SelectionDAGISel.cpp revision b99fdee325fe677081dc27bb7d719518452f3256
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/Timer.h"
51#include "llvm/Support/raw_ostream.h"
52#include "llvm/ADT/Statistic.h"
53#include <algorithm>
54using namespace llvm;
55
56STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
57STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
58STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
59STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
60
61#ifndef NDEBUG
62STATISTIC(NumBBWithOutOfOrderLineInfo,
63          "Number of blocks with out of order line number info");
64STATISTIC(NumMBBWithOutOfOrderLineInfo,
65          "Number of machine blocks with out of order line number info");
66#endif
67
68static cl::opt<bool>
69EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
70          cl::desc("Enable verbose messages in the \"fast\" "
71                   "instruction selector"));
72static cl::opt<bool>
73EnableFastISelAbort("fast-isel-abort", cl::Hidden,
74          cl::desc("Enable abort calls when \"fast\" instruction fails"));
75
76#ifndef NDEBUG
77static cl::opt<bool>
78ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the first "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before legalize types"));
84static cl::opt<bool>
85ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
86          cl::desc("Pop up a window to show dags before legalize"));
87static cl::opt<bool>
88ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
89          cl::desc("Pop up a window to show dags before the second "
90                   "dag combine pass"));
91static cl::opt<bool>
92ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
93          cl::desc("Pop up a window to show dags before the post legalize types"
94                   " dag combine pass"));
95static cl::opt<bool>
96ViewISelDAGs("view-isel-dags", cl::Hidden,
97          cl::desc("Pop up a window to show isel dags as they are selected"));
98static cl::opt<bool>
99ViewSchedDAGs("view-sched-dags", cl::Hidden,
100          cl::desc("Pop up a window to show sched dags as they are processed"));
101static cl::opt<bool>
102ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
103      cl::desc("Pop up a window to show SUnit dags after they are processed"));
104#else
105static const bool ViewDAGCombine1 = false,
106                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
107                  ViewDAGCombine2 = false,
108                  ViewDAGCombineLT = false,
109                  ViewISelDAGs = false, ViewSchedDAGs = false,
110                  ViewSUnitDAGs = false;
111#endif
112
113//===---------------------------------------------------------------------===//
114///
115/// RegisterScheduler class - Track the registration of instruction schedulers.
116///
117//===---------------------------------------------------------------------===//
118MachinePassRegistry RegisterScheduler::Registry;
119
120//===---------------------------------------------------------------------===//
121///
122/// ISHeuristic command line option for instruction schedulers.
123///
124//===---------------------------------------------------------------------===//
125static cl::opt<RegisterScheduler::FunctionPassCtor, false,
126               RegisterPassParser<RegisterScheduler> >
127ISHeuristic("pre-RA-sched",
128            cl::init(&createDefaultScheduler),
129            cl::desc("Instruction schedulers available (before register"
130                     " allocation):"));
131
132static RegisterScheduler
133defaultListDAGScheduler("default", "Best scheduler for the target",
134                        createDefaultScheduler);
135
136namespace llvm {
137  //===--------------------------------------------------------------------===//
138  /// createDefaultScheduler - This creates an instruction scheduler appropriate
139  /// for the target.
140  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
141                                             CodeGenOpt::Level OptLevel) {
142    const TargetLowering &TLI = IS->getTargetLowering();
143
144    if (OptLevel == CodeGenOpt::None)
145      return createSourceListDAGScheduler(IS, OptLevel);
146    if (TLI.getSchedulingPreference() == Sched::Latency)
147      return createTDListDAGScheduler(IS, OptLevel);
148    if (TLI.getSchedulingPreference() == Sched::RegPressure)
149      return createBURRListDAGScheduler(IS, OptLevel);
150    if (TLI.getSchedulingPreference() == Sched::Hybrid)
151      return createHybridListDAGScheduler(IS, OptLevel);
152    assert(TLI.getSchedulingPreference() == Sched::ILP &&
153           "Unknown sched type!");
154    return createILPListDAGScheduler(IS, OptLevel);
155  }
156}
157
158// EmitInstrWithCustomInserter - This method should be implemented by targets
159// that mark instructions with the 'usesCustomInserter' flag.  These
160// instructions are special in various ways, which require special support to
161// insert.  The specified MachineInstr is created but not inserted into any
162// basic blocks, and this method is called to expand it into a sequence of
163// instructions, potentially also creating new basic blocks and control flow.
164// When new basic blocks are inserted and the edges from MBB to its successors
165// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
166// DenseMap.
167MachineBasicBlock *
168TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
169                                            MachineBasicBlock *MBB) const {
170#ifndef NDEBUG
171  dbgs() << "If a target marks an instruction with "
172          "'usesCustomInserter', it must implement "
173          "TargetLowering::EmitInstrWithCustomInserter!";
174#endif
175  llvm_unreachable(0);
176  return 0;
177}
178
179//===----------------------------------------------------------------------===//
180// SelectionDAGISel code
181//===----------------------------------------------------------------------===//
182
183SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
184                                   CodeGenOpt::Level OL) :
185  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
186  FuncInfo(new FunctionLoweringInfo(TLI)),
187  CurDAG(new SelectionDAG(tm)),
188  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
189  GFI(),
190  OptLevel(OL),
191  DAGSize(0) {
192    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
193    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
194  }
195
196SelectionDAGISel::~SelectionDAGISel() {
197  delete SDB;
198  delete CurDAG;
199  delete FuncInfo;
200}
201
202void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
203  AU.addRequired<AliasAnalysis>();
204  AU.addPreserved<AliasAnalysis>();
205  AU.addRequired<GCModuleInfo>();
206  AU.addPreserved<GCModuleInfo>();
207  MachineFunctionPass::getAnalysisUsage(AU);
208}
209
210/// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
211/// other function that gcc recognizes as "returning twice". This is used to
212/// limit code-gen optimizations on the machine function.
213///
214/// FIXME: Remove after <rdar://problem/8031714> is fixed.
215static bool FunctionCallsSetJmp(const Function *F) {
216  const Module *M = F->getParent();
217  static const char *ReturnsTwiceFns[] = {
218    "_setjmp",
219    "setjmp",
220    "sigsetjmp",
221    "setjmp_syscall",
222    "savectx",
223    "qsetjmp",
224    "vfork",
225    "getcontext"
226  };
227#define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
228
229  for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
230    if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
231      if (!Callee->use_empty())
232        for (Value::const_use_iterator
233               I = Callee->use_begin(), E = Callee->use_end();
234             I != E; ++I)
235          if (const CallInst *CI = dyn_cast<CallInst>(*I))
236            if (CI->getParent()->getParent() == F)
237              return true;
238    }
239
240  return false;
241#undef NUM_RETURNS_TWICE_FNS
242}
243
244/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
245/// may trap on it.  In this case we have to split the edge so that the path
246/// through the predecessor block that doesn't go to the phi block doesn't
247/// execute the possibly trapping instruction.
248///
249/// This is required for correctness, so it must be done at -O0.
250///
251static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
252  // Loop for blocks with phi nodes.
253  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
254    PHINode *PN = dyn_cast<PHINode>(BB->begin());
255    if (PN == 0) continue;
256
257  ReprocessBlock:
258    // For each block with a PHI node, check to see if any of the input values
259    // are potentially trapping constant expressions.  Constant expressions are
260    // the only potentially trapping value that can occur as the argument to a
261    // PHI.
262    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
263      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
264        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
265        if (CE == 0 || !CE->canTrap()) continue;
266
267        // The only case we have to worry about is when the edge is critical.
268        // Since this block has a PHI Node, we assume it has multiple input
269        // edges: check to see if the pred has multiple successors.
270        BasicBlock *Pred = PN->getIncomingBlock(i);
271        if (Pred->getTerminator()->getNumSuccessors() == 1)
272          continue;
273
274        // Okay, we have to split this edge.
275        SplitCriticalEdge(Pred->getTerminator(),
276                          GetSuccessorNumber(Pred, BB), SDISel, true);
277        goto ReprocessBlock;
278      }
279  }
280}
281
282bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
283  // Do some sanity-checking on the command-line options.
284  assert((!EnableFastISelVerbose || EnableFastISel) &&
285         "-fast-isel-verbose requires -fast-isel");
286  assert((!EnableFastISelAbort || EnableFastISel) &&
287         "-fast-isel-abort requires -fast-isel");
288
289  const Function &Fn = *mf.getFunction();
290  const TargetInstrInfo &TII = *TM.getInstrInfo();
291  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
292
293  MF = &mf;
294  RegInfo = &MF->getRegInfo();
295  AA = &getAnalysis<AliasAnalysis>();
296  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
297
298  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
299
300  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
301
302  CurDAG->init(*MF);
303  FuncInfo->set(Fn, *MF);
304  SDB->init(GFI, *AA);
305
306  SelectAllBasicBlocks(Fn);
307
308  // If the first basic block in the function has live ins that need to be
309  // copied into vregs, emit the copies into the top of the block before
310  // emitting the code for the block.
311  MachineBasicBlock *EntryMBB = MF->begin();
312  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
313
314  DenseMap<unsigned, unsigned> LiveInMap;
315  if (!FuncInfo->ArgDbgValues.empty())
316    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
317           E = RegInfo->livein_end(); LI != E; ++LI)
318      if (LI->second)
319        LiveInMap.insert(std::make_pair(LI->first, LI->second));
320
321  // Insert DBG_VALUE instructions for function arguments to the entry block.
322  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
323    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
324    unsigned Reg = MI->getOperand(0).getReg();
325    if (TargetRegisterInfo::isPhysicalRegister(Reg))
326      EntryMBB->insert(EntryMBB->begin(), MI);
327    else {
328      MachineInstr *Def = RegInfo->getVRegDef(Reg);
329      MachineBasicBlock::iterator InsertPos = Def;
330      // FIXME: VR def may not be in entry block.
331      Def->getParent()->insert(llvm::next(InsertPos), MI);
332    }
333
334    // If Reg is live-in then update debug info to track its copy in a vreg.
335    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
336    if (LDI != LiveInMap.end()) {
337      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
338      MachineBasicBlock::iterator InsertPos = Def;
339      const MDNode *Variable =
340        MI->getOperand(MI->getNumOperands()-1).getMetadata();
341      unsigned Offset = MI->getOperand(1).getImm();
342      // Def is never a terminator here, so it is ok to increment InsertPos.
343      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
344              TII.get(TargetOpcode::DBG_VALUE))
345        .addReg(LDI->second, RegState::Debug)
346        .addImm(Offset).addMetadata(Variable);
347
348      // If this vreg is directly copied into an exported register then
349      // that COPY instructions also need DBG_VALUE, if it is the only
350      // user of LDI->second.
351      MachineInstr *CopyUseMI = NULL;
352      for (MachineRegisterInfo::use_iterator
353             UI = RegInfo->use_begin(LDI->second);
354           MachineInstr *UseMI = UI.skipInstruction();) {
355        if (UseMI->isDebugValue()) continue;
356        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
357          CopyUseMI = UseMI; continue;
358        }
359        // Otherwise this is another use or second copy use.
360        CopyUseMI = NULL; break;
361      }
362      if (CopyUseMI) {
363        MachineInstr *NewMI =
364          BuildMI(*MF, CopyUseMI->getDebugLoc(),
365                  TII.get(TargetOpcode::DBG_VALUE))
366          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
367          .addImm(Offset).addMetadata(Variable);
368        EntryMBB->insertAfter(CopyUseMI, NewMI);
369      }
370    }
371  }
372
373  // Determine if there are any calls in this machine function.
374  MachineFrameInfo *MFI = MF->getFrameInfo();
375  if (!MFI->hasCalls()) {
376    for (MachineFunction::const_iterator
377           I = MF->begin(), E = MF->end(); I != E; ++I) {
378      const MachineBasicBlock *MBB = I;
379      for (MachineBasicBlock::const_iterator
380             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
381        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
382
383        if ((TID.isCall() && !TID.isReturn()) ||
384            II->isStackAligningInlineAsm()) {
385          MFI->setHasCalls(true);
386          goto done;
387        }
388      }
389    }
390  done:;
391  }
392
393  // Determine if there is a call to setjmp in the machine function.
394  MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
395
396  // Replace forward-declared registers with the registers containing
397  // the desired value.
398  MachineRegisterInfo &MRI = MF->getRegInfo();
399  for (DenseMap<unsigned, unsigned>::iterator
400       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
401       I != E; ++I) {
402    unsigned From = I->first;
403    unsigned To = I->second;
404    // If To is also scheduled to be replaced, find what its ultimate
405    // replacement is.
406    for (;;) {
407      DenseMap<unsigned, unsigned>::iterator J =
408        FuncInfo->RegFixups.find(To);
409      if (J == E) break;
410      To = J->second;
411    }
412    // Replace it.
413    MRI.replaceRegWith(From, To);
414  }
415
416  // Release function-specific state. SDB and CurDAG are already cleared
417  // at this point.
418  FuncInfo->clear();
419
420  return true;
421}
422
423void
424SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
425                                   BasicBlock::const_iterator End,
426                                   bool &HadTailCall) {
427  // Lower all of the non-terminator instructions. If a call is emitted
428  // as a tail call, cease emitting nodes for this block. Terminators
429  // are handled below.
430  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
431    SDB->visit(*I);
432
433  // Make sure the root of the DAG is up-to-date.
434  CurDAG->setRoot(SDB->getControlRoot());
435  HadTailCall = SDB->HasTailCall;
436  SDB->clear();
437
438  // Final step, emit the lowered DAG as machine code.
439  CodeGenAndEmitDAG();
440  return;
441}
442
443void SelectionDAGISel::ComputeLiveOutVRegInfo() {
444  SmallPtrSet<SDNode*, 128> VisitedNodes;
445  SmallVector<SDNode*, 128> Worklist;
446
447  Worklist.push_back(CurDAG->getRoot().getNode());
448
449  APInt Mask;
450  APInt KnownZero;
451  APInt KnownOne;
452
453  do {
454    SDNode *N = Worklist.pop_back_val();
455
456    // If we've already seen this node, ignore it.
457    if (!VisitedNodes.insert(N))
458      continue;
459
460    // Otherwise, add all chain operands to the worklist.
461    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
462      if (N->getOperand(i).getValueType() == MVT::Other)
463        Worklist.push_back(N->getOperand(i).getNode());
464
465    // If this is a CopyToReg with a vreg dest, process it.
466    if (N->getOpcode() != ISD::CopyToReg)
467      continue;
468
469    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
470    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
471      continue;
472
473    // Ignore non-scalar or non-integer values.
474    SDValue Src = N->getOperand(2);
475    EVT SrcVT = Src.getValueType();
476    if (!SrcVT.isInteger() || SrcVT.isVector())
477      continue;
478
479    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
480    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
481    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
482
483    // Only install this information if it tells us something.
484    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
485      FuncInfo->LiveOutRegInfo.grow(DestReg);
486      FunctionLoweringInfo::LiveOutInfo &LOI =
487        FuncInfo->LiveOutRegInfo[DestReg];
488      LOI.NumSignBits = NumSignBits;
489      LOI.KnownOne = KnownOne;
490      LOI.KnownZero = KnownZero;
491    }
492  } while (!Worklist.empty());
493}
494
495void SelectionDAGISel::CodeGenAndEmitDAG() {
496  std::string GroupName;
497  if (TimePassesIsEnabled)
498    GroupName = "Instruction Selection and Scheduling";
499  std::string BlockName;
500  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
501      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
502      ViewSUnitDAGs)
503    BlockName = MF->getFunction()->getNameStr() + ":" +
504                FuncInfo->MBB->getBasicBlock()->getNameStr();
505
506  DEBUG(dbgs() << "Initial selection DAG:\n"; CurDAG->dump());
507
508  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
509
510  // Run the DAG combiner in pre-legalize mode.
511  {
512    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
513    CurDAG->Combine(Unrestricted, *AA, OptLevel);
514  }
515
516  DEBUG(dbgs() << "Optimized lowered selection DAG:\n"; CurDAG->dump());
517
518  // Second step, hack on the DAG until it only uses operations and types that
519  // the target supports.
520  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
521                                               BlockName);
522
523  bool Changed;
524  {
525    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
526    Changed = CurDAG->LegalizeTypes();
527  }
528
529  DEBUG(dbgs() << "Type-legalized selection DAG:\n"; CurDAG->dump());
530
531  if (Changed) {
532    if (ViewDAGCombineLT)
533      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
534
535    // Run the DAG combiner in post-type-legalize mode.
536    {
537      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
538                         TimePassesIsEnabled);
539      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
540    }
541
542    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n";
543          CurDAG->dump());
544  }
545
546  {
547    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
548    Changed = CurDAG->LegalizeVectors();
549  }
550
551  if (Changed) {
552    {
553      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
554      CurDAG->LegalizeTypes();
555    }
556
557    if (ViewDAGCombineLT)
558      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
559
560    // Run the DAG combiner in post-type-legalize mode.
561    {
562      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
563                         TimePassesIsEnabled);
564      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
565    }
566
567    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n";
568          CurDAG->dump());
569  }
570
571  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
572
573  {
574    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
575    CurDAG->Legalize(OptLevel);
576  }
577
578  DEBUG(dbgs() << "Legalized selection DAG:\n"; CurDAG->dump());
579
580  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
581
582  // Run the DAG combiner in post-legalize mode.
583  {
584    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
585    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
586  }
587
588  DEBUG(dbgs() << "Optimized legalized selection DAG:\n"; CurDAG->dump());
589
590  if (OptLevel != CodeGenOpt::None)
591    ComputeLiveOutVRegInfo();
592
593  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
594
595  // Third, instruction select all of the operations to machine code, adding the
596  // code to the MachineBasicBlock.
597  {
598    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
599    DoInstructionSelection();
600  }
601
602  DEBUG(dbgs() << "Selected selection DAG:\n"; CurDAG->dump());
603
604  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
605
606  // Schedule machine code.
607  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
608  {
609    NamedRegionTimer T("Instruction Scheduling", GroupName,
610                       TimePassesIsEnabled);
611    Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
612  }
613
614  if (ViewSUnitDAGs) Scheduler->viewGraph();
615
616  // Emit machine code to BB.  This can change 'BB' to the last block being
617  // inserted into.
618  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
619  {
620    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
621
622    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
623    FuncInfo->InsertPt = Scheduler->InsertPos;
624  }
625
626  // If the block was split, make sure we update any references that are used to
627  // update PHI nodes later on.
628  if (FirstMBB != LastMBB)
629    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
630
631  // Free the scheduler state.
632  {
633    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
634                       TimePassesIsEnabled);
635    delete Scheduler;
636  }
637
638  // Free the SelectionDAG state, now that we're finished with it.
639  CurDAG->clear();
640}
641
642void SelectionDAGISel::DoInstructionSelection() {
643  DEBUG(errs() << "===== Instruction selection begins:\n");
644
645  PreprocessISelDAG();
646
647  // Select target instructions for the DAG.
648  {
649    // Number all nodes with a topological order and set DAGSize.
650    DAGSize = CurDAG->AssignTopologicalOrder();
651
652    // Create a dummy node (which is not added to allnodes), that adds
653    // a reference to the root node, preventing it from being deleted,
654    // and tracking any changes of the root.
655    HandleSDNode Dummy(CurDAG->getRoot());
656    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
657    ++ISelPosition;
658
659    // The AllNodes list is now topological-sorted. Visit the
660    // nodes by starting at the end of the list (the root of the
661    // graph) and preceding back toward the beginning (the entry
662    // node).
663    while (ISelPosition != CurDAG->allnodes_begin()) {
664      SDNode *Node = --ISelPosition;
665      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
666      // but there are currently some corner cases that it misses. Also, this
667      // makes it theoretically possible to disable the DAGCombiner.
668      if (Node->use_empty())
669        continue;
670
671      SDNode *ResNode = Select(Node);
672
673      // FIXME: This is pretty gross.  'Select' should be changed to not return
674      // anything at all and this code should be nuked with a tactical strike.
675
676      // If node should not be replaced, continue with the next one.
677      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
678        continue;
679      // Replace node.
680      if (ResNode)
681        ReplaceUses(Node, ResNode);
682
683      // If after the replacement this node is not used any more,
684      // remove this dead node.
685      if (Node->use_empty()) { // Don't delete EntryToken, etc.
686        ISelUpdater ISU(ISelPosition);
687        CurDAG->RemoveDeadNode(Node, &ISU);
688      }
689    }
690
691    CurDAG->setRoot(Dummy.getValue());
692  }
693
694  DEBUG(errs() << "===== Instruction selection ends:\n");
695
696  PostprocessISelDAG();
697}
698
699/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
700/// do other setup for EH landing-pad blocks.
701void SelectionDAGISel::PrepareEHLandingPad() {
702  // Add a label to mark the beginning of the landing pad.  Deletion of the
703  // landing pad can thus be detected via the MachineModuleInfo.
704  MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
705
706  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
707  BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
708    .addSym(Label);
709
710  // Mark exception register as live in.
711  unsigned Reg = TLI.getExceptionAddressRegister();
712  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
713
714  // Mark exception selector register as live in.
715  Reg = TLI.getExceptionSelectorRegister();
716  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
717
718  // FIXME: Hack around an exception handling flaw (PR1508): the personality
719  // function and list of typeids logically belong to the invoke (or, if you
720  // like, the basic block containing the invoke), and need to be associated
721  // with it in the dwarf exception handling tables.  Currently however the
722  // information is provided by an intrinsic (eh.selector) that can be moved
723  // to unexpected places by the optimizers: if the unwind edge is critical,
724  // then breaking it can result in the intrinsics being in the successor of
725  // the landing pad, not the landing pad itself.  This results
726  // in exceptions not being caught because no typeids are associated with
727  // the invoke.  This may not be the only way things can go wrong, but it
728  // is the only way we try to work around for the moment.
729  const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
730  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
731
732  if (Br && Br->isUnconditional()) { // Critical edge?
733    BasicBlock::const_iterator I, E;
734    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
735      if (isa<EHSelectorInst>(I))
736        break;
737
738    if (I == E)
739      // No catch info found - try to extract some from the successor.
740      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
741  }
742}
743
744
745
746
747bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
748                                             FastISel *FastIS) {
749  // Don't try to fold volatile loads.  Target has to deal with alignment
750  // constraints.
751  if (LI->isVolatile()) return false;
752
753  // Figure out which vreg this is going into.
754  unsigned LoadReg = FastIS->getRegForValue(LI);
755  assert(LoadReg && "Load isn't already assigned a vreg? ");
756
757  // Check to see what the uses of this vreg are.  If it has no uses, or more
758  // than one use (at the machine instr level) then we can't fold it.
759  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
760  if (RI == RegInfo->reg_end())
761    return false;
762
763  // See if there is exactly one use of the vreg.  If there are multiple uses,
764  // then the instruction got lowered to multiple machine instructions or the
765  // use of the loaded value ended up being multiple operands of the result, in
766  // either case, we can't fold this.
767  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
768  if (PostRI != RegInfo->reg_end())
769    return false;
770
771  assert(RI.getOperand().isUse() &&
772         "The only use of the vreg must be a use, we haven't emitted the def!");
773
774  MachineInstr *User = &*RI;
775
776  // Set the insertion point properly.  Folding the load can cause generation of
777  // other random instructions (like sign extends) for addressing modes, make
778  // sure they get inserted in a logical place before the new instruction.
779  FuncInfo->InsertPt = User;
780  FuncInfo->MBB = User->getParent();
781
782  // Ask the target to try folding the load.
783  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
784}
785
786#ifndef NDEBUG
787/// CheckLineNumbers - Check if basic block instructions follow source order
788/// or not.
789static void CheckLineNumbers(const BasicBlock *BB) {
790  unsigned Line = 0;
791  unsigned Col = 0;
792  for (BasicBlock::const_iterator BI = BB->begin(),
793         BE = BB->end(); BI != BE; ++BI) {
794    const DebugLoc DL = BI->getDebugLoc();
795    if (DL.isUnknown()) continue;
796    unsigned L = DL.getLine();
797    unsigned C = DL.getCol();
798    if (L < Line || (L == Line && C < Col)) {
799      ++NumBBWithOutOfOrderLineInfo;
800      return;
801    }
802    Line = L;
803    Col = C;
804  }
805}
806
807/// CheckLineNumbers - Check if machine basic block instructions follow source
808/// order or not.
809static void CheckLineNumbers(const MachineBasicBlock *MBB) {
810  unsigned Line = 0;
811  unsigned Col = 0;
812  for (MachineBasicBlock::const_iterator MBI = MBB->begin(),
813         MBE = MBB->end(); MBI != MBE; ++MBI) {
814    const DebugLoc DL = MBI->getDebugLoc();
815    if (DL.isUnknown()) continue;
816    unsigned L = DL.getLine();
817    unsigned C = DL.getCol();
818    if (L < Line || (L == Line && C < Col)) {
819      ++NumMBBWithOutOfOrderLineInfo;
820      return;
821    }
822    Line = L;
823    Col = C;
824  }
825}
826#endif
827
828void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
829  // Initialize the Fast-ISel state, if needed.
830  FastISel *FastIS = 0;
831  if (EnableFastISel)
832    FastIS = TLI.createFastISel(*FuncInfo);
833
834  // Iterate over all basic blocks in the function.
835  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
836    const BasicBlock *LLVMBB = &*I;
837#ifndef NDEBUG
838    CheckLineNumbers(LLVMBB);
839#endif
840    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
841    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
842
843    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
844    BasicBlock::const_iterator const End = LLVMBB->end();
845    BasicBlock::const_iterator BI = End;
846
847    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
848
849    // Setup an EH landing-pad block.
850    if (FuncInfo->MBB->isLandingPad())
851      PrepareEHLandingPad();
852
853    // Lower any arguments needed in this block if this is the entry block.
854    if (LLVMBB == &Fn.getEntryBlock())
855      LowerArguments(LLVMBB);
856
857    // Before doing SelectionDAG ISel, see if FastISel has been requested.
858    if (FastIS) {
859      FastIS->startNewBlock();
860
861      // Emit code for any incoming arguments. This must happen before
862      // beginning FastISel on the entry block.
863      if (LLVMBB == &Fn.getEntryBlock()) {
864        CurDAG->setRoot(SDB->getControlRoot());
865        SDB->clear();
866        CodeGenAndEmitDAG();
867
868        // If we inserted any instructions at the beginning, make a note of
869        // where they are, so we can be sure to emit subsequent instructions
870        // after them.
871        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
872          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
873        else
874          FastIS->setLastLocalValue(0);
875      }
876
877      // Do FastISel on as many instructions as possible.
878      for (; BI != Begin; --BI) {
879        const Instruction *Inst = llvm::prior(BI);
880
881        // If we no longer require this instruction, skip it.
882        if (!Inst->mayWriteToMemory() &&
883            !isa<TerminatorInst>(Inst) &&
884            !isa<DbgInfoIntrinsic>(Inst) &&
885            !FuncInfo->isExportedInst(Inst))
886          continue;
887
888        // Bottom-up: reset the insert pos at the top, after any local-value
889        // instructions.
890        FastIS->recomputeInsertPt();
891
892        // Try to select the instruction with FastISel.
893        if (FastIS->SelectInstruction(Inst)) {
894          // If fast isel succeeded, check to see if there is a single-use
895          // non-volatile load right before the selected instruction, and see if
896          // the load is used by the instruction.  If so, try to fold it.
897          const Instruction *BeforeInst = 0;
898          if (Inst != Begin)
899            BeforeInst = llvm::prior(llvm::prior(BI));
900          if (BeforeInst && isa<LoadInst>(BeforeInst) &&
901              BeforeInst->hasOneUse() && *BeforeInst->use_begin() == Inst &&
902              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), FastIS))
903            --BI; // If we succeeded, don't re-select the load.
904          continue;
905        }
906
907        // Then handle certain instructions as single-LLVM-Instruction blocks.
908        if (isa<CallInst>(Inst)) {
909          ++NumFastIselFailures;
910          if (EnableFastISelVerbose || EnableFastISelAbort) {
911            dbgs() << "FastISel missed call: ";
912            Inst->dump();
913          }
914
915          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
916            unsigned &R = FuncInfo->ValueMap[Inst];
917            if (!R)
918              R = FuncInfo->CreateRegs(Inst->getType());
919          }
920
921          bool HadTailCall = false;
922          SelectBasicBlock(Inst, BI, HadTailCall);
923
924          // If the call was emitted as a tail call, we're done with the block.
925          if (HadTailCall) {
926            --BI;
927            break;
928          }
929
930          continue;
931        }
932
933        // Otherwise, give up on FastISel for the rest of the block.
934        // For now, be a little lenient about non-branch terminators.
935        if (!isa<TerminatorInst>(Inst) || isa<BranchInst>(Inst)) {
936          ++NumFastIselFailures;
937          if (EnableFastISelVerbose || EnableFastISelAbort) {
938            dbgs() << "FastISel miss: ";
939            Inst->dump();
940          }
941          if (EnableFastISelAbort)
942            // The "fast" selector couldn't handle something and bailed.
943            // For the purpose of debugging, just abort.
944            llvm_unreachable("FastISel didn't select the entire block");
945        }
946        break;
947      }
948
949      FastIS->recomputeInsertPt();
950    }
951
952    if (Begin != BI)
953      ++NumDAGBlocks;
954    else
955      ++NumFastIselBlocks;
956
957    // Run SelectionDAG instruction selection on the remainder of the block
958    // not handled by FastISel. If FastISel is not run, this is the entire
959    // block.
960    bool HadTailCall;
961    SelectBasicBlock(Begin, BI, HadTailCall);
962
963    FinishBasicBlock();
964    FuncInfo->PHINodesToUpdate.clear();
965  }
966
967  delete FastIS;
968#ifndef NDEBUG
969  for (MachineFunction::const_iterator MBI = MF->begin(), MBE = MF->end();
970       MBI != MBE; ++MBI)
971    CheckLineNumbers(MBI);
972#endif
973}
974
975void
976SelectionDAGISel::FinishBasicBlock() {
977
978  DEBUG(dbgs() << "Total amount of phi nodes to update: "
979               << FuncInfo->PHINodesToUpdate.size() << "\n";
980        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
981          dbgs() << "Node " << i << " : ("
982                 << FuncInfo->PHINodesToUpdate[i].first
983                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
984
985  // Next, now that we know what the last MBB the LLVM BB expanded is, update
986  // PHI nodes in successors.
987  if (SDB->SwitchCases.empty() &&
988      SDB->JTCases.empty() &&
989      SDB->BitTestCases.empty()) {
990    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
991      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
992      assert(PHI->isPHI() &&
993             "This is not a machine PHI node that we are updating!");
994      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
995        continue;
996      PHI->addOperand(
997        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
998      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
999    }
1000    return;
1001  }
1002
1003  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1004    // Lower header first, if it wasn't already lowered
1005    if (!SDB->BitTestCases[i].Emitted) {
1006      // Set the current basic block to the mbb we wish to insert the code into
1007      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1008      FuncInfo->InsertPt = FuncInfo->MBB->end();
1009      // Emit the code
1010      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1011      CurDAG->setRoot(SDB->getRoot());
1012      SDB->clear();
1013      CodeGenAndEmitDAG();
1014    }
1015
1016    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1017      // Set the current basic block to the mbb we wish to insert the code into
1018      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1019      FuncInfo->InsertPt = FuncInfo->MBB->end();
1020      // Emit the code
1021      if (j+1 != ej)
1022        SDB->visitBitTestCase(SDB->BitTestCases[i],
1023                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1024                              SDB->BitTestCases[i].Reg,
1025                              SDB->BitTestCases[i].Cases[j],
1026                              FuncInfo->MBB);
1027      else
1028        SDB->visitBitTestCase(SDB->BitTestCases[i],
1029                              SDB->BitTestCases[i].Default,
1030                              SDB->BitTestCases[i].Reg,
1031                              SDB->BitTestCases[i].Cases[j],
1032                              FuncInfo->MBB);
1033
1034
1035      CurDAG->setRoot(SDB->getRoot());
1036      SDB->clear();
1037      CodeGenAndEmitDAG();
1038    }
1039
1040    // Update PHI Nodes
1041    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1042         pi != pe; ++pi) {
1043      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1044      MachineBasicBlock *PHIBB = PHI->getParent();
1045      assert(PHI->isPHI() &&
1046             "This is not a machine PHI node that we are updating!");
1047      // This is "default" BB. We have two jumps to it. From "header" BB and
1048      // from last "case" BB.
1049      if (PHIBB == SDB->BitTestCases[i].Default) {
1050        PHI->addOperand(MachineOperand::
1051                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1052                                  false));
1053        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1054        PHI->addOperand(MachineOperand::
1055                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1056                                  false));
1057        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1058                                                  back().ThisBB));
1059      }
1060      // One of "cases" BB.
1061      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1062           j != ej; ++j) {
1063        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1064        if (cBB->isSuccessor(PHIBB)) {
1065          PHI->addOperand(MachineOperand::
1066                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1067                                    false));
1068          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1069        }
1070      }
1071    }
1072  }
1073  SDB->BitTestCases.clear();
1074
1075  // If the JumpTable record is filled in, then we need to emit a jump table.
1076  // Updating the PHI nodes is tricky in this case, since we need to determine
1077  // whether the PHI is a successor of the range check MBB or the jump table MBB
1078  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1079    // Lower header first, if it wasn't already lowered
1080    if (!SDB->JTCases[i].first.Emitted) {
1081      // Set the current basic block to the mbb we wish to insert the code into
1082      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1083      FuncInfo->InsertPt = FuncInfo->MBB->end();
1084      // Emit the code
1085      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1086                                FuncInfo->MBB);
1087      CurDAG->setRoot(SDB->getRoot());
1088      SDB->clear();
1089      CodeGenAndEmitDAG();
1090    }
1091
1092    // Set the current basic block to the mbb we wish to insert the code into
1093    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1094    FuncInfo->InsertPt = FuncInfo->MBB->end();
1095    // Emit the code
1096    SDB->visitJumpTable(SDB->JTCases[i].second);
1097    CurDAG->setRoot(SDB->getRoot());
1098    SDB->clear();
1099    CodeGenAndEmitDAG();
1100
1101    // Update PHI Nodes
1102    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1103         pi != pe; ++pi) {
1104      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1105      MachineBasicBlock *PHIBB = PHI->getParent();
1106      assert(PHI->isPHI() &&
1107             "This is not a machine PHI node that we are updating!");
1108      // "default" BB. We can go there only from header BB.
1109      if (PHIBB == SDB->JTCases[i].second.Default) {
1110        PHI->addOperand
1111          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1112                                     false));
1113        PHI->addOperand
1114          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1115      }
1116      // JT BB. Just iterate over successors here
1117      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1118        PHI->addOperand
1119          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1120                                     false));
1121        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1122      }
1123    }
1124  }
1125  SDB->JTCases.clear();
1126
1127  // If the switch block involved a branch to one of the actual successors, we
1128  // need to update PHI nodes in that block.
1129  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1130    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1131    assert(PHI->isPHI() &&
1132           "This is not a machine PHI node that we are updating!");
1133    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1134      PHI->addOperand(
1135        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1136      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1137    }
1138  }
1139
1140  // If we generated any switch lowering information, build and codegen any
1141  // additional DAGs necessary.
1142  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1143    // Set the current basic block to the mbb we wish to insert the code into
1144    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1145    FuncInfo->InsertPt = FuncInfo->MBB->end();
1146
1147    // Determine the unique successors.
1148    SmallVector<MachineBasicBlock *, 2> Succs;
1149    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1150    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1151      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1152
1153    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1154    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1155    CurDAG->setRoot(SDB->getRoot());
1156    SDB->clear();
1157    CodeGenAndEmitDAG();
1158
1159    // Remember the last block, now that any splitting is done, for use in
1160    // populating PHI nodes in successors.
1161    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1162
1163    // Handle any PHI nodes in successors of this chunk, as if we were coming
1164    // from the original BB before switch expansion.  Note that PHI nodes can
1165    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1166    // handle them the right number of times.
1167    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1168      FuncInfo->MBB = Succs[i];
1169      FuncInfo->InsertPt = FuncInfo->MBB->end();
1170      // FuncInfo->MBB may have been removed from the CFG if a branch was
1171      // constant folded.
1172      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1173        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1174             Phi != FuncInfo->MBB->end() && Phi->isPHI();
1175             ++Phi) {
1176          // This value for this PHI node is recorded in PHINodesToUpdate.
1177          for (unsigned pn = 0; ; ++pn) {
1178            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1179                   "Didn't find PHI entry!");
1180            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1181              Phi->addOperand(MachineOperand::
1182                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1183                                        false));
1184              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1185              break;
1186            }
1187          }
1188        }
1189      }
1190    }
1191  }
1192  SDB->SwitchCases.clear();
1193}
1194
1195
1196/// Create the scheduler. If a specific scheduler was specified
1197/// via the SchedulerRegistry, use it, otherwise select the
1198/// one preferred by the target.
1199///
1200ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1201  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1202
1203  if (!Ctor) {
1204    Ctor = ISHeuristic;
1205    RegisterScheduler::setDefault(Ctor);
1206  }
1207
1208  return Ctor(this, OptLevel);
1209}
1210
1211//===----------------------------------------------------------------------===//
1212// Helper functions used by the generated instruction selector.
1213//===----------------------------------------------------------------------===//
1214// Calls to these methods are generated by tblgen.
1215
1216/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1217/// the dag combiner simplified the 255, we still want to match.  RHS is the
1218/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1219/// specified in the .td file (e.g. 255).
1220bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1221                                    int64_t DesiredMaskS) const {
1222  const APInt &ActualMask = RHS->getAPIntValue();
1223  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1224
1225  // If the actual mask exactly matches, success!
1226  if (ActualMask == DesiredMask)
1227    return true;
1228
1229  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1230  if (ActualMask.intersects(~DesiredMask))
1231    return false;
1232
1233  // Otherwise, the DAG Combiner may have proven that the value coming in is
1234  // either already zero or is not demanded.  Check for known zero input bits.
1235  APInt NeededMask = DesiredMask & ~ActualMask;
1236  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1237    return true;
1238
1239  // TODO: check to see if missing bits are just not demanded.
1240
1241  // Otherwise, this pattern doesn't match.
1242  return false;
1243}
1244
1245/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1246/// the dag combiner simplified the 255, we still want to match.  RHS is the
1247/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1248/// specified in the .td file (e.g. 255).
1249bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1250                                   int64_t DesiredMaskS) const {
1251  const APInt &ActualMask = RHS->getAPIntValue();
1252  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1253
1254  // If the actual mask exactly matches, success!
1255  if (ActualMask == DesiredMask)
1256    return true;
1257
1258  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1259  if (ActualMask.intersects(~DesiredMask))
1260    return false;
1261
1262  // Otherwise, the DAG Combiner may have proven that the value coming in is
1263  // either already zero or is not demanded.  Check for known zero input bits.
1264  APInt NeededMask = DesiredMask & ~ActualMask;
1265
1266  APInt KnownZero, KnownOne;
1267  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1268
1269  // If all the missing bits in the or are already known to be set, match!
1270  if ((NeededMask & KnownOne) == NeededMask)
1271    return true;
1272
1273  // TODO: check to see if missing bits are just not demanded.
1274
1275  // Otherwise, this pattern doesn't match.
1276  return false;
1277}
1278
1279
1280/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1281/// by tblgen.  Others should not call it.
1282void SelectionDAGISel::
1283SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1284  std::vector<SDValue> InOps;
1285  std::swap(InOps, Ops);
1286
1287  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1288  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1289  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1290  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1291
1292  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1293  if (InOps[e-1].getValueType() == MVT::Glue)
1294    --e;  // Don't process a glue operand if it is here.
1295
1296  while (i != e) {
1297    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1298    if (!InlineAsm::isMemKind(Flags)) {
1299      // Just skip over this operand, copying the operands verbatim.
1300      Ops.insert(Ops.end(), InOps.begin()+i,
1301                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1302      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1303    } else {
1304      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1305             "Memory operand with multiple values?");
1306      // Otherwise, this is a memory operand.  Ask the target to select it.
1307      std::vector<SDValue> SelOps;
1308      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1309        report_fatal_error("Could not match memory address.  Inline asm"
1310                           " failure!");
1311
1312      // Add this to the output node.
1313      unsigned NewFlags =
1314        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1315      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1316      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1317      i += 2;
1318    }
1319  }
1320
1321  // Add the glue input back if present.
1322  if (e != InOps.size())
1323    Ops.push_back(InOps.back());
1324}
1325
1326/// findGlueUse - Return use of MVT::Glue value produced by the specified
1327/// SDNode.
1328///
1329static SDNode *findGlueUse(SDNode *N) {
1330  unsigned FlagResNo = N->getNumValues()-1;
1331  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1332    SDUse &Use = I.getUse();
1333    if (Use.getResNo() == FlagResNo)
1334      return Use.getUser();
1335  }
1336  return NULL;
1337}
1338
1339/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1340/// This function recursively traverses up the operand chain, ignoring
1341/// certain nodes.
1342static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1343                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1344                          bool IgnoreChains) {
1345  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1346  // greater than all of its (recursive) operands.  If we scan to a point where
1347  // 'use' is smaller than the node we're scanning for, then we know we will
1348  // never find it.
1349  //
1350  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1351  // happen because we scan down to newly selected nodes in the case of glue
1352  // uses.
1353  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1354    return false;
1355
1356  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1357  // won't fail if we scan it again.
1358  if (!Visited.insert(Use))
1359    return false;
1360
1361  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1362    // Ignore chain uses, they are validated by HandleMergeInputChains.
1363    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1364      continue;
1365
1366    SDNode *N = Use->getOperand(i).getNode();
1367    if (N == Def) {
1368      if (Use == ImmedUse || Use == Root)
1369        continue;  // We are not looking for immediate use.
1370      assert(N != Root);
1371      return true;
1372    }
1373
1374    // Traverse up the operand chain.
1375    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1376      return true;
1377  }
1378  return false;
1379}
1380
1381/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1382/// operand node N of U during instruction selection that starts at Root.
1383bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1384                                          SDNode *Root) const {
1385  if (OptLevel == CodeGenOpt::None) return false;
1386  return N.hasOneUse();
1387}
1388
1389/// IsLegalToFold - Returns true if the specific operand node N of
1390/// U can be folded during instruction selection that starts at Root.
1391bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1392                                     CodeGenOpt::Level OptLevel,
1393                                     bool IgnoreChains) {
1394  if (OptLevel == CodeGenOpt::None) return false;
1395
1396  // If Root use can somehow reach N through a path that that doesn't contain
1397  // U then folding N would create a cycle. e.g. In the following
1398  // diagram, Root can reach N through X. If N is folded into into Root, then
1399  // X is both a predecessor and a successor of U.
1400  //
1401  //          [N*]           //
1402  //         ^   ^           //
1403  //        /     \          //
1404  //      [U*]    [X]?       //
1405  //        ^     ^          //
1406  //         \   /           //
1407  //          \ /            //
1408  //         [Root*]         //
1409  //
1410  // * indicates nodes to be folded together.
1411  //
1412  // If Root produces glue, then it gets (even more) interesting. Since it
1413  // will be "glued" together with its glue use in the scheduler, we need to
1414  // check if it might reach N.
1415  //
1416  //          [N*]           //
1417  //         ^   ^           //
1418  //        /     \          //
1419  //      [U*]    [X]?       //
1420  //        ^       ^        //
1421  //         \       \       //
1422  //          \      |       //
1423  //         [Root*] |       //
1424  //          ^      |       //
1425  //          f      |       //
1426  //          |      /       //
1427  //         [Y]    /        //
1428  //           ^   /         //
1429  //           f  /          //
1430  //           | /           //
1431  //          [GU]           //
1432  //
1433  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1434  // (call it Fold), then X is a predecessor of GU and a successor of
1435  // Fold. But since Fold and GU are glued together, this will create
1436  // a cycle in the scheduling graph.
1437
1438  // If the node has glue, walk down the graph to the "lowest" node in the
1439  // glueged set.
1440  EVT VT = Root->getValueType(Root->getNumValues()-1);
1441  while (VT == MVT::Glue) {
1442    SDNode *GU = findGlueUse(Root);
1443    if (GU == NULL)
1444      break;
1445    Root = GU;
1446    VT = Root->getValueType(Root->getNumValues()-1);
1447
1448    // If our query node has a glue result with a use, we've walked up it.  If
1449    // the user (which has already been selected) has a chain or indirectly uses
1450    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1451    // this, we cannot ignore chains in this predicate.
1452    IgnoreChains = false;
1453  }
1454
1455
1456  SmallPtrSet<SDNode*, 16> Visited;
1457  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1458}
1459
1460SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1461  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1462  SelectInlineAsmMemoryOperands(Ops);
1463
1464  std::vector<EVT> VTs;
1465  VTs.push_back(MVT::Other);
1466  VTs.push_back(MVT::Glue);
1467  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1468                                VTs, &Ops[0], Ops.size());
1469  New->setNodeId(-1);
1470  return New.getNode();
1471}
1472
1473SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1474  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1475}
1476
1477/// GetVBR - decode a vbr encoding whose top bit is set.
1478LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1479GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1480  assert(Val >= 128 && "Not a VBR");
1481  Val &= 127;  // Remove first vbr bit.
1482
1483  unsigned Shift = 7;
1484  uint64_t NextBits;
1485  do {
1486    NextBits = MatcherTable[Idx++];
1487    Val |= (NextBits&127) << Shift;
1488    Shift += 7;
1489  } while (NextBits & 128);
1490
1491  return Val;
1492}
1493
1494
1495/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1496/// interior glue and chain results to use the new glue and chain results.
1497void SelectionDAGISel::
1498UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1499                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1500                    SDValue InputGlue,
1501                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1502                    bool isMorphNodeTo) {
1503  SmallVector<SDNode*, 4> NowDeadNodes;
1504
1505  ISelUpdater ISU(ISelPosition);
1506
1507  // Now that all the normal results are replaced, we replace the chain and
1508  // glue results if present.
1509  if (!ChainNodesMatched.empty()) {
1510    assert(InputChain.getNode() != 0 &&
1511           "Matched input chains but didn't produce a chain");
1512    // Loop over all of the nodes we matched that produced a chain result.
1513    // Replace all the chain results with the final chain we ended up with.
1514    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1515      SDNode *ChainNode = ChainNodesMatched[i];
1516
1517      // If this node was already deleted, don't look at it.
1518      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1519        continue;
1520
1521      // Don't replace the results of the root node if we're doing a
1522      // MorphNodeTo.
1523      if (ChainNode == NodeToMatch && isMorphNodeTo)
1524        continue;
1525
1526      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1527      if (ChainVal.getValueType() == MVT::Glue)
1528        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1529      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1530      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1531
1532      // If the node became dead and we haven't already seen it, delete it.
1533      if (ChainNode->use_empty() &&
1534          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1535        NowDeadNodes.push_back(ChainNode);
1536    }
1537  }
1538
1539  // If the result produces glue, update any glue results in the matched
1540  // pattern with the glue result.
1541  if (InputGlue.getNode() != 0) {
1542    // Handle any interior nodes explicitly marked.
1543    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1544      SDNode *FRN = GlueResultNodesMatched[i];
1545
1546      // If this node was already deleted, don't look at it.
1547      if (FRN->getOpcode() == ISD::DELETED_NODE)
1548        continue;
1549
1550      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1551             "Doesn't have a glue result");
1552      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1553                                        InputGlue, &ISU);
1554
1555      // If the node became dead and we haven't already seen it, delete it.
1556      if (FRN->use_empty() &&
1557          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1558        NowDeadNodes.push_back(FRN);
1559    }
1560  }
1561
1562  if (!NowDeadNodes.empty())
1563    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1564
1565  DEBUG(errs() << "ISEL: Match complete!\n");
1566}
1567
1568enum ChainResult {
1569  CR_Simple,
1570  CR_InducesCycle,
1571  CR_LeadsToInteriorNode
1572};
1573
1574/// WalkChainUsers - Walk down the users of the specified chained node that is
1575/// part of the pattern we're matching, looking at all of the users we find.
1576/// This determines whether something is an interior node, whether we have a
1577/// non-pattern node in between two pattern nodes (which prevent folding because
1578/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1579/// between pattern nodes (in which case the TF becomes part of the pattern).
1580///
1581/// The walk we do here is guaranteed to be small because we quickly get down to
1582/// already selected nodes "below" us.
1583static ChainResult
1584WalkChainUsers(SDNode *ChainedNode,
1585               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1586               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1587  ChainResult Result = CR_Simple;
1588
1589  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1590         E = ChainedNode->use_end(); UI != E; ++UI) {
1591    // Make sure the use is of the chain, not some other value we produce.
1592    if (UI.getUse().getValueType() != MVT::Other) continue;
1593
1594    SDNode *User = *UI;
1595
1596    // If we see an already-selected machine node, then we've gone beyond the
1597    // pattern that we're selecting down into the already selected chunk of the
1598    // DAG.
1599    if (User->isMachineOpcode() ||
1600        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1601      continue;
1602
1603    if (User->getOpcode() == ISD::CopyToReg ||
1604        User->getOpcode() == ISD::CopyFromReg ||
1605        User->getOpcode() == ISD::INLINEASM ||
1606        User->getOpcode() == ISD::EH_LABEL) {
1607      // If their node ID got reset to -1 then they've already been selected.
1608      // Treat them like a MachineOpcode.
1609      if (User->getNodeId() == -1)
1610        continue;
1611    }
1612
1613    // If we have a TokenFactor, we handle it specially.
1614    if (User->getOpcode() != ISD::TokenFactor) {
1615      // If the node isn't a token factor and isn't part of our pattern, then it
1616      // must be a random chained node in between two nodes we're selecting.
1617      // This happens when we have something like:
1618      //   x = load ptr
1619      //   call
1620      //   y = x+4
1621      //   store y -> ptr
1622      // Because we structurally match the load/store as a read/modify/write,
1623      // but the call is chained between them.  We cannot fold in this case
1624      // because it would induce a cycle in the graph.
1625      if (!std::count(ChainedNodesInPattern.begin(),
1626                      ChainedNodesInPattern.end(), User))
1627        return CR_InducesCycle;
1628
1629      // Otherwise we found a node that is part of our pattern.  For example in:
1630      //   x = load ptr
1631      //   y = x+4
1632      //   store y -> ptr
1633      // This would happen when we're scanning down from the load and see the
1634      // store as a user.  Record that there is a use of ChainedNode that is
1635      // part of the pattern and keep scanning uses.
1636      Result = CR_LeadsToInteriorNode;
1637      InteriorChainedNodes.push_back(User);
1638      continue;
1639    }
1640
1641    // If we found a TokenFactor, there are two cases to consider: first if the
1642    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1643    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1644    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1645    //     [Load chain]
1646    //         ^
1647    //         |
1648    //       [Load]
1649    //       ^    ^
1650    //       |    \                    DAG's like cheese
1651    //      /       \                       do you?
1652    //     /         |
1653    // [TokenFactor] [Op]
1654    //     ^          ^
1655    //     |          |
1656    //      \        /
1657    //       \      /
1658    //       [Store]
1659    //
1660    // In this case, the TokenFactor becomes part of our match and we rewrite it
1661    // as a new TokenFactor.
1662    //
1663    // To distinguish these two cases, do a recursive walk down the uses.
1664    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1665    case CR_Simple:
1666      // If the uses of the TokenFactor are just already-selected nodes, ignore
1667      // it, it is "below" our pattern.
1668      continue;
1669    case CR_InducesCycle:
1670      // If the uses of the TokenFactor lead to nodes that are not part of our
1671      // pattern that are not selected, folding would turn this into a cycle,
1672      // bail out now.
1673      return CR_InducesCycle;
1674    case CR_LeadsToInteriorNode:
1675      break;  // Otherwise, keep processing.
1676    }
1677
1678    // Okay, we know we're in the interesting interior case.  The TokenFactor
1679    // is now going to be considered part of the pattern so that we rewrite its
1680    // uses (it may have uses that are not part of the pattern) with the
1681    // ultimate chain result of the generated code.  We will also add its chain
1682    // inputs as inputs to the ultimate TokenFactor we create.
1683    Result = CR_LeadsToInteriorNode;
1684    ChainedNodesInPattern.push_back(User);
1685    InteriorChainedNodes.push_back(User);
1686    continue;
1687  }
1688
1689  return Result;
1690}
1691
1692/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1693/// operation for when the pattern matched at least one node with a chains.  The
1694/// input vector contains a list of all of the chained nodes that we match.  We
1695/// must determine if this is a valid thing to cover (i.e. matching it won't
1696/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1697/// be used as the input node chain for the generated nodes.
1698static SDValue
1699HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1700                       SelectionDAG *CurDAG) {
1701  // Walk all of the chained nodes we've matched, recursively scanning down the
1702  // users of the chain result. This adds any TokenFactor nodes that are caught
1703  // in between chained nodes to the chained and interior nodes list.
1704  SmallVector<SDNode*, 3> InteriorChainedNodes;
1705  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1706    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1707                       InteriorChainedNodes) == CR_InducesCycle)
1708      return SDValue(); // Would induce a cycle.
1709  }
1710
1711  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1712  // that we are interested in.  Form our input TokenFactor node.
1713  SmallVector<SDValue, 3> InputChains;
1714  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1715    // Add the input chain of this node to the InputChains list (which will be
1716    // the operands of the generated TokenFactor) if it's not an interior node.
1717    SDNode *N = ChainNodesMatched[i];
1718    if (N->getOpcode() != ISD::TokenFactor) {
1719      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1720        continue;
1721
1722      // Otherwise, add the input chain.
1723      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1724      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1725      InputChains.push_back(InChain);
1726      continue;
1727    }
1728
1729    // If we have a token factor, we want to add all inputs of the token factor
1730    // that are not part of the pattern we're matching.
1731    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1732      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1733                      N->getOperand(op).getNode()))
1734        InputChains.push_back(N->getOperand(op));
1735    }
1736  }
1737
1738  SDValue Res;
1739  if (InputChains.size() == 1)
1740    return InputChains[0];
1741  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1742                         MVT::Other, &InputChains[0], InputChains.size());
1743}
1744
1745/// MorphNode - Handle morphing a node in place for the selector.
1746SDNode *SelectionDAGISel::
1747MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1748          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1749  // It is possible we're using MorphNodeTo to replace a node with no
1750  // normal results with one that has a normal result (or we could be
1751  // adding a chain) and the input could have glue and chains as well.
1752  // In this case we need to shift the operands down.
1753  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1754  // than the old isel though.
1755  int OldGlueResultNo = -1, OldChainResultNo = -1;
1756
1757  unsigned NTMNumResults = Node->getNumValues();
1758  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1759    OldGlueResultNo = NTMNumResults-1;
1760    if (NTMNumResults != 1 &&
1761        Node->getValueType(NTMNumResults-2) == MVT::Other)
1762      OldChainResultNo = NTMNumResults-2;
1763  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1764    OldChainResultNo = NTMNumResults-1;
1765
1766  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1767  // that this deletes operands of the old node that become dead.
1768  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1769
1770  // MorphNodeTo can operate in two ways: if an existing node with the
1771  // specified operands exists, it can just return it.  Otherwise, it
1772  // updates the node in place to have the requested operands.
1773  if (Res == Node) {
1774    // If we updated the node in place, reset the node ID.  To the isel,
1775    // this should be just like a newly allocated machine node.
1776    Res->setNodeId(-1);
1777  }
1778
1779  unsigned ResNumResults = Res->getNumValues();
1780  // Move the glue if needed.
1781  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1782      (unsigned)OldGlueResultNo != ResNumResults-1)
1783    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1784                                      SDValue(Res, ResNumResults-1));
1785
1786  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1787    --ResNumResults;
1788
1789  // Move the chain reference if needed.
1790  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1791      (unsigned)OldChainResultNo != ResNumResults-1)
1792    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1793                                      SDValue(Res, ResNumResults-1));
1794
1795  // Otherwise, no replacement happened because the node already exists. Replace
1796  // Uses of the old node with the new one.
1797  if (Res != Node)
1798    CurDAG->ReplaceAllUsesWith(Node, Res);
1799
1800  return Res;
1801}
1802
1803/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1804LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1805CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1806          SDValue N,
1807          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1808  // Accept if it is exactly the same as a previously recorded node.
1809  unsigned RecNo = MatcherTable[MatcherIndex++];
1810  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1811  return N == RecordedNodes[RecNo].first;
1812}
1813
1814/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1815LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1816CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1817                      SelectionDAGISel &SDISel) {
1818  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1819}
1820
1821/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1822LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1823CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1824                   SelectionDAGISel &SDISel, SDNode *N) {
1825  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1826}
1827
1828LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1829CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1830            SDNode *N) {
1831  uint16_t Opc = MatcherTable[MatcherIndex++];
1832  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1833  return N->getOpcode() == Opc;
1834}
1835
1836LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1837CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1838          SDValue N, const TargetLowering &TLI) {
1839  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1840  if (N.getValueType() == VT) return true;
1841
1842  // Handle the case when VT is iPTR.
1843  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1844}
1845
1846LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1847CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1848               SDValue N, const TargetLowering &TLI,
1849               unsigned ChildNo) {
1850  if (ChildNo >= N.getNumOperands())
1851    return false;  // Match fails if out of range child #.
1852  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1853}
1854
1855
1856LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1857CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1858              SDValue N) {
1859  return cast<CondCodeSDNode>(N)->get() ==
1860      (ISD::CondCode)MatcherTable[MatcherIndex++];
1861}
1862
1863LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1864CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1865               SDValue N, const TargetLowering &TLI) {
1866  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1867  if (cast<VTSDNode>(N)->getVT() == VT)
1868    return true;
1869
1870  // Handle the case when VT is iPTR.
1871  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1872}
1873
1874LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1875CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1876             SDValue N) {
1877  int64_t Val = MatcherTable[MatcherIndex++];
1878  if (Val & 128)
1879    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1880
1881  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1882  return C != 0 && C->getSExtValue() == Val;
1883}
1884
1885LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1886CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1887            SDValue N, SelectionDAGISel &SDISel) {
1888  int64_t Val = MatcherTable[MatcherIndex++];
1889  if (Val & 128)
1890    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1891
1892  if (N->getOpcode() != ISD::AND) return false;
1893
1894  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1895  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1896}
1897
1898LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1899CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1900           SDValue N, SelectionDAGISel &SDISel) {
1901  int64_t Val = MatcherTable[MatcherIndex++];
1902  if (Val & 128)
1903    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1904
1905  if (N->getOpcode() != ISD::OR) return false;
1906
1907  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1908  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1909}
1910
1911/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1912/// scope, evaluate the current node.  If the current predicate is known to
1913/// fail, set Result=true and return anything.  If the current predicate is
1914/// known to pass, set Result=false and return the MatcherIndex to continue
1915/// with.  If the current predicate is unknown, set Result=false and return the
1916/// MatcherIndex to continue with.
1917static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1918                                       unsigned Index, SDValue N,
1919                                       bool &Result, SelectionDAGISel &SDISel,
1920                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1921  switch (Table[Index++]) {
1922  default:
1923    Result = false;
1924    return Index-1;  // Could not evaluate this predicate.
1925  case SelectionDAGISel::OPC_CheckSame:
1926    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1927    return Index;
1928  case SelectionDAGISel::OPC_CheckPatternPredicate:
1929    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1930    return Index;
1931  case SelectionDAGISel::OPC_CheckPredicate:
1932    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1933    return Index;
1934  case SelectionDAGISel::OPC_CheckOpcode:
1935    Result = !::CheckOpcode(Table, Index, N.getNode());
1936    return Index;
1937  case SelectionDAGISel::OPC_CheckType:
1938    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1939    return Index;
1940  case SelectionDAGISel::OPC_CheckChild0Type:
1941  case SelectionDAGISel::OPC_CheckChild1Type:
1942  case SelectionDAGISel::OPC_CheckChild2Type:
1943  case SelectionDAGISel::OPC_CheckChild3Type:
1944  case SelectionDAGISel::OPC_CheckChild4Type:
1945  case SelectionDAGISel::OPC_CheckChild5Type:
1946  case SelectionDAGISel::OPC_CheckChild6Type:
1947  case SelectionDAGISel::OPC_CheckChild7Type:
1948    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1949                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1950    return Index;
1951  case SelectionDAGISel::OPC_CheckCondCode:
1952    Result = !::CheckCondCode(Table, Index, N);
1953    return Index;
1954  case SelectionDAGISel::OPC_CheckValueType:
1955    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1956    return Index;
1957  case SelectionDAGISel::OPC_CheckInteger:
1958    Result = !::CheckInteger(Table, Index, N);
1959    return Index;
1960  case SelectionDAGISel::OPC_CheckAndImm:
1961    Result = !::CheckAndImm(Table, Index, N, SDISel);
1962    return Index;
1963  case SelectionDAGISel::OPC_CheckOrImm:
1964    Result = !::CheckOrImm(Table, Index, N, SDISel);
1965    return Index;
1966  }
1967}
1968
1969namespace {
1970
1971struct MatchScope {
1972  /// FailIndex - If this match fails, this is the index to continue with.
1973  unsigned FailIndex;
1974
1975  /// NodeStack - The node stack when the scope was formed.
1976  SmallVector<SDValue, 4> NodeStack;
1977
1978  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1979  unsigned NumRecordedNodes;
1980
1981  /// NumMatchedMemRefs - The number of matched memref entries.
1982  unsigned NumMatchedMemRefs;
1983
1984  /// InputChain/InputGlue - The current chain/glue
1985  SDValue InputChain, InputGlue;
1986
1987  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1988  bool HasChainNodesMatched, HasGlueResultNodesMatched;
1989};
1990
1991}
1992
1993SDNode *SelectionDAGISel::
1994SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1995                 unsigned TableSize) {
1996  // FIXME: Should these even be selected?  Handle these cases in the caller?
1997  switch (NodeToMatch->getOpcode()) {
1998  default:
1999    break;
2000  case ISD::EntryToken:       // These nodes remain the same.
2001  case ISD::BasicBlock:
2002  case ISD::Register:
2003  //case ISD::VALUETYPE:
2004  //case ISD::CONDCODE:
2005  case ISD::HANDLENODE:
2006  case ISD::MDNODE_SDNODE:
2007  case ISD::TargetConstant:
2008  case ISD::TargetConstantFP:
2009  case ISD::TargetConstantPool:
2010  case ISD::TargetFrameIndex:
2011  case ISD::TargetExternalSymbol:
2012  case ISD::TargetBlockAddress:
2013  case ISD::TargetJumpTable:
2014  case ISD::TargetGlobalTLSAddress:
2015  case ISD::TargetGlobalAddress:
2016  case ISD::TokenFactor:
2017  case ISD::CopyFromReg:
2018  case ISD::CopyToReg:
2019  case ISD::EH_LABEL:
2020    NodeToMatch->setNodeId(-1); // Mark selected.
2021    return 0;
2022  case ISD::AssertSext:
2023  case ISD::AssertZext:
2024    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2025                                      NodeToMatch->getOperand(0));
2026    return 0;
2027  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2028  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2029  }
2030
2031  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2032
2033  // Set up the node stack with NodeToMatch as the only node on the stack.
2034  SmallVector<SDValue, 8> NodeStack;
2035  SDValue N = SDValue(NodeToMatch, 0);
2036  NodeStack.push_back(N);
2037
2038  // MatchScopes - Scopes used when matching, if a match failure happens, this
2039  // indicates where to continue checking.
2040  SmallVector<MatchScope, 8> MatchScopes;
2041
2042  // RecordedNodes - This is the set of nodes that have been recorded by the
2043  // state machine.  The second value is the parent of the node, or null if the
2044  // root is recorded.
2045  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2046
2047  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2048  // pattern.
2049  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2050
2051  // These are the current input chain and glue for use when generating nodes.
2052  // Various Emit operations change these.  For example, emitting a copytoreg
2053  // uses and updates these.
2054  SDValue InputChain, InputGlue;
2055
2056  // ChainNodesMatched - If a pattern matches nodes that have input/output
2057  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2058  // which ones they are.  The result is captured into this list so that we can
2059  // update the chain results when the pattern is complete.
2060  SmallVector<SDNode*, 3> ChainNodesMatched;
2061  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2062
2063  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2064        NodeToMatch->dump(CurDAG);
2065        errs() << '\n');
2066
2067  // Determine where to start the interpreter.  Normally we start at opcode #0,
2068  // but if the state machine starts with an OPC_SwitchOpcode, then we
2069  // accelerate the first lookup (which is guaranteed to be hot) with the
2070  // OpcodeOffset table.
2071  unsigned MatcherIndex = 0;
2072
2073  if (!OpcodeOffset.empty()) {
2074    // Already computed the OpcodeOffset table, just index into it.
2075    if (N.getOpcode() < OpcodeOffset.size())
2076      MatcherIndex = OpcodeOffset[N.getOpcode()];
2077    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2078
2079  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2080    // Otherwise, the table isn't computed, but the state machine does start
2081    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2082    // is the first time we're selecting an instruction.
2083    unsigned Idx = 1;
2084    while (1) {
2085      // Get the size of this case.
2086      unsigned CaseSize = MatcherTable[Idx++];
2087      if (CaseSize & 128)
2088        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2089      if (CaseSize == 0) break;
2090
2091      // Get the opcode, add the index to the table.
2092      uint16_t Opc = MatcherTable[Idx++];
2093      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2094      if (Opc >= OpcodeOffset.size())
2095        OpcodeOffset.resize((Opc+1)*2);
2096      OpcodeOffset[Opc] = Idx;
2097      Idx += CaseSize;
2098    }
2099
2100    // Okay, do the lookup for the first opcode.
2101    if (N.getOpcode() < OpcodeOffset.size())
2102      MatcherIndex = OpcodeOffset[N.getOpcode()];
2103  }
2104
2105  while (1) {
2106    assert(MatcherIndex < TableSize && "Invalid index");
2107#ifndef NDEBUG
2108    unsigned CurrentOpcodeIndex = MatcherIndex;
2109#endif
2110    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2111    switch (Opcode) {
2112    case OPC_Scope: {
2113      // Okay, the semantics of this operation are that we should push a scope
2114      // then evaluate the first child.  However, pushing a scope only to have
2115      // the first check fail (which then pops it) is inefficient.  If we can
2116      // determine immediately that the first check (or first several) will
2117      // immediately fail, don't even bother pushing a scope for them.
2118      unsigned FailIndex;
2119
2120      while (1) {
2121        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2122        if (NumToSkip & 128)
2123          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2124        // Found the end of the scope with no match.
2125        if (NumToSkip == 0) {
2126          FailIndex = 0;
2127          break;
2128        }
2129
2130        FailIndex = MatcherIndex+NumToSkip;
2131
2132        unsigned MatcherIndexOfPredicate = MatcherIndex;
2133        (void)MatcherIndexOfPredicate; // silence warning.
2134
2135        // If we can't evaluate this predicate without pushing a scope (e.g. if
2136        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2137        // push the scope and evaluate the full predicate chain.
2138        bool Result;
2139        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2140                                              Result, *this, RecordedNodes);
2141        if (!Result)
2142          break;
2143
2144        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2145                     << "index " << MatcherIndexOfPredicate
2146                     << ", continuing at " << FailIndex << "\n");
2147        ++NumDAGIselRetries;
2148
2149        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2150        // move to the next case.
2151        MatcherIndex = FailIndex;
2152      }
2153
2154      // If the whole scope failed to match, bail.
2155      if (FailIndex == 0) break;
2156
2157      // Push a MatchScope which indicates where to go if the first child fails
2158      // to match.
2159      MatchScope NewEntry;
2160      NewEntry.FailIndex = FailIndex;
2161      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2162      NewEntry.NumRecordedNodes = RecordedNodes.size();
2163      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2164      NewEntry.InputChain = InputChain;
2165      NewEntry.InputGlue = InputGlue;
2166      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2167      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2168      MatchScopes.push_back(NewEntry);
2169      continue;
2170    }
2171    case OPC_RecordNode: {
2172      // Remember this node, it may end up being an operand in the pattern.
2173      SDNode *Parent = 0;
2174      if (NodeStack.size() > 1)
2175        Parent = NodeStack[NodeStack.size()-2].getNode();
2176      RecordedNodes.push_back(std::make_pair(N, Parent));
2177      continue;
2178    }
2179
2180    case OPC_RecordChild0: case OPC_RecordChild1:
2181    case OPC_RecordChild2: case OPC_RecordChild3:
2182    case OPC_RecordChild4: case OPC_RecordChild5:
2183    case OPC_RecordChild6: case OPC_RecordChild7: {
2184      unsigned ChildNo = Opcode-OPC_RecordChild0;
2185      if (ChildNo >= N.getNumOperands())
2186        break;  // Match fails if out of range child #.
2187
2188      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2189                                             N.getNode()));
2190      continue;
2191    }
2192    case OPC_RecordMemRef:
2193      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2194      continue;
2195
2196    case OPC_CaptureGlueInput:
2197      // If the current node has an input glue, capture it in InputGlue.
2198      if (N->getNumOperands() != 0 &&
2199          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2200        InputGlue = N->getOperand(N->getNumOperands()-1);
2201      continue;
2202
2203    case OPC_MoveChild: {
2204      unsigned ChildNo = MatcherTable[MatcherIndex++];
2205      if (ChildNo >= N.getNumOperands())
2206        break;  // Match fails if out of range child #.
2207      N = N.getOperand(ChildNo);
2208      NodeStack.push_back(N);
2209      continue;
2210    }
2211
2212    case OPC_MoveParent:
2213      // Pop the current node off the NodeStack.
2214      NodeStack.pop_back();
2215      assert(!NodeStack.empty() && "Node stack imbalance!");
2216      N = NodeStack.back();
2217      continue;
2218
2219    case OPC_CheckSame:
2220      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2221      continue;
2222    case OPC_CheckPatternPredicate:
2223      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2224      continue;
2225    case OPC_CheckPredicate:
2226      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2227                                N.getNode()))
2228        break;
2229      continue;
2230    case OPC_CheckComplexPat: {
2231      unsigned CPNum = MatcherTable[MatcherIndex++];
2232      unsigned RecNo = MatcherTable[MatcherIndex++];
2233      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2234      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2235                               RecordedNodes[RecNo].first, CPNum,
2236                               RecordedNodes))
2237        break;
2238      continue;
2239    }
2240    case OPC_CheckOpcode:
2241      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2242      continue;
2243
2244    case OPC_CheckType:
2245      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2246      continue;
2247
2248    case OPC_SwitchOpcode: {
2249      unsigned CurNodeOpcode = N.getOpcode();
2250      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2251      unsigned CaseSize;
2252      while (1) {
2253        // Get the size of this case.
2254        CaseSize = MatcherTable[MatcherIndex++];
2255        if (CaseSize & 128)
2256          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2257        if (CaseSize == 0) break;
2258
2259        uint16_t Opc = MatcherTable[MatcherIndex++];
2260        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2261
2262        // If the opcode matches, then we will execute this case.
2263        if (CurNodeOpcode == Opc)
2264          break;
2265
2266        // Otherwise, skip over this case.
2267        MatcherIndex += CaseSize;
2268      }
2269
2270      // If no cases matched, bail out.
2271      if (CaseSize == 0) break;
2272
2273      // Otherwise, execute the case we found.
2274      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2275                   << " to " << MatcherIndex << "\n");
2276      continue;
2277    }
2278
2279    case OPC_SwitchType: {
2280      MVT CurNodeVT = N.getValueType().getSimpleVT();
2281      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2282      unsigned CaseSize;
2283      while (1) {
2284        // Get the size of this case.
2285        CaseSize = MatcherTable[MatcherIndex++];
2286        if (CaseSize & 128)
2287          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2288        if (CaseSize == 0) break;
2289
2290        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2291        if (CaseVT == MVT::iPTR)
2292          CaseVT = TLI.getPointerTy();
2293
2294        // If the VT matches, then we will execute this case.
2295        if (CurNodeVT == CaseVT)
2296          break;
2297
2298        // Otherwise, skip over this case.
2299        MatcherIndex += CaseSize;
2300      }
2301
2302      // If no cases matched, bail out.
2303      if (CaseSize == 0) break;
2304
2305      // Otherwise, execute the case we found.
2306      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2307                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2308      continue;
2309    }
2310    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2311    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2312    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2313    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2314      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2315                            Opcode-OPC_CheckChild0Type))
2316        break;
2317      continue;
2318    case OPC_CheckCondCode:
2319      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2320      continue;
2321    case OPC_CheckValueType:
2322      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2323      continue;
2324    case OPC_CheckInteger:
2325      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2326      continue;
2327    case OPC_CheckAndImm:
2328      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2329      continue;
2330    case OPC_CheckOrImm:
2331      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2332      continue;
2333
2334    case OPC_CheckFoldableChainNode: {
2335      assert(NodeStack.size() != 1 && "No parent node");
2336      // Verify that all intermediate nodes between the root and this one have
2337      // a single use.
2338      bool HasMultipleUses = false;
2339      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2340        if (!NodeStack[i].hasOneUse()) {
2341          HasMultipleUses = true;
2342          break;
2343        }
2344      if (HasMultipleUses) break;
2345
2346      // Check to see that the target thinks this is profitable to fold and that
2347      // we can fold it without inducing cycles in the graph.
2348      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2349                              NodeToMatch) ||
2350          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2351                         NodeToMatch, OptLevel,
2352                         true/*We validate our own chains*/))
2353        break;
2354
2355      continue;
2356    }
2357    case OPC_EmitInteger: {
2358      MVT::SimpleValueType VT =
2359        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2360      int64_t Val = MatcherTable[MatcherIndex++];
2361      if (Val & 128)
2362        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2363      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2364                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2365      continue;
2366    }
2367    case OPC_EmitRegister: {
2368      MVT::SimpleValueType VT =
2369        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2370      unsigned RegNo = MatcherTable[MatcherIndex++];
2371      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2372                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2373      continue;
2374    }
2375
2376    case OPC_EmitConvertToTarget:  {
2377      // Convert from IMM/FPIMM to target version.
2378      unsigned RecNo = MatcherTable[MatcherIndex++];
2379      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2380      SDValue Imm = RecordedNodes[RecNo].first;
2381
2382      if (Imm->getOpcode() == ISD::Constant) {
2383        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2384        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2385      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2386        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2387        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2388      }
2389
2390      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2391      continue;
2392    }
2393
2394    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2395    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2396      // These are space-optimized forms of OPC_EmitMergeInputChains.
2397      assert(InputChain.getNode() == 0 &&
2398             "EmitMergeInputChains should be the first chain producing node");
2399      assert(ChainNodesMatched.empty() &&
2400             "Should only have one EmitMergeInputChains per match");
2401
2402      // Read all of the chained nodes.
2403      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2404      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2405      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2406
2407      // FIXME: What if other value results of the node have uses not matched
2408      // by this pattern?
2409      if (ChainNodesMatched.back() != NodeToMatch &&
2410          !RecordedNodes[RecNo].first.hasOneUse()) {
2411        ChainNodesMatched.clear();
2412        break;
2413      }
2414
2415      // Merge the input chains if they are not intra-pattern references.
2416      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2417
2418      if (InputChain.getNode() == 0)
2419        break;  // Failed to merge.
2420      continue;
2421    }
2422
2423    case OPC_EmitMergeInputChains: {
2424      assert(InputChain.getNode() == 0 &&
2425             "EmitMergeInputChains should be the first chain producing node");
2426      // This node gets a list of nodes we matched in the input that have
2427      // chains.  We want to token factor all of the input chains to these nodes
2428      // together.  However, if any of the input chains is actually one of the
2429      // nodes matched in this pattern, then we have an intra-match reference.
2430      // Ignore these because the newly token factored chain should not refer to
2431      // the old nodes.
2432      unsigned NumChains = MatcherTable[MatcherIndex++];
2433      assert(NumChains != 0 && "Can't TF zero chains");
2434
2435      assert(ChainNodesMatched.empty() &&
2436             "Should only have one EmitMergeInputChains per match");
2437
2438      // Read all of the chained nodes.
2439      for (unsigned i = 0; i != NumChains; ++i) {
2440        unsigned RecNo = MatcherTable[MatcherIndex++];
2441        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2442        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2443
2444        // FIXME: What if other value results of the node have uses not matched
2445        // by this pattern?
2446        if (ChainNodesMatched.back() != NodeToMatch &&
2447            !RecordedNodes[RecNo].first.hasOneUse()) {
2448          ChainNodesMatched.clear();
2449          break;
2450        }
2451      }
2452
2453      // If the inner loop broke out, the match fails.
2454      if (ChainNodesMatched.empty())
2455        break;
2456
2457      // Merge the input chains if they are not intra-pattern references.
2458      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2459
2460      if (InputChain.getNode() == 0)
2461        break;  // Failed to merge.
2462
2463      continue;
2464    }
2465
2466    case OPC_EmitCopyToReg: {
2467      unsigned RecNo = MatcherTable[MatcherIndex++];
2468      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2469      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2470
2471      if (InputChain.getNode() == 0)
2472        InputChain = CurDAG->getEntryNode();
2473
2474      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2475                                        DestPhysReg, RecordedNodes[RecNo].first,
2476                                        InputGlue);
2477
2478      InputGlue = InputChain.getValue(1);
2479      continue;
2480    }
2481
2482    case OPC_EmitNodeXForm: {
2483      unsigned XFormNo = MatcherTable[MatcherIndex++];
2484      unsigned RecNo = MatcherTable[MatcherIndex++];
2485      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2486      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2487      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2488      continue;
2489    }
2490
2491    case OPC_EmitNode:
2492    case OPC_MorphNodeTo: {
2493      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2494      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2495      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2496      // Get the result VT list.
2497      unsigned NumVTs = MatcherTable[MatcherIndex++];
2498      SmallVector<EVT, 4> VTs;
2499      for (unsigned i = 0; i != NumVTs; ++i) {
2500        MVT::SimpleValueType VT =
2501          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2502        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2503        VTs.push_back(VT);
2504      }
2505
2506      if (EmitNodeInfo & OPFL_Chain)
2507        VTs.push_back(MVT::Other);
2508      if (EmitNodeInfo & OPFL_GlueOutput)
2509        VTs.push_back(MVT::Glue);
2510
2511      // This is hot code, so optimize the two most common cases of 1 and 2
2512      // results.
2513      SDVTList VTList;
2514      if (VTs.size() == 1)
2515        VTList = CurDAG->getVTList(VTs[0]);
2516      else if (VTs.size() == 2)
2517        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2518      else
2519        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2520
2521      // Get the operand list.
2522      unsigned NumOps = MatcherTable[MatcherIndex++];
2523      SmallVector<SDValue, 8> Ops;
2524      for (unsigned i = 0; i != NumOps; ++i) {
2525        unsigned RecNo = MatcherTable[MatcherIndex++];
2526        if (RecNo & 128)
2527          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2528
2529        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2530        Ops.push_back(RecordedNodes[RecNo].first);
2531      }
2532
2533      // If there are variadic operands to add, handle them now.
2534      if (EmitNodeInfo & OPFL_VariadicInfo) {
2535        // Determine the start index to copy from.
2536        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2537        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2538        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2539               "Invalid variadic node");
2540        // Copy all of the variadic operands, not including a potential glue
2541        // input.
2542        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2543             i != e; ++i) {
2544          SDValue V = NodeToMatch->getOperand(i);
2545          if (V.getValueType() == MVT::Glue) break;
2546          Ops.push_back(V);
2547        }
2548      }
2549
2550      // If this has chain/glue inputs, add them.
2551      if (EmitNodeInfo & OPFL_Chain)
2552        Ops.push_back(InputChain);
2553      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2554        Ops.push_back(InputGlue);
2555
2556      // Create the node.
2557      SDNode *Res = 0;
2558      if (Opcode != OPC_MorphNodeTo) {
2559        // If this is a normal EmitNode command, just create the new node and
2560        // add the results to the RecordedNodes list.
2561        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2562                                     VTList, Ops.data(), Ops.size());
2563
2564        // Add all the non-glue/non-chain results to the RecordedNodes list.
2565        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2566          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2567          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2568                                                             (SDNode*) 0));
2569        }
2570
2571      } else {
2572        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2573                        EmitNodeInfo);
2574      }
2575
2576      // If the node had chain/glue results, update our notion of the current
2577      // chain and glue.
2578      if (EmitNodeInfo & OPFL_GlueOutput) {
2579        InputGlue = SDValue(Res, VTs.size()-1);
2580        if (EmitNodeInfo & OPFL_Chain)
2581          InputChain = SDValue(Res, VTs.size()-2);
2582      } else if (EmitNodeInfo & OPFL_Chain)
2583        InputChain = SDValue(Res, VTs.size()-1);
2584
2585      // If the OPFL_MemRefs glue is set on this node, slap all of the
2586      // accumulated memrefs onto it.
2587      //
2588      // FIXME: This is vastly incorrect for patterns with multiple outputs
2589      // instructions that access memory and for ComplexPatterns that match
2590      // loads.
2591      if (EmitNodeInfo & OPFL_MemRefs) {
2592        MachineSDNode::mmo_iterator MemRefs =
2593          MF->allocateMemRefsArray(MatchedMemRefs.size());
2594        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2595        cast<MachineSDNode>(Res)
2596          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2597      }
2598
2599      DEBUG(errs() << "  "
2600                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2601                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2602
2603      // If this was a MorphNodeTo then we're completely done!
2604      if (Opcode == OPC_MorphNodeTo) {
2605        // Update chain and glue uses.
2606        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2607                            InputGlue, GlueResultNodesMatched, true);
2608        return Res;
2609      }
2610
2611      continue;
2612    }
2613
2614    case OPC_MarkGlueResults: {
2615      unsigned NumNodes = MatcherTable[MatcherIndex++];
2616
2617      // Read and remember all the glue-result nodes.
2618      for (unsigned i = 0; i != NumNodes; ++i) {
2619        unsigned RecNo = MatcherTable[MatcherIndex++];
2620        if (RecNo & 128)
2621          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2622
2623        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2624        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2625      }
2626      continue;
2627    }
2628
2629    case OPC_CompleteMatch: {
2630      // The match has been completed, and any new nodes (if any) have been
2631      // created.  Patch up references to the matched dag to use the newly
2632      // created nodes.
2633      unsigned NumResults = MatcherTable[MatcherIndex++];
2634
2635      for (unsigned i = 0; i != NumResults; ++i) {
2636        unsigned ResSlot = MatcherTable[MatcherIndex++];
2637        if (ResSlot & 128)
2638          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2639
2640        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2641        SDValue Res = RecordedNodes[ResSlot].first;
2642
2643        assert(i < NodeToMatch->getNumValues() &&
2644               NodeToMatch->getValueType(i) != MVT::Other &&
2645               NodeToMatch->getValueType(i) != MVT::Glue &&
2646               "Invalid number of results to complete!");
2647        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2648                NodeToMatch->getValueType(i) == MVT::iPTR ||
2649                Res.getValueType() == MVT::iPTR ||
2650                NodeToMatch->getValueType(i).getSizeInBits() ==
2651                    Res.getValueType().getSizeInBits()) &&
2652               "invalid replacement");
2653        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2654      }
2655
2656      // If the root node defines glue, add it to the glue nodes to update list.
2657      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2658        GlueResultNodesMatched.push_back(NodeToMatch);
2659
2660      // Update chain and glue uses.
2661      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2662                          InputGlue, GlueResultNodesMatched, false);
2663
2664      assert(NodeToMatch->use_empty() &&
2665             "Didn't replace all uses of the node?");
2666
2667      // FIXME: We just return here, which interacts correctly with SelectRoot
2668      // above.  We should fix this to not return an SDNode* anymore.
2669      return 0;
2670    }
2671    }
2672
2673    // If the code reached this point, then the match failed.  See if there is
2674    // another child to try in the current 'Scope', otherwise pop it until we
2675    // find a case to check.
2676    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2677    ++NumDAGIselRetries;
2678    while (1) {
2679      if (MatchScopes.empty()) {
2680        CannotYetSelect(NodeToMatch);
2681        return 0;
2682      }
2683
2684      // Restore the interpreter state back to the point where the scope was
2685      // formed.
2686      MatchScope &LastScope = MatchScopes.back();
2687      RecordedNodes.resize(LastScope.NumRecordedNodes);
2688      NodeStack.clear();
2689      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2690      N = NodeStack.back();
2691
2692      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2693        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2694      MatcherIndex = LastScope.FailIndex;
2695
2696      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2697
2698      InputChain = LastScope.InputChain;
2699      InputGlue = LastScope.InputGlue;
2700      if (!LastScope.HasChainNodesMatched)
2701        ChainNodesMatched.clear();
2702      if (!LastScope.HasGlueResultNodesMatched)
2703        GlueResultNodesMatched.clear();
2704
2705      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2706      // we have reached the end of this scope, otherwise we have another child
2707      // in the current scope to try.
2708      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2709      if (NumToSkip & 128)
2710        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2711
2712      // If we have another child in this scope to match, update FailIndex and
2713      // try it.
2714      if (NumToSkip != 0) {
2715        LastScope.FailIndex = MatcherIndex+NumToSkip;
2716        break;
2717      }
2718
2719      // End of this scope, pop it and try the next child in the containing
2720      // scope.
2721      MatchScopes.pop_back();
2722    }
2723  }
2724}
2725
2726
2727
2728void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2729  std::string msg;
2730  raw_string_ostream Msg(msg);
2731  Msg << "Cannot select: ";
2732
2733  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2734      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2735      N->getOpcode() != ISD::INTRINSIC_VOID) {
2736    N->printrFull(Msg, CurDAG);
2737  } else {
2738    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2739    unsigned iid =
2740      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2741    if (iid < Intrinsic::num_intrinsics)
2742      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2743    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2744      Msg << "target intrinsic %" << TII->getName(iid);
2745    else
2746      Msg << "unknown intrinsic #" << iid;
2747  }
2748  report_fatal_error(Msg.str());
2749}
2750
2751char SelectionDAGISel::ID = 0;
2752