SelectionDAGISel.cpp revision b9a3f3d2d395ff32a4f40fe6642d5f0e38a2c0be
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionAnalysis.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/Target/TargetRegisterInfo.h"
45#include "llvm/Target/TargetData.h"
46#include "llvm/Target/TargetFrameInfo.h"
47#include "llvm/Target/TargetIntrinsicInfo.h"
48#include "llvm/Target/TargetInstrInfo.h"
49#include "llvm/Target/TargetLowering.h"
50#include "llvm/Target/TargetMachine.h"
51#include "llvm/Target/TargetOptions.h"
52#include "llvm/Support/Compiler.h"
53#include "llvm/Support/Debug.h"
54#include "llvm/Support/ErrorHandling.h"
55#include "llvm/Support/MathExtras.h"
56#include "llvm/Support/Timer.h"
57#include "llvm/Support/raw_ostream.h"
58#include "llvm/ADT/Statistic.h"
59#include <algorithm>
60using namespace llvm;
61
62STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
63STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
64
65static cl::opt<bool>
66EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
67          cl::desc("Enable verbose messages in the \"fast\" "
68                   "instruction selector"));
69static cl::opt<bool>
70EnableFastISelAbort("fast-isel-abort", cl::Hidden,
71          cl::desc("Enable abort calls when \"fast\" instruction fails"));
72static cl::opt<bool>
73SchedLiveInCopies("schedule-livein-copies", cl::Hidden,
74                  cl::desc("Schedule copies of livein registers"),
75                  cl::init(false));
76
77#ifndef NDEBUG
78static cl::opt<bool>
79ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
80          cl::desc("Pop up a window to show dags before the first "
81                   "dag combine pass"));
82static cl::opt<bool>
83ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize types"));
85static cl::opt<bool>
86ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before legalize"));
88static cl::opt<bool>
89ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
90          cl::desc("Pop up a window to show dags before the second "
91                   "dag combine pass"));
92static cl::opt<bool>
93ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
94          cl::desc("Pop up a window to show dags before the post legalize types"
95                   " dag combine pass"));
96static cl::opt<bool>
97ViewISelDAGs("view-isel-dags", cl::Hidden,
98          cl::desc("Pop up a window to show isel dags as they are selected"));
99static cl::opt<bool>
100ViewSchedDAGs("view-sched-dags", cl::Hidden,
101          cl::desc("Pop up a window to show sched dags as they are processed"));
102static cl::opt<bool>
103ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
104      cl::desc("Pop up a window to show SUnit dags after they are processed"));
105#else
106static const bool ViewDAGCombine1 = false,
107                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
108                  ViewDAGCombine2 = false,
109                  ViewDAGCombineLT = false,
110                  ViewISelDAGs = false, ViewSchedDAGs = false,
111                  ViewSUnitDAGs = false;
112#endif
113
114//===---------------------------------------------------------------------===//
115///
116/// RegisterScheduler class - Track the registration of instruction schedulers.
117///
118//===---------------------------------------------------------------------===//
119MachinePassRegistry RegisterScheduler::Registry;
120
121//===---------------------------------------------------------------------===//
122///
123/// ISHeuristic command line option for instruction schedulers.
124///
125//===---------------------------------------------------------------------===//
126static cl::opt<RegisterScheduler::FunctionPassCtor, false,
127               RegisterPassParser<RegisterScheduler> >
128ISHeuristic("pre-RA-sched",
129            cl::init(&createDefaultScheduler),
130            cl::desc("Instruction schedulers available (before register"
131                     " allocation):"));
132
133static RegisterScheduler
134defaultListDAGScheduler("default", "Best scheduler for the target",
135                        createDefaultScheduler);
136
137namespace llvm {
138  //===--------------------------------------------------------------------===//
139  /// createDefaultScheduler - This creates an instruction scheduler appropriate
140  /// for the target.
141  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
142                                             CodeGenOpt::Level OptLevel) {
143    const TargetLowering &TLI = IS->getTargetLowering();
144
145    if (OptLevel == CodeGenOpt::None)
146      return createFastDAGScheduler(IS, OptLevel);
147    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
148      return createTDListDAGScheduler(IS, OptLevel);
149    assert(TLI.getSchedulingPreference() ==
150           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
151    return createBURRListDAGScheduler(IS, OptLevel);
152  }
153}
154
155// EmitInstrWithCustomInserter - This method should be implemented by targets
156// that mark instructions with the 'usesCustomInserter' flag.  These
157// instructions are special in various ways, which require special support to
158// insert.  The specified MachineInstr is created but not inserted into any
159// basic blocks, and this method is called to expand it into a sequence of
160// instructions, potentially also creating new basic blocks and control flow.
161// When new basic blocks are inserted and the edges from MBB to its successors
162// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
163// DenseMap.
164MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
165                                                         MachineBasicBlock *MBB,
166                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
167#ifndef NDEBUG
168  dbgs() << "If a target marks an instruction with "
169          "'usesCustomInserter', it must implement "
170          "TargetLowering::EmitInstrWithCustomInserter!";
171#endif
172  llvm_unreachable(0);
173  return 0;
174}
175
176/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
177/// physical register has only a single copy use, then coalesced the copy
178/// if possible.
179static void EmitLiveInCopy(MachineBasicBlock *MBB,
180                           MachineBasicBlock::iterator &InsertPos,
181                           unsigned VirtReg, unsigned PhysReg,
182                           const TargetRegisterClass *RC,
183                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
184                           const MachineRegisterInfo &MRI,
185                           const TargetRegisterInfo &TRI,
186                           const TargetInstrInfo &TII) {
187  unsigned NumUses = 0;
188  MachineInstr *UseMI = NULL;
189  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
190         UE = MRI.use_end(); UI != UE; ++UI) {
191    UseMI = &*UI;
192    if (++NumUses > 1)
193      break;
194  }
195
196  // If the number of uses is not one, or the use is not a move instruction,
197  // don't coalesce. Also, only coalesce away a virtual register to virtual
198  // register copy.
199  bool Coalesced = false;
200  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
201  if (NumUses == 1 &&
202      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
203      TargetRegisterInfo::isVirtualRegister(DstReg)) {
204    VirtReg = DstReg;
205    Coalesced = true;
206  }
207
208  // Now find an ideal location to insert the copy.
209  MachineBasicBlock::iterator Pos = InsertPos;
210  while (Pos != MBB->begin()) {
211    MachineInstr *PrevMI = prior(Pos);
212    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
213    // copyRegToReg might emit multiple instructions to do a copy.
214    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
215    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
216      // This is what the BB looks like right now:
217      // r1024 = mov r0
218      // ...
219      // r1    = mov r1024
220      //
221      // We want to insert "r1025 = mov r1". Inserting this copy below the
222      // move to r1024 makes it impossible for that move to be coalesced.
223      //
224      // r1025 = mov r1
225      // r1024 = mov r0
226      // ...
227      // r1    = mov 1024
228      // r2    = mov 1025
229      break; // Woot! Found a good location.
230    --Pos;
231  }
232
233  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
234  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
235  (void) Emitted;
236
237  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
238  if (Coalesced) {
239    if (&*InsertPos == UseMI) ++InsertPos;
240    MBB->erase(UseMI);
241  }
242}
243
244/// EmitLiveInCopies - If this is the first basic block in the function,
245/// and if it has live ins that need to be copied into vregs, emit the
246/// copies into the block.
247static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
248                             const MachineRegisterInfo &MRI,
249                             const TargetRegisterInfo &TRI,
250                             const TargetInstrInfo &TII) {
251  if (SchedLiveInCopies) {
252    // Emit the copies at a heuristically-determined location in the block.
253    DenseMap<MachineInstr*, unsigned> CopyRegMap;
254    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
255    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
256           E = MRI.livein_end(); LI != E; ++LI)
257      if (LI->second) {
258        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
259        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
260                       RC, CopyRegMap, MRI, TRI, TII);
261      }
262  } else {
263    // Emit the copies into the top of the block.
264    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
265           E = MRI.livein_end(); LI != E; ++LI)
266      if (LI->second) {
267        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
268        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
269                                        LI->second, LI->first, RC, RC);
270        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
271        (void) Emitted;
272      }
273  }
274}
275
276//===----------------------------------------------------------------------===//
277// SelectionDAGISel code
278//===----------------------------------------------------------------------===//
279
280SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
281  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
282  FuncInfo(new FunctionLoweringInfo(TLI)),
283  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
284  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
285  GFI(),
286  OptLevel(OL),
287  DAGSize(0)
288{}
289
290SelectionDAGISel::~SelectionDAGISel() {
291  delete SDB;
292  delete CurDAG;
293  delete FuncInfo;
294}
295
296unsigned SelectionDAGISel::MakeReg(EVT VT) {
297  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
298}
299
300void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
301  AU.addRequired<AliasAnalysis>();
302  AU.addPreserved<AliasAnalysis>();
303  AU.addRequired<GCModuleInfo>();
304  AU.addPreserved<GCModuleInfo>();
305  MachineFunctionPass::getAnalysisUsage(AU);
306}
307
308bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
309  Function &Fn = *mf.getFunction();
310
311  // Do some sanity-checking on the command-line options.
312  assert((!EnableFastISelVerbose || EnableFastISel) &&
313         "-fast-isel-verbose requires -fast-isel");
314  assert((!EnableFastISelAbort || EnableFastISel) &&
315         "-fast-isel-abort requires -fast-isel");
316
317  // Get alias analysis for load/store combining.
318  AA = &getAnalysis<AliasAnalysis>();
319
320  MF = &mf;
321  const TargetInstrInfo &TII = *TM.getInstrInfo();
322  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
323
324  if (Fn.hasGC())
325    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
326  else
327    GFI = 0;
328  RegInfo = &MF->getRegInfo();
329  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
330
331  CurDAG->init(*MF);
332  FuncInfo->set(Fn, *MF, EnableFastISel);
333  SDB->init(GFI, *AA);
334
335  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
336    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
337      // Mark landing pad.
338      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
339
340  SelectAllBasicBlocks(Fn, *MF, TII);
341
342  // If the first basic block in the function has live ins that need to be
343  // copied into vregs, emit the copies into the top of the block before
344  // emitting the code for the block.
345  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
346
347  // Add function live-ins to entry block live-in set.
348  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
349         E = RegInfo->livein_end(); I != E; ++I)
350    MF->begin()->addLiveIn(I->first);
351
352#ifndef NDEBUG
353  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
354         "Not all catch info was assigned to a landing pad!");
355#endif
356
357  FuncInfo->clear();
358
359  return true;
360}
361
362/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
363/// attached with this instruction.
364static void SetDebugLoc(Instruction *I, SelectionDAGBuilder *SDB,
365                        FastISel *FastIS, MachineFunction *MF) {
366  DebugLoc DL = I->getDebugLoc();
367  if (DL.isUnknown()) return;
368
369  SDB->setCurDebugLoc(DL);
370
371  if (FastIS)
372    FastIS->setCurDebugLoc(DL);
373
374  // If the function doesn't have a default debug location yet, set
375  // it. This is kind of a hack.
376  if (MF->getDefaultDebugLoc().isUnknown())
377    MF->setDefaultDebugLoc(DL);
378}
379
380/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
381static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
382  SDB->setCurDebugLoc(DebugLoc());
383  if (FastIS)
384    FastIS->setCurDebugLoc(DebugLoc());
385}
386
387void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
388                                        BasicBlock::iterator Begin,
389                                        BasicBlock::iterator End,
390                                        bool &HadTailCall) {
391  SDB->setCurrentBasicBlock(BB);
392
393  // Lower all of the non-terminator instructions. If a call is emitted
394  // as a tail call, cease emitting nodes for this block.
395  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
396    SetDebugLoc(I, SDB, 0, MF);
397
398    if (!isa<TerminatorInst>(I)) {
399      SDB->visit(*I);
400
401      // Set the current debug location back to "unknown" so that it doesn't
402      // spuriously apply to subsequent instructions.
403      ResetDebugLoc(SDB, 0);
404    }
405  }
406
407  if (!SDB->HasTailCall) {
408    // Ensure that all instructions which are used outside of their defining
409    // blocks are available as virtual registers.  Invoke is handled elsewhere.
410    for (BasicBlock::iterator I = Begin; I != End; ++I)
411      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
412        SDB->CopyToExportRegsIfNeeded(I);
413
414    // Handle PHI nodes in successor blocks.
415    if (End == LLVMBB->end()) {
416      HandlePHINodesInSuccessorBlocks(LLVMBB);
417
418      // Lower the terminator after the copies are emitted.
419      SetDebugLoc(LLVMBB->getTerminator(), SDB, 0, MF);
420      SDB->visit(*LLVMBB->getTerminator());
421      ResetDebugLoc(SDB, 0);
422    }
423  }
424
425  // Make sure the root of the DAG is up-to-date.
426  CurDAG->setRoot(SDB->getControlRoot());
427
428  // Final step, emit the lowered DAG as machine code.
429  CodeGenAndEmitDAG();
430  HadTailCall = SDB->HasTailCall;
431  SDB->clear();
432}
433
434namespace {
435/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
436/// nodes from the worklist.
437class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
438  SmallVector<SDNode*, 128> &Worklist;
439  SmallPtrSet<SDNode*, 128> &InWorklist;
440public:
441  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
442                       SmallPtrSet<SDNode*, 128> &inwl)
443    : Worklist(wl), InWorklist(inwl) {}
444
445  void RemoveFromWorklist(SDNode *N) {
446    if (!InWorklist.erase(N)) return;
447
448    SmallVector<SDNode*, 128>::iterator I =
449    std::find(Worklist.begin(), Worklist.end(), N);
450    assert(I != Worklist.end() && "Not in worklist");
451
452    *I = Worklist.back();
453    Worklist.pop_back();
454  }
455
456  virtual void NodeDeleted(SDNode *N, SDNode *E) {
457    RemoveFromWorklist(N);
458  }
459
460  virtual void NodeUpdated(SDNode *N) {
461    // Ignore updates.
462  }
463};
464}
465
466/// TrivialTruncElim - Eliminate some trivial nops that can result from
467/// ShrinkDemandedOps: (trunc (ext n)) -> n.
468static bool TrivialTruncElim(SDValue Op,
469                             TargetLowering::TargetLoweringOpt &TLO) {
470  SDValue N0 = Op.getOperand(0);
471  EVT VT = Op.getValueType();
472  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
473       N0.getOpcode() == ISD::SIGN_EXTEND ||
474       N0.getOpcode() == ISD::ANY_EXTEND) &&
475      N0.getOperand(0).getValueType() == VT) {
476    return TLO.CombineTo(Op, N0.getOperand(0));
477  }
478  return false;
479}
480
481/// ShrinkDemandedOps - A late transformation pass that shrink expressions
482/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
483/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
484void SelectionDAGISel::ShrinkDemandedOps() {
485  SmallVector<SDNode*, 128> Worklist;
486  SmallPtrSet<SDNode*, 128> InWorklist;
487
488  // Add all the dag nodes to the worklist.
489  Worklist.reserve(CurDAG->allnodes_size());
490  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
491       E = CurDAG->allnodes_end(); I != E; ++I) {
492    Worklist.push_back(I);
493    InWorklist.insert(I);
494  }
495
496  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
497  while (!Worklist.empty()) {
498    SDNode *N = Worklist.pop_back_val();
499    InWorklist.erase(N);
500
501    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
502      // Deleting this node may make its operands dead, add them to the worklist
503      // if they aren't already there.
504      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
505        if (InWorklist.insert(N->getOperand(i).getNode()))
506          Worklist.push_back(N->getOperand(i).getNode());
507
508      CurDAG->DeleteNode(N);
509      continue;
510    }
511
512    // Run ShrinkDemandedOp on scalar binary operations.
513    if (N->getNumValues() != 1 ||
514        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
515      continue;
516
517    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
518    APInt Demanded = APInt::getAllOnesValue(BitWidth);
519    APInt KnownZero, KnownOne;
520    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
521                                  KnownZero, KnownOne, TLO) &&
522        (N->getOpcode() != ISD::TRUNCATE ||
523         !TrivialTruncElim(SDValue(N, 0), TLO)))
524      continue;
525
526    // Revisit the node.
527    assert(!InWorklist.count(N) && "Already in worklist");
528    Worklist.push_back(N);
529    InWorklist.insert(N);
530
531    // Replace the old value with the new one.
532    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
533          TLO.Old.getNode()->dump(CurDAG);
534          errs() << "\nWith: ";
535          TLO.New.getNode()->dump(CurDAG);
536          errs() << '\n');
537
538    if (InWorklist.insert(TLO.New.getNode()))
539      Worklist.push_back(TLO.New.getNode());
540
541    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
542    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
543
544    if (!TLO.Old.getNode()->use_empty()) continue;
545
546    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
547         i != e; ++i) {
548      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
549      if (OpNode->hasOneUse()) {
550        // Add OpNode to the end of the list to revisit.
551        DeadNodes.RemoveFromWorklist(OpNode);
552        Worklist.push_back(OpNode);
553        InWorklist.insert(OpNode);
554      }
555    }
556
557    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
558    CurDAG->DeleteNode(TLO.Old.getNode());
559  }
560}
561
562void SelectionDAGISel::ComputeLiveOutVRegInfo() {
563  SmallPtrSet<SDNode*, 128> VisitedNodes;
564  SmallVector<SDNode*, 128> Worklist;
565
566  Worklist.push_back(CurDAG->getRoot().getNode());
567
568  APInt Mask;
569  APInt KnownZero;
570  APInt KnownOne;
571
572  do {
573    SDNode *N = Worklist.pop_back_val();
574
575    // If we've already seen this node, ignore it.
576    if (!VisitedNodes.insert(N))
577      continue;
578
579    // Otherwise, add all chain operands to the worklist.
580    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
581      if (N->getOperand(i).getValueType() == MVT::Other)
582        Worklist.push_back(N->getOperand(i).getNode());
583
584    // If this is a CopyToReg with a vreg dest, process it.
585    if (N->getOpcode() != ISD::CopyToReg)
586      continue;
587
588    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
589    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
590      continue;
591
592    // Ignore non-scalar or non-integer values.
593    SDValue Src = N->getOperand(2);
594    EVT SrcVT = Src.getValueType();
595    if (!SrcVT.isInteger() || SrcVT.isVector())
596      continue;
597
598    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
599    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
600    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
601
602    // Only install this information if it tells us something.
603    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
604      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
605      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
606        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
607      FunctionLoweringInfo::LiveOutInfo &LOI =
608        FuncInfo->LiveOutRegInfo[DestReg];
609      LOI.NumSignBits = NumSignBits;
610      LOI.KnownOne = KnownOne;
611      LOI.KnownZero = KnownZero;
612    }
613  } while (!Worklist.empty());
614}
615
616void SelectionDAGISel::CodeGenAndEmitDAG() {
617  std::string GroupName;
618  if (TimePassesIsEnabled)
619    GroupName = "Instruction Selection and Scheduling";
620  std::string BlockName;
621  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
622      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
623      ViewSUnitDAGs)
624    BlockName = MF->getFunction()->getNameStr() + ":" +
625                BB->getBasicBlock()->getNameStr();
626
627  DEBUG(dbgs() << "Initial selection DAG:\n");
628  DEBUG(CurDAG->dump());
629
630  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
631
632  // Run the DAG combiner in pre-legalize mode.
633  if (TimePassesIsEnabled) {
634    NamedRegionTimer T("DAG Combining 1", GroupName);
635    CurDAG->Combine(Unrestricted, *AA, OptLevel);
636  } else {
637    CurDAG->Combine(Unrestricted, *AA, OptLevel);
638  }
639
640  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
641  DEBUG(CurDAG->dump());
642
643  // Second step, hack on the DAG until it only uses operations and types that
644  // the target supports.
645  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
646                                               BlockName);
647
648  bool Changed;
649  if (TimePassesIsEnabled) {
650    NamedRegionTimer T("Type Legalization", GroupName);
651    Changed = CurDAG->LegalizeTypes();
652  } else {
653    Changed = CurDAG->LegalizeTypes();
654  }
655
656  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
657  DEBUG(CurDAG->dump());
658
659  if (Changed) {
660    if (ViewDAGCombineLT)
661      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
662
663    // Run the DAG combiner in post-type-legalize mode.
664    if (TimePassesIsEnabled) {
665      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
666      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
667    } else {
668      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
669    }
670
671    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
672    DEBUG(CurDAG->dump());
673  }
674
675  if (TimePassesIsEnabled) {
676    NamedRegionTimer T("Vector Legalization", GroupName);
677    Changed = CurDAG->LegalizeVectors();
678  } else {
679    Changed = CurDAG->LegalizeVectors();
680  }
681
682  if (Changed) {
683    if (TimePassesIsEnabled) {
684      NamedRegionTimer T("Type Legalization 2", GroupName);
685      CurDAG->LegalizeTypes();
686    } else {
687      CurDAG->LegalizeTypes();
688    }
689
690    if (ViewDAGCombineLT)
691      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
692
693    // Run the DAG combiner in post-type-legalize mode.
694    if (TimePassesIsEnabled) {
695      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
696      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
697    } else {
698      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
699    }
700
701    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
702    DEBUG(CurDAG->dump());
703  }
704
705  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
706
707  if (TimePassesIsEnabled) {
708    NamedRegionTimer T("DAG Legalization", GroupName);
709    CurDAG->Legalize(OptLevel);
710  } else {
711    CurDAG->Legalize(OptLevel);
712  }
713
714  DEBUG(dbgs() << "Legalized selection DAG:\n");
715  DEBUG(CurDAG->dump());
716
717  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
718
719  // Run the DAG combiner in post-legalize mode.
720  if (TimePassesIsEnabled) {
721    NamedRegionTimer T("DAG Combining 2", GroupName);
722    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
723  } else {
724    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
725  }
726
727  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
728  DEBUG(CurDAG->dump());
729
730  if (OptLevel != CodeGenOpt::None) {
731    ShrinkDemandedOps();
732    ComputeLiveOutVRegInfo();
733  }
734
735  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
736
737  // Third, instruction select all of the operations to machine code, adding the
738  // code to the MachineBasicBlock.
739  if (TimePassesIsEnabled) {
740    NamedRegionTimer T("Instruction Selection", GroupName);
741    DoInstructionSelection();
742  } else {
743    DoInstructionSelection();
744  }
745
746  DEBUG(dbgs() << "Selected selection DAG:\n");
747  DEBUG(CurDAG->dump());
748
749  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
750
751  // Schedule machine code.
752  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
753  if (TimePassesIsEnabled) {
754    NamedRegionTimer T("Instruction Scheduling", GroupName);
755    Scheduler->Run(CurDAG, BB, BB->end());
756  } else {
757    Scheduler->Run(CurDAG, BB, BB->end());
758  }
759
760  if (ViewSUnitDAGs) Scheduler->viewGraph();
761
762  // Emit machine code to BB.  This can change 'BB' to the last block being
763  // inserted into.
764  if (TimePassesIsEnabled) {
765    NamedRegionTimer T("Instruction Creation", GroupName);
766    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
767  } else {
768    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
769  }
770
771  // Free the scheduler state.
772  if (TimePassesIsEnabled) {
773    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
774    delete Scheduler;
775  } else {
776    delete Scheduler;
777  }
778
779  DEBUG(dbgs() << "Selected machine code:\n");
780  DEBUG(BB->dump());
781}
782
783void SelectionDAGISel::DoInstructionSelection() {
784  DEBUG(errs() << "===== Instruction selection begins:\n");
785
786  PreprocessISelDAG();
787
788  // Select target instructions for the DAG.
789  {
790    // Number all nodes with a topological order and set DAGSize.
791    DAGSize = CurDAG->AssignTopologicalOrder();
792
793    // Create a dummy node (which is not added to allnodes), that adds
794    // a reference to the root node, preventing it from being deleted,
795    // and tracking any changes of the root.
796    HandleSDNode Dummy(CurDAG->getRoot());
797    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
798    ++ISelPosition;
799
800    // The AllNodes list is now topological-sorted. Visit the
801    // nodes by starting at the end of the list (the root of the
802    // graph) and preceding back toward the beginning (the entry
803    // node).
804    while (ISelPosition != CurDAG->allnodes_begin()) {
805      SDNode *Node = --ISelPosition;
806      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
807      // but there are currently some corner cases that it misses. Also, this
808      // makes it theoretically possible to disable the DAGCombiner.
809      if (Node->use_empty())
810        continue;
811
812      SDNode *ResNode = Select(Node);
813
814      // FIXME: This is pretty gross.  'Select' should be changed to not return
815      // anything at all and this code should be nuked with a tactical strike.
816
817      // If node should not be replaced, continue with the next one.
818      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
819        continue;
820      // Replace node.
821      if (ResNode)
822        ReplaceUses(Node, ResNode);
823
824      // If after the replacement this node is not used any more,
825      // remove this dead node.
826      if (Node->use_empty()) { // Don't delete EntryToken, etc.
827        ISelUpdater ISU(ISelPosition);
828        CurDAG->RemoveDeadNode(Node, &ISU);
829      }
830    }
831
832    CurDAG->setRoot(Dummy.getValue());
833  }
834  DEBUG(errs() << "===== Instruction selection ends:\n");
835
836  PostprocessISelDAG();
837}
838
839
840void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
841                                            MachineFunction &MF,
842                                            const TargetInstrInfo &TII) {
843  // Initialize the Fast-ISel state, if needed.
844  FastISel *FastIS = 0;
845  if (EnableFastISel)
846    FastIS = TLI.createFastISel(MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
847                                FuncInfo->StaticAllocaMap
848#ifndef NDEBUG
849                                , FuncInfo->CatchInfoLost
850#endif
851                                );
852
853  // Iterate over all basic blocks in the function.
854  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
855    BasicBlock *LLVMBB = &*I;
856    BB = FuncInfo->MBBMap[LLVMBB];
857
858    BasicBlock::iterator const Begin = LLVMBB->begin();
859    BasicBlock::iterator const End = LLVMBB->end();
860    BasicBlock::iterator BI = Begin;
861
862    // Lower any arguments needed in this block if this is the entry block.
863    bool SuppressFastISel = false;
864    if (LLVMBB == &Fn.getEntryBlock()) {
865      LowerArguments(LLVMBB);
866
867      // If any of the arguments has the byval attribute, forgo
868      // fast-isel in the entry block.
869      if (FastIS) {
870        unsigned j = 1;
871        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
872             I != E; ++I, ++j)
873          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
874            if (EnableFastISelVerbose || EnableFastISelAbort)
875              dbgs() << "FastISel skips entry block due to byval argument\n";
876            SuppressFastISel = true;
877            break;
878          }
879      }
880    }
881
882    if (BB->isLandingPad()) {
883      // Add a label to mark the beginning of the landing pad.  Deletion of the
884      // landing pad can thus be detected via the MachineModuleInfo.
885      MCSymbol *Label = MF.getMMI().addLandingPad(BB);
886
887      const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL);
888      BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
889
890      // Mark exception register as live in.
891      unsigned Reg = TLI.getExceptionAddressRegister();
892      if (Reg) BB->addLiveIn(Reg);
893
894      // Mark exception selector register as live in.
895      Reg = TLI.getExceptionSelectorRegister();
896      if (Reg) BB->addLiveIn(Reg);
897
898      // FIXME: Hack around an exception handling flaw (PR1508): the personality
899      // function and list of typeids logically belong to the invoke (or, if you
900      // like, the basic block containing the invoke), and need to be associated
901      // with it in the dwarf exception handling tables.  Currently however the
902      // information is provided by an intrinsic (eh.selector) that can be moved
903      // to unexpected places by the optimizers: if the unwind edge is critical,
904      // then breaking it can result in the intrinsics being in the successor of
905      // the landing pad, not the landing pad itself.  This results
906      // in exceptions not being caught because no typeids are associated with
907      // the invoke.  This may not be the only way things can go wrong, but it
908      // is the only way we try to work around for the moment.
909      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
910
911      if (Br && Br->isUnconditional()) { // Critical edge?
912        BasicBlock::iterator I, E;
913        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
914          if (isa<EHSelectorInst>(I))
915            break;
916
917        if (I == E)
918          // No catch info found - try to extract some from the successor.
919          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF.getMMI(), *FuncInfo);
920      }
921    }
922
923    // Before doing SelectionDAG ISel, see if FastISel has been requested.
924    if (FastIS && !SuppressFastISel) {
925      // Emit code for any incoming arguments. This must happen before
926      // beginning FastISel on the entry block.
927      if (LLVMBB == &Fn.getEntryBlock()) {
928        CurDAG->setRoot(SDB->getControlRoot());
929        CodeGenAndEmitDAG();
930        SDB->clear();
931      }
932      FastIS->startNewBlock(BB);
933      // Do FastISel on as many instructions as possible.
934      for (; BI != End; ++BI) {
935        // Just before the terminator instruction, insert instructions to
936        // feed PHI nodes in successor blocks.
937        if (isa<TerminatorInst>(BI))
938          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
939            ++NumFastIselFailures;
940            ResetDebugLoc(SDB, FastIS);
941            if (EnableFastISelVerbose || EnableFastISelAbort) {
942              dbgs() << "FastISel miss: ";
943              BI->dump();
944            }
945            assert(!EnableFastISelAbort &&
946                   "FastISel didn't handle a PHI in a successor");
947            break;
948          }
949
950        SetDebugLoc(BI, SDB, FastIS, &MF);
951
952        // Try to select the instruction with FastISel.
953        if (FastIS->SelectInstruction(BI)) {
954          ResetDebugLoc(SDB, FastIS);
955          continue;
956        }
957
958        // Clear out the debug location so that it doesn't carry over to
959        // unrelated instructions.
960        ResetDebugLoc(SDB, FastIS);
961
962        // Then handle certain instructions as single-LLVM-Instruction blocks.
963        if (isa<CallInst>(BI)) {
964          ++NumFastIselFailures;
965          if (EnableFastISelVerbose || EnableFastISelAbort) {
966            dbgs() << "FastISel missed call: ";
967            BI->dump();
968          }
969
970          if (!BI->getType()->isVoidTy()) {
971            unsigned &R = FuncInfo->ValueMap[BI];
972            if (!R)
973              R = FuncInfo->CreateRegForValue(BI);
974          }
975
976          bool HadTailCall = false;
977          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
978
979          // If the call was emitted as a tail call, we're done with the block.
980          if (HadTailCall) {
981            BI = End;
982            break;
983          }
984
985          // If the instruction was codegen'd with multiple blocks,
986          // inform the FastISel object where to resume inserting.
987          FastIS->setCurrentBlock(BB);
988          continue;
989        }
990
991        // Otherwise, give up on FastISel for the rest of the block.
992        // For now, be a little lenient about non-branch terminators.
993        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
994          ++NumFastIselFailures;
995          if (EnableFastISelVerbose || EnableFastISelAbort) {
996            dbgs() << "FastISel miss: ";
997            BI->dump();
998          }
999          if (EnableFastISelAbort)
1000            // The "fast" selector couldn't handle something and bailed.
1001            // For the purpose of debugging, just abort.
1002            llvm_unreachable("FastISel didn't select the entire block");
1003        }
1004        break;
1005      }
1006    }
1007
1008    // Run SelectionDAG instruction selection on the remainder of the block
1009    // not handled by FastISel. If FastISel is not run, this is the entire
1010    // block.
1011    if (BI != End) {
1012      bool HadTailCall;
1013      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
1014    }
1015
1016    FinishBasicBlock();
1017  }
1018
1019  delete FastIS;
1020}
1021
1022void
1023SelectionDAGISel::FinishBasicBlock() {
1024
1025  DEBUG(dbgs() << "Target-post-processed machine code:\n");
1026  DEBUG(BB->dump());
1027
1028  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1029               << SDB->PHINodesToUpdate.size() << "\n");
1030  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
1031          dbgs() << "Node " << i << " : ("
1032                 << SDB->PHINodesToUpdate[i].first
1033                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
1034
1035  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1036  // PHI nodes in successors.
1037  if (SDB->SwitchCases.empty() &&
1038      SDB->JTCases.empty() &&
1039      SDB->BitTestCases.empty()) {
1040    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1041      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1042      assert(PHI->isPHI() &&
1043             "This is not a machine PHI node that we are updating!");
1044      if (!BB->isSuccessor(PHI->getParent()))
1045        continue;
1046      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1047                                                false));
1048      PHI->addOperand(MachineOperand::CreateMBB(BB));
1049    }
1050    SDB->PHINodesToUpdate.clear();
1051    return;
1052  }
1053
1054  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1055    // Lower header first, if it wasn't already lowered
1056    if (!SDB->BitTestCases[i].Emitted) {
1057      // Set the current basic block to the mbb we wish to insert the code into
1058      BB = SDB->BitTestCases[i].Parent;
1059      SDB->setCurrentBasicBlock(BB);
1060      // Emit the code
1061      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
1062      CurDAG->setRoot(SDB->getRoot());
1063      CodeGenAndEmitDAG();
1064      SDB->clear();
1065    }
1066
1067    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1068      // Set the current basic block to the mbb we wish to insert the code into
1069      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
1070      SDB->setCurrentBasicBlock(BB);
1071      // Emit the code
1072      if (j+1 != ej)
1073        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
1074                              SDB->BitTestCases[i].Reg,
1075                              SDB->BitTestCases[i].Cases[j]);
1076      else
1077        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
1078                              SDB->BitTestCases[i].Reg,
1079                              SDB->BitTestCases[i].Cases[j]);
1080
1081
1082      CurDAG->setRoot(SDB->getRoot());
1083      CodeGenAndEmitDAG();
1084      SDB->clear();
1085    }
1086
1087    // Update PHI Nodes
1088    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1089      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1090      MachineBasicBlock *PHIBB = PHI->getParent();
1091      assert(PHI->isPHI() &&
1092             "This is not a machine PHI node that we are updating!");
1093      // This is "default" BB. We have two jumps to it. From "header" BB and
1094      // from last "case" BB.
1095      if (PHIBB == SDB->BitTestCases[i].Default) {
1096        PHI->addOperand(MachineOperand::
1097                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1098        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1099        PHI->addOperand(MachineOperand::
1100                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1101        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1102                                                  back().ThisBB));
1103      }
1104      // One of "cases" BB.
1105      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1106           j != ej; ++j) {
1107        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1108        if (cBB->isSuccessor(PHIBB)) {
1109          PHI->addOperand(MachineOperand::
1110                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1111          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1112        }
1113      }
1114    }
1115  }
1116  SDB->BitTestCases.clear();
1117
1118  // If the JumpTable record is filled in, then we need to emit a jump table.
1119  // Updating the PHI nodes is tricky in this case, since we need to determine
1120  // whether the PHI is a successor of the range check MBB or the jump table MBB
1121  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1122    // Lower header first, if it wasn't already lowered
1123    if (!SDB->JTCases[i].first.Emitted) {
1124      // Set the current basic block to the mbb we wish to insert the code into
1125      BB = SDB->JTCases[i].first.HeaderBB;
1126      SDB->setCurrentBasicBlock(BB);
1127      // Emit the code
1128      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
1129      CurDAG->setRoot(SDB->getRoot());
1130      CodeGenAndEmitDAG();
1131      SDB->clear();
1132    }
1133
1134    // Set the current basic block to the mbb we wish to insert the code into
1135    BB = SDB->JTCases[i].second.MBB;
1136    SDB->setCurrentBasicBlock(BB);
1137    // Emit the code
1138    SDB->visitJumpTable(SDB->JTCases[i].second);
1139    CurDAG->setRoot(SDB->getRoot());
1140    CodeGenAndEmitDAG();
1141    SDB->clear();
1142
1143    // Update PHI Nodes
1144    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1145      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1146      MachineBasicBlock *PHIBB = PHI->getParent();
1147      assert(PHI->isPHI() &&
1148             "This is not a machine PHI node that we are updating!");
1149      // "default" BB. We can go there only from header BB.
1150      if (PHIBB == SDB->JTCases[i].second.Default) {
1151        PHI->addOperand
1152          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1153        PHI->addOperand
1154          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1155      }
1156      // JT BB. Just iterate over successors here
1157      if (BB->isSuccessor(PHIBB)) {
1158        PHI->addOperand
1159          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1160        PHI->addOperand(MachineOperand::CreateMBB(BB));
1161      }
1162    }
1163  }
1164  SDB->JTCases.clear();
1165
1166  // If the switch block involved a branch to one of the actual successors, we
1167  // need to update PHI nodes in that block.
1168  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1169    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1170    assert(PHI->isPHI() &&
1171           "This is not a machine PHI node that we are updating!");
1172    if (BB->isSuccessor(PHI->getParent())) {
1173      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1174                                                false));
1175      PHI->addOperand(MachineOperand::CreateMBB(BB));
1176    }
1177  }
1178
1179  // If we generated any switch lowering information, build and codegen any
1180  // additional DAGs necessary.
1181  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1182    // Set the current basic block to the mbb we wish to insert the code into
1183    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1184    SDB->setCurrentBasicBlock(BB);
1185
1186    // Emit the code
1187    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1188    CurDAG->setRoot(SDB->getRoot());
1189    CodeGenAndEmitDAG();
1190
1191    // Handle any PHI nodes in successors of this chunk, as if we were coming
1192    // from the original BB before switch expansion.  Note that PHI nodes can
1193    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1194    // handle them the right number of times.
1195    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1196      // If new BB's are created during scheduling, the edges may have been
1197      // updated. That is, the edge from ThisBB to BB may have been split and
1198      // BB's predecessor is now another block.
1199      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1200        SDB->EdgeMapping.find(BB);
1201      if (EI != SDB->EdgeMapping.end())
1202        ThisBB = EI->second;
1203
1204      // BB may have been removed from the CFG if a branch was constant folded.
1205      if (ThisBB->isSuccessor(BB)) {
1206        for (MachineBasicBlock::iterator Phi = BB->begin();
1207             Phi != BB->end() && Phi->isPHI();
1208             ++Phi) {
1209          // This value for this PHI node is recorded in PHINodesToUpdate.
1210          for (unsigned pn = 0; ; ++pn) {
1211            assert(pn != SDB->PHINodesToUpdate.size() &&
1212                   "Didn't find PHI entry!");
1213            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1214              Phi->addOperand(MachineOperand::
1215                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1216                                        false));
1217              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1218              break;
1219            }
1220          }
1221        }
1222      }
1223
1224      // Don't process RHS if same block as LHS.
1225      if (BB == SDB->SwitchCases[i].FalseBB)
1226        SDB->SwitchCases[i].FalseBB = 0;
1227
1228      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1229      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1230      SDB->SwitchCases[i].FalseBB = 0;
1231    }
1232    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1233    SDB->clear();
1234  }
1235  SDB->SwitchCases.clear();
1236
1237  SDB->PHINodesToUpdate.clear();
1238}
1239
1240
1241/// Create the scheduler. If a specific scheduler was specified
1242/// via the SchedulerRegistry, use it, otherwise select the
1243/// one preferred by the target.
1244///
1245ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1246  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1247
1248  if (!Ctor) {
1249    Ctor = ISHeuristic;
1250    RegisterScheduler::setDefault(Ctor);
1251  }
1252
1253  return Ctor(this, OptLevel);
1254}
1255
1256ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1257  return new ScheduleHazardRecognizer();
1258}
1259
1260//===----------------------------------------------------------------------===//
1261// Helper functions used by the generated instruction selector.
1262//===----------------------------------------------------------------------===//
1263// Calls to these methods are generated by tblgen.
1264
1265/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1266/// the dag combiner simplified the 255, we still want to match.  RHS is the
1267/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1268/// specified in the .td file (e.g. 255).
1269bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1270                                    int64_t DesiredMaskS) const {
1271  const APInt &ActualMask = RHS->getAPIntValue();
1272  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1273
1274  // If the actual mask exactly matches, success!
1275  if (ActualMask == DesiredMask)
1276    return true;
1277
1278  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1279  if (ActualMask.intersects(~DesiredMask))
1280    return false;
1281
1282  // Otherwise, the DAG Combiner may have proven that the value coming in is
1283  // either already zero or is not demanded.  Check for known zero input bits.
1284  APInt NeededMask = DesiredMask & ~ActualMask;
1285  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1286    return true;
1287
1288  // TODO: check to see if missing bits are just not demanded.
1289
1290  // Otherwise, this pattern doesn't match.
1291  return false;
1292}
1293
1294/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1295/// the dag combiner simplified the 255, we still want to match.  RHS is the
1296/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1297/// specified in the .td file (e.g. 255).
1298bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1299                                   int64_t DesiredMaskS) const {
1300  const APInt &ActualMask = RHS->getAPIntValue();
1301  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1302
1303  // If the actual mask exactly matches, success!
1304  if (ActualMask == DesiredMask)
1305    return true;
1306
1307  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1308  if (ActualMask.intersects(~DesiredMask))
1309    return false;
1310
1311  // Otherwise, the DAG Combiner may have proven that the value coming in is
1312  // either already zero or is not demanded.  Check for known zero input bits.
1313  APInt NeededMask = DesiredMask & ~ActualMask;
1314
1315  APInt KnownZero, KnownOne;
1316  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1317
1318  // If all the missing bits in the or are already known to be set, match!
1319  if ((NeededMask & KnownOne) == NeededMask)
1320    return true;
1321
1322  // TODO: check to see if missing bits are just not demanded.
1323
1324  // Otherwise, this pattern doesn't match.
1325  return false;
1326}
1327
1328
1329/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1330/// by tblgen.  Others should not call it.
1331void SelectionDAGISel::
1332SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1333  std::vector<SDValue> InOps;
1334  std::swap(InOps, Ops);
1335
1336  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1337  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1338  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1339
1340  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1341  if (InOps[e-1].getValueType() == MVT::Flag)
1342    --e;  // Don't process a flag operand if it is here.
1343
1344  while (i != e) {
1345    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1346    if (!InlineAsm::isMemKind(Flags)) {
1347      // Just skip over this operand, copying the operands verbatim.
1348      Ops.insert(Ops.end(), InOps.begin()+i,
1349                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1350      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1351    } else {
1352      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1353             "Memory operand with multiple values?");
1354      // Otherwise, this is a memory operand.  Ask the target to select it.
1355      std::vector<SDValue> SelOps;
1356      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1357        llvm_report_error("Could not match memory address.  Inline asm"
1358                          " failure!");
1359
1360      // Add this to the output node.
1361      unsigned NewFlags =
1362        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1363      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1364      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1365      i += 2;
1366    }
1367  }
1368
1369  // Add the flag input back if present.
1370  if (e != InOps.size())
1371    Ops.push_back(InOps.back());
1372}
1373
1374/// findFlagUse - Return use of EVT::Flag value produced by the specified
1375/// SDNode.
1376///
1377static SDNode *findFlagUse(SDNode *N) {
1378  unsigned FlagResNo = N->getNumValues()-1;
1379  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1380    SDUse &Use = I.getUse();
1381    if (Use.getResNo() == FlagResNo)
1382      return Use.getUser();
1383  }
1384  return NULL;
1385}
1386
1387/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1388/// This function recursively traverses up the operand chain, ignoring
1389/// certain nodes.
1390static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1391                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1392                          bool IgnoreChains) {
1393  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1394  // greater than all of its (recursive) operands.  If we scan to a point where
1395  // 'use' is smaller than the node we're scanning for, then we know we will
1396  // never find it.
1397  //
1398  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1399  // happen because we scan down to newly selected nodes in the case of flag
1400  // uses.
1401  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1402    return false;
1403
1404  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1405  // won't fail if we scan it again.
1406  if (!Visited.insert(Use))
1407    return false;
1408
1409  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1410    // Ignore chain uses, they are validated by HandleMergeInputChains.
1411    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1412      continue;
1413
1414    SDNode *N = Use->getOperand(i).getNode();
1415    if (N == Def) {
1416      if (Use == ImmedUse || Use == Root)
1417        continue;  // We are not looking for immediate use.
1418      assert(N != Root);
1419      return true;
1420    }
1421
1422    // Traverse up the operand chain.
1423    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1424      return true;
1425  }
1426  return false;
1427}
1428
1429/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1430/// operand node N of U during instruction selection that starts at Root.
1431bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1432                                          SDNode *Root) const {
1433  if (OptLevel == CodeGenOpt::None) return false;
1434  return N.hasOneUse();
1435}
1436
1437/// IsLegalToFold - Returns true if the specific operand node N of
1438/// U can be folded during instruction selection that starts at Root.
1439bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1440                                     bool IgnoreChains) const {
1441  if (OptLevel == CodeGenOpt::None) return false;
1442
1443  // If Root use can somehow reach N through a path that that doesn't contain
1444  // U then folding N would create a cycle. e.g. In the following
1445  // diagram, Root can reach N through X. If N is folded into into Root, then
1446  // X is both a predecessor and a successor of U.
1447  //
1448  //          [N*]           //
1449  //         ^   ^           //
1450  //        /     \          //
1451  //      [U*]    [X]?       //
1452  //        ^     ^          //
1453  //         \   /           //
1454  //          \ /            //
1455  //         [Root*]         //
1456  //
1457  // * indicates nodes to be folded together.
1458  //
1459  // If Root produces a flag, then it gets (even more) interesting. Since it
1460  // will be "glued" together with its flag use in the scheduler, we need to
1461  // check if it might reach N.
1462  //
1463  //          [N*]           //
1464  //         ^   ^           //
1465  //        /     \          //
1466  //      [U*]    [X]?       //
1467  //        ^       ^        //
1468  //         \       \       //
1469  //          \      |       //
1470  //         [Root*] |       //
1471  //          ^      |       //
1472  //          f      |       //
1473  //          |      /       //
1474  //         [Y]    /        //
1475  //           ^   /         //
1476  //           f  /          //
1477  //           | /           //
1478  //          [FU]           //
1479  //
1480  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1481  // (call it Fold), then X is a predecessor of FU and a successor of
1482  // Fold. But since Fold and FU are flagged together, this will create
1483  // a cycle in the scheduling graph.
1484
1485  // If the node has flags, walk down the graph to the "lowest" node in the
1486  // flagged set.
1487  EVT VT = Root->getValueType(Root->getNumValues()-1);
1488  while (VT == MVT::Flag) {
1489    SDNode *FU = findFlagUse(Root);
1490    if (FU == NULL)
1491      break;
1492    Root = FU;
1493    VT = Root->getValueType(Root->getNumValues()-1);
1494
1495    // If our query node has a flag result with a use, we've walked up it.  If
1496    // the user (which has already been selected) has a chain or indirectly uses
1497    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1498    // this, we cannot ignore chains in this predicate.
1499    IgnoreChains = false;
1500  }
1501
1502
1503  SmallPtrSet<SDNode*, 16> Visited;
1504  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1505}
1506
1507SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1508  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1509  SelectInlineAsmMemoryOperands(Ops);
1510
1511  std::vector<EVT> VTs;
1512  VTs.push_back(MVT::Other);
1513  VTs.push_back(MVT::Flag);
1514  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1515                                VTs, &Ops[0], Ops.size());
1516  New->setNodeId(-1);
1517  return New.getNode();
1518}
1519
1520SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1521  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1522}
1523
1524/// GetVBR - decode a vbr encoding whose top bit is set.
1525ALWAYS_INLINE static uint64_t
1526GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1527  assert(Val >= 128 && "Not a VBR");
1528  Val &= 127;  // Remove first vbr bit.
1529
1530  unsigned Shift = 7;
1531  uint64_t NextBits;
1532  do {
1533    NextBits = MatcherTable[Idx++];
1534    Val |= (NextBits&127) << Shift;
1535    Shift += 7;
1536  } while (NextBits & 128);
1537
1538  return Val;
1539}
1540
1541
1542/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1543/// interior flag and chain results to use the new flag and chain results.
1544void SelectionDAGISel::
1545UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1546                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1547                     SDValue InputFlag,
1548                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1549                     bool isMorphNodeTo) {
1550  SmallVector<SDNode*, 4> NowDeadNodes;
1551
1552  ISelUpdater ISU(ISelPosition);
1553
1554  // Now that all the normal results are replaced, we replace the chain and
1555  // flag results if present.
1556  if (!ChainNodesMatched.empty()) {
1557    assert(InputChain.getNode() != 0 &&
1558           "Matched input chains but didn't produce a chain");
1559    // Loop over all of the nodes we matched that produced a chain result.
1560    // Replace all the chain results with the final chain we ended up with.
1561    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1562      SDNode *ChainNode = ChainNodesMatched[i];
1563
1564      // If this node was already deleted, don't look at it.
1565      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1566        continue;
1567
1568      // Don't replace the results of the root node if we're doing a
1569      // MorphNodeTo.
1570      if (ChainNode == NodeToMatch && isMorphNodeTo)
1571        continue;
1572
1573      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1574      if (ChainVal.getValueType() == MVT::Flag)
1575        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1576      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1577      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1578
1579      // If the node became dead and we haven't already seen it, delete it.
1580      if (ChainNode->use_empty() &&
1581          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1582        NowDeadNodes.push_back(ChainNode);
1583    }
1584  }
1585
1586  // If the result produces a flag, update any flag results in the matched
1587  // pattern with the flag result.
1588  if (InputFlag.getNode() != 0) {
1589    // Handle any interior nodes explicitly marked.
1590    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1591      SDNode *FRN = FlagResultNodesMatched[i];
1592
1593      // If this node was already deleted, don't look at it.
1594      if (FRN->getOpcode() == ISD::DELETED_NODE)
1595        continue;
1596
1597      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1598             "Doesn't have a flag result");
1599      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1600                                        InputFlag, &ISU);
1601
1602      // If the node became dead and we haven't already seen it, delete it.
1603      if (FRN->use_empty() &&
1604          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1605        NowDeadNodes.push_back(FRN);
1606    }
1607  }
1608
1609  if (!NowDeadNodes.empty())
1610    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1611
1612  DEBUG(errs() << "ISEL: Match complete!\n");
1613}
1614
1615enum ChainResult {
1616  CR_Simple,
1617  CR_InducesCycle,
1618  CR_LeadsToInteriorNode
1619};
1620
1621/// WalkChainUsers - Walk down the users of the specified chained node that is
1622/// part of the pattern we're matching, looking at all of the users we find.
1623/// This determines whether something is an interior node, whether we have a
1624/// non-pattern node in between two pattern nodes (which prevent folding because
1625/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1626/// between pattern nodes (in which case the TF becomes part of the pattern).
1627///
1628/// The walk we do here is guaranteed to be small because we quickly get down to
1629/// already selected nodes "below" us.
1630static ChainResult
1631WalkChainUsers(SDNode *ChainedNode,
1632               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1633               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1634  ChainResult Result = CR_Simple;
1635
1636  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1637         E = ChainedNode->use_end(); UI != E; ++UI) {
1638    // Make sure the use is of the chain, not some other value we produce.
1639    if (UI.getUse().getValueType() != MVT::Other) continue;
1640
1641    SDNode *User = *UI;
1642
1643    // If we see an already-selected machine node, then we've gone beyond the
1644    // pattern that we're selecting down into the already selected chunk of the
1645    // DAG.
1646    if (User->isMachineOpcode() ||
1647        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1648      continue;
1649
1650    if (User->getOpcode() == ISD::CopyToReg ||
1651        User->getOpcode() == ISD::CopyFromReg ||
1652        User->getOpcode() == ISD::INLINEASM ||
1653        User->getOpcode() == ISD::EH_LABEL) {
1654      // If their node ID got reset to -1 then they've already been selected.
1655      // Treat them like a MachineOpcode.
1656      if (User->getNodeId() == -1)
1657        continue;
1658    }
1659
1660    // If we have a TokenFactor, we handle it specially.
1661    if (User->getOpcode() != ISD::TokenFactor) {
1662      // If the node isn't a token factor and isn't part of our pattern, then it
1663      // must be a random chained node in between two nodes we're selecting.
1664      // This happens when we have something like:
1665      //   x = load ptr
1666      //   call
1667      //   y = x+4
1668      //   store y -> ptr
1669      // Because we structurally match the load/store as a read/modify/write,
1670      // but the call is chained between them.  We cannot fold in this case
1671      // because it would induce a cycle in the graph.
1672      if (!std::count(ChainedNodesInPattern.begin(),
1673                      ChainedNodesInPattern.end(), User))
1674        return CR_InducesCycle;
1675
1676      // Otherwise we found a node that is part of our pattern.  For example in:
1677      //   x = load ptr
1678      //   y = x+4
1679      //   store y -> ptr
1680      // This would happen when we're scanning down from the load and see the
1681      // store as a user.  Record that there is a use of ChainedNode that is
1682      // part of the pattern and keep scanning uses.
1683      Result = CR_LeadsToInteriorNode;
1684      InteriorChainedNodes.push_back(User);
1685      continue;
1686    }
1687
1688    // If we found a TokenFactor, there are two cases to consider: first if the
1689    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1690    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1691    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1692    //     [Load chain]
1693    //         ^
1694    //         |
1695    //       [Load]
1696    //       ^    ^
1697    //       |    \                    DAG's like cheese
1698    //      /       \                       do you?
1699    //     /         |
1700    // [TokenFactor] [Op]
1701    //     ^          ^
1702    //     |          |
1703    //      \        /
1704    //       \      /
1705    //       [Store]
1706    //
1707    // In this case, the TokenFactor becomes part of our match and we rewrite it
1708    // as a new TokenFactor.
1709    //
1710    // To distinguish these two cases, do a recursive walk down the uses.
1711    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1712    case CR_Simple:
1713      // If the uses of the TokenFactor are just already-selected nodes, ignore
1714      // it, it is "below" our pattern.
1715      continue;
1716    case CR_InducesCycle:
1717      // If the uses of the TokenFactor lead to nodes that are not part of our
1718      // pattern that are not selected, folding would turn this into a cycle,
1719      // bail out now.
1720      return CR_InducesCycle;
1721    case CR_LeadsToInteriorNode:
1722      break;  // Otherwise, keep processing.
1723    }
1724
1725    // Okay, we know we're in the interesting interior case.  The TokenFactor
1726    // is now going to be considered part of the pattern so that we rewrite its
1727    // uses (it may have uses that are not part of the pattern) with the
1728    // ultimate chain result of the generated code.  We will also add its chain
1729    // inputs as inputs to the ultimate TokenFactor we create.
1730    Result = CR_LeadsToInteriorNode;
1731    ChainedNodesInPattern.push_back(User);
1732    InteriorChainedNodes.push_back(User);
1733    continue;
1734  }
1735
1736  return Result;
1737}
1738
1739/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1740/// operation for when the pattern matched at least one node with a chains.  The
1741/// input vector contains a list of all of the chained nodes that we match.  We
1742/// must determine if this is a valid thing to cover (i.e. matching it won't
1743/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1744/// be used as the input node chain for the generated nodes.
1745static SDValue
1746HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1747                       SelectionDAG *CurDAG) {
1748  // Walk all of the chained nodes we've matched, recursively scanning down the
1749  // users of the chain result. This adds any TokenFactor nodes that are caught
1750  // in between chained nodes to the chained and interior nodes list.
1751  SmallVector<SDNode*, 3> InteriorChainedNodes;
1752  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1753    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1754                       InteriorChainedNodes) == CR_InducesCycle)
1755      return SDValue(); // Would induce a cycle.
1756  }
1757
1758  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1759  // that we are interested in.  Form our input TokenFactor node.
1760  SmallVector<SDValue, 3> InputChains;
1761  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1762    // Add the input chain of this node to the InputChains list (which will be
1763    // the operands of the generated TokenFactor) if it's not an interior node.
1764    SDNode *N = ChainNodesMatched[i];
1765    if (N->getOpcode() != ISD::TokenFactor) {
1766      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1767        continue;
1768
1769      // Otherwise, add the input chain.
1770      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1771      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1772      InputChains.push_back(InChain);
1773      continue;
1774    }
1775
1776    // If we have a token factor, we want to add all inputs of the token factor
1777    // that are not part of the pattern we're matching.
1778    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1779      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1780                      N->getOperand(op).getNode()))
1781        InputChains.push_back(N->getOperand(op));
1782    }
1783  }
1784
1785  SDValue Res;
1786  if (InputChains.size() == 1)
1787    return InputChains[0];
1788  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1789                         MVT::Other, &InputChains[0], InputChains.size());
1790}
1791
1792/// MorphNode - Handle morphing a node in place for the selector.
1793SDNode *SelectionDAGISel::
1794MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1795          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1796  // It is possible we're using MorphNodeTo to replace a node with no
1797  // normal results with one that has a normal result (or we could be
1798  // adding a chain) and the input could have flags and chains as well.
1799  // In this case we need to shift the operands down.
1800  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1801  // than the old isel though.
1802  int OldFlagResultNo = -1, OldChainResultNo = -1;
1803
1804  unsigned NTMNumResults = Node->getNumValues();
1805  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1806    OldFlagResultNo = NTMNumResults-1;
1807    if (NTMNumResults != 1 &&
1808        Node->getValueType(NTMNumResults-2) == MVT::Other)
1809      OldChainResultNo = NTMNumResults-2;
1810  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1811    OldChainResultNo = NTMNumResults-1;
1812
1813  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1814  // that this deletes operands of the old node that become dead.
1815  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1816
1817  // MorphNodeTo can operate in two ways: if an existing node with the
1818  // specified operands exists, it can just return it.  Otherwise, it
1819  // updates the node in place to have the requested operands.
1820  if (Res == Node) {
1821    // If we updated the node in place, reset the node ID.  To the isel,
1822    // this should be just like a newly allocated machine node.
1823    Res->setNodeId(-1);
1824  }
1825
1826  unsigned ResNumResults = Res->getNumValues();
1827  // Move the flag if needed.
1828  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1829      (unsigned)OldFlagResultNo != ResNumResults-1)
1830    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1831                                      SDValue(Res, ResNumResults-1));
1832
1833  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1834  --ResNumResults;
1835
1836  // Move the chain reference if needed.
1837  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1838      (unsigned)OldChainResultNo != ResNumResults-1)
1839    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1840                                      SDValue(Res, ResNumResults-1));
1841
1842  // Otherwise, no replacement happened because the node already exists. Replace
1843  // Uses of the old node with the new one.
1844  if (Res != Node)
1845    CurDAG->ReplaceAllUsesWith(Node, Res);
1846
1847  return Res;
1848}
1849
1850/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1851ALWAYS_INLINE static bool
1852CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1853          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1854  // Accept if it is exactly the same as a previously recorded node.
1855  unsigned RecNo = MatcherTable[MatcherIndex++];
1856  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1857  return N == RecordedNodes[RecNo];
1858}
1859
1860/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1861ALWAYS_INLINE static bool
1862CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1863                      SelectionDAGISel &SDISel) {
1864  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1865}
1866
1867/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1868ALWAYS_INLINE static bool
1869CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1870                   SelectionDAGISel &SDISel, SDNode *N) {
1871  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1872}
1873
1874ALWAYS_INLINE static bool
1875CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1876            SDNode *N) {
1877  uint16_t Opc = MatcherTable[MatcherIndex++];
1878  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1879  return N->getOpcode() == Opc;
1880}
1881
1882ALWAYS_INLINE static bool
1883CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1884          SDValue N, const TargetLowering &TLI) {
1885  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1886  if (N.getValueType() == VT) return true;
1887
1888  // Handle the case when VT is iPTR.
1889  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1890}
1891
1892ALWAYS_INLINE static bool
1893CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1894               SDValue N, const TargetLowering &TLI,
1895               unsigned ChildNo) {
1896  if (ChildNo >= N.getNumOperands())
1897    return false;  // Match fails if out of range child #.
1898  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1899}
1900
1901
1902ALWAYS_INLINE static bool
1903CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1904              SDValue N) {
1905  return cast<CondCodeSDNode>(N)->get() ==
1906      (ISD::CondCode)MatcherTable[MatcherIndex++];
1907}
1908
1909ALWAYS_INLINE static bool
1910CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1911               SDValue N, const TargetLowering &TLI) {
1912  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1913  if (cast<VTSDNode>(N)->getVT() == VT)
1914    return true;
1915
1916  // Handle the case when VT is iPTR.
1917  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1918}
1919
1920ALWAYS_INLINE static bool
1921CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1922             SDValue N) {
1923  int64_t Val = MatcherTable[MatcherIndex++];
1924  if (Val & 128)
1925    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1926
1927  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1928  return C != 0 && C->getSExtValue() == Val;
1929}
1930
1931ALWAYS_INLINE static bool
1932CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1933            SDValue N, SelectionDAGISel &SDISel) {
1934  int64_t Val = MatcherTable[MatcherIndex++];
1935  if (Val & 128)
1936    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1937
1938  if (N->getOpcode() != ISD::AND) return false;
1939
1940  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1941  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1942}
1943
1944ALWAYS_INLINE static bool
1945CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1946           SDValue N, SelectionDAGISel &SDISel) {
1947  int64_t Val = MatcherTable[MatcherIndex++];
1948  if (Val & 128)
1949    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1950
1951  if (N->getOpcode() != ISD::OR) return false;
1952
1953  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1954  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1955}
1956
1957/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1958/// scope, evaluate the current node.  If the current predicate is known to
1959/// fail, set Result=true and return anything.  If the current predicate is
1960/// known to pass, set Result=false and return the MatcherIndex to continue
1961/// with.  If the current predicate is unknown, set Result=false and return the
1962/// MatcherIndex to continue with.
1963static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1964                                       unsigned Index, SDValue N,
1965                                       bool &Result, SelectionDAGISel &SDISel,
1966                                       SmallVectorImpl<SDValue> &RecordedNodes){
1967  switch (Table[Index++]) {
1968  default:
1969    Result = false;
1970    return Index-1;  // Could not evaluate this predicate.
1971  case SelectionDAGISel::OPC_CheckSame:
1972    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1973    return Index;
1974  case SelectionDAGISel::OPC_CheckPatternPredicate:
1975    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1976    return Index;
1977  case SelectionDAGISel::OPC_CheckPredicate:
1978    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1979    return Index;
1980  case SelectionDAGISel::OPC_CheckOpcode:
1981    Result = !::CheckOpcode(Table, Index, N.getNode());
1982    return Index;
1983  case SelectionDAGISel::OPC_CheckType:
1984    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1985    return Index;
1986  case SelectionDAGISel::OPC_CheckChild0Type:
1987  case SelectionDAGISel::OPC_CheckChild1Type:
1988  case SelectionDAGISel::OPC_CheckChild2Type:
1989  case SelectionDAGISel::OPC_CheckChild3Type:
1990  case SelectionDAGISel::OPC_CheckChild4Type:
1991  case SelectionDAGISel::OPC_CheckChild5Type:
1992  case SelectionDAGISel::OPC_CheckChild6Type:
1993  case SelectionDAGISel::OPC_CheckChild7Type:
1994    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1995                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1996    return Index;
1997  case SelectionDAGISel::OPC_CheckCondCode:
1998    Result = !::CheckCondCode(Table, Index, N);
1999    return Index;
2000  case SelectionDAGISel::OPC_CheckValueType:
2001    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2002    return Index;
2003  case SelectionDAGISel::OPC_CheckInteger:
2004    Result = !::CheckInteger(Table, Index, N);
2005    return Index;
2006  case SelectionDAGISel::OPC_CheckAndImm:
2007    Result = !::CheckAndImm(Table, Index, N, SDISel);
2008    return Index;
2009  case SelectionDAGISel::OPC_CheckOrImm:
2010    Result = !::CheckOrImm(Table, Index, N, SDISel);
2011    return Index;
2012  }
2013}
2014
2015
2016struct MatchScope {
2017  /// FailIndex - If this match fails, this is the index to continue with.
2018  unsigned FailIndex;
2019
2020  /// NodeStack - The node stack when the scope was formed.
2021  SmallVector<SDValue, 4> NodeStack;
2022
2023  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2024  unsigned NumRecordedNodes;
2025
2026  /// NumMatchedMemRefs - The number of matched memref entries.
2027  unsigned NumMatchedMemRefs;
2028
2029  /// InputChain/InputFlag - The current chain/flag
2030  SDValue InputChain, InputFlag;
2031
2032  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2033  bool HasChainNodesMatched, HasFlagResultNodesMatched;
2034};
2035
2036SDNode *SelectionDAGISel::
2037SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2038                 unsigned TableSize) {
2039  // FIXME: Should these even be selected?  Handle these cases in the caller?
2040  switch (NodeToMatch->getOpcode()) {
2041  default:
2042    break;
2043  case ISD::EntryToken:       // These nodes remain the same.
2044  case ISD::BasicBlock:
2045  case ISD::Register:
2046  //case ISD::VALUETYPE:
2047  //case ISD::CONDCODE:
2048  case ISD::HANDLENODE:
2049  case ISD::MDNODE_SDNODE:
2050  case ISD::TargetConstant:
2051  case ISD::TargetConstantFP:
2052  case ISD::TargetConstantPool:
2053  case ISD::TargetFrameIndex:
2054  case ISD::TargetExternalSymbol:
2055  case ISD::TargetBlockAddress:
2056  case ISD::TargetJumpTable:
2057  case ISD::TargetGlobalTLSAddress:
2058  case ISD::TargetGlobalAddress:
2059  case ISD::TokenFactor:
2060  case ISD::CopyFromReg:
2061  case ISD::CopyToReg:
2062  case ISD::EH_LABEL:
2063    NodeToMatch->setNodeId(-1); // Mark selected.
2064    return 0;
2065  case ISD::AssertSext:
2066  case ISD::AssertZext:
2067    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2068                                      NodeToMatch->getOperand(0));
2069    return 0;
2070  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2071  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2072  }
2073
2074  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2075
2076  // Set up the node stack with NodeToMatch as the only node on the stack.
2077  SmallVector<SDValue, 8> NodeStack;
2078  SDValue N = SDValue(NodeToMatch, 0);
2079  NodeStack.push_back(N);
2080
2081  // MatchScopes - Scopes used when matching, if a match failure happens, this
2082  // indicates where to continue checking.
2083  SmallVector<MatchScope, 8> MatchScopes;
2084
2085  // RecordedNodes - This is the set of nodes that have been recorded by the
2086  // state machine.
2087  SmallVector<SDValue, 8> RecordedNodes;
2088
2089  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2090  // pattern.
2091  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2092
2093  // These are the current input chain and flag for use when generating nodes.
2094  // Various Emit operations change these.  For example, emitting a copytoreg
2095  // uses and updates these.
2096  SDValue InputChain, InputFlag;
2097
2098  // ChainNodesMatched - If a pattern matches nodes that have input/output
2099  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2100  // which ones they are.  The result is captured into this list so that we can
2101  // update the chain results when the pattern is complete.
2102  SmallVector<SDNode*, 3> ChainNodesMatched;
2103  SmallVector<SDNode*, 3> FlagResultNodesMatched;
2104
2105  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2106        NodeToMatch->dump(CurDAG);
2107        errs() << '\n');
2108
2109  // Determine where to start the interpreter.  Normally we start at opcode #0,
2110  // but if the state machine starts with an OPC_SwitchOpcode, then we
2111  // accelerate the first lookup (which is guaranteed to be hot) with the
2112  // OpcodeOffset table.
2113  unsigned MatcherIndex = 0;
2114
2115  if (!OpcodeOffset.empty()) {
2116    // Already computed the OpcodeOffset table, just index into it.
2117    if (N.getOpcode() < OpcodeOffset.size())
2118      MatcherIndex = OpcodeOffset[N.getOpcode()];
2119    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2120
2121  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2122    // Otherwise, the table isn't computed, but the state machine does start
2123    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2124    // is the first time we're selecting an instruction.
2125    unsigned Idx = 1;
2126    while (1) {
2127      // Get the size of this case.
2128      unsigned CaseSize = MatcherTable[Idx++];
2129      if (CaseSize & 128)
2130        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2131      if (CaseSize == 0) break;
2132
2133      // Get the opcode, add the index to the table.
2134      uint16_t Opc = MatcherTable[Idx++];
2135      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2136      if (Opc >= OpcodeOffset.size())
2137        OpcodeOffset.resize((Opc+1)*2);
2138      OpcodeOffset[Opc] = Idx;
2139      Idx += CaseSize;
2140    }
2141
2142    // Okay, do the lookup for the first opcode.
2143    if (N.getOpcode() < OpcodeOffset.size())
2144      MatcherIndex = OpcodeOffset[N.getOpcode()];
2145  }
2146
2147  while (1) {
2148    assert(MatcherIndex < TableSize && "Invalid index");
2149#ifndef NDEBUG
2150    unsigned CurrentOpcodeIndex = MatcherIndex;
2151#endif
2152    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2153    switch (Opcode) {
2154    case OPC_Scope: {
2155      // Okay, the semantics of this operation are that we should push a scope
2156      // then evaluate the first child.  However, pushing a scope only to have
2157      // the first check fail (which then pops it) is inefficient.  If we can
2158      // determine immediately that the first check (or first several) will
2159      // immediately fail, don't even bother pushing a scope for them.
2160      unsigned FailIndex;
2161
2162      while (1) {
2163        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2164        if (NumToSkip & 128)
2165          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2166        // Found the end of the scope with no match.
2167        if (NumToSkip == 0) {
2168          FailIndex = 0;
2169          break;
2170        }
2171
2172        FailIndex = MatcherIndex+NumToSkip;
2173
2174        unsigned MatcherIndexOfPredicate = MatcherIndex;
2175        (void)MatcherIndexOfPredicate; // silence warning.
2176
2177        // If we can't evaluate this predicate without pushing a scope (e.g. if
2178        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2179        // push the scope and evaluate the full predicate chain.
2180        bool Result;
2181        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2182                                              Result, *this, RecordedNodes);
2183        if (!Result)
2184          break;
2185
2186        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2187                     << "index " << MatcherIndexOfPredicate
2188                     << ", continuing at " << FailIndex << "\n");
2189        ++NumDAGIselRetries;
2190
2191        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2192        // move to the next case.
2193        MatcherIndex = FailIndex;
2194      }
2195
2196      // If the whole scope failed to match, bail.
2197      if (FailIndex == 0) break;
2198
2199      // Push a MatchScope which indicates where to go if the first child fails
2200      // to match.
2201      MatchScope NewEntry;
2202      NewEntry.FailIndex = FailIndex;
2203      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2204      NewEntry.NumRecordedNodes = RecordedNodes.size();
2205      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2206      NewEntry.InputChain = InputChain;
2207      NewEntry.InputFlag = InputFlag;
2208      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2209      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2210      MatchScopes.push_back(NewEntry);
2211      continue;
2212    }
2213    case OPC_RecordNode:
2214      // Remember this node, it may end up being an operand in the pattern.
2215      RecordedNodes.push_back(N);
2216      continue;
2217
2218    case OPC_RecordChild0: case OPC_RecordChild1:
2219    case OPC_RecordChild2: case OPC_RecordChild3:
2220    case OPC_RecordChild4: case OPC_RecordChild5:
2221    case OPC_RecordChild6: case OPC_RecordChild7: {
2222      unsigned ChildNo = Opcode-OPC_RecordChild0;
2223      if (ChildNo >= N.getNumOperands())
2224        break;  // Match fails if out of range child #.
2225
2226      RecordedNodes.push_back(N->getOperand(ChildNo));
2227      continue;
2228    }
2229    case OPC_RecordMemRef:
2230      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2231      continue;
2232
2233    case OPC_CaptureFlagInput:
2234      // If the current node has an input flag, capture it in InputFlag.
2235      if (N->getNumOperands() != 0 &&
2236          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2237        InputFlag = N->getOperand(N->getNumOperands()-1);
2238      continue;
2239
2240    case OPC_MoveChild: {
2241      unsigned ChildNo = MatcherTable[MatcherIndex++];
2242      if (ChildNo >= N.getNumOperands())
2243        break;  // Match fails if out of range child #.
2244      N = N.getOperand(ChildNo);
2245      NodeStack.push_back(N);
2246      continue;
2247    }
2248
2249    case OPC_MoveParent:
2250      // Pop the current node off the NodeStack.
2251      NodeStack.pop_back();
2252      assert(!NodeStack.empty() && "Node stack imbalance!");
2253      N = NodeStack.back();
2254      continue;
2255
2256    case OPC_CheckSame:
2257      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2258      continue;
2259    case OPC_CheckPatternPredicate:
2260      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2261      continue;
2262    case OPC_CheckPredicate:
2263      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2264                                N.getNode()))
2265        break;
2266      continue;
2267    case OPC_CheckComplexPat: {
2268      unsigned CPNum = MatcherTable[MatcherIndex++];
2269      unsigned RecNo = MatcherTable[MatcherIndex++];
2270      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2271      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2272                               RecordedNodes))
2273        break;
2274      continue;
2275    }
2276    case OPC_CheckOpcode:
2277      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2278      continue;
2279
2280    case OPC_CheckType:
2281      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2282      continue;
2283
2284    case OPC_SwitchOpcode: {
2285      unsigned CurNodeOpcode = N.getOpcode();
2286      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2287      unsigned CaseSize;
2288      while (1) {
2289        // Get the size of this case.
2290        CaseSize = MatcherTable[MatcherIndex++];
2291        if (CaseSize & 128)
2292          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2293        if (CaseSize == 0) break;
2294
2295        uint16_t Opc = MatcherTable[MatcherIndex++];
2296        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2297
2298        // If the opcode matches, then we will execute this case.
2299        if (CurNodeOpcode == Opc)
2300          break;
2301
2302        // Otherwise, skip over this case.
2303        MatcherIndex += CaseSize;
2304      }
2305
2306      // If no cases matched, bail out.
2307      if (CaseSize == 0) break;
2308
2309      // Otherwise, execute the case we found.
2310      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2311                   << " to " << MatcherIndex << "\n");
2312      continue;
2313    }
2314
2315    case OPC_SwitchType: {
2316      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2317      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2318      unsigned CaseSize;
2319      while (1) {
2320        // Get the size of this case.
2321        CaseSize = MatcherTable[MatcherIndex++];
2322        if (CaseSize & 128)
2323          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2324        if (CaseSize == 0) break;
2325
2326        MVT::SimpleValueType CaseVT =
2327          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2328        if (CaseVT == MVT::iPTR)
2329          CaseVT = TLI.getPointerTy().SimpleTy;
2330
2331        // If the VT matches, then we will execute this case.
2332        if (CurNodeVT == CaseVT)
2333          break;
2334
2335        // Otherwise, skip over this case.
2336        MatcherIndex += CaseSize;
2337      }
2338
2339      // If no cases matched, bail out.
2340      if (CaseSize == 0) break;
2341
2342      // Otherwise, execute the case we found.
2343      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2344                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2345      continue;
2346    }
2347    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2348    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2349    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2350    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2351      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2352                            Opcode-OPC_CheckChild0Type))
2353        break;
2354      continue;
2355    case OPC_CheckCondCode:
2356      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2357      continue;
2358    case OPC_CheckValueType:
2359      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2360      continue;
2361    case OPC_CheckInteger:
2362      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2363      continue;
2364    case OPC_CheckAndImm:
2365      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2366      continue;
2367    case OPC_CheckOrImm:
2368      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2369      continue;
2370
2371    case OPC_CheckFoldableChainNode: {
2372      assert(NodeStack.size() != 1 && "No parent node");
2373      // Verify that all intermediate nodes between the root and this one have
2374      // a single use.
2375      bool HasMultipleUses = false;
2376      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2377        if (!NodeStack[i].hasOneUse()) {
2378          HasMultipleUses = true;
2379          break;
2380        }
2381      if (HasMultipleUses) break;
2382
2383      // Check to see that the target thinks this is profitable to fold and that
2384      // we can fold it without inducing cycles in the graph.
2385      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2386                              NodeToMatch) ||
2387          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2388                         NodeToMatch, true/*We validate our own chains*/))
2389        break;
2390
2391      continue;
2392    }
2393    case OPC_EmitInteger: {
2394      MVT::SimpleValueType VT =
2395        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2396      int64_t Val = MatcherTable[MatcherIndex++];
2397      if (Val & 128)
2398        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2399      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2400      continue;
2401    }
2402    case OPC_EmitRegister: {
2403      MVT::SimpleValueType VT =
2404        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2405      unsigned RegNo = MatcherTable[MatcherIndex++];
2406      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2407      continue;
2408    }
2409
2410    case OPC_EmitConvertToTarget:  {
2411      // Convert from IMM/FPIMM to target version.
2412      unsigned RecNo = MatcherTable[MatcherIndex++];
2413      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2414      SDValue Imm = RecordedNodes[RecNo];
2415
2416      if (Imm->getOpcode() == ISD::Constant) {
2417        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2418        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2419      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2420        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2421        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2422      }
2423
2424      RecordedNodes.push_back(Imm);
2425      continue;
2426    }
2427
2428    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2429    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2430      // These are space-optimized forms of OPC_EmitMergeInputChains.
2431      assert(InputChain.getNode() == 0 &&
2432             "EmitMergeInputChains should be the first chain producing node");
2433      assert(ChainNodesMatched.empty() &&
2434             "Should only have one EmitMergeInputChains per match");
2435
2436      // Read all of the chained nodes.
2437      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2438      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2439      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2440
2441      // FIXME: What if other value results of the node have uses not matched
2442      // by this pattern?
2443      if (ChainNodesMatched.back() != NodeToMatch &&
2444          !RecordedNodes[RecNo].hasOneUse()) {
2445        ChainNodesMatched.clear();
2446        break;
2447      }
2448
2449      // Merge the input chains if they are not intra-pattern references.
2450      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2451
2452      if (InputChain.getNode() == 0)
2453        break;  // Failed to merge.
2454      continue;
2455    }
2456
2457    case OPC_EmitMergeInputChains: {
2458      assert(InputChain.getNode() == 0 &&
2459             "EmitMergeInputChains should be the first chain producing node");
2460      // This node gets a list of nodes we matched in the input that have
2461      // chains.  We want to token factor all of the input chains to these nodes
2462      // together.  However, if any of the input chains is actually one of the
2463      // nodes matched in this pattern, then we have an intra-match reference.
2464      // Ignore these because the newly token factored chain should not refer to
2465      // the old nodes.
2466      unsigned NumChains = MatcherTable[MatcherIndex++];
2467      assert(NumChains != 0 && "Can't TF zero chains");
2468
2469      assert(ChainNodesMatched.empty() &&
2470             "Should only have one EmitMergeInputChains per match");
2471
2472      // Read all of the chained nodes.
2473      for (unsigned i = 0; i != NumChains; ++i) {
2474        unsigned RecNo = MatcherTable[MatcherIndex++];
2475        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2476        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2477
2478        // FIXME: What if other value results of the node have uses not matched
2479        // by this pattern?
2480        if (ChainNodesMatched.back() != NodeToMatch &&
2481            !RecordedNodes[RecNo].hasOneUse()) {
2482          ChainNodesMatched.clear();
2483          break;
2484        }
2485      }
2486
2487      // If the inner loop broke out, the match fails.
2488      if (ChainNodesMatched.empty())
2489        break;
2490
2491      // Merge the input chains if they are not intra-pattern references.
2492      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2493
2494      if (InputChain.getNode() == 0)
2495        break;  // Failed to merge.
2496
2497      continue;
2498    }
2499
2500    case OPC_EmitCopyToReg: {
2501      unsigned RecNo = MatcherTable[MatcherIndex++];
2502      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2503      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2504
2505      if (InputChain.getNode() == 0)
2506        InputChain = CurDAG->getEntryNode();
2507
2508      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2509                                        DestPhysReg, RecordedNodes[RecNo],
2510                                        InputFlag);
2511
2512      InputFlag = InputChain.getValue(1);
2513      continue;
2514    }
2515
2516    case OPC_EmitNodeXForm: {
2517      unsigned XFormNo = MatcherTable[MatcherIndex++];
2518      unsigned RecNo = MatcherTable[MatcherIndex++];
2519      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2520      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2521      continue;
2522    }
2523
2524    case OPC_EmitNode:
2525    case OPC_MorphNodeTo: {
2526      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2527      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2528      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2529      // Get the result VT list.
2530      unsigned NumVTs = MatcherTable[MatcherIndex++];
2531      SmallVector<EVT, 4> VTs;
2532      for (unsigned i = 0; i != NumVTs; ++i) {
2533        MVT::SimpleValueType VT =
2534          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2535        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2536        VTs.push_back(VT);
2537      }
2538
2539      if (EmitNodeInfo & OPFL_Chain)
2540        VTs.push_back(MVT::Other);
2541      if (EmitNodeInfo & OPFL_FlagOutput)
2542        VTs.push_back(MVT::Flag);
2543
2544      // This is hot code, so optimize the two most common cases of 1 and 2
2545      // results.
2546      SDVTList VTList;
2547      if (VTs.size() == 1)
2548        VTList = CurDAG->getVTList(VTs[0]);
2549      else if (VTs.size() == 2)
2550        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2551      else
2552        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2553
2554      // Get the operand list.
2555      unsigned NumOps = MatcherTable[MatcherIndex++];
2556      SmallVector<SDValue, 8> Ops;
2557      for (unsigned i = 0; i != NumOps; ++i) {
2558        unsigned RecNo = MatcherTable[MatcherIndex++];
2559        if (RecNo & 128)
2560          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2561
2562        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2563        Ops.push_back(RecordedNodes[RecNo]);
2564      }
2565
2566      // If there are variadic operands to add, handle them now.
2567      if (EmitNodeInfo & OPFL_VariadicInfo) {
2568        // Determine the start index to copy from.
2569        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2570        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2571        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2572               "Invalid variadic node");
2573        // Copy all of the variadic operands, not including a potential flag
2574        // input.
2575        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2576             i != e; ++i) {
2577          SDValue V = NodeToMatch->getOperand(i);
2578          if (V.getValueType() == MVT::Flag) break;
2579          Ops.push_back(V);
2580        }
2581      }
2582
2583      // If this has chain/flag inputs, add them.
2584      if (EmitNodeInfo & OPFL_Chain)
2585        Ops.push_back(InputChain);
2586      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2587        Ops.push_back(InputFlag);
2588
2589      // Create the node.
2590      SDNode *Res = 0;
2591      if (Opcode != OPC_MorphNodeTo) {
2592        // If this is a normal EmitNode command, just create the new node and
2593        // add the results to the RecordedNodes list.
2594        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2595                                     VTList, Ops.data(), Ops.size());
2596
2597        // Add all the non-flag/non-chain results to the RecordedNodes list.
2598        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2599          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2600          RecordedNodes.push_back(SDValue(Res, i));
2601        }
2602
2603      } else {
2604        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2605                        EmitNodeInfo);
2606      }
2607
2608      // If the node had chain/flag results, update our notion of the current
2609      // chain and flag.
2610      if (EmitNodeInfo & OPFL_FlagOutput) {
2611        InputFlag = SDValue(Res, VTs.size()-1);
2612        if (EmitNodeInfo & OPFL_Chain)
2613          InputChain = SDValue(Res, VTs.size()-2);
2614      } else if (EmitNodeInfo & OPFL_Chain)
2615        InputChain = SDValue(Res, VTs.size()-1);
2616
2617      // If the OPFL_MemRefs flag is set on this node, slap all of the
2618      // accumulated memrefs onto it.
2619      //
2620      // FIXME: This is vastly incorrect for patterns with multiple outputs
2621      // instructions that access memory and for ComplexPatterns that match
2622      // loads.
2623      if (EmitNodeInfo & OPFL_MemRefs) {
2624        MachineSDNode::mmo_iterator MemRefs =
2625          MF->allocateMemRefsArray(MatchedMemRefs.size());
2626        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2627        cast<MachineSDNode>(Res)
2628          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2629      }
2630
2631      DEBUG(errs() << "  "
2632                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2633                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2634
2635      // If this was a MorphNodeTo then we're completely done!
2636      if (Opcode == OPC_MorphNodeTo) {
2637        // Update chain and flag uses.
2638        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2639                             InputFlag, FlagResultNodesMatched, true);
2640        return Res;
2641      }
2642
2643      continue;
2644    }
2645
2646    case OPC_MarkFlagResults: {
2647      unsigned NumNodes = MatcherTable[MatcherIndex++];
2648
2649      // Read and remember all the flag-result nodes.
2650      for (unsigned i = 0; i != NumNodes; ++i) {
2651        unsigned RecNo = MatcherTable[MatcherIndex++];
2652        if (RecNo & 128)
2653          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2654
2655        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2656        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2657      }
2658      continue;
2659    }
2660
2661    case OPC_CompleteMatch: {
2662      // The match has been completed, and any new nodes (if any) have been
2663      // created.  Patch up references to the matched dag to use the newly
2664      // created nodes.
2665      unsigned NumResults = MatcherTable[MatcherIndex++];
2666
2667      for (unsigned i = 0; i != NumResults; ++i) {
2668        unsigned ResSlot = MatcherTable[MatcherIndex++];
2669        if (ResSlot & 128)
2670          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2671
2672        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2673        SDValue Res = RecordedNodes[ResSlot];
2674
2675        assert(i < NodeToMatch->getNumValues() &&
2676               NodeToMatch->getValueType(i) != MVT::Other &&
2677               NodeToMatch->getValueType(i) != MVT::Flag &&
2678               "Invalid number of results to complete!");
2679        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2680                NodeToMatch->getValueType(i) == MVT::iPTR ||
2681                Res.getValueType() == MVT::iPTR ||
2682                NodeToMatch->getValueType(i).getSizeInBits() ==
2683                    Res.getValueType().getSizeInBits()) &&
2684               "invalid replacement");
2685        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2686      }
2687
2688      // If the root node defines a flag, add it to the flag nodes to update
2689      // list.
2690      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2691        FlagResultNodesMatched.push_back(NodeToMatch);
2692
2693      // Update chain and flag uses.
2694      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2695                           InputFlag, FlagResultNodesMatched, false);
2696
2697      assert(NodeToMatch->use_empty() &&
2698             "Didn't replace all uses of the node?");
2699
2700      // FIXME: We just return here, which interacts correctly with SelectRoot
2701      // above.  We should fix this to not return an SDNode* anymore.
2702      return 0;
2703    }
2704    }
2705
2706    // If the code reached this point, then the match failed.  See if there is
2707    // another child to try in the current 'Scope', otherwise pop it until we
2708    // find a case to check.
2709    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2710    ++NumDAGIselRetries;
2711    while (1) {
2712      if (MatchScopes.empty()) {
2713        CannotYetSelect(NodeToMatch);
2714        return 0;
2715      }
2716
2717      // Restore the interpreter state back to the point where the scope was
2718      // formed.
2719      MatchScope &LastScope = MatchScopes.back();
2720      RecordedNodes.resize(LastScope.NumRecordedNodes);
2721      NodeStack.clear();
2722      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2723      N = NodeStack.back();
2724
2725      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2726        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2727      MatcherIndex = LastScope.FailIndex;
2728
2729      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2730
2731      InputChain = LastScope.InputChain;
2732      InputFlag = LastScope.InputFlag;
2733      if (!LastScope.HasChainNodesMatched)
2734        ChainNodesMatched.clear();
2735      if (!LastScope.HasFlagResultNodesMatched)
2736        FlagResultNodesMatched.clear();
2737
2738      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2739      // we have reached the end of this scope, otherwise we have another child
2740      // in the current scope to try.
2741      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2742      if (NumToSkip & 128)
2743        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2744
2745      // If we have another child in this scope to match, update FailIndex and
2746      // try it.
2747      if (NumToSkip != 0) {
2748        LastScope.FailIndex = MatcherIndex+NumToSkip;
2749        break;
2750      }
2751
2752      // End of this scope, pop it and try the next child in the containing
2753      // scope.
2754      MatchScopes.pop_back();
2755    }
2756  }
2757}
2758
2759
2760
2761void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2762  std::string msg;
2763  raw_string_ostream Msg(msg);
2764  Msg << "Cannot yet select: ";
2765
2766  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2767      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2768      N->getOpcode() != ISD::INTRINSIC_VOID) {
2769    N->printrFull(Msg, CurDAG);
2770  } else {
2771    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2772    unsigned iid =
2773      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2774    if (iid < Intrinsic::num_intrinsics)
2775      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2776    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2777      Msg << "target intrinsic %" << TII->getName(iid);
2778    else
2779      Msg << "unknown intrinsic #" << iid;
2780  }
2781  llvm_report_error(Msg.str());
2782}
2783
2784char SelectionDAGISel::ID = 0;
2785