SelectionDAGISel.cpp revision bcc5f36765e8111c13873a0c0dc874c92385d808
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/CodeGen/ScheduleDAG.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SchedulerRegistry.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/CodeGen/SSARegMap.h"
35#include "llvm/Target/MRegisterInfo.h"
36#include "llvm/Target/TargetAsmInfo.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Target/TargetFrameInfo.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61
62//===---------------------------------------------------------------------===//
63///
64/// RegisterScheduler class - Track the registration of instruction schedulers.
65///
66//===---------------------------------------------------------------------===//
67MachinePassRegistry RegisterScheduler::Registry;
68
69//===---------------------------------------------------------------------===//
70///
71/// ISHeuristic command line option for instruction schedulers.
72///
73//===---------------------------------------------------------------------===//
74namespace {
75  cl::opt<RegisterScheduler::FunctionPassCtor, false,
76          RegisterPassParser<RegisterScheduler> >
77  ISHeuristic("sched",
78              cl::init(&createDefaultScheduler),
79              cl::desc("Instruction schedulers available:"));
80
81  static RegisterScheduler
82  defaultListDAGScheduler("default", "  Best scheduler for the target",
83                          createDefaultScheduler);
84} // namespace
85
86namespace {
87  /// RegsForValue - This struct represents the physical registers that a
88  /// particular value is assigned and the type information about the value.
89  /// This is needed because values can be promoted into larger registers and
90  /// expanded into multiple smaller registers than the value.
91  struct VISIBILITY_HIDDEN RegsForValue {
92    /// Regs - This list hold the register (for legal and promoted values)
93    /// or register set (for expanded values) that the value should be assigned
94    /// to.
95    std::vector<unsigned> Regs;
96
97    /// RegVT - The value type of each register.
98    ///
99    MVT::ValueType RegVT;
100
101    /// ValueVT - The value type of the LLVM value, which may be promoted from
102    /// RegVT or made from merging the two expanded parts.
103    MVT::ValueType ValueVT;
104
105    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
106
107    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
108      : RegVT(regvt), ValueVT(valuevt) {
109        Regs.push_back(Reg);
110    }
111    RegsForValue(const std::vector<unsigned> &regs,
112                 MVT::ValueType regvt, MVT::ValueType valuevt)
113      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
114    }
115
116    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
117    /// this value and returns the result as a ValueVT value.  This uses
118    /// Chain/Flag as the input and updates them for the output Chain/Flag.
119    SDOperand getCopyFromRegs(SelectionDAG &DAG,
120                              SDOperand &Chain, SDOperand &Flag) const;
121
122    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
123    /// specified value into the registers specified by this object.  This uses
124    /// Chain/Flag as the input and updates them for the output Chain/Flag.
125    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
126                       SDOperand &Chain, SDOperand &Flag,
127                       MVT::ValueType PtrVT) const;
128
129    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
130    /// operand list.  This adds the code marker and includes the number of
131    /// values added into it.
132    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
133                              std::vector<SDOperand> &Ops) const;
134  };
135}
136
137namespace llvm {
138  //===--------------------------------------------------------------------===//
139  /// createDefaultScheduler - This creates an instruction scheduler appropriate
140  /// for the target.
141  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
142                                      SelectionDAG *DAG,
143                                      MachineBasicBlock *BB) {
144    TargetLowering &TLI = IS->getTargetLowering();
145
146    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
147      return createTDListDAGScheduler(IS, DAG, BB);
148    } else {
149      assert(TLI.getSchedulingPreference() ==
150           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
151      return createBURRListDAGScheduler(IS, DAG, BB);
152    }
153  }
154
155
156  //===--------------------------------------------------------------------===//
157  /// FunctionLoweringInfo - This contains information that is global to a
158  /// function that is used when lowering a region of the function.
159  class FunctionLoweringInfo {
160  public:
161    TargetLowering &TLI;
162    Function &Fn;
163    MachineFunction &MF;
164    SSARegMap *RegMap;
165
166    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
167
168    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
169    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
170
171    /// ValueMap - Since we emit code for the function a basic block at a time,
172    /// we must remember which virtual registers hold the values for
173    /// cross-basic-block values.
174    std::map<const Value*, unsigned> ValueMap;
175
176    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
177    /// the entry block.  This allows the allocas to be efficiently referenced
178    /// anywhere in the function.
179    std::map<const AllocaInst*, int> StaticAllocaMap;
180
181    unsigned MakeReg(MVT::ValueType VT) {
182      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
183    }
184
185    /// isExportedInst - Return true if the specified value is an instruction
186    /// exported from its block.
187    bool isExportedInst(const Value *V) {
188      return ValueMap.count(V);
189    }
190
191    unsigned CreateRegForValue(const Value *V);
192
193    unsigned InitializeRegForValue(const Value *V) {
194      unsigned &R = ValueMap[V];
195      assert(R == 0 && "Already initialized this value register!");
196      return R = CreateRegForValue(V);
197    }
198  };
199}
200
201/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
202/// PHI nodes or outside of the basic block that defines it, or used by a
203/// switch instruction, which may expand to multiple basic blocks.
204static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
205  if (isa<PHINode>(I)) return true;
206  BasicBlock *BB = I->getParent();
207  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
208    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
209        // FIXME: Remove switchinst special case.
210        isa<SwitchInst>(*UI))
211      return true;
212  return false;
213}
214
215/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
216/// entry block, return true.  This includes arguments used by switches, since
217/// the switch may expand into multiple basic blocks.
218static bool isOnlyUsedInEntryBlock(Argument *A) {
219  BasicBlock *Entry = A->getParent()->begin();
220  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
221    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
222      return false;  // Use not in entry block.
223  return true;
224}
225
226FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
227                                           Function &fn, MachineFunction &mf)
228    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
229
230  // Create a vreg for each argument register that is not dead and is used
231  // outside of the entry block for the function.
232  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
233       AI != E; ++AI)
234    if (!isOnlyUsedInEntryBlock(AI))
235      InitializeRegForValue(AI);
236
237  // Initialize the mapping of values to registers.  This is only set up for
238  // instruction values that are used outside of the block that defines
239  // them.
240  Function::iterator BB = Fn.begin(), EB = Fn.end();
241  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
242    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
243      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
244        const Type *Ty = AI->getAllocatedType();
245        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
246        unsigned Align =
247          std::max((unsigned)TLI.getTargetData()->getTypeAlignmentPref(Ty),
248                   AI->getAlignment());
249
250        TySize *= CUI->getZExtValue();   // Get total allocated size.
251        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
252        StaticAllocaMap[AI] =
253          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
254      }
255
256  for (; BB != EB; ++BB)
257    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
258      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
259        if (!isa<AllocaInst>(I) ||
260            !StaticAllocaMap.count(cast<AllocaInst>(I)))
261          InitializeRegForValue(I);
262
263  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
264  // also creates the initial PHI MachineInstrs, though none of the input
265  // operands are populated.
266  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
267    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
268    MBBMap[BB] = MBB;
269    MF.getBasicBlockList().push_back(MBB);
270
271    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
272    // appropriate.
273    PHINode *PN;
274    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
275      if (PN->use_empty()) continue;
276
277      MVT::ValueType VT = TLI.getValueType(PN->getType());
278      unsigned NumElements;
279      if (VT != MVT::Vector)
280        NumElements = TLI.getNumElements(VT);
281      else {
282        MVT::ValueType VT1,VT2;
283        NumElements =
284          TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
285                                     VT1, VT2);
286      }
287      unsigned PHIReg = ValueMap[PN];
288      assert(PHIReg && "PHI node does not have an assigned virtual register!");
289      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
290      for (unsigned i = 0; i != NumElements; ++i)
291        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
292    }
293  }
294}
295
296/// CreateRegForValue - Allocate the appropriate number of virtual registers of
297/// the correctly promoted or expanded types.  Assign these registers
298/// consecutive vreg numbers and return the first assigned number.
299unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
300  MVT::ValueType VT = TLI.getValueType(V->getType());
301
302  // The number of multiples of registers that we need, to, e.g., split up
303  // a <2 x int64> -> 4 x i32 registers.
304  unsigned NumVectorRegs = 1;
305
306  // If this is a packed type, figure out what type it will decompose into
307  // and how many of the elements it will use.
308  if (VT == MVT::Vector) {
309    const PackedType *PTy = cast<PackedType>(V->getType());
310    unsigned NumElts = PTy->getNumElements();
311    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
312
313    // Divide the input until we get to a supported size.  This will always
314    // end with a scalar if the target doesn't support vectors.
315    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
316      NumElts >>= 1;
317      NumVectorRegs <<= 1;
318    }
319    if (NumElts == 1)
320      VT = EltTy;
321    else
322      VT = getVectorType(EltTy, NumElts);
323  }
324
325  // The common case is that we will only create one register for this
326  // value.  If we have that case, create and return the virtual register.
327  unsigned NV = TLI.getNumElements(VT);
328  if (NV == 1) {
329    // If we are promoting this value, pick the next largest supported type.
330    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
331    unsigned Reg = MakeReg(PromotedType);
332    // If this is a vector of supported or promoted types (e.g. 4 x i16),
333    // create all of the registers.
334    for (unsigned i = 1; i != NumVectorRegs; ++i)
335      MakeReg(PromotedType);
336    return Reg;
337  }
338
339  // If this value is represented with multiple target registers, make sure
340  // to create enough consecutive registers of the right (smaller) type.
341  VT = TLI.getTypeToExpandTo(VT);
342  unsigned R = MakeReg(VT);
343  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
344    MakeReg(VT);
345  return R;
346}
347
348//===----------------------------------------------------------------------===//
349/// SelectionDAGLowering - This is the common target-independent lowering
350/// implementation that is parameterized by a TargetLowering object.
351/// Also, targets can overload any lowering method.
352///
353namespace llvm {
354class SelectionDAGLowering {
355  MachineBasicBlock *CurMBB;
356
357  std::map<const Value*, SDOperand> NodeMap;
358
359  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
360  /// them up and then emit token factor nodes when possible.  This allows us to
361  /// get simple disambiguation between loads without worrying about alias
362  /// analysis.
363  std::vector<SDOperand> PendingLoads;
364
365  /// Case - A pair of values to record the Value for a switch case, and the
366  /// case's target basic block.
367  typedef std::pair<Constant*, MachineBasicBlock*> Case;
368  typedef std::vector<Case>::iterator              CaseItr;
369  typedef std::pair<CaseItr, CaseItr>              CaseRange;
370
371  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
372  /// of conditional branches.
373  struct CaseRec {
374    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
375    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
376
377    /// CaseBB - The MBB in which to emit the compare and branch
378    MachineBasicBlock *CaseBB;
379    /// LT, GE - If nonzero, we know the current case value must be less-than or
380    /// greater-than-or-equal-to these Constants.
381    Constant *LT;
382    Constant *GE;
383    /// Range - A pair of iterators representing the range of case values to be
384    /// processed at this point in the binary search tree.
385    CaseRange Range;
386  };
387
388  /// The comparison function for sorting Case values.
389  struct CaseCmp {
390    bool operator () (const Case& C1, const Case& C2) {
391      assert(isa<ConstantInt>(C1.first) && isa<ConstantInt>(C2.first));
392      return cast<const ConstantInt>(C1.first)->getSExtValue() <
393        cast<const ConstantInt>(C2.first)->getSExtValue();
394    }
395  };
396
397public:
398  // TLI - This is information that describes the available target features we
399  // need for lowering.  This indicates when operations are unavailable,
400  // implemented with a libcall, etc.
401  TargetLowering &TLI;
402  SelectionDAG &DAG;
403  const TargetData *TD;
404
405  /// SwitchCases - Vector of CaseBlock structures used to communicate
406  /// SwitchInst code generation information.
407  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
408  SelectionDAGISel::JumpTable JT;
409
410  /// FuncInfo - Information about the function as a whole.
411  ///
412  FunctionLoweringInfo &FuncInfo;
413
414  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
415                       FunctionLoweringInfo &funcinfo)
416    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
417      JT(0,0,0,0), FuncInfo(funcinfo) {
418  }
419
420  /// getRoot - Return the current virtual root of the Selection DAG.
421  ///
422  SDOperand getRoot() {
423    if (PendingLoads.empty())
424      return DAG.getRoot();
425
426    if (PendingLoads.size() == 1) {
427      SDOperand Root = PendingLoads[0];
428      DAG.setRoot(Root);
429      PendingLoads.clear();
430      return Root;
431    }
432
433    // Otherwise, we have to make a token factor node.
434    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
435                                 &PendingLoads[0], PendingLoads.size());
436    PendingLoads.clear();
437    DAG.setRoot(Root);
438    return Root;
439  }
440
441  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
442
443  void visit(Instruction &I) { visit(I.getOpcode(), I); }
444
445  void visit(unsigned Opcode, User &I) {
446    // Note: this doesn't use InstVisitor, because it has to work with
447    // ConstantExpr's in addition to instructions.
448    switch (Opcode) {
449    default: assert(0 && "Unknown instruction type encountered!");
450             abort();
451      // Build the switch statement using the Instruction.def file.
452#define HANDLE_INST(NUM, OPCODE, CLASS) \
453    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
454#include "llvm/Instruction.def"
455    }
456  }
457
458  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
459
460  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
461                        const Value *SV, SDOperand Root,
462                        bool isVolatile);
463
464  SDOperand getIntPtrConstant(uint64_t Val) {
465    return DAG.getConstant(Val, TLI.getPointerTy());
466  }
467
468  SDOperand getValue(const Value *V);
469
470  const SDOperand &setValue(const Value *V, SDOperand NewN) {
471    SDOperand &N = NodeMap[V];
472    assert(N.Val == 0 && "Already set a value for this node!");
473    return N = NewN;
474  }
475
476  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
477                                    MVT::ValueType VT,
478                                    bool OutReg, bool InReg,
479                                    std::set<unsigned> &OutputRegs,
480                                    std::set<unsigned> &InputRegs);
481
482  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
483                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
484                            unsigned Opc);
485  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
486  void ExportFromCurrentBlock(Value *V);
487
488  // Terminator instructions.
489  void visitRet(ReturnInst &I);
490  void visitBr(BranchInst &I);
491  void visitSwitch(SwitchInst &I);
492  void visitUnreachable(UnreachableInst &I) { /* noop */ }
493
494  // Helper for visitSwitch
495  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
496  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
497
498  // These all get lowered before this pass.
499  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
500  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
501
502  void visitScalarBinary(User &I, unsigned OpCode);
503  void visitVectorBinary(User &I, unsigned OpCode);
504  void visitEitherBinary(User &I, unsigned ScalarOp, unsigned VectorOp);
505  void visitShift(User &I, unsigned Opcode);
506  void visitAdd(User &I) {
507    if (isa<PackedType>(I.getType()))
508      visitVectorBinary(I, ISD::VADD);
509    else if (I.getType()->isFloatingPoint())
510      visitScalarBinary(I, ISD::FADD);
511    else
512      visitScalarBinary(I, ISD::ADD);
513  }
514  void visitSub(User &I);
515  void visitMul(User &I) {
516    if (isa<PackedType>(I.getType()))
517      visitVectorBinary(I, ISD::VMUL);
518    else if (I.getType()->isFloatingPoint())
519      visitScalarBinary(I, ISD::FMUL);
520    else
521      visitScalarBinary(I, ISD::MUL);
522  }
523  void visitURem(User &I) { visitScalarBinary(I, ISD::UREM); }
524  void visitSRem(User &I) { visitScalarBinary(I, ISD::SREM); }
525  void visitFRem(User &I) { visitScalarBinary(I, ISD::FREM); }
526  void visitUDiv(User &I) { visitEitherBinary(I, ISD::UDIV, ISD::VUDIV); }
527  void visitSDiv(User &I) { visitEitherBinary(I, ISD::SDIV, ISD::VSDIV); }
528  void visitFDiv(User &I) { visitEitherBinary(I, ISD::FDIV, ISD::VSDIV); }
529  void visitAnd (User &I) { visitEitherBinary(I, ISD::AND,  ISD::VAND ); }
530  void visitOr  (User &I) { visitEitherBinary(I, ISD::OR,   ISD::VOR  ); }
531  void visitXor (User &I) { visitEitherBinary(I, ISD::XOR,  ISD::VXOR ); }
532  void visitShl (User &I) { visitShift(I, ISD::SHL); }
533  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
534  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
535  void visitICmp(User &I);
536  void visitFCmp(User &I);
537  // Visit the conversion instructions
538  void visitTrunc(User &I);
539  void visitZExt(User &I);
540  void visitSExt(User &I);
541  void visitFPTrunc(User &I);
542  void visitFPExt(User &I);
543  void visitFPToUI(User &I);
544  void visitFPToSI(User &I);
545  void visitUIToFP(User &I);
546  void visitSIToFP(User &I);
547  void visitPtrToInt(User &I);
548  void visitIntToPtr(User &I);
549  void visitBitCast(User &I);
550
551  void visitExtractElement(User &I);
552  void visitInsertElement(User &I);
553  void visitShuffleVector(User &I);
554
555  void visitGetElementPtr(User &I);
556  void visitSelect(User &I);
557
558  void visitMalloc(MallocInst &I);
559  void visitFree(FreeInst &I);
560  void visitAlloca(AllocaInst &I);
561  void visitLoad(LoadInst &I);
562  void visitStore(StoreInst &I);
563  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
564  void visitCall(CallInst &I);
565  void visitInlineAsm(CallInst &I);
566  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
567  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
568
569  void visitVAStart(CallInst &I);
570  void visitVAArg(VAArgInst &I);
571  void visitVAEnd(CallInst &I);
572  void visitVACopy(CallInst &I);
573
574  void visitMemIntrinsic(CallInst &I, unsigned Op);
575
576  void visitUserOp1(Instruction &I) {
577    assert(0 && "UserOp1 should not exist at instruction selection time!");
578    abort();
579  }
580  void visitUserOp2(Instruction &I) {
581    assert(0 && "UserOp2 should not exist at instruction selection time!");
582    abort();
583  }
584};
585} // end namespace llvm
586
587SDOperand SelectionDAGLowering::getValue(const Value *V) {
588  SDOperand &N = NodeMap[V];
589  if (N.Val) return N;
590
591  const Type *VTy = V->getType();
592  MVT::ValueType VT = TLI.getValueType(VTy);
593  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
594    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
595      visit(CE->getOpcode(), *CE);
596      assert(N.Val && "visit didn't populate the ValueMap!");
597      return N;
598    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
599      return N = DAG.getGlobalAddress(GV, VT);
600    } else if (isa<ConstantPointerNull>(C)) {
601      return N = DAG.getConstant(0, TLI.getPointerTy());
602    } else if (isa<UndefValue>(C)) {
603      if (!isa<PackedType>(VTy))
604        return N = DAG.getNode(ISD::UNDEF, VT);
605
606      // Create a VBUILD_VECTOR of undef nodes.
607      const PackedType *PTy = cast<PackedType>(VTy);
608      unsigned NumElements = PTy->getNumElements();
609      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
610
611      SmallVector<SDOperand, 8> Ops;
612      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
613
614      // Create a VConstant node with generic Vector type.
615      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
616      Ops.push_back(DAG.getValueType(PVT));
617      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
618                             &Ops[0], Ops.size());
619    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
620      return N = DAG.getConstantFP(CFP->getValue(), VT);
621    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
622      unsigned NumElements = PTy->getNumElements();
623      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
624
625      // Now that we know the number and type of the elements, push a
626      // Constant or ConstantFP node onto the ops list for each element of
627      // the packed constant.
628      SmallVector<SDOperand, 8> Ops;
629      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
630        for (unsigned i = 0; i != NumElements; ++i)
631          Ops.push_back(getValue(CP->getOperand(i)));
632      } else {
633        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
634        SDOperand Op;
635        if (MVT::isFloatingPoint(PVT))
636          Op = DAG.getConstantFP(0, PVT);
637        else
638          Op = DAG.getConstant(0, PVT);
639        Ops.assign(NumElements, Op);
640      }
641
642      // Create a VBUILD_VECTOR node with generic Vector type.
643      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
644      Ops.push_back(DAG.getValueType(PVT));
645      return N = DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector,&Ops[0],Ops.size());
646    } else {
647      // Canonicalize all constant ints to be unsigned.
648      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
649    }
650  }
651
652  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
653    std::map<const AllocaInst*, int>::iterator SI =
654    FuncInfo.StaticAllocaMap.find(AI);
655    if (SI != FuncInfo.StaticAllocaMap.end())
656      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
657  }
658
659  std::map<const Value*, unsigned>::const_iterator VMI =
660      FuncInfo.ValueMap.find(V);
661  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
662
663  unsigned InReg = VMI->second;
664
665  // If this type is not legal, make it so now.
666  if (VT != MVT::Vector) {
667    if (TLI.getTypeAction(VT) == TargetLowering::Expand) {
668      // Source must be expanded.  This input value is actually coming from the
669      // register pair VMI->second and VMI->second+1.
670      MVT::ValueType DestVT = TLI.getTypeToExpandTo(VT);
671      unsigned NumVals = TLI.getNumElements(VT);
672      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
673      if (NumVals == 1)
674        N = DAG.getNode(ISD::BIT_CONVERT, VT, N);
675      else {
676        assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
677        N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
678                       DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
679      }
680    } else {
681      MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
682      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
683      if (TLI.getTypeAction(VT) == TargetLowering::Promote) // Promotion case
684        N = MVT::isFloatingPoint(VT)
685          ? DAG.getNode(ISD::FP_ROUND, VT, N)
686          : DAG.getNode(ISD::TRUNCATE, VT, N);
687    }
688  } else {
689    // Otherwise, if this is a vector, make it available as a generic vector
690    // here.
691    MVT::ValueType PTyElementVT, PTyLegalElementVT;
692    const PackedType *PTy = cast<PackedType>(VTy);
693    unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT,
694                                             PTyLegalElementVT);
695
696    // Build a VBUILD_VECTOR with the input registers.
697    SmallVector<SDOperand, 8> Ops;
698    if (PTyElementVT == PTyLegalElementVT) {
699      // If the value types are legal, just VBUILD the CopyFromReg nodes.
700      for (unsigned i = 0; i != NE; ++i)
701        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
702                                         PTyElementVT));
703    } else if (PTyElementVT < PTyLegalElementVT) {
704      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
705      for (unsigned i = 0; i != NE; ++i) {
706        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
707                                          PTyElementVT);
708        if (MVT::isFloatingPoint(PTyElementVT))
709          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
710        else
711          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
712        Ops.push_back(Op);
713      }
714    } else {
715      // If the register was expanded, use BUILD_PAIR.
716      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
717      for (unsigned i = 0; i != NE/2; ++i) {
718        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
719                                           PTyElementVT);
720        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
721                                           PTyElementVT);
722        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
723      }
724    }
725
726    Ops.push_back(DAG.getConstant(NE, MVT::i32));
727    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
728    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
729
730    // Finally, use a VBIT_CONVERT to make this available as the appropriate
731    // vector type.
732    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
733                    DAG.getConstant(PTy->getNumElements(),
734                                    MVT::i32),
735                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
736  }
737
738  return N;
739}
740
741
742void SelectionDAGLowering::visitRet(ReturnInst &I) {
743  if (I.getNumOperands() == 0) {
744    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
745    return;
746  }
747  SmallVector<SDOperand, 8> NewValues;
748  NewValues.push_back(getRoot());
749  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
750    SDOperand RetOp = getValue(I.getOperand(i));
751
752    // If this is an integer return value, we need to promote it ourselves to
753    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
754    // than sign/zero.
755    // FIXME: C calling convention requires the return type to be promoted to
756    // at least 32-bit. But this is not necessary for non-C calling conventions.
757    if (MVT::isInteger(RetOp.getValueType()) &&
758        RetOp.getValueType() < MVT::i64) {
759      MVT::ValueType TmpVT;
760      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
761        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
762      else
763        TmpVT = MVT::i32;
764      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
765      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
766      if (FTy->paramHasAttr(0, FunctionType::SExtAttribute))
767        ExtendKind = ISD::SIGN_EXTEND;
768      if (FTy->paramHasAttr(0, FunctionType::ZExtAttribute))
769        ExtendKind = ISD::ZERO_EXTEND;
770      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
771    }
772    NewValues.push_back(RetOp);
773    NewValues.push_back(DAG.getConstant(false, MVT::i32));
774  }
775  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
776                          &NewValues[0], NewValues.size()));
777}
778
779/// ExportFromCurrentBlock - If this condition isn't known to be exported from
780/// the current basic block, add it to ValueMap now so that we'll get a
781/// CopyTo/FromReg.
782void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
783  // No need to export constants.
784  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
785
786  // Already exported?
787  if (FuncInfo.isExportedInst(V)) return;
788
789  unsigned Reg = FuncInfo.InitializeRegForValue(V);
790  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
791}
792
793bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
794                                                    const BasicBlock *FromBB) {
795  // The operands of the setcc have to be in this block.  We don't know
796  // how to export them from some other block.
797  if (Instruction *VI = dyn_cast<Instruction>(V)) {
798    // Can export from current BB.
799    if (VI->getParent() == FromBB)
800      return true;
801
802    // Is already exported, noop.
803    return FuncInfo.isExportedInst(V);
804  }
805
806  // If this is an argument, we can export it if the BB is the entry block or
807  // if it is already exported.
808  if (isa<Argument>(V)) {
809    if (FromBB == &FromBB->getParent()->getEntryBlock())
810      return true;
811
812    // Otherwise, can only export this if it is already exported.
813    return FuncInfo.isExportedInst(V);
814  }
815
816  // Otherwise, constants can always be exported.
817  return true;
818}
819
820static bool InBlock(const Value *V, const BasicBlock *BB) {
821  if (const Instruction *I = dyn_cast<Instruction>(V))
822    return I->getParent() == BB;
823  return true;
824}
825
826/// FindMergedConditions - If Cond is an expression like
827void SelectionDAGLowering::FindMergedConditions(Value *Cond,
828                                                MachineBasicBlock *TBB,
829                                                MachineBasicBlock *FBB,
830                                                MachineBasicBlock *CurBB,
831                                                unsigned Opc) {
832  // If this node is not part of the or/and tree, emit it as a branch.
833  Instruction *BOp = dyn_cast<Instruction>(Cond);
834
835  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
836      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
837      BOp->getParent() != CurBB->getBasicBlock() ||
838      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
839      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
840    const BasicBlock *BB = CurBB->getBasicBlock();
841
842    // If the leaf of the tree is a comparison, merge the condition into
843    // the caseblock.
844    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
845        // The operands of the cmp have to be in this block.  We don't know
846        // how to export them from some other block.  If this is the first block
847        // of the sequence, no exporting is needed.
848        (CurBB == CurMBB ||
849         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
850          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
851      BOp = cast<Instruction>(Cond);
852      ISD::CondCode Condition;
853      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
854        switch (IC->getPredicate()) {
855        default: assert(0 && "Unknown icmp predicate opcode!");
856        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
857        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
858        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
859        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
860        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
861        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
862        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
863        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
864        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
865        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
866        }
867      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
868        ISD::CondCode FPC, FOC;
869        switch (FC->getPredicate()) {
870        default: assert(0 && "Unknown fcmp predicate opcode!");
871        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
872        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
873        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
874        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
875        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
876        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
877        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
878        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
879        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
880        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
881        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
882        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
883        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
884        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
885        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
886        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
887        }
888        if (FiniteOnlyFPMath())
889          Condition = FOC;
890        else
891          Condition = FPC;
892      } else {
893        assert(0 && "Unknown compare instruction");
894      }
895
896      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
897                                     BOp->getOperand(1), TBB, FBB, CurBB);
898      SwitchCases.push_back(CB);
899      return;
900    }
901
902    // Create a CaseBlock record representing this branch.
903    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
904                                   TBB, FBB, CurBB);
905    SwitchCases.push_back(CB);
906    return;
907  }
908
909
910  //  Create TmpBB after CurBB.
911  MachineFunction::iterator BBI = CurBB;
912  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
913  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
914
915  if (Opc == Instruction::Or) {
916    // Codegen X | Y as:
917    //   jmp_if_X TBB
918    //   jmp TmpBB
919    // TmpBB:
920    //   jmp_if_Y TBB
921    //   jmp FBB
922    //
923
924    // Emit the LHS condition.
925    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
926
927    // Emit the RHS condition into TmpBB.
928    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
929  } else {
930    assert(Opc == Instruction::And && "Unknown merge op!");
931    // Codegen X & Y as:
932    //   jmp_if_X TmpBB
933    //   jmp FBB
934    // TmpBB:
935    //   jmp_if_Y TBB
936    //   jmp FBB
937    //
938    //  This requires creation of TmpBB after CurBB.
939
940    // Emit the LHS condition.
941    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
942
943    // Emit the RHS condition into TmpBB.
944    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
945  }
946}
947
948/// If the set of cases should be emitted as a series of branches, return true.
949/// If we should emit this as a bunch of and/or'd together conditions, return
950/// false.
951static bool
952ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
953  if (Cases.size() != 2) return true;
954
955  // If this is two comparisons of the same values or'd or and'd together, they
956  // will get folded into a single comparison, so don't emit two blocks.
957  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
958       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
959      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
960       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
961    return false;
962  }
963
964  return true;
965}
966
967void SelectionDAGLowering::visitBr(BranchInst &I) {
968  // Update machine-CFG edges.
969  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
970
971  // Figure out which block is immediately after the current one.
972  MachineBasicBlock *NextBlock = 0;
973  MachineFunction::iterator BBI = CurMBB;
974  if (++BBI != CurMBB->getParent()->end())
975    NextBlock = BBI;
976
977  if (I.isUnconditional()) {
978    // If this is not a fall-through branch, emit the branch.
979    if (Succ0MBB != NextBlock)
980      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
981                              DAG.getBasicBlock(Succ0MBB)));
982
983    // Update machine-CFG edges.
984    CurMBB->addSuccessor(Succ0MBB);
985
986    return;
987  }
988
989  // If this condition is one of the special cases we handle, do special stuff
990  // now.
991  Value *CondVal = I.getCondition();
992  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
993
994  // If this is a series of conditions that are or'd or and'd together, emit
995  // this as a sequence of branches instead of setcc's with and/or operations.
996  // For example, instead of something like:
997  //     cmp A, B
998  //     C = seteq
999  //     cmp D, E
1000  //     F = setle
1001  //     or C, F
1002  //     jnz foo
1003  // Emit:
1004  //     cmp A, B
1005  //     je foo
1006  //     cmp D, E
1007  //     jle foo
1008  //
1009  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1010    if (BOp->hasOneUse() &&
1011        (BOp->getOpcode() == Instruction::And ||
1012         BOp->getOpcode() == Instruction::Or)) {
1013      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1014      // If the compares in later blocks need to use values not currently
1015      // exported from this block, export them now.  This block should always
1016      // be the first entry.
1017      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1018
1019      // Allow some cases to be rejected.
1020      if (ShouldEmitAsBranches(SwitchCases)) {
1021        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1022          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1023          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1024        }
1025
1026        // Emit the branch for this block.
1027        visitSwitchCase(SwitchCases[0]);
1028        SwitchCases.erase(SwitchCases.begin());
1029        return;
1030      }
1031
1032      // Okay, we decided not to do this, remove any inserted MBB's and clear
1033      // SwitchCases.
1034      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1035        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1036
1037      SwitchCases.clear();
1038    }
1039  }
1040
1041  // Create a CaseBlock record representing this branch.
1042  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1043                                 Succ0MBB, Succ1MBB, CurMBB);
1044  // Use visitSwitchCase to actually insert the fast branch sequence for this
1045  // cond branch.
1046  visitSwitchCase(CB);
1047}
1048
1049/// visitSwitchCase - Emits the necessary code to represent a single node in
1050/// the binary search tree resulting from lowering a switch instruction.
1051void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1052  SDOperand Cond;
1053  SDOperand CondLHS = getValue(CB.CmpLHS);
1054
1055  // Build the setcc now, fold "(X == true)" to X and "(X == false)" to !X to
1056  // handle common cases produced by branch lowering.
1057  if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1058    Cond = CondLHS;
1059  else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1060    SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1061    Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1062  } else
1063    Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1064
1065  // Set NextBlock to be the MBB immediately after the current one, if any.
1066  // This is used to avoid emitting unnecessary branches to the next block.
1067  MachineBasicBlock *NextBlock = 0;
1068  MachineFunction::iterator BBI = CurMBB;
1069  if (++BBI != CurMBB->getParent()->end())
1070    NextBlock = BBI;
1071
1072  // If the lhs block is the next block, invert the condition so that we can
1073  // fall through to the lhs instead of the rhs block.
1074  if (CB.TrueBB == NextBlock) {
1075    std::swap(CB.TrueBB, CB.FalseBB);
1076    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1077    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1078  }
1079  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1080                                 DAG.getBasicBlock(CB.TrueBB));
1081  if (CB.FalseBB == NextBlock)
1082    DAG.setRoot(BrCond);
1083  else
1084    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1085                            DAG.getBasicBlock(CB.FalseBB)));
1086  // Update successor info
1087  CurMBB->addSuccessor(CB.TrueBB);
1088  CurMBB->addSuccessor(CB.FalseBB);
1089}
1090
1091void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1092  // Emit the code for the jump table
1093  MVT::ValueType PTy = TLI.getPointerTy();
1094  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1095  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1096  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1097                          Table, Index));
1098  return;
1099}
1100
1101void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
1102  // Figure out which block is immediately after the current one.
1103  MachineBasicBlock *NextBlock = 0;
1104  MachineFunction::iterator BBI = CurMBB;
1105
1106  if (++BBI != CurMBB->getParent()->end())
1107    NextBlock = BBI;
1108
1109  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
1110
1111  // If there is only the default destination, branch to it if it is not the
1112  // next basic block.  Otherwise, just fall through.
1113  if (I.getNumOperands() == 2) {
1114    // Update machine-CFG edges.
1115
1116    // If this is not a fall-through branch, emit the branch.
1117    if (Default != NextBlock)
1118      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1119                              DAG.getBasicBlock(Default)));
1120
1121    CurMBB->addSuccessor(Default);
1122    return;
1123  }
1124
1125  // If there are any non-default case statements, create a vector of Cases
1126  // representing each one, and sort the vector so that we can efficiently
1127  // create a binary search tree from them.
1128  std::vector<Case> Cases;
1129
1130  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
1131    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
1132    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
1133  }
1134
1135  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1136
1137  // Get the Value to be switched on and default basic blocks, which will be
1138  // inserted into CaseBlock records, representing basic blocks in the binary
1139  // search tree.
1140  Value *SV = I.getOperand(0);
1141
1142  // Get the MachineFunction which holds the current MBB.  This is used during
1143  // emission of jump tables, and when inserting any additional MBBs necessary
1144  // to represent the switch.
1145  MachineFunction *CurMF = CurMBB->getParent();
1146  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
1147
1148  // If the switch has few cases (two or less) emit a series of specific
1149  // tests.
1150  if (Cases.size() < 3) {
1151    // TODO: If any two of the cases has the same destination, and if one value
1152    // is the same as the other, but has one bit unset that the other has set,
1153    // use bit manipulation to do two compares at once.  For example:
1154    // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1155
1156    // Rearrange the case blocks so that the last one falls through if possible.
1157    if (NextBlock && Default != NextBlock && Cases.back().second != NextBlock) {
1158      // The last case block won't fall through into 'NextBlock' if we emit the
1159      // branches in this order.  See if rearranging a case value would help.
1160      for (unsigned i = 0, e = Cases.size()-1; i != e; ++i) {
1161        if (Cases[i].second == NextBlock) {
1162          std::swap(Cases[i], Cases.back());
1163          break;
1164        }
1165      }
1166    }
1167
1168    // Create a CaseBlock record representing a conditional branch to
1169    // the Case's target mbb if the value being switched on SV is equal
1170    // to C.
1171    MachineBasicBlock *CurBlock = CurMBB;
1172    for (unsigned i = 0, e = Cases.size(); i != e; ++i) {
1173      MachineBasicBlock *FallThrough;
1174      if (i != e-1) {
1175        FallThrough = new MachineBasicBlock(CurMBB->getBasicBlock());
1176        CurMF->getBasicBlockList().insert(BBI, FallThrough);
1177      } else {
1178        // If the last case doesn't match, go to the default block.
1179        FallThrough = Default;
1180      }
1181
1182      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, Cases[i].first,
1183                                     Cases[i].second, FallThrough, CurBlock);
1184
1185      // If emitting the first comparison, just call visitSwitchCase to emit the
1186      // code into the current block.  Otherwise, push the CaseBlock onto the
1187      // vector to be later processed by SDISel, and insert the node's MBB
1188      // before the next MBB.
1189      if (CurBlock == CurMBB)
1190        visitSwitchCase(CB);
1191      else
1192        SwitchCases.push_back(CB);
1193
1194      CurBlock = FallThrough;
1195    }
1196    return;
1197  }
1198
1199  // If the switch has more than 5 blocks, and at least 31.25% dense, and the
1200  // target supports indirect branches, then emit a jump table rather than
1201  // lowering the switch to a binary tree of conditional branches.
1202  if ((TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1203       TLI.isOperationLegal(ISD::BRIND, MVT::Other)) &&
1204      Cases.size() > 5) {
1205    uint64_t First =cast<ConstantInt>(Cases.front().first)->getZExtValue();
1206    uint64_t Last  = cast<ConstantInt>(Cases.back().first)->getZExtValue();
1207    double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
1208
1209    if (Density >= 0.3125) {
1210      // Create a new basic block to hold the code for loading the address
1211      // of the jump table, and jumping to it.  Update successor information;
1212      // we will either branch to the default case for the switch, or the jump
1213      // table.
1214      MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1215      CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1216      CurMBB->addSuccessor(Default);
1217      CurMBB->addSuccessor(JumpTableBB);
1218
1219      // Subtract the lowest switch case value from the value being switched on
1220      // and conditional branch to default mbb if the result is greater than the
1221      // difference between smallest and largest cases.
1222      SDOperand SwitchOp = getValue(SV);
1223      MVT::ValueType VT = SwitchOp.getValueType();
1224      SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1225                                  DAG.getConstant(First, VT));
1226
1227      // The SDNode we just created, which holds the value being switched on
1228      // minus the the smallest case value, needs to be copied to a virtual
1229      // register so it can be used as an index into the jump table in a
1230      // subsequent basic block.  This value may be smaller or larger than the
1231      // target's pointer type, and therefore require extension or truncating.
1232      if (VT > TLI.getPointerTy())
1233        SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1234      else
1235        SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1236
1237      unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1238      SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1239
1240      // Emit the range check for the jump table, and branch to the default
1241      // block for the switch statement if the value being switched on exceeds
1242      // the largest case in the switch.
1243      SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1244                                   DAG.getConstant(Last-First,VT), ISD::SETUGT);
1245      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1246                              DAG.getBasicBlock(Default)));
1247
1248      // Build a vector of destination BBs, corresponding to each target
1249      // of the jump table.  If the value of the jump table slot corresponds to
1250      // a case statement, push the case's BB onto the vector, otherwise, push
1251      // the default BB.
1252      std::vector<MachineBasicBlock*> DestBBs;
1253      uint64_t TEI = First;
1254      for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI)
1255        if (cast<ConstantInt>(ii->first)->getZExtValue() == TEI) {
1256          DestBBs.push_back(ii->second);
1257          ++ii;
1258        } else {
1259          DestBBs.push_back(Default);
1260        }
1261
1262      // Update successor info.  Add one edge to each unique successor.
1263      // Vector bool would be better, but vector<bool> is really slow.
1264      std::vector<unsigned char> SuccsHandled;
1265      SuccsHandled.resize(CurMBB->getParent()->getNumBlockIDs());
1266
1267      for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1268           E = DestBBs.end(); I != E; ++I) {
1269        if (!SuccsHandled[(*I)->getNumber()]) {
1270          SuccsHandled[(*I)->getNumber()] = true;
1271          JumpTableBB->addSuccessor(*I);
1272        }
1273      }
1274
1275      // Create a jump table index for this jump table, or return an existing
1276      // one.
1277      unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1278
1279      // Set the jump table information so that we can codegen it as a second
1280      // MachineBasicBlock
1281      JT.Reg = JumpTableReg;
1282      JT.JTI = JTI;
1283      JT.MBB = JumpTableBB;
1284      JT.Default = Default;
1285      return;
1286    }
1287  }
1288
1289  // Push the initial CaseRec onto the worklist
1290  std::vector<CaseRec> CaseVec;
1291  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1292
1293  while (!CaseVec.empty()) {
1294    // Grab a record representing a case range to process off the worklist
1295    CaseRec CR = CaseVec.back();
1296    CaseVec.pop_back();
1297
1298    // Size is the number of Cases represented by this range.  If Size is 1,
1299    // then we are processing a leaf of the binary search tree.  Otherwise,
1300    // we need to pick a pivot, and push left and right ranges onto the
1301    // worklist.
1302    unsigned Size = CR.Range.second - CR.Range.first;
1303
1304    if (Size == 1) {
1305      // Create a CaseBlock record representing a conditional branch to
1306      // the Case's target mbb if the value being switched on SV is equal
1307      // to C.  Otherwise, branch to default.
1308      Constant *C = CR.Range.first->first;
1309      MachineBasicBlock *Target = CR.Range.first->second;
1310      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
1311                                     CR.CaseBB);
1312
1313      // If the MBB representing the leaf node is the current MBB, then just
1314      // call visitSwitchCase to emit the code into the current block.
1315      // Otherwise, push the CaseBlock onto the vector to be later processed
1316      // by SDISel, and insert the node's MBB before the next MBB.
1317      if (CR.CaseBB == CurMBB)
1318        visitSwitchCase(CB);
1319      else
1320        SwitchCases.push_back(CB);
1321    } else {
1322      // split case range at pivot
1323      CaseItr Pivot = CR.Range.first + (Size / 2);
1324      CaseRange LHSR(CR.Range.first, Pivot);
1325      CaseRange RHSR(Pivot, CR.Range.second);
1326      Constant *C = Pivot->first;
1327      MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1328
1329      // We know that we branch to the LHS if the Value being switched on is
1330      // less than the Pivot value, C.  We use this to optimize our binary
1331      // tree a bit, by recognizing that if SV is greater than or equal to the
1332      // LHS's Case Value, and that Case Value is exactly one less than the
1333      // Pivot's Value, then we can branch directly to the LHS's Target,
1334      // rather than creating a leaf node for it.
1335      if ((LHSR.second - LHSR.first) == 1 &&
1336          LHSR.first->first == CR.GE &&
1337          cast<ConstantInt>(C)->getZExtValue() ==
1338          (cast<ConstantInt>(CR.GE)->getZExtValue() + 1ULL)) {
1339        TrueBB = LHSR.first->second;
1340      } else {
1341        TrueBB = new MachineBasicBlock(LLVMBB);
1342        CurMF->getBasicBlockList().insert(BBI, TrueBB);
1343        CaseVec.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1344      }
1345
1346      // Similar to the optimization above, if the Value being switched on is
1347      // known to be less than the Constant CR.LT, and the current Case Value
1348      // is CR.LT - 1, then we can branch directly to the target block for
1349      // the current Case Value, rather than emitting a RHS leaf node for it.
1350      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1351          cast<ConstantInt>(RHSR.first->first)->getZExtValue() ==
1352          (cast<ConstantInt>(CR.LT)->getZExtValue() - 1ULL)) {
1353        FalseBB = RHSR.first->second;
1354      } else {
1355        FalseBB = new MachineBasicBlock(LLVMBB);
1356        CurMF->getBasicBlockList().insert(BBI, FalseBB);
1357        CaseVec.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1358      }
1359
1360      // Create a CaseBlock record representing a conditional branch to
1361      // the LHS node if the value being switched on SV is less than C.
1362      // Otherwise, branch to LHS.
1363      ISD::CondCode CC =  ISD::SETLT;
1364      SelectionDAGISel::CaseBlock CB(CC, SV, C, TrueBB, FalseBB, CR.CaseBB);
1365
1366      if (CR.CaseBB == CurMBB)
1367        visitSwitchCase(CB);
1368      else
1369        SwitchCases.push_back(CB);
1370    }
1371  }
1372}
1373
1374void SelectionDAGLowering::visitSub(User &I) {
1375  // -0.0 - X --> fneg
1376  const Type *Ty = I.getType();
1377  if (isa<PackedType>(Ty)) {
1378    visitVectorBinary(I, ISD::VSUB);
1379  } else if (Ty->isFloatingPoint()) {
1380    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1381      if (CFP->isExactlyValue(-0.0)) {
1382        SDOperand Op2 = getValue(I.getOperand(1));
1383        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1384        return;
1385      }
1386    visitScalarBinary(I, ISD::FSUB);
1387  } else
1388    visitScalarBinary(I, ISD::SUB);
1389}
1390
1391void SelectionDAGLowering::visitScalarBinary(User &I, unsigned OpCode) {
1392  SDOperand Op1 = getValue(I.getOperand(0));
1393  SDOperand Op2 = getValue(I.getOperand(1));
1394
1395  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
1396}
1397
1398void
1399SelectionDAGLowering::visitVectorBinary(User &I, unsigned OpCode) {
1400  assert(isa<PackedType>(I.getType()));
1401  const PackedType *Ty = cast<PackedType>(I.getType());
1402  SDOperand Typ = DAG.getValueType(TLI.getValueType(Ty->getElementType()));
1403
1404  setValue(&I, DAG.getNode(OpCode, MVT::Vector,
1405                           getValue(I.getOperand(0)),
1406                           getValue(I.getOperand(1)),
1407                           DAG.getConstant(Ty->getNumElements(), MVT::i32),
1408                           Typ));
1409}
1410
1411void SelectionDAGLowering::visitEitherBinary(User &I, unsigned ScalarOp,
1412                                             unsigned VectorOp) {
1413  if (isa<PackedType>(I.getType()))
1414    visitVectorBinary(I, VectorOp);
1415  else
1416    visitScalarBinary(I, ScalarOp);
1417}
1418
1419void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1420  SDOperand Op1 = getValue(I.getOperand(0));
1421  SDOperand Op2 = getValue(I.getOperand(1));
1422
1423  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1424
1425  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1426}
1427
1428void SelectionDAGLowering::visitICmp(User &I) {
1429  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
1430  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
1431    predicate = IC->getPredicate();
1432  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
1433    predicate = ICmpInst::Predicate(IC->getPredicate());
1434  SDOperand Op1 = getValue(I.getOperand(0));
1435  SDOperand Op2 = getValue(I.getOperand(1));
1436  ISD::CondCode Opcode;
1437  switch (predicate) {
1438    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
1439    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
1440    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
1441    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
1442    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
1443    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
1444    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
1445    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
1446    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
1447    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
1448    default:
1449      assert(!"Invalid ICmp predicate value");
1450      Opcode = ISD::SETEQ;
1451      break;
1452  }
1453  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1454}
1455
1456void SelectionDAGLowering::visitFCmp(User &I) {
1457  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
1458  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
1459    predicate = FC->getPredicate();
1460  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
1461    predicate = FCmpInst::Predicate(FC->getPredicate());
1462  SDOperand Op1 = getValue(I.getOperand(0));
1463  SDOperand Op2 = getValue(I.getOperand(1));
1464  ISD::CondCode Condition, FOC, FPC;
1465  switch (predicate) {
1466    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1467    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1468    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1469    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1470    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1471    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1472    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1473    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1474    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1475    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1476    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1477    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1478    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1479    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1480    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1481    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1482    default:
1483      assert(!"Invalid FCmp predicate value");
1484      FOC = FPC = ISD::SETFALSE;
1485      break;
1486  }
1487  if (FiniteOnlyFPMath())
1488    Condition = FOC;
1489  else
1490    Condition = FPC;
1491  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
1492}
1493
1494void SelectionDAGLowering::visitSelect(User &I) {
1495  SDOperand Cond     = getValue(I.getOperand(0));
1496  SDOperand TrueVal  = getValue(I.getOperand(1));
1497  SDOperand FalseVal = getValue(I.getOperand(2));
1498  if (!isa<PackedType>(I.getType())) {
1499    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1500                             TrueVal, FalseVal));
1501  } else {
1502    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1503                             *(TrueVal.Val->op_end()-2),
1504                             *(TrueVal.Val->op_end()-1)));
1505  }
1506}
1507
1508
1509void SelectionDAGLowering::visitTrunc(User &I) {
1510  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
1511  SDOperand N = getValue(I.getOperand(0));
1512  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1513  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1514}
1515
1516void SelectionDAGLowering::visitZExt(User &I) {
1517  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1518  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
1519  SDOperand N = getValue(I.getOperand(0));
1520  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1521  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1522}
1523
1524void SelectionDAGLowering::visitSExt(User &I) {
1525  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1526  // SExt also can't be a cast to bool for same reason. So, nothing much to do
1527  SDOperand N = getValue(I.getOperand(0));
1528  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1529  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1530}
1531
1532void SelectionDAGLowering::visitFPTrunc(User &I) {
1533  // FPTrunc is never a no-op cast, no need to check
1534  SDOperand N = getValue(I.getOperand(0));
1535  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1536  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1537}
1538
1539void SelectionDAGLowering::visitFPExt(User &I){
1540  // FPTrunc is never a no-op cast, no need to check
1541  SDOperand N = getValue(I.getOperand(0));
1542  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1543  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1544}
1545
1546void SelectionDAGLowering::visitFPToUI(User &I) {
1547  // FPToUI is never a no-op cast, no need to check
1548  SDOperand N = getValue(I.getOperand(0));
1549  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1550  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1551}
1552
1553void SelectionDAGLowering::visitFPToSI(User &I) {
1554  // FPToSI is never a no-op cast, no need to check
1555  SDOperand N = getValue(I.getOperand(0));
1556  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1557  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1558}
1559
1560void SelectionDAGLowering::visitUIToFP(User &I) {
1561  // UIToFP is never a no-op cast, no need to check
1562  SDOperand N = getValue(I.getOperand(0));
1563  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1564  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1565}
1566
1567void SelectionDAGLowering::visitSIToFP(User &I){
1568  // UIToFP is never a no-op cast, no need to check
1569  SDOperand N = getValue(I.getOperand(0));
1570  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1571  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1572}
1573
1574void SelectionDAGLowering::visitPtrToInt(User &I) {
1575  // What to do depends on the size of the integer and the size of the pointer.
1576  // We can either truncate, zero extend, or no-op, accordingly.
1577  SDOperand N = getValue(I.getOperand(0));
1578  MVT::ValueType SrcVT = N.getValueType();
1579  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1580  SDOperand Result;
1581  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1582    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
1583  else
1584    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1585    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
1586  setValue(&I, Result);
1587}
1588
1589void SelectionDAGLowering::visitIntToPtr(User &I) {
1590  // What to do depends on the size of the integer and the size of the pointer.
1591  // We can either truncate, zero extend, or no-op, accordingly.
1592  SDOperand N = getValue(I.getOperand(0));
1593  MVT::ValueType SrcVT = N.getValueType();
1594  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1595  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1596    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1597  else
1598    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1599    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1600}
1601
1602void SelectionDAGLowering::visitBitCast(User &I) {
1603  SDOperand N = getValue(I.getOperand(0));
1604  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1605  if (DestVT == MVT::Vector) {
1606    // This is a cast to a vector from something else.
1607    // Get information about the output vector.
1608    const PackedType *DestTy = cast<PackedType>(I.getType());
1609    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1610    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1611                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1612                             DAG.getValueType(EltVT)));
1613    return;
1614  }
1615  MVT::ValueType SrcVT = N.getValueType();
1616  if (SrcVT == MVT::Vector) {
1617    // This is a cast from a vctor to something else.
1618    // Get information about the input vector.
1619    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1620    return;
1621  }
1622
1623  // BitCast assures us that source and destination are the same size so this
1624  // is either a BIT_CONVERT or a no-op.
1625  if (DestVT != N.getValueType())
1626    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
1627  else
1628    setValue(&I, N); // noop cast.
1629}
1630
1631void SelectionDAGLowering::visitInsertElement(User &I) {
1632  SDOperand InVec = getValue(I.getOperand(0));
1633  SDOperand InVal = getValue(I.getOperand(1));
1634  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1635                                getValue(I.getOperand(2)));
1636
1637  SDOperand Num = *(InVec.Val->op_end()-2);
1638  SDOperand Typ = *(InVec.Val->op_end()-1);
1639  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1640                           InVec, InVal, InIdx, Num, Typ));
1641}
1642
1643void SelectionDAGLowering::visitExtractElement(User &I) {
1644  SDOperand InVec = getValue(I.getOperand(0));
1645  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1646                                getValue(I.getOperand(1)));
1647  SDOperand Typ = *(InVec.Val->op_end()-1);
1648  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1649                           TLI.getValueType(I.getType()), InVec, InIdx));
1650}
1651
1652void SelectionDAGLowering::visitShuffleVector(User &I) {
1653  SDOperand V1   = getValue(I.getOperand(0));
1654  SDOperand V2   = getValue(I.getOperand(1));
1655  SDOperand Mask = getValue(I.getOperand(2));
1656
1657  SDOperand Num = *(V1.Val->op_end()-2);
1658  SDOperand Typ = *(V2.Val->op_end()-1);
1659  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1660                           V1, V2, Mask, Num, Typ));
1661}
1662
1663
1664void SelectionDAGLowering::visitGetElementPtr(User &I) {
1665  SDOperand N = getValue(I.getOperand(0));
1666  const Type *Ty = I.getOperand(0)->getType();
1667
1668  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1669       OI != E; ++OI) {
1670    Value *Idx = *OI;
1671    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1672      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
1673      if (Field) {
1674        // N = N + Offset
1675        uint64_t Offset = TD->getStructLayout(StTy)->MemberOffsets[Field];
1676        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1677                        getIntPtrConstant(Offset));
1678      }
1679      Ty = StTy->getElementType(Field);
1680    } else {
1681      Ty = cast<SequentialType>(Ty)->getElementType();
1682
1683      // If this is a constant subscript, handle it quickly.
1684      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1685        if (CI->getZExtValue() == 0) continue;
1686        uint64_t Offs =
1687            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
1688        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1689        continue;
1690      }
1691
1692      // N = N + Idx * ElementSize;
1693      uint64_t ElementSize = TD->getTypeSize(Ty);
1694      SDOperand IdxN = getValue(Idx);
1695
1696      // If the index is smaller or larger than intptr_t, truncate or extend
1697      // it.
1698      if (IdxN.getValueType() < N.getValueType()) {
1699        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1700      } else if (IdxN.getValueType() > N.getValueType())
1701        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1702
1703      // If this is a multiply by a power of two, turn it into a shl
1704      // immediately.  This is a very common case.
1705      if (isPowerOf2_64(ElementSize)) {
1706        unsigned Amt = Log2_64(ElementSize);
1707        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1708                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1709        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1710        continue;
1711      }
1712
1713      SDOperand Scale = getIntPtrConstant(ElementSize);
1714      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1715      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1716    }
1717  }
1718  setValue(&I, N);
1719}
1720
1721void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1722  // If this is a fixed sized alloca in the entry block of the function,
1723  // allocate it statically on the stack.
1724  if (FuncInfo.StaticAllocaMap.count(&I))
1725    return;   // getValue will auto-populate this.
1726
1727  const Type *Ty = I.getAllocatedType();
1728  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
1729  unsigned Align =
1730    std::max((unsigned)TLI.getTargetData()->getTypeAlignmentPref(Ty),
1731             I.getAlignment());
1732
1733  SDOperand AllocSize = getValue(I.getArraySize());
1734  MVT::ValueType IntPtr = TLI.getPointerTy();
1735  if (IntPtr < AllocSize.getValueType())
1736    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1737  else if (IntPtr > AllocSize.getValueType())
1738    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1739
1740  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1741                          getIntPtrConstant(TySize));
1742
1743  // Handle alignment.  If the requested alignment is less than or equal to the
1744  // stack alignment, ignore it and round the size of the allocation up to the
1745  // stack alignment size.  If the size is greater than the stack alignment, we
1746  // note this in the DYNAMIC_STACKALLOC node.
1747  unsigned StackAlign =
1748    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1749  if (Align <= StackAlign) {
1750    Align = 0;
1751    // Add SA-1 to the size.
1752    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1753                            getIntPtrConstant(StackAlign-1));
1754    // Mask out the low bits for alignment purposes.
1755    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1756                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1757  }
1758
1759  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
1760  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
1761                                                    MVT::Other);
1762  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
1763  DAG.setRoot(setValue(&I, DSA).getValue(1));
1764
1765  // Inform the Frame Information that we have just allocated a variable-sized
1766  // object.
1767  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1768}
1769
1770void SelectionDAGLowering::visitLoad(LoadInst &I) {
1771  SDOperand Ptr = getValue(I.getOperand(0));
1772
1773  SDOperand Root;
1774  if (I.isVolatile())
1775    Root = getRoot();
1776  else {
1777    // Do not serialize non-volatile loads against each other.
1778    Root = DAG.getRoot();
1779  }
1780
1781  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
1782                           Root, I.isVolatile()));
1783}
1784
1785SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1786                                            const Value *SV, SDOperand Root,
1787                                            bool isVolatile) {
1788  SDOperand L;
1789  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1790    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1791    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
1792                       DAG.getSrcValue(SV));
1793  } else {
1794    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0, isVolatile);
1795  }
1796
1797  if (isVolatile)
1798    DAG.setRoot(L.getValue(1));
1799  else
1800    PendingLoads.push_back(L.getValue(1));
1801
1802  return L;
1803}
1804
1805
1806void SelectionDAGLowering::visitStore(StoreInst &I) {
1807  Value *SrcV = I.getOperand(0);
1808  SDOperand Src = getValue(SrcV);
1809  SDOperand Ptr = getValue(I.getOperand(1));
1810  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
1811                           I.isVolatile()));
1812}
1813
1814/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1815/// access memory and has no other side effects at all.
1816static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1817#define GET_NO_MEMORY_INTRINSICS
1818#include "llvm/Intrinsics.gen"
1819#undef GET_NO_MEMORY_INTRINSICS
1820  return false;
1821}
1822
1823// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
1824// have any side-effects or if it only reads memory.
1825static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
1826#define GET_SIDE_EFFECT_INFO
1827#include "llvm/Intrinsics.gen"
1828#undef GET_SIDE_EFFECT_INFO
1829  return false;
1830}
1831
1832/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1833/// node.
1834void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1835                                                unsigned Intrinsic) {
1836  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1837  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
1838
1839  // Build the operand list.
1840  SmallVector<SDOperand, 8> Ops;
1841  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
1842    if (OnlyLoad) {
1843      // We don't need to serialize loads against other loads.
1844      Ops.push_back(DAG.getRoot());
1845    } else {
1846      Ops.push_back(getRoot());
1847    }
1848  }
1849
1850  // Add the intrinsic ID as an integer operand.
1851  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1852
1853  // Add all operands of the call to the operand list.
1854  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1855    SDOperand Op = getValue(I.getOperand(i));
1856
1857    // If this is a vector type, force it to the right packed type.
1858    if (Op.getValueType() == MVT::Vector) {
1859      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1860      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1861
1862      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1863      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1864      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1865    }
1866
1867    assert(TLI.isTypeLegal(Op.getValueType()) &&
1868           "Intrinsic uses a non-legal type?");
1869    Ops.push_back(Op);
1870  }
1871
1872  std::vector<MVT::ValueType> VTs;
1873  if (I.getType() != Type::VoidTy) {
1874    MVT::ValueType VT = TLI.getValueType(I.getType());
1875    if (VT == MVT::Vector) {
1876      const PackedType *DestTy = cast<PackedType>(I.getType());
1877      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1878
1879      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1880      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1881    }
1882
1883    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1884    VTs.push_back(VT);
1885  }
1886  if (HasChain)
1887    VTs.push_back(MVT::Other);
1888
1889  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
1890
1891  // Create the node.
1892  SDOperand Result;
1893  if (!HasChain)
1894    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
1895                         &Ops[0], Ops.size());
1896  else if (I.getType() != Type::VoidTy)
1897    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
1898                         &Ops[0], Ops.size());
1899  else
1900    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
1901                         &Ops[0], Ops.size());
1902
1903  if (HasChain) {
1904    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
1905    if (OnlyLoad)
1906      PendingLoads.push_back(Chain);
1907    else
1908      DAG.setRoot(Chain);
1909  }
1910  if (I.getType() != Type::VoidTy) {
1911    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1912      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1913      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1914                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1915                           DAG.getValueType(EVT));
1916    }
1917    setValue(&I, Result);
1918  }
1919}
1920
1921/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1922/// we want to emit this as a call to a named external function, return the name
1923/// otherwise lower it and return null.
1924const char *
1925SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1926  switch (Intrinsic) {
1927  default:
1928    // By default, turn this into a target intrinsic node.
1929    visitTargetIntrinsic(I, Intrinsic);
1930    return 0;
1931  case Intrinsic::vastart:  visitVAStart(I); return 0;
1932  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1933  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1934  case Intrinsic::returnaddress:
1935    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
1936                             getValue(I.getOperand(1))));
1937    return 0;
1938  case Intrinsic::frameaddress:
1939    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
1940                             getValue(I.getOperand(1))));
1941    return 0;
1942  case Intrinsic::setjmp:
1943    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
1944    break;
1945  case Intrinsic::longjmp:
1946    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
1947    break;
1948  case Intrinsic::memcpy_i32:
1949  case Intrinsic::memcpy_i64:
1950    visitMemIntrinsic(I, ISD::MEMCPY);
1951    return 0;
1952  case Intrinsic::memset_i32:
1953  case Intrinsic::memset_i64:
1954    visitMemIntrinsic(I, ISD::MEMSET);
1955    return 0;
1956  case Intrinsic::memmove_i32:
1957  case Intrinsic::memmove_i64:
1958    visitMemIntrinsic(I, ISD::MEMMOVE);
1959    return 0;
1960
1961  case Intrinsic::dbg_stoppoint: {
1962    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
1963    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1964    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
1965      SDOperand Ops[5];
1966
1967      Ops[0] = getRoot();
1968      Ops[1] = getValue(SPI.getLineValue());
1969      Ops[2] = getValue(SPI.getColumnValue());
1970
1971      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
1972      assert(DD && "Not a debug information descriptor");
1973      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1974
1975      Ops[3] = DAG.getString(CompileUnit->getFileName());
1976      Ops[4] = DAG.getString(CompileUnit->getDirectory());
1977
1978      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
1979    }
1980
1981    return 0;
1982  }
1983  case Intrinsic::dbg_region_start: {
1984    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
1985    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1986    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
1987      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
1988      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
1989                              DAG.getConstant(LabelID, MVT::i32)));
1990    }
1991
1992    return 0;
1993  }
1994  case Intrinsic::dbg_region_end: {
1995    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
1996    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
1997    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
1998      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
1999      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2000                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2001    }
2002
2003    return 0;
2004  }
2005  case Intrinsic::dbg_func_start: {
2006    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2007    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2008    if (MMI && FSI.getSubprogram() &&
2009        MMI->Verify(FSI.getSubprogram())) {
2010      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2011      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2012                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2013    }
2014
2015    return 0;
2016  }
2017  case Intrinsic::dbg_declare: {
2018    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2019    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2020    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2021      SDOperand AddressOp  = getValue(DI.getAddress());
2022      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2023        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2024    }
2025
2026    return 0;
2027  }
2028
2029  case Intrinsic::sqrt_f32:
2030  case Intrinsic::sqrt_f64:
2031    setValue(&I, DAG.getNode(ISD::FSQRT,
2032                             getValue(I.getOperand(1)).getValueType(),
2033                             getValue(I.getOperand(1))));
2034    return 0;
2035  case Intrinsic::powi_f32:
2036  case Intrinsic::powi_f64:
2037    setValue(&I, DAG.getNode(ISD::FPOWI,
2038                             getValue(I.getOperand(1)).getValueType(),
2039                             getValue(I.getOperand(1)),
2040                             getValue(I.getOperand(2))));
2041    return 0;
2042  case Intrinsic::pcmarker: {
2043    SDOperand Tmp = getValue(I.getOperand(1));
2044    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2045    return 0;
2046  }
2047  case Intrinsic::readcyclecounter: {
2048    SDOperand Op = getRoot();
2049    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2050                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2051                                &Op, 1);
2052    setValue(&I, Tmp);
2053    DAG.setRoot(Tmp.getValue(1));
2054    return 0;
2055  }
2056  case Intrinsic::bswap_i16:
2057  case Intrinsic::bswap_i32:
2058  case Intrinsic::bswap_i64:
2059    setValue(&I, DAG.getNode(ISD::BSWAP,
2060                             getValue(I.getOperand(1)).getValueType(),
2061                             getValue(I.getOperand(1))));
2062    return 0;
2063  case Intrinsic::cttz_i8:
2064  case Intrinsic::cttz_i16:
2065  case Intrinsic::cttz_i32:
2066  case Intrinsic::cttz_i64:
2067    setValue(&I, DAG.getNode(ISD::CTTZ,
2068                             getValue(I.getOperand(1)).getValueType(),
2069                             getValue(I.getOperand(1))));
2070    return 0;
2071  case Intrinsic::ctlz_i8:
2072  case Intrinsic::ctlz_i16:
2073  case Intrinsic::ctlz_i32:
2074  case Intrinsic::ctlz_i64:
2075    setValue(&I, DAG.getNode(ISD::CTLZ,
2076                             getValue(I.getOperand(1)).getValueType(),
2077                             getValue(I.getOperand(1))));
2078    return 0;
2079  case Intrinsic::ctpop_i8:
2080  case Intrinsic::ctpop_i16:
2081  case Intrinsic::ctpop_i32:
2082  case Intrinsic::ctpop_i64:
2083    setValue(&I, DAG.getNode(ISD::CTPOP,
2084                             getValue(I.getOperand(1)).getValueType(),
2085                             getValue(I.getOperand(1))));
2086    return 0;
2087  case Intrinsic::stacksave: {
2088    SDOperand Op = getRoot();
2089    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2090              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2091    setValue(&I, Tmp);
2092    DAG.setRoot(Tmp.getValue(1));
2093    return 0;
2094  }
2095  case Intrinsic::stackrestore: {
2096    SDOperand Tmp = getValue(I.getOperand(1));
2097    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2098    return 0;
2099  }
2100  case Intrinsic::prefetch:
2101    // FIXME: Currently discarding prefetches.
2102    return 0;
2103  }
2104}
2105
2106
2107void SelectionDAGLowering::visitCall(CallInst &I) {
2108  const char *RenameFn = 0;
2109  if (Function *F = I.getCalledFunction()) {
2110    if (F->isExternal())
2111      if (unsigned IID = F->getIntrinsicID()) {
2112        RenameFn = visitIntrinsicCall(I, IID);
2113        if (!RenameFn)
2114          return;
2115      } else {    // Not an LLVM intrinsic.
2116        const std::string &Name = F->getName();
2117        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2118          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2119              I.getOperand(1)->getType()->isFloatingPoint() &&
2120              I.getType() == I.getOperand(1)->getType() &&
2121              I.getType() == I.getOperand(2)->getType()) {
2122            SDOperand LHS = getValue(I.getOperand(1));
2123            SDOperand RHS = getValue(I.getOperand(2));
2124            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2125                                     LHS, RHS));
2126            return;
2127          }
2128        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2129          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2130              I.getOperand(1)->getType()->isFloatingPoint() &&
2131              I.getType() == I.getOperand(1)->getType()) {
2132            SDOperand Tmp = getValue(I.getOperand(1));
2133            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2134            return;
2135          }
2136        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2137          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2138              I.getOperand(1)->getType()->isFloatingPoint() &&
2139              I.getType() == I.getOperand(1)->getType()) {
2140            SDOperand Tmp = getValue(I.getOperand(1));
2141            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2142            return;
2143          }
2144        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2145          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2146              I.getOperand(1)->getType()->isFloatingPoint() &&
2147              I.getType() == I.getOperand(1)->getType()) {
2148            SDOperand Tmp = getValue(I.getOperand(1));
2149            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2150            return;
2151          }
2152        }
2153      }
2154  } else if (isa<InlineAsm>(I.getOperand(0))) {
2155    visitInlineAsm(I);
2156    return;
2157  }
2158
2159  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
2160  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2161
2162  SDOperand Callee;
2163  if (!RenameFn)
2164    Callee = getValue(I.getOperand(0));
2165  else
2166    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2167  TargetLowering::ArgListTy Args;
2168  TargetLowering::ArgListEntry Entry;
2169  Args.reserve(I.getNumOperands());
2170  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2171    Value *Arg = I.getOperand(i);
2172    SDOperand ArgNode = getValue(Arg);
2173    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2174    Entry.isSigned = FTy->paramHasAttr(i, FunctionType::SExtAttribute);
2175    Entry.isInReg  = FTy->paramHasAttr(i, FunctionType::InRegAttribute);
2176    Entry.isSRet   = FTy->paramHasAttr(i, FunctionType::StructRetAttribute);
2177    Args.push_back(Entry);
2178  }
2179
2180  std::pair<SDOperand,SDOperand> Result =
2181    TLI.LowerCallTo(getRoot(), I.getType(),
2182                    FTy->paramHasAttr(0,FunctionType::SExtAttribute),
2183                    FTy->isVarArg(), I.getCallingConv(), I.isTailCall(),
2184                    Callee, Args, DAG);
2185  if (I.getType() != Type::VoidTy)
2186    setValue(&I, Result.first);
2187  DAG.setRoot(Result.second);
2188}
2189
2190SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2191                                        SDOperand &Chain, SDOperand &Flag)const{
2192  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
2193  Chain = Val.getValue(1);
2194  Flag  = Val.getValue(2);
2195
2196  // If the result was expanded, copy from the top part.
2197  if (Regs.size() > 1) {
2198    assert(Regs.size() == 2 &&
2199           "Cannot expand to more than 2 elts yet!");
2200    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
2201    Chain = Hi.getValue(1);
2202    Flag  = Hi.getValue(2);
2203    if (DAG.getTargetLoweringInfo().isLittleEndian())
2204      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
2205    else
2206      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
2207  }
2208
2209  // Otherwise, if the return value was promoted or extended, truncate it to the
2210  // appropriate type.
2211  if (RegVT == ValueVT)
2212    return Val;
2213
2214  if (MVT::isInteger(RegVT)) {
2215    if (ValueVT < RegVT)
2216      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
2217    else
2218      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
2219  } else {
2220    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
2221  }
2222}
2223
2224/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2225/// specified value into the registers specified by this object.  This uses
2226/// Chain/Flag as the input and updates them for the output Chain/Flag.
2227void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2228                                 SDOperand &Chain, SDOperand &Flag,
2229                                 MVT::ValueType PtrVT) const {
2230  if (Regs.size() == 1) {
2231    // If there is a single register and the types differ, this must be
2232    // a promotion.
2233    if (RegVT != ValueVT) {
2234      if (MVT::isInteger(RegVT)) {
2235        if (RegVT < ValueVT)
2236          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
2237        else
2238          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
2239      } else
2240        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
2241    }
2242    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
2243    Flag = Chain.getValue(1);
2244  } else {
2245    std::vector<unsigned> R(Regs);
2246    if (!DAG.getTargetLoweringInfo().isLittleEndian())
2247      std::reverse(R.begin(), R.end());
2248
2249    for (unsigned i = 0, e = R.size(); i != e; ++i) {
2250      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
2251                                   DAG.getConstant(i, PtrVT));
2252      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
2253      Flag = Chain.getValue(1);
2254    }
2255  }
2256}
2257
2258/// AddInlineAsmOperands - Add this value to the specified inlineasm node
2259/// operand list.  This adds the code marker and includes the number of
2260/// values added into it.
2261void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
2262                                        std::vector<SDOperand> &Ops) const {
2263  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
2264  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
2265    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
2266}
2267
2268/// isAllocatableRegister - If the specified register is safe to allocate,
2269/// i.e. it isn't a stack pointer or some other special register, return the
2270/// register class for the register.  Otherwise, return null.
2271static const TargetRegisterClass *
2272isAllocatableRegister(unsigned Reg, MachineFunction &MF,
2273                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
2274  MVT::ValueType FoundVT = MVT::Other;
2275  const TargetRegisterClass *FoundRC = 0;
2276  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
2277       E = MRI->regclass_end(); RCI != E; ++RCI) {
2278    MVT::ValueType ThisVT = MVT::Other;
2279
2280    const TargetRegisterClass *RC = *RCI;
2281    // If none of the the value types for this register class are valid, we
2282    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2283    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2284         I != E; ++I) {
2285      if (TLI.isTypeLegal(*I)) {
2286        // If we have already found this register in a different register class,
2287        // choose the one with the largest VT specified.  For example, on
2288        // PowerPC, we favor f64 register classes over f32.
2289        if (FoundVT == MVT::Other ||
2290            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
2291          ThisVT = *I;
2292          break;
2293        }
2294      }
2295    }
2296
2297    if (ThisVT == MVT::Other) continue;
2298
2299    // NOTE: This isn't ideal.  In particular, this might allocate the
2300    // frame pointer in functions that need it (due to them not being taken
2301    // out of allocation, because a variable sized allocation hasn't been seen
2302    // yet).  This is a slight code pessimization, but should still work.
2303    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
2304         E = RC->allocation_order_end(MF); I != E; ++I)
2305      if (*I == Reg) {
2306        // We found a matching register class.  Keep looking at others in case
2307        // we find one with larger registers that this physreg is also in.
2308        FoundRC = RC;
2309        FoundVT = ThisVT;
2310        break;
2311      }
2312  }
2313  return FoundRC;
2314}
2315
2316RegsForValue SelectionDAGLowering::
2317GetRegistersForValue(const std::string &ConstrCode,
2318                     MVT::ValueType VT, bool isOutReg, bool isInReg,
2319                     std::set<unsigned> &OutputRegs,
2320                     std::set<unsigned> &InputRegs) {
2321  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
2322    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
2323  std::vector<unsigned> Regs;
2324
2325  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
2326  MVT::ValueType RegVT;
2327  MVT::ValueType ValueVT = VT;
2328
2329  // If this is a constraint for a specific physical register, like {r17},
2330  // assign it now.
2331  if (PhysReg.first) {
2332    if (VT == MVT::Other)
2333      ValueVT = *PhysReg.second->vt_begin();
2334
2335    // Get the actual register value type.  This is important, because the user
2336    // may have asked for (e.g.) the AX register in i32 type.  We need to
2337    // remember that AX is actually i16 to get the right extension.
2338    RegVT = *PhysReg.second->vt_begin();
2339
2340    // This is a explicit reference to a physical register.
2341    Regs.push_back(PhysReg.first);
2342
2343    // If this is an expanded reference, add the rest of the regs to Regs.
2344    if (NumRegs != 1) {
2345      TargetRegisterClass::iterator I = PhysReg.second->begin();
2346      TargetRegisterClass::iterator E = PhysReg.second->end();
2347      for (; *I != PhysReg.first; ++I)
2348        assert(I != E && "Didn't find reg!");
2349
2350      // Already added the first reg.
2351      --NumRegs; ++I;
2352      for (; NumRegs; --NumRegs, ++I) {
2353        assert(I != E && "Ran out of registers to allocate!");
2354        Regs.push_back(*I);
2355      }
2356    }
2357    return RegsForValue(Regs, RegVT, ValueVT);
2358  }
2359
2360  // Otherwise, if this was a reference to an LLVM register class, create vregs
2361  // for this reference.
2362  std::vector<unsigned> RegClassRegs;
2363  if (PhysReg.second) {
2364    // If this is an early clobber or tied register, our regalloc doesn't know
2365    // how to maintain the constraint.  If it isn't, go ahead and create vreg
2366    // and let the regalloc do the right thing.
2367    if (!isOutReg || !isInReg) {
2368      if (VT == MVT::Other)
2369        ValueVT = *PhysReg.second->vt_begin();
2370      RegVT = *PhysReg.second->vt_begin();
2371
2372      // Create the appropriate number of virtual registers.
2373      SSARegMap *RegMap = DAG.getMachineFunction().getSSARegMap();
2374      for (; NumRegs; --NumRegs)
2375        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
2376
2377      return RegsForValue(Regs, RegVT, ValueVT);
2378    }
2379
2380    // Otherwise, we can't allocate it.  Let the code below figure out how to
2381    // maintain these constraints.
2382    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
2383
2384  } else {
2385    // This is a reference to a register class that doesn't directly correspond
2386    // to an LLVM register class.  Allocate NumRegs consecutive, available,
2387    // registers from the class.
2388    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
2389  }
2390
2391  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
2392  MachineFunction &MF = *CurMBB->getParent();
2393  unsigned NumAllocated = 0;
2394  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
2395    unsigned Reg = RegClassRegs[i];
2396    // See if this register is available.
2397    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
2398        (isInReg  && InputRegs.count(Reg))) {    // Already used.
2399      // Make sure we find consecutive registers.
2400      NumAllocated = 0;
2401      continue;
2402    }
2403
2404    // Check to see if this register is allocatable (i.e. don't give out the
2405    // stack pointer).
2406    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
2407    if (!RC) {
2408      // Make sure we find consecutive registers.
2409      NumAllocated = 0;
2410      continue;
2411    }
2412
2413    // Okay, this register is good, we can use it.
2414    ++NumAllocated;
2415
2416    // If we allocated enough consecutive
2417    if (NumAllocated == NumRegs) {
2418      unsigned RegStart = (i-NumAllocated)+1;
2419      unsigned RegEnd   = i+1;
2420      // Mark all of the allocated registers used.
2421      for (unsigned i = RegStart; i != RegEnd; ++i) {
2422        unsigned Reg = RegClassRegs[i];
2423        Regs.push_back(Reg);
2424        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
2425        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
2426      }
2427
2428      return RegsForValue(Regs, *RC->vt_begin(), VT);
2429    }
2430  }
2431
2432  // Otherwise, we couldn't allocate enough registers for this.
2433  return RegsForValue();
2434}
2435
2436
2437/// visitInlineAsm - Handle a call to an InlineAsm object.
2438///
2439void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
2440  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
2441
2442  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
2443                                                 MVT::Other);
2444
2445  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
2446  std::vector<MVT::ValueType> ConstraintVTs;
2447
2448  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
2449  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
2450  /// if it is a def of that register.
2451  std::vector<SDOperand> AsmNodeOperands;
2452  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
2453  AsmNodeOperands.push_back(AsmStr);
2454
2455  SDOperand Chain = getRoot();
2456  SDOperand Flag;
2457
2458  // We fully assign registers here at isel time.  This is not optimal, but
2459  // should work.  For register classes that correspond to LLVM classes, we
2460  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
2461  // over the constraints, collecting fixed registers that we know we can't use.
2462  std::set<unsigned> OutputRegs, InputRegs;
2463  unsigned OpNum = 1;
2464  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2465    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2466    std::string &ConstraintCode = Constraints[i].Codes[0];
2467
2468    MVT::ValueType OpVT;
2469
2470    // Compute the value type for each operand and add it to ConstraintVTs.
2471    switch (Constraints[i].Type) {
2472    case InlineAsm::isOutput:
2473      if (!Constraints[i].isIndirectOutput) {
2474        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2475        OpVT = TLI.getValueType(I.getType());
2476      } else {
2477        const Type *OpTy = I.getOperand(OpNum)->getType();
2478        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2479        OpNum++;  // Consumes a call operand.
2480      }
2481      break;
2482    case InlineAsm::isInput:
2483      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2484      OpNum++;  // Consumes a call operand.
2485      break;
2486    case InlineAsm::isClobber:
2487      OpVT = MVT::Other;
2488      break;
2489    }
2490
2491    ConstraintVTs.push_back(OpVT);
2492
2493    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2494      continue;  // Not assigned a fixed reg.
2495
2496    // Build a list of regs that this operand uses.  This always has a single
2497    // element for promoted/expanded operands.
2498    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2499                                             false, false,
2500                                             OutputRegs, InputRegs);
2501
2502    switch (Constraints[i].Type) {
2503    case InlineAsm::isOutput:
2504      // We can't assign any other output to this register.
2505      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2506      // If this is an early-clobber output, it cannot be assigned to the same
2507      // value as the input reg.
2508      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2509        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2510      break;
2511    case InlineAsm::isInput:
2512      // We can't assign any other input to this register.
2513      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2514      break;
2515    case InlineAsm::isClobber:
2516      // Clobbered regs cannot be used as inputs or outputs.
2517      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2518      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2519      break;
2520    }
2521  }
2522
2523  // Loop over all of the inputs, copying the operand values into the
2524  // appropriate registers and processing the output regs.
2525  RegsForValue RetValRegs;
2526  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2527  OpNum = 1;
2528
2529  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2530    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2531    std::string &ConstraintCode = Constraints[i].Codes[0];
2532
2533    switch (Constraints[i].Type) {
2534    case InlineAsm::isOutput: {
2535      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2536      if (ConstraintCode.size() == 1)   // not a physreg name.
2537        CTy = TLI.getConstraintType(ConstraintCode[0]);
2538
2539      if (CTy == TargetLowering::C_Memory) {
2540        // Memory output.
2541        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2542
2543        // Check that the operand (the address to store to) isn't a float.
2544        if (!MVT::isInteger(InOperandVal.getValueType()))
2545          assert(0 && "MATCH FAIL!");
2546
2547        if (!Constraints[i].isIndirectOutput)
2548          assert(0 && "MATCH FAIL!");
2549
2550        OpNum++;  // Consumes a call operand.
2551
2552        // Extend/truncate to the right pointer type if needed.
2553        MVT::ValueType PtrType = TLI.getPointerTy();
2554        if (InOperandVal.getValueType() < PtrType)
2555          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2556        else if (InOperandVal.getValueType() > PtrType)
2557          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2558
2559        // Add information to the INLINEASM node to know about this output.
2560        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2561        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2562        AsmNodeOperands.push_back(InOperandVal);
2563        break;
2564      }
2565
2566      // Otherwise, this is a register output.
2567      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2568
2569      // If this is an early-clobber output, or if there is an input
2570      // constraint that matches this, we need to reserve the input register
2571      // so no other inputs allocate to it.
2572      bool UsesInputRegister = false;
2573      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2574        UsesInputRegister = true;
2575
2576      // Copy the output from the appropriate register.  Find a register that
2577      // we can use.
2578      RegsForValue Regs =
2579        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2580                             true, UsesInputRegister,
2581                             OutputRegs, InputRegs);
2582      if (Regs.Regs.empty()) {
2583        cerr << "Couldn't allocate output reg for contraint '"
2584             << ConstraintCode << "'!\n";
2585        exit(1);
2586      }
2587
2588      if (!Constraints[i].isIndirectOutput) {
2589        assert(RetValRegs.Regs.empty() &&
2590               "Cannot have multiple output constraints yet!");
2591        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2592        RetValRegs = Regs;
2593      } else {
2594        IndirectStoresToEmit.push_back(std::make_pair(Regs,
2595                                                      I.getOperand(OpNum)));
2596        OpNum++;  // Consumes a call operand.
2597      }
2598
2599      // Add information to the INLINEASM node to know that this register is
2600      // set.
2601      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
2602      break;
2603    }
2604    case InlineAsm::isInput: {
2605      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2606      OpNum++;  // Consumes a call operand.
2607
2608      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
2609        // If this is required to match an output register we have already set,
2610        // just use its register.
2611        unsigned OperandNo = atoi(ConstraintCode.c_str());
2612
2613        // Scan until we find the definition we already emitted of this operand.
2614        // When we find it, create a RegsForValue operand.
2615        unsigned CurOp = 2;  // The first operand.
2616        for (; OperandNo; --OperandNo) {
2617          // Advance to the next operand.
2618          unsigned NumOps =
2619            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2620          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
2621                  (NumOps & 7) == 4 /*MEM*/) &&
2622                 "Skipped past definitions?");
2623          CurOp += (NumOps>>3)+1;
2624        }
2625
2626        unsigned NumOps =
2627          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2628        assert((NumOps & 7) == 2 /*REGDEF*/ &&
2629               "Skipped past definitions?");
2630
2631        // Add NumOps>>3 registers to MatchedRegs.
2632        RegsForValue MatchedRegs;
2633        MatchedRegs.ValueVT = InOperandVal.getValueType();
2634        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
2635        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
2636          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
2637          MatchedRegs.Regs.push_back(Reg);
2638        }
2639
2640        // Use the produced MatchedRegs object to
2641        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
2642                                  TLI.getPointerTy());
2643        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2644        break;
2645      }
2646
2647      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2648      if (ConstraintCode.size() == 1)   // not a physreg name.
2649        CTy = TLI.getConstraintType(ConstraintCode[0]);
2650
2651      if (CTy == TargetLowering::C_Other) {
2652        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
2653                                                       ConstraintCode[0], DAG);
2654        if (!InOperandVal.Val) {
2655          cerr << "Invalid operand for inline asm constraint '"
2656               << ConstraintCode << "'!\n";
2657          exit(1);
2658        }
2659
2660        // Add information to the INLINEASM node to know about this input.
2661        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2662        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2663        AsmNodeOperands.push_back(InOperandVal);
2664        break;
2665      } else if (CTy == TargetLowering::C_Memory) {
2666        // Memory input.
2667
2668        // Check that the operand isn't a float.
2669        if (!MVT::isInteger(InOperandVal.getValueType()))
2670          assert(0 && "MATCH FAIL!");
2671
2672        // Extend/truncate to the right pointer type if needed.
2673        MVT::ValueType PtrType = TLI.getPointerTy();
2674        if (InOperandVal.getValueType() < PtrType)
2675          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2676        else if (InOperandVal.getValueType() > PtrType)
2677          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2678
2679        // Add information to the INLINEASM node to know about this input.
2680        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2681        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2682        AsmNodeOperands.push_back(InOperandVal);
2683        break;
2684      }
2685
2686      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2687
2688      // Copy the input into the appropriate registers.
2689      RegsForValue InRegs =
2690        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2691                             false, true, OutputRegs, InputRegs);
2692      // FIXME: should be match fail.
2693      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2694
2695      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
2696
2697      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2698      break;
2699    }
2700    case InlineAsm::isClobber: {
2701      RegsForValue ClobberedRegs =
2702        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2703                             OutputRegs, InputRegs);
2704      // Add the clobbered value to the operand list, so that the register
2705      // allocator is aware that the physreg got clobbered.
2706      if (!ClobberedRegs.Regs.empty())
2707        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2708      break;
2709    }
2710    }
2711  }
2712
2713  // Finish up input operands.
2714  AsmNodeOperands[0] = Chain;
2715  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2716
2717  Chain = DAG.getNode(ISD::INLINEASM,
2718                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
2719                      &AsmNodeOperands[0], AsmNodeOperands.size());
2720  Flag = Chain.getValue(1);
2721
2722  // If this asm returns a register value, copy the result from that register
2723  // and set it as the value of the call.
2724  if (!RetValRegs.Regs.empty())
2725    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2726
2727  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2728
2729  // Process indirect outputs, first output all of the flagged copies out of
2730  // physregs.
2731  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2732    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2733    Value *Ptr = IndirectStoresToEmit[i].second;
2734    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2735    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2736  }
2737
2738  // Emit the non-flagged stores from the physregs.
2739  SmallVector<SDOperand, 8> OutChains;
2740  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2741    OutChains.push_back(DAG.getStore(Chain,  StoresToEmit[i].first,
2742                                    getValue(StoresToEmit[i].second),
2743                                    StoresToEmit[i].second, 0));
2744  if (!OutChains.empty())
2745    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2746                        &OutChains[0], OutChains.size());
2747  DAG.setRoot(Chain);
2748}
2749
2750
2751void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2752  SDOperand Src = getValue(I.getOperand(0));
2753
2754  MVT::ValueType IntPtr = TLI.getPointerTy();
2755
2756  if (IntPtr < Src.getValueType())
2757    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2758  else if (IntPtr > Src.getValueType())
2759    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2760
2761  // Scale the source by the type size.
2762  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
2763  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2764                    Src, getIntPtrConstant(ElementSize));
2765
2766  TargetLowering::ArgListTy Args;
2767  TargetLowering::ArgListEntry Entry;
2768  Entry.Node = Src;
2769  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2770  Entry.isSigned = false;
2771  Entry.isInReg = false;
2772  Entry.isSRet = false;
2773  Args.push_back(Entry);
2774
2775  std::pair<SDOperand,SDOperand> Result =
2776    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
2777                    DAG.getExternalSymbol("malloc", IntPtr),
2778                    Args, DAG);
2779  setValue(&I, Result.first);  // Pointers always fit in registers
2780  DAG.setRoot(Result.second);
2781}
2782
2783void SelectionDAGLowering::visitFree(FreeInst &I) {
2784  TargetLowering::ArgListTy Args;
2785  TargetLowering::ArgListEntry Entry;
2786  Entry.Node = getValue(I.getOperand(0));
2787  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2788  Entry.isSigned = false;
2789  Entry.isInReg = false;
2790  Entry.isSRet = false;
2791  Args.push_back(Entry);
2792  MVT::ValueType IntPtr = TLI.getPointerTy();
2793  std::pair<SDOperand,SDOperand> Result =
2794    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
2795                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2796  DAG.setRoot(Result.second);
2797}
2798
2799// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2800// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2801// instructions are special in various ways, which require special support to
2802// insert.  The specified MachineInstr is created but not inserted into any
2803// basic blocks, and the scheduler passes ownership of it to this method.
2804MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2805                                                       MachineBasicBlock *MBB) {
2806  cerr << "If a target marks an instruction with "
2807       << "'usesCustomDAGSchedInserter', it must implement "
2808       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
2809  abort();
2810  return 0;
2811}
2812
2813void SelectionDAGLowering::visitVAStart(CallInst &I) {
2814  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2815                          getValue(I.getOperand(1)),
2816                          DAG.getSrcValue(I.getOperand(1))));
2817}
2818
2819void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2820  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2821                             getValue(I.getOperand(0)),
2822                             DAG.getSrcValue(I.getOperand(0)));
2823  setValue(&I, V);
2824  DAG.setRoot(V.getValue(1));
2825}
2826
2827void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2828  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2829                          getValue(I.getOperand(1)),
2830                          DAG.getSrcValue(I.getOperand(1))));
2831}
2832
2833void SelectionDAGLowering::visitVACopy(CallInst &I) {
2834  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2835                          getValue(I.getOperand(1)),
2836                          getValue(I.getOperand(2)),
2837                          DAG.getSrcValue(I.getOperand(1)),
2838                          DAG.getSrcValue(I.getOperand(2))));
2839}
2840
2841/// ExpandScalarFormalArgs - Recursively expand the formal_argument node, either
2842/// bit_convert it or join a pair of them with a BUILD_PAIR when appropriate.
2843static SDOperand ExpandScalarFormalArgs(MVT::ValueType VT, SDNode *Arg,
2844                                        unsigned &i, SelectionDAG &DAG,
2845                                        TargetLowering &TLI) {
2846  if (TLI.getTypeAction(VT) != TargetLowering::Expand)
2847    return SDOperand(Arg, i++);
2848
2849  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
2850  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
2851  if (NumVals == 1) {
2852    return DAG.getNode(ISD::BIT_CONVERT, VT,
2853                       ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI));
2854  } else if (NumVals == 2) {
2855    SDOperand Lo = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
2856    SDOperand Hi = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
2857    if (!TLI.isLittleEndian())
2858      std::swap(Lo, Hi);
2859    return DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
2860  } else {
2861    // Value scalarized into many values.  Unimp for now.
2862    assert(0 && "Cannot expand i64 -> i16 yet!");
2863  }
2864  return SDOperand();
2865}
2866
2867/// TargetLowering::LowerArguments - This is the default LowerArguments
2868/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
2869/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
2870/// integrated into SDISel.
2871std::vector<SDOperand>
2872TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
2873  const FunctionType *FTy = F.getFunctionType();
2874  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
2875  std::vector<SDOperand> Ops;
2876  Ops.push_back(DAG.getRoot());
2877  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
2878  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
2879
2880  // Add one result value for each formal argument.
2881  std::vector<MVT::ValueType> RetVals;
2882  unsigned j = 1;
2883  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
2884       I != E; ++I, ++j) {
2885    MVT::ValueType VT = getValueType(I->getType());
2886    bool isInReg = FTy->paramHasAttr(j, FunctionType::InRegAttribute);
2887    bool isSRet  = FTy->paramHasAttr(j, FunctionType::StructRetAttribute);
2888    unsigned Flags = (isInReg << 1) | (isSRet << 2);
2889
2890    switch (getTypeAction(VT)) {
2891    default: assert(0 && "Unknown type action!");
2892    case Legal:
2893      RetVals.push_back(VT);
2894      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
2895      break;
2896    case Promote:
2897      RetVals.push_back(getTypeToTransformTo(VT));
2898      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
2899      break;
2900    case Expand:
2901      if (VT != MVT::Vector) {
2902        // If this is a large integer, it needs to be broken up into small
2903        // integers.  Figure out what the destination type is and how many small
2904        // integers it turns into.
2905        MVT::ValueType NVT = getTypeToExpandTo(VT);
2906        unsigned NumVals = getNumElements(VT);
2907        for (unsigned i = 0; i != NumVals; ++i) {
2908          RetVals.push_back(NVT);
2909          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
2910        }
2911      } else {
2912        // Otherwise, this is a vector type.  We only support legal vectors
2913        // right now.
2914        unsigned NumElems = cast<PackedType>(I->getType())->getNumElements();
2915        const Type *EltTy = cast<PackedType>(I->getType())->getElementType();
2916
2917        // Figure out if there is a Packed type corresponding to this Vector
2918        // type.  If so, convert to the packed type.
2919        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2920        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2921          RetVals.push_back(TVT);
2922          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
2923        } else {
2924          assert(0 && "Don't support illegal by-val vector arguments yet!");
2925        }
2926      }
2927      break;
2928    }
2929  }
2930
2931  RetVals.push_back(MVT::Other);
2932
2933  // Create the node.
2934  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
2935                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
2936                               &Ops[0], Ops.size()).Val;
2937
2938  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
2939
2940  // Set up the return result vector.
2941  Ops.clear();
2942  unsigned i = 0;
2943  unsigned Idx = 1;
2944  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
2945      ++I, ++Idx) {
2946    MVT::ValueType VT = getValueType(I->getType());
2947
2948    switch (getTypeAction(VT)) {
2949    default: assert(0 && "Unknown type action!");
2950    case Legal:
2951      Ops.push_back(SDOperand(Result, i++));
2952      break;
2953    case Promote: {
2954      SDOperand Op(Result, i++);
2955      if (MVT::isInteger(VT)) {
2956        if (FTy->paramHasAttr(Idx, FunctionType::SExtAttribute))
2957          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
2958                           DAG.getValueType(VT));
2959        else if (FTy->paramHasAttr(Idx, FunctionType::ZExtAttribute))
2960          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
2961                           DAG.getValueType(VT));
2962        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2963      } else {
2964        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2965        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
2966      }
2967      Ops.push_back(Op);
2968      break;
2969    }
2970    case Expand:
2971      if (VT != MVT::Vector) {
2972        // If this is a large integer or a floating point node that needs to be
2973        // expanded, it needs to be reassembled from small integers.  Figure out
2974        // what the source elt type is and how many small integers it is.
2975        Ops.push_back(ExpandScalarFormalArgs(VT, Result, i, DAG, *this));
2976      } else {
2977        // Otherwise, this is a vector type.  We only support legal vectors
2978        // right now.
2979        const PackedType *PTy = cast<PackedType>(I->getType());
2980        unsigned NumElems = PTy->getNumElements();
2981        const Type *EltTy = PTy->getElementType();
2982
2983        // Figure out if there is a Packed type corresponding to this Vector
2984        // type.  If so, convert to the packed type.
2985        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2986        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2987          SDOperand N = SDOperand(Result, i++);
2988          // Handle copies from generic vectors to registers.
2989          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
2990                          DAG.getConstant(NumElems, MVT::i32),
2991                          DAG.getValueType(getValueType(EltTy)));
2992          Ops.push_back(N);
2993        } else {
2994          assert(0 && "Don't support illegal by-val vector arguments yet!");
2995          abort();
2996        }
2997      }
2998      break;
2999    }
3000  }
3001  return Ops;
3002}
3003
3004
3005/// ExpandScalarCallArgs - Recursively expand call argument node by
3006/// bit_converting it or extract a pair of elements from the larger  node.
3007static void ExpandScalarCallArgs(MVT::ValueType VT, SDOperand Arg,
3008                                 unsigned Flags,
3009                                 SmallVector<SDOperand, 32> &Ops,
3010                                 SelectionDAG &DAG,
3011                                 TargetLowering &TLI) {
3012  if (TLI.getTypeAction(VT) != TargetLowering::Expand) {
3013    Ops.push_back(Arg);
3014    Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3015    return;
3016  }
3017
3018  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3019  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3020  if (NumVals == 1) {
3021    Arg = DAG.getNode(ISD::BIT_CONVERT, EVT, Arg);
3022    ExpandScalarCallArgs(EVT, Arg, Flags, Ops, DAG, TLI);
3023  } else if (NumVals == 2) {
3024    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3025                               DAG.getConstant(0, TLI.getPointerTy()));
3026    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3027                               DAG.getConstant(1, TLI.getPointerTy()));
3028    if (!TLI.isLittleEndian())
3029      std::swap(Lo, Hi);
3030    ExpandScalarCallArgs(EVT, Lo, Flags, Ops, DAG, TLI);
3031    ExpandScalarCallArgs(EVT, Hi, Flags, Ops, DAG, TLI);
3032  } else {
3033    // Value scalarized into many values.  Unimp for now.
3034    assert(0 && "Cannot expand i64 -> i16 yet!");
3035  }
3036}
3037
3038/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3039/// implementation, which just inserts an ISD::CALL node, which is later custom
3040/// lowered by the target to something concrete.  FIXME: When all targets are
3041/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3042std::pair<SDOperand, SDOperand>
3043TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3044                            bool RetTyIsSigned, bool isVarArg,
3045                            unsigned CallingConv, bool isTailCall,
3046                            SDOperand Callee,
3047                            ArgListTy &Args, SelectionDAG &DAG) {
3048  SmallVector<SDOperand, 32> Ops;
3049  Ops.push_back(Chain);   // Op#0 - Chain
3050  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3051  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3052  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3053  Ops.push_back(Callee);
3054
3055  // Handle all of the outgoing arguments.
3056  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3057    MVT::ValueType VT = getValueType(Args[i].Ty);
3058    SDOperand Op = Args[i].Node;
3059    bool isSigned = Args[i].isSigned;
3060    bool isInReg = Args[i].isInReg;
3061    bool isSRet  = Args[i].isSRet;
3062    unsigned Flags = (isSRet << 2) | (isInReg << 1) | isSigned;
3063    switch (getTypeAction(VT)) {
3064    default: assert(0 && "Unknown type action!");
3065    case Legal:
3066      Ops.push_back(Op);
3067      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3068      break;
3069    case Promote:
3070      if (MVT::isInteger(VT)) {
3071        unsigned ExtOp = isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3072        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3073      } else {
3074        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3075        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
3076      }
3077      Ops.push_back(Op);
3078      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3079      break;
3080    case Expand:
3081      if (VT != MVT::Vector) {
3082        // If this is a large integer, it needs to be broken down into small
3083        // integers.  Figure out what the source elt type is and how many small
3084        // integers it is.
3085        ExpandScalarCallArgs(VT, Op, Flags, Ops, DAG, *this);
3086      } else {
3087        // Otherwise, this is a vector type.  We only support legal vectors
3088        // right now.
3089        const PackedType *PTy = cast<PackedType>(Args[i].Ty);
3090        unsigned NumElems = PTy->getNumElements();
3091        const Type *EltTy = PTy->getElementType();
3092
3093        // Figure out if there is a Packed type corresponding to this Vector
3094        // type.  If so, convert to the packed type.
3095        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3096        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3097          // Insert a VBIT_CONVERT of the MVT::Vector type to the packed type.
3098          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
3099          Ops.push_back(Op);
3100          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3101        } else {
3102          assert(0 && "Don't support illegal by-val vector call args yet!");
3103          abort();
3104        }
3105      }
3106      break;
3107    }
3108  }
3109
3110  // Figure out the result value types.
3111  SmallVector<MVT::ValueType, 4> RetTys;
3112
3113  if (RetTy != Type::VoidTy) {
3114    MVT::ValueType VT = getValueType(RetTy);
3115    switch (getTypeAction(VT)) {
3116    default: assert(0 && "Unknown type action!");
3117    case Legal:
3118      RetTys.push_back(VT);
3119      break;
3120    case Promote:
3121      RetTys.push_back(getTypeToTransformTo(VT));
3122      break;
3123    case Expand:
3124      if (VT != MVT::Vector) {
3125        // If this is a large integer, it needs to be reassembled from small
3126        // integers.  Figure out what the source elt type is and how many small
3127        // integers it is.
3128        MVT::ValueType NVT = getTypeToExpandTo(VT);
3129        unsigned NumVals = getNumElements(VT);
3130        for (unsigned i = 0; i != NumVals; ++i)
3131          RetTys.push_back(NVT);
3132      } else {
3133        // Otherwise, this is a vector type.  We only support legal vectors
3134        // right now.
3135        const PackedType *PTy = cast<PackedType>(RetTy);
3136        unsigned NumElems = PTy->getNumElements();
3137        const Type *EltTy = PTy->getElementType();
3138
3139        // Figure out if there is a Packed type corresponding to this Vector
3140        // type.  If so, convert to the packed type.
3141        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3142        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3143          RetTys.push_back(TVT);
3144        } else {
3145          assert(0 && "Don't support illegal by-val vector call results yet!");
3146          abort();
3147        }
3148      }
3149    }
3150  }
3151
3152  RetTys.push_back(MVT::Other);  // Always has a chain.
3153
3154  // Finally, create the CALL node.
3155  SDOperand Res = DAG.getNode(ISD::CALL,
3156                              DAG.getVTList(&RetTys[0], RetTys.size()),
3157                              &Ops[0], Ops.size());
3158
3159  // This returns a pair of operands.  The first element is the
3160  // return value for the function (if RetTy is not VoidTy).  The second
3161  // element is the outgoing token chain.
3162  SDOperand ResVal;
3163  if (RetTys.size() != 1) {
3164    MVT::ValueType VT = getValueType(RetTy);
3165    if (RetTys.size() == 2) {
3166      ResVal = Res;
3167
3168      // If this value was promoted, truncate it down.
3169      if (ResVal.getValueType() != VT) {
3170        if (VT == MVT::Vector) {
3171          // Insert a VBITCONVERT to convert from the packed result type to the
3172          // MVT::Vector type.
3173          unsigned NumElems = cast<PackedType>(RetTy)->getNumElements();
3174          const Type *EltTy = cast<PackedType>(RetTy)->getElementType();
3175
3176          // Figure out if there is a Packed type corresponding to this Vector
3177          // type.  If so, convert to the packed type.
3178          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3179          if (TVT != MVT::Other && isTypeLegal(TVT)) {
3180            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
3181            // "N x PTyElementVT" MVT::Vector type.
3182            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
3183                                 DAG.getConstant(NumElems, MVT::i32),
3184                                 DAG.getValueType(getValueType(EltTy)));
3185          } else {
3186            abort();
3187          }
3188        } else if (MVT::isInteger(VT)) {
3189          unsigned AssertOp = ISD::AssertSext;
3190          if (!RetTyIsSigned)
3191            AssertOp = ISD::AssertZext;
3192          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
3193                               DAG.getValueType(VT));
3194          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
3195        } else {
3196          assert(MVT::isFloatingPoint(VT));
3197          if (getTypeAction(VT) == Expand)
3198            ResVal = DAG.getNode(ISD::BIT_CONVERT, VT, ResVal);
3199          else
3200            ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
3201        }
3202      }
3203    } else if (RetTys.size() == 3) {
3204      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
3205                           Res.getValue(0), Res.getValue(1));
3206
3207    } else {
3208      assert(0 && "Case not handled yet!");
3209    }
3210  }
3211
3212  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
3213}
3214
3215SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3216  assert(0 && "LowerOperation not implemented for this target!");
3217  abort();
3218  return SDOperand();
3219}
3220
3221SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
3222                                                 SelectionDAG &DAG) {
3223  assert(0 && "CustomPromoteOperation not implemented for this target!");
3224  abort();
3225  return SDOperand();
3226}
3227
3228/// getMemsetValue - Vectorized representation of the memset value
3229/// operand.
3230static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
3231                                SelectionDAG &DAG) {
3232  MVT::ValueType CurVT = VT;
3233  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3234    uint64_t Val   = C->getValue() & 255;
3235    unsigned Shift = 8;
3236    while (CurVT != MVT::i8) {
3237      Val = (Val << Shift) | Val;
3238      Shift <<= 1;
3239      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3240    }
3241    return DAG.getConstant(Val, VT);
3242  } else {
3243    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
3244    unsigned Shift = 8;
3245    while (CurVT != MVT::i8) {
3246      Value =
3247        DAG.getNode(ISD::OR, VT,
3248                    DAG.getNode(ISD::SHL, VT, Value,
3249                                DAG.getConstant(Shift, MVT::i8)), Value);
3250      Shift <<= 1;
3251      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3252    }
3253
3254    return Value;
3255  }
3256}
3257
3258/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3259/// used when a memcpy is turned into a memset when the source is a constant
3260/// string ptr.
3261static SDOperand getMemsetStringVal(MVT::ValueType VT,
3262                                    SelectionDAG &DAG, TargetLowering &TLI,
3263                                    std::string &Str, unsigned Offset) {
3264  uint64_t Val = 0;
3265  unsigned MSB = getSizeInBits(VT) / 8;
3266  if (TLI.isLittleEndian())
3267    Offset = Offset + MSB - 1;
3268  for (unsigned i = 0; i != MSB; ++i) {
3269    Val = (Val << 8) | (unsigned char)Str[Offset];
3270    Offset += TLI.isLittleEndian() ? -1 : 1;
3271  }
3272  return DAG.getConstant(Val, VT);
3273}
3274
3275/// getMemBasePlusOffset - Returns base and offset node for the
3276static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
3277                                      SelectionDAG &DAG, TargetLowering &TLI) {
3278  MVT::ValueType VT = Base.getValueType();
3279  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
3280}
3281
3282/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3283/// to replace the memset / memcpy is below the threshold. It also returns the
3284/// types of the sequence of  memory ops to perform memset / memcpy.
3285static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
3286                                     unsigned Limit, uint64_t Size,
3287                                     unsigned Align, TargetLowering &TLI) {
3288  MVT::ValueType VT;
3289
3290  if (TLI.allowsUnalignedMemoryAccesses()) {
3291    VT = MVT::i64;
3292  } else {
3293    switch (Align & 7) {
3294    case 0:
3295      VT = MVT::i64;
3296      break;
3297    case 4:
3298      VT = MVT::i32;
3299      break;
3300    case 2:
3301      VT = MVT::i16;
3302      break;
3303    default:
3304      VT = MVT::i8;
3305      break;
3306    }
3307  }
3308
3309  MVT::ValueType LVT = MVT::i64;
3310  while (!TLI.isTypeLegal(LVT))
3311    LVT = (MVT::ValueType)((unsigned)LVT - 1);
3312  assert(MVT::isInteger(LVT));
3313
3314  if (VT > LVT)
3315    VT = LVT;
3316
3317  unsigned NumMemOps = 0;
3318  while (Size != 0) {
3319    unsigned VTSize = getSizeInBits(VT) / 8;
3320    while (VTSize > Size) {
3321      VT = (MVT::ValueType)((unsigned)VT - 1);
3322      VTSize >>= 1;
3323    }
3324    assert(MVT::isInteger(VT));
3325
3326    if (++NumMemOps > Limit)
3327      return false;
3328    MemOps.push_back(VT);
3329    Size -= VTSize;
3330  }
3331
3332  return true;
3333}
3334
3335void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
3336  SDOperand Op1 = getValue(I.getOperand(1));
3337  SDOperand Op2 = getValue(I.getOperand(2));
3338  SDOperand Op3 = getValue(I.getOperand(3));
3339  SDOperand Op4 = getValue(I.getOperand(4));
3340  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
3341  if (Align == 0) Align = 1;
3342
3343  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
3344    std::vector<MVT::ValueType> MemOps;
3345
3346    // Expand memset / memcpy to a series of load / store ops
3347    // if the size operand falls below a certain threshold.
3348    SmallVector<SDOperand, 8> OutChains;
3349    switch (Op) {
3350    default: break;  // Do nothing for now.
3351    case ISD::MEMSET: {
3352      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
3353                                   Size->getValue(), Align, TLI)) {
3354        unsigned NumMemOps = MemOps.size();
3355        unsigned Offset = 0;
3356        for (unsigned i = 0; i < NumMemOps; i++) {
3357          MVT::ValueType VT = MemOps[i];
3358          unsigned VTSize = getSizeInBits(VT) / 8;
3359          SDOperand Value = getMemsetValue(Op2, VT, DAG);
3360          SDOperand Store = DAG.getStore(getRoot(), Value,
3361                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
3362                                         I.getOperand(1), Offset);
3363          OutChains.push_back(Store);
3364          Offset += VTSize;
3365        }
3366      }
3367      break;
3368    }
3369    case ISD::MEMCPY: {
3370      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
3371                                   Size->getValue(), Align, TLI)) {
3372        unsigned NumMemOps = MemOps.size();
3373        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
3374        GlobalAddressSDNode *G = NULL;
3375        std::string Str;
3376        bool CopyFromStr = false;
3377
3378        if (Op2.getOpcode() == ISD::GlobalAddress)
3379          G = cast<GlobalAddressSDNode>(Op2);
3380        else if (Op2.getOpcode() == ISD::ADD &&
3381                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3382                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
3383          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
3384          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
3385        }
3386        if (G) {
3387          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3388          if (GV && GV->isConstant()) {
3389            Str = GV->getStringValue(false);
3390            if (!Str.empty()) {
3391              CopyFromStr = true;
3392              SrcOff += SrcDelta;
3393            }
3394          }
3395        }
3396
3397        for (unsigned i = 0; i < NumMemOps; i++) {
3398          MVT::ValueType VT = MemOps[i];
3399          unsigned VTSize = getSizeInBits(VT) / 8;
3400          SDOperand Value, Chain, Store;
3401
3402          if (CopyFromStr) {
3403            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3404            Chain = getRoot();
3405            Store =
3406              DAG.getStore(Chain, Value,
3407                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3408                           I.getOperand(1), DstOff);
3409          } else {
3410            Value = DAG.getLoad(VT, getRoot(),
3411                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
3412                        I.getOperand(2), SrcOff);
3413            Chain = Value.getValue(1);
3414            Store =
3415              DAG.getStore(Chain, Value,
3416                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3417                           I.getOperand(1), DstOff);
3418          }
3419          OutChains.push_back(Store);
3420          SrcOff += VTSize;
3421          DstOff += VTSize;
3422        }
3423      }
3424      break;
3425    }
3426    }
3427
3428    if (!OutChains.empty()) {
3429      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3430                  &OutChains[0], OutChains.size()));
3431      return;
3432    }
3433  }
3434
3435  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
3436}
3437
3438//===----------------------------------------------------------------------===//
3439// SelectionDAGISel code
3440//===----------------------------------------------------------------------===//
3441
3442unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
3443  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
3444}
3445
3446void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
3447  // FIXME: we only modify the CFG to split critical edges.  This
3448  // updates dom and loop info.
3449  AU.addRequired<AliasAnalysis>();
3450}
3451
3452
3453/// OptimizeNoopCopyExpression - We have determined that the specified cast
3454/// instruction is a noop copy (e.g. it's casting from one pointer type to
3455/// another, int->uint, or int->sbyte on PPC.
3456///
3457/// Return true if any changes are made.
3458static bool OptimizeNoopCopyExpression(CastInst *CI) {
3459  BasicBlock *DefBB = CI->getParent();
3460
3461  /// InsertedCasts - Only insert a cast in each block once.
3462  std::map<BasicBlock*, CastInst*> InsertedCasts;
3463
3464  bool MadeChange = false;
3465  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
3466       UI != E; ) {
3467    Use &TheUse = UI.getUse();
3468    Instruction *User = cast<Instruction>(*UI);
3469
3470    // Figure out which BB this cast is used in.  For PHI's this is the
3471    // appropriate predecessor block.
3472    BasicBlock *UserBB = User->getParent();
3473    if (PHINode *PN = dyn_cast<PHINode>(User)) {
3474      unsigned OpVal = UI.getOperandNo()/2;
3475      UserBB = PN->getIncomingBlock(OpVal);
3476    }
3477
3478    // Preincrement use iterator so we don't invalidate it.
3479    ++UI;
3480
3481    // If this user is in the same block as the cast, don't change the cast.
3482    if (UserBB == DefBB) continue;
3483
3484    // If we have already inserted a cast into this block, use it.
3485    CastInst *&InsertedCast = InsertedCasts[UserBB];
3486
3487    if (!InsertedCast) {
3488      BasicBlock::iterator InsertPt = UserBB->begin();
3489      while (isa<PHINode>(InsertPt)) ++InsertPt;
3490
3491      InsertedCast =
3492        CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
3493                         InsertPt);
3494      MadeChange = true;
3495    }
3496
3497    // Replace a use of the cast with a use of the new casat.
3498    TheUse = InsertedCast;
3499  }
3500
3501  // If we removed all uses, nuke the cast.
3502  if (CI->use_empty())
3503    CI->eraseFromParent();
3504
3505  return MadeChange;
3506}
3507
3508/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
3509/// casting to the type of GEPI.
3510static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
3511                                         Instruction *GEPI, Value *Ptr,
3512                                         Value *PtrOffset) {
3513  if (V) return V;   // Already computed.
3514
3515  // Figure out the insertion point
3516  BasicBlock::iterator InsertPt;
3517  if (BB == GEPI->getParent()) {
3518    // If GEP is already inserted into BB, insert right after the GEP.
3519    InsertPt = GEPI;
3520    ++InsertPt;
3521  } else {
3522    // Otherwise, insert at the top of BB, after any PHI nodes
3523    InsertPt = BB->begin();
3524    while (isa<PHINode>(InsertPt)) ++InsertPt;
3525  }
3526
3527  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
3528  // BB so that there is only one value live across basic blocks (the cast
3529  // operand).
3530  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
3531    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
3532      Ptr = CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(),
3533                             "", InsertPt);
3534
3535  // Add the offset, cast it to the right type.
3536  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
3537  // Ptr is an integer type, GEPI is pointer type ==> IntToPtr
3538  return V = CastInst::create(Instruction::IntToPtr, Ptr, GEPI->getType(),
3539                              "", InsertPt);
3540}
3541
3542/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
3543/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
3544/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
3545/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
3546/// sink PtrOffset into user blocks where doing so will likely allow us to fold
3547/// the constant add into a load or store instruction.  Additionally, if a user
3548/// is a pointer-pointer cast, we look through it to find its users.
3549static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
3550                                 Constant *PtrOffset, BasicBlock *DefBB,
3551                                 GetElementPtrInst *GEPI,
3552                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
3553  while (!RepPtr->use_empty()) {
3554    Instruction *User = cast<Instruction>(RepPtr->use_back());
3555
3556    // If the user is a Pointer-Pointer cast, recurse. Only BitCast can be
3557    // used for a Pointer-Pointer cast.
3558    if (isa<BitCastInst>(User)) {
3559      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3560
3561      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
3562      // could invalidate an iterator.
3563      User->setOperand(0, UndefValue::get(RepPtr->getType()));
3564      continue;
3565    }
3566
3567    // If this is a load of the pointer, or a store through the pointer, emit
3568    // the increment into the load/store block.
3569    Instruction *NewVal;
3570    if (isa<LoadInst>(User) ||
3571        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
3572      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
3573                                    User->getParent(), GEPI,
3574                                    Ptr, PtrOffset);
3575    } else {
3576      // If this use is not foldable into the addressing mode, use a version
3577      // emitted in the GEP block.
3578      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
3579                                    Ptr, PtrOffset);
3580    }
3581
3582    if (GEPI->getType() != RepPtr->getType()) {
3583      BasicBlock::iterator IP = NewVal;
3584      ++IP;
3585      // NewVal must be a GEP which must be pointer type, so BitCast
3586      NewVal = new BitCastInst(NewVal, RepPtr->getType(), "", IP);
3587    }
3588    User->replaceUsesOfWith(RepPtr, NewVal);
3589  }
3590}
3591
3592
3593/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
3594/// selection, we want to be a bit careful about some things.  In particular, if
3595/// we have a GEP instruction that is used in a different block than it is
3596/// defined, the addressing expression of the GEP cannot be folded into loads or
3597/// stores that use it.  In this case, decompose the GEP and move constant
3598/// indices into blocks that use it.
3599static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
3600                                  const TargetData *TD) {
3601  // If this GEP is only used inside the block it is defined in, there is no
3602  // need to rewrite it.
3603  bool isUsedOutsideDefBB = false;
3604  BasicBlock *DefBB = GEPI->getParent();
3605  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
3606       UI != E; ++UI) {
3607    if (cast<Instruction>(*UI)->getParent() != DefBB) {
3608      isUsedOutsideDefBB = true;
3609      break;
3610    }
3611  }
3612  if (!isUsedOutsideDefBB) return false;
3613
3614  // If this GEP has no non-zero constant indices, there is nothing we can do,
3615  // ignore it.
3616  bool hasConstantIndex = false;
3617  bool hasVariableIndex = false;
3618  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3619       E = GEPI->op_end(); OI != E; ++OI) {
3620    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
3621      if (CI->getZExtValue()) {
3622        hasConstantIndex = true;
3623        break;
3624      }
3625    } else {
3626      hasVariableIndex = true;
3627    }
3628  }
3629
3630  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
3631  if (!hasConstantIndex && !hasVariableIndex) {
3632    /// The GEP operand must be a pointer, so must its result -> BitCast
3633    Value *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
3634                             GEPI->getName(), GEPI);
3635    GEPI->replaceAllUsesWith(NC);
3636    GEPI->eraseFromParent();
3637    return true;
3638  }
3639
3640  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
3641  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
3642    return false;
3643
3644  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
3645  // constant offset (which we now know is non-zero) and deal with it later.
3646  uint64_t ConstantOffset = 0;
3647  const Type *UIntPtrTy = TD->getIntPtrType();
3648  Value *Ptr = new PtrToIntInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
3649  const Type *Ty = GEPI->getOperand(0)->getType();
3650
3651  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3652       E = GEPI->op_end(); OI != E; ++OI) {
3653    Value *Idx = *OI;
3654    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
3655      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3656      if (Field)
3657        ConstantOffset += TD->getStructLayout(StTy)->MemberOffsets[Field];
3658      Ty = StTy->getElementType(Field);
3659    } else {
3660      Ty = cast<SequentialType>(Ty)->getElementType();
3661
3662      // Handle constant subscripts.
3663      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3664        if (CI->getZExtValue() == 0) continue;
3665        ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CI->getSExtValue();
3666        continue;
3667      }
3668
3669      // Ptr = Ptr + Idx * ElementSize;
3670
3671      // Cast Idx to UIntPtrTy if needed.
3672      Idx = CastInst::createIntegerCast(Idx, UIntPtrTy, true/*SExt*/, "", GEPI);
3673
3674      uint64_t ElementSize = TD->getTypeSize(Ty);
3675      // Mask off bits that should not be set.
3676      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3677      Constant *SizeCst = ConstantInt::get(UIntPtrTy, ElementSize);
3678
3679      // Multiply by the element size and add to the base.
3680      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
3681      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
3682    }
3683  }
3684
3685  // Make sure that the offset fits in uintptr_t.
3686  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3687  Constant *PtrOffset = ConstantInt::get(UIntPtrTy, ConstantOffset);
3688
3689  // Okay, we have now emitted all of the variable index parts to the BB that
3690  // the GEP is defined in.  Loop over all of the using instructions, inserting
3691  // an "add Ptr, ConstantOffset" into each block that uses it and update the
3692  // instruction to use the newly computed value, making GEPI dead.  When the
3693  // user is a load or store instruction address, we emit the add into the user
3694  // block, otherwise we use a canonical version right next to the gep (these
3695  // won't be foldable as addresses, so we might as well share the computation).
3696
3697  std::map<BasicBlock*,Instruction*> InsertedExprs;
3698  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3699
3700  // Finally, the GEP is dead, remove it.
3701  GEPI->eraseFromParent();
3702
3703  return true;
3704}
3705
3706
3707/// SplitEdgeNicely - Split the critical edge from TI to it's specified
3708/// successor if it will improve codegen.  We only do this if the successor has
3709/// phi nodes (otherwise critical edges are ok).  If there is already another
3710/// predecessor of the succ that is empty (and thus has no phi nodes), use it
3711/// instead of introducing a new block.
3712static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
3713  BasicBlock *TIBB = TI->getParent();
3714  BasicBlock *Dest = TI->getSuccessor(SuccNum);
3715  assert(isa<PHINode>(Dest->begin()) &&
3716         "This should only be called if Dest has a PHI!");
3717
3718  /// TIPHIValues - This array is lazily computed to determine the values of
3719  /// PHIs in Dest that TI would provide.
3720  std::vector<Value*> TIPHIValues;
3721
3722  // Check to see if Dest has any blocks that can be used as a split edge for
3723  // this terminator.
3724  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
3725    BasicBlock *Pred = *PI;
3726    // To be usable, the pred has to end with an uncond branch to the dest.
3727    BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
3728    if (!PredBr || !PredBr->isUnconditional() ||
3729        // Must be empty other than the branch.
3730        &Pred->front() != PredBr)
3731      continue;
3732
3733    // Finally, since we know that Dest has phi nodes in it, we have to make
3734    // sure that jumping to Pred will have the same affect as going to Dest in
3735    // terms of PHI values.
3736    PHINode *PN;
3737    unsigned PHINo = 0;
3738    bool FoundMatch = true;
3739    for (BasicBlock::iterator I = Dest->begin();
3740         (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
3741      if (PHINo == TIPHIValues.size())
3742        TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
3743
3744      // If the PHI entry doesn't work, we can't use this pred.
3745      if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
3746        FoundMatch = false;
3747        break;
3748      }
3749    }
3750
3751    // If we found a workable predecessor, change TI to branch to Succ.
3752    if (FoundMatch) {
3753      Dest->removePredecessor(TIBB);
3754      TI->setSuccessor(SuccNum, Pred);
3755      return;
3756    }
3757  }
3758
3759  SplitCriticalEdge(TI, SuccNum, P, true);
3760}
3761
3762
3763bool SelectionDAGISel::runOnFunction(Function &Fn) {
3764  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
3765  RegMap = MF.getSSARegMap();
3766  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
3767
3768  // First, split all critical edges.
3769  //
3770  // In this pass we also look for GEP and cast instructions that are used
3771  // across basic blocks and rewrite them to improve basic-block-at-a-time
3772  // selection.
3773  //
3774  bool MadeChange = true;
3775  while (MadeChange) {
3776    MadeChange = false;
3777  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
3778    // Split all critical edges where the dest block has a PHI.
3779    TerminatorInst *BBTI = BB->getTerminator();
3780    if (BBTI->getNumSuccessors() > 1) {
3781      for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
3782        if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
3783            isCriticalEdge(BBTI, i, true))
3784          SplitEdgeNicely(BBTI, i, this);
3785    }
3786
3787
3788    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3789      Instruction *I = BBI++;
3790
3791      if (CallInst *CI = dyn_cast<CallInst>(I)) {
3792        // If we found an inline asm expession, and if the target knows how to
3793        // lower it to normal LLVM code, do so now.
3794        if (isa<InlineAsm>(CI->getCalledValue()))
3795          if (const TargetAsmInfo *TAI =
3796                TLI.getTargetMachine().getTargetAsmInfo()) {
3797            if (TAI->ExpandInlineAsm(CI))
3798              BBI = BB->begin();
3799          }
3800      } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
3801        MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
3802      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
3803        // If the source of the cast is a constant, then this should have
3804        // already been constant folded.  The only reason NOT to constant fold
3805        // it is if something (e.g. LSR) was careful to place the constant
3806        // evaluation in a block other than then one that uses it (e.g. to hoist
3807        // the address of globals out of a loop).  If this is the case, we don't
3808        // want to forward-subst the cast.
3809        if (isa<Constant>(CI->getOperand(0)))
3810          continue;
3811
3812        // If this is a noop copy, sink it into user blocks to reduce the number
3813        // of virtual registers that must be created and coallesced.
3814        MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
3815        MVT::ValueType DstVT = TLI.getValueType(CI->getType());
3816
3817        // This is an fp<->int conversion?
3818        if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
3819          continue;
3820
3821        // If this is an extension, it will be a zero or sign extension, which
3822        // isn't a noop.
3823        if (SrcVT < DstVT) continue;
3824
3825        // If these values will be promoted, find out what they will be promoted
3826        // to.  This helps us consider truncates on PPC as noop copies when they
3827        // are.
3828        if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
3829          SrcVT = TLI.getTypeToTransformTo(SrcVT);
3830        if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
3831          DstVT = TLI.getTypeToTransformTo(DstVT);
3832
3833        // If, after promotion, these are the same types, this is a noop copy.
3834        if (SrcVT == DstVT)
3835          MadeChange |= OptimizeNoopCopyExpression(CI);
3836      }
3837    }
3838  }
3839  }
3840
3841  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
3842
3843  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
3844    SelectBasicBlock(I, MF, FuncInfo);
3845
3846  return true;
3847}
3848
3849SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
3850                                                           unsigned Reg) {
3851  SDOperand Op = getValue(V);
3852  assert((Op.getOpcode() != ISD::CopyFromReg ||
3853          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
3854         "Copy from a reg to the same reg!");
3855
3856  // If this type is not legal, we must make sure to not create an invalid
3857  // register use.
3858  MVT::ValueType SrcVT = Op.getValueType();
3859  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
3860  if (SrcVT == DestVT) {
3861    return DAG.getCopyToReg(getRoot(), Reg, Op);
3862  } else if (SrcVT == MVT::Vector) {
3863    // Handle copies from generic vectors to registers.
3864    MVT::ValueType PTyElementVT, PTyLegalElementVT;
3865    unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
3866                                             PTyElementVT, PTyLegalElementVT);
3867
3868    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
3869    // MVT::Vector type.
3870    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
3871                     DAG.getConstant(NE, MVT::i32),
3872                     DAG.getValueType(PTyElementVT));
3873
3874    // Loop over all of the elements of the resultant vector,
3875    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
3876    // copying them into output registers.
3877    SmallVector<SDOperand, 8> OutChains;
3878    SDOperand Root = getRoot();
3879    for (unsigned i = 0; i != NE; ++i) {
3880      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
3881                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
3882      if (PTyElementVT == PTyLegalElementVT) {
3883        // Elements are legal.
3884        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3885      } else if (PTyLegalElementVT > PTyElementVT) {
3886        // Elements are promoted.
3887        if (MVT::isFloatingPoint(PTyLegalElementVT))
3888          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
3889        else
3890          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
3891        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3892      } else {
3893        // Elements are expanded.
3894        // The src value is expanded into multiple registers.
3895        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3896                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
3897        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3898                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
3899        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
3900        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
3901      }
3902    }
3903    return DAG.getNode(ISD::TokenFactor, MVT::Other,
3904                       &OutChains[0], OutChains.size());
3905  } else if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) {
3906    // The src value is promoted to the register.
3907    if (MVT::isFloatingPoint(SrcVT))
3908      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
3909    else
3910      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
3911    return DAG.getCopyToReg(getRoot(), Reg, Op);
3912  } else  {
3913    DestVT = TLI.getTypeToExpandTo(SrcVT);
3914    unsigned NumVals = TLI.getNumElements(SrcVT);
3915    if (NumVals == 1)
3916      return DAG.getCopyToReg(getRoot(), Reg,
3917                              DAG.getNode(ISD::BIT_CONVERT, DestVT, Op));
3918    assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
3919    // The src value is expanded into multiple registers.
3920    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3921                               Op, DAG.getConstant(0, TLI.getPointerTy()));
3922    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3923                               Op, DAG.getConstant(1, TLI.getPointerTy()));
3924    Op = DAG.getCopyToReg(getRoot(), Reg, Lo);
3925    return DAG.getCopyToReg(Op, Reg+1, Hi);
3926  }
3927}
3928
3929void SelectionDAGISel::
3930LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
3931               std::vector<SDOperand> &UnorderedChains) {
3932  // If this is the entry block, emit arguments.
3933  Function &F = *BB->getParent();
3934  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
3935  SDOperand OldRoot = SDL.DAG.getRoot();
3936  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
3937
3938  unsigned a = 0;
3939  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
3940       AI != E; ++AI, ++a)
3941    if (!AI->use_empty()) {
3942      SDL.setValue(AI, Args[a]);
3943
3944      // If this argument is live outside of the entry block, insert a copy from
3945      // whereever we got it to the vreg that other BB's will reference it as.
3946      if (FuncInfo.ValueMap.count(AI)) {
3947        SDOperand Copy =
3948          SDL.CopyValueToVirtualRegister(AI, FuncInfo.ValueMap[AI]);
3949        UnorderedChains.push_back(Copy);
3950      }
3951    }
3952
3953  // Finally, if the target has anything special to do, allow it to do so.
3954  // FIXME: this should insert code into the DAG!
3955  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
3956}
3957
3958void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
3959       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
3960                                         FunctionLoweringInfo &FuncInfo) {
3961  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
3962
3963  std::vector<SDOperand> UnorderedChains;
3964
3965  // Lower any arguments needed in this block if this is the entry block.
3966  if (LLVMBB == &LLVMBB->getParent()->front())
3967    LowerArguments(LLVMBB, SDL, UnorderedChains);
3968
3969  BB = FuncInfo.MBBMap[LLVMBB];
3970  SDL.setCurrentBasicBlock(BB);
3971
3972  // Lower all of the non-terminator instructions.
3973  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
3974       I != E; ++I)
3975    SDL.visit(*I);
3976
3977  // Ensure that all instructions which are used outside of their defining
3978  // blocks are available as virtual registers.
3979  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
3980    if (!I->use_empty() && !isa<PHINode>(I)) {
3981      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
3982      if (VMI != FuncInfo.ValueMap.end())
3983        UnorderedChains.push_back(
3984                                SDL.CopyValueToVirtualRegister(I, VMI->second));
3985    }
3986
3987  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
3988  // ensure constants are generated when needed.  Remember the virtual registers
3989  // that need to be added to the Machine PHI nodes as input.  We cannot just
3990  // directly add them, because expansion might result in multiple MBB's for one
3991  // BB.  As such, the start of the BB might correspond to a different MBB than
3992  // the end.
3993  //
3994  TerminatorInst *TI = LLVMBB->getTerminator();
3995
3996  // Emit constants only once even if used by multiple PHI nodes.
3997  std::map<Constant*, unsigned> ConstantsOut;
3998
3999  // Vector bool would be better, but vector<bool> is really slow.
4000  std::vector<unsigned char> SuccsHandled;
4001  if (TI->getNumSuccessors())
4002    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4003
4004  // Check successor nodes PHI nodes that expect a constant to be available from
4005  // this block.
4006  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4007    BasicBlock *SuccBB = TI->getSuccessor(succ);
4008    if (!isa<PHINode>(SuccBB->begin())) continue;
4009    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4010
4011    // If this terminator has multiple identical successors (common for
4012    // switches), only handle each succ once.
4013    unsigned SuccMBBNo = SuccMBB->getNumber();
4014    if (SuccsHandled[SuccMBBNo]) continue;
4015    SuccsHandled[SuccMBBNo] = true;
4016
4017    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4018    PHINode *PN;
4019
4020    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4021    // nodes and Machine PHI nodes, but the incoming operands have not been
4022    // emitted yet.
4023    for (BasicBlock::iterator I = SuccBB->begin();
4024         (PN = dyn_cast<PHINode>(I)); ++I) {
4025      // Ignore dead phi's.
4026      if (PN->use_empty()) continue;
4027
4028      unsigned Reg;
4029      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4030
4031      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4032        unsigned &RegOut = ConstantsOut[C];
4033        if (RegOut == 0) {
4034          RegOut = FuncInfo.CreateRegForValue(C);
4035          UnorderedChains.push_back(
4036                           SDL.CopyValueToVirtualRegister(C, RegOut));
4037        }
4038        Reg = RegOut;
4039      } else {
4040        Reg = FuncInfo.ValueMap[PHIOp];
4041        if (Reg == 0) {
4042          assert(isa<AllocaInst>(PHIOp) &&
4043                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4044                 "Didn't codegen value into a register!??");
4045          Reg = FuncInfo.CreateRegForValue(PHIOp);
4046          UnorderedChains.push_back(
4047                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4048        }
4049      }
4050
4051      // Remember that this register needs to added to the machine PHI node as
4052      // the input for this MBB.
4053      MVT::ValueType VT = TLI.getValueType(PN->getType());
4054      unsigned NumElements;
4055      if (VT != MVT::Vector)
4056        NumElements = TLI.getNumElements(VT);
4057      else {
4058        MVT::ValueType VT1,VT2;
4059        NumElements =
4060          TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
4061                                     VT1, VT2);
4062      }
4063      for (unsigned i = 0, e = NumElements; i != e; ++i)
4064        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4065    }
4066  }
4067  ConstantsOut.clear();
4068
4069  // Turn all of the unordered chains into one factored node.
4070  if (!UnorderedChains.empty()) {
4071    SDOperand Root = SDL.getRoot();
4072    if (Root.getOpcode() != ISD::EntryToken) {
4073      unsigned i = 0, e = UnorderedChains.size();
4074      for (; i != e; ++i) {
4075        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4076        if (UnorderedChains[i].Val->getOperand(0) == Root)
4077          break;  // Don't add the root if we already indirectly depend on it.
4078      }
4079
4080      if (i == e)
4081        UnorderedChains.push_back(Root);
4082    }
4083    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4084                            &UnorderedChains[0], UnorderedChains.size()));
4085  }
4086
4087  // Lower the terminator after the copies are emitted.
4088  SDL.visit(*LLVMBB->getTerminator());
4089
4090  // Copy over any CaseBlock records that may now exist due to SwitchInst
4091  // lowering, as well as any jump table information.
4092  SwitchCases.clear();
4093  SwitchCases = SDL.SwitchCases;
4094  JT = SDL.JT;
4095
4096  // Make sure the root of the DAG is up-to-date.
4097  DAG.setRoot(SDL.getRoot());
4098}
4099
4100void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4101  // Get alias analysis for load/store combining.
4102  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4103
4104  // Run the DAG combiner in pre-legalize mode.
4105  DAG.Combine(false, AA);
4106
4107  DOUT << "Lowered selection DAG:\n";
4108  DEBUG(DAG.dump());
4109
4110  // Second step, hack on the DAG until it only uses operations and types that
4111  // the target supports.
4112  DAG.Legalize();
4113
4114  DOUT << "Legalized selection DAG:\n";
4115  DEBUG(DAG.dump());
4116
4117  // Run the DAG combiner in post-legalize mode.
4118  DAG.Combine(true, AA);
4119
4120  if (ViewISelDAGs) DAG.viewGraph();
4121
4122  // Third, instruction select all of the operations to machine code, adding the
4123  // code to the MachineBasicBlock.
4124  InstructionSelectBasicBlock(DAG);
4125
4126  DOUT << "Selected machine code:\n";
4127  DEBUG(BB->dump());
4128}
4129
4130void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4131                                        FunctionLoweringInfo &FuncInfo) {
4132  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4133  {
4134    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4135    CurDAG = &DAG;
4136
4137    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4138    // types that are not supported by the target.
4139    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4140
4141    // Second step, emit the lowered DAG as machine code.
4142    CodeGenAndEmitDAG(DAG);
4143  }
4144
4145  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4146  // PHI nodes in successors.
4147  if (SwitchCases.empty() && JT.Reg == 0) {
4148    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4149      MachineInstr *PHI = PHINodesToUpdate[i].first;
4150      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4151             "This is not a machine PHI node that we are updating!");
4152      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4153      PHI->addMachineBasicBlockOperand(BB);
4154    }
4155    return;
4156  }
4157
4158  // If the JumpTable record is filled in, then we need to emit a jump table.
4159  // Updating the PHI nodes is tricky in this case, since we need to determine
4160  // whether the PHI is a successor of the range check MBB or the jump table MBB
4161  if (JT.Reg) {
4162    assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
4163    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4164    CurDAG = &SDAG;
4165    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4166    MachineBasicBlock *RangeBB = BB;
4167    // Set the current basic block to the mbb we wish to insert the code into
4168    BB = JT.MBB;
4169    SDL.setCurrentBasicBlock(BB);
4170    // Emit the code
4171    SDL.visitJumpTable(JT);
4172    SDAG.setRoot(SDL.getRoot());
4173    CodeGenAndEmitDAG(SDAG);
4174    // Update PHI Nodes
4175    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4176      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4177      MachineBasicBlock *PHIBB = PHI->getParent();
4178      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4179             "This is not a machine PHI node that we are updating!");
4180      if (PHIBB == JT.Default) {
4181        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4182        PHI->addMachineBasicBlockOperand(RangeBB);
4183      }
4184      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4185        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4186        PHI->addMachineBasicBlockOperand(BB);
4187      }
4188    }
4189    return;
4190  }
4191
4192  // If the switch block involved a branch to one of the actual successors, we
4193  // need to update PHI nodes in that block.
4194  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4195    MachineInstr *PHI = PHINodesToUpdate[i].first;
4196    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4197           "This is not a machine PHI node that we are updating!");
4198    if (BB->isSuccessor(PHI->getParent())) {
4199      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4200      PHI->addMachineBasicBlockOperand(BB);
4201    }
4202  }
4203
4204  // If we generated any switch lowering information, build and codegen any
4205  // additional DAGs necessary.
4206  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4207    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4208    CurDAG = &SDAG;
4209    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4210
4211    // Set the current basic block to the mbb we wish to insert the code into
4212    BB = SwitchCases[i].ThisBB;
4213    SDL.setCurrentBasicBlock(BB);
4214
4215    // Emit the code
4216    SDL.visitSwitchCase(SwitchCases[i]);
4217    SDAG.setRoot(SDL.getRoot());
4218    CodeGenAndEmitDAG(SDAG);
4219
4220    // Handle any PHI nodes in successors of this chunk, as if we were coming
4221    // from the original BB before switch expansion.  Note that PHI nodes can
4222    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4223    // handle them the right number of times.
4224    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4225      for (MachineBasicBlock::iterator Phi = BB->begin();
4226           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4227        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4228        for (unsigned pn = 0; ; ++pn) {
4229          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4230          if (PHINodesToUpdate[pn].first == Phi) {
4231            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4232            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4233            break;
4234          }
4235        }
4236      }
4237
4238      // Don't process RHS if same block as LHS.
4239      if (BB == SwitchCases[i].FalseBB)
4240        SwitchCases[i].FalseBB = 0;
4241
4242      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4243      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4244      SwitchCases[i].FalseBB = 0;
4245    }
4246    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4247  }
4248}
4249
4250
4251//===----------------------------------------------------------------------===//
4252/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4253/// target node in the graph.
4254void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4255  if (ViewSchedDAGs) DAG.viewGraph();
4256
4257  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4258
4259  if (!Ctor) {
4260    Ctor = ISHeuristic;
4261    RegisterScheduler::setDefault(Ctor);
4262  }
4263
4264  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4265  BB = SL->Run();
4266  delete SL;
4267}
4268
4269
4270HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4271  return new HazardRecognizer();
4272}
4273
4274//===----------------------------------------------------------------------===//
4275// Helper functions used by the generated instruction selector.
4276//===----------------------------------------------------------------------===//
4277// Calls to these methods are generated by tblgen.
4278
4279/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4280/// the dag combiner simplified the 255, we still want to match.  RHS is the
4281/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4282/// specified in the .td file (e.g. 255).
4283bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4284                                    int64_t DesiredMaskS) {
4285  uint64_t ActualMask = RHS->getValue();
4286  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4287
4288  // If the actual mask exactly matches, success!
4289  if (ActualMask == DesiredMask)
4290    return true;
4291
4292  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4293  if (ActualMask & ~DesiredMask)
4294    return false;
4295
4296  // Otherwise, the DAG Combiner may have proven that the value coming in is
4297  // either already zero or is not demanded.  Check for known zero input bits.
4298  uint64_t NeededMask = DesiredMask & ~ActualMask;
4299  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
4300    return true;
4301
4302  // TODO: check to see if missing bits are just not demanded.
4303
4304  // Otherwise, this pattern doesn't match.
4305  return false;
4306}
4307
4308/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4309/// the dag combiner simplified the 255, we still want to match.  RHS is the
4310/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4311/// specified in the .td file (e.g. 255).
4312bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4313                                    int64_t DesiredMaskS) {
4314  uint64_t ActualMask = RHS->getValue();
4315  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4316
4317  // If the actual mask exactly matches, success!
4318  if (ActualMask == DesiredMask)
4319    return true;
4320
4321  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4322  if (ActualMask & ~DesiredMask)
4323    return false;
4324
4325  // Otherwise, the DAG Combiner may have proven that the value coming in is
4326  // either already zero or is not demanded.  Check for known zero input bits.
4327  uint64_t NeededMask = DesiredMask & ~ActualMask;
4328
4329  uint64_t KnownZero, KnownOne;
4330  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4331
4332  // If all the missing bits in the or are already known to be set, match!
4333  if ((NeededMask & KnownOne) == NeededMask)
4334    return true;
4335
4336  // TODO: check to see if missing bits are just not demanded.
4337
4338  // Otherwise, this pattern doesn't match.
4339  return false;
4340}
4341
4342
4343/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4344/// by tblgen.  Others should not call it.
4345void SelectionDAGISel::
4346SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4347  std::vector<SDOperand> InOps;
4348  std::swap(InOps, Ops);
4349
4350  Ops.push_back(InOps[0]);  // input chain.
4351  Ops.push_back(InOps[1]);  // input asm string.
4352
4353  unsigned i = 2, e = InOps.size();
4354  if (InOps[e-1].getValueType() == MVT::Flag)
4355    --e;  // Don't process a flag operand if it is here.
4356
4357  while (i != e) {
4358    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4359    if ((Flags & 7) != 4 /*MEM*/) {
4360      // Just skip over this operand, copying the operands verbatim.
4361      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4362      i += (Flags >> 3) + 1;
4363    } else {
4364      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4365      // Otherwise, this is a memory operand.  Ask the target to select it.
4366      std::vector<SDOperand> SelOps;
4367      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4368        cerr << "Could not match memory address.  Inline asm failure!\n";
4369        exit(1);
4370      }
4371
4372      // Add this to the output node.
4373      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4374                                          MVT::i32));
4375      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4376      i += 2;
4377    }
4378  }
4379
4380  // Add the flag input back if present.
4381  if (e != InOps.size())
4382    Ops.push_back(InOps.back());
4383}
4384