == CodeGenOpt::None) return false;
1236  return N.hasOneUse();
1237}
1238
1239/// IsLegalToFold - Returns true if the specific operand node N of
1240/// U can be folded during instruction selection that starts at Root.
1241bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1242                                     CodeGenOpt::Level OptLevel,
1243                                     bool IgnoreChains) {
1244  if (OptLevel == CodeGenOpt::None) return false;
1245
1246  // If Root use can somehow reach N through a path that that doesn't contain
1247  // U then folding N would create a cycle. e.g. In the following
1248  // diagram, Root can reach N through X. If N is folded into into Root, then
1249  // X is both a predecessor and a successor of U.
1250  //
1251  //          [N*]           //
1252  //         ^   ^           //
1253  //        /     \          //
1254  //      [U*]    [X]?       //
1255  //        ^     ^          //
1256  //         \   /           //
1257  //          \ /            //
1258  //         [Root*]         //
1259  //
1260  // * indicates nodes to be folded together.
1261  //
1262  // If Root produces a flag, then it gets (even more) interesting. Since it
1263  // will be "glued" together with its flag use in the scheduler, we need to
1264  // check if it might reach N.
1265  //
1266  //          [N*]           //
1267  //         ^   ^           //
1268  //        /     \          //
1269  //      [U*]    [X]?       //
1270  //        ^       ^        //
1271  //         \       \       //
1272  //          \      |       //
1273  //         [Root*] |       //
1274  //          ^      |       //
1275  //          f      |       //
1276  //          |      /       //
1277  //         [Y]    /        //
1278  //           ^   /         //
1279  //           f  /          //
1280  //           | /           //
1281  //          [FU]           //
1282  //
1283  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1284  // (call it Fold), then X is a predecessor of FU and a successor of
1285  // Fold. But since Fold and FU are flagged together, this will create
1286  // a cycle in the scheduling graph.
1287
1288  // If the node has flags, walk down the graph to the "lowest" node in the
1289  // flagged set.
1290  EVT VT = Root->getValueType(Root->getNumValues()-1);
1291  while (VT == MVT::Flag) {
1292    SDNode *FU = findFlagUse(Root);
1293    if (FU == NULL)
1294      break;
1295    Root = FU;
1296    VT = Root->getValueType(Root->getNumValues()-1);
1297
1298    // If our query node has a flag result with a use, we've walked up it.  If
1299    // the user (which has already been selected) has a chain or indirectly uses
1300    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1301    // this, we cannot ignore chains in this predicate.
1302    IgnoreChains = false;
1303  }
1304
1305
1306  SmallPtrSet<SDNode*, 16> Visited;
1307  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1308}
1309
1310SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1311  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1312  SelectInlineAsmMemoryOperands(Ops);
1313
1314  std::vector<EVT> VTs;
1315  VTs.push_back(MVT::Other);
1316  VTs.push_back(MVT::Flag);
1317  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1318                                VTs, &Ops[0], Ops.size());
1319  New->setNodeId(-1);
1320  return New.getNode();
1321}
1322
1323SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1324  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1325}
1326
1327/// GetVBR - decode a vbr encoding whose top bit is set.
1328ALWAYS_INLINE static uint64_t
1329GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1330  assert(Val >= 128 && "Not a VBR");
1331  Val &= 127;  // Remove first vbr bit.
1332
1333  unsigned Shift = 7;
1334  uint64_t NextBits;
1335  do {
1336    NextBits = MatcherTable[Idx++];
1337    Val |= (NextBits&127) << Shift;
1338    Shift += 7;
1339  } while (NextBits & 128);
1340
1341  return Val;
1342}
1343
1344
1345/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1346/// interior flag and chain results to use the new flag and chain results.
1347void SelectionDAGISel::
1348UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1349                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1350                     SDValue InputFlag,
1351                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1352                     bool isMorphNodeTo) {
1353  SmallVector<SDNode*, 4> NowDeadNodes;
1354
1355  ISelUpdater ISU(ISelPosition);
1356
1357  // Now that all the normal results are replaced, we replace the chain and
1358  // flag results if present.
1359  if (!ChainNodesMatched.empty()) {
1360    assert(InputChain.getNode() != 0 &&
1361           "Matched input chains but didn't produce a chain");
1362    // Loop over all of the nodes we matched that produced a chain result.
1363    // Replace all the chain results with the final chain we ended up with.
1364    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1365      SDNode *ChainNode = ChainNodesMatched[i];
1366
1367      // If this node was already deleted, don't look at it.
1368      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1369        continue;
1370
1371      // Don't replace the results of the root node if we're doing a
1372      // MorphNodeTo.
1373      if (ChainNode == NodeToMatch && isMorphNodeTo)
1374        continue;
1375
1376      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1377      if (ChainVal.getValueType() == MVT::Flag)
1378        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1379      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1380      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1381
1382      // If the node became dead and we haven't already seen it, delete it.
1383      if (ChainNode->use_empty() &&
1384          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1385        NowDeadNodes.push_back(ChainNode);
1386    }
1387  }
1388
1389  // If the result produces a flag, update any flag results in the matched
1390  // pattern with the flag result.
1391  if (InputFlag.getNode() != 0) {
1392    // Handle any interior nodes explicitly marked.
1393    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1394      SDNode *FRN = FlagResultNodesMatched[i];
1395
1396      // If this node was already deleted, don't look at it.
1397      if (FRN->getOpcode() == ISD::DELETED_NODE)
1398        continue;
1399
1400      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1401             "Doesn't have a flag result");
1402      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1403                                        InputFlag, &ISU);
1404
1405      // If the node became dead and we haven't already seen it, delete it.
1406      if (FRN->use_empty() &&
1407          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1408        NowDeadNodes.push_back(FRN);
1409    }
1410  }
1411
1412  if (!NowDeadNodes.empty())
1413    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1414
1415  DEBUG(errs() << "ISEL: Match complete!\n");
1416}
1417
1418enum ChainResult {
1419  CR_Simple,
1420  CR_InducesCycle,
1421  CR_LeadsToInteriorNode
1422};
1423
1424/// WalkChainUsers - Walk down the users of the specified chained node that is
1425/// part of the pattern we're matching, looking at all of the users we find.
1426/// This determines whether something is an interior node, whether we have a
1427/// non-pattern node in between two pattern nodes (which prevent folding because
1428/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1429/// between pattern nodes (in which case the TF becomes part of the pattern).
1430///
1431/// The walk we do here is guaranteed to be small because we quickly get down to
1432/// already selected nodes "below" us.
1433static ChainResult
1434WalkChainUsers(SDNode *ChainedNode,
1435               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1436               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1437  ChainResult Result = CR_Simple;
1438
1439  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1440         E = ChainedNode->use_end(); UI != E; ++UI) {
1441    // Make sure the use is of the chain, not some other value we produce.
1442    if (UI.getUse().getValueType() != MVT::Other) continue;
1443
1444    SDNode *User = *UI;
1445
1446    // If we see an already-selected machine node, then we've gone beyond the
1447    // pattern that we're selecting down into the already selected chunk of the
1448    // DAG.
1449    if (User->isMachineOpcode() ||
1450        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1451      continue;
1452
1453    if (User->getOpcode() == ISD::CopyToReg ||
1454        User->getOpcode() == ISD::CopyFromReg ||
1455        User->getOpcode() == ISD::INLINEASM ||
1456        User->getOpcode() == ISD::EH_LABEL) {
1457      // If their node ID got reset to -1 then they've already been selected.
1458      // Treat them like a MachineOpcode.
1459      if (User->getNodeId() == -1)
1460        continue;
1461    }
1462
1463    // If we have a TokenFactor, we handle it specially.
1464    if (User->getOpcode() != ISD::TokenFactor) {
1465      // If the node isn't a token factor and isn't part of our pattern, then it
1466      // must be a random chained node in between two nodes we're selecting.
1467      // This happens when we have something like:
1468      //   x = load ptr
1469      //   call
1470      //   y = x+4
1471      //   store y -> ptr
1472      // Because we structurally match the load/store as a read/modify/write,
1473      // but the call is chained between them.  We cannot fold in this case
1474      // because it would induce a cycle in the graph.
1475      if (!std::count(ChainedNodesInPattern.begin(),
1476                      ChainedNodesInPattern.end(), User))
1477        return CR_InducesCycle;
1478
1479      // Otherwise we found a node that is part of our pattern.  For example in:
1480      //   x = load ptr
1481      //   y = x+4
1482      //   store y -> ptr
1483      // This would happen when we're scanning down from the load and see the
1484      // store as a user.  Record that there is a use of ChainedNode that is
1485      // part of the pattern and keep scanning uses.
1486      Result = CR_LeadsToInteriorNode;
1487      InteriorChainedNodes.push_back(User);
1488      continue;
1489    }
1490
1491    // If we found a TokenFactor, there are two cases to consider: first if the
1492    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1493    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1494    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1495    //     [Load chain]
1496    //         ^
1497    //         |
1498    //       [Load]
1499    //       ^    ^
1500    //       |    \                    DAG's like cheese
1501    //      /       \                       do you?
1502    //     /         |
1503    // [TokenFactor] [Op]
1504    //     ^          ^
1505    //     |          |
1506    //      \        /
1507    //       \      /
1508    //       [Store]
1509    //
1510    // In this case, the TokenFactor becomes part of our match and we rewrite it
1511    // as a new TokenFactor.
1512    //
1513    // To distinguish these two cases, do a recursive walk down the uses.
1514    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1515    case CR_Simple:
1516      // If the uses of the TokenFactor are just already-selected nodes, ignore
1517      // it, it is "below" our pattern.
1518      continue;
1519    case CR_InducesCycle:
1520      // If the uses of the TokenFactor lead to nodes that are not part of our
1521      // pattern that are not selected, folding would turn this into a cycle,
1522      // bail out now.
1523      return CR_InducesCycle;
1524    case CR_LeadsToInteriorNode:
1525      break;  // Otherwise, keep processing.
1526    }
1527
1528    // Okay, we know we're in the interesting interior case.  The TokenFactor
1529    // is now going to be considered part of the pattern so that we rewrite its
1530    // uses (it may have uses that are not part of the pattern) with the
1531    // ultimate chain result of the generated code.  We will also add its chain
1532    // inputs as inputs to the ultimate TokenFactor we create.
1533    Result = CR_LeadsToInteriorNode;
1534    ChainedNodesInPattern.push_back(User);
1535    InteriorChainedNodes.push_back(User);
1536    continue;
1537  }
1538
1539  return Result;
1540}
1541
1542/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1543/// operation for when the pattern matched at least one node with a chains.  The
1544/// input vector contains a list of all of the chained nodes that we match.  We
1545/// must determine if this is a valid thing to cover (i.e. matching it won't
1546/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1547/// be used as the input node chain for the generated nodes.
1548static SDValue
1549HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1550                       SelectionDAG *CurDAG) {
1551  // Walk all of the chained nodes we've matched, recursively scanning down the
1552  // users of the chain result. This adds any TokenFactor nodes that are caught
1553  // in between chained nodes to the chained and interior nodes list.
1554  SmallVector<SDNode*, 3> InteriorChainedNodes;
1555  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1556    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1557                       InteriorChainedNodes) == CR_InducesCycle)
1558      return SDValue(); // Would induce a cycle.
1559  }
1560
1561  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1562  // that we are interested in.  Form our input TokenFactor node.
1563  SmallVector<SDValue, 3> InputChains;
1564  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1565    // Add the input chain of this node to the InputChains list (which will be
1566    // the operands of the generated TokenFactor) if it's not an interior node.
1567    SDNode *N = ChainNodesMatched[i];
1568    if (N->getOpcode() != ISD::TokenFactor) {
1569      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1570        continue;
1571
1572      // Otherwise, add the input chain.
1573      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1574      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1575      InputChains.push_back(InChain);
1576      continue;
1577    }
1578
1579    // If we have a token factor, we want to add all inputs of the token factor
1580    // that are not part of the pattern we're matching.
1581    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1582      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1583                      N->getOperand(op).getNode()))
1584        InputChains.push_back(N->getOperand(op));
1585    }
1586  }
1587
1588  SDValue Res;
1589  if (InputChains.size() == 1)
1590    return InputChains[0];
1591  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1592                         MVT::Other, &InputChains[0], InputChains.size());
1593}
1594
1595/// MorphNode - Handle morphing a node in place for the selector.
1596SDNode *SelectionDAGISel::
1597MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1598          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1599  // It is possible we're using MorphNodeTo to replace a node with no
1600  // normal results with one that has a normal result (or we could be
1601  // adding a chain) and the input could have flags and chains as well.
1602  // In this case we need to shift the operands down.
1603  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1604  // than the old isel though.
1605  int OldFlagResultNo = -1, OldChainResultNo = -1;
1606
1607  unsigned NTMNumResults = Node->getNumValues();
1608  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1609    OldFlagResultNo = NTMNumResults-1;
1610    if (NTMNumResults != 1 &&
1611        Node->getValueType(NTMNumResults-2) == MVT::Other)
1612      OldChainResultNo = NTMNumResults-2;
1613  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1614    OldChainResultNo = NTMNumResults-1;
1615
1616  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1617  // that this deletes operands of the old node that become dead.
1618  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1619
1620  // MorphNodeTo can operate in two ways: if an existing node with the
1621  // specified operands exists, it can just return it.  Otherwise, it
1622  // updates the node in place to have the requested operands.
1623  if (Res == Node) {
1624    // If we updated the node in place, reset the node ID.  To the isel,
1625    // this should be just like a newly allocated machine node.
1626    Res->setNodeId(-1);
1627  }
1628
1629  unsigned ResNumResults = Res->getNumValues();
1630  // Move the flag if needed.
1631  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1632      (unsigned)OldFlagResultNo != ResNumResults-1)
1633    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1634                                      SDValue(Res, ResNumResults-1));
1635
1636  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1637  --ResNumResults;
1638
1639  // Move the chain reference if needed.
1640  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1641      (unsigned)OldChainResultNo != ResNumResults-1)
1642    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1643                                      SDValue(Res, ResNumResults-1));
1644
1645  // Otherwise, no replacement happened because the node already exists. Replace
1646  // Uses of the old node with the new one.
1647  if (Res != Node)
1648    CurDAG->ReplaceAllUsesWith(Node, Res);
1649
1650  return Res;
1651}
1652
1653/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1654ALWAYS_INLINE static bool
1655CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1656          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1657  // Accept if it is exactly the same as a previously recorded node.
1658  unsigned RecNo = MatcherTable[MatcherIndex++];
1659  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1660  return N == RecordedNodes[RecNo];
1661}
1662
1663/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1664ALWAYS_INLINE static bool
1665CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1666                      SelectionDAGISel &SDISel) {
1667  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1668}
1669
1670/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1671ALWAYS_INLINE static bool
1672CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1673                   SelectionDAGISel &SDISel, SDNode *N) {
1674  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1675}
1676
1677ALWAYS_INLINE static bool
1678CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1679            SDNode *N) {
1680  uint16_t Opc = MatcherTable[MatcherIndex++];
1681  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1682  return N->getOpcode() == Opc;
1683}
1684
1685ALWAYS_INLINE static bool
1686CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1687          SDValue N, const TargetLowering &TLI) {
1688  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1689  if (N.getValueType() == VT) return true;
1690
1691  // Handle the case when VT is iPTR.
1692  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1693}
1694
1695ALWAYS_INLINE static bool
1696CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1697               SDValue N, const TargetLowering &TLI,
1698               unsigned ChildNo) {
1699  if (ChildNo >= N.getNumOperands())
1700    return false;  // Match fails if out of range child #.
1701  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1702}
1703
1704
1705ALWAYS_INLINE static bool
1706CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1707              SDValue N) {
1708  return cast<CondCodeSDNode>(N)->get() ==
1709      (ISD::CondCode)MatcherTable[MatcherIndex++];
1710}
1711
1712ALWAYS_INLINE static bool
1713CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1714               SDValue N, const TargetLowering &TLI) {
1715  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1716  if (cast<VTSDNode>(N)->getVT() == VT)
1717    return true;
1718
1719  // Handle the case when VT is iPTR.
1720  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1721}
1722
1723ALWAYS_INLINE static bool
1724CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1725             SDValue N) {
1726  int64_t Val = MatcherTable[MatcherIndex++];
1727  if (Val & 128)
1728    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1729
1730  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1731  return C != 0 && C->getSExtValue() == Val;
1732}
1733
1734ALWAYS_INLINE static bool
1735CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1736            SDValue N, SelectionDAGISel &SDISel) {
1737  int64_t Val = MatcherTable[MatcherIndex++];
1738  if (Val & 128)
1739    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1740
1741  if (N->getOpcode() != ISD::AND) return false;
1742
1743  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1744  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1745}
1746
1747ALWAYS_INLINE static bool
1748CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1749           SDValue N, SelectionDAGISel &SDISel) {
1750  int64_t Val = MatcherTable[MatcherIndex++];
1751  if (Val & 128)
1752    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1753
1754  if (N->getOpcode() != ISD::OR) return false;
1755
1756  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1757  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1758}
1759
1760/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1761/// scope, evaluate the current node.  If the current predicate is known to
1762/// fail, set Result=true and return anything.  If the current predicate is
1763/// known to pass, set Result=false and return the MatcherIndex to continue
1764/// with.  If the current predicate is unknown, set Result=false and return the
1765/// MatcherIndex to continue with.
1766static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1767                                       unsigned Index, SDValue N,
1768                                       bool &Result, SelectionDAGISel &SDISel,
1769                                       SmallVectorImpl<SDValue> &RecordedNodes){
1770  switch (Table[Index++]) {
1771  default:
1772    Result = false;
1773    return Index-1;  // Could not evaluate this predicate.
1774  case SelectionDAGISel::OPC_CheckSame:
1775    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1776    return Index;
1777  case SelectionDAGISel::OPC_CheckPatternPredicate:
1778    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1779    return Index;
1780  case SelectionDAGISel::OPC_CheckPredicate:
1781    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1782    return Index;
1783  case SelectionDAGISel::OPC_CheckOpcode:
1784    Result = !::CheckOpcode(Table, Index, N.getNode());
1785    return Index;
1786  case SelectionDAGISel::OPC_CheckType:
1787    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1788    return Index;
1789  case SelectionDAGISel::OPC_CheckChild0Type:
1790  case SelectionDAGISel::OPC_CheckChild1Type:
1791  case SelectionDAGISel::OPC_CheckChild2Type:
1792  case SelectionDAGISel::OPC_CheckChild3Type:
1793  case SelectionDAGISel::OPC_CheckChild4Type:
1794  case SelectionDAGISel::OPC_CheckChild5Type:
1795  case SelectionDAGISel::OPC_CheckChild6Type:
1796  case SelectionDAGISel::OPC_CheckChild7Type:
1797    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1798                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1799    return Index;
1800  case SelectionDAGISel::OPC_CheckCondCode:
1801    Result = !::CheckCondCode(Table, Index, N);
1802    return Index;
1803  case SelectionDAGISel::OPC_CheckValueType:
1804    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1805    return Index;
1806  case SelectionDAGISel::OPC_CheckInteger:
1807    Result = !::CheckInteger(Table, Index, N);
1808    return Index;
1809  case SelectionDAGISel::OPC_CheckAndImm:
1810    Result = !::CheckAndImm(Table, Index, N, SDISel);
1811    return Index;
1812  case SelectionDAGISel::OPC_CheckOrImm:
1813    Result = !::CheckOrImm(Table, Index, N, SDISel);
1814    return Index;
1815  }
1816}
1817
1818namespace {
1819
1820struct MatchScope {
1821  /// FailIndex - If this match fails, this is the index to continue with.
1822  unsigned FailIndex;
1823
1824  /// NodeStack - The node stack when the scope was formed.
1825  SmallVector<SDValue, 4> NodeStack;
1826
1827  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1828  unsigned NumRecordedNodes;
1829
1830  /// NumMatchedMemRefs - The number of matched memref entries.
1831  unsigned NumMatchedMemRefs;
1832
1833  /// InputChain/InputFlag - The current chain/flag
1834  SDValue InputChain, InputFlag;
1835
1836  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1837  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1838};
1839
1840}
1841
1842SDNode *SelectionDAGISel::
1843SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1844                 unsigned TableSize) {
1845  // FIXME: Should these even be selected?  Handle these cases in the caller?
1846  switch (NodeToMatch->getOpcode()) {
1847  default:
1848    break;
1849  case ISD::EntryToken:       // These nodes remain the same.
1850  case ISD::BasicBlock:
1851  case ISD::Register:
1852  //case ISD::VALUETYPE:
1853  //case ISD::CONDCODE:
1854  case ISD::HANDLENODE:
1855  case ISD::MDNODE_SDNODE:
1856  case ISD::TargetConstant:
1857  case ISD::TargetConstantFP:
1858  case ISD::TargetConstantPool:
1859  case ISD::TargetFrameIndex:
1860  case ISD::TargetExternalSymbol:
1861  case ISD::TargetBlockAddress:
1862  case ISD::TargetJumpTable:
1863  case ISD::TargetGlobalTLSAddress:
1864  case ISD::TargetGlobalAddress:
1865  case ISD::TokenFactor:
1866  case ISD::CopyFromReg:
1867  case ISD::CopyToReg:
1868  case ISD::EH_LABEL:
1869    NodeToMatch->setNodeId(-1); // Mark selected.
1870    return 0;
1871  case ISD::AssertSext:
1872  case ISD::AssertZext:
1873    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1874                                      NodeToMatch->getOperand(0));
1875    return 0;
1876  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1877  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1878  }
1879
1880  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1881
1882  // Set up the node stack with NodeToMatch as the only node on the stack.
1883  SmallVector<SDValue, 8> NodeStack;
1884  SDValue N = SDValue(NodeToMatch, 0);
1885  NodeStack.push_back(N);
1886
1887  // MatchScopes - Scopes used when matching, if a match failure happens, this
1888  // indicates where to continue checking.
1889  SmallVector<MatchScope, 8> MatchScopes;
1890
1891  // RecordedNodes - This is the set of nodes that have been recorded by the
1892  // state machine.
1893  SmallVector<SDValue, 8> RecordedNodes;
1894
1895  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1896  // pattern.
1897  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1898
1899  // These are the current input chain and flag for use when generating nodes.
1900  // Various Emit operations change these.  For example, emitting a copytoreg
1901  // uses and updates these.
1902  SDValue InputChain, InputFlag;
1903
1904  // ChainNodesMatched - If a pattern matches nodes that have input/output
1905  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1906  // which ones they are.  The result is captured into this list so that we can
1907  // update the chain results when the pattern is complete.
1908  SmallVector<SDNode*, 3> ChainNodesMatched;
1909  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1910
1911  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1912        NodeToMatch->dump(CurDAG);
1913        errs() << '\n');
1914
1915  // Determine where to start the interpreter.  Normally we start at opcode #0,
1916  // but if the state machine starts with an OPC_SwitchOpcode, then we
1917  // accelerate the first lookup (which is guaranteed to be hot) with the
1918  // OpcodeOffset table.
1919  unsigned MatcherIndex = 0;
1920
1921  if (!OpcodeOffset.empty()) {
1922    // Already computed the OpcodeOffset table, just index into it.
1923    if (N.getOpcode() < OpcodeOffset.size())
1924      MatcherIndex = OpcodeOffset[N.getOpcode()];
1925    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1926
1927  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1928    // Otherwise, the table isn't computed, but the state machine does start
1929    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1930    // is the first time we're selecting an instruction.
1931    unsigned Idx = 1;
1932    while (1) {
1933      // Get the size of this case.
1934      unsigned CaseSize = MatcherTable[Idx++];
1935      if (CaseSize & 128)
1936        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1937      if (CaseSize == 0) break;
1938
1939      // Get the opcode, add the index to the table.
1940      uint16_t Opc = MatcherTable[Idx++];
1941      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
1942      if (Opc >= OpcodeOffset.size())
1943        OpcodeOffset.resize((Opc+1)*2);
1944      OpcodeOffset[Opc] = Idx;
1945      Idx += CaseSize;
1946    }
1947
1948    // Okay, do the lookup for the first opcode.
1949    if (N.getOpcode() < OpcodeOffset.size())
1950      MatcherIndex = OpcodeOffset[N.getOpcode()];
1951  }
1952
1953  while (1) {
1954    assert(MatcherIndex < TableSize && "Invalid index");
1955#ifndef NDEBUG
1956    unsigned CurrentOpcodeIndex = MatcherIndex;
1957#endif
1958    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
1959    switch (Opcode) {
1960    case OPC_Scope: {
1961      // Okay, the semantics of this operation are that we should push a scope
1962      // then evaluate the first child.  However, pushing a scope only to have
1963      // the first check fail (which then pops it) is inefficient.  If we can
1964      // determine immediately that the first check (or first several) will
1965      // immediately fail, don't even bother pushing a scope for them.
1966      unsigned FailIndex;
1967
1968      while (1) {
1969        unsigned NumToSkip = MatcherTable[MatcherIndex++];
1970        if (NumToSkip & 128)
1971          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
1972        // Found the end of the scope with no match.
1973        if (NumToSkip == 0) {
1974          FailIndex = 0;
1975          break;
1976        }
1977
1978        FailIndex = MatcherIndex+NumToSkip;
1979
1980        unsigned MatcherIndexOfPredicate = MatcherIndex;
1981        (void)MatcherIndexOfPredicate; // silence warning.
1982
1983        // If we can't evaluate this predicate without pushing a scope (e.g. if
1984        // it is a 'MoveParent') or if the predicate succeeds on this node, we
1985        // push the scope and evaluate the full predicate chain.
1986        bool Result;
1987        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
1988                                              Result, *this, RecordedNodes);
1989        if (!Result)
1990          break;
1991
1992        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
1993                     << "index " << MatcherIndexOfPredicate
1994                     << ", continuing at " << FailIndex << "\n");
1995        ++NumDAGIselRetries;
1996
1997        // Otherwise, we know that this case of the Scope is guaranteed to fail,
1998        // move to the next case.
1999        MatcherIndex = FailIndex;
2000      }
2001
2002      // If the whole scope failed to match, bail.
2003      if (FailIndex == 0) break;
2004
2005      // Push a MatchScope which indicates where to go if the first child fails
2006      // to match.
2007      MatchScope NewEntry;
2008      NewEntry.FailIndex = FailIndex;
2009      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2010      NewEntry.NumRecordedNodes = RecordedNodes.size();
2011      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2012      NewEntry.InputChain = InputChain;
2013      NewEntry.InputFlag = InputFlag;
2014      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2015      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2016      MatchScopes.push_back(NewEntry);
2017      continue;
2018    }
2019    case OPC_RecordNode:
2020      // Remember this node, it may end up being an operand in the pattern.
2021      RecordedNodes.push_back(N);
2022      continue;
2023
2024    case OPC_RecordChild0: case OPC_RecordChild1:
2025    case OPC_RecordChild2: case OPC_RecordChild3:
2026    case OPC_RecordChild4: case OPC_RecordChild5:
2027    case OPC_RecordChild6: case OPC_RecordChild7: {
2028      unsigned ChildNo = Opcode-OPC_RecordChild0;
2029      if (ChildNo >= N.getNumOperands())
2030        break;  // Match fails if out of range child #.
2031
2032      RecordedNodes.push_back(N->getOperand(ChildNo));
2033      continue;
2034    }
2035    case OPC_RecordMemRef:
2036      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2037      continue;
2038
2039    case OPC_CaptureFlagInput:
2040      // If the current node has an input flag, capture it in InputFlag.
2041      if (N->getNumOperands() != 0 &&
2042          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2043        InputFlag = N->getOperand(N->getNumOperands()-1);
2044      continue;
2045
2046    case OPC_MoveChild: {
2047      unsigned ChildNo = MatcherTable[MatcherIndex++];
2048      if (ChildNo >= N.getNumOperands())
2049        break;  // Match fails if out of range child #.
2050      N = N.getOperand(ChildNo);
2051      NodeStack.push_back(N);
2052      continue;
2053    }
2054
2055    case OPC_MoveParent:
2056      // Pop the current node off the NodeStack.
2057      NodeStack.pop_back();
2058      assert(!NodeStack.empty() && "Node stack imbalance!");
2059      N = NodeStack.back();
2060      continue;
2061
2062    case OPC_CheckSame:
2063      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2064      continue;
2065    case OPC_CheckPatternPredicate:
2066      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2067      continue;
2068    case OPC_CheckPredicate:
2069      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2070                                N.getNode()))
2071        break;
2072      continue;
2073    case OPC_CheckComplexPat: {
2074      unsigned CPNum = MatcherTable[MatcherIndex++];
2075      unsigned RecNo = MatcherTable[MatcherIndex++];
2076      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2077      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2078                               RecordedNodes))
2079        break;
2080      continue;
2081    }
2082    case OPC_CheckOpcode:
2083      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2084      continue;
2085
2086    case OPC_CheckType:
2087      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2088      continue;
2089
2090    case OPC_SwitchOpcode: {
2091      unsigned CurNodeOpcode = N.getOpcode();
2092      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2093      unsigned CaseSize;
2094      while (1) {
2095        // Get the size of this case.
2096        CaseSize = MatcherTable[MatcherIndex++];
2097        if (CaseSize & 128)
2098          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2099        if (CaseSize == 0) break;
2100
2101        uint16_t Opc = MatcherTable[MatcherIndex++];
2102        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2103
2104        // If the opcode matches, then we will execute this case.
2105        if (CurNodeOpcode == Opc)
2106          break;
2107
2108        // Otherwise, skip over this case.
2109        MatcherIndex += CaseSize;
2110      }
2111
2112      // If no cases matched, bail out.
2113      if (CaseSize == 0) break;
2114
2115      // Otherwise, execute the case we found.
2116      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2117                   << " to " << MatcherIndex << "\n");
2118      continue;
2119    }
2120
2121    case OPC_SwitchType: {
2122      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2123      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2124      unsigned CaseSize;
2125      while (1) {
2126        // Get the size of this case.
2127        CaseSize = MatcherTable[MatcherIndex++];
2128        if (CaseSize & 128)
2129          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2130        if (CaseSize == 0) break;
2131
2132        MVT::SimpleValueType CaseVT =
2133          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2134        if (CaseVT == MVT::iPTR)
2135          CaseVT = TLI.getPointerTy().SimpleTy;
2136
2137        // If the VT matches, then we will execute this case.
2138        if (CurNodeVT == CaseVT)
2139          break;
2140
2141        // Otherwise, skip over this case.
2142        MatcherIndex += CaseSize;
2143      }
2144
2145      // If no cases matched, bail out.
2146      if (CaseSize == 0) break;
2147
2148      // Otherwise, execute the case we found.
2149      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2150                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2151      continue;
2152    }
2153    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2154    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2155    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2156    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2157      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2158                            Opcode-OPC_CheckChild0Type))
2159        break;
2160      continue;
2161    case OPC_CheckCondCode:
2162      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2163      continue;
2164    case OPC_CheckValueType:
2165      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2166      continue;
2167    case OPC_CheckInteger:
2168      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2169      continue;
2170    case OPC_CheckAndImm:
2171      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2172      continue;
2173    case OPC_CheckOrImm:
2174      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2175      continue;
2176
2177    case OPC_CheckFoldableChainNode: {
2178      assert(NodeStack.size() != 1 && "No parent node");
2179      // Verify that all intermediate nodes between the root and this one have
2180      // a single use.
2181      bool HasMultipleUses = false;
2182      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2183        if (!NodeStack[i].hasOneUse()) {
2184          HasMultipleUses = true;
2185          break;
2186        }
2187      if (HasMultipleUses) break;
2188
2189      // Check to see that the target thinks this is profitable to fold and that
2190      // we can fold it without inducing cycles in the graph.
2191      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2192                              NodeToMatch) ||
2193          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2194                         NodeToMatch, OptLevel,
2195                         true/*We validate our own chains*/))
2196        break;
2197
2198      continue;
2199    }
2200    case OPC_EmitInteger: {
2201      MVT::SimpleValueType VT =
2202        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2203      int64_t Val = MatcherTable[MatcherIndex++];
2204      if (Val & 128)
2205        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2206      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2207      continue;
2208    }
2209    case OPC_EmitRegister: {
2210      MVT::SimpleValueType VT =
2211        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2212      unsigned RegNo = MatcherTable[MatcherIndex++];
2213      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2214      continue;
2215    }
2216
2217    case OPC_EmitConvertToTarget:  {
2218      // Convert from IMM/FPIMM to target version.
2219      unsigned RecNo = MatcherTable[MatcherIndex++];
2220      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2221      SDValue Imm = RecordedNodes[RecNo];
2222
2223      if (Imm->getOpcode() == ISD::Constant) {
2224        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2225        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2226      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2227        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2228        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2229      }
2230
2231      RecordedNodes.push_back(Imm);
2232      continue;
2233    }
2234
2235    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2236    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2237      // These are space-optimized forms of OPC_EmitMergeInputChains.
2238      assert(InputChain.getNode() == 0 &&
2239             "EmitMergeInputChains should be the first chain producing node");
2240      assert(ChainNodesMatched.empty() &&
2241             "Should only have one EmitMergeInputChains per match");
2242
2243      // Read all of the chained nodes.
2244      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2245      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2246      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2247
2248      // FIXME: What if other value results of the node have uses not matched
2249      // by this pattern?
2250      if (ChainNodesMatched.back() != NodeToMatch &&
2251          !RecordedNodes[RecNo].hasOneUse()) {
2252        ChainNodesMatched.clear();
2253        break;
2254      }
2255
2256      // Merge the input chains if they are not intra-pattern references.
2257      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2258
2259      if (InputChain.getNode() == 0)
2260        break;  // Failed to merge.
2261      continue;
2262    }
2263
2264    case OPC_EmitMergeInputChains: {
2265      assert(InputChain.getNode() == 0 &&
2266             "EmitMergeInputChains should be the first chain producing node");
2267      // This node gets a list of nodes we matched in the input that have
2268      // chains.  We want to token factor all of the input chains to these nodes
2269      // together.  However, if any of the input chains is actually one of the
2270      // nodes matched in this pattern, then we have an intra-match reference.
2271      // Ignore these because the newly token factored chain should not refer to
2272      // the old nodes.
2273      unsigned NumChains = MatcherTable[MatcherIndex++];
2274      assert(NumChains != 0 && "Can't TF zero chains");
2275
2276      assert(ChainNodesMatched.empty() &&
2277             "Should only have one EmitMergeInputChains per match");
2278
2279      // Read all of the chained nodes.
2280      for (unsigned i = 0; i != NumChains; ++i) {
2281        unsigned RecNo = MatcherTable[MatcherIndex++];
2282        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2283        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2284
2285        // FIXME: What if other value results of the node have uses not matched
2286        // by this pattern?
2287        if (ChainNodesMatched.back() != NodeToMatch &&
2288            !RecordedNodes[RecNo].hasOneUse()) {
2289          ChainNodesMatched.clear();
2290          break;
2291        }
2292      }
2293
2294      // If the inner loop broke out, the match fails.
2295      if (ChainNodesMatched.empty())
2296        break;
2297
2298      // Merge the input chains if they are not intra-pattern references.
2299      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2300
2301      if (InputChain.getNode() == 0)
2302        break;  // Failed to merge.
2303
2304      continue;
2305    }
2306
2307    case OPC_EmitCopyToReg: {
2308      unsigned RecNo = MatcherTable[MatcherIndex++];
2309      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2310      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2311
2312      if (InputChain.getNode() == 0)
2313        InputChain = CurDAG->getEntryNode();
2314
2315      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2316                                        DestPhysReg, RecordedNodes[RecNo],
2317                                        InputFlag);
2318
2319      InputFlag = InputChain.getValue(1);
2320      continue;
2321    }
2322
2323    case OPC_EmitNodeXForm: {
2324      unsigned XFormNo = MatcherTable[MatcherIndex++];
2325      unsigned RecNo = MatcherTable[MatcherIndex++];
2326      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2327      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2328      continue;
2329    }
2330
2331    case OPC_EmitNode:
2332    case OPC_MorphNodeTo: {
2333      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2334      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2335      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2336      // Get the result VT list.
2337      unsigned NumVTs = MatcherTable[MatcherIndex++];
2338      SmallVector<EVT, 4> VTs;
2339      for (unsigned i = 0; i != NumVTs; ++i) {
2340        MVT::SimpleValueType VT =
2341          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2342        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2343        VTs.push_back(VT);
2344      }
2345
2346      if (EmitNodeInfo & OPFL_Chain)
2347        VTs.push_back(MVT::Other);
2348      if (EmitNodeInfo & OPFL_FlagOutput)
2349        VTs.push_back(MVT::Flag);
2350
2351      // This is hot code, so optimize the two most common cases of 1 and 2
2352      // results.
2353      SDVTList VTList;
2354      if (VTs.size() == 1)
2355        VTList = CurDAG->getVTList(VTs[0]);
2356      else if (VTs.size() == 2)
2357        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2358      else
2359        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2360
2361      // Get the operand list.
2362      unsigned NumOps = MatcherTable[MatcherIndex++];
2363      SmallVector<SDValue, 8> Ops;
2364      for (unsigned i = 0; i != NumOps; ++i) {
2365        unsigned RecNo = MatcherTable[MatcherIndex++];
2366        if (RecNo & 128)
2367          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2368
2369        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2370        Ops.push_back(RecordedNodes[RecNo]);
2371      }
2372
2373      // If there are variadic operands to add, handle them now.
2374      if (EmitNodeInfo & OPFL_VariadicInfo) {
2375        // Determine the start index to copy from.
2376        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2377        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2378        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2379               "Invalid variadic node");
2380        // Copy all of the variadic operands, not including a potential flag
2381        // input.
2382        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2383             i != e; ++i) {
2384          SDValue V = NodeToMatch->getOperand(i);
2385          if (V.getValueType() == MVT::Flag) break;
2386          Ops.push_back(V);
2387        }
2388      }
2389
2390      // If this has chain/flag inputs, add them.
2391      if (EmitNodeInfo & OPFL_Chain)
2392        Ops.push_back(InputChain);
2393      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2394        Ops.push_back(InputFlag);
2395
2396      // Create the node.
2397      SDNode *Res = 0;
2398      if (Opcode != OPC_MorphNodeTo) {
2399        // If this is a normal EmitNode command, just create the new node and
2400        // add the results to the RecordedNodes list.
2401        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2402                                     VTList, Ops.data(), Ops.size());
2403
2404        // Add all the non-flag/non-chain results to the RecordedNodes list.
2405        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2406          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2407          RecordedNodes.push_back(SDValue(Res, i));
2408        }
2409
2410      } else {
2411        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2412                        EmitNodeInfo);
2413      }
2414
2415      // If the node had chain/flag results, update our notion of the current
2416      // chain and flag.
2417      if (EmitNodeInfo & OPFL_FlagOutput) {
2418        InputFlag = SDValue(Res, VTs.size()-1);
2419        if (EmitNodeInfo & OPFL_Chain)
2420          InputChain = SDValue(Res, VTs.size()-2);
2421      } else if (EmitNodeInfo & OPFL_Chain)
2422        InputChain = SDValue(Res, VTs.size()-1);
2423
2424      // If the OPFL_MemRefs flag is set on this node, slap all of the
2425      // accumulated memrefs onto it.
2426      //
2427      // FIXME: This is vastly incorrect for patterns with multiple outputs
2428      // instructions that access memory and for ComplexPatterns that match
2429      // loads.
2430      if (EmitNodeInfo & OPFL_MemRefs) {
2431        MachineSDNode::mmo_iterator MemRefs =
2432          MF->allocateMemRefsArray(MatchedMemRefs.size());
2433        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2434        cast<MachineSDNode>(Res)
2435          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2436      }
2437
2438      DEBUG(errs() << "  "
2439                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2440                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2441
2442      // If this was a MorphNodeTo then we're completely done!
2443      if (Opcode == OPC_MorphNodeTo) {
2444        // Update chain and flag uses.
2445        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2446                             InputFlag, FlagResultNodesMatched, true);
2447        return Res;
2448      }
2449
2450      continue;
2451    }
2452
2453    case OPC_MarkFlagResults: {
2454      unsigned NumNodes = MatcherTable[MatcherIndex++];
2455
2456      // Read and remember all the flag-result nodes.
2457      for (unsigned i = 0; i != NumNodes; ++i) {
2458        unsigned RecNo = MatcherTable[MatcherIndex++];
2459        if (RecNo & 128)
2460          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2461
2462        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2463        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2464      }
2465      continue;
2466    }
2467
2468    case OPC_CompleteMatch: {
2469      // The match has been completed, and any new nodes (if any) have been
2470      // created.  Patch up references to the matched dag to use the newly
2471      // created nodes.
2472      unsigned NumResults = MatcherTable[MatcherIndex++];
2473
2474      for (unsigned i = 0; i != NumResults; ++i) {
2475        unsigned ResSlot = MatcherTable[MatcherIndex++];
2476        if (ResSlot & 128)
2477          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2478
2479        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2480        SDValue Res = RecordedNodes[ResSlot];
2481
2482        assert(i < NodeToMatch->getNumValues() &&
2483               NodeToMatch->getValueType(i) != MVT::Other &&
2484               NodeToMatch->getValueType(i) != MVT::Flag &&
2485               "Invalid number of results to complete!");
2486        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2487                NodeToMatch->getValueType(i) == MVT::iPTR ||
2488                Res.getValueType() == MVT::iPTR ||
2489                NodeToMatch->getValueType(i).getSizeInBits() ==
2490                    Res.getValueType().getSizeInBits()) &&
2491               "invalid replacement");
2492        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2493      }
2494
2495      // If the root node defines a flag, add it to the flag nodes to update
2496      // list.
2497      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2498        FlagResultNodesMatched.push_back(NodeToMatch);
2499
2500      // Update chain and flag uses.
2501      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2502                           InputFlag, FlagResultNodesMatched, false);
2503
2504      assert(NodeToMatch->use_empty() &&
2505             "Didn't replace all uses of the node?");
2506
2507      // FIXME: We just return here, which interacts correctly with SelectRoot
2508      // above.  We should fix this to not return an SDNode* anymore.
2509      return 0;
2510    }
2511    }
2512
2513    // If the code reached this point, then the match failed.  See if there is
2514    // another child to try in the current 'Scope', otherwise pop it until we
2515    // find a case to check.
2516    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2517    ++NumDAGIselRetries;
2518    while (1) {
2519      if (MatchScopes.empty()) {
2520        CannotYetSelect(NodeToMatch);
2521        return 0;
2522      }
2523
2524      // Restore the interpreter state back to the point where the scope was
2525      // formed.
2526      MatchScope &LastScope = MatchScopes.back();
2527      RecordedNodes.resize(LastScope.NumRecordedNodes);
2528      NodeStack.clear();
2529      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2530      N = NodeStack.back();
2531
2532      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2533        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2534      MatcherIndex = LastScope.FailIndex;
2535
2536      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2537
2538      InputChain = LastScope.InputChain;
2539      InputFlag = LastScope.InputFlag;
2540      if (!LastScope.HasChainNodesMatched)
2541        ChainNodesMatched.clear();
2542      if (!LastScope.HasFlagResultNodesMatched)
2543        FlagResultNodesMatched.clear();
2544
2545      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2546      // we have reached the end of this scope, otherwise we have another child
2547      // in the current scope to try.
2548      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2549      if (NumToSkip & 128)
2550        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2551
2552      // If we have another child in this scope to match, update FailIndex and
2553      // try it.
2554      if (NumToSkip != 0) {
2555        LastScope.FailIndex = MatcherIndex+NumToSkip;
2556        break;
2557      }
2558
2559      // End of this scope, pop it and try the next child in the containing
2560      // scope.
2561      MatchScopes.pop_back();
2562    }
2563  }
2564}
2565
2566
2567
2568void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2569  std::string msg;
2570  raw_string_ostream Msg(msg);
2571  Msg << "Cannot yet select: ";
2572
2573  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2574      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2575      N->getOpcode() != ISD::INTRINSIC_VOID) {
2576    N->printrFull(Msg, CurDAG);
2577  } else {
2578    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2579    unsigned iid =
2580      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2581    if (iid < Intrinsic::num_intrinsics)
2582      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2583    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2584      Msg << "target intrinsic %" << TII->getName(iid);
2585    else
2586      Msg << "unknown intrinsic #" << iid;
2587  }
2588  report_fatal_error(Msg.str());
2589}
2590
2591char SelectionDAGISel::ID = 0;
2592