SelectionDAGISel.cpp revision c6f00e701e744fdf73508d47ff0cc75817ba8474
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Support/Compiler.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/Timer.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
56STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
57
58static cl::opt<bool>
59EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
60          cl::desc("Enable verbose messages in the \"fast\" "
61                   "instruction selector"));
62static cl::opt<bool>
63EnableFastISelAbort("fast-isel-abort", cl::Hidden,
64          cl::desc("Enable abort calls when \"fast\" instruction fails"));
65
66#ifndef NDEBUG
67static cl::opt<bool>
68ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
69          cl::desc("Pop up a window to show dags before the first "
70                   "dag combine pass"));
71static cl::opt<bool>
72ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
73          cl::desc("Pop up a window to show dags before legalize types"));
74static cl::opt<bool>
75ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
76          cl::desc("Pop up a window to show dags before legalize"));
77static cl::opt<bool>
78ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the second "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before the post legalize types"
84                   " dag combine pass"));
85static cl::opt<bool>
86ViewISelDAGs("view-isel-dags", cl::Hidden,
87          cl::desc("Pop up a window to show isel dags as they are selected"));
88static cl::opt<bool>
89ViewSchedDAGs("view-sched-dags", cl::Hidden,
90          cl::desc("Pop up a window to show sched dags as they are processed"));
91static cl::opt<bool>
92ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
93      cl::desc("Pop up a window to show SUnit dags after they are processed"));
94#else
95static const bool ViewDAGCombine1 = false,
96                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
97                  ViewDAGCombine2 = false,
98                  ViewDAGCombineLT = false,
99                  ViewISelDAGs = false, ViewSchedDAGs = false,
100                  ViewSUnitDAGs = false;
101#endif
102
103//===---------------------------------------------------------------------===//
104///
105/// RegisterScheduler class - Track the registration of instruction schedulers.
106///
107//===---------------------------------------------------------------------===//
108MachinePassRegistry RegisterScheduler::Registry;
109
110//===---------------------------------------------------------------------===//
111///
112/// ISHeuristic command line option for instruction schedulers.
113///
114//===---------------------------------------------------------------------===//
115static cl::opt<RegisterScheduler::FunctionPassCtor, false,
116               RegisterPassParser<RegisterScheduler> >
117ISHeuristic("pre-RA-sched",
118            cl::init(&createDefaultScheduler),
119            cl::desc("Instruction schedulers available (before register"
120                     " allocation):"));
121
122static RegisterScheduler
123defaultListDAGScheduler("default", "Best scheduler for the target",
124                        createDefaultScheduler);
125
126namespace llvm {
127  //===--------------------------------------------------------------------===//
128  /// createDefaultScheduler - This creates an instruction scheduler appropriate
129  /// for the target.
130  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
131                                             CodeGenOpt::Level OptLevel) {
132    const TargetLowering &TLI = IS->getTargetLowering();
133
134    if (OptLevel == CodeGenOpt::None)
135      return createFastDAGScheduler(IS, OptLevel);
136    if (TLI.getSchedulingPreference() == Sched::Latency)
137      return createTDListDAGScheduler(IS, OptLevel);
138    if (TLI.getSchedulingPreference() == Sched::RegPressure)
139      return createBURRListDAGScheduler(IS, OptLevel);
140    assert(TLI.getSchedulingPreference() == Sched::Hybrid &&
141           "Unknown sched type!");
142    return createHybridListDAGScheduler(IS, OptLevel);
143  }
144}
145
146// EmitInstrWithCustomInserter - This method should be implemented by targets
147// that mark instructions with the 'usesCustomInserter' flag.  These
148// instructions are special in various ways, which require special support to
149// insert.  The specified MachineInstr is created but not inserted into any
150// basic blocks, and this method is called to expand it into a sequence of
151// instructions, potentially also creating new basic blocks and control flow.
152// When new basic blocks are inserted and the edges from MBB to its successors
153// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
154// DenseMap.
155MachineBasicBlock *
156TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
157                                            MachineBasicBlock *MBB) const {
158#ifndef NDEBUG
159  dbgs() << "If a target marks an instruction with "
160          "'usesCustomInserter', it must implement "
161          "TargetLowering::EmitInstrWithCustomInserter!";
162#endif
163  llvm_unreachable(0);
164  return 0;
165}
166
167//===----------------------------------------------------------------------===//
168// SelectionDAGISel code
169//===----------------------------------------------------------------------===//
170
171SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
172  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
173  FuncInfo(new FunctionLoweringInfo(TLI)),
174  CurDAG(new SelectionDAG(tm)),
175  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
176  GFI(),
177  OptLevel(OL),
178  DAGSize(0)
179{}
180
181SelectionDAGISel::~SelectionDAGISel() {
182  delete SDB;
183  delete CurDAG;
184  delete FuncInfo;
185}
186
187void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
188  AU.addRequired<AliasAnalysis>();
189  AU.addPreserved<AliasAnalysis>();
190  AU.addRequired<GCModuleInfo>();
191  AU.addPreserved<GCModuleInfo>();
192  MachineFunctionPass::getAnalysisUsage(AU);
193}
194
195/// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
196/// other function that gcc recognizes as "returning twice". This is used to
197/// limit code-gen optimizations on the machine function.
198///
199/// FIXME: Remove after <rdar://problem/8031714> is fixed.
200static bool FunctionCallsSetJmp(const Function *F) {
201  const Module *M = F->getParent();
202  static const char *ReturnsTwiceFns[] = {
203    "setjmp",
204    "sigsetjmp",
205    "setjmp_syscall",
206    "savectx",
207    "qsetjmp",
208    "vfork",
209    "getcontext"
210  };
211#define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
212
213  for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
214    if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
215      if (!Callee->use_empty())
216        for (Value::const_use_iterator
217               I = Callee->use_begin(), E = Callee->use_end();
218             I != E; ++I)
219          if (const CallInst *CI = dyn_cast<CallInst>(I))
220            if (CI->getParent()->getParent() == F)
221              return true;
222    }
223
224  return false;
225#undef NUM_RETURNS_TWICE_FNS
226}
227
228bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
229  // Do some sanity-checking on the command-line options.
230  assert((!EnableFastISelVerbose || EnableFastISel) &&
231         "-fast-isel-verbose requires -fast-isel");
232  assert((!EnableFastISelAbort || EnableFastISel) &&
233         "-fast-isel-abort requires -fast-isel");
234
235  const Function &Fn = *mf.getFunction();
236  const TargetInstrInfo &TII = *TM.getInstrInfo();
237  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
238
239  MF = &mf;
240  RegInfo = &MF->getRegInfo();
241  AA = &getAnalysis<AliasAnalysis>();
242  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
243
244  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
245
246  CurDAG->init(*MF);
247  FuncInfo->set(Fn, *MF);
248  SDB->init(GFI, *AA);
249
250  SelectAllBasicBlocks(Fn);
251
252  // If the first basic block in the function has live ins that need to be
253  // copied into vregs, emit the copies into the top of the block before
254  // emitting the code for the block.
255  MachineBasicBlock *EntryMBB = MF->begin();
256  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
257
258  DenseMap<unsigned, unsigned> LiveInMap;
259  if (!FuncInfo->ArgDbgValues.empty())
260    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
261           E = RegInfo->livein_end(); LI != E; ++LI)
262      if (LI->second)
263        LiveInMap.insert(std::make_pair(LI->first, LI->second));
264
265  // Insert DBG_VALUE instructions for function arguments to the entry block.
266  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
267    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
268    unsigned Reg = MI->getOperand(0).getReg();
269    if (TargetRegisterInfo::isPhysicalRegister(Reg))
270      EntryMBB->insert(EntryMBB->begin(), MI);
271    else {
272      MachineInstr *Def = RegInfo->getVRegDef(Reg);
273      MachineBasicBlock::iterator InsertPos = Def;
274      // FIXME: VR def may not be in entry block.
275      Def->getParent()->insert(llvm::next(InsertPos), MI);
276    }
277
278    // If Reg is live-in then update debug info to track its copy in a vreg.
279    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
280    if (LDI != LiveInMap.end()) {
281      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
282      MachineBasicBlock::iterator InsertPos = Def;
283      const MDNode *Variable =
284        MI->getOperand(MI->getNumOperands()-1).getMetadata();
285      unsigned Offset = MI->getOperand(1).getImm();
286      // Def is never a terminator here, so it is ok to increment InsertPos.
287      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
288              TII.get(TargetOpcode::DBG_VALUE))
289        .addReg(LDI->second, RegState::Debug)
290        .addImm(Offset).addMetadata(Variable);
291    }
292  }
293
294  // Determine if there are any calls in this machine function.
295  MachineFrameInfo *MFI = MF->getFrameInfo();
296  if (!MFI->hasCalls()) {
297    for (MachineFunction::const_iterator
298           I = MF->begin(), E = MF->end(); I != E; ++I) {
299      const MachineBasicBlock *MBB = I;
300      for (MachineBasicBlock::const_iterator
301             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
302        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
303        if (II->isInlineAsm() || (TID.isCall() && !TID.isReturn())) {
304          MFI->setHasCalls(true);
305          goto done;
306        }
307      }
308    }
309  done:;
310  }
311
312  // Determine if there is a call to setjmp in the machine function.
313  MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
314
315  // Release function-specific state. SDB and CurDAG are already cleared
316  // at this point.
317  FuncInfo->clear();
318
319  return true;
320}
321
322MachineBasicBlock *
323SelectionDAGISel::SelectBasicBlock(MachineBasicBlock *BB,
324                                   const BasicBlock *LLVMBB,
325                                   BasicBlock::const_iterator Begin,
326                                   BasicBlock::const_iterator End,
327                                   bool &HadTailCall) {
328  // Lower all of the non-terminator instructions. If a call is emitted
329  // as a tail call, cease emitting nodes for this block. Terminators
330  // are handled below.
331  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
332    SDB->visit(*I);
333
334  // Make sure the root of the DAG is up-to-date.
335  CurDAG->setRoot(SDB->getControlRoot());
336  HadTailCall = SDB->HasTailCall;
337  SDB->clear();
338
339  // Final step, emit the lowered DAG as machine code.
340  return CodeGenAndEmitDAG(BB);
341}
342
343namespace {
344/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
345/// nodes from the worklist.
346class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
347  SmallVector<SDNode*, 128> &Worklist;
348  SmallPtrSet<SDNode*, 128> &InWorklist;
349public:
350  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
351                       SmallPtrSet<SDNode*, 128> &inwl)
352    : Worklist(wl), InWorklist(inwl) {}
353
354  void RemoveFromWorklist(SDNode *N) {
355    if (!InWorklist.erase(N)) return;
356
357    SmallVector<SDNode*, 128>::iterator I =
358    std::find(Worklist.begin(), Worklist.end(), N);
359    assert(I != Worklist.end() && "Not in worklist");
360
361    *I = Worklist.back();
362    Worklist.pop_back();
363  }
364
365  virtual void NodeDeleted(SDNode *N, SDNode *E) {
366    RemoveFromWorklist(N);
367  }
368
369  virtual void NodeUpdated(SDNode *N) {
370    // Ignore updates.
371  }
372};
373}
374
375void SelectionDAGISel::ComputeLiveOutVRegInfo() {
376  SmallPtrSet<SDNode*, 128> VisitedNodes;
377  SmallVector<SDNode*, 128> Worklist;
378
379  Worklist.push_back(CurDAG->getRoot().getNode());
380
381  APInt Mask;
382  APInt KnownZero;
383  APInt KnownOne;
384
385  do {
386    SDNode *N = Worklist.pop_back_val();
387
388    // If we've already seen this node, ignore it.
389    if (!VisitedNodes.insert(N))
390      continue;
391
392    // Otherwise, add all chain operands to the worklist.
393    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
394      if (N->getOperand(i).getValueType() == MVT::Other)
395        Worklist.push_back(N->getOperand(i).getNode());
396
397    // If this is a CopyToReg with a vreg dest, process it.
398    if (N->getOpcode() != ISD::CopyToReg)
399      continue;
400
401    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
402    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
403      continue;
404
405    // Ignore non-scalar or non-integer values.
406    SDValue Src = N->getOperand(2);
407    EVT SrcVT = Src.getValueType();
408    if (!SrcVT.isInteger() || SrcVT.isVector())
409      continue;
410
411    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
412    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
413    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
414
415    // Only install this information if it tells us something.
416    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
417      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
418      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
419        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
420      FunctionLoweringInfo::LiveOutInfo &LOI =
421        FuncInfo->LiveOutRegInfo[DestReg];
422      LOI.NumSignBits = NumSignBits;
423      LOI.KnownOne = KnownOne;
424      LOI.KnownZero = KnownZero;
425    }
426  } while (!Worklist.empty());
427}
428
429MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
430  std::string GroupName;
431  if (TimePassesIsEnabled)
432    GroupName = "Instruction Selection and Scheduling";
433  std::string BlockName;
434  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
435      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
436      ViewSUnitDAGs)
437    BlockName = MF->getFunction()->getNameStr() + ":" +
438                BB->getBasicBlock()->getNameStr();
439
440  DEBUG(dbgs() << "Initial selection DAG:\n"; CurDAG->dump());
441
442  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
443
444  // Run the DAG combiner in pre-legalize mode.
445  {
446    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
447    CurDAG->Combine(Unrestricted, *AA, OptLevel);
448  }
449
450  DEBUG(dbgs() << "Optimized lowered selection DAG:\n"; CurDAG->dump());
451
452  // Second step, hack on the DAG until it only uses operations and types that
453  // the target supports.
454  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
455                                               BlockName);
456
457  bool Changed;
458  {
459    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
460    Changed = CurDAG->LegalizeTypes();
461  }
462
463  DEBUG(dbgs() << "Type-legalized selection DAG:\n"; CurDAG->dump());
464
465  if (Changed) {
466    if (ViewDAGCombineLT)
467      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
468
469    // Run the DAG combiner in post-type-legalize mode.
470    {
471      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
472                         TimePassesIsEnabled);
473      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
474    }
475
476    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n";
477          CurDAG->dump());
478  }
479
480  {
481    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
482    Changed = CurDAG->LegalizeVectors();
483  }
484
485  if (Changed) {
486    {
487      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
488      CurDAG->LegalizeTypes();
489    }
490
491    if (ViewDAGCombineLT)
492      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
493
494    // Run the DAG combiner in post-type-legalize mode.
495    {
496      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
497                         TimePassesIsEnabled);
498      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
499    }
500
501    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n";
502          CurDAG->dump());
503  }
504
505  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
506
507  {
508    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
509    CurDAG->Legalize(OptLevel);
510  }
511
512  DEBUG(dbgs() << "Legalized selection DAG:\n"; CurDAG->dump());
513
514  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
515
516  // Run the DAG combiner in post-legalize mode.
517  {
518    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
519    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
520  }
521
522  DEBUG(dbgs() << "Optimized legalized selection DAG:\n"; CurDAG->dump());
523
524  if (OptLevel != CodeGenOpt::None)
525    ComputeLiveOutVRegInfo();
526
527  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
528
529  // Third, instruction select all of the operations to machine code, adding the
530  // code to the MachineBasicBlock.
531  {
532    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
533    DoInstructionSelection();
534  }
535
536  DEBUG(dbgs() << "Selected selection DAG:\n"; CurDAG->dump());
537
538  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
539
540  // Schedule machine code.
541  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
542  {
543    NamedRegionTimer T("Instruction Scheduling", GroupName,
544                       TimePassesIsEnabled);
545    Scheduler->Run(CurDAG, BB, BB->end());
546  }
547
548  if (ViewSUnitDAGs) Scheduler->viewGraph();
549
550  // Emit machine code to BB.  This can change 'BB' to the last block being
551  // inserted into.
552  {
553    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
554    BB = Scheduler->EmitSchedule();
555  }
556
557  // Free the scheduler state.
558  {
559    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
560                       TimePassesIsEnabled);
561    delete Scheduler;
562  }
563
564  // Free the SelectionDAG state, now that we're finished with it.
565  CurDAG->clear();
566
567  return BB;
568}
569
570void SelectionDAGISel::DoInstructionSelection() {
571  DEBUG(errs() << "===== Instruction selection begins:\n");
572
573  PreprocessISelDAG();
574
575  // Select target instructions for the DAG.
576  {
577    // Number all nodes with a topological order and set DAGSize.
578    DAGSize = CurDAG->AssignTopologicalOrder();
579
580    // Create a dummy node (which is not added to allnodes), that adds
581    // a reference to the root node, preventing it from being deleted,
582    // and tracking any changes of the root.
583    HandleSDNode Dummy(CurDAG->getRoot());
584    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
585    ++ISelPosition;
586
587    // The AllNodes list is now topological-sorted. Visit the
588    // nodes by starting at the end of the list (the root of the
589    // graph) and preceding back toward the beginning (the entry
590    // node).
591    while (ISelPosition != CurDAG->allnodes_begin()) {
592      SDNode *Node = --ISelPosition;
593      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
594      // but there are currently some corner cases that it misses. Also, this
595      // makes it theoretically possible to disable the DAGCombiner.
596      if (Node->use_empty())
597        continue;
598
599      SDNode *ResNode = Select(Node);
600
601      // FIXME: This is pretty gross.  'Select' should be changed to not return
602      // anything at all and this code should be nuked with a tactical strike.
603
604      // If node should not be replaced, continue with the next one.
605      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
606        continue;
607      // Replace node.
608      if (ResNode)
609        ReplaceUses(Node, ResNode);
610
611      // If after the replacement this node is not used any more,
612      // remove this dead node.
613      if (Node->use_empty()) { // Don't delete EntryToken, etc.
614        ISelUpdater ISU(ISelPosition);
615        CurDAG->RemoveDeadNode(Node, &ISU);
616      }
617    }
618
619    CurDAG->setRoot(Dummy.getValue());
620  }
621
622  DEBUG(errs() << "===== Instruction selection ends:\n");
623
624  PostprocessISelDAG();
625}
626
627/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
628/// do other setup for EH landing-pad blocks.
629void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
630  // Add a label to mark the beginning of the landing pad.  Deletion of the
631  // landing pad can thus be detected via the MachineModuleInfo.
632  MCSymbol *Label = MF->getMMI().addLandingPad(BB);
633
634  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
635  BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
636
637  // Mark exception register as live in.
638  unsigned Reg = TLI.getExceptionAddressRegister();
639  if (Reg) BB->addLiveIn(Reg);
640
641  // Mark exception selector register as live in.
642  Reg = TLI.getExceptionSelectorRegister();
643  if (Reg) BB->addLiveIn(Reg);
644
645  // FIXME: Hack around an exception handling flaw (PR1508): the personality
646  // function and list of typeids logically belong to the invoke (or, if you
647  // like, the basic block containing the invoke), and need to be associated
648  // with it in the dwarf exception handling tables.  Currently however the
649  // information is provided by an intrinsic (eh.selector) that can be moved
650  // to unexpected places by the optimizers: if the unwind edge is critical,
651  // then breaking it can result in the intrinsics being in the successor of
652  // the landing pad, not the landing pad itself.  This results
653  // in exceptions not being caught because no typeids are associated with
654  // the invoke.  This may not be the only way things can go wrong, but it
655  // is the only way we try to work around for the moment.
656  const BasicBlock *LLVMBB = BB->getBasicBlock();
657  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
658
659  if (Br && Br->isUnconditional()) { // Critical edge?
660    BasicBlock::const_iterator I, E;
661    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
662      if (isa<EHSelectorInst>(I))
663        break;
664
665    if (I == E)
666      // No catch info found - try to extract some from the successor.
667      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
668  }
669}
670
671void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
672  // Initialize the Fast-ISel state, if needed.
673  FastISel *FastIS = 0;
674  if (EnableFastISel)
675    FastIS = TLI.createFastISel(*MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
676                                FuncInfo->StaticAllocaMap,
677                                FuncInfo->PHINodesToUpdate
678#ifndef NDEBUG
679                                , FuncInfo->CatchInfoLost
680#endif
681                                );
682
683  // Iterate over all basic blocks in the function.
684  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
685    const BasicBlock *LLVMBB = &*I;
686    MachineBasicBlock *BB = FuncInfo->MBBMap[LLVMBB];
687
688    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
689    BasicBlock::const_iterator const End = LLVMBB->end();
690    BasicBlock::const_iterator BI = Begin;
691
692    // Lower any arguments needed in this block if this is the entry block.
693    if (LLVMBB == &Fn.getEntryBlock())
694      LowerArguments(LLVMBB);
695
696    // Setup an EH landing-pad block.
697    if (BB->isLandingPad())
698      PrepareEHLandingPad(BB);
699
700    // Before doing SelectionDAG ISel, see if FastISel has been requested.
701    if (FastIS) {
702      // Emit code for any incoming arguments. This must happen before
703      // beginning FastISel on the entry block.
704      if (LLVMBB == &Fn.getEntryBlock()) {
705        CurDAG->setRoot(SDB->getControlRoot());
706        SDB->clear();
707        BB = CodeGenAndEmitDAG(BB);
708      }
709      FastIS->startNewBlock(BB);
710      // Do FastISel on as many instructions as possible.
711      for (; BI != End; ++BI) {
712        // Defer instructions with no side effects; they'll be emitted
713        // on-demand later.
714        if (BI->isSafeToSpeculativelyExecute() &&
715            !FuncInfo->isExportedInst(BI))
716          continue;
717
718        // Try to select the instruction with FastISel.
719        if (FastIS->SelectInstruction(BI))
720          continue;
721
722        // Then handle certain instructions as single-LLVM-Instruction blocks.
723        if (isa<CallInst>(BI)) {
724          ++NumFastIselFailures;
725          if (EnableFastISelVerbose || EnableFastISelAbort) {
726            dbgs() << "FastISel missed call: ";
727            BI->dump();
728          }
729
730          if (!BI->getType()->isVoidTy() && !BI->use_empty()) {
731            unsigned &R = FuncInfo->ValueMap[BI];
732            if (!R)
733              R = FuncInfo->CreateReg(BI->getType());
734          }
735
736          bool HadTailCall = false;
737          BB = SelectBasicBlock(BB, LLVMBB, BI, llvm::next(BI), HadTailCall);
738
739          // If the call was emitted as a tail call, we're done with the block.
740          if (HadTailCall) {
741            BI = End;
742            break;
743          }
744
745          // If the instruction was codegen'd with multiple blocks,
746          // inform the FastISel object where to resume inserting.
747          FastIS->setCurrentBlock(BB);
748          continue;
749        }
750
751        // Otherwise, give up on FastISel for the rest of the block.
752        // For now, be a little lenient about non-branch terminators.
753        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
754          ++NumFastIselFailures;
755          if (EnableFastISelVerbose || EnableFastISelAbort) {
756            dbgs() << "FastISel miss: ";
757            BI->dump();
758          }
759          if (EnableFastISelAbort)
760            // The "fast" selector couldn't handle something and bailed.
761            // For the purpose of debugging, just abort.
762            llvm_unreachable("FastISel didn't select the entire block");
763        }
764        break;
765      }
766    }
767
768    // Run SelectionDAG instruction selection on the remainder of the block
769    // not handled by FastISel. If FastISel is not run, this is the entire
770    // block.
771    if (BI != End) {
772      bool HadTailCall;
773      BB = SelectBasicBlock(BB, LLVMBB, BI, End, HadTailCall);
774    }
775
776    FinishBasicBlock(BB);
777    FuncInfo->PHINodesToUpdate.clear();
778  }
779
780  delete FastIS;
781}
782
783void
784SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
785
786  DEBUG(dbgs() << "Total amount of phi nodes to update: "
787               << FuncInfo->PHINodesToUpdate.size() << "\n";
788        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
789          dbgs() << "Node " << i << " : ("
790                 << FuncInfo->PHINodesToUpdate[i].first
791                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
792
793  // Next, now that we know what the last MBB the LLVM BB expanded is, update
794  // PHI nodes in successors.
795  if (SDB->SwitchCases.empty() &&
796      SDB->JTCases.empty() &&
797      SDB->BitTestCases.empty()) {
798    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
799      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
800      assert(PHI->isPHI() &&
801             "This is not a machine PHI node that we are updating!");
802      if (!BB->isSuccessor(PHI->getParent()))
803        continue;
804      PHI->addOperand(
805        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
806      PHI->addOperand(MachineOperand::CreateMBB(BB));
807    }
808    return;
809  }
810
811  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
812    // Lower header first, if it wasn't already lowered
813    if (!SDB->BitTestCases[i].Emitted) {
814      // Set the current basic block to the mbb we wish to insert the code into
815      BB = SDB->BitTestCases[i].Parent;
816      // Emit the code
817      SDB->visitBitTestHeader(SDB->BitTestCases[i], BB);
818      CurDAG->setRoot(SDB->getRoot());
819      SDB->clear();
820      BB = CodeGenAndEmitDAG(BB);
821    }
822
823    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
824      // Set the current basic block to the mbb we wish to insert the code into
825      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
826      // Emit the code
827      if (j+1 != ej)
828        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
829                              SDB->BitTestCases[i].Reg,
830                              SDB->BitTestCases[i].Cases[j],
831                              BB);
832      else
833        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
834                              SDB->BitTestCases[i].Reg,
835                              SDB->BitTestCases[i].Cases[j],
836                              BB);
837
838
839      CurDAG->setRoot(SDB->getRoot());
840      SDB->clear();
841      BB = CodeGenAndEmitDAG(BB);
842    }
843
844    // Update PHI Nodes
845    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
846         pi != pe; ++pi) {
847      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
848      MachineBasicBlock *PHIBB = PHI->getParent();
849      assert(PHI->isPHI() &&
850             "This is not a machine PHI node that we are updating!");
851      // This is "default" BB. We have two jumps to it. From "header" BB and
852      // from last "case" BB.
853      if (PHIBB == SDB->BitTestCases[i].Default) {
854        PHI->addOperand(MachineOperand::
855                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
856                                  false));
857        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
858        PHI->addOperand(MachineOperand::
859                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
860                                  false));
861        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
862                                                  back().ThisBB));
863      }
864      // One of "cases" BB.
865      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
866           j != ej; ++j) {
867        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
868        if (cBB->isSuccessor(PHIBB)) {
869          PHI->addOperand(MachineOperand::
870                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
871                                    false));
872          PHI->addOperand(MachineOperand::CreateMBB(cBB));
873        }
874      }
875    }
876  }
877  SDB->BitTestCases.clear();
878
879  // If the JumpTable record is filled in, then we need to emit a jump table.
880  // Updating the PHI nodes is tricky in this case, since we need to determine
881  // whether the PHI is a successor of the range check MBB or the jump table MBB
882  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
883    // Lower header first, if it wasn't already lowered
884    if (!SDB->JTCases[i].first.Emitted) {
885      // Set the current basic block to the mbb we wish to insert the code into
886      BB = SDB->JTCases[i].first.HeaderBB;
887      // Emit the code
888      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
889                                BB);
890      CurDAG->setRoot(SDB->getRoot());
891      SDB->clear();
892      BB = CodeGenAndEmitDAG(BB);
893    }
894
895    // Set the current basic block to the mbb we wish to insert the code into
896    BB = SDB->JTCases[i].second.MBB;
897    // Emit the code
898    SDB->visitJumpTable(SDB->JTCases[i].second);
899    CurDAG->setRoot(SDB->getRoot());
900    SDB->clear();
901    BB = CodeGenAndEmitDAG(BB);
902
903    // Update PHI Nodes
904    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
905         pi != pe; ++pi) {
906      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
907      MachineBasicBlock *PHIBB = PHI->getParent();
908      assert(PHI->isPHI() &&
909             "This is not a machine PHI node that we are updating!");
910      // "default" BB. We can go there only from header BB.
911      if (PHIBB == SDB->JTCases[i].second.Default) {
912        PHI->addOperand
913          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
914                                     false));
915        PHI->addOperand
916          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
917      }
918      // JT BB. Just iterate over successors here
919      if (BB->isSuccessor(PHIBB)) {
920        PHI->addOperand
921          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
922                                     false));
923        PHI->addOperand(MachineOperand::CreateMBB(BB));
924      }
925    }
926  }
927  SDB->JTCases.clear();
928
929  // If the switch block involved a branch to one of the actual successors, we
930  // need to update PHI nodes in that block.
931  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
932    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
933    assert(PHI->isPHI() &&
934           "This is not a machine PHI node that we are updating!");
935    if (BB->isSuccessor(PHI->getParent())) {
936      PHI->addOperand(
937        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
938      PHI->addOperand(MachineOperand::CreateMBB(BB));
939    }
940  }
941
942  // If we generated any switch lowering information, build and codegen any
943  // additional DAGs necessary.
944  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
945    // Set the current basic block to the mbb we wish to insert the code into
946    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
947
948    // Determine the unique successors.
949    SmallVector<MachineBasicBlock *, 2> Succs;
950    Succs.push_back(SDB->SwitchCases[i].TrueBB);
951    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
952      Succs.push_back(SDB->SwitchCases[i].FalseBB);
953
954    // Emit the code. Note that this could result in ThisBB being split, so
955    // we need to check for updates.
956    SDB->visitSwitchCase(SDB->SwitchCases[i], BB);
957    CurDAG->setRoot(SDB->getRoot());
958    SDB->clear();
959    ThisBB = CodeGenAndEmitDAG(BB);
960
961    // Handle any PHI nodes in successors of this chunk, as if we were coming
962    // from the original BB before switch expansion.  Note that PHI nodes can
963    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
964    // handle them the right number of times.
965    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
966      BB = Succs[i];
967      // BB may have been removed from the CFG if a branch was constant folded.
968      if (ThisBB->isSuccessor(BB)) {
969        for (MachineBasicBlock::iterator Phi = BB->begin();
970             Phi != BB->end() && Phi->isPHI();
971             ++Phi) {
972          // This value for this PHI node is recorded in PHINodesToUpdate.
973          for (unsigned pn = 0; ; ++pn) {
974            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
975                   "Didn't find PHI entry!");
976            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
977              Phi->addOperand(MachineOperand::
978                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
979                                        false));
980              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
981              break;
982            }
983          }
984        }
985      }
986    }
987  }
988  SDB->SwitchCases.clear();
989}
990
991
992/// Create the scheduler. If a specific scheduler was specified
993/// via the SchedulerRegistry, use it, otherwise select the
994/// one preferred by the target.
995///
996ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
997  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
998
999  if (!Ctor) {
1000    Ctor = ISHeuristic;
1001    RegisterScheduler::setDefault(Ctor);
1002  }
1003
1004  return Ctor(this, OptLevel);
1005}
1006
1007ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1008  return new ScheduleHazardRecognizer();
1009}
1010
1011//===----------------------------------------------------------------------===//
1012// Helper functions used by the generated instruction selector.
1013//===----------------------------------------------------------------------===//
1014// Calls to these methods are generated by tblgen.
1015
1016/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1017/// the dag combiner simplified the 255, we still want to match.  RHS is the
1018/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1019/// specified in the .td file (e.g. 255).
1020bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1021                                    int64_t DesiredMaskS) const {
1022  const APInt &ActualMask = RHS->getAPIntValue();
1023  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1024
1025  // If the actual mask exactly matches, success!
1026  if (ActualMask == DesiredMask)
1027    return true;
1028
1029  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1030  if (ActualMask.intersects(~DesiredMask))
1031    return false;
1032
1033  // Otherwise, the DAG Combiner may have proven that the value coming in is
1034  // either already zero or is not demanded.  Check for known zero input bits.
1035  APInt NeededMask = DesiredMask & ~ActualMask;
1036  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1037    return true;
1038
1039  // TODO: check to see if missing bits are just not demanded.
1040
1041  // Otherwise, this pattern doesn't match.
1042  return false;
1043}
1044
1045/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1046/// the dag combiner simplified the 255, we still want to match.  RHS is the
1047/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1048/// specified in the .td file (e.g. 255).
1049bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1050                                   int64_t DesiredMaskS) const {
1051  const APInt &ActualMask = RHS->getAPIntValue();
1052  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1053
1054  // If the actual mask exactly matches, success!
1055  if (ActualMask == DesiredMask)
1056    return true;
1057
1058  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1059  if (ActualMask.intersects(~DesiredMask))
1060    return false;
1061
1062  // Otherwise, the DAG Combiner may have proven that the value coming in is
1063  // either already zero or is not demanded.  Check for known zero input bits.
1064  APInt NeededMask = DesiredMask & ~ActualMask;
1065
1066  APInt KnownZero, KnownOne;
1067  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1068
1069  // If all the missing bits in the or are already known to be set, match!
1070  if ((NeededMask & KnownOne) == NeededMask)
1071    return true;
1072
1073  // TODO: check to see if missing bits are just not demanded.
1074
1075  // Otherwise, this pattern doesn't match.
1076  return false;
1077}
1078
1079
1080/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1081/// by tblgen.  Others should not call it.
1082void SelectionDAGISel::
1083SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1084  std::vector<SDValue> InOps;
1085  std::swap(InOps, Ops);
1086
1087  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1088  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1089  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1090
1091  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1092  if (InOps[e-1].getValueType() == MVT::Flag)
1093    --e;  // Don't process a flag operand if it is here.
1094
1095  while (i != e) {
1096    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1097    if (!InlineAsm::isMemKind(Flags)) {
1098      // Just skip over this operand, copying the operands verbatim.
1099      Ops.insert(Ops.end(), InOps.begin()+i,
1100                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1101      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1102    } else {
1103      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1104             "Memory operand with multiple values?");
1105      // Otherwise, this is a memory operand.  Ask the target to select it.
1106      std::vector<SDValue> SelOps;
1107      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1108        report_fatal_error("Could not match memory address.  Inline asm"
1109                           " failure!");
1110
1111      // Add this to the output node.
1112      unsigned NewFlags =
1113        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1114      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1115      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1116      i += 2;
1117    }
1118  }
1119
1120  // Add the flag input back if present.
1121  if (e != InOps.size())
1122    Ops.push_back(InOps.back());
1123}
1124
1125/// findFlagUse - Return use of EVT::Flag value produced by the specified
1126/// SDNode.
1127///
1128static SDNode *findFlagUse(SDNode *N) {
1129  unsigned FlagResNo = N->getNumValues()-1;
1130  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1131    SDUse &Use = I.getUse();
1132    if (Use.getResNo() == FlagResNo)
1133      return Use.getUser();
1134  }
1135  return NULL;
1136}
1137
1138/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1139/// This function recursively traverses up the operand chain, ignoring
1140/// certain nodes.
1141static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1142                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1143                          bool IgnoreChains) {
1144  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1145  // greater than all of its (recursive) operands.  If we scan to a point where
1146  // 'use' is smaller than the node we're scanning for, then we know we will
1147  // never find it.
1148  //
1149  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1150  // happen because we scan down to newly selected nodes in the case of flag
1151  // uses.
1152  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1153    return false;
1154
1155  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1156  // won't fail if we scan it again.
1157  if (!Visited.insert(Use))
1158    return false;
1159
1160  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1161    // Ignore chain uses, they are validated by HandleMergeInputChains.
1162    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1163      continue;
1164
1165    SDNode *N = Use->getOperand(i).getNode();
1166    if (N == Def) {
1167      if (Use == ImmedUse || Use == Root)
1168        continue;  // We are not looking for immediate use.
1169      assert(N != Root);
1170      return true;
1171    }
1172
1173    // Traverse up the operand chain.
1174    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1175      return true;
1176  }
1177  return false;
1178}
1179
1180/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1181/// operand node N of U during instruction selection that starts at Root.
1182bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1183                                          SDNode *Root) const {
1184  if (OptLevel == CodeGenOpt::None) return false;
1185  return N.hasOneUse();
1186}
1187
1188/// IsLegalToFold - Returns true if the specific operand node N of
1189/// U can be folded during instruction selection that starts at Root.
1190bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1191                                     CodeGenOpt::Level OptLevel,
1192                                     bool IgnoreChains) {
1193  if (OptLevel == CodeGenOpt::None) return false;
1194
1195  // If Root use can somehow reach N through a path that that doesn't contain
1196  // U then folding N would create a cycle. e.g. In the following
1197  // diagram, Root can reach N through X. If N is folded into into Root, then
1198  // X is both a predecessor and a successor of U.
1199  //
1200  //          [N*]           //
1201  //         ^   ^           //
1202  //        /     \          //
1203  //      [U*]    [X]?       //
1204  //        ^     ^          //
1205  //         \   /           //
1206  //          \ /            //
1207  //         [Root*]         //
1208  //
1209  // * indicates nodes to be folded together.
1210  //
1211  // If Root produces a flag, then it gets (even more) interesting. Since it
1212  // will be "glued" together with its flag use in the scheduler, we need to
1213  // check if it might reach N.
1214  //
1215  //          [N*]           //
1216  //         ^   ^           //
1217  //        /     \          //
1218  //      [U*]    [X]?       //
1219  //        ^       ^        //
1220  //         \       \       //
1221  //          \      |       //
1222  //         [Root*] |       //
1223  //          ^      |       //
1224  //          f      |       //
1225  //          |      /       //
1226  //         [Y]    /        //
1227  //           ^   /         //
1228  //           f  /          //
1229  //           | /           //
1230  //          [FU]           //
1231  //
1232  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1233  // (call it Fold), then X is a predecessor of FU and a successor of
1234  // Fold. But since Fold and FU are flagged together, this will create
1235  // a cycle in the scheduling graph.
1236
1237  // If the node has flags, walk down the graph to the "lowest" node in the
1238  // flagged set.
1239  EVT VT = Root->getValueType(Root->getNumValues()-1);
1240  while (VT == MVT::Flag) {
1241    SDNode *FU = findFlagUse(Root);
1242    if (FU == NULL)
1243      break;
1244    Root = FU;
1245    VT = Root->getValueType(Root->getNumValues()-1);
1246
1247    // If our query node has a flag result with a use, we've walked up it.  If
1248    // the user (which has already been selected) has a chain or indirectly uses
1249    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1250    // this, we cannot ignore chains in this predicate.
1251    IgnoreChains = false;
1252  }
1253
1254
1255  SmallPtrSet<SDNode*, 16> Visited;
1256  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1257}
1258
1259SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1260  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1261  SelectInlineAsmMemoryOperands(Ops);
1262
1263  std::vector<EVT> VTs;
1264  VTs.push_back(MVT::Other);
1265  VTs.push_back(MVT::Flag);
1266  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1267                                VTs, &Ops[0], Ops.size());
1268  New->setNodeId(-1);
1269  return New.getNode();
1270}
1271
1272SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1273  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1274}
1275
1276/// GetVBR - decode a vbr encoding whose top bit is set.
1277ALWAYS_INLINE static uint64_t
1278GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1279  assert(Val >= 128 && "Not a VBR");
1280  Val &= 127;  // Remove first vbr bit.
1281
1282  unsigned Shift = 7;
1283  uint64_t NextBits;
1284  do {
1285    NextBits = MatcherTable[Idx++];
1286    Val |= (NextBits&127) << Shift;
1287    Shift += 7;
1288  } while (NextBits & 128);
1289
1290  return Val;
1291}
1292
1293
1294/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1295/// interior flag and chain results to use the new flag and chain results.
1296void SelectionDAGISel::
1297UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1298                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1299                     SDValue InputFlag,
1300                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1301                     bool isMorphNodeTo) {
1302  SmallVector<SDNode*, 4> NowDeadNodes;
1303
1304  ISelUpdater ISU(ISelPosition);
1305
1306  // Now that all the normal results are replaced, we replace the chain and
1307  // flag results if present.
1308  if (!ChainNodesMatched.empty()) {
1309    assert(InputChain.getNode() != 0 &&
1310           "Matched input chains but didn't produce a chain");
1311    // Loop over all of the nodes we matched that produced a chain result.
1312    // Replace all the chain results with the final chain we ended up with.
1313    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1314      SDNode *ChainNode = ChainNodesMatched[i];
1315
1316      // If this node was already deleted, don't look at it.
1317      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1318        continue;
1319
1320      // Don't replace the results of the root node if we're doing a
1321      // MorphNodeTo.
1322      if (ChainNode == NodeToMatch && isMorphNodeTo)
1323        continue;
1324
1325      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1326      if (ChainVal.getValueType() == MVT::Flag)
1327        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1328      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1329      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1330
1331      // If the node became dead and we haven't already seen it, delete it.
1332      if (ChainNode->use_empty() &&
1333          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1334        NowDeadNodes.push_back(ChainNode);
1335    }
1336  }
1337
1338  // If the result produces a flag, update any flag results in the matched
1339  // pattern with the flag result.
1340  if (InputFlag.getNode() != 0) {
1341    // Handle any interior nodes explicitly marked.
1342    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1343      SDNode *FRN = FlagResultNodesMatched[i];
1344
1345      // If this node was already deleted, don't look at it.
1346      if (FRN->getOpcode() == ISD::DELETED_NODE)
1347        continue;
1348
1349      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1350             "Doesn't have a flag result");
1351      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1352                                        InputFlag, &ISU);
1353
1354      // If the node became dead and we haven't already seen it, delete it.
1355      if (FRN->use_empty() &&
1356          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1357        NowDeadNodes.push_back(FRN);
1358    }
1359  }
1360
1361  if (!NowDeadNodes.empty())
1362    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1363
1364  DEBUG(errs() << "ISEL: Match complete!\n");
1365}
1366
1367enum ChainResult {
1368  CR_Simple,
1369  CR_InducesCycle,
1370  CR_LeadsToInteriorNode
1371};
1372
1373/// WalkChainUsers - Walk down the users of the specified chained node that is
1374/// part of the pattern we're matching, looking at all of the users we find.
1375/// This determines whether something is an interior node, whether we have a
1376/// non-pattern node in between two pattern nodes (which prevent folding because
1377/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1378/// between pattern nodes (in which case the TF becomes part of the pattern).
1379///
1380/// The walk we do here is guaranteed to be small because we quickly get down to
1381/// already selected nodes "below" us.
1382static ChainResult
1383WalkChainUsers(SDNode *ChainedNode,
1384               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1385               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1386  ChainResult Result = CR_Simple;
1387
1388  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1389         E = ChainedNode->use_end(); UI != E; ++UI) {
1390    // Make sure the use is of the chain, not some other value we produce.
1391    if (UI.getUse().getValueType() != MVT::Other) continue;
1392
1393    SDNode *User = *UI;
1394
1395    // If we see an already-selected machine node, then we've gone beyond the
1396    // pattern that we're selecting down into the already selected chunk of the
1397    // DAG.
1398    if (User->isMachineOpcode() ||
1399        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1400      continue;
1401
1402    if (User->getOpcode() == ISD::CopyToReg ||
1403        User->getOpcode() == ISD::CopyFromReg ||
1404        User->getOpcode() == ISD::INLINEASM ||
1405        User->getOpcode() == ISD::EH_LABEL) {
1406      // If their node ID got reset to -1 then they've already been selected.
1407      // Treat them like a MachineOpcode.
1408      if (User->getNodeId() == -1)
1409        continue;
1410    }
1411
1412    // If we have a TokenFactor, we handle it specially.
1413    if (User->getOpcode() != ISD::TokenFactor) {
1414      // If the node isn't a token factor and isn't part of our pattern, then it
1415      // must be a random chained node in between two nodes we're selecting.
1416      // This happens when we have something like:
1417      //   x = load ptr
1418      //   call
1419      //   y = x+4
1420      //   store y -> ptr
1421      // Because we structurally match the load/store as a read/modify/write,
1422      // but the call is chained between them.  We cannot fold in this case
1423      // because it would induce a cycle in the graph.
1424      if (!std::count(ChainedNodesInPattern.begin(),
1425                      ChainedNodesInPattern.end(), User))
1426        return CR_InducesCycle;
1427
1428      // Otherwise we found a node that is part of our pattern.  For example in:
1429      //   x = load ptr
1430      //   y = x+4
1431      //   store y -> ptr
1432      // This would happen when we're scanning down from the load and see the
1433      // store as a user.  Record that there is a use of ChainedNode that is
1434      // part of the pattern and keep scanning uses.
1435      Result = CR_LeadsToInteriorNode;
1436      InteriorChainedNodes.push_back(User);
1437      continue;
1438    }
1439
1440    // If we found a TokenFactor, there are two cases to consider: first if the
1441    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1442    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1443    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1444    //     [Load chain]
1445    //         ^
1446    //         |
1447    //       [Load]
1448    //       ^    ^
1449    //       |    \                    DAG's like cheese
1450    //      /       \                       do you?
1451    //     /         |
1452    // [TokenFactor] [Op]
1453    //     ^          ^
1454    //     |          |
1455    //      \        /
1456    //       \      /
1457    //       [Store]
1458    //
1459    // In this case, the TokenFactor becomes part of our match and we rewrite it
1460    // as a new TokenFactor.
1461    //
1462    // To distinguish these two cases, do a recursive walk down the uses.
1463    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1464    case CR_Simple:
1465      // If the uses of the TokenFactor are just already-selected nodes, ignore
1466      // it, it is "below" our pattern.
1467      continue;
1468    case CR_InducesCycle:
1469      // If the uses of the TokenFactor lead to nodes that are not part of our
1470      // pattern that are not selected, folding would turn this into a cycle,
1471      // bail out now.
1472      return CR_InducesCycle;
1473    case CR_LeadsToInteriorNode:
1474      break;  // Otherwise, keep processing.
1475    }
1476
1477    // Okay, we know we're in the interesting interior case.  The TokenFactor
1478    // is now going to be considered part of the pattern so that we rewrite its
1479    // uses (it may have uses that are not part of the pattern) with the
1480    // ultimate chain result of the generated code.  We will also add its chain
1481    // inputs as inputs to the ultimate TokenFactor we create.
1482    Result = CR_LeadsToInteriorNode;
1483    ChainedNodesInPattern.push_back(User);
1484    InteriorChainedNodes.push_back(User);
1485    continue;
1486  }
1487
1488  return Result;
1489}
1490
1491/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1492/// operation for when the pattern matched at least one node with a chains.  The
1493/// input vector contains a list of all of the chained nodes that we match.  We
1494/// must determine if this is a valid thing to cover (i.e. matching it won't
1495/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1496/// be used as the input node chain for the generated nodes.
1497static SDValue
1498HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1499                       SelectionDAG *CurDAG) {
1500  // Walk all of the chained nodes we've matched, recursively scanning down the
1501  // users of the chain result. This adds any TokenFactor nodes that are caught
1502  // in between chained nodes to the chained and interior nodes list.
1503  SmallVector<SDNode*, 3> InteriorChainedNodes;
1504  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1505    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1506                       InteriorChainedNodes) == CR_InducesCycle)
1507      return SDValue(); // Would induce a cycle.
1508  }
1509
1510  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1511  // that we are interested in.  Form our input TokenFactor node.
1512  SmallVector<SDValue, 3> InputChains;
1513  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1514    // Add the input chain of this node to the InputChains list (which will be
1515    // the operands of the generated TokenFactor) if it's not an interior node.
1516    SDNode *N = ChainNodesMatched[i];
1517    if (N->getOpcode() != ISD::TokenFactor) {
1518      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1519        continue;
1520
1521      // Otherwise, add the input chain.
1522      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1523      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1524      InputChains.push_back(InChain);
1525      continue;
1526    }
1527
1528    // If we have a token factor, we want to add all inputs of the token factor
1529    // that are not part of the pattern we're matching.
1530    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1531      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1532                      N->getOperand(op).getNode()))
1533        InputChains.push_back(N->getOperand(op));
1534    }
1535  }
1536
1537  SDValue Res;
1538  if (InputChains.size() == 1)
1539    return InputChains[0];
1540  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1541                         MVT::Other, &InputChains[0], InputChains.size());
1542}
1543
1544/// MorphNode - Handle morphing a node in place for the selector.
1545SDNode *SelectionDAGISel::
1546MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1547          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1548  // It is possible we're using MorphNodeTo to replace a node with no
1549  // normal results with one that has a normal result (or we could be
1550  // adding a chain) and the input could have flags and chains as well.
1551  // In this case we need to shift the operands down.
1552  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1553  // than the old isel though.
1554  int OldFlagResultNo = -1, OldChainResultNo = -1;
1555
1556  unsigned NTMNumResults = Node->getNumValues();
1557  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1558    OldFlagResultNo = NTMNumResults-1;
1559    if (NTMNumResults != 1 &&
1560        Node->getValueType(NTMNumResults-2) == MVT::Other)
1561      OldChainResultNo = NTMNumResults-2;
1562  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1563    OldChainResultNo = NTMNumResults-1;
1564
1565  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1566  // that this deletes operands of the old node that become dead.
1567  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1568
1569  // MorphNodeTo can operate in two ways: if an existing node with the
1570  // specified operands exists, it can just return it.  Otherwise, it
1571  // updates the node in place to have the requested operands.
1572  if (Res == Node) {
1573    // If we updated the node in place, reset the node ID.  To the isel,
1574    // this should be just like a newly allocated machine node.
1575    Res->setNodeId(-1);
1576  }
1577
1578  unsigned ResNumResults = Res->getNumValues();
1579  // Move the flag if needed.
1580  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1581      (unsigned)OldFlagResultNo != ResNumResults-1)
1582    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1583                                      SDValue(Res, ResNumResults-1));
1584
1585  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1586  --ResNumResults;
1587
1588  // Move the chain reference if needed.
1589  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1590      (unsigned)OldChainResultNo != ResNumResults-1)
1591    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1592                                      SDValue(Res, ResNumResults-1));
1593
1594  // Otherwise, no replacement happened because the node already exists. Replace
1595  // Uses of the old node with the new one.
1596  if (Res != Node)
1597    CurDAG->ReplaceAllUsesWith(Node, Res);
1598
1599  return Res;
1600}
1601
1602/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1603ALWAYS_INLINE static bool
1604CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1605          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1606  // Accept if it is exactly the same as a previously recorded node.
1607  unsigned RecNo = MatcherTable[MatcherIndex++];
1608  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1609  return N == RecordedNodes[RecNo];
1610}
1611
1612/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1613ALWAYS_INLINE static bool
1614CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1615                      SelectionDAGISel &SDISel) {
1616  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1617}
1618
1619/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1620ALWAYS_INLINE static bool
1621CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1622                   SelectionDAGISel &SDISel, SDNode *N) {
1623  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1624}
1625
1626ALWAYS_INLINE static bool
1627CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1628            SDNode *N) {
1629  uint16_t Opc = MatcherTable[MatcherIndex++];
1630  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1631  return N->getOpcode() == Opc;
1632}
1633
1634ALWAYS_INLINE static bool
1635CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1636          SDValue N, const TargetLowering &TLI) {
1637  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1638  if (N.getValueType() == VT) return true;
1639
1640  // Handle the case when VT is iPTR.
1641  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1642}
1643
1644ALWAYS_INLINE static bool
1645CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1646               SDValue N, const TargetLowering &TLI,
1647               unsigned ChildNo) {
1648  if (ChildNo >= N.getNumOperands())
1649    return false;  // Match fails if out of range child #.
1650  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1651}
1652
1653
1654ALWAYS_INLINE static bool
1655CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1656              SDValue N) {
1657  return cast<CondCodeSDNode>(N)->get() ==
1658      (ISD::CondCode)MatcherTable[MatcherIndex++];
1659}
1660
1661ALWAYS_INLINE static bool
1662CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1663               SDValue N, const TargetLowering &TLI) {
1664  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1665  if (cast<VTSDNode>(N)->getVT() == VT)
1666    return true;
1667
1668  // Handle the case when VT is iPTR.
1669  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1670}
1671
1672ALWAYS_INLINE static bool
1673CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1674             SDValue N) {
1675  int64_t Val = MatcherTable[MatcherIndex++];
1676  if (Val & 128)
1677    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1678
1679  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1680  return C != 0 && C->getSExtValue() == Val;
1681}
1682
1683ALWAYS_INLINE static bool
1684CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1685            SDValue N, SelectionDAGISel &SDISel) {
1686  int64_t Val = MatcherTable[MatcherIndex++];
1687  if (Val & 128)
1688    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1689
1690  if (N->getOpcode() != ISD::AND) return false;
1691
1692  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1693  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1694}
1695
1696ALWAYS_INLINE static bool
1697CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1698           SDValue N, SelectionDAGISel &SDISel) {
1699  int64_t Val = MatcherTable[MatcherIndex++];
1700  if (Val & 128)
1701    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1702
1703  if (N->getOpcode() != ISD::OR) return false;
1704
1705  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1706  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1707}
1708
1709/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1710/// scope, evaluate the current node.  If the current predicate is known to
1711/// fail, set Result=true and return anything.  If the current predicate is
1712/// known to pass, set Result=false and return the MatcherIndex to continue
1713/// with.  If the current predicate is unknown, set Result=false and return the
1714/// MatcherIndex to continue with.
1715static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1716                                       unsigned Index, SDValue N,
1717                                       bool &Result, SelectionDAGISel &SDISel,
1718                                       SmallVectorImpl<SDValue> &RecordedNodes){
1719  switch (Table[Index++]) {
1720  default:
1721    Result = false;
1722    return Index-1;  // Could not evaluate this predicate.
1723  case SelectionDAGISel::OPC_CheckSame:
1724    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1725    return Index;
1726  case SelectionDAGISel::OPC_CheckPatternPredicate:
1727    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1728    return Index;
1729  case SelectionDAGISel::OPC_CheckPredicate:
1730    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1731    return Index;
1732  case SelectionDAGISel::OPC_CheckOpcode:
1733    Result = !::CheckOpcode(Table, Index, N.getNode());
1734    return Index;
1735  case SelectionDAGISel::OPC_CheckType:
1736    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1737    return Index;
1738  case SelectionDAGISel::OPC_CheckChild0Type:
1739  case SelectionDAGISel::OPC_CheckChild1Type:
1740  case SelectionDAGISel::OPC_CheckChild2Type:
1741  case SelectionDAGISel::OPC_CheckChild3Type:
1742  case SelectionDAGISel::OPC_CheckChild4Type:
1743  case SelectionDAGISel::OPC_CheckChild5Type:
1744  case SelectionDAGISel::OPC_CheckChild6Type:
1745  case SelectionDAGISel::OPC_CheckChild7Type:
1746    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1747                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1748    return Index;
1749  case SelectionDAGISel::OPC_CheckCondCode:
1750    Result = !::CheckCondCode(Table, Index, N);
1751    return Index;
1752  case SelectionDAGISel::OPC_CheckValueType:
1753    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1754    return Index;
1755  case SelectionDAGISel::OPC_CheckInteger:
1756    Result = !::CheckInteger(Table, Index, N);
1757    return Index;
1758  case SelectionDAGISel::OPC_CheckAndImm:
1759    Result = !::CheckAndImm(Table, Index, N, SDISel);
1760    return Index;
1761  case SelectionDAGISel::OPC_CheckOrImm:
1762    Result = !::CheckOrImm(Table, Index, N, SDISel);
1763    return Index;
1764  }
1765}
1766
1767namespace {
1768
1769struct MatchScope {
1770  /// FailIndex - If this match fails, this is the index to continue with.
1771  unsigned FailIndex;
1772
1773  /// NodeStack - The node stack when the scope was formed.
1774  SmallVector<SDValue, 4> NodeStack;
1775
1776  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1777  unsigned NumRecordedNodes;
1778
1779  /// NumMatchedMemRefs - The number of matched memref entries.
1780  unsigned NumMatchedMemRefs;
1781
1782  /// InputChain/InputFlag - The current chain/flag
1783  SDValue InputChain, InputFlag;
1784
1785  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1786  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1787};
1788
1789}
1790
1791SDNode *SelectionDAGISel::
1792SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1793                 unsigned TableSize) {
1794  // FIXME: Should these even be selected?  Handle these cases in the caller?
1795  switch (NodeToMatch->getOpcode()) {
1796  default:
1797    break;
1798  case ISD::EntryToken:       // These nodes remain the same.
1799  case ISD::BasicBlock:
1800  case ISD::Register:
1801  //case ISD::VALUETYPE:
1802  //case ISD::CONDCODE:
1803  case ISD::HANDLENODE:
1804  case ISD::MDNODE_SDNODE:
1805  case ISD::TargetConstant:
1806  case ISD::TargetConstantFP:
1807  case ISD::TargetConstantPool:
1808  case ISD::TargetFrameIndex:
1809  case ISD::TargetExternalSymbol:
1810  case ISD::TargetBlockAddress:
1811  case ISD::TargetJumpTable:
1812  case ISD::TargetGlobalTLSAddress:
1813  case ISD::TargetGlobalAddress:
1814  case ISD::TokenFactor:
1815  case ISD::CopyFromReg:
1816  case ISD::CopyToReg:
1817  case ISD::EH_LABEL:
1818    NodeToMatch->setNodeId(-1); // Mark selected.
1819    return 0;
1820  case ISD::AssertSext:
1821  case ISD::AssertZext:
1822    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1823                                      NodeToMatch->getOperand(0));
1824    return 0;
1825  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1826  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1827  }
1828
1829  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1830
1831  // Set up the node stack with NodeToMatch as the only node on the stack.
1832  SmallVector<SDValue, 8> NodeStack;
1833  SDValue N = SDValue(NodeToMatch, 0);
1834  NodeStack.push_back(N);
1835
1836  // MatchScopes - Scopes used when matching, if a match failure happens, this
1837  // indicates where to continue checking.
1838  SmallVector<MatchScope, 8> MatchScopes;
1839
1840  // RecordedNodes - This is the set of nodes that have been recorded by the
1841  // state machine.
1842  SmallVector<SDValue, 8> RecordedNodes;
1843
1844  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1845  // pattern.
1846  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1847
1848  // These are the current input chain and flag for use when generating nodes.
1849  // Various Emit operations change these.  For example, emitting a copytoreg
1850  // uses and updates these.
1851  SDValue InputChain, InputFlag;
1852
1853  // ChainNodesMatched - If a pattern matches nodes that have input/output
1854  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1855  // which ones they are.  The result is captured into this list so that we can
1856  // update the chain results when the pattern is complete.
1857  SmallVector<SDNode*, 3> ChainNodesMatched;
1858  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1859
1860  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1861        NodeToMatch->dump(CurDAG);
1862        errs() << '\n');
1863
1864  // Determine where to start the interpreter.  Normally we start at opcode #0,
1865  // but if the state machine starts with an OPC_SwitchOpcode, then we
1866  // accelerate the first lookup (which is guaranteed to be hot) with the
1867  // OpcodeOffset table.
1868  unsigned MatcherIndex = 0;
1869
1870  if (!OpcodeOffset.empty()) {
1871    // Already computed the OpcodeOffset table, just index into it.
1872    if (N.getOpcode() < OpcodeOffset.size())
1873      MatcherIndex = OpcodeOffset[N.getOpcode()];
1874    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1875
1876  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1877    // Otherwise, the table isn't computed, but the state machine does start
1878    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1879    // is the first time we're selecting an instruction.
1880    unsigned Idx = 1;
1881    while (1) {
1882      // Get the size of this case.
1883      unsigned CaseSize = MatcherTable[Idx++];
1884      if (CaseSize & 128)
1885        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1886      if (CaseSize == 0) break;
1887
1888      // Get the opcode, add the index to the table.
1889      uint16_t Opc = MatcherTable[Idx++];
1890      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
1891      if (Opc >= OpcodeOffset.size())
1892        OpcodeOffset.resize((Opc+1)*2);
1893      OpcodeOffset[Opc] = Idx;
1894      Idx += CaseSize;
1895    }
1896
1897    // Okay, do the lookup for the first opcode.
1898    if (N.getOpcode() < OpcodeOffset.size())
1899      MatcherIndex = OpcodeOffset[N.getOpcode()];
1900  }
1901
1902  while (1) {
1903    assert(MatcherIndex < TableSize && "Invalid index");
1904#ifndef NDEBUG
1905    unsigned CurrentOpcodeIndex = MatcherIndex;
1906#endif
1907    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
1908    switch (Opcode) {
1909    case OPC_Scope: {
1910      // Okay, the semantics of this operation are that we should push a scope
1911      // then evaluate the first child.  However, pushing a scope only to have
1912      // the first check fail (which then pops it) is inefficient.  If we can
1913      // determine immediately that the first check (or first several) will
1914      // immediately fail, don't even bother pushing a scope for them.
1915      unsigned FailIndex;
1916
1917      while (1) {
1918        unsigned NumToSkip = MatcherTable[MatcherIndex++];
1919        if (NumToSkip & 128)
1920          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
1921        // Found the end of the scope with no match.
1922        if (NumToSkip == 0) {
1923          FailIndex = 0;
1924          break;
1925        }
1926
1927        FailIndex = MatcherIndex+NumToSkip;
1928
1929        unsigned MatcherIndexOfPredicate = MatcherIndex;
1930        (void)MatcherIndexOfPredicate; // silence warning.
1931
1932        // If we can't evaluate this predicate without pushing a scope (e.g. if
1933        // it is a 'MoveParent') or if the predicate succeeds on this node, we
1934        // push the scope and evaluate the full predicate chain.
1935        bool Result;
1936        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
1937                                              Result, *this, RecordedNodes);
1938        if (!Result)
1939          break;
1940
1941        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
1942                     << "index " << MatcherIndexOfPredicate
1943                     << ", continuing at " << FailIndex << "\n");
1944        ++NumDAGIselRetries;
1945
1946        // Otherwise, we know that this case of the Scope is guaranteed to fail,
1947        // move to the next case.
1948        MatcherIndex = FailIndex;
1949      }
1950
1951      // If the whole scope failed to match, bail.
1952      if (FailIndex == 0) break;
1953
1954      // Push a MatchScope which indicates where to go if the first child fails
1955      // to match.
1956      MatchScope NewEntry;
1957      NewEntry.FailIndex = FailIndex;
1958      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
1959      NewEntry.NumRecordedNodes = RecordedNodes.size();
1960      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
1961      NewEntry.InputChain = InputChain;
1962      NewEntry.InputFlag = InputFlag;
1963      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
1964      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
1965      MatchScopes.push_back(NewEntry);
1966      continue;
1967    }
1968    case OPC_RecordNode:
1969      // Remember this node, it may end up being an operand in the pattern.
1970      RecordedNodes.push_back(N);
1971      continue;
1972
1973    case OPC_RecordChild0: case OPC_RecordChild1:
1974    case OPC_RecordChild2: case OPC_RecordChild3:
1975    case OPC_RecordChild4: case OPC_RecordChild5:
1976    case OPC_RecordChild6: case OPC_RecordChild7: {
1977      unsigned ChildNo = Opcode-OPC_RecordChild0;
1978      if (ChildNo >= N.getNumOperands())
1979        break;  // Match fails if out of range child #.
1980
1981      RecordedNodes.push_back(N->getOperand(ChildNo));
1982      continue;
1983    }
1984    case OPC_RecordMemRef:
1985      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
1986      continue;
1987
1988    case OPC_CaptureFlagInput:
1989      // If the current node has an input flag, capture it in InputFlag.
1990      if (N->getNumOperands() != 0 &&
1991          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
1992        InputFlag = N->getOperand(N->getNumOperands()-1);
1993      continue;
1994
1995    case OPC_MoveChild: {
1996      unsigned ChildNo = MatcherTable[MatcherIndex++];
1997      if (ChildNo >= N.getNumOperands())
1998        break;  // Match fails if out of range child #.
1999      N = N.getOperand(ChildNo);
2000      NodeStack.push_back(N);
2001      continue;
2002    }
2003
2004    case OPC_MoveParent:
2005      // Pop the current node off the NodeStack.
2006      NodeStack.pop_back();
2007      assert(!NodeStack.empty() && "Node stack imbalance!");
2008      N = NodeStack.back();
2009      continue;
2010
2011    case OPC_CheckSame:
2012      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2013      continue;
2014    case OPC_CheckPatternPredicate:
2015      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2016      continue;
2017    case OPC_CheckPredicate:
2018      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2019                                N.getNode()))
2020        break;
2021      continue;
2022    case OPC_CheckComplexPat: {
2023      unsigned CPNum = MatcherTable[MatcherIndex++];
2024      unsigned RecNo = MatcherTable[MatcherIndex++];
2025      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2026      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2027                               RecordedNodes))
2028        break;
2029      continue;
2030    }
2031    case OPC_CheckOpcode:
2032      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2033      continue;
2034
2035    case OPC_CheckType:
2036      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2037      continue;
2038
2039    case OPC_SwitchOpcode: {
2040      unsigned CurNodeOpcode = N.getOpcode();
2041      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2042      unsigned CaseSize;
2043      while (1) {
2044        // Get the size of this case.
2045        CaseSize = MatcherTable[MatcherIndex++];
2046        if (CaseSize & 128)
2047          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2048        if (CaseSize == 0) break;
2049
2050        uint16_t Opc = MatcherTable[MatcherIndex++];
2051        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2052
2053        // If the opcode matches, then we will execute this case.
2054        if (CurNodeOpcode == Opc)
2055          break;
2056
2057        // Otherwise, skip over this case.
2058        MatcherIndex += CaseSize;
2059      }
2060
2061      // If no cases matched, bail out.
2062      if (CaseSize == 0) break;
2063
2064      // Otherwise, execute the case we found.
2065      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2066                   << " to " << MatcherIndex << "\n");
2067      continue;
2068    }
2069
2070    case OPC_SwitchType: {
2071      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2072      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2073      unsigned CaseSize;
2074      while (1) {
2075        // Get the size of this case.
2076        CaseSize = MatcherTable[MatcherIndex++];
2077        if (CaseSize & 128)
2078          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2079        if (CaseSize == 0) break;
2080
2081        MVT::SimpleValueType CaseVT =
2082          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2083        if (CaseVT == MVT::iPTR)
2084          CaseVT = TLI.getPointerTy().SimpleTy;
2085
2086        // If the VT matches, then we will execute this case.
2087        if (CurNodeVT == CaseVT)
2088          break;
2089
2090        // Otherwise, skip over this case.
2091        MatcherIndex += CaseSize;
2092      }
2093
2094      // If no cases matched, bail out.
2095      if (CaseSize == 0) break;
2096
2097      // Otherwise, execute the case we found.
2098      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2099                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2100      continue;
2101    }
2102    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2103    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2104    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2105    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2106      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2107                            Opcode-OPC_CheckChild0Type))
2108        break;
2109      continue;
2110    case OPC_CheckCondCode:
2111      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2112      continue;
2113    case OPC_CheckValueType:
2114      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2115      continue;
2116    case OPC_CheckInteger:
2117      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2118      continue;
2119    case OPC_CheckAndImm:
2120      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2121      continue;
2122    case OPC_CheckOrImm:
2123      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2124      continue;
2125
2126    case OPC_CheckFoldableChainNode: {
2127      assert(NodeStack.size() != 1 && "No parent node");
2128      // Verify that all intermediate nodes between the root and this one have
2129      // a single use.
2130      bool HasMultipleUses = false;
2131      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2132        if (!NodeStack[i].hasOneUse()) {
2133          HasMultipleUses = true;
2134          break;
2135        }
2136      if (HasMultipleUses) break;
2137
2138      // Check to see that the target thinks this is profitable to fold and that
2139      // we can fold it without inducing cycles in the graph.
2140      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2141                              NodeToMatch) ||
2142          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2143                         NodeToMatch, OptLevel,
2144                         true/*We validate our own chains*/))
2145        break;
2146
2147      continue;
2148    }
2149    case OPC_EmitInteger: {
2150      MVT::SimpleValueType VT =
2151        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2152      int64_t Val = MatcherTable[MatcherIndex++];
2153      if (Val & 128)
2154        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2155      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2156      continue;
2157    }
2158    case OPC_EmitRegister: {
2159      MVT::SimpleValueType VT =
2160        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2161      unsigned RegNo = MatcherTable[MatcherIndex++];
2162      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2163      continue;
2164    }
2165
2166    case OPC_EmitConvertToTarget:  {
2167      // Convert from IMM/FPIMM to target version.
2168      unsigned RecNo = MatcherTable[MatcherIndex++];
2169      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2170      SDValue Imm = RecordedNodes[RecNo];
2171
2172      if (Imm->getOpcode() == ISD::Constant) {
2173        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2174        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2175      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2176        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2177        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2178      }
2179
2180      RecordedNodes.push_back(Imm);
2181      continue;
2182    }
2183
2184    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2185    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2186      // These are space-optimized forms of OPC_EmitMergeInputChains.
2187      assert(InputChain.getNode() == 0 &&
2188             "EmitMergeInputChains should be the first chain producing node");
2189      assert(ChainNodesMatched.empty() &&
2190             "Should only have one EmitMergeInputChains per match");
2191
2192      // Read all of the chained nodes.
2193      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2194      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2195      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2196
2197      // FIXME: What if other value results of the node have uses not matched
2198      // by this pattern?
2199      if (ChainNodesMatched.back() != NodeToMatch &&
2200          !RecordedNodes[RecNo].hasOneUse()) {
2201        ChainNodesMatched.clear();
2202        break;
2203      }
2204
2205      // Merge the input chains if they are not intra-pattern references.
2206      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2207
2208      if (InputChain.getNode() == 0)
2209        break;  // Failed to merge.
2210      continue;
2211    }
2212
2213    case OPC_EmitMergeInputChains: {
2214      assert(InputChain.getNode() == 0 &&
2215             "EmitMergeInputChains should be the first chain producing node");
2216      // This node gets a list of nodes we matched in the input that have
2217      // chains.  We want to token factor all of the input chains to these nodes
2218      // together.  However, if any of the input chains is actually one of the
2219      // nodes matched in this pattern, then we have an intra-match reference.
2220      // Ignore these because the newly token factored chain should not refer to
2221      // the old nodes.
2222      unsigned NumChains = MatcherTable[MatcherIndex++];
2223      assert(NumChains != 0 && "Can't TF zero chains");
2224
2225      assert(ChainNodesMatched.empty() &&
2226             "Should only have one EmitMergeInputChains per match");
2227
2228      // Read all of the chained nodes.
2229      for (unsigned i = 0; i != NumChains; ++i) {
2230        unsigned RecNo = MatcherTable[MatcherIndex++];
2231        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2232        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2233
2234        // FIXME: What if other value results of the node have uses not matched
2235        // by this pattern?
2236        if (ChainNodesMatched.back() != NodeToMatch &&
2237            !RecordedNodes[RecNo].hasOneUse()) {
2238          ChainNodesMatched.clear();
2239          break;
2240        }
2241      }
2242
2243      // If the inner loop broke out, the match fails.
2244      if (ChainNodesMatched.empty())
2245        break;
2246
2247      // Merge the input chains if they are not intra-pattern references.
2248      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2249
2250      if (InputChain.getNode() == 0)
2251        break;  // Failed to merge.
2252
2253      continue;
2254    }
2255
2256    case OPC_EmitCopyToReg: {
2257      unsigned RecNo = MatcherTable[MatcherIndex++];
2258      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2259      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2260
2261      if (InputChain.getNode() == 0)
2262        InputChain = CurDAG->getEntryNode();
2263
2264      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2265                                        DestPhysReg, RecordedNodes[RecNo],
2266                                        InputFlag);
2267
2268      InputFlag = InputChain.getValue(1);
2269      continue;
2270    }
2271
2272    case OPC_EmitNodeXForm: {
2273      unsigned XFormNo = MatcherTable[MatcherIndex++];
2274      unsigned RecNo = MatcherTable[MatcherIndex++];
2275      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2276      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2277      continue;
2278    }
2279
2280    case OPC_EmitNode:
2281    case OPC_MorphNodeTo: {
2282      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2283      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2284      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2285      // Get the result VT list.
2286      unsigned NumVTs = MatcherTable[MatcherIndex++];
2287      SmallVector<EVT, 4> VTs;
2288      for (unsigned i = 0; i != NumVTs; ++i) {
2289        MVT::SimpleValueType VT =
2290          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2291        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2292        VTs.push_back(VT);
2293      }
2294
2295      if (EmitNodeInfo & OPFL_Chain)
2296        VTs.push_back(MVT::Other);
2297      if (EmitNodeInfo & OPFL_FlagOutput)
2298        VTs.push_back(MVT::Flag);
2299
2300      // This is hot code, so optimize the two most common cases of 1 and 2
2301      // results.
2302      SDVTList VTList;
2303      if (VTs.size() == 1)
2304        VTList = CurDAG->getVTList(VTs[0]);
2305      else if (VTs.size() == 2)
2306        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2307      else
2308        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2309
2310      // Get the operand list.
2311      unsigned NumOps = MatcherTable[MatcherIndex++];
2312      SmallVector<SDValue, 8> Ops;
2313      for (unsigned i = 0; i != NumOps; ++i) {
2314        unsigned RecNo = MatcherTable[MatcherIndex++];
2315        if (RecNo & 128)
2316          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2317
2318        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2319        Ops.push_back(RecordedNodes[RecNo]);
2320      }
2321
2322      // If there are variadic operands to add, handle them now.
2323      if (EmitNodeInfo & OPFL_VariadicInfo) {
2324        // Determine the start index to copy from.
2325        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2326        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2327        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2328               "Invalid variadic node");
2329        // Copy all of the variadic operands, not including a potential flag
2330        // input.
2331        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2332             i != e; ++i) {
2333          SDValue V = NodeToMatch->getOperand(i);
2334          if (V.getValueType() == MVT::Flag) break;
2335          Ops.push_back(V);
2336        }
2337      }
2338
2339      // If this has chain/flag inputs, add them.
2340      if (EmitNodeInfo & OPFL_Chain)
2341        Ops.push_back(InputChain);
2342      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2343        Ops.push_back(InputFlag);
2344
2345      // Create the node.
2346      SDNode *Res = 0;
2347      if (Opcode != OPC_MorphNodeTo) {
2348        // If this is a normal EmitNode command, just create the new node and
2349        // add the results to the RecordedNodes list.
2350        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2351                                     VTList, Ops.data(), Ops.size());
2352
2353        // Add all the non-flag/non-chain results to the RecordedNodes list.
2354        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2355          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2356          RecordedNodes.push_back(SDValue(Res, i));
2357        }
2358
2359      } else {
2360        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2361                        EmitNodeInfo);
2362      }
2363
2364      // If the node had chain/flag results, update our notion of the current
2365      // chain and flag.
2366      if (EmitNodeInfo & OPFL_FlagOutput) {
2367        InputFlag = SDValue(Res, VTs.size()-1);
2368        if (EmitNodeInfo & OPFL_Chain)
2369          InputChain = SDValue(Res, VTs.size()-2);
2370      } else if (EmitNodeInfo & OPFL_Chain)
2371        InputChain = SDValue(Res, VTs.size()-1);
2372
2373      // If the OPFL_MemRefs flag is set on this node, slap all of the
2374      // accumulated memrefs onto it.
2375      //
2376      // FIXME: This is vastly incorrect for patterns with multiple outputs
2377      // instructions that access memory and for ComplexPatterns that match
2378      // loads.
2379      if (EmitNodeInfo & OPFL_MemRefs) {
2380        MachineSDNode::mmo_iterator MemRefs =
2381          MF->allocateMemRefsArray(MatchedMemRefs.size());
2382        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2383        cast<MachineSDNode>(Res)
2384          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2385      }
2386
2387      DEBUG(errs() << "  "
2388                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2389                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2390
2391      // If this was a MorphNodeTo then we're completely done!
2392      if (Opcode == OPC_MorphNodeTo) {
2393        // Update chain and flag uses.
2394        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2395                             InputFlag, FlagResultNodesMatched, true);
2396        return Res;
2397      }
2398
2399      continue;
2400    }
2401
2402    case OPC_MarkFlagResults: {
2403      unsigned NumNodes = MatcherTable[MatcherIndex++];
2404
2405      // Read and remember all the flag-result nodes.
2406      for (unsigned i = 0; i != NumNodes; ++i) {
2407        unsigned RecNo = MatcherTable[MatcherIndex++];
2408        if (RecNo & 128)
2409          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2410
2411        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2412        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2413      }
2414      continue;
2415    }
2416
2417    case OPC_CompleteMatch: {
2418      // The match has been completed, and any new nodes (if any) have been
2419      // created.  Patch up references to the matched dag to use the newly
2420      // created nodes.
2421      unsigned NumResults = MatcherTable[MatcherIndex++];
2422
2423      for (unsigned i = 0; i != NumResults; ++i) {
2424        unsigned ResSlot = MatcherTable[MatcherIndex++];
2425        if (ResSlot & 128)
2426          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2427
2428        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2429        SDValue Res = RecordedNodes[ResSlot];
2430
2431        assert(i < NodeToMatch->getNumValues() &&
2432               NodeToMatch->getValueType(i) != MVT::Other &&
2433               NodeToMatch->getValueType(i) != MVT::Flag &&
2434               "Invalid number of results to complete!");
2435        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2436                NodeToMatch->getValueType(i) == MVT::iPTR ||
2437                Res.getValueType() == MVT::iPTR ||
2438                NodeToMatch->getValueType(i).getSizeInBits() ==
2439                    Res.getValueType().getSizeInBits()) &&
2440               "invalid replacement");
2441        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2442      }
2443
2444      // If the root node defines a flag, add it to the flag nodes to update
2445      // list.
2446      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2447        FlagResultNodesMatched.push_back(NodeToMatch);
2448
2449      // Update chain and flag uses.
2450      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2451                           InputFlag, FlagResultNodesMatched, false);
2452
2453      assert(NodeToMatch->use_empty() &&
2454             "Didn't replace all uses of the node?");
2455
2456      // FIXME: We just return here, which interacts correctly with SelectRoot
2457      // above.  We should fix this to not return an SDNode* anymore.
2458      return 0;
2459    }
2460    }
2461
2462    // If the code reached this point, then the match failed.  See if there is
2463    // another child to try in the current 'Scope', otherwise pop it until we
2464    // find a case to check.
2465    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2466    ++NumDAGIselRetries;
2467    while (1) {
2468      if (MatchScopes.empty()) {
2469        CannotYetSelect(NodeToMatch);
2470        return 0;
2471      }
2472
2473      // Restore the interpreter state back to the point where the scope was
2474      // formed.
2475      MatchScope &LastScope = MatchScopes.back();
2476      RecordedNodes.resize(LastScope.NumRecordedNodes);
2477      NodeStack.clear();
2478      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2479      N = NodeStack.back();
2480
2481      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2482        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2483      MatcherIndex = LastScope.FailIndex;
2484
2485      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2486
2487      InputChain = LastScope.InputChain;
2488      InputFlag = LastScope.InputFlag;
2489      if (!LastScope.HasChainNodesMatched)
2490        ChainNodesMatched.clear();
2491      if (!LastScope.HasFlagResultNodesMatched)
2492        FlagResultNodesMatched.clear();
2493
2494      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2495      // we have reached the end of this scope, otherwise we have another child
2496      // in the current scope to try.
2497      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2498      if (NumToSkip & 128)
2499        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2500
2501      // If we have another child in this scope to match, update FailIndex and
2502      // try it.
2503      if (NumToSkip != 0) {
2504        LastScope.FailIndex = MatcherIndex+NumToSkip;
2505        break;
2506      }
2507
2508      // End of this scope, pop it and try the next child in the containing
2509      // scope.
2510      MatchScopes.pop_back();
2511    }
2512  }
2513}
2514
2515
2516
2517void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2518  std::string msg;
2519  raw_string_ostream Msg(msg);
2520  Msg << "Cannot yet select: ";
2521
2522  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2523      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2524      N->getOpcode() != ISD::INTRINSIC_VOID) {
2525    N->printrFull(Msg, CurDAG);
2526  } else {
2527    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2528    unsigned iid =
2529      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2530    if (iid < Intrinsic::num_intrinsics)
2531      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2532    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2533      Msg << "target intrinsic %" << TII->getName(iid);
2534    else
2535      Msg << "unknown intrinsic #" << iid;
2536  }
2537  report_fatal_error(Msg.str());
2538}
2539
2540char SelectionDAGISel::ID = 0;
2541