SelectionDAGISel.cpp revision bf7637d59028a5d9911769810f537c499e23bb8e
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/InlineAsm.h"
23#include "llvm/Instructions.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineDebugInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/SelectionDAG.h"
32#include "llvm/CodeGen/SSARegMap.h"
33#include "llvm/Target/MRegisterInfo.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Target/TargetFrameInfo.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Transforms/Utils/BasicBlockUtils.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/Support/Debug.h"
43#include <map>
44#include <set>
45#include <iostream>
46#include <algorithm>
47using namespace llvm;
48
49#ifndef NDEBUG
50static cl::opt<bool>
51ViewISelDAGs("view-isel-dags", cl::Hidden,
52          cl::desc("Pop up a window to show isel dags as they are selected"));
53static cl::opt<bool>
54ViewSchedDAGs("view-sched-dags", cl::Hidden,
55          cl::desc("Pop up a window to show sched dags as they are processed"));
56#else
57static const bool ViewISelDAGs = 0;
58static const bool ViewSchedDAGs = 0;
59#endif
60
61// Scheduling heuristics
62enum SchedHeuristics {
63  defaultScheduling,      // Let the target specify its preference.
64  noScheduling,           // No scheduling, emit breadth first sequence.
65  simpleScheduling,       // Two pass, min. critical path, max. utilization.
66  simpleNoItinScheduling, // Same as above exact using generic latency.
67  listSchedulingBURR,     // Bottom up reg reduction list scheduling.
68  listSchedulingTD        // Top-down list scheduler.
69};
70
71namespace {
72  cl::opt<SchedHeuristics>
73  ISHeuristic(
74    "sched",
75    cl::desc("Choose scheduling style"),
76    cl::init(defaultScheduling),
77    cl::values(
78      clEnumValN(defaultScheduling, "default",
79                 "Target preferred scheduling style"),
80      clEnumValN(noScheduling, "none",
81                 "No scheduling: breadth first sequencing"),
82      clEnumValN(simpleScheduling, "simple",
83                 "Simple two pass scheduling: minimize critical path "
84                 "and maximize processor utilization"),
85      clEnumValN(simpleNoItinScheduling, "simple-noitin",
86                 "Simple two pass scheduling: Same as simple "
87                 "except using generic latency"),
88      clEnumValN(listSchedulingBURR, "list-burr",
89                 "Bottom up register reduction list scheduling"),
90      clEnumValN(listSchedulingTD, "list-td",
91                 "Top-down list scheduler"),
92      clEnumValEnd));
93} // namespace
94
95namespace {
96  /// RegsForValue - This struct represents the physical registers that a
97  /// particular value is assigned and the type information about the value.
98  /// This is needed because values can be promoted into larger registers and
99  /// expanded into multiple smaller registers than the value.
100  struct RegsForValue {
101    /// Regs - This list hold the register (for legal and promoted values)
102    /// or register set (for expanded values) that the value should be assigned
103    /// to.
104    std::vector<unsigned> Regs;
105
106    /// RegVT - The value type of each register.
107    ///
108    MVT::ValueType RegVT;
109
110    /// ValueVT - The value type of the LLVM value, which may be promoted from
111    /// RegVT or made from merging the two expanded parts.
112    MVT::ValueType ValueVT;
113
114    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
115
116    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
117      : RegVT(regvt), ValueVT(valuevt) {
118        Regs.push_back(Reg);
119    }
120    RegsForValue(const std::vector<unsigned> &regs,
121                 MVT::ValueType regvt, MVT::ValueType valuevt)
122      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
123    }
124
125    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
126    /// this value and returns the result as a ValueVT value.  This uses
127    /// Chain/Flag as the input and updates them for the output Chain/Flag.
128    SDOperand getCopyFromRegs(SelectionDAG &DAG,
129                              SDOperand &Chain, SDOperand &Flag) const;
130
131    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
132    /// specified value into the registers specified by this object.  This uses
133    /// Chain/Flag as the input and updates them for the output Chain/Flag.
134    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
135                       SDOperand &Chain, SDOperand &Flag) const;
136
137    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
138    /// operand list.  This adds the code marker and includes the number of
139    /// values added into it.
140    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
141                              std::vector<SDOperand> &Ops) const;
142  };
143}
144
145namespace llvm {
146  //===--------------------------------------------------------------------===//
147  /// FunctionLoweringInfo - This contains information that is global to a
148  /// function that is used when lowering a region of the function.
149  class FunctionLoweringInfo {
150  public:
151    TargetLowering &TLI;
152    Function &Fn;
153    MachineFunction &MF;
154    SSARegMap *RegMap;
155
156    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
157
158    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
159    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
160
161    /// ValueMap - Since we emit code for the function a basic block at a time,
162    /// we must remember which virtual registers hold the values for
163    /// cross-basic-block values.
164    std::map<const Value*, unsigned> ValueMap;
165
166    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
167    /// the entry block.  This allows the allocas to be efficiently referenced
168    /// anywhere in the function.
169    std::map<const AllocaInst*, int> StaticAllocaMap;
170
171    unsigned MakeReg(MVT::ValueType VT) {
172      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
173    }
174
175    unsigned CreateRegForValue(const Value *V);
176
177    unsigned InitializeRegForValue(const Value *V) {
178      unsigned &R = ValueMap[V];
179      assert(R == 0 && "Already initialized this value register!");
180      return R = CreateRegForValue(V);
181    }
182  };
183}
184
185/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
186/// PHI nodes or outside of the basic block that defines it, or used by a
187/// switch instruction, which may expand to multiple basic blocks.
188static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
189  if (isa<PHINode>(I)) return true;
190  BasicBlock *BB = I->getParent();
191  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
192    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
193        isa<SwitchInst>(*UI))
194      return true;
195  return false;
196}
197
198/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
199/// entry block, return true.  This includes arguments used by switches, since
200/// the switch may expand into multiple basic blocks.
201static bool isOnlyUsedInEntryBlock(Argument *A) {
202  BasicBlock *Entry = A->getParent()->begin();
203  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
204    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
205      return false;  // Use not in entry block.
206  return true;
207}
208
209FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
210                                           Function &fn, MachineFunction &mf)
211    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
212
213  // Create a vreg for each argument register that is not dead and is used
214  // outside of the entry block for the function.
215  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
216       AI != E; ++AI)
217    if (!isOnlyUsedInEntryBlock(AI))
218      InitializeRegForValue(AI);
219
220  // Initialize the mapping of values to registers.  This is only set up for
221  // instruction values that are used outside of the block that defines
222  // them.
223  Function::iterator BB = Fn.begin(), EB = Fn.end();
224  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
225    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
226      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
227        const Type *Ty = AI->getAllocatedType();
228        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
229        unsigned Align =
230          std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
231                   AI->getAlignment());
232
233        // If the alignment of the value is smaller than the size of the value,
234        // and if the size of the value is particularly small (<= 8 bytes),
235        // round up to the size of the value for potentially better performance.
236        //
237        // FIXME: This could be made better with a preferred alignment hook in
238        // TargetData.  It serves primarily to 8-byte align doubles for X86.
239        if (Align < TySize && TySize <= 8) Align = TySize;
240        TySize *= CUI->getValue();   // Get total allocated size.
241        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
242        StaticAllocaMap[AI] =
243          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
244      }
245
246  for (; BB != EB; ++BB)
247    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
248      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
249        if (!isa<AllocaInst>(I) ||
250            !StaticAllocaMap.count(cast<AllocaInst>(I)))
251          InitializeRegForValue(I);
252
253  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
254  // also creates the initial PHI MachineInstrs, though none of the input
255  // operands are populated.
256  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
257    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
258    MBBMap[BB] = MBB;
259    MF.getBasicBlockList().push_back(MBB);
260
261    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
262    // appropriate.
263    PHINode *PN;
264    for (BasicBlock::iterator I = BB->begin();
265         (PN = dyn_cast<PHINode>(I)); ++I)
266      if (!PN->use_empty()) {
267        unsigned NumElements =
268          TLI.getNumElements(TLI.getValueType(PN->getType()));
269        unsigned PHIReg = ValueMap[PN];
270        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
271        for (unsigned i = 0; i != NumElements; ++i)
272          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
273      }
274  }
275}
276
277/// CreateRegForValue - Allocate the appropriate number of virtual registers of
278/// the correctly promoted or expanded types.  Assign these registers
279/// consecutive vreg numbers and return the first assigned number.
280unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
281  MVT::ValueType VT = TLI.getValueType(V->getType());
282
283  // The number of multiples of registers that we need, to, e.g., split up
284  // a <2 x int64> -> 4 x i32 registers.
285  unsigned NumVectorRegs = 1;
286
287  // If this is a packed type, figure out what type it will decompose into
288  // and how many of the elements it will use.
289  if (VT == MVT::Vector) {
290    const PackedType *PTy = cast<PackedType>(V->getType());
291    unsigned NumElts = PTy->getNumElements();
292    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
293
294    // Divide the input until we get to a supported size.  This will always
295    // end with a scalar if the target doesn't support vectors.
296    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
297      NumElts >>= 1;
298      NumVectorRegs <<= 1;
299    }
300    if (NumElts == 1)
301      VT = EltTy;
302    else
303      VT = getVectorType(EltTy, NumElts);
304  }
305
306  // The common case is that we will only create one register for this
307  // value.  If we have that case, create and return the virtual register.
308  unsigned NV = TLI.getNumElements(VT);
309  if (NV == 1) {
310    // If we are promoting this value, pick the next largest supported type.
311    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
312    unsigned Reg = MakeReg(PromotedType);
313    // If this is a vector of supported or promoted types (e.g. 4 x i16),
314    // create all of the registers.
315    for (unsigned i = 1; i != NumVectorRegs; ++i)
316      MakeReg(PromotedType);
317    return Reg;
318  }
319
320  // If this value is represented with multiple target registers, make sure
321  // to create enough consecutive registers of the right (smaller) type.
322  unsigned NT = VT-1;  // Find the type to use.
323  while (TLI.getNumElements((MVT::ValueType)NT) != 1)
324    --NT;
325
326  unsigned R = MakeReg((MVT::ValueType)NT);
327  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
328    MakeReg((MVT::ValueType)NT);
329  return R;
330}
331
332//===----------------------------------------------------------------------===//
333/// SelectionDAGLowering - This is the common target-independent lowering
334/// implementation that is parameterized by a TargetLowering object.
335/// Also, targets can overload any lowering method.
336///
337namespace llvm {
338class SelectionDAGLowering {
339  MachineBasicBlock *CurMBB;
340
341  std::map<const Value*, SDOperand> NodeMap;
342
343  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
344  /// them up and then emit token factor nodes when possible.  This allows us to
345  /// get simple disambiguation between loads without worrying about alias
346  /// analysis.
347  std::vector<SDOperand> PendingLoads;
348
349  /// Case - A pair of values to record the Value for a switch case, and the
350  /// case's target basic block.
351  typedef std::pair<Constant*, MachineBasicBlock*> Case;
352  typedef std::vector<Case>::iterator              CaseItr;
353  typedef std::pair<CaseItr, CaseItr>              CaseRange;
354
355  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
356  /// of conditional branches.
357  struct CaseRec {
358    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
359    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
360
361    /// CaseBB - The MBB in which to emit the compare and branch
362    MachineBasicBlock *CaseBB;
363    /// LT, GE - If nonzero, we know the current case value must be less-than or
364    /// greater-than-or-equal-to these Constants.
365    Constant *LT;
366    Constant *GE;
367    /// Range - A pair of iterators representing the range of case values to be
368    /// processed at this point in the binary search tree.
369    CaseRange Range;
370  };
371
372  /// The comparison function for sorting Case values.
373  struct CaseCmp {
374    bool operator () (const Case& C1, const Case& C2) {
375      if (const ConstantUInt* U1 = dyn_cast<const ConstantUInt>(C1.first))
376        return U1->getValue() < cast<const ConstantUInt>(C2.first)->getValue();
377
378      const ConstantSInt* S1 = dyn_cast<const ConstantSInt>(C1.first);
379      return S1->getValue() < cast<const ConstantSInt>(C2.first)->getValue();
380    }
381  };
382
383public:
384  // TLI - This is information that describes the available target features we
385  // need for lowering.  This indicates when operations are unavailable,
386  // implemented with a libcall, etc.
387  TargetLowering &TLI;
388  SelectionDAG &DAG;
389  const TargetData &TD;
390
391  /// SwitchCases - Vector of CaseBlock structures used to communicate
392  /// SwitchInst code generation information.
393  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
394
395  /// FuncInfo - Information about the function as a whole.
396  ///
397  FunctionLoweringInfo &FuncInfo;
398
399  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
400                       FunctionLoweringInfo &funcinfo)
401    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
402      FuncInfo(funcinfo) {
403  }
404
405  /// getRoot - Return the current virtual root of the Selection DAG.
406  ///
407  SDOperand getRoot() {
408    if (PendingLoads.empty())
409      return DAG.getRoot();
410
411    if (PendingLoads.size() == 1) {
412      SDOperand Root = PendingLoads[0];
413      DAG.setRoot(Root);
414      PendingLoads.clear();
415      return Root;
416    }
417
418    // Otherwise, we have to make a token factor node.
419    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
420    PendingLoads.clear();
421    DAG.setRoot(Root);
422    return Root;
423  }
424
425  void visit(Instruction &I) { visit(I.getOpcode(), I); }
426
427  void visit(unsigned Opcode, User &I) {
428    switch (Opcode) {
429    default: assert(0 && "Unknown instruction type encountered!");
430             abort();
431      // Build the switch statement using the Instruction.def file.
432#define HANDLE_INST(NUM, OPCODE, CLASS) \
433    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
434#include "llvm/Instruction.def"
435    }
436  }
437
438  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
439
440  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
441                        SDOperand SrcValue, SDOperand Root,
442                        bool isVolatile);
443
444  SDOperand getIntPtrConstant(uint64_t Val) {
445    return DAG.getConstant(Val, TLI.getPointerTy());
446  }
447
448  SDOperand getValue(const Value *V);
449
450  const SDOperand &setValue(const Value *V, SDOperand NewN) {
451    SDOperand &N = NodeMap[V];
452    assert(N.Val == 0 && "Already set a value for this node!");
453    return N = NewN;
454  }
455
456  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
457                                    MVT::ValueType VT,
458                                    bool OutReg, bool InReg,
459                                    std::set<unsigned> &OutputRegs,
460                                    std::set<unsigned> &InputRegs);
461
462  // Terminator instructions.
463  void visitRet(ReturnInst &I);
464  void visitBr(BranchInst &I);
465  void visitSwitch(SwitchInst &I);
466  void visitUnreachable(UnreachableInst &I) { /* noop */ }
467
468  // Helper for visitSwitch
469  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
470
471  // These all get lowered before this pass.
472  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
473  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
474
475  void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
476  void visitShift(User &I, unsigned Opcode);
477  void visitAdd(User &I) {
478    visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD);
479  }
480  void visitSub(User &I);
481  void visitMul(User &I) {
482    visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL);
483  }
484  void visitDiv(User &I) {
485    const Type *Ty = I.getType();
486    visitBinary(I,
487                Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV,
488                Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV);
489  }
490  void visitRem(User &I) {
491    const Type *Ty = I.getType();
492    visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
493  }
494  void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); }
495  void visitOr (User &I) { visitBinary(I, ISD::OR,  0, ISD::VOR); }
496  void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); }
497  void visitShl(User &I) { visitShift(I, ISD::SHL); }
498  void visitShr(User &I) {
499    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
500  }
501
502  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
503  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
504  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
505  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
506  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
507  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
508  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
509
510  void visitExtractElement(ExtractElementInst &I);
511  void visitInsertElement(InsertElementInst &I);
512
513  void visitGetElementPtr(User &I);
514  void visitCast(User &I);
515  void visitSelect(User &I);
516
517  void visitMalloc(MallocInst &I);
518  void visitFree(FreeInst &I);
519  void visitAlloca(AllocaInst &I);
520  void visitLoad(LoadInst &I);
521  void visitStore(StoreInst &I);
522  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
523  void visitCall(CallInst &I);
524  void visitInlineAsm(CallInst &I);
525  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
526  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
527
528  void visitVAStart(CallInst &I);
529  void visitVAArg(VAArgInst &I);
530  void visitVAEnd(CallInst &I);
531  void visitVACopy(CallInst &I);
532  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
533
534  void visitMemIntrinsic(CallInst &I, unsigned Op);
535
536  void visitUserOp1(Instruction &I) {
537    assert(0 && "UserOp1 should not exist at instruction selection time!");
538    abort();
539  }
540  void visitUserOp2(Instruction &I) {
541    assert(0 && "UserOp2 should not exist at instruction selection time!");
542    abort();
543  }
544};
545} // end namespace llvm
546
547SDOperand SelectionDAGLowering::getValue(const Value *V) {
548  SDOperand &N = NodeMap[V];
549  if (N.Val) return N;
550
551  const Type *VTy = V->getType();
552  MVT::ValueType VT = TLI.getValueType(VTy);
553  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
554    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
555      visit(CE->getOpcode(), *CE);
556      assert(N.Val && "visit didn't populate the ValueMap!");
557      return N;
558    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
559      return N = DAG.getGlobalAddress(GV, VT);
560    } else if (isa<ConstantPointerNull>(C)) {
561      return N = DAG.getConstant(0, TLI.getPointerTy());
562    } else if (isa<UndefValue>(C)) {
563      if (!isa<PackedType>(VTy))
564        return N = DAG.getNode(ISD::UNDEF, VT);
565
566      // Create a VBUILD_VECTOR of undef nodes.
567      const PackedType *PTy = cast<PackedType>(VTy);
568      unsigned NumElements = PTy->getNumElements();
569      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
570
571      std::vector<SDOperand> Ops;
572      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
573
574      // Create a VConstant node with generic Vector type.
575      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
576      Ops.push_back(DAG.getValueType(PVT));
577      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
578    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
579      return N = DAG.getConstantFP(CFP->getValue(), VT);
580    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
581      unsigned NumElements = PTy->getNumElements();
582      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
583
584      // Now that we know the number and type of the elements, push a
585      // Constant or ConstantFP node onto the ops list for each element of
586      // the packed constant.
587      std::vector<SDOperand> Ops;
588      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
589        if (MVT::isFloatingPoint(PVT)) {
590          for (unsigned i = 0; i != NumElements; ++i) {
591            const ConstantFP *El = cast<ConstantFP>(CP->getOperand(i));
592            Ops.push_back(DAG.getConstantFP(El->getValue(), PVT));
593          }
594        } else {
595          for (unsigned i = 0; i != NumElements; ++i) {
596            const ConstantIntegral *El =
597            cast<ConstantIntegral>(CP->getOperand(i));
598            Ops.push_back(DAG.getConstant(El->getRawValue(), PVT));
599          }
600        }
601      } else {
602        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
603        SDOperand Op;
604        if (MVT::isFloatingPoint(PVT))
605          Op = DAG.getConstantFP(0, PVT);
606        else
607          Op = DAG.getConstant(0, PVT);
608        Ops.assign(NumElements, Op);
609      }
610
611      // Create a VBUILD_VECTOR node with generic Vector type.
612      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
613      Ops.push_back(DAG.getValueType(PVT));
614      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
615    } else {
616      // Canonicalize all constant ints to be unsigned.
617      return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
618    }
619  }
620
621  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
622    std::map<const AllocaInst*, int>::iterator SI =
623    FuncInfo.StaticAllocaMap.find(AI);
624    if (SI != FuncInfo.StaticAllocaMap.end())
625      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
626  }
627
628  std::map<const Value*, unsigned>::const_iterator VMI =
629      FuncInfo.ValueMap.find(V);
630  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
631
632  unsigned InReg = VMI->second;
633
634  // If this type is not legal, make it so now.
635  if (VT == MVT::Vector) {
636    // FIXME: We only handle legal vectors right now.  We need a VBUILD_VECTOR
637    const PackedType *PTy = cast<PackedType>(VTy);
638    unsigned NumElements = PTy->getNumElements();
639    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
640    MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
641    assert(TLI.isTypeLegal(TVT) &&
642           "FIXME: Cannot handle illegal vector types here yet!");
643    VT = TVT;
644  }
645
646  MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
647
648  N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
649  if (DestVT < VT) {
650    // Source must be expanded.  This input value is actually coming from the
651    // register pair VMI->second and VMI->second+1.
652    N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
653                    DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
654  } else {
655    if (DestVT > VT) { // Promotion case
656      if (MVT::isFloatingPoint(VT))
657        N = DAG.getNode(ISD::FP_ROUND, VT, N);
658      else
659        N = DAG.getNode(ISD::TRUNCATE, VT, N);
660    }
661  }
662
663  return N;
664}
665
666
667void SelectionDAGLowering::visitRet(ReturnInst &I) {
668  if (I.getNumOperands() == 0) {
669    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
670    return;
671  }
672  std::vector<SDOperand> NewValues;
673  NewValues.push_back(getRoot());
674  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
675    SDOperand RetOp = getValue(I.getOperand(i));
676
677    // If this is an integer return value, we need to promote it ourselves to
678    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
679    // than sign/zero.
680    if (MVT::isInteger(RetOp.getValueType()) &&
681        RetOp.getValueType() < MVT::i64) {
682      MVT::ValueType TmpVT;
683      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
684        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
685      else
686        TmpVT = MVT::i32;
687
688      if (I.getOperand(i)->getType()->isSigned())
689        RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
690      else
691        RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
692    }
693    NewValues.push_back(RetOp);
694  }
695  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, NewValues));
696}
697
698void SelectionDAGLowering::visitBr(BranchInst &I) {
699  // Update machine-CFG edges.
700  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
701  CurMBB->addSuccessor(Succ0MBB);
702
703  // Figure out which block is immediately after the current one.
704  MachineBasicBlock *NextBlock = 0;
705  MachineFunction::iterator BBI = CurMBB;
706  if (++BBI != CurMBB->getParent()->end())
707    NextBlock = BBI;
708
709  if (I.isUnconditional()) {
710    // If this is not a fall-through branch, emit the branch.
711    if (Succ0MBB != NextBlock)
712      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
713                              DAG.getBasicBlock(Succ0MBB)));
714  } else {
715    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
716    CurMBB->addSuccessor(Succ1MBB);
717
718    SDOperand Cond = getValue(I.getCondition());
719    if (Succ1MBB == NextBlock) {
720      // If the condition is false, fall through.  This means we should branch
721      // if the condition is true to Succ #0.
722      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
723                              Cond, DAG.getBasicBlock(Succ0MBB)));
724    } else if (Succ0MBB == NextBlock) {
725      // If the condition is true, fall through.  This means we should branch if
726      // the condition is false to Succ #1.  Invert the condition first.
727      SDOperand True = DAG.getConstant(1, Cond.getValueType());
728      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
729      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
730                              Cond, DAG.getBasicBlock(Succ1MBB)));
731    } else {
732      std::vector<SDOperand> Ops;
733      Ops.push_back(getRoot());
734      // If the false case is the current basic block, then this is a self
735      // loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it
736      // adds an extra instruction in the loop.  Instead, invert the
737      // condition and emit "Loop: ... br!cond Loop; br Out.
738      if (CurMBB == Succ1MBB) {
739        std::swap(Succ0MBB, Succ1MBB);
740        SDOperand True = DAG.getConstant(1, Cond.getValueType());
741        Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
742      }
743      SDOperand True = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
744                                   DAG.getBasicBlock(Succ0MBB));
745      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, True,
746                              DAG.getBasicBlock(Succ1MBB)));
747    }
748  }
749}
750
751/// visitSwitchCase - Emits the necessary code to represent a single node in
752/// the binary search tree resulting from lowering a switch instruction.
753void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
754  SDOperand SwitchOp = getValue(CB.SwitchV);
755  SDOperand CaseOp = getValue(CB.CaseC);
756  SDOperand Cond = DAG.getSetCC(MVT::i1, SwitchOp, CaseOp, CB.CC);
757
758  // Set NextBlock to be the MBB immediately after the current one, if any.
759  // This is used to avoid emitting unnecessary branches to the next block.
760  MachineBasicBlock *NextBlock = 0;
761  MachineFunction::iterator BBI = CurMBB;
762  if (++BBI != CurMBB->getParent()->end())
763    NextBlock = BBI;
764
765  // If the lhs block is the next block, invert the condition so that we can
766  // fall through to the lhs instead of the rhs block.
767  if (CB.LHSBB == NextBlock) {
768    std::swap(CB.LHSBB, CB.RHSBB);
769    SDOperand True = DAG.getConstant(1, Cond.getValueType());
770    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
771  }
772  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
773                                 DAG.getBasicBlock(CB.LHSBB));
774  if (CB.RHSBB == NextBlock)
775    DAG.setRoot(BrCond);
776  else
777    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
778                            DAG.getBasicBlock(CB.RHSBB)));
779  // Update successor info
780  CurMBB->addSuccessor(CB.LHSBB);
781  CurMBB->addSuccessor(CB.RHSBB);
782}
783
784void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
785  // Figure out which block is immediately after the current one.
786  MachineBasicBlock *NextBlock = 0;
787  MachineFunction::iterator BBI = CurMBB;
788  if (++BBI != CurMBB->getParent()->end())
789    NextBlock = BBI;
790
791  // If there is only the default destination, branch to it if it is not the
792  // next basic block.  Otherwise, just fall through.
793  if (I.getNumOperands() == 2) {
794    // Update machine-CFG edges.
795    MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[I.getDefaultDest()];
796    // If this is not a fall-through branch, emit the branch.
797    if (DefaultMBB != NextBlock)
798      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
799                              DAG.getBasicBlock(DefaultMBB)));
800    return;
801  }
802
803  // If there are any non-default case statements, create a vector of Cases
804  // representing each one, and sort the vector so that we can efficiently
805  // create a binary search tree from them.
806  std::vector<Case> Cases;
807  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
808    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
809    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
810  }
811  std::sort(Cases.begin(), Cases.end(), CaseCmp());
812
813  // Get the Value to be switched on and default basic blocks, which will be
814  // inserted into CaseBlock records, representing basic blocks in the binary
815  // search tree.
816  Value *SV = I.getOperand(0);
817  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
818
819  // Get the current MachineFunction and LLVM basic block, for use in creating
820  // and inserting new MBBs during the creation of the binary search tree.
821  MachineFunction *CurMF = CurMBB->getParent();
822  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
823
824  // Push the initial CaseRec onto the worklist
825  std::vector<CaseRec> CaseVec;
826  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
827
828  while (!CaseVec.empty()) {
829    // Grab a record representing a case range to process off the worklist
830    CaseRec CR = CaseVec.back();
831    CaseVec.pop_back();
832
833    // Size is the number of Cases represented by this range.  If Size is 1,
834    // then we are processing a leaf of the binary search tree.  Otherwise,
835    // we need to pick a pivot, and push left and right ranges onto the
836    // worklist.
837    unsigned Size = CR.Range.second - CR.Range.first;
838
839    if (Size == 1) {
840      // Create a CaseBlock record representing a conditional branch to
841      // the Case's target mbb if the value being switched on SV is equal
842      // to C.  Otherwise, branch to default.
843      Constant *C = CR.Range.first->first;
844      MachineBasicBlock *Target = CR.Range.first->second;
845      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
846                                     CR.CaseBB);
847      // If the MBB representing the leaf node is the current MBB, then just
848      // call visitSwitchCase to emit the code into the current block.
849      // Otherwise, push the CaseBlock onto the vector to be later processed
850      // by SDISel, and insert the node's MBB before the next MBB.
851      if (CR.CaseBB == CurMBB)
852        visitSwitchCase(CB);
853      else {
854        SwitchCases.push_back(CB);
855        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
856      }
857    } else {
858      // split case range at pivot
859      CaseItr Pivot = CR.Range.first + (Size / 2);
860      CaseRange LHSR(CR.Range.first, Pivot);
861      CaseRange RHSR(Pivot, CR.Range.second);
862      Constant *C = Pivot->first;
863      MachineBasicBlock *RHSBB = 0, *LHSBB = 0;
864      // We know that we branch to the LHS if the Value being switched on is
865      // less than the Pivot value, C.  We use this to optimize our binary
866      // tree a bit, by recognizing that if SV is greater than or equal to the
867      // LHS's Case Value, and that Case Value is exactly one less than the
868      // Pivot's Value, then we can branch directly to the LHS's Target,
869      // rather than creating a leaf node for it.
870      if ((LHSR.second - LHSR.first) == 1 &&
871          LHSR.first->first == CR.GE &&
872          cast<ConstantIntegral>(C)->getRawValue() ==
873          (cast<ConstantIntegral>(CR.GE)->getRawValue() + 1ULL)) {
874        LHSBB = LHSR.first->second;
875      } else {
876        LHSBB = new MachineBasicBlock(LLVMBB);
877        CaseVec.push_back(CaseRec(LHSBB,C,CR.GE,LHSR));
878      }
879      // Similar to the optimization above, if the Value being switched on is
880      // known to be less than the Constant CR.LT, and the current Case Value
881      // is CR.LT - 1, then we can branch directly to the target block for
882      // the current Case Value, rather than emitting a RHS leaf node for it.
883      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
884          cast<ConstantIntegral>(RHSR.first->first)->getRawValue() ==
885          (cast<ConstantIntegral>(CR.LT)->getRawValue() - 1ULL)) {
886        RHSBB = RHSR.first->second;
887      } else {
888        RHSBB = new MachineBasicBlock(LLVMBB);
889        CaseVec.push_back(CaseRec(RHSBB,CR.LT,C,RHSR));
890      }
891      // Create a CaseBlock record representing a conditional branch to
892      // the LHS node if the value being switched on SV is less than C.
893      // Otherwise, branch to LHS.
894      ISD::CondCode CC = C->getType()->isSigned() ? ISD::SETLT : ISD::SETULT;
895      SelectionDAGISel::CaseBlock CB(CC, SV, C, LHSBB, RHSBB, CR.CaseBB);
896      if (CR.CaseBB == CurMBB)
897        visitSwitchCase(CB);
898      else {
899        SwitchCases.push_back(CB);
900        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
901      }
902    }
903  }
904}
905
906void SelectionDAGLowering::visitSub(User &I) {
907  // -0.0 - X --> fneg
908  if (I.getType()->isFloatingPoint()) {
909    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
910      if (CFP->isExactlyValue(-0.0)) {
911        SDOperand Op2 = getValue(I.getOperand(1));
912        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
913        return;
914      }
915  }
916  visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
917}
918
919void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp,
920                                       unsigned VecOp) {
921  const Type *Ty = I.getType();
922  SDOperand Op1 = getValue(I.getOperand(0));
923  SDOperand Op2 = getValue(I.getOperand(1));
924
925  if (Ty->isIntegral()) {
926    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
927  } else if (Ty->isFloatingPoint()) {
928    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
929  } else {
930    const PackedType *PTy = cast<PackedType>(Ty);
931    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
932    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
933    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
934  }
935}
936
937void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
938  SDOperand Op1 = getValue(I.getOperand(0));
939  SDOperand Op2 = getValue(I.getOperand(1));
940
941  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
942
943  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
944}
945
946void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
947                                      ISD::CondCode UnsignedOpcode) {
948  SDOperand Op1 = getValue(I.getOperand(0));
949  SDOperand Op2 = getValue(I.getOperand(1));
950  ISD::CondCode Opcode = SignedOpcode;
951  if (I.getOperand(0)->getType()->isUnsigned())
952    Opcode = UnsignedOpcode;
953  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
954}
955
956void SelectionDAGLowering::visitSelect(User &I) {
957  SDOperand Cond     = getValue(I.getOperand(0));
958  SDOperand TrueVal  = getValue(I.getOperand(1));
959  SDOperand FalseVal = getValue(I.getOperand(2));
960  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
961                           TrueVal, FalseVal));
962}
963
964void SelectionDAGLowering::visitCast(User &I) {
965  SDOperand N = getValue(I.getOperand(0));
966  MVT::ValueType SrcVT = N.getValueType();
967  MVT::ValueType DestVT = TLI.getValueType(I.getType());
968
969  if (DestVT == MVT::Vector) {
970    // This is a cast to a vector from something else.  This is always a bit
971    // convert.  Get information about the input vector.
972    const PackedType *DestTy = cast<PackedType>(I.getType());
973    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
974    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
975                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
976                             DAG.getValueType(EltVT)));
977  } else if (SrcVT == DestVT) {
978    setValue(&I, N);  // noop cast.
979  } else if (DestVT == MVT::i1) {
980    // Cast to bool is a comparison against zero, not truncation to zero.
981    SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) :
982                                       DAG.getConstantFP(0.0, N.getValueType());
983    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
984  } else if (isInteger(SrcVT)) {
985    if (isInteger(DestVT)) {        // Int -> Int cast
986      if (DestVT < SrcVT)   // Truncating cast?
987        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
988      else if (I.getOperand(0)->getType()->isSigned())
989        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
990      else
991        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
992    } else if (isFloatingPoint(DestVT)) {           // Int -> FP cast
993      if (I.getOperand(0)->getType()->isSigned())
994        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
995      else
996        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
997    } else {
998      assert(0 && "Unknown cast!");
999    }
1000  } else if (isFloatingPoint(SrcVT)) {
1001    if (isFloatingPoint(DestVT)) {  // FP -> FP cast
1002      if (DestVT < SrcVT)   // Rounding cast?
1003        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1004      else
1005        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1006    } else if (isInteger(DestVT)) {        // FP -> Int cast.
1007      if (I.getType()->isSigned())
1008        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1009      else
1010        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1011    } else {
1012      assert(0 && "Unknown cast!");
1013    }
1014  } else {
1015    assert(SrcVT == MVT::Vector && "Unknown cast!");
1016    assert(DestVT != MVT::Vector && "Casts to vector already handled!");
1017    // This is a cast from a vector to something else.  This is always a bit
1018    // convert.  Get information about the input vector.
1019    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1020  }
1021}
1022
1023void SelectionDAGLowering::visitInsertElement(InsertElementInst &I) {
1024  SDOperand InVec = getValue(I.getOperand(0));
1025  SDOperand InVal = getValue(I.getOperand(1));
1026  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1027                                getValue(I.getOperand(2)));
1028
1029  SDOperand Num = *(InVec.Val->op_end()-2);
1030  SDOperand Typ = *(InVec.Val->op_end()-1);
1031  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1032                           InVec, InVal, InIdx, Num, Typ));
1033}
1034
1035void SelectionDAGLowering::visitExtractElement(ExtractElementInst &I) {
1036  SDOperand InVec = getValue(I.getOperand(0));
1037  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1038                                getValue(I.getOperand(1)));
1039  SDOperand Typ = *(InVec.Val->op_end()-1);
1040  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1041                           TLI.getValueType(I.getType()), InVec, InIdx));
1042}
1043
1044void SelectionDAGLowering::visitGetElementPtr(User &I) {
1045  SDOperand N = getValue(I.getOperand(0));
1046  const Type *Ty = I.getOperand(0)->getType();
1047  const Type *UIntPtrTy = TD.getIntPtrType();
1048
1049  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1050       OI != E; ++OI) {
1051    Value *Idx = *OI;
1052    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1053      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
1054      if (Field) {
1055        // N = N + Offset
1056        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
1057        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1058                        getIntPtrConstant(Offset));
1059      }
1060      Ty = StTy->getElementType(Field);
1061    } else {
1062      Ty = cast<SequentialType>(Ty)->getElementType();
1063
1064      // If this is a constant subscript, handle it quickly.
1065      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1066        if (CI->getRawValue() == 0) continue;
1067
1068        uint64_t Offs;
1069        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
1070          Offs = (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
1071        else
1072          Offs = TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
1073        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1074        continue;
1075      }
1076
1077      // N = N + Idx * ElementSize;
1078      uint64_t ElementSize = TD.getTypeSize(Ty);
1079      SDOperand IdxN = getValue(Idx);
1080
1081      // If the index is smaller or larger than intptr_t, truncate or extend
1082      // it.
1083      if (IdxN.getValueType() < N.getValueType()) {
1084        if (Idx->getType()->isSigned())
1085          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1086        else
1087          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
1088      } else if (IdxN.getValueType() > N.getValueType())
1089        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1090
1091      // If this is a multiply by a power of two, turn it into a shl
1092      // immediately.  This is a very common case.
1093      if (isPowerOf2_64(ElementSize)) {
1094        unsigned Amt = Log2_64(ElementSize);
1095        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1096                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1097        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1098        continue;
1099      }
1100
1101      SDOperand Scale = getIntPtrConstant(ElementSize);
1102      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1103      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1104    }
1105  }
1106  setValue(&I, N);
1107}
1108
1109void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1110  // If this is a fixed sized alloca in the entry block of the function,
1111  // allocate it statically on the stack.
1112  if (FuncInfo.StaticAllocaMap.count(&I))
1113    return;   // getValue will auto-populate this.
1114
1115  const Type *Ty = I.getAllocatedType();
1116  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
1117  unsigned Align = std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
1118                            I.getAlignment());
1119
1120  SDOperand AllocSize = getValue(I.getArraySize());
1121  MVT::ValueType IntPtr = TLI.getPointerTy();
1122  if (IntPtr < AllocSize.getValueType())
1123    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1124  else if (IntPtr > AllocSize.getValueType())
1125    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1126
1127  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1128                          getIntPtrConstant(TySize));
1129
1130  // Handle alignment.  If the requested alignment is less than or equal to the
1131  // stack alignment, ignore it and round the size of the allocation up to the
1132  // stack alignment size.  If the size is greater than the stack alignment, we
1133  // note this in the DYNAMIC_STACKALLOC node.
1134  unsigned StackAlign =
1135    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1136  if (Align <= StackAlign) {
1137    Align = 0;
1138    // Add SA-1 to the size.
1139    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1140                            getIntPtrConstant(StackAlign-1));
1141    // Mask out the low bits for alignment purposes.
1142    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1143                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1144  }
1145
1146  std::vector<MVT::ValueType> VTs;
1147  VTs.push_back(AllocSize.getValueType());
1148  VTs.push_back(MVT::Other);
1149  std::vector<SDOperand> Ops;
1150  Ops.push_back(getRoot());
1151  Ops.push_back(AllocSize);
1152  Ops.push_back(getIntPtrConstant(Align));
1153  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
1154  DAG.setRoot(setValue(&I, DSA).getValue(1));
1155
1156  // Inform the Frame Information that we have just allocated a variable-sized
1157  // object.
1158  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1159}
1160
1161void SelectionDAGLowering::visitLoad(LoadInst &I) {
1162  SDOperand Ptr = getValue(I.getOperand(0));
1163
1164  SDOperand Root;
1165  if (I.isVolatile())
1166    Root = getRoot();
1167  else {
1168    // Do not serialize non-volatile loads against each other.
1169    Root = DAG.getRoot();
1170  }
1171
1172  setValue(&I, getLoadFrom(I.getType(), Ptr, DAG.getSrcValue(I.getOperand(0)),
1173                           Root, I.isVolatile()));
1174}
1175
1176SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1177                                            SDOperand SrcValue, SDOperand Root,
1178                                            bool isVolatile) {
1179  SDOperand L;
1180  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1181    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1182    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr, SrcValue);
1183  } else {
1184    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SrcValue);
1185  }
1186
1187  if (isVolatile)
1188    DAG.setRoot(L.getValue(1));
1189  else
1190    PendingLoads.push_back(L.getValue(1));
1191
1192  return L;
1193}
1194
1195
1196void SelectionDAGLowering::visitStore(StoreInst &I) {
1197  Value *SrcV = I.getOperand(0);
1198  SDOperand Src = getValue(SrcV);
1199  SDOperand Ptr = getValue(I.getOperand(1));
1200  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
1201                          DAG.getSrcValue(I.getOperand(1))));
1202}
1203
1204/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1205/// access memory and has no other side effects at all.
1206static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1207#define GET_NO_MEMORY_INTRINSICS
1208#include "llvm/Intrinsics.gen"
1209#undef GET_NO_MEMORY_INTRINSICS
1210  return false;
1211}
1212
1213/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1214/// node.
1215void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1216                                                unsigned Intrinsic) {
1217  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1218
1219  // Build the operand list.
1220  std::vector<SDOperand> Ops;
1221  if (HasChain)   // If this intrinsic has side-effects, chainify it.
1222    Ops.push_back(getRoot());
1223
1224  // Add the intrinsic ID as an integer operand.
1225  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1226
1227  // Add all operands of the call to the operand list.
1228  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1229    SDOperand Op = getValue(I.getOperand(i));
1230
1231    // If this is a vector type, force it to the right packed type.
1232    if (Op.getValueType() == MVT::Vector) {
1233      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1234      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1235
1236      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1237      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1238      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1239    }
1240
1241    assert(TLI.isTypeLegal(Op.getValueType()) &&
1242           "Intrinsic uses a non-legal type?");
1243    Ops.push_back(Op);
1244  }
1245
1246  std::vector<MVT::ValueType> VTs;
1247  if (I.getType() != Type::VoidTy) {
1248    MVT::ValueType VT = TLI.getValueType(I.getType());
1249    if (VT == MVT::Vector) {
1250      const PackedType *DestTy = cast<PackedType>(I.getType());
1251      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1252
1253      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1254      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1255    }
1256
1257    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1258    VTs.push_back(VT);
1259  }
1260  if (HasChain)
1261    VTs.push_back(MVT::Other);
1262
1263  // Create the node.
1264  SDOperand Result;
1265  if (!HasChain)
1266    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTs, Ops);
1267  else if (I.getType() != Type::VoidTy)
1268    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTs, Ops);
1269  else
1270    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTs, Ops);
1271
1272  if (HasChain)
1273    DAG.setRoot(Result.getValue(Result.Val->getNumValues()-1));
1274  if (I.getType() != Type::VoidTy) {
1275    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1276      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1277      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1278                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1279                           DAG.getValueType(EVT));
1280    }
1281    setValue(&I, Result);
1282  }
1283}
1284
1285/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1286/// we want to emit this as a call to a named external function, return the name
1287/// otherwise lower it and return null.
1288const char *
1289SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1290  switch (Intrinsic) {
1291  default:
1292    // By default, turn this into a target intrinsic node.
1293    visitTargetIntrinsic(I, Intrinsic);
1294    return 0;
1295  case Intrinsic::vastart:  visitVAStart(I); return 0;
1296  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1297  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1298  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1299  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1300  case Intrinsic::setjmp:
1301    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1302    break;
1303  case Intrinsic::longjmp:
1304    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1305    break;
1306  case Intrinsic::memcpy_i32:
1307  case Intrinsic::memcpy_i64:
1308    visitMemIntrinsic(I, ISD::MEMCPY);
1309    return 0;
1310  case Intrinsic::memset_i32:
1311  case Intrinsic::memset_i64:
1312    visitMemIntrinsic(I, ISD::MEMSET);
1313    return 0;
1314  case Intrinsic::memmove_i32:
1315  case Intrinsic::memmove_i64:
1316    visitMemIntrinsic(I, ISD::MEMMOVE);
1317    return 0;
1318
1319  case Intrinsic::dbg_stoppoint: {
1320    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1321    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1322    if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
1323      std::vector<SDOperand> Ops;
1324
1325      Ops.push_back(getRoot());
1326      Ops.push_back(getValue(SPI.getLineValue()));
1327      Ops.push_back(getValue(SPI.getColumnValue()));
1328
1329      DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
1330      assert(DD && "Not a debug information descriptor");
1331      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1332
1333      Ops.push_back(DAG.getString(CompileUnit->getFileName()));
1334      Ops.push_back(DAG.getString(CompileUnit->getDirectory()));
1335
1336      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops));
1337    }
1338
1339    return 0;
1340  }
1341  case Intrinsic::dbg_region_start: {
1342    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1343    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1344    if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
1345      std::vector<SDOperand> Ops;
1346
1347      unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
1348
1349      Ops.push_back(getRoot());
1350      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1351
1352      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1353    }
1354
1355    return 0;
1356  }
1357  case Intrinsic::dbg_region_end: {
1358    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1359    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
1360    if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
1361      std::vector<SDOperand> Ops;
1362
1363      unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
1364
1365      Ops.push_back(getRoot());
1366      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1367
1368      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1369    }
1370
1371    return 0;
1372  }
1373  case Intrinsic::dbg_func_start: {
1374    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1375    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
1376    if (DebugInfo && FSI.getSubprogram() &&
1377        DebugInfo->Verify(FSI.getSubprogram())) {
1378      std::vector<SDOperand> Ops;
1379
1380      unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
1381
1382      Ops.push_back(getRoot());
1383      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1384
1385      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1386    }
1387
1388    return 0;
1389  }
1390  case Intrinsic::dbg_declare: {
1391    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1392    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
1393    if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) {
1394      std::vector<SDOperand> Ops;
1395
1396      SDOperand AddressOp  = getValue(DI.getAddress());
1397      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp)) {
1398        DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
1399      }
1400    }
1401
1402    return 0;
1403  }
1404
1405  case Intrinsic::isunordered_f32:
1406  case Intrinsic::isunordered_f64:
1407    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
1408                              getValue(I.getOperand(2)), ISD::SETUO));
1409    return 0;
1410
1411  case Intrinsic::sqrt_f32:
1412  case Intrinsic::sqrt_f64:
1413    setValue(&I, DAG.getNode(ISD::FSQRT,
1414                             getValue(I.getOperand(1)).getValueType(),
1415                             getValue(I.getOperand(1))));
1416    return 0;
1417  case Intrinsic::pcmarker: {
1418    SDOperand Tmp = getValue(I.getOperand(1));
1419    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
1420    return 0;
1421  }
1422  case Intrinsic::readcyclecounter: {
1423    std::vector<MVT::ValueType> VTs;
1424    VTs.push_back(MVT::i64);
1425    VTs.push_back(MVT::Other);
1426    std::vector<SDOperand> Ops;
1427    Ops.push_back(getRoot());
1428    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops);
1429    setValue(&I, Tmp);
1430    DAG.setRoot(Tmp.getValue(1));
1431    return 0;
1432  }
1433  case Intrinsic::bswap_i16:
1434  case Intrinsic::bswap_i32:
1435  case Intrinsic::bswap_i64:
1436    setValue(&I, DAG.getNode(ISD::BSWAP,
1437                             getValue(I.getOperand(1)).getValueType(),
1438                             getValue(I.getOperand(1))));
1439    return 0;
1440  case Intrinsic::cttz_i8:
1441  case Intrinsic::cttz_i16:
1442  case Intrinsic::cttz_i32:
1443  case Intrinsic::cttz_i64:
1444    setValue(&I, DAG.getNode(ISD::CTTZ,
1445                             getValue(I.getOperand(1)).getValueType(),
1446                             getValue(I.getOperand(1))));
1447    return 0;
1448  case Intrinsic::ctlz_i8:
1449  case Intrinsic::ctlz_i16:
1450  case Intrinsic::ctlz_i32:
1451  case Intrinsic::ctlz_i64:
1452    setValue(&I, DAG.getNode(ISD::CTLZ,
1453                             getValue(I.getOperand(1)).getValueType(),
1454                             getValue(I.getOperand(1))));
1455    return 0;
1456  case Intrinsic::ctpop_i8:
1457  case Intrinsic::ctpop_i16:
1458  case Intrinsic::ctpop_i32:
1459  case Intrinsic::ctpop_i64:
1460    setValue(&I, DAG.getNode(ISD::CTPOP,
1461                             getValue(I.getOperand(1)).getValueType(),
1462                             getValue(I.getOperand(1))));
1463    return 0;
1464  case Intrinsic::stacksave: {
1465    std::vector<MVT::ValueType> VTs;
1466    VTs.push_back(TLI.getPointerTy());
1467    VTs.push_back(MVT::Other);
1468    std::vector<SDOperand> Ops;
1469    Ops.push_back(getRoot());
1470    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops);
1471    setValue(&I, Tmp);
1472    DAG.setRoot(Tmp.getValue(1));
1473    return 0;
1474  }
1475  case Intrinsic::stackrestore: {
1476    SDOperand Tmp = getValue(I.getOperand(1));
1477    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
1478    return 0;
1479  }
1480  case Intrinsic::prefetch:
1481    // FIXME: Currently discarding prefetches.
1482    return 0;
1483  }
1484}
1485
1486
1487void SelectionDAGLowering::visitCall(CallInst &I) {
1488  const char *RenameFn = 0;
1489  if (Function *F = I.getCalledFunction()) {
1490    if (F->isExternal())
1491      if (unsigned IID = F->getIntrinsicID()) {
1492        RenameFn = visitIntrinsicCall(I, IID);
1493        if (!RenameFn)
1494          return;
1495      } else {    // Not an LLVM intrinsic.
1496        const std::string &Name = F->getName();
1497        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
1498          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
1499              I.getOperand(1)->getType()->isFloatingPoint() &&
1500              I.getType() == I.getOperand(1)->getType() &&
1501              I.getType() == I.getOperand(2)->getType()) {
1502            SDOperand LHS = getValue(I.getOperand(1));
1503            SDOperand RHS = getValue(I.getOperand(2));
1504            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
1505                                     LHS, RHS));
1506            return;
1507          }
1508        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
1509          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1510              I.getOperand(1)->getType()->isFloatingPoint() &&
1511              I.getType() == I.getOperand(1)->getType()) {
1512            SDOperand Tmp = getValue(I.getOperand(1));
1513            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
1514            return;
1515          }
1516        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
1517          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1518              I.getOperand(1)->getType()->isFloatingPoint() &&
1519              I.getType() == I.getOperand(1)->getType()) {
1520            SDOperand Tmp = getValue(I.getOperand(1));
1521            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
1522            return;
1523          }
1524        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
1525          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1526              I.getOperand(1)->getType()->isFloatingPoint() &&
1527              I.getType() == I.getOperand(1)->getType()) {
1528            SDOperand Tmp = getValue(I.getOperand(1));
1529            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
1530            return;
1531          }
1532        }
1533      }
1534  } else if (isa<InlineAsm>(I.getOperand(0))) {
1535    visitInlineAsm(I);
1536    return;
1537  }
1538
1539  SDOperand Callee;
1540  if (!RenameFn)
1541    Callee = getValue(I.getOperand(0));
1542  else
1543    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
1544  std::vector<std::pair<SDOperand, const Type*> > Args;
1545  Args.reserve(I.getNumOperands());
1546  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1547    Value *Arg = I.getOperand(i);
1548    SDOperand ArgNode = getValue(Arg);
1549    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
1550  }
1551
1552  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
1553  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1554
1555  std::pair<SDOperand,SDOperand> Result =
1556    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
1557                    I.isTailCall(), Callee, Args, DAG);
1558  if (I.getType() != Type::VoidTy)
1559    setValue(&I, Result.first);
1560  DAG.setRoot(Result.second);
1561}
1562
1563SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
1564                                        SDOperand &Chain, SDOperand &Flag)const{
1565  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
1566  Chain = Val.getValue(1);
1567  Flag  = Val.getValue(2);
1568
1569  // If the result was expanded, copy from the top part.
1570  if (Regs.size() > 1) {
1571    assert(Regs.size() == 2 &&
1572           "Cannot expand to more than 2 elts yet!");
1573    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
1574    Chain = Val.getValue(1);
1575    Flag  = Val.getValue(2);
1576    if (DAG.getTargetLoweringInfo().isLittleEndian())
1577      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
1578    else
1579      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
1580  }
1581
1582  // Otherwise, if the return value was promoted, truncate it to the
1583  // appropriate type.
1584  if (RegVT == ValueVT)
1585    return Val;
1586
1587  if (MVT::isInteger(RegVT))
1588    return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1589  else
1590    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
1591}
1592
1593/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
1594/// specified value into the registers specified by this object.  This uses
1595/// Chain/Flag as the input and updates them for the output Chain/Flag.
1596void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
1597                                 SDOperand &Chain, SDOperand &Flag) const {
1598  if (Regs.size() == 1) {
1599    // If there is a single register and the types differ, this must be
1600    // a promotion.
1601    if (RegVT != ValueVT) {
1602      if (MVT::isInteger(RegVT))
1603        Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
1604      else
1605        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
1606    }
1607    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
1608    Flag = Chain.getValue(1);
1609  } else {
1610    std::vector<unsigned> R(Regs);
1611    if (!DAG.getTargetLoweringInfo().isLittleEndian())
1612      std::reverse(R.begin(), R.end());
1613
1614    for (unsigned i = 0, e = R.size(); i != e; ++i) {
1615      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
1616                                   DAG.getConstant(i, MVT::i32));
1617      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
1618      Flag = Chain.getValue(1);
1619    }
1620  }
1621}
1622
1623/// AddInlineAsmOperands - Add this value to the specified inlineasm node
1624/// operand list.  This adds the code marker and includes the number of
1625/// values added into it.
1626void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
1627                                        std::vector<SDOperand> &Ops) const {
1628  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
1629  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1630    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
1631}
1632
1633/// isAllocatableRegister - If the specified register is safe to allocate,
1634/// i.e. it isn't a stack pointer or some other special register, return the
1635/// register class for the register.  Otherwise, return null.
1636static const TargetRegisterClass *
1637isAllocatableRegister(unsigned Reg, MachineFunction &MF,
1638                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
1639  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
1640       E = MRI->regclass_end(); RCI != E; ++RCI) {
1641    const TargetRegisterClass *RC = *RCI;
1642    // If none of the the value types for this register class are valid, we
1643    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1644    bool isLegal = false;
1645    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1646         I != E; ++I) {
1647      if (TLI.isTypeLegal(*I)) {
1648        isLegal = true;
1649        break;
1650      }
1651    }
1652
1653    if (!isLegal) continue;
1654
1655    // NOTE: This isn't ideal.  In particular, this might allocate the
1656    // frame pointer in functions that need it (due to them not being taken
1657    // out of allocation, because a variable sized allocation hasn't been seen
1658    // yet).  This is a slight code pessimization, but should still work.
1659    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
1660         E = RC->allocation_order_end(MF); I != E; ++I)
1661      if (*I == Reg)
1662        return RC;
1663  }
1664  return 0;
1665}
1666
1667RegsForValue SelectionDAGLowering::
1668GetRegistersForValue(const std::string &ConstrCode,
1669                     MVT::ValueType VT, bool isOutReg, bool isInReg,
1670                     std::set<unsigned> &OutputRegs,
1671                     std::set<unsigned> &InputRegs) {
1672  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
1673    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
1674  std::vector<unsigned> Regs;
1675
1676  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
1677  MVT::ValueType RegVT;
1678  MVT::ValueType ValueVT = VT;
1679
1680  if (PhysReg.first) {
1681    if (VT == MVT::Other)
1682      ValueVT = *PhysReg.second->vt_begin();
1683    RegVT = VT;
1684
1685    // This is a explicit reference to a physical register.
1686    Regs.push_back(PhysReg.first);
1687
1688    // If this is an expanded reference, add the rest of the regs to Regs.
1689    if (NumRegs != 1) {
1690      RegVT = *PhysReg.second->vt_begin();
1691      TargetRegisterClass::iterator I = PhysReg.second->begin();
1692      TargetRegisterClass::iterator E = PhysReg.second->end();
1693      for (; *I != PhysReg.first; ++I)
1694        assert(I != E && "Didn't find reg!");
1695
1696      // Already added the first reg.
1697      --NumRegs; ++I;
1698      for (; NumRegs; --NumRegs, ++I) {
1699        assert(I != E && "Ran out of registers to allocate!");
1700        Regs.push_back(*I);
1701      }
1702    }
1703    return RegsForValue(Regs, RegVT, ValueVT);
1704  }
1705
1706  // This is a reference to a register class.  Allocate NumRegs consecutive,
1707  // available, registers from the class.
1708  std::vector<unsigned> RegClassRegs =
1709    TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
1710
1711  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
1712  MachineFunction &MF = *CurMBB->getParent();
1713  unsigned NumAllocated = 0;
1714  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
1715    unsigned Reg = RegClassRegs[i];
1716    // See if this register is available.
1717    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
1718        (isInReg  && InputRegs.count(Reg))) {    // Already used.
1719      // Make sure we find consecutive registers.
1720      NumAllocated = 0;
1721      continue;
1722    }
1723
1724    // Check to see if this register is allocatable (i.e. don't give out the
1725    // stack pointer).
1726    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
1727    if (!RC) {
1728      // Make sure we find consecutive registers.
1729      NumAllocated = 0;
1730      continue;
1731    }
1732
1733    // Okay, this register is good, we can use it.
1734    ++NumAllocated;
1735
1736    // If we allocated enough consecutive
1737    if (NumAllocated == NumRegs) {
1738      unsigned RegStart = (i-NumAllocated)+1;
1739      unsigned RegEnd   = i+1;
1740      // Mark all of the allocated registers used.
1741      for (unsigned i = RegStart; i != RegEnd; ++i) {
1742        unsigned Reg = RegClassRegs[i];
1743        Regs.push_back(Reg);
1744        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
1745        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
1746      }
1747
1748      return RegsForValue(Regs, *RC->vt_begin(), VT);
1749    }
1750  }
1751
1752  // Otherwise, we couldn't allocate enough registers for this.
1753  return RegsForValue();
1754}
1755
1756
1757/// visitInlineAsm - Handle a call to an InlineAsm object.
1758///
1759void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
1760  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
1761
1762  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
1763                                                 MVT::Other);
1764
1765  // Note, we treat inline asms both with and without side-effects as the same.
1766  // If an inline asm doesn't have side effects and doesn't access memory, we
1767  // could not choose to not chain it.
1768  bool hasSideEffects = IA->hasSideEffects();
1769
1770  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
1771  std::vector<MVT::ValueType> ConstraintVTs;
1772
1773  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
1774  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
1775  /// if it is a def of that register.
1776  std::vector<SDOperand> AsmNodeOperands;
1777  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
1778  AsmNodeOperands.push_back(AsmStr);
1779
1780  SDOperand Chain = getRoot();
1781  SDOperand Flag;
1782
1783  // We fully assign registers here at isel time.  This is not optimal, but
1784  // should work.  For register classes that correspond to LLVM classes, we
1785  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
1786  // over the constraints, collecting fixed registers that we know we can't use.
1787  std::set<unsigned> OutputRegs, InputRegs;
1788  unsigned OpNum = 1;
1789  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1790    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
1791    std::string &ConstraintCode = Constraints[i].Codes[0];
1792
1793    MVT::ValueType OpVT;
1794
1795    // Compute the value type for each operand and add it to ConstraintVTs.
1796    switch (Constraints[i].Type) {
1797    case InlineAsm::isOutput:
1798      if (!Constraints[i].isIndirectOutput) {
1799        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
1800        OpVT = TLI.getValueType(I.getType());
1801      } else {
1802        const Type *OpTy = I.getOperand(OpNum)->getType();
1803        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
1804        OpNum++;  // Consumes a call operand.
1805      }
1806      break;
1807    case InlineAsm::isInput:
1808      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
1809      OpNum++;  // Consumes a call operand.
1810      break;
1811    case InlineAsm::isClobber:
1812      OpVT = MVT::Other;
1813      break;
1814    }
1815
1816    ConstraintVTs.push_back(OpVT);
1817
1818    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
1819      continue;  // Not assigned a fixed reg.
1820
1821    // Build a list of regs that this operand uses.  This always has a single
1822    // element for promoted/expanded operands.
1823    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
1824                                             false, false,
1825                                             OutputRegs, InputRegs);
1826
1827    switch (Constraints[i].Type) {
1828    case InlineAsm::isOutput:
1829      // We can't assign any other output to this register.
1830      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1831      // If this is an early-clobber output, it cannot be assigned to the same
1832      // value as the input reg.
1833      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
1834        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1835      break;
1836    case InlineAsm::isInput:
1837      // We can't assign any other input to this register.
1838      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1839      break;
1840    case InlineAsm::isClobber:
1841      // Clobbered regs cannot be used as inputs or outputs.
1842      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1843      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1844      break;
1845    }
1846  }
1847
1848  // Loop over all of the inputs, copying the operand values into the
1849  // appropriate registers and processing the output regs.
1850  RegsForValue RetValRegs;
1851  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
1852  OpNum = 1;
1853
1854  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1855    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
1856    std::string &ConstraintCode = Constraints[i].Codes[0];
1857
1858    switch (Constraints[i].Type) {
1859    case InlineAsm::isOutput: {
1860      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
1861      if (ConstraintCode.size() == 1)   // not a physreg name.
1862        CTy = TLI.getConstraintType(ConstraintCode[0]);
1863
1864      if (CTy == TargetLowering::C_Memory) {
1865        // Memory output.
1866        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
1867
1868        // Check that the operand (the address to store to) isn't a float.
1869        if (!MVT::isInteger(InOperandVal.getValueType()))
1870          assert(0 && "MATCH FAIL!");
1871
1872        if (!Constraints[i].isIndirectOutput)
1873          assert(0 && "MATCH FAIL!");
1874
1875        OpNum++;  // Consumes a call operand.
1876
1877        // Extend/truncate to the right pointer type if needed.
1878        MVT::ValueType PtrType = TLI.getPointerTy();
1879        if (InOperandVal.getValueType() < PtrType)
1880          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
1881        else if (InOperandVal.getValueType() > PtrType)
1882          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
1883
1884        // Add information to the INLINEASM node to know about this output.
1885        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
1886        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
1887        AsmNodeOperands.push_back(InOperandVal);
1888        break;
1889      }
1890
1891      // Otherwise, this is a register output.
1892      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
1893
1894      // If this is an early-clobber output, or if there is an input
1895      // constraint that matches this, we need to reserve the input register
1896      // so no other inputs allocate to it.
1897      bool UsesInputRegister = false;
1898      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
1899        UsesInputRegister = true;
1900
1901      // Copy the output from the appropriate register.  Find a register that
1902      // we can use.
1903      RegsForValue Regs =
1904        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
1905                             true, UsesInputRegister,
1906                             OutputRegs, InputRegs);
1907      assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
1908
1909      if (!Constraints[i].isIndirectOutput) {
1910        assert(RetValRegs.Regs.empty() &&
1911               "Cannot have multiple output constraints yet!");
1912        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
1913        RetValRegs = Regs;
1914      } else {
1915        IndirectStoresToEmit.push_back(std::make_pair(Regs,
1916                                                      I.getOperand(OpNum)));
1917        OpNum++;  // Consumes a call operand.
1918      }
1919
1920      // Add information to the INLINEASM node to know that this register is
1921      // set.
1922      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
1923      break;
1924    }
1925    case InlineAsm::isInput: {
1926      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
1927      OpNum++;  // Consumes a call operand.
1928
1929      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
1930        // If this is required to match an output register we have already set,
1931        // just use its register.
1932        unsigned OperandNo = atoi(ConstraintCode.c_str());
1933
1934        // Scan until we find the definition we already emitted of this operand.
1935        // When we find it, create a RegsForValue operand.
1936        unsigned CurOp = 2;  // The first operand.
1937        for (; OperandNo; --OperandNo) {
1938          // Advance to the next operand.
1939          unsigned NumOps =
1940            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
1941          assert((NumOps & 7) == 2 /*REGDEF*/ &&
1942                 "Skipped past definitions?");
1943          CurOp += (NumOps>>3)+1;
1944        }
1945
1946        unsigned NumOps =
1947          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
1948        assert((NumOps & 7) == 2 /*REGDEF*/ &&
1949               "Skipped past definitions?");
1950
1951        // Add NumOps>>3 registers to MatchedRegs.
1952        RegsForValue MatchedRegs;
1953        MatchedRegs.ValueVT = InOperandVal.getValueType();
1954        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
1955        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
1956          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
1957          MatchedRegs.Regs.push_back(Reg);
1958        }
1959
1960        // Use the produced MatchedRegs object to
1961        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
1962        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
1963        break;
1964      }
1965
1966      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
1967      if (ConstraintCode.size() == 1)   // not a physreg name.
1968        CTy = TLI.getConstraintType(ConstraintCode[0]);
1969
1970      if (CTy == TargetLowering::C_Other) {
1971        if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
1972          assert(0 && "MATCH FAIL!");
1973
1974        // Add information to the INLINEASM node to know about this input.
1975        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
1976        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
1977        AsmNodeOperands.push_back(InOperandVal);
1978        break;
1979      } else if (CTy == TargetLowering::C_Memory) {
1980        // Memory input.
1981
1982        // Check that the operand isn't a float.
1983        if (!MVT::isInteger(InOperandVal.getValueType()))
1984          assert(0 && "MATCH FAIL!");
1985
1986        // Extend/truncate to the right pointer type if needed.
1987        MVT::ValueType PtrType = TLI.getPointerTy();
1988        if (InOperandVal.getValueType() < PtrType)
1989          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
1990        else if (InOperandVal.getValueType() > PtrType)
1991          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
1992
1993        // Add information to the INLINEASM node to know about this input.
1994        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
1995        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
1996        AsmNodeOperands.push_back(InOperandVal);
1997        break;
1998      }
1999
2000      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2001
2002      // Copy the input into the appropriate registers.
2003      RegsForValue InRegs =
2004        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2005                             false, true, OutputRegs, InputRegs);
2006      // FIXME: should be match fail.
2007      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2008
2009      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
2010
2011      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2012      break;
2013    }
2014    case InlineAsm::isClobber: {
2015      RegsForValue ClobberedRegs =
2016        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2017                             OutputRegs, InputRegs);
2018      // Add the clobbered value to the operand list, so that the register
2019      // allocator is aware that the physreg got clobbered.
2020      if (!ClobberedRegs.Regs.empty())
2021        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2022      break;
2023    }
2024    }
2025  }
2026
2027  // Finish up input operands.
2028  AsmNodeOperands[0] = Chain;
2029  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2030
2031  std::vector<MVT::ValueType> VTs;
2032  VTs.push_back(MVT::Other);
2033  VTs.push_back(MVT::Flag);
2034  Chain = DAG.getNode(ISD::INLINEASM, VTs, AsmNodeOperands);
2035  Flag = Chain.getValue(1);
2036
2037  // If this asm returns a register value, copy the result from that register
2038  // and set it as the value of the call.
2039  if (!RetValRegs.Regs.empty())
2040    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2041
2042  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2043
2044  // Process indirect outputs, first output all of the flagged copies out of
2045  // physregs.
2046  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2047    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2048    Value *Ptr = IndirectStoresToEmit[i].second;
2049    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2050    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2051  }
2052
2053  // Emit the non-flagged stores from the physregs.
2054  std::vector<SDOperand> OutChains;
2055  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2056    OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
2057                                    StoresToEmit[i].first,
2058                                    getValue(StoresToEmit[i].second),
2059                                    DAG.getSrcValue(StoresToEmit[i].second)));
2060  if (!OutChains.empty())
2061    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains);
2062  DAG.setRoot(Chain);
2063}
2064
2065
2066void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2067  SDOperand Src = getValue(I.getOperand(0));
2068
2069  MVT::ValueType IntPtr = TLI.getPointerTy();
2070
2071  if (IntPtr < Src.getValueType())
2072    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2073  else if (IntPtr > Src.getValueType())
2074    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2075
2076  // Scale the source by the type size.
2077  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
2078  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2079                    Src, getIntPtrConstant(ElementSize));
2080
2081  std::vector<std::pair<SDOperand, const Type*> > Args;
2082  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
2083
2084  std::pair<SDOperand,SDOperand> Result =
2085    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
2086                    DAG.getExternalSymbol("malloc", IntPtr),
2087                    Args, DAG);
2088  setValue(&I, Result.first);  // Pointers always fit in registers
2089  DAG.setRoot(Result.second);
2090}
2091
2092void SelectionDAGLowering::visitFree(FreeInst &I) {
2093  std::vector<std::pair<SDOperand, const Type*> > Args;
2094  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
2095                                TLI.getTargetData().getIntPtrType()));
2096  MVT::ValueType IntPtr = TLI.getPointerTy();
2097  std::pair<SDOperand,SDOperand> Result =
2098    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
2099                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2100  DAG.setRoot(Result.second);
2101}
2102
2103// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2104// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2105// instructions are special in various ways, which require special support to
2106// insert.  The specified MachineInstr is created but not inserted into any
2107// basic blocks, and the scheduler passes ownership of it to this method.
2108MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2109                                                       MachineBasicBlock *MBB) {
2110  std::cerr << "If a target marks an instruction with "
2111               "'usesCustomDAGSchedInserter', it must implement "
2112               "TargetLowering::InsertAtEndOfBasicBlock!\n";
2113  abort();
2114  return 0;
2115}
2116
2117void SelectionDAGLowering::visitVAStart(CallInst &I) {
2118  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2119                          getValue(I.getOperand(1)),
2120                          DAG.getSrcValue(I.getOperand(1))));
2121}
2122
2123void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2124  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2125                             getValue(I.getOperand(0)),
2126                             DAG.getSrcValue(I.getOperand(0)));
2127  setValue(&I, V);
2128  DAG.setRoot(V.getValue(1));
2129}
2130
2131void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2132  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2133                          getValue(I.getOperand(1)),
2134                          DAG.getSrcValue(I.getOperand(1))));
2135}
2136
2137void SelectionDAGLowering::visitVACopy(CallInst &I) {
2138  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2139                          getValue(I.getOperand(1)),
2140                          getValue(I.getOperand(2)),
2141                          DAG.getSrcValue(I.getOperand(1)),
2142                          DAG.getSrcValue(I.getOperand(2))));
2143}
2144
2145// It is always conservatively correct for llvm.returnaddress and
2146// llvm.frameaddress to return 0.
2147std::pair<SDOperand, SDOperand>
2148TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
2149                                        unsigned Depth, SelectionDAG &DAG) {
2150  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
2151}
2152
2153SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2154  assert(0 && "LowerOperation not implemented for this target!");
2155  abort();
2156  return SDOperand();
2157}
2158
2159SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
2160                                                 SelectionDAG &DAG) {
2161  assert(0 && "CustomPromoteOperation not implemented for this target!");
2162  abort();
2163  return SDOperand();
2164}
2165
2166void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
2167  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
2168  std::pair<SDOperand,SDOperand> Result =
2169    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
2170  setValue(&I, Result.first);
2171  DAG.setRoot(Result.second);
2172}
2173
2174/// getMemsetValue - Vectorized representation of the memset value
2175/// operand.
2176static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2177                                SelectionDAG &DAG) {
2178  MVT::ValueType CurVT = VT;
2179  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2180    uint64_t Val   = C->getValue() & 255;
2181    unsigned Shift = 8;
2182    while (CurVT != MVT::i8) {
2183      Val = (Val << Shift) | Val;
2184      Shift <<= 1;
2185      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2186    }
2187    return DAG.getConstant(Val, VT);
2188  } else {
2189    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2190    unsigned Shift = 8;
2191    while (CurVT != MVT::i8) {
2192      Value =
2193        DAG.getNode(ISD::OR, VT,
2194                    DAG.getNode(ISD::SHL, VT, Value,
2195                                DAG.getConstant(Shift, MVT::i8)), Value);
2196      Shift <<= 1;
2197      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2198    }
2199
2200    return Value;
2201  }
2202}
2203
2204/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2205/// used when a memcpy is turned into a memset when the source is a constant
2206/// string ptr.
2207static SDOperand getMemsetStringVal(MVT::ValueType VT,
2208                                    SelectionDAG &DAG, TargetLowering &TLI,
2209                                    std::string &Str, unsigned Offset) {
2210  MVT::ValueType CurVT = VT;
2211  uint64_t Val = 0;
2212  unsigned MSB = getSizeInBits(VT) / 8;
2213  if (TLI.isLittleEndian())
2214    Offset = Offset + MSB - 1;
2215  for (unsigned i = 0; i != MSB; ++i) {
2216    Val = (Val << 8) | Str[Offset];
2217    Offset += TLI.isLittleEndian() ? -1 : 1;
2218  }
2219  return DAG.getConstant(Val, VT);
2220}
2221
2222/// getMemBasePlusOffset - Returns base and offset node for the
2223static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2224                                      SelectionDAG &DAG, TargetLowering &TLI) {
2225  MVT::ValueType VT = Base.getValueType();
2226  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2227}
2228
2229/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2230/// to replace the memset / memcpy is below the threshold. It also returns the
2231/// types of the sequence of  memory ops to perform memset / memcpy.
2232static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2233                                     unsigned Limit, uint64_t Size,
2234                                     unsigned Align, TargetLowering &TLI) {
2235  MVT::ValueType VT;
2236
2237  if (TLI.allowsUnalignedMemoryAccesses()) {
2238    VT = MVT::i64;
2239  } else {
2240    switch (Align & 7) {
2241    case 0:
2242      VT = MVT::i64;
2243      break;
2244    case 4:
2245      VT = MVT::i32;
2246      break;
2247    case 2:
2248      VT = MVT::i16;
2249      break;
2250    default:
2251      VT = MVT::i8;
2252      break;
2253    }
2254  }
2255
2256  MVT::ValueType LVT = MVT::i64;
2257  while (!TLI.isTypeLegal(LVT))
2258    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2259  assert(MVT::isInteger(LVT));
2260
2261  if (VT > LVT)
2262    VT = LVT;
2263
2264  unsigned NumMemOps = 0;
2265  while (Size != 0) {
2266    unsigned VTSize = getSizeInBits(VT) / 8;
2267    while (VTSize > Size) {
2268      VT = (MVT::ValueType)((unsigned)VT - 1);
2269      VTSize >>= 1;
2270    }
2271    assert(MVT::isInteger(VT));
2272
2273    if (++NumMemOps > Limit)
2274      return false;
2275    MemOps.push_back(VT);
2276    Size -= VTSize;
2277  }
2278
2279  return true;
2280}
2281
2282void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
2283  SDOperand Op1 = getValue(I.getOperand(1));
2284  SDOperand Op2 = getValue(I.getOperand(2));
2285  SDOperand Op3 = getValue(I.getOperand(3));
2286  SDOperand Op4 = getValue(I.getOperand(4));
2287  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
2288  if (Align == 0) Align = 1;
2289
2290  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
2291    std::vector<MVT::ValueType> MemOps;
2292
2293    // Expand memset / memcpy to a series of load / store ops
2294    // if the size operand falls below a certain threshold.
2295    std::vector<SDOperand> OutChains;
2296    switch (Op) {
2297    default: break;  // Do nothing for now.
2298    case ISD::MEMSET: {
2299      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2300                                   Size->getValue(), Align, TLI)) {
2301        unsigned NumMemOps = MemOps.size();
2302        unsigned Offset = 0;
2303        for (unsigned i = 0; i < NumMemOps; i++) {
2304          MVT::ValueType VT = MemOps[i];
2305          unsigned VTSize = getSizeInBits(VT) / 8;
2306          SDOperand Value = getMemsetValue(Op2, VT, DAG);
2307          SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, getRoot(),
2308                                        Value,
2309                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
2310                                      DAG.getSrcValue(I.getOperand(1), Offset));
2311          OutChains.push_back(Store);
2312          Offset += VTSize;
2313        }
2314      }
2315      break;
2316    }
2317    case ISD::MEMCPY: {
2318      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
2319                                   Size->getValue(), Align, TLI)) {
2320        unsigned NumMemOps = MemOps.size();
2321        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
2322        GlobalAddressSDNode *G = NULL;
2323        std::string Str;
2324        bool CopyFromStr = false;
2325
2326        if (Op2.getOpcode() == ISD::GlobalAddress)
2327          G = cast<GlobalAddressSDNode>(Op2);
2328        else if (Op2.getOpcode() == ISD::ADD &&
2329                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2330                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
2331          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
2332          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
2333        }
2334        if (G) {
2335          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2336          if (GV) {
2337            Str = GV->getStringValue(false);
2338            if (!Str.empty()) {
2339              CopyFromStr = true;
2340              SrcOff += SrcDelta;
2341            }
2342          }
2343        }
2344
2345        for (unsigned i = 0; i < NumMemOps; i++) {
2346          MVT::ValueType VT = MemOps[i];
2347          unsigned VTSize = getSizeInBits(VT) / 8;
2348          SDOperand Value, Chain, Store;
2349
2350          if (CopyFromStr) {
2351            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2352            Chain = getRoot();
2353            Store =
2354              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2355                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2356                          DAG.getSrcValue(I.getOperand(1), DstOff));
2357          } else {
2358            Value = DAG.getLoad(VT, getRoot(),
2359                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
2360                        DAG.getSrcValue(I.getOperand(2), SrcOff));
2361            Chain = Value.getValue(1);
2362            Store =
2363              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2364                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2365                          DAG.getSrcValue(I.getOperand(1), DstOff));
2366          }
2367          OutChains.push_back(Store);
2368          SrcOff += VTSize;
2369          DstOff += VTSize;
2370        }
2371      }
2372      break;
2373    }
2374    }
2375
2376    if (!OutChains.empty()) {
2377      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains));
2378      return;
2379    }
2380  }
2381
2382  std::vector<SDOperand> Ops;
2383  Ops.push_back(getRoot());
2384  Ops.push_back(Op1);
2385  Ops.push_back(Op2);
2386  Ops.push_back(Op3);
2387  Ops.push_back(Op4);
2388  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
2389}
2390
2391//===----------------------------------------------------------------------===//
2392// SelectionDAGISel code
2393//===----------------------------------------------------------------------===//
2394
2395unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
2396  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
2397}
2398
2399void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
2400  // FIXME: we only modify the CFG to split critical edges.  This
2401  // updates dom and loop info.
2402}
2403
2404
2405/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
2406/// casting to the type of GEPI.
2407static Value *InsertGEPComputeCode(Value *&V, BasicBlock *BB, Instruction *GEPI,
2408                                   Value *Ptr, Value *PtrOffset) {
2409  if (V) return V;   // Already computed.
2410
2411  BasicBlock::iterator InsertPt;
2412  if (BB == GEPI->getParent()) {
2413    // If insert into the GEP's block, insert right after the GEP.
2414    InsertPt = GEPI;
2415    ++InsertPt;
2416  } else {
2417    // Otherwise, insert at the top of BB, after any PHI nodes
2418    InsertPt = BB->begin();
2419    while (isa<PHINode>(InsertPt)) ++InsertPt;
2420  }
2421
2422  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
2423  // BB so that there is only one value live across basic blocks (the cast
2424  // operand).
2425  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
2426    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
2427      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
2428
2429  // Add the offset, cast it to the right type.
2430  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
2431  Ptr = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
2432  return V = Ptr;
2433}
2434
2435
2436/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
2437/// selection, we want to be a bit careful about some things.  In particular, if
2438/// we have a GEP instruction that is used in a different block than it is
2439/// defined, the addressing expression of the GEP cannot be folded into loads or
2440/// stores that use it.  In this case, decompose the GEP and move constant
2441/// indices into blocks that use it.
2442static void OptimizeGEPExpression(GetElementPtrInst *GEPI,
2443                                  const TargetData &TD) {
2444  // If this GEP is only used inside the block it is defined in, there is no
2445  // need to rewrite it.
2446  bool isUsedOutsideDefBB = false;
2447  BasicBlock *DefBB = GEPI->getParent();
2448  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
2449       UI != E; ++UI) {
2450    if (cast<Instruction>(*UI)->getParent() != DefBB) {
2451      isUsedOutsideDefBB = true;
2452      break;
2453    }
2454  }
2455  if (!isUsedOutsideDefBB) return;
2456
2457  // If this GEP has no non-zero constant indices, there is nothing we can do,
2458  // ignore it.
2459  bool hasConstantIndex = false;
2460  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
2461       E = GEPI->op_end(); OI != E; ++OI) {
2462    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI))
2463      if (CI->getRawValue()) {
2464        hasConstantIndex = true;
2465        break;
2466      }
2467  }
2468  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
2469  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0))) return;
2470
2471  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
2472  // constant offset (which we now know is non-zero) and deal with it later.
2473  uint64_t ConstantOffset = 0;
2474  const Type *UIntPtrTy = TD.getIntPtrType();
2475  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
2476  const Type *Ty = GEPI->getOperand(0)->getType();
2477
2478  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
2479       E = GEPI->op_end(); OI != E; ++OI) {
2480    Value *Idx = *OI;
2481    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2482      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
2483      if (Field)
2484        ConstantOffset += TD.getStructLayout(StTy)->MemberOffsets[Field];
2485      Ty = StTy->getElementType(Field);
2486    } else {
2487      Ty = cast<SequentialType>(Ty)->getElementType();
2488
2489      // Handle constant subscripts.
2490      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2491        if (CI->getRawValue() == 0) continue;
2492
2493        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
2494          ConstantOffset += (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
2495        else
2496          ConstantOffset+=TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
2497        continue;
2498      }
2499
2500      // Ptr = Ptr + Idx * ElementSize;
2501
2502      // Cast Idx to UIntPtrTy if needed.
2503      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
2504
2505      uint64_t ElementSize = TD.getTypeSize(Ty);
2506      // Mask off bits that should not be set.
2507      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
2508      Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
2509
2510      // Multiply by the element size and add to the base.
2511      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
2512      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
2513    }
2514  }
2515
2516  // Make sure that the offset fits in uintptr_t.
2517  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
2518  Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
2519
2520  // Okay, we have now emitted all of the variable index parts to the BB that
2521  // the GEP is defined in.  Loop over all of the using instructions, inserting
2522  // an "add Ptr, ConstantOffset" into each block that uses it and update the
2523  // instruction to use the newly computed value, making GEPI dead.  When the
2524  // user is a load or store instruction address, we emit the add into the user
2525  // block, otherwise we use a canonical version right next to the gep (these
2526  // won't be foldable as addresses, so we might as well share the computation).
2527
2528  std::map<BasicBlock*,Value*> InsertedExprs;
2529  while (!GEPI->use_empty()) {
2530    Instruction *User = cast<Instruction>(GEPI->use_back());
2531
2532    // If this use is not foldable into the addressing mode, use a version
2533    // emitted in the GEP block.
2534    Value *NewVal;
2535    if (!isa<LoadInst>(User) &&
2536        (!isa<StoreInst>(User) || User->getOperand(0) == GEPI)) {
2537      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
2538                                    Ptr, PtrOffset);
2539    } else {
2540      // Otherwise, insert the code in the User's block so it can be folded into
2541      // any users in that block.
2542      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
2543                                    User->getParent(), GEPI,
2544                                    Ptr, PtrOffset);
2545    }
2546    User->replaceUsesOfWith(GEPI, NewVal);
2547  }
2548
2549  // Finally, the GEP is dead, remove it.
2550  GEPI->eraseFromParent();
2551}
2552
2553bool SelectionDAGISel::runOnFunction(Function &Fn) {
2554  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
2555  RegMap = MF.getSSARegMap();
2556  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
2557
2558  // First, split all critical edges for PHI nodes with incoming values that are
2559  // constants, this way the load of the constant into a vreg will not be placed
2560  // into MBBs that are used some other way.
2561  //
2562  // In this pass we also look for GEP instructions that are used across basic
2563  // blocks and rewrites them to improve basic-block-at-a-time selection.
2564  //
2565  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
2566    PHINode *PN;
2567    BasicBlock::iterator BBI;
2568    for (BBI = BB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI)
2569      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2570        if (isa<Constant>(PN->getIncomingValue(i)))
2571          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
2572
2573    for (BasicBlock::iterator E = BB->end(); BBI != E; )
2574      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(BBI++))
2575        OptimizeGEPExpression(GEPI, TLI.getTargetData());
2576  }
2577
2578  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
2579
2580  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
2581    SelectBasicBlock(I, MF, FuncInfo);
2582
2583  return true;
2584}
2585
2586
2587SDOperand SelectionDAGISel::
2588CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
2589  SDOperand Op = SDL.getValue(V);
2590  assert((Op.getOpcode() != ISD::CopyFromReg ||
2591          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
2592         "Copy from a reg to the same reg!");
2593
2594  // If this type is not legal, we must make sure to not create an invalid
2595  // register use.
2596  MVT::ValueType SrcVT = Op.getValueType();
2597  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
2598  SelectionDAG &DAG = SDL.DAG;
2599  if (SrcVT == DestVT) {
2600    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
2601  } else if (SrcVT == MVT::Vector) {
2602    // FIXME: THIS DOES NOT SUPPORT PROMOTED/EXPANDED ELEMENTS!
2603
2604    // Figure out the right, legal destination reg to copy into.
2605    const PackedType *PTy = cast<PackedType>(V->getType());
2606    unsigned NumElts = PTy->getNumElements();
2607    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
2608
2609    unsigned NumVectorRegs = 1;
2610
2611    // Divide the input until we get to a supported size.  This will always
2612    // end with a scalar if the target doesn't support vectors.
2613    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
2614      NumElts >>= 1;
2615      NumVectorRegs <<= 1;
2616    }
2617
2618    MVT::ValueType VT;
2619    if (NumElts == 1)
2620      VT = EltTy;
2621    else
2622      VT = getVectorType(EltTy, NumElts);
2623
2624    // FIXME: THIS ASSUMES THAT THE INPUT VECTOR WILL BE LEGAL!
2625    Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
2626    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
2627  } else if (SrcVT < DestVT) {
2628    // The src value is promoted to the register.
2629    if (MVT::isFloatingPoint(SrcVT))
2630      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
2631    else
2632      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
2633    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
2634  } else  {
2635    // The src value is expanded into multiple registers.
2636    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
2637                               Op, DAG.getConstant(0, MVT::i32));
2638    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
2639                               Op, DAG.getConstant(1, MVT::i32));
2640    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
2641    return DAG.getCopyToReg(Op, Reg+1, Hi);
2642  }
2643}
2644
2645void SelectionDAGISel::
2646LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
2647               std::vector<SDOperand> &UnorderedChains) {
2648  // If this is the entry block, emit arguments.
2649  Function &F = *BB->getParent();
2650  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
2651  SDOperand OldRoot = SDL.DAG.getRoot();
2652  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
2653
2654  unsigned a = 0;
2655  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
2656       AI != E; ++AI, ++a)
2657    if (!AI->use_empty()) {
2658      SDL.setValue(AI, Args[a]);
2659
2660      // If this argument is live outside of the entry block, insert a copy from
2661      // whereever we got it to the vreg that other BB's will reference it as.
2662      if (FuncInfo.ValueMap.count(AI)) {
2663        SDOperand Copy =
2664          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
2665        UnorderedChains.push_back(Copy);
2666      }
2667    }
2668
2669  // Next, if the function has live ins that need to be copied into vregs,
2670  // emit the copies now, into the top of the block.
2671  MachineFunction &MF = SDL.DAG.getMachineFunction();
2672  if (MF.livein_begin() != MF.livein_end()) {
2673    SSARegMap *RegMap = MF.getSSARegMap();
2674    const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
2675    for (MachineFunction::livein_iterator LI = MF.livein_begin(),
2676         E = MF.livein_end(); LI != E; ++LI)
2677      if (LI->second)
2678        MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
2679                         LI->first, RegMap->getRegClass(LI->second));
2680  }
2681
2682  // Finally, if the target has anything special to do, allow it to do so.
2683  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
2684}
2685
2686
2687void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
2688       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
2689                                         FunctionLoweringInfo &FuncInfo) {
2690  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
2691
2692  std::vector<SDOperand> UnorderedChains;
2693
2694  // Lower any arguments needed in this block if this is the entry block.
2695  if (LLVMBB == &LLVMBB->getParent()->front())
2696    LowerArguments(LLVMBB, SDL, UnorderedChains);
2697
2698  BB = FuncInfo.MBBMap[LLVMBB];
2699  SDL.setCurrentBasicBlock(BB);
2700
2701  // Lower all of the non-terminator instructions.
2702  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
2703       I != E; ++I)
2704    SDL.visit(*I);
2705
2706  // Ensure that all instructions which are used outside of their defining
2707  // blocks are available as virtual registers.
2708  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
2709    if (!I->use_empty() && !isa<PHINode>(I)) {
2710      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
2711      if (VMI != FuncInfo.ValueMap.end())
2712        UnorderedChains.push_back(
2713                           CopyValueToVirtualRegister(SDL, I, VMI->second));
2714    }
2715
2716  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
2717  // ensure constants are generated when needed.  Remember the virtual registers
2718  // that need to be added to the Machine PHI nodes as input.  We cannot just
2719  // directly add them, because expansion might result in multiple MBB's for one
2720  // BB.  As such, the start of the BB might correspond to a different MBB than
2721  // the end.
2722  //
2723
2724  // Emit constants only once even if used by multiple PHI nodes.
2725  std::map<Constant*, unsigned> ConstantsOut;
2726
2727  // Check successor nodes PHI nodes that expect a constant to be available from
2728  // this block.
2729  TerminatorInst *TI = LLVMBB->getTerminator();
2730  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2731    BasicBlock *SuccBB = TI->getSuccessor(succ);
2732    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
2733    PHINode *PN;
2734
2735    // At this point we know that there is a 1-1 correspondence between LLVM PHI
2736    // nodes and Machine PHI nodes, but the incoming operands have not been
2737    // emitted yet.
2738    for (BasicBlock::iterator I = SuccBB->begin();
2739         (PN = dyn_cast<PHINode>(I)); ++I)
2740      if (!PN->use_empty()) {
2741        unsigned Reg;
2742        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
2743        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
2744          unsigned &RegOut = ConstantsOut[C];
2745          if (RegOut == 0) {
2746            RegOut = FuncInfo.CreateRegForValue(C);
2747            UnorderedChains.push_back(
2748                             CopyValueToVirtualRegister(SDL, C, RegOut));
2749          }
2750          Reg = RegOut;
2751        } else {
2752          Reg = FuncInfo.ValueMap[PHIOp];
2753          if (Reg == 0) {
2754            assert(isa<AllocaInst>(PHIOp) &&
2755                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
2756                   "Didn't codegen value into a register!??");
2757            Reg = FuncInfo.CreateRegForValue(PHIOp);
2758            UnorderedChains.push_back(
2759                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
2760          }
2761        }
2762
2763        // Remember that this register needs to added to the machine PHI node as
2764        // the input for this MBB.
2765        unsigned NumElements =
2766          TLI.getNumElements(TLI.getValueType(PN->getType()));
2767        for (unsigned i = 0, e = NumElements; i != e; ++i)
2768          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
2769      }
2770  }
2771  ConstantsOut.clear();
2772
2773  // Turn all of the unordered chains into one factored node.
2774  if (!UnorderedChains.empty()) {
2775    SDOperand Root = SDL.getRoot();
2776    if (Root.getOpcode() != ISD::EntryToken) {
2777      unsigned i = 0, e = UnorderedChains.size();
2778      for (; i != e; ++i) {
2779        assert(UnorderedChains[i].Val->getNumOperands() > 1);
2780        if (UnorderedChains[i].Val->getOperand(0) == Root)
2781          break;  // Don't add the root if we already indirectly depend on it.
2782      }
2783
2784      if (i == e)
2785        UnorderedChains.push_back(Root);
2786    }
2787    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
2788  }
2789
2790  // Lower the terminator after the copies are emitted.
2791  SDL.visit(*LLVMBB->getTerminator());
2792
2793  // Copy over any CaseBlock records that may now exist due to SwitchInst
2794  // lowering.
2795  SwitchCases.clear();
2796  SwitchCases = SDL.SwitchCases;
2797
2798  // Make sure the root of the DAG is up-to-date.
2799  DAG.setRoot(SDL.getRoot());
2800}
2801
2802void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
2803  // Run the DAG combiner in pre-legalize mode.
2804  DAG.Combine(false);
2805
2806  DEBUG(std::cerr << "Lowered selection DAG:\n");
2807  DEBUG(DAG.dump());
2808
2809  // Second step, hack on the DAG until it only uses operations and types that
2810  // the target supports.
2811  DAG.Legalize();
2812
2813  DEBUG(std::cerr << "Legalized selection DAG:\n");
2814  DEBUG(DAG.dump());
2815
2816  // Run the DAG combiner in post-legalize mode.
2817  DAG.Combine(true);
2818
2819  if (ViewISelDAGs) DAG.viewGraph();
2820
2821  // Third, instruction select all of the operations to machine code, adding the
2822  // code to the MachineBasicBlock.
2823  InstructionSelectBasicBlock(DAG);
2824
2825  DEBUG(std::cerr << "Selected machine code:\n");
2826  DEBUG(BB->dump());
2827}
2828
2829void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
2830                                        FunctionLoweringInfo &FuncInfo) {
2831  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
2832  {
2833    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
2834    CurDAG = &DAG;
2835
2836    // First step, lower LLVM code to some DAG.  This DAG may use operations and
2837    // types that are not supported by the target.
2838    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
2839
2840    // Second step, emit the lowered DAG as machine code.
2841    CodeGenAndEmitDAG(DAG);
2842  }
2843
2844  // Next, now that we know what the last MBB the LLVM BB expanded is, update
2845  // PHI nodes in successors.
2846  if (SwitchCases.empty()) {
2847    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
2848      MachineInstr *PHI = PHINodesToUpdate[i].first;
2849      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
2850             "This is not a machine PHI node that we are updating!");
2851      PHI->addRegOperand(PHINodesToUpdate[i].second);
2852      PHI->addMachineBasicBlockOperand(BB);
2853    }
2854    return;
2855  }
2856
2857  // If we generated any switch lowering information, build and codegen any
2858  // additional DAGs necessary.
2859  for(unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
2860    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
2861    CurDAG = &SDAG;
2862    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
2863    // Set the current basic block to the mbb we wish to insert the code into
2864    BB = SwitchCases[i].ThisBB;
2865    SDL.setCurrentBasicBlock(BB);
2866    // Emit the code
2867    SDL.visitSwitchCase(SwitchCases[i]);
2868    SDAG.setRoot(SDL.getRoot());
2869    CodeGenAndEmitDAG(SDAG);
2870    // Iterate over the phi nodes, if there is a phi node in a successor of this
2871    // block (for instance, the default block), then add a pair of operands to
2872    // the phi node for this block, as if we were coming from the original
2873    // BB before switch expansion.
2874    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
2875      MachineInstr *PHI = PHINodesToUpdate[pi].first;
2876      MachineBasicBlock *PHIBB = PHI->getParent();
2877      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
2878             "This is not a machine PHI node that we are updating!");
2879      if (PHIBB == SwitchCases[i].LHSBB || PHIBB == SwitchCases[i].RHSBB) {
2880        PHI->addRegOperand(PHINodesToUpdate[pi].second);
2881        PHI->addMachineBasicBlockOperand(BB);
2882      }
2883    }
2884  }
2885}
2886
2887//===----------------------------------------------------------------------===//
2888/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
2889/// target node in the graph.
2890void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
2891  if (ViewSchedDAGs) DAG.viewGraph();
2892  ScheduleDAG *SL = NULL;
2893
2894  switch (ISHeuristic) {
2895  default: assert(0 && "Unrecognized scheduling heuristic");
2896  case defaultScheduling:
2897    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
2898      SL = createSimpleDAGScheduler(noScheduling, DAG, BB);
2899    else /* TargetLowering::SchedulingForRegPressure */
2900      SL = createBURRListDAGScheduler(DAG, BB);
2901    break;
2902  case noScheduling:
2903    SL = createBFS_DAGScheduler(DAG, BB);
2904    break;
2905  case simpleScheduling:
2906    SL = createSimpleDAGScheduler(false, DAG, BB);
2907    break;
2908  case simpleNoItinScheduling:
2909    SL = createSimpleDAGScheduler(true, DAG, BB);
2910    break;
2911  case listSchedulingBURR:
2912    SL = createBURRListDAGScheduler(DAG, BB);
2913    break;
2914  case listSchedulingTD:
2915    SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
2916    break;
2917  }
2918  BB = SL->Run();
2919  delete SL;
2920}
2921
2922HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
2923  return new HazardRecognizer();
2924}
2925
2926/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2927/// by tblgen.  Others should not call it.
2928void SelectionDAGISel::
2929SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
2930  std::vector<SDOperand> InOps;
2931  std::swap(InOps, Ops);
2932
2933  Ops.push_back(InOps[0]);  // input chain.
2934  Ops.push_back(InOps[1]);  // input asm string.
2935
2936  const char *AsmStr = cast<ExternalSymbolSDNode>(InOps[1])->getSymbol();
2937  unsigned i = 2, e = InOps.size();
2938  if (InOps[e-1].getValueType() == MVT::Flag)
2939    --e;  // Don't process a flag operand if it is here.
2940
2941  while (i != e) {
2942    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
2943    if ((Flags & 7) != 4 /*MEM*/) {
2944      // Just skip over this operand, copying the operands verbatim.
2945      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
2946      i += (Flags >> 3) + 1;
2947    } else {
2948      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
2949      // Otherwise, this is a memory operand.  Ask the target to select it.
2950      std::vector<SDOperand> SelOps;
2951      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
2952        std::cerr << "Could not match memory address.  Inline asm failure!\n";
2953        exit(1);
2954      }
2955
2956      // Add this to the output node.
2957      Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
2958      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
2959      i += 2;
2960    }
2961  }
2962
2963  // Add the flag input back if present.
2964  if (e != InOps.size())
2965    Ops.push_back(InOps.back());
2966}
2967