SelectionDAGISel.cpp revision b9fccc41933648647e3f7669612c683eb5de0d58
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/SSARegMap.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetFrameInfo.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include <map>
34#include <iostream>
35using namespace llvm;
36
37#ifndef _NDEBUG
38static cl::opt<bool>
39ViewDAGs("view-isel-dags", cl::Hidden,
40         cl::desc("Pop up a window to show isel dags as they are selected"));
41#else
42static const bool ViewDAGS = 0;
43#endif
44
45namespace llvm {
46  //===--------------------------------------------------------------------===//
47  /// FunctionLoweringInfo - This contains information that is global to a
48  /// function that is used when lowering a region of the function.
49  class FunctionLoweringInfo {
50  public:
51    TargetLowering &TLI;
52    Function &Fn;
53    MachineFunction &MF;
54    SSARegMap *RegMap;
55
56    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
57
58    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
59    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
60
61    /// ValueMap - Since we emit code for the function a basic block at a time,
62    /// we must remember which virtual registers hold the values for
63    /// cross-basic-block values.
64    std::map<const Value*, unsigned> ValueMap;
65
66    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
67    /// the entry block.  This allows the allocas to be efficiently referenced
68    /// anywhere in the function.
69    std::map<const AllocaInst*, int> StaticAllocaMap;
70
71    /// BlockLocalArguments - If any arguments are only used in a single basic
72    /// block, and if the target can access the arguments without side-effects,
73    /// avoid emitting CopyToReg nodes for those arguments.  This map keeps
74    /// track of which arguments are local to each BB.
75    std::multimap<BasicBlock*, std::pair<Argument*,
76                                         unsigned> > BlockLocalArguments;
77
78
79    unsigned MakeReg(MVT::ValueType VT) {
80      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
81    }
82
83    unsigned CreateRegForValue(const Value *V) {
84      MVT::ValueType VT = TLI.getValueType(V->getType());
85      // The common case is that we will only create one register for this
86      // value.  If we have that case, create and return the virtual register.
87      unsigned NV = TLI.getNumElements(VT);
88      if (NV == 1) {
89        // If we are promoting this value, pick the next largest supported type.
90        return MakeReg(TLI.getTypeToTransformTo(VT));
91      }
92
93      // If this value is represented with multiple target registers, make sure
94      // to create enough consequtive registers of the right (smaller) type.
95      unsigned NT = VT-1;  // Find the type to use.
96      while (TLI.getNumElements((MVT::ValueType)NT) != 1)
97        --NT;
98
99      unsigned R = MakeReg((MVT::ValueType)NT);
100      for (unsigned i = 1; i != NV; ++i)
101        MakeReg((MVT::ValueType)NT);
102      return R;
103    }
104
105    unsigned InitializeRegForValue(const Value *V) {
106      unsigned &R = ValueMap[V];
107      assert(R == 0 && "Already initialized this value register!");
108      return R = CreateRegForValue(V);
109    }
110  };
111}
112
113/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
114/// PHI nodes or outside of the basic block that defines it.
115static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
116  if (isa<PHINode>(I)) return true;
117  BasicBlock *BB = I->getParent();
118  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
119    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
120      return true;
121  return false;
122}
123
124FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
125                                           Function &fn, MachineFunction &mf)
126    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
127
128  // Initialize the mapping of values to registers.  This is only set up for
129  // instruction values that are used outside of the block that defines
130  // them.
131  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end(); AI != E; ++AI)
132    InitializeRegForValue(AI);
133
134  Function::iterator BB = Fn.begin(), E = Fn.end();
135  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
136    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
137      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
138        const Type *Ty = AI->getAllocatedType();
139        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
140        unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
141        TySize *= CUI->getValue();   // Get total allocated size.
142        StaticAllocaMap[AI] =
143          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
144      }
145
146  for (; BB != E; ++BB)
147    for (BasicBlock::iterator I = BB->begin(), e = BB->end(); I != e; ++I)
148      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
149        if (!isa<AllocaInst>(I) ||
150            !StaticAllocaMap.count(cast<AllocaInst>(I)))
151          InitializeRegForValue(I);
152
153  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
154  // also creates the initial PHI MachineInstrs, though none of the input
155  // operands are populated.
156  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
157    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
158    MBBMap[BB] = MBB;
159    MF.getBasicBlockList().push_back(MBB);
160
161    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
162    // appropriate.
163    PHINode *PN;
164    for (BasicBlock::iterator I = BB->begin();
165         (PN = dyn_cast<PHINode>(I)); ++I)
166      if (!PN->use_empty()) {
167        unsigned NumElements =
168          TLI.getNumElements(TLI.getValueType(PN->getType()));
169        unsigned PHIReg = ValueMap[PN];
170        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
171        for (unsigned i = 0; i != NumElements; ++i)
172          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
173      }
174  }
175}
176
177
178
179//===----------------------------------------------------------------------===//
180/// SelectionDAGLowering - This is the common target-independent lowering
181/// implementation that is parameterized by a TargetLowering object.
182/// Also, targets can overload any lowering method.
183///
184namespace llvm {
185class SelectionDAGLowering {
186  MachineBasicBlock *CurMBB;
187
188  std::map<const Value*, SDOperand> NodeMap;
189
190  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
191  /// them up and then emit token factor nodes when possible.  This allows us to
192  /// get simple disambiguation between loads without worrying about alias
193  /// analysis.
194  std::vector<SDOperand> PendingLoads;
195
196public:
197  // TLI - This is information that describes the available target features we
198  // need for lowering.  This indicates when operations are unavailable,
199  // implemented with a libcall, etc.
200  TargetLowering &TLI;
201  SelectionDAG &DAG;
202  const TargetData &TD;
203
204  /// FuncInfo - Information about the function as a whole.
205  ///
206  FunctionLoweringInfo &FuncInfo;
207
208  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
209                       FunctionLoweringInfo &funcinfo)
210    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
211      FuncInfo(funcinfo) {
212  }
213
214  /// getRoot - Return the current virtual root of the Selection DAG.
215  ///
216  SDOperand getRoot() {
217    if (PendingLoads.empty())
218      return DAG.getRoot();
219
220    if (PendingLoads.size() == 1) {
221      SDOperand Root = PendingLoads[0];
222      DAG.setRoot(Root);
223      PendingLoads.clear();
224      return Root;
225    }
226
227    // Otherwise, we have to make a token factor node.
228    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
229    PendingLoads.clear();
230    DAG.setRoot(Root);
231    return Root;
232  }
233
234  void visit(Instruction &I) { visit(I.getOpcode(), I); }
235
236  void visit(unsigned Opcode, User &I) {
237    switch (Opcode) {
238    default: assert(0 && "Unknown instruction type encountered!");
239             abort();
240      // Build the switch statement using the Instruction.def file.
241#define HANDLE_INST(NUM, OPCODE, CLASS) \
242    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
243#include "llvm/Instruction.def"
244    }
245  }
246
247  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
248
249
250  SDOperand getIntPtrConstant(uint64_t Val) {
251    return DAG.getConstant(Val, TLI.getPointerTy());
252  }
253
254  SDOperand getValue(const Value *V) {
255    SDOperand &N = NodeMap[V];
256    if (N.Val) return N;
257
258    MVT::ValueType VT = TLI.getValueType(V->getType());
259    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
260      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
261        visit(CE->getOpcode(), *CE);
262        assert(N.Val && "visit didn't populate the ValueMap!");
263        return N;
264      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
265        return N = DAG.getGlobalAddress(GV, VT);
266      } else if (isa<ConstantPointerNull>(C)) {
267        return N = DAG.getConstant(0, TLI.getPointerTy());
268      } else if (isa<UndefValue>(C)) {
269	/// FIXME: Implement UNDEFVALUE better.
270        if (MVT::isInteger(VT))
271          return N = DAG.getConstant(0, VT);
272        else if (MVT::isFloatingPoint(VT))
273          return N = DAG.getConstantFP(0, VT);
274        else
275          assert(0 && "Unknown value type!");
276
277      } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
278        return N = DAG.getConstantFP(CFP->getValue(), VT);
279      } else {
280        // Canonicalize all constant ints to be unsigned.
281        return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
282      }
283
284    if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
285      std::map<const AllocaInst*, int>::iterator SI =
286        FuncInfo.StaticAllocaMap.find(AI);
287      if (SI != FuncInfo.StaticAllocaMap.end())
288        return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
289    }
290
291    std::map<const Value*, unsigned>::const_iterator VMI =
292      FuncInfo.ValueMap.find(V);
293    assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
294
295    return N = DAG.getCopyFromReg(VMI->second, VT, DAG.getEntryNode());
296  }
297
298  const SDOperand &setValue(const Value *V, SDOperand NewN) {
299    SDOperand &N = NodeMap[V];
300    assert(N.Val == 0 && "Already set a value for this node!");
301    return N = NewN;
302  }
303
304  // Terminator instructions.
305  void visitRet(ReturnInst &I);
306  void visitBr(BranchInst &I);
307  void visitUnreachable(UnreachableInst &I) { /* noop */ }
308
309  // These all get lowered before this pass.
310  void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
311  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
312  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
313
314  //
315  void visitBinary(User &I, unsigned Opcode);
316  void visitAdd(User &I) { visitBinary(I, ISD::ADD); }
317  void visitSub(User &I);
318  void visitMul(User &I) { visitBinary(I, ISD::MUL); }
319  void visitDiv(User &I) {
320    visitBinary(I, I.getType()->isUnsigned() ? ISD::UDIV : ISD::SDIV);
321  }
322  void visitRem(User &I) {
323    visitBinary(I, I.getType()->isUnsigned() ? ISD::UREM : ISD::SREM);
324  }
325  void visitAnd(User &I) { visitBinary(I, ISD::AND); }
326  void visitOr (User &I) { visitBinary(I, ISD::OR); }
327  void visitXor(User &I) { visitBinary(I, ISD::XOR); }
328  void visitShl(User &I) { visitBinary(I, ISD::SHL); }
329  void visitShr(User &I) {
330    visitBinary(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
331  }
332
333  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
334  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
335  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
336  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
337  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
338  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
339  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
340
341  void visitGetElementPtr(User &I);
342  void visitCast(User &I);
343  void visitSelect(User &I);
344  //
345
346  void visitMalloc(MallocInst &I);
347  void visitFree(FreeInst &I);
348  void visitAlloca(AllocaInst &I);
349  void visitLoad(LoadInst &I);
350  void visitStore(StoreInst &I);
351  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
352  void visitCall(CallInst &I);
353
354  void visitVAStart(CallInst &I);
355  void visitVANext(VANextInst &I);
356  void visitVAArg(VAArgInst &I);
357  void visitVAEnd(CallInst &I);
358  void visitVACopy(CallInst &I);
359  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
360
361  void visitMemIntrinsic(CallInst &I, unsigned Op);
362
363  void visitUserOp1(Instruction &I) {
364    assert(0 && "UserOp1 should not exist at instruction selection time!");
365    abort();
366  }
367  void visitUserOp2(Instruction &I) {
368    assert(0 && "UserOp2 should not exist at instruction selection time!");
369    abort();
370  }
371};
372} // end namespace llvm
373
374void SelectionDAGLowering::visitRet(ReturnInst &I) {
375  if (I.getNumOperands() == 0) {
376    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
377    return;
378  }
379
380  SDOperand Op1 = getValue(I.getOperand(0));
381  MVT::ValueType TmpVT;
382
383  switch (Op1.getValueType()) {
384  default: assert(0 && "Unknown value type!");
385  case MVT::i1:
386  case MVT::i8:
387  case MVT::i16:
388  case MVT::i32:
389    // If this is a machine where 32-bits is legal or expanded, promote to
390    // 32-bits, otherwise, promote to 64-bits.
391    if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
392      TmpVT = TLI.getTypeToTransformTo(MVT::i32);
393    else
394      TmpVT = MVT::i32;
395
396    // Extend integer types to result type.
397    if (I.getOperand(0)->getType()->isSigned())
398      Op1 = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, Op1);
399    else
400      Op1 = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, Op1);
401    break;
402  case MVT::f32:
403    // Extend float to double.
404    Op1 = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Op1);
405    break;
406  case MVT::i64:
407  case MVT::f64:
408    break; // No extension needed!
409  }
410
411  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot(), Op1));
412}
413
414void SelectionDAGLowering::visitBr(BranchInst &I) {
415  // Update machine-CFG edges.
416  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
417
418  // Figure out which block is immediately after the current one.
419  MachineBasicBlock *NextBlock = 0;
420  MachineFunction::iterator BBI = CurMBB;
421  if (++BBI != CurMBB->getParent()->end())
422    NextBlock = BBI;
423
424  if (I.isUnconditional()) {
425    // If this is not a fall-through branch, emit the branch.
426    if (Succ0MBB != NextBlock)
427      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
428			      DAG.getBasicBlock(Succ0MBB)));
429  } else {
430    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
431
432    SDOperand Cond = getValue(I.getCondition());
433
434    if (Succ1MBB == NextBlock) {
435      // If the condition is false, fall through.  This means we should branch
436      // if the condition is true to Succ #0.
437      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
438			      Cond, DAG.getBasicBlock(Succ0MBB)));
439    } else if (Succ0MBB == NextBlock) {
440      // If the condition is true, fall through.  This means we should branch if
441      // the condition is false to Succ #1.  Invert the condition first.
442      SDOperand True = DAG.getConstant(1, Cond.getValueType());
443      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
444      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
445			      Cond, DAG.getBasicBlock(Succ1MBB)));
446    } else {
447      // Neither edge is a fall through.  If the comparison is true, jump to
448      // Succ#0, otherwise branch unconditionally to succ #1.
449      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
450			      Cond, DAG.getBasicBlock(Succ0MBB)));
451      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
452			      DAG.getBasicBlock(Succ1MBB)));
453    }
454  }
455}
456
457void SelectionDAGLowering::visitSub(User &I) {
458  // -0.0 - X --> fneg
459  if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
460    if (CFP->isExactlyValue(-0.0)) {
461      SDOperand Op2 = getValue(I.getOperand(1));
462      setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
463      return;
464    }
465
466  visitBinary(I, ISD::SUB);
467}
468
469void SelectionDAGLowering::visitBinary(User &I, unsigned Opcode) {
470  SDOperand Op1 = getValue(I.getOperand(0));
471  SDOperand Op2 = getValue(I.getOperand(1));
472
473  if (isa<ShiftInst>(I))
474    Op2 = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), Op2);
475
476  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
477}
478
479void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
480                                      ISD::CondCode UnsignedOpcode) {
481  SDOperand Op1 = getValue(I.getOperand(0));
482  SDOperand Op2 = getValue(I.getOperand(1));
483  ISD::CondCode Opcode = SignedOpcode;
484  if (I.getOperand(0)->getType()->isUnsigned())
485    Opcode = UnsignedOpcode;
486  setValue(&I, DAG.getSetCC(Opcode, MVT::i1, Op1, Op2));
487}
488
489void SelectionDAGLowering::visitSelect(User &I) {
490  SDOperand Cond     = getValue(I.getOperand(0));
491  SDOperand TrueVal  = getValue(I.getOperand(1));
492  SDOperand FalseVal = getValue(I.getOperand(2));
493  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
494                           TrueVal, FalseVal));
495}
496
497void SelectionDAGLowering::visitCast(User &I) {
498  SDOperand N = getValue(I.getOperand(0));
499  MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
500  MVT::ValueType DestTy = TLI.getValueType(I.getType());
501
502  if (N.getValueType() == DestTy) {
503    setValue(&I, N);  // noop cast.
504  } else if (isInteger(SrcTy)) {
505    if (isInteger(DestTy)) {        // Int -> Int cast
506      if (DestTy < SrcTy)   // Truncating cast?
507        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
508      else if (I.getOperand(0)->getType()->isSigned())
509        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
510      else
511        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
512    } else {                        // Int -> FP cast
513      if (I.getOperand(0)->getType()->isSigned())
514        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
515      else
516        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
517    }
518  } else {
519    assert(isFloatingPoint(SrcTy) && "Unknown value type!");
520    if (isFloatingPoint(DestTy)) {  // FP -> FP cast
521      if (DestTy < SrcTy)   // Rounding cast?
522        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
523      else
524        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
525    } else {                        // FP -> Int cast.
526      if (I.getType()->isSigned())
527        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
528      else
529        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
530    }
531  }
532}
533
534void SelectionDAGLowering::visitGetElementPtr(User &I) {
535  SDOperand N = getValue(I.getOperand(0));
536  const Type *Ty = I.getOperand(0)->getType();
537  const Type *UIntPtrTy = TD.getIntPtrType();
538
539  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
540       OI != E; ++OI) {
541    Value *Idx = *OI;
542    if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
543      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
544      if (Field) {
545        // N = N + Offset
546        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
547        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
548			getIntPtrConstant(Offset));
549      }
550      Ty = StTy->getElementType(Field);
551    } else {
552      Ty = cast<SequentialType>(Ty)->getElementType();
553      if (!isa<Constant>(Idx) || !cast<Constant>(Idx)->isNullValue()) {
554        // N = N + Idx * ElementSize;
555        uint64_t ElementSize = TD.getTypeSize(Ty);
556        SDOperand IdxN = getValue(Idx), Scale = getIntPtrConstant(ElementSize);
557
558        // If the index is smaller or larger than intptr_t, truncate or extend
559        // it.
560        if (IdxN.getValueType() < Scale.getValueType()) {
561          if (Idx->getType()->isSigned())
562            IdxN = DAG.getNode(ISD::SIGN_EXTEND, Scale.getValueType(), IdxN);
563          else
564            IdxN = DAG.getNode(ISD::ZERO_EXTEND, Scale.getValueType(), IdxN);
565        } else if (IdxN.getValueType() > Scale.getValueType())
566          IdxN = DAG.getNode(ISD::TRUNCATE, Scale.getValueType(), IdxN);
567
568        IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
569
570        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
571      }
572    }
573  }
574  setValue(&I, N);
575}
576
577void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
578  // If this is a fixed sized alloca in the entry block of the function,
579  // allocate it statically on the stack.
580  if (FuncInfo.StaticAllocaMap.count(&I))
581    return;   // getValue will auto-populate this.
582
583  const Type *Ty = I.getAllocatedType();
584  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
585  unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
586
587  SDOperand AllocSize = getValue(I.getArraySize());
588  MVT::ValueType IntPtr = TLI.getPointerTy();
589  if (IntPtr < AllocSize.getValueType())
590    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
591  else if (IntPtr > AllocSize.getValueType())
592    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
593
594  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
595                          getIntPtrConstant(TySize));
596
597  // Handle alignment.  If the requested alignment is less than or equal to the
598  // stack alignment, ignore it and round the size of the allocation up to the
599  // stack alignment size.  If the size is greater than the stack alignment, we
600  // note this in the DYNAMIC_STACKALLOC node.
601  unsigned StackAlign =
602    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
603  if (Align <= StackAlign) {
604    Align = 0;
605    // Add SA-1 to the size.
606    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
607                            getIntPtrConstant(StackAlign-1));
608    // Mask out the low bits for alignment purposes.
609    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
610                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
611  }
612
613  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, AllocSize.getValueType(),
614                              getRoot(), AllocSize,
615                              getIntPtrConstant(Align));
616  DAG.setRoot(setValue(&I, DSA).getValue(1));
617
618  // Inform the Frame Information that we have just allocated a variable-sized
619  // object.
620  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
621}
622
623
624void SelectionDAGLowering::visitLoad(LoadInst &I) {
625  SDOperand Ptr = getValue(I.getOperand(0));
626
627  SDOperand Root;
628  if (I.isVolatile())
629    Root = getRoot();
630  else {
631    // Do not serialize non-volatile loads against each other.
632    Root = DAG.getRoot();
633  }
634
635  SDOperand L = DAG.getLoad(TLI.getValueType(I.getType()), Root, Ptr);
636  setValue(&I, L);
637
638  if (I.isVolatile())
639    DAG.setRoot(L.getValue(1));
640  else
641    PendingLoads.push_back(L.getValue(1));
642}
643
644
645void SelectionDAGLowering::visitStore(StoreInst &I) {
646  Value *SrcV = I.getOperand(0);
647  SDOperand Src = getValue(SrcV);
648  SDOperand Ptr = getValue(I.getOperand(1));
649  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr));
650}
651
652void SelectionDAGLowering::visitCall(CallInst &I) {
653  const char *RenameFn = 0;
654  if (Function *F = I.getCalledFunction())
655    switch (F->getIntrinsicID()) {
656    case 0: break;  // Not an intrinsic.
657    case Intrinsic::vastart:  visitVAStart(I); return;
658    case Intrinsic::vaend:    visitVAEnd(I); return;
659    case Intrinsic::vacopy:   visitVACopy(I); return;
660    case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return;
661    case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return;
662    default:
663      // FIXME: IMPLEMENT THESE.
664      // readport, writeport, readio, writeio
665      assert(0 && "This intrinsic is not implemented yet!");
666      return;
667    case Intrinsic::setjmp:  RenameFn = "setjmp"; break;
668    case Intrinsic::longjmp: RenameFn = "longjmp"; break;
669    case Intrinsic::memcpy:  visitMemIntrinsic(I, ISD::MEMCPY); return;
670    case Intrinsic::memset:  visitMemIntrinsic(I, ISD::MEMSET); return;
671    case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return;
672
673    case Intrinsic::isunordered:
674      setValue(&I, DAG.getSetCC(ISD::SETUO, MVT::i1, getValue(I.getOperand(1)),
675                                getValue(I.getOperand(2))));
676      return;
677    case Intrinsic::pcmarker: {
678      SDOperand Num = getValue(I.getOperand(1));
679      DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Num));
680      return;
681    }
682
683    }
684
685  SDOperand Callee;
686  if (!RenameFn)
687    Callee = getValue(I.getOperand(0));
688  else
689    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
690  std::vector<std::pair<SDOperand, const Type*> > Args;
691
692  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
693    Value *Arg = I.getOperand(i);
694    SDOperand ArgNode = getValue(Arg);
695    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
696  }
697
698  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
699  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
700
701  std::pair<SDOperand,SDOperand> Result =
702    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), Callee, Args, DAG);
703  if (I.getType() != Type::VoidTy)
704    setValue(&I, Result.first);
705  DAG.setRoot(Result.second);
706}
707
708void SelectionDAGLowering::visitMalloc(MallocInst &I) {
709  SDOperand Src = getValue(I.getOperand(0));
710
711  MVT::ValueType IntPtr = TLI.getPointerTy();
712
713  if (IntPtr < Src.getValueType())
714    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
715  else if (IntPtr > Src.getValueType())
716    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
717
718  // Scale the source by the type size.
719  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
720  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
721                    Src, getIntPtrConstant(ElementSize));
722
723  std::vector<std::pair<SDOperand, const Type*> > Args;
724  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
725
726  std::pair<SDOperand,SDOperand> Result =
727    TLI.LowerCallTo(getRoot(), I.getType(), false,
728                    DAG.getExternalSymbol("malloc", IntPtr),
729                    Args, DAG);
730  setValue(&I, Result.first);  // Pointers always fit in registers
731  DAG.setRoot(Result.second);
732}
733
734void SelectionDAGLowering::visitFree(FreeInst &I) {
735  std::vector<std::pair<SDOperand, const Type*> > Args;
736  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
737                                TLI.getTargetData().getIntPtrType()));
738  MVT::ValueType IntPtr = TLI.getPointerTy();
739  std::pair<SDOperand,SDOperand> Result =
740    TLI.LowerCallTo(getRoot(), Type::VoidTy, false,
741                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
742  DAG.setRoot(Result.second);
743}
744
745std::pair<SDOperand, SDOperand>
746TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) {
747  // We have no sane default behavior, just emit a useful error message and bail
748  // out.
749  std::cerr << "Variable arguments handling not implemented on this target!\n";
750  abort();
751  return std::make_pair(SDOperand(), SDOperand());
752}
753
754SDOperand TargetLowering::LowerVAEnd(SDOperand Chain, SDOperand L,
755                                     SelectionDAG &DAG) {
756  // Default to a noop.
757  return Chain;
758}
759
760std::pair<SDOperand,SDOperand>
761TargetLowering::LowerVACopy(SDOperand Chain, SDOperand L, SelectionDAG &DAG) {
762  // Default to returning the input list.
763  return std::make_pair(L, Chain);
764}
765
766std::pair<SDOperand,SDOperand>
767TargetLowering::LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
768                               const Type *ArgTy, SelectionDAG &DAG) {
769  // We have no sane default behavior, just emit a useful error message and bail
770  // out.
771  std::cerr << "Variable arguments handling not implemented on this target!\n";
772  abort();
773  return std::make_pair(SDOperand(), SDOperand());
774}
775
776
777void SelectionDAGLowering::visitVAStart(CallInst &I) {
778  std::pair<SDOperand,SDOperand> Result = TLI.LowerVAStart(getRoot(), DAG);
779  setValue(&I, Result.first);
780  DAG.setRoot(Result.second);
781}
782
783void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
784  std::pair<SDOperand,SDOperand> Result =
785    TLI.LowerVAArgNext(false, getRoot(), getValue(I.getOperand(0)),
786                       I.getType(), DAG);
787  setValue(&I, Result.first);
788  DAG.setRoot(Result.second);
789}
790
791void SelectionDAGLowering::visitVANext(VANextInst &I) {
792  std::pair<SDOperand,SDOperand> Result =
793    TLI.LowerVAArgNext(true, getRoot(), getValue(I.getOperand(0)),
794                       I.getArgType(), DAG);
795  setValue(&I, Result.first);
796  DAG.setRoot(Result.second);
797}
798
799void SelectionDAGLowering::visitVAEnd(CallInst &I) {
800  DAG.setRoot(TLI.LowerVAEnd(getRoot(), getValue(I.getOperand(1)), DAG));
801}
802
803void SelectionDAGLowering::visitVACopy(CallInst &I) {
804  std::pair<SDOperand,SDOperand> Result =
805    TLI.LowerVACopy(getRoot(), getValue(I.getOperand(1)), DAG);
806  setValue(&I, Result.first);
807  DAG.setRoot(Result.second);
808}
809
810
811// It is always conservatively correct for llvm.returnaddress and
812// llvm.frameaddress to return 0.
813std::pair<SDOperand, SDOperand>
814TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
815                                        unsigned Depth, SelectionDAG &DAG) {
816  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
817}
818
819SDOperand TargetLowering::LowerOperation(SDOperand Op) {
820  assert(0 && "LowerOperation not implemented for this target!");
821  abort();
822  return SDOperand();
823}
824
825void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
826  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
827  std::pair<SDOperand,SDOperand> Result =
828    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
829  setValue(&I, Result.first);
830  DAG.setRoot(Result.second);
831}
832
833void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
834  std::vector<SDOperand> Ops;
835  Ops.push_back(getRoot());
836  Ops.push_back(getValue(I.getOperand(1)));
837  Ops.push_back(getValue(I.getOperand(2)));
838  Ops.push_back(getValue(I.getOperand(3)));
839  Ops.push_back(getValue(I.getOperand(4)));
840  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
841}
842
843//===----------------------------------------------------------------------===//
844// SelectionDAGISel code
845//===----------------------------------------------------------------------===//
846
847unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
848  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
849}
850
851
852
853bool SelectionDAGISel::runOnFunction(Function &Fn) {
854  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
855  RegMap = MF.getSSARegMap();
856  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
857
858  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
859
860  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
861    SelectBasicBlock(I, MF, FuncInfo);
862
863  return true;
864}
865
866
867SDOperand SelectionDAGISel::
868CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
869  SelectionDAG &DAG = SDL.DAG;
870  SDOperand Op = SDL.getValue(V);
871  assert((Op.getOpcode() != ISD::CopyFromReg ||
872          cast<RegSDNode>(Op)->getReg() != Reg) &&
873         "Copy from a reg to the same reg!");
874  return DAG.getCopyToReg(SDL.getRoot(), Op, Reg);
875}
876
877/// IsOnlyUsedInOneBasicBlock - If the specified argument is only used in a
878/// single basic block, return that block.  Otherwise, return a null pointer.
879static BasicBlock *IsOnlyUsedInOneBasicBlock(Argument *A) {
880  if (A->use_empty()) return 0;
881  BasicBlock *BB = cast<Instruction>(A->use_back())->getParent();
882  for (Argument::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E;
883       ++UI)
884    if (isa<PHINode>(*UI) || cast<Instruction>(*UI)->getParent() != BB)
885      return 0;  // Disagreement among the users?
886
887  // Okay, there is a single BB user.  Only permit this optimization if this is
888  // the entry block, otherwise, we might sink argument loads into loops and
889  // stuff.  Later, when we have global instruction selection, this won't be an
890  // issue clearly.
891  if (BB == BB->getParent()->begin())
892    return BB;
893  return 0;
894}
895
896void SelectionDAGISel::
897LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
898               std::vector<SDOperand> &UnorderedChains) {
899  // If this is the entry block, emit arguments.
900  Function &F = *BB->getParent();
901  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
902
903  if (BB == &F.front()) {
904    SDOperand OldRoot = SDL.DAG.getRoot();
905
906    std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
907
908    // If there were side effects accessing the argument list, do not do
909    // anything special.
910    if (OldRoot != SDL.DAG.getRoot()) {
911      unsigned a = 0;
912      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
913           AI != E; ++AI,++a)
914        if (!AI->use_empty()) {
915          SDL.setValue(AI, Args[a]);
916          SDOperand Copy =
917            CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
918          UnorderedChains.push_back(Copy);
919        }
920    } else {
921      // Otherwise, if any argument is only accessed in a single basic block,
922      // emit that argument only to that basic block.
923      unsigned a = 0;
924      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
925           AI != E; ++AI,++a)
926        if (!AI->use_empty()) {
927          if (BasicBlock *BBU = IsOnlyUsedInOneBasicBlock(AI)) {
928            FuncInfo.BlockLocalArguments.insert(std::make_pair(BBU,
929                                                      std::make_pair(AI, a)));
930          } else {
931            SDL.setValue(AI, Args[a]);
932            SDOperand Copy =
933              CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
934            UnorderedChains.push_back(Copy);
935          }
936        }
937    }
938  }
939
940  // See if there are any block-local arguments that need to be emitted in this
941  // block.
942
943  if (!FuncInfo.BlockLocalArguments.empty()) {
944    std::multimap<BasicBlock*, std::pair<Argument*, unsigned> >::iterator BLAI =
945      FuncInfo.BlockLocalArguments.lower_bound(BB);
946    if (BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB) {
947      // Lower the arguments into this block.
948      std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
949
950      // Set up the value mapping for the local arguments.
951      for (; BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB;
952           ++BLAI)
953        SDL.setValue(BLAI->second.first, Args[BLAI->second.second]);
954
955      // Any dead arguments will just be ignored here.
956    }
957  }
958}
959
960
961void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
962       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
963                                    FunctionLoweringInfo &FuncInfo) {
964  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
965
966  std::vector<SDOperand> UnorderedChains;
967
968  // Lower any arguments needed in this block.
969  LowerArguments(LLVMBB, SDL, UnorderedChains);
970
971  BB = FuncInfo.MBBMap[LLVMBB];
972  SDL.setCurrentBasicBlock(BB);
973
974  // Lower all of the non-terminator instructions.
975  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
976       I != E; ++I)
977    SDL.visit(*I);
978
979  // Ensure that all instructions which are used outside of their defining
980  // blocks are available as virtual registers.
981  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
982    if (!I->use_empty() && !isa<PHINode>(I)) {
983      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
984      if (VMI != FuncInfo.ValueMap.end())
985        UnorderedChains.push_back(
986                           CopyValueToVirtualRegister(SDL, I, VMI->second));
987    }
988
989  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
990  // ensure constants are generated when needed.  Remember the virtual registers
991  // that need to be added to the Machine PHI nodes as input.  We cannot just
992  // directly add them, because expansion might result in multiple MBB's for one
993  // BB.  As such, the start of the BB might correspond to a different MBB than
994  // the end.
995  //
996
997  // Emit constants only once even if used by multiple PHI nodes.
998  std::map<Constant*, unsigned> ConstantsOut;
999
1000  // Check successor nodes PHI nodes that expect a constant to be available from
1001  // this block.
1002  TerminatorInst *TI = LLVMBB->getTerminator();
1003  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1004    BasicBlock *SuccBB = TI->getSuccessor(succ);
1005    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
1006    PHINode *PN;
1007
1008    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1009    // nodes and Machine PHI nodes, but the incoming operands have not been
1010    // emitted yet.
1011    for (BasicBlock::iterator I = SuccBB->begin();
1012         (PN = dyn_cast<PHINode>(I)); ++I)
1013      if (!PN->use_empty()) {
1014        unsigned Reg;
1015        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1016        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
1017          unsigned &RegOut = ConstantsOut[C];
1018          if (RegOut == 0) {
1019            RegOut = FuncInfo.CreateRegForValue(C);
1020            UnorderedChains.push_back(
1021                             CopyValueToVirtualRegister(SDL, C, RegOut));
1022          }
1023          Reg = RegOut;
1024        } else {
1025          Reg = FuncInfo.ValueMap[PHIOp];
1026          if (Reg == 0) {
1027            assert(isa<AllocaInst>(PHIOp) &&
1028                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
1029                   "Didn't codegen value into a register!??");
1030            Reg = FuncInfo.CreateRegForValue(PHIOp);
1031            UnorderedChains.push_back(
1032                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
1033          }
1034        }
1035
1036        // Remember that this register needs to added to the machine PHI node as
1037        // the input for this MBB.
1038        unsigned NumElements =
1039          TLI.getNumElements(TLI.getValueType(PN->getType()));
1040        for (unsigned i = 0, e = NumElements; i != e; ++i)
1041          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
1042      }
1043  }
1044  ConstantsOut.clear();
1045
1046  // Turn all of the unordered chains into one factored node.
1047  if (!UnorderedChains.empty()) {
1048    UnorderedChains.push_back(SDL.getRoot());
1049    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
1050  }
1051
1052  // Lower the terminator after the copies are emitted.
1053  SDL.visit(*LLVMBB->getTerminator());
1054
1055  // Make sure the root of the DAG is up-to-date.
1056  DAG.setRoot(SDL.getRoot());
1057}
1058
1059void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
1060                                        FunctionLoweringInfo &FuncInfo) {
1061  SelectionDAG DAG(TLI, MF);
1062  CurDAG = &DAG;
1063  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
1064
1065  // First step, lower LLVM code to some DAG.  This DAG may use operations and
1066  // types that are not supported by the target.
1067  BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
1068
1069  DEBUG(std::cerr << "Lowered selection DAG:\n");
1070  DEBUG(DAG.dump());
1071
1072  // Second step, hack on the DAG until it only uses operations and types that
1073  // the target supports.
1074  DAG.Legalize();
1075
1076  DEBUG(std::cerr << "Legalized selection DAG:\n");
1077  DEBUG(DAG.dump());
1078
1079  // Third, instruction select all of the operations to machine code, adding the
1080  // code to the MachineBasicBlock.
1081  InstructionSelectBasicBlock(DAG);
1082
1083  if (ViewDAGs) DAG.viewGraph();
1084
1085  DEBUG(std::cerr << "Selected machine code:\n");
1086  DEBUG(BB->dump());
1087
1088  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1089  // PHI nodes in successors.
1090  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
1091    MachineInstr *PHI = PHINodesToUpdate[i].first;
1092    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
1093           "This is not a machine PHI node that we are updating!");
1094    PHI->addRegOperand(PHINodesToUpdate[i].second);
1095    PHI->addMachineBasicBlockOperand(BB);
1096  }
1097
1098  // Finally, add the CFG edges from the last selected MBB to the successor
1099  // MBBs.
1100  TerminatorInst *TI = LLVMBB->getTerminator();
1101  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1102    MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)];
1103    BB->addSuccessor(Succ0MBB);
1104  }
1105}
1106