SelectionDAGISel.cpp revision c7c3f110eda0ff8040e4bd99e38d3112b910810f
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/CodeGen/ScheduleDAG.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/IntrinsicLowering.h"
28#include "llvm/CodeGen/MachineDebugInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/SchedulerRegistry.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/CodeGen/SSARegMap.h"
36#include "llvm/Target/MRegisterInfo.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Target/TargetFrameInfo.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <map>
48#include <set>
49#include <iostream>
50#include <algorithm>
51using namespace llvm;
52
53#ifndef NDEBUG
54static cl::opt<bool>
55ViewISelDAGs("view-isel-dags", cl::Hidden,
56          cl::desc("Pop up a window to show isel dags as they are selected"));
57static cl::opt<bool>
58ViewSchedDAGs("view-sched-dags", cl::Hidden,
59          cl::desc("Pop up a window to show sched dags as they are processed"));
60#else
61static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
62#endif
63
64
65//===---------------------------------------------------------------------===//
66///
67/// RegisterScheduler class - Track the registration of instruction schedulers.
68///
69//===---------------------------------------------------------------------===//
70MachinePassRegistry RegisterScheduler::Registry;
71
72//===---------------------------------------------------------------------===//
73///
74/// ISHeuristic command line option for instruction schedulers.
75///
76//===---------------------------------------------------------------------===//
77namespace {
78  cl::opt<RegisterScheduler::FunctionPassCtor, false,
79          RegisterPassParser<RegisterScheduler> >
80  ISHeuristic("sched",
81              cl::init(&createDefaultScheduler),
82              cl::desc("Instruction schedulers available:"));
83
84  static RegisterScheduler
85  defaultListDAGScheduler("default", "  Best scheduler for the target",
86                          createDefaultScheduler);
87} // namespace
88
89namespace {
90  /// RegsForValue - This struct represents the physical registers that a
91  /// particular value is assigned and the type information about the value.
92  /// This is needed because values can be promoted into larger registers and
93  /// expanded into multiple smaller registers than the value.
94  struct VISIBILITY_HIDDEN RegsForValue {
95    /// Regs - This list hold the register (for legal and promoted values)
96    /// or register set (for expanded values) that the value should be assigned
97    /// to.
98    std::vector<unsigned> Regs;
99
100    /// RegVT - The value type of each register.
101    ///
102    MVT::ValueType RegVT;
103
104    /// ValueVT - The value type of the LLVM value, which may be promoted from
105    /// RegVT or made from merging the two expanded parts.
106    MVT::ValueType ValueVT;
107
108    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
109
110    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
111      : RegVT(regvt), ValueVT(valuevt) {
112        Regs.push_back(Reg);
113    }
114    RegsForValue(const std::vector<unsigned> &regs,
115                 MVT::ValueType regvt, MVT::ValueType valuevt)
116      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
117    }
118
119    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
120    /// this value and returns the result as a ValueVT value.  This uses
121    /// Chain/Flag as the input and updates them for the output Chain/Flag.
122    SDOperand getCopyFromRegs(SelectionDAG &DAG,
123                              SDOperand &Chain, SDOperand &Flag) const;
124
125    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
126    /// specified value into the registers specified by this object.  This uses
127    /// Chain/Flag as the input and updates them for the output Chain/Flag.
128    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
129                       SDOperand &Chain, SDOperand &Flag,
130                       MVT::ValueType PtrVT) const;
131
132    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
133    /// operand list.  This adds the code marker and includes the number of
134    /// values added into it.
135    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
136                              std::vector<SDOperand> &Ops) const;
137  };
138}
139
140namespace llvm {
141  //===--------------------------------------------------------------------===//
142  /// createDefaultScheduler - This creates an instruction scheduler appropriate
143  /// for the target.
144  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
145                                      SelectionDAG *DAG,
146                                      MachineBasicBlock *BB) {
147    TargetLowering &TLI = IS->getTargetLowering();
148
149    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
150      return createTDListDAGScheduler(IS, DAG, BB);
151    } else {
152      assert(TLI.getSchedulingPreference() ==
153           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
154      return createBURRListDAGScheduler(IS, DAG, BB);
155    }
156  }
157
158
159  //===--------------------------------------------------------------------===//
160  /// FunctionLoweringInfo - This contains information that is global to a
161  /// function that is used when lowering a region of the function.
162  class FunctionLoweringInfo {
163  public:
164    TargetLowering &TLI;
165    Function &Fn;
166    MachineFunction &MF;
167    SSARegMap *RegMap;
168
169    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
170
171    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
172    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
173
174    /// ValueMap - Since we emit code for the function a basic block at a time,
175    /// we must remember which virtual registers hold the values for
176    /// cross-basic-block values.
177    std::map<const Value*, unsigned> ValueMap;
178
179    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
180    /// the entry block.  This allows the allocas to be efficiently referenced
181    /// anywhere in the function.
182    std::map<const AllocaInst*, int> StaticAllocaMap;
183
184    unsigned MakeReg(MVT::ValueType VT) {
185      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
186    }
187
188    unsigned CreateRegForValue(const Value *V);
189
190    unsigned InitializeRegForValue(const Value *V) {
191      unsigned &R = ValueMap[V];
192      assert(R == 0 && "Already initialized this value register!");
193      return R = CreateRegForValue(V);
194    }
195  };
196}
197
198/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
199/// PHI nodes or outside of the basic block that defines it, or used by a
200/// switch instruction, which may expand to multiple basic blocks.
201static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
202  if (isa<PHINode>(I)) return true;
203  BasicBlock *BB = I->getParent();
204  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
205    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
206        isa<SwitchInst>(*UI))
207      return true;
208  return false;
209}
210
211/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
212/// entry block, return true.  This includes arguments used by switches, since
213/// the switch may expand into multiple basic blocks.
214static bool isOnlyUsedInEntryBlock(Argument *A) {
215  BasicBlock *Entry = A->getParent()->begin();
216  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
217    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
218      return false;  // Use not in entry block.
219  return true;
220}
221
222FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
223                                           Function &fn, MachineFunction &mf)
224    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
225
226  // Create a vreg for each argument register that is not dead and is used
227  // outside of the entry block for the function.
228  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
229       AI != E; ++AI)
230    if (!isOnlyUsedInEntryBlock(AI))
231      InitializeRegForValue(AI);
232
233  // Initialize the mapping of values to registers.  This is only set up for
234  // instruction values that are used outside of the block that defines
235  // them.
236  Function::iterator BB = Fn.begin(), EB = Fn.end();
237  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
238    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
239      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
240        const Type *Ty = AI->getAllocatedType();
241        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
242        unsigned Align =
243          std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
244                   AI->getAlignment());
245
246        // If the alignment of the value is smaller than the size of the value,
247        // and if the size of the value is particularly small (<= 8 bytes),
248        // round up to the size of the value for potentially better performance.
249        //
250        // FIXME: This could be made better with a preferred alignment hook in
251        // TargetData.  It serves primarily to 8-byte align doubles for X86.
252        if (Align < TySize && TySize <= 8) Align = TySize;
253        TySize *= CUI->getValue();   // Get total allocated size.
254        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
255        StaticAllocaMap[AI] =
256          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
257      }
258
259  for (; BB != EB; ++BB)
260    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
261      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
262        if (!isa<AllocaInst>(I) ||
263            !StaticAllocaMap.count(cast<AllocaInst>(I)))
264          InitializeRegForValue(I);
265
266  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
267  // also creates the initial PHI MachineInstrs, though none of the input
268  // operands are populated.
269  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
270    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
271    MBBMap[BB] = MBB;
272    MF.getBasicBlockList().push_back(MBB);
273
274    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
275    // appropriate.
276    PHINode *PN;
277    for (BasicBlock::iterator I = BB->begin();
278         (PN = dyn_cast<PHINode>(I)); ++I)
279      if (!PN->use_empty()) {
280        MVT::ValueType VT = TLI.getValueType(PN->getType());
281        unsigned NumElements;
282        if (VT != MVT::Vector)
283          NumElements = TLI.getNumElements(VT);
284        else {
285          MVT::ValueType VT1,VT2;
286          NumElements =
287            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
288                                       VT1, VT2);
289        }
290        unsigned PHIReg = ValueMap[PN];
291        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
292        for (unsigned i = 0; i != NumElements; ++i)
293          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
294      }
295  }
296}
297
298/// CreateRegForValue - Allocate the appropriate number of virtual registers of
299/// the correctly promoted or expanded types.  Assign these registers
300/// consecutive vreg numbers and return the first assigned number.
301unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
302  MVT::ValueType VT = TLI.getValueType(V->getType());
303
304  // The number of multiples of registers that we need, to, e.g., split up
305  // a <2 x int64> -> 4 x i32 registers.
306  unsigned NumVectorRegs = 1;
307
308  // If this is a packed type, figure out what type it will decompose into
309  // and how many of the elements it will use.
310  if (VT == MVT::Vector) {
311    const PackedType *PTy = cast<PackedType>(V->getType());
312    unsigned NumElts = PTy->getNumElements();
313    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
314
315    // Divide the input until we get to a supported size.  This will always
316    // end with a scalar if the target doesn't support vectors.
317    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
318      NumElts >>= 1;
319      NumVectorRegs <<= 1;
320    }
321    if (NumElts == 1)
322      VT = EltTy;
323    else
324      VT = getVectorType(EltTy, NumElts);
325  }
326
327  // The common case is that we will only create one register for this
328  // value.  If we have that case, create and return the virtual register.
329  unsigned NV = TLI.getNumElements(VT);
330  if (NV == 1) {
331    // If we are promoting this value, pick the next largest supported type.
332    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
333    unsigned Reg = MakeReg(PromotedType);
334    // If this is a vector of supported or promoted types (e.g. 4 x i16),
335    // create all of the registers.
336    for (unsigned i = 1; i != NumVectorRegs; ++i)
337      MakeReg(PromotedType);
338    return Reg;
339  }
340
341  // If this value is represented with multiple target registers, make sure
342  // to create enough consecutive registers of the right (smaller) type.
343  unsigned NT = VT-1;  // Find the type to use.
344  while (TLI.getNumElements((MVT::ValueType)NT) != 1)
345    --NT;
346
347  unsigned R = MakeReg((MVT::ValueType)NT);
348  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
349    MakeReg((MVT::ValueType)NT);
350  return R;
351}
352
353//===----------------------------------------------------------------------===//
354/// SelectionDAGLowering - This is the common target-independent lowering
355/// implementation that is parameterized by a TargetLowering object.
356/// Also, targets can overload any lowering method.
357///
358namespace llvm {
359class SelectionDAGLowering {
360  MachineBasicBlock *CurMBB;
361
362  std::map<const Value*, SDOperand> NodeMap;
363
364  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
365  /// them up and then emit token factor nodes when possible.  This allows us to
366  /// get simple disambiguation between loads without worrying about alias
367  /// analysis.
368  std::vector<SDOperand> PendingLoads;
369
370  /// Case - A pair of values to record the Value for a switch case, and the
371  /// case's target basic block.
372  typedef std::pair<Constant*, MachineBasicBlock*> Case;
373  typedef std::vector<Case>::iterator              CaseItr;
374  typedef std::pair<CaseItr, CaseItr>              CaseRange;
375
376  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
377  /// of conditional branches.
378  struct CaseRec {
379    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
380    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
381
382    /// CaseBB - The MBB in which to emit the compare and branch
383    MachineBasicBlock *CaseBB;
384    /// LT, GE - If nonzero, we know the current case value must be less-than or
385    /// greater-than-or-equal-to these Constants.
386    Constant *LT;
387    Constant *GE;
388    /// Range - A pair of iterators representing the range of case values to be
389    /// processed at this point in the binary search tree.
390    CaseRange Range;
391  };
392
393  /// The comparison function for sorting Case values.
394  struct CaseCmp {
395    bool operator () (const Case& C1, const Case& C2) {
396      if (const ConstantUInt* U1 = dyn_cast<const ConstantUInt>(C1.first))
397        return U1->getValue() < cast<const ConstantUInt>(C2.first)->getValue();
398
399      const ConstantSInt* S1 = dyn_cast<const ConstantSInt>(C1.first);
400      return S1->getValue() < cast<const ConstantSInt>(C2.first)->getValue();
401    }
402  };
403
404public:
405  // TLI - This is information that describes the available target features we
406  // need for lowering.  This indicates when operations are unavailable,
407  // implemented with a libcall, etc.
408  TargetLowering &TLI;
409  SelectionDAG &DAG;
410  const TargetData *TD;
411
412  /// SwitchCases - Vector of CaseBlock structures used to communicate
413  /// SwitchInst code generation information.
414  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
415  SelectionDAGISel::JumpTable JT;
416
417  /// FuncInfo - Information about the function as a whole.
418  ///
419  FunctionLoweringInfo &FuncInfo;
420
421  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
422                       FunctionLoweringInfo &funcinfo)
423    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
424      JT(0,0,0,0), FuncInfo(funcinfo) {
425  }
426
427  /// getRoot - Return the current virtual root of the Selection DAG.
428  ///
429  SDOperand getRoot() {
430    if (PendingLoads.empty())
431      return DAG.getRoot();
432
433    if (PendingLoads.size() == 1) {
434      SDOperand Root = PendingLoads[0];
435      DAG.setRoot(Root);
436      PendingLoads.clear();
437      return Root;
438    }
439
440    // Otherwise, we have to make a token factor node.
441    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
442                                 &PendingLoads[0], PendingLoads.size());
443    PendingLoads.clear();
444    DAG.setRoot(Root);
445    return Root;
446  }
447
448  void visit(Instruction &I) { visit(I.getOpcode(), I); }
449
450  void visit(unsigned Opcode, User &I) {
451    switch (Opcode) {
452    default: assert(0 && "Unknown instruction type encountered!");
453             abort();
454      // Build the switch statement using the Instruction.def file.
455#define HANDLE_INST(NUM, OPCODE, CLASS) \
456    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
457#include "llvm/Instruction.def"
458    }
459  }
460
461  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
462
463  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
464                        const Value *SV, SDOperand Root,
465                        bool isVolatile);
466
467  SDOperand getIntPtrConstant(uint64_t Val) {
468    return DAG.getConstant(Val, TLI.getPointerTy());
469  }
470
471  SDOperand getValue(const Value *V);
472
473  const SDOperand &setValue(const Value *V, SDOperand NewN) {
474    SDOperand &N = NodeMap[V];
475    assert(N.Val == 0 && "Already set a value for this node!");
476    return N = NewN;
477  }
478
479  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
480                                    MVT::ValueType VT,
481                                    bool OutReg, bool InReg,
482                                    std::set<unsigned> &OutputRegs,
483                                    std::set<unsigned> &InputRegs);
484
485  // Terminator instructions.
486  void visitRet(ReturnInst &I);
487  void visitBr(BranchInst &I);
488  void visitSwitch(SwitchInst &I);
489  void visitUnreachable(UnreachableInst &I) { /* noop */ }
490
491  // Helper for visitSwitch
492  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
493  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
494
495  // These all get lowered before this pass.
496  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
497  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
498
499  void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
500  void visitShift(User &I, unsigned Opcode);
501  void visitAdd(User &I) {
502    visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD);
503  }
504  void visitSub(User &I);
505  void visitMul(User &I) {
506    visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL);
507  }
508  void visitDiv(User &I) {
509    const Type *Ty = I.getType();
510    visitBinary(I,
511                Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV,
512                Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV);
513  }
514  void visitRem(User &I) {
515    const Type *Ty = I.getType();
516    visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
517  }
518  void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); }
519  void visitOr (User &I) { visitBinary(I, ISD::OR,  0, ISD::VOR); }
520  void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); }
521  void visitShl(User &I) { visitShift(I, ISD::SHL); }
522  void visitShr(User &I) {
523    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
524  }
525
526  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc,
527                  ISD::CondCode FPOpc);
528  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ,
529                                        ISD::SETOEQ); }
530  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE,
531                                        ISD::SETUNE); }
532  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE,
533                                        ISD::SETOLE); }
534  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE,
535                                        ISD::SETOGE); }
536  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT,
537                                        ISD::SETOLT); }
538  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT,
539                                        ISD::SETOGT); }
540
541  void visitExtractElement(User &I);
542  void visitInsertElement(User &I);
543  void visitShuffleVector(User &I);
544
545  void visitGetElementPtr(User &I);
546  void visitCast(User &I);
547  void visitSelect(User &I);
548
549  void visitMalloc(MallocInst &I);
550  void visitFree(FreeInst &I);
551  void visitAlloca(AllocaInst &I);
552  void visitLoad(LoadInst &I);
553  void visitStore(StoreInst &I);
554  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
555  void visitCall(CallInst &I);
556  void visitInlineAsm(CallInst &I);
557  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
558  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
559
560  void visitVAStart(CallInst &I);
561  void visitVAArg(VAArgInst &I);
562  void visitVAEnd(CallInst &I);
563  void visitVACopy(CallInst &I);
564  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
565
566  void visitMemIntrinsic(CallInst &I, unsigned Op);
567
568  void visitUserOp1(Instruction &I) {
569    assert(0 && "UserOp1 should not exist at instruction selection time!");
570    abort();
571  }
572  void visitUserOp2(Instruction &I) {
573    assert(0 && "UserOp2 should not exist at instruction selection time!");
574    abort();
575  }
576};
577} // end namespace llvm
578
579SDOperand SelectionDAGLowering::getValue(const Value *V) {
580  SDOperand &N = NodeMap[V];
581  if (N.Val) return N;
582
583  const Type *VTy = V->getType();
584  MVT::ValueType VT = TLI.getValueType(VTy);
585  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
586    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
587      visit(CE->getOpcode(), *CE);
588      assert(N.Val && "visit didn't populate the ValueMap!");
589      return N;
590    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
591      return N = DAG.getGlobalAddress(GV, VT);
592    } else if (isa<ConstantPointerNull>(C)) {
593      return N = DAG.getConstant(0, TLI.getPointerTy());
594    } else if (isa<UndefValue>(C)) {
595      if (!isa<PackedType>(VTy))
596        return N = DAG.getNode(ISD::UNDEF, VT);
597
598      // Create a VBUILD_VECTOR of undef nodes.
599      const PackedType *PTy = cast<PackedType>(VTy);
600      unsigned NumElements = PTy->getNumElements();
601      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
602
603      SmallVector<SDOperand, 8> Ops;
604      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
605
606      // Create a VConstant node with generic Vector type.
607      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
608      Ops.push_back(DAG.getValueType(PVT));
609      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
610                             &Ops[0], Ops.size());
611    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
612      return N = DAG.getConstantFP(CFP->getValue(), VT);
613    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
614      unsigned NumElements = PTy->getNumElements();
615      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
616
617      // Now that we know the number and type of the elements, push a
618      // Constant or ConstantFP node onto the ops list for each element of
619      // the packed constant.
620      SmallVector<SDOperand, 8> Ops;
621      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
622        for (unsigned i = 0; i != NumElements; ++i)
623          Ops.push_back(getValue(CP->getOperand(i)));
624      } else {
625        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
626        SDOperand Op;
627        if (MVT::isFloatingPoint(PVT))
628          Op = DAG.getConstantFP(0, PVT);
629        else
630          Op = DAG.getConstant(0, PVT);
631        Ops.assign(NumElements, Op);
632      }
633
634      // Create a VBUILD_VECTOR node with generic Vector type.
635      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
636      Ops.push_back(DAG.getValueType(PVT));
637      return N = DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector,&Ops[0],Ops.size());
638    } else {
639      // Canonicalize all constant ints to be unsigned.
640      return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
641    }
642  }
643
644  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
645    std::map<const AllocaInst*, int>::iterator SI =
646    FuncInfo.StaticAllocaMap.find(AI);
647    if (SI != FuncInfo.StaticAllocaMap.end())
648      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
649  }
650
651  std::map<const Value*, unsigned>::const_iterator VMI =
652      FuncInfo.ValueMap.find(V);
653  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
654
655  unsigned InReg = VMI->second;
656
657  // If this type is not legal, make it so now.
658  if (VT != MVT::Vector) {
659    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
660
661    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
662    if (DestVT < VT) {
663      // Source must be expanded.  This input value is actually coming from the
664      // register pair VMI->second and VMI->second+1.
665      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
666                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
667    } else if (DestVT > VT) { // Promotion case
668      if (MVT::isFloatingPoint(VT))
669        N = DAG.getNode(ISD::FP_ROUND, VT, N);
670      else
671        N = DAG.getNode(ISD::TRUNCATE, VT, N);
672    }
673  } else {
674    // Otherwise, if this is a vector, make it available as a generic vector
675    // here.
676    MVT::ValueType PTyElementVT, PTyLegalElementVT;
677    const PackedType *PTy = cast<PackedType>(VTy);
678    unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT,
679                                             PTyLegalElementVT);
680
681    // Build a VBUILD_VECTOR with the input registers.
682    SmallVector<SDOperand, 8> Ops;
683    if (PTyElementVT == PTyLegalElementVT) {
684      // If the value types are legal, just VBUILD the CopyFromReg nodes.
685      for (unsigned i = 0; i != NE; ++i)
686        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
687                                         PTyElementVT));
688    } else if (PTyElementVT < PTyLegalElementVT) {
689      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
690      for (unsigned i = 0; i != NE; ++i) {
691        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
692                                          PTyElementVT);
693        if (MVT::isFloatingPoint(PTyElementVT))
694          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
695        else
696          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
697        Ops.push_back(Op);
698      }
699    } else {
700      // If the register was expanded, use BUILD_PAIR.
701      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
702      for (unsigned i = 0; i != NE/2; ++i) {
703        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
704                                           PTyElementVT);
705        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
706                                           PTyElementVT);
707        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
708      }
709    }
710
711    Ops.push_back(DAG.getConstant(NE, MVT::i32));
712    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
713    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
714
715    // Finally, use a VBIT_CONVERT to make this available as the appropriate
716    // vector type.
717    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
718                    DAG.getConstant(PTy->getNumElements(),
719                                    MVT::i32),
720                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
721  }
722
723  return N;
724}
725
726
727void SelectionDAGLowering::visitRet(ReturnInst &I) {
728  if (I.getNumOperands() == 0) {
729    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
730    return;
731  }
732  SmallVector<SDOperand, 8> NewValues;
733  NewValues.push_back(getRoot());
734  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
735    SDOperand RetOp = getValue(I.getOperand(i));
736    bool isSigned = I.getOperand(i)->getType()->isSigned();
737
738    // If this is an integer return value, we need to promote it ourselves to
739    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
740    // than sign/zero.
741    // FIXME: C calling convention requires the return type to be promoted to
742    // at least 32-bit. But this is not necessary for non-C calling conventions.
743    if (MVT::isInteger(RetOp.getValueType()) &&
744        RetOp.getValueType() < MVT::i64) {
745      MVT::ValueType TmpVT;
746      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
747        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
748      else
749        TmpVT = MVT::i32;
750
751      if (isSigned)
752        RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
753      else
754        RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
755    }
756    NewValues.push_back(RetOp);
757    NewValues.push_back(DAG.getConstant(isSigned, MVT::i32));
758  }
759  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
760                          &NewValues[0], NewValues.size()));
761}
762
763void SelectionDAGLowering::visitBr(BranchInst &I) {
764  // Update machine-CFG edges.
765  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
766  CurMBB->addSuccessor(Succ0MBB);
767
768  // Figure out which block is immediately after the current one.
769  MachineBasicBlock *NextBlock = 0;
770  MachineFunction::iterator BBI = CurMBB;
771  if (++BBI != CurMBB->getParent()->end())
772    NextBlock = BBI;
773
774  if (I.isUnconditional()) {
775    // If this is not a fall-through branch, emit the branch.
776    if (Succ0MBB != NextBlock)
777      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
778                              DAG.getBasicBlock(Succ0MBB)));
779  } else {
780    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
781    CurMBB->addSuccessor(Succ1MBB);
782
783    SDOperand Cond = getValue(I.getCondition());
784    if (Succ1MBB == NextBlock) {
785      // If the condition is false, fall through.  This means we should branch
786      // if the condition is true to Succ #0.
787      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
788                              Cond, DAG.getBasicBlock(Succ0MBB)));
789    } else if (Succ0MBB == NextBlock) {
790      // If the condition is true, fall through.  This means we should branch if
791      // the condition is false to Succ #1.  Invert the condition first.
792      SDOperand True = DAG.getConstant(1, Cond.getValueType());
793      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
794      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
795                              Cond, DAG.getBasicBlock(Succ1MBB)));
796    } else {
797      std::vector<SDOperand> Ops;
798      Ops.push_back(getRoot());
799      // If the false case is the current basic block, then this is a self
800      // loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it
801      // adds an extra instruction in the loop.  Instead, invert the
802      // condition and emit "Loop: ... br!cond Loop; br Out.
803      if (CurMBB == Succ1MBB) {
804        std::swap(Succ0MBB, Succ1MBB);
805        SDOperand True = DAG.getConstant(1, Cond.getValueType());
806        Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
807      }
808      SDOperand True = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
809                                   DAG.getBasicBlock(Succ0MBB));
810      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, True,
811                              DAG.getBasicBlock(Succ1MBB)));
812    }
813  }
814}
815
816/// visitSwitchCase - Emits the necessary code to represent a single node in
817/// the binary search tree resulting from lowering a switch instruction.
818void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
819  SDOperand SwitchOp = getValue(CB.SwitchV);
820  SDOperand CaseOp = getValue(CB.CaseC);
821  SDOperand Cond = DAG.getSetCC(MVT::i1, SwitchOp, CaseOp, CB.CC);
822
823  // Set NextBlock to be the MBB immediately after the current one, if any.
824  // This is used to avoid emitting unnecessary branches to the next block.
825  MachineBasicBlock *NextBlock = 0;
826  MachineFunction::iterator BBI = CurMBB;
827  if (++BBI != CurMBB->getParent()->end())
828    NextBlock = BBI;
829
830  // If the lhs block is the next block, invert the condition so that we can
831  // fall through to the lhs instead of the rhs block.
832  if (CB.LHSBB == NextBlock) {
833    std::swap(CB.LHSBB, CB.RHSBB);
834    SDOperand True = DAG.getConstant(1, Cond.getValueType());
835    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
836  }
837  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
838                                 DAG.getBasicBlock(CB.LHSBB));
839  if (CB.RHSBB == NextBlock)
840    DAG.setRoot(BrCond);
841  else
842    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
843                            DAG.getBasicBlock(CB.RHSBB)));
844  // Update successor info
845  CurMBB->addSuccessor(CB.LHSBB);
846  CurMBB->addSuccessor(CB.RHSBB);
847}
848
849void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
850  // Emit the code for the jump table
851  MVT::ValueType PTy = TLI.getPointerTy();
852  assert((PTy == MVT::i32 || PTy == MVT::i64) &&
853         "Jump table entries are 32-bit values");
854  bool isPIC = TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_;
855  // PIC jump table entries are 32-bit values.
856  unsigned EntrySize = isPIC ? 4 : MVT::getSizeInBits(PTy)/8;
857  SDOperand Copy = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
858  SDOperand IDX = DAG.getNode(ISD::MUL, PTy, Copy,
859                              DAG.getConstant(EntrySize, PTy));
860  SDOperand TAB = DAG.getJumpTable(JT.JTI,PTy);
861  SDOperand ADD = DAG.getNode(ISD::ADD, PTy, IDX, TAB);
862  SDOperand LD  = DAG.getLoad(isPIC ? MVT::i32 : PTy, Copy.getValue(1), ADD,
863                              NULL, 0);
864  if (isPIC) {
865    // For Pic, the sequence is:
866    // BRIND(load(Jumptable + index) + RelocBase)
867    // RelocBase is the JumpTable on PPC and X86, GOT on Alpha
868    SDOperand Reloc;
869    if (TLI.usesGlobalOffsetTable())
870      Reloc = DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, PTy);
871    else
872      Reloc = TAB;
873    ADD = DAG.getNode(ISD::ADD, PTy,
874        ((PTy != MVT::i32) ? DAG.getNode(ISD::SIGN_EXTEND, PTy, LD) : LD), Reloc);
875    DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), ADD));
876  } else {
877    DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), LD));
878  }
879}
880
881void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
882  // Figure out which block is immediately after the current one.
883  MachineBasicBlock *NextBlock = 0;
884  MachineFunction::iterator BBI = CurMBB;
885  if (++BBI != CurMBB->getParent()->end())
886    NextBlock = BBI;
887
888  // If there is only the default destination, branch to it if it is not the
889  // next basic block.  Otherwise, just fall through.
890  if (I.getNumOperands() == 2) {
891    // Update machine-CFG edges.
892    MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[I.getDefaultDest()];
893    // If this is not a fall-through branch, emit the branch.
894    if (DefaultMBB != NextBlock)
895      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
896                              DAG.getBasicBlock(DefaultMBB)));
897    CurMBB->addSuccessor(DefaultMBB);
898    return;
899  }
900
901  // If there are any non-default case statements, create a vector of Cases
902  // representing each one, and sort the vector so that we can efficiently
903  // create a binary search tree from them.
904  std::vector<Case> Cases;
905  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
906    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
907    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
908  }
909  std::sort(Cases.begin(), Cases.end(), CaseCmp());
910
911  // Get the Value to be switched on and default basic blocks, which will be
912  // inserted into CaseBlock records, representing basic blocks in the binary
913  // search tree.
914  Value *SV = I.getOperand(0);
915  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
916
917  // Get the MachineFunction which holds the current MBB.  This is used during
918  // emission of jump tables, and when inserting any additional MBBs necessary
919  // to represent the switch.
920  MachineFunction *CurMF = CurMBB->getParent();
921  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
922
923  // If the switch has more than 5 blocks, and at least 31.25% dense, and the
924  // target supports indirect branches, then emit a jump table rather than
925  // lowering the switch to a binary tree of conditional branches.
926  if (TLI.isOperationLegal(ISD::BRIND, TLI.getPointerTy()) &&
927      Cases.size() > 5) {
928    uint64_t First = cast<ConstantIntegral>(Cases.front().first)->getRawValue();
929    uint64_t Last  = cast<ConstantIntegral>(Cases.back().first)->getRawValue();
930    double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
931
932    if (Density >= 0.3125) {
933      // Create a new basic block to hold the code for loading the address
934      // of the jump table, and jumping to it.  Update successor information;
935      // we will either branch to the default case for the switch, or the jump
936      // table.
937      MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
938      CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
939      CurMBB->addSuccessor(Default);
940      CurMBB->addSuccessor(JumpTableBB);
941
942      // Subtract the lowest switch case value from the value being switched on
943      // and conditional branch to default mbb if the result is greater than the
944      // difference between smallest and largest cases.
945      SDOperand SwitchOp = getValue(SV);
946      MVT::ValueType VT = SwitchOp.getValueType();
947      SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
948                                  DAG.getConstant(First, VT));
949
950      // The SDNode we just created, which holds the value being switched on
951      // minus the the smallest case value, needs to be copied to a virtual
952      // register so it can be used as an index into the jump table in a
953      // subsequent basic block.  This value may be smaller or larger than the
954      // target's pointer type, and therefore require extension or truncating.
955      if (VT > TLI.getPointerTy())
956        SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
957      else
958        SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
959      unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
960      SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
961
962      // Emit the range check for the jump table, and branch to the default
963      // block for the switch statement if the value being switched on exceeds
964      // the largest case in the switch.
965      SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
966                                   DAG.getConstant(Last-First,VT), ISD::SETUGT);
967      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
968                              DAG.getBasicBlock(Default)));
969
970      // Build a vector of destination BBs, corresponding to each target
971      // of the jump table.  If the value of the jump table slot corresponds to
972      // a case statement, push the case's BB onto the vector, otherwise, push
973      // the default BB.
974      std::vector<MachineBasicBlock*> DestBBs;
975      uint64_t TEI = First;
976      for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI) {
977        if (cast<ConstantIntegral>(ii->first)->getRawValue() == TEI) {
978          DestBBs.push_back(ii->second);
979          ++ii;
980        } else {
981          DestBBs.push_back(Default);
982        }
983      }
984
985      // Update successor info
986      for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
987           E = DestBBs.end(); I != E; ++I)
988        JumpTableBB->addSuccessor(*I);
989
990      // Create a jump table index for this jump table, or return an existing
991      // one.
992      unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
993
994      // Set the jump table information so that we can codegen it as a second
995      // MachineBasicBlock
996      JT.Reg = JumpTableReg;
997      JT.JTI = JTI;
998      JT.MBB = JumpTableBB;
999      JT.Default = Default;
1000      return;
1001    }
1002  }
1003
1004  // Push the initial CaseRec onto the worklist
1005  std::vector<CaseRec> CaseVec;
1006  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1007
1008  while (!CaseVec.empty()) {
1009    // Grab a record representing a case range to process off the worklist
1010    CaseRec CR = CaseVec.back();
1011    CaseVec.pop_back();
1012
1013    // Size is the number of Cases represented by this range.  If Size is 1,
1014    // then we are processing a leaf of the binary search tree.  Otherwise,
1015    // we need to pick a pivot, and push left and right ranges onto the
1016    // worklist.
1017    unsigned Size = CR.Range.second - CR.Range.first;
1018
1019    if (Size == 1) {
1020      // Create a CaseBlock record representing a conditional branch to
1021      // the Case's target mbb if the value being switched on SV is equal
1022      // to C.  Otherwise, branch to default.
1023      Constant *C = CR.Range.first->first;
1024      MachineBasicBlock *Target = CR.Range.first->second;
1025      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
1026                                     CR.CaseBB);
1027      // If the MBB representing the leaf node is the current MBB, then just
1028      // call visitSwitchCase to emit the code into the current block.
1029      // Otherwise, push the CaseBlock onto the vector to be later processed
1030      // by SDISel, and insert the node's MBB before the next MBB.
1031      if (CR.CaseBB == CurMBB)
1032        visitSwitchCase(CB);
1033      else {
1034        SwitchCases.push_back(CB);
1035        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
1036      }
1037    } else {
1038      // split case range at pivot
1039      CaseItr Pivot = CR.Range.first + (Size / 2);
1040      CaseRange LHSR(CR.Range.first, Pivot);
1041      CaseRange RHSR(Pivot, CR.Range.second);
1042      Constant *C = Pivot->first;
1043      MachineBasicBlock *RHSBB = 0, *LHSBB = 0;
1044      // We know that we branch to the LHS if the Value being switched on is
1045      // less than the Pivot value, C.  We use this to optimize our binary
1046      // tree a bit, by recognizing that if SV is greater than or equal to the
1047      // LHS's Case Value, and that Case Value is exactly one less than the
1048      // Pivot's Value, then we can branch directly to the LHS's Target,
1049      // rather than creating a leaf node for it.
1050      if ((LHSR.second - LHSR.first) == 1 &&
1051          LHSR.first->first == CR.GE &&
1052          cast<ConstantIntegral>(C)->getRawValue() ==
1053          (cast<ConstantIntegral>(CR.GE)->getRawValue() + 1ULL)) {
1054        LHSBB = LHSR.first->second;
1055      } else {
1056        LHSBB = new MachineBasicBlock(LLVMBB);
1057        CaseVec.push_back(CaseRec(LHSBB,C,CR.GE,LHSR));
1058      }
1059      // Similar to the optimization above, if the Value being switched on is
1060      // known to be less than the Constant CR.LT, and the current Case Value
1061      // is CR.LT - 1, then we can branch directly to the target block for
1062      // the current Case Value, rather than emitting a RHS leaf node for it.
1063      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1064          cast<ConstantIntegral>(RHSR.first->first)->getRawValue() ==
1065          (cast<ConstantIntegral>(CR.LT)->getRawValue() - 1ULL)) {
1066        RHSBB = RHSR.first->second;
1067      } else {
1068        RHSBB = new MachineBasicBlock(LLVMBB);
1069        CaseVec.push_back(CaseRec(RHSBB,CR.LT,C,RHSR));
1070      }
1071      // Create a CaseBlock record representing a conditional branch to
1072      // the LHS node if the value being switched on SV is less than C.
1073      // Otherwise, branch to LHS.
1074      ISD::CondCode CC = C->getType()->isSigned() ? ISD::SETLT : ISD::SETULT;
1075      SelectionDAGISel::CaseBlock CB(CC, SV, C, LHSBB, RHSBB, CR.CaseBB);
1076      if (CR.CaseBB == CurMBB)
1077        visitSwitchCase(CB);
1078      else {
1079        SwitchCases.push_back(CB);
1080        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
1081      }
1082    }
1083  }
1084}
1085
1086void SelectionDAGLowering::visitSub(User &I) {
1087  // -0.0 - X --> fneg
1088  if (I.getType()->isFloatingPoint()) {
1089    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1090      if (CFP->isExactlyValue(-0.0)) {
1091        SDOperand Op2 = getValue(I.getOperand(1));
1092        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1093        return;
1094      }
1095  }
1096  visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
1097}
1098
1099void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp,
1100                                       unsigned VecOp) {
1101  const Type *Ty = I.getType();
1102  SDOperand Op1 = getValue(I.getOperand(0));
1103  SDOperand Op2 = getValue(I.getOperand(1));
1104
1105  if (Ty->isIntegral()) {
1106    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
1107  } else if (Ty->isFloatingPoint()) {
1108    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
1109  } else {
1110    const PackedType *PTy = cast<PackedType>(Ty);
1111    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
1112    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
1113    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
1114  }
1115}
1116
1117void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1118  SDOperand Op1 = getValue(I.getOperand(0));
1119  SDOperand Op2 = getValue(I.getOperand(1));
1120
1121  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1122
1123  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1124}
1125
1126void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
1127                                      ISD::CondCode UnsignedOpcode,
1128                                      ISD::CondCode FPOpcode) {
1129  SDOperand Op1 = getValue(I.getOperand(0));
1130  SDOperand Op2 = getValue(I.getOperand(1));
1131  ISD::CondCode Opcode = SignedOpcode;
1132  if (!FiniteOnlyFPMath() && I.getOperand(0)->getType()->isFloatingPoint())
1133    Opcode = FPOpcode;
1134  else if (I.getOperand(0)->getType()->isUnsigned())
1135    Opcode = UnsignedOpcode;
1136  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1137}
1138
1139void SelectionDAGLowering::visitSelect(User &I) {
1140  SDOperand Cond     = getValue(I.getOperand(0));
1141  SDOperand TrueVal  = getValue(I.getOperand(1));
1142  SDOperand FalseVal = getValue(I.getOperand(2));
1143  if (!isa<PackedType>(I.getType())) {
1144    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1145                             TrueVal, FalseVal));
1146  } else {
1147    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1148                             *(TrueVal.Val->op_end()-2),
1149                             *(TrueVal.Val->op_end()-1)));
1150  }
1151}
1152
1153void SelectionDAGLowering::visitCast(User &I) {
1154  SDOperand N = getValue(I.getOperand(0));
1155  MVT::ValueType SrcVT = N.getValueType();
1156  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1157
1158  if (DestVT == MVT::Vector) {
1159    // This is a cast to a vector from something else.  This is always a bit
1160    // convert.  Get information about the input vector.
1161    const PackedType *DestTy = cast<PackedType>(I.getType());
1162    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1163    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1164                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1165                             DAG.getValueType(EltVT)));
1166  } else if (SrcVT == DestVT) {
1167    setValue(&I, N);  // noop cast.
1168  } else if (DestVT == MVT::i1) {
1169    // Cast to bool is a comparison against zero, not truncation to zero.
1170    SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) :
1171                                       DAG.getConstantFP(0.0, N.getValueType());
1172    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
1173  } else if (isInteger(SrcVT)) {
1174    if (isInteger(DestVT)) {        // Int -> Int cast
1175      if (DestVT < SrcVT)   // Truncating cast?
1176        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1177      else if (I.getOperand(0)->getType()->isSigned())
1178        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1179      else
1180        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1181    } else if (isFloatingPoint(DestVT)) {           // Int -> FP cast
1182      if (I.getOperand(0)->getType()->isSigned())
1183        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1184      else
1185        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1186    } else {
1187      assert(0 && "Unknown cast!");
1188    }
1189  } else if (isFloatingPoint(SrcVT)) {
1190    if (isFloatingPoint(DestVT)) {  // FP -> FP cast
1191      if (DestVT < SrcVT)   // Rounding cast?
1192        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1193      else
1194        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1195    } else if (isInteger(DestVT)) {        // FP -> Int cast.
1196      if (I.getType()->isSigned())
1197        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1198      else
1199        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1200    } else {
1201      assert(0 && "Unknown cast!");
1202    }
1203  } else {
1204    assert(SrcVT == MVT::Vector && "Unknown cast!");
1205    assert(DestVT != MVT::Vector && "Casts to vector already handled!");
1206    // This is a cast from a vector to something else.  This is always a bit
1207    // convert.  Get information about the input vector.
1208    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1209  }
1210}
1211
1212void SelectionDAGLowering::visitInsertElement(User &I) {
1213  SDOperand InVec = getValue(I.getOperand(0));
1214  SDOperand InVal = getValue(I.getOperand(1));
1215  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1216                                getValue(I.getOperand(2)));
1217
1218  SDOperand Num = *(InVec.Val->op_end()-2);
1219  SDOperand Typ = *(InVec.Val->op_end()-1);
1220  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1221                           InVec, InVal, InIdx, Num, Typ));
1222}
1223
1224void SelectionDAGLowering::visitExtractElement(User &I) {
1225  SDOperand InVec = getValue(I.getOperand(0));
1226  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1227                                getValue(I.getOperand(1)));
1228  SDOperand Typ = *(InVec.Val->op_end()-1);
1229  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1230                           TLI.getValueType(I.getType()), InVec, InIdx));
1231}
1232
1233void SelectionDAGLowering::visitShuffleVector(User &I) {
1234  SDOperand V1   = getValue(I.getOperand(0));
1235  SDOperand V2   = getValue(I.getOperand(1));
1236  SDOperand Mask = getValue(I.getOperand(2));
1237
1238  SDOperand Num = *(V1.Val->op_end()-2);
1239  SDOperand Typ = *(V2.Val->op_end()-1);
1240  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1241                           V1, V2, Mask, Num, Typ));
1242}
1243
1244
1245void SelectionDAGLowering::visitGetElementPtr(User &I) {
1246  SDOperand N = getValue(I.getOperand(0));
1247  const Type *Ty = I.getOperand(0)->getType();
1248
1249  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1250       OI != E; ++OI) {
1251    Value *Idx = *OI;
1252    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1253      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
1254      if (Field) {
1255        // N = N + Offset
1256        uint64_t Offset = TD->getStructLayout(StTy)->MemberOffsets[Field];
1257        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1258                        getIntPtrConstant(Offset));
1259      }
1260      Ty = StTy->getElementType(Field);
1261    } else {
1262      Ty = cast<SequentialType>(Ty)->getElementType();
1263
1264      // If this is a constant subscript, handle it quickly.
1265      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1266        if (CI->getRawValue() == 0) continue;
1267
1268        uint64_t Offs;
1269        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
1270          Offs = (int64_t)TD->getTypeSize(Ty)*CSI->getValue();
1271        else
1272          Offs = TD->getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
1273        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1274        continue;
1275      }
1276
1277      // N = N + Idx * ElementSize;
1278      uint64_t ElementSize = TD->getTypeSize(Ty);
1279      SDOperand IdxN = getValue(Idx);
1280
1281      // If the index is smaller or larger than intptr_t, truncate or extend
1282      // it.
1283      if (IdxN.getValueType() < N.getValueType()) {
1284        if (Idx->getType()->isSigned())
1285          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1286        else
1287          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
1288      } else if (IdxN.getValueType() > N.getValueType())
1289        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1290
1291      // If this is a multiply by a power of two, turn it into a shl
1292      // immediately.  This is a very common case.
1293      if (isPowerOf2_64(ElementSize)) {
1294        unsigned Amt = Log2_64(ElementSize);
1295        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1296                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1297        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1298        continue;
1299      }
1300
1301      SDOperand Scale = getIntPtrConstant(ElementSize);
1302      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1303      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1304    }
1305  }
1306  setValue(&I, N);
1307}
1308
1309void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1310  // If this is a fixed sized alloca in the entry block of the function,
1311  // allocate it statically on the stack.
1312  if (FuncInfo.StaticAllocaMap.count(&I))
1313    return;   // getValue will auto-populate this.
1314
1315  const Type *Ty = I.getAllocatedType();
1316  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
1317  unsigned Align = std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
1318                            I.getAlignment());
1319
1320  SDOperand AllocSize = getValue(I.getArraySize());
1321  MVT::ValueType IntPtr = TLI.getPointerTy();
1322  if (IntPtr < AllocSize.getValueType())
1323    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1324  else if (IntPtr > AllocSize.getValueType())
1325    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1326
1327  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1328                          getIntPtrConstant(TySize));
1329
1330  // Handle alignment.  If the requested alignment is less than or equal to the
1331  // stack alignment, ignore it and round the size of the allocation up to the
1332  // stack alignment size.  If the size is greater than the stack alignment, we
1333  // note this in the DYNAMIC_STACKALLOC node.
1334  unsigned StackAlign =
1335    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1336  if (Align <= StackAlign) {
1337    Align = 0;
1338    // Add SA-1 to the size.
1339    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1340                            getIntPtrConstant(StackAlign-1));
1341    // Mask out the low bits for alignment purposes.
1342    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1343                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1344  }
1345
1346  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
1347  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
1348                                                    MVT::Other);
1349  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
1350  DAG.setRoot(setValue(&I, DSA).getValue(1));
1351
1352  // Inform the Frame Information that we have just allocated a variable-sized
1353  // object.
1354  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1355}
1356
1357void SelectionDAGLowering::visitLoad(LoadInst &I) {
1358  SDOperand Ptr = getValue(I.getOperand(0));
1359
1360  SDOperand Root;
1361  if (I.isVolatile())
1362    Root = getRoot();
1363  else {
1364    // Do not serialize non-volatile loads against each other.
1365    Root = DAG.getRoot();
1366  }
1367
1368  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
1369                           Root, I.isVolatile()));
1370}
1371
1372SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1373                                            const Value *SV, SDOperand Root,
1374                                            bool isVolatile) {
1375  SDOperand L;
1376  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1377    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1378    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
1379                       DAG.getSrcValue(SV));
1380  } else {
1381    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, isVolatile);
1382  }
1383
1384  if (isVolatile)
1385    DAG.setRoot(L.getValue(1));
1386  else
1387    PendingLoads.push_back(L.getValue(1));
1388
1389  return L;
1390}
1391
1392
1393void SelectionDAGLowering::visitStore(StoreInst &I) {
1394  Value *SrcV = I.getOperand(0);
1395  SDOperand Src = getValue(SrcV);
1396  SDOperand Ptr = getValue(I.getOperand(1));
1397  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1),
1398                           I.isVolatile()));
1399}
1400
1401/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1402/// access memory and has no other side effects at all.
1403static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1404#define GET_NO_MEMORY_INTRINSICS
1405#include "llvm/Intrinsics.gen"
1406#undef GET_NO_MEMORY_INTRINSICS
1407  return false;
1408}
1409
1410// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
1411// have any side-effects or if it only reads memory.
1412static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
1413#define GET_SIDE_EFFECT_INFO
1414#include "llvm/Intrinsics.gen"
1415#undef GET_SIDE_EFFECT_INFO
1416  return false;
1417}
1418
1419/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1420/// node.
1421void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1422                                                unsigned Intrinsic) {
1423  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1424  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
1425
1426  // Build the operand list.
1427  SmallVector<SDOperand, 8> Ops;
1428  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
1429    if (OnlyLoad) {
1430      // We don't need to serialize loads against other loads.
1431      Ops.push_back(DAG.getRoot());
1432    } else {
1433      Ops.push_back(getRoot());
1434    }
1435  }
1436
1437  // Add the intrinsic ID as an integer operand.
1438  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1439
1440  // Add all operands of the call to the operand list.
1441  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1442    SDOperand Op = getValue(I.getOperand(i));
1443
1444    // If this is a vector type, force it to the right packed type.
1445    if (Op.getValueType() == MVT::Vector) {
1446      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1447      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1448
1449      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1450      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1451      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1452    }
1453
1454    assert(TLI.isTypeLegal(Op.getValueType()) &&
1455           "Intrinsic uses a non-legal type?");
1456    Ops.push_back(Op);
1457  }
1458
1459  std::vector<MVT::ValueType> VTs;
1460  if (I.getType() != Type::VoidTy) {
1461    MVT::ValueType VT = TLI.getValueType(I.getType());
1462    if (VT == MVT::Vector) {
1463      const PackedType *DestTy = cast<PackedType>(I.getType());
1464      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1465
1466      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1467      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1468    }
1469
1470    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1471    VTs.push_back(VT);
1472  }
1473  if (HasChain)
1474    VTs.push_back(MVT::Other);
1475
1476  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
1477
1478  // Create the node.
1479  SDOperand Result;
1480  if (!HasChain)
1481    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
1482                         &Ops[0], Ops.size());
1483  else if (I.getType() != Type::VoidTy)
1484    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
1485                         &Ops[0], Ops.size());
1486  else
1487    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
1488                         &Ops[0], Ops.size());
1489
1490  if (HasChain) {
1491    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
1492    if (OnlyLoad)
1493      PendingLoads.push_back(Chain);
1494    else
1495      DAG.setRoot(Chain);
1496  }
1497  if (I.getType() != Type::VoidTy) {
1498    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1499      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1500      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1501                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1502                           DAG.getValueType(EVT));
1503    }
1504    setValue(&I, Result);
1505  }
1506}
1507
1508/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1509/// we want to emit this as a call to a named external function, return the name
1510/// otherwise lower it and return null.
1511const char *
1512SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1513  switch (Intrinsic) {
1514  default:
1515    // By default, turn this into a target intrinsic node.
1516    visitTargetIntrinsic(I, Intrinsic);
1517    return 0;
1518  case Intrinsic::vastart:  visitVAStart(I); return 0;
1519  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1520  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1521  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1522  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1523  case Intrinsic::setjmp:
1524    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1525    break;
1526  case Intrinsic::longjmp:
1527    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1528    break;
1529  case Intrinsic::memcpy_i32:
1530  case Intrinsic::memcpy_i64:
1531    visitMemIntrinsic(I, ISD::MEMCPY);
1532    return 0;
1533  case Intrinsic::memset_i32:
1534  case Intrinsic::memset_i64:
1535    visitMemIntrinsic(I, ISD::MEMSET);
1536    return 0;
1537  case Intrinsic::memmove_i32:
1538  case Intrinsic::memmove_i64:
1539    visitMemIntrinsic(I, ISD::MEMMOVE);
1540    return 0;
1541
1542  case Intrinsic::dbg_stoppoint: {
1543    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1544    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1545    if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
1546      SDOperand Ops[5];
1547
1548      Ops[0] = getRoot();
1549      Ops[1] = getValue(SPI.getLineValue());
1550      Ops[2] = getValue(SPI.getColumnValue());
1551
1552      DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
1553      assert(DD && "Not a debug information descriptor");
1554      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1555
1556      Ops[3] = DAG.getString(CompileUnit->getFileName());
1557      Ops[4] = DAG.getString(CompileUnit->getDirectory());
1558
1559      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
1560    }
1561
1562    return 0;
1563  }
1564  case Intrinsic::dbg_region_start: {
1565    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1566    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1567    if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
1568      unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
1569      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, getRoot(),
1570                              DAG.getConstant(LabelID, MVT::i32)));
1571    }
1572
1573    return 0;
1574  }
1575  case Intrinsic::dbg_region_end: {
1576    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1577    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
1578    if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
1579      unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
1580      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
1581                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
1582    }
1583
1584    return 0;
1585  }
1586  case Intrinsic::dbg_func_start: {
1587    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1588    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
1589    if (DebugInfo && FSI.getSubprogram() &&
1590        DebugInfo->Verify(FSI.getSubprogram())) {
1591      unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
1592      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
1593                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
1594    }
1595
1596    return 0;
1597  }
1598  case Intrinsic::dbg_declare: {
1599    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1600    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
1601    if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) {
1602      SDOperand AddressOp  = getValue(DI.getAddress());
1603      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
1604        DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
1605    }
1606
1607    return 0;
1608  }
1609
1610  case Intrinsic::isunordered_f32:
1611  case Intrinsic::isunordered_f64:
1612    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
1613                              getValue(I.getOperand(2)), ISD::SETUO));
1614    return 0;
1615
1616  case Intrinsic::sqrt_f32:
1617  case Intrinsic::sqrt_f64:
1618    setValue(&I, DAG.getNode(ISD::FSQRT,
1619                             getValue(I.getOperand(1)).getValueType(),
1620                             getValue(I.getOperand(1))));
1621    return 0;
1622  case Intrinsic::powi_f32:
1623  case Intrinsic::powi_f64:
1624    setValue(&I, DAG.getNode(ISD::FPOWI,
1625                             getValue(I.getOperand(1)).getValueType(),
1626                             getValue(I.getOperand(1)),
1627                             getValue(I.getOperand(2))));
1628    return 0;
1629  case Intrinsic::pcmarker: {
1630    SDOperand Tmp = getValue(I.getOperand(1));
1631    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
1632    return 0;
1633  }
1634  case Intrinsic::readcyclecounter: {
1635    SDOperand Op = getRoot();
1636    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
1637                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
1638                                &Op, 1);
1639    setValue(&I, Tmp);
1640    DAG.setRoot(Tmp.getValue(1));
1641    return 0;
1642  }
1643  case Intrinsic::bswap_i16:
1644  case Intrinsic::bswap_i32:
1645  case Intrinsic::bswap_i64:
1646    setValue(&I, DAG.getNode(ISD::BSWAP,
1647                             getValue(I.getOperand(1)).getValueType(),
1648                             getValue(I.getOperand(1))));
1649    return 0;
1650  case Intrinsic::cttz_i8:
1651  case Intrinsic::cttz_i16:
1652  case Intrinsic::cttz_i32:
1653  case Intrinsic::cttz_i64:
1654    setValue(&I, DAG.getNode(ISD::CTTZ,
1655                             getValue(I.getOperand(1)).getValueType(),
1656                             getValue(I.getOperand(1))));
1657    return 0;
1658  case Intrinsic::ctlz_i8:
1659  case Intrinsic::ctlz_i16:
1660  case Intrinsic::ctlz_i32:
1661  case Intrinsic::ctlz_i64:
1662    setValue(&I, DAG.getNode(ISD::CTLZ,
1663                             getValue(I.getOperand(1)).getValueType(),
1664                             getValue(I.getOperand(1))));
1665    return 0;
1666  case Intrinsic::ctpop_i8:
1667  case Intrinsic::ctpop_i16:
1668  case Intrinsic::ctpop_i32:
1669  case Intrinsic::ctpop_i64:
1670    setValue(&I, DAG.getNode(ISD::CTPOP,
1671                             getValue(I.getOperand(1)).getValueType(),
1672                             getValue(I.getOperand(1))));
1673    return 0;
1674  case Intrinsic::stacksave: {
1675    SDOperand Op = getRoot();
1676    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
1677              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
1678    setValue(&I, Tmp);
1679    DAG.setRoot(Tmp.getValue(1));
1680    return 0;
1681  }
1682  case Intrinsic::stackrestore: {
1683    SDOperand Tmp = getValue(I.getOperand(1));
1684    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
1685    return 0;
1686  }
1687  case Intrinsic::prefetch:
1688    // FIXME: Currently discarding prefetches.
1689    return 0;
1690  }
1691}
1692
1693
1694void SelectionDAGLowering::visitCall(CallInst &I) {
1695  const char *RenameFn = 0;
1696  if (Function *F = I.getCalledFunction()) {
1697    if (F->isExternal())
1698      if (unsigned IID = F->getIntrinsicID()) {
1699        RenameFn = visitIntrinsicCall(I, IID);
1700        if (!RenameFn)
1701          return;
1702      } else {    // Not an LLVM intrinsic.
1703        const std::string &Name = F->getName();
1704        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
1705          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
1706              I.getOperand(1)->getType()->isFloatingPoint() &&
1707              I.getType() == I.getOperand(1)->getType() &&
1708              I.getType() == I.getOperand(2)->getType()) {
1709            SDOperand LHS = getValue(I.getOperand(1));
1710            SDOperand RHS = getValue(I.getOperand(2));
1711            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
1712                                     LHS, RHS));
1713            return;
1714          }
1715        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
1716          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1717              I.getOperand(1)->getType()->isFloatingPoint() &&
1718              I.getType() == I.getOperand(1)->getType()) {
1719            SDOperand Tmp = getValue(I.getOperand(1));
1720            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
1721            return;
1722          }
1723        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
1724          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1725              I.getOperand(1)->getType()->isFloatingPoint() &&
1726              I.getType() == I.getOperand(1)->getType()) {
1727            SDOperand Tmp = getValue(I.getOperand(1));
1728            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
1729            return;
1730          }
1731        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
1732          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1733              I.getOperand(1)->getType()->isFloatingPoint() &&
1734              I.getType() == I.getOperand(1)->getType()) {
1735            SDOperand Tmp = getValue(I.getOperand(1));
1736            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
1737            return;
1738          }
1739        }
1740      }
1741  } else if (isa<InlineAsm>(I.getOperand(0))) {
1742    visitInlineAsm(I);
1743    return;
1744  }
1745
1746  SDOperand Callee;
1747  if (!RenameFn)
1748    Callee = getValue(I.getOperand(0));
1749  else
1750    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
1751  std::vector<std::pair<SDOperand, const Type*> > Args;
1752  Args.reserve(I.getNumOperands());
1753  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1754    Value *Arg = I.getOperand(i);
1755    SDOperand ArgNode = getValue(Arg);
1756    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
1757  }
1758
1759  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
1760  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1761
1762  std::pair<SDOperand,SDOperand> Result =
1763    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
1764                    I.isTailCall(), Callee, Args, DAG);
1765  if (I.getType() != Type::VoidTy)
1766    setValue(&I, Result.first);
1767  DAG.setRoot(Result.second);
1768}
1769
1770SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
1771                                        SDOperand &Chain, SDOperand &Flag)const{
1772  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
1773  Chain = Val.getValue(1);
1774  Flag  = Val.getValue(2);
1775
1776  // If the result was expanded, copy from the top part.
1777  if (Regs.size() > 1) {
1778    assert(Regs.size() == 2 &&
1779           "Cannot expand to more than 2 elts yet!");
1780    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
1781    Chain = Hi.getValue(1);
1782    Flag  = Hi.getValue(2);
1783    if (DAG.getTargetLoweringInfo().isLittleEndian())
1784      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
1785    else
1786      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
1787  }
1788
1789  // Otherwise, if the return value was promoted or extended, truncate it to the
1790  // appropriate type.
1791  if (RegVT == ValueVT)
1792    return Val;
1793
1794  if (MVT::isInteger(RegVT)) {
1795    if (ValueVT < RegVT)
1796      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1797    else
1798      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
1799  } else {
1800    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
1801  }
1802}
1803
1804/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
1805/// specified value into the registers specified by this object.  This uses
1806/// Chain/Flag as the input and updates them for the output Chain/Flag.
1807void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
1808                                 SDOperand &Chain, SDOperand &Flag,
1809                                 MVT::ValueType PtrVT) const {
1810  if (Regs.size() == 1) {
1811    // If there is a single register and the types differ, this must be
1812    // a promotion.
1813    if (RegVT != ValueVT) {
1814      if (MVT::isInteger(RegVT)) {
1815        if (RegVT < ValueVT)
1816          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
1817        else
1818          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
1819      } else
1820        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
1821    }
1822    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
1823    Flag = Chain.getValue(1);
1824  } else {
1825    std::vector<unsigned> R(Regs);
1826    if (!DAG.getTargetLoweringInfo().isLittleEndian())
1827      std::reverse(R.begin(), R.end());
1828
1829    for (unsigned i = 0, e = R.size(); i != e; ++i) {
1830      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
1831                                   DAG.getConstant(i, PtrVT));
1832      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
1833      Flag = Chain.getValue(1);
1834    }
1835  }
1836}
1837
1838/// AddInlineAsmOperands - Add this value to the specified inlineasm node
1839/// operand list.  This adds the code marker and includes the number of
1840/// values added into it.
1841void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
1842                                        std::vector<SDOperand> &Ops) const {
1843  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
1844  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1845    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
1846}
1847
1848/// isAllocatableRegister - If the specified register is safe to allocate,
1849/// i.e. it isn't a stack pointer or some other special register, return the
1850/// register class for the register.  Otherwise, return null.
1851static const TargetRegisterClass *
1852isAllocatableRegister(unsigned Reg, MachineFunction &MF,
1853                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
1854  MVT::ValueType FoundVT = MVT::Other;
1855  const TargetRegisterClass *FoundRC = 0;
1856  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
1857       E = MRI->regclass_end(); RCI != E; ++RCI) {
1858    MVT::ValueType ThisVT = MVT::Other;
1859
1860    const TargetRegisterClass *RC = *RCI;
1861    // If none of the the value types for this register class are valid, we
1862    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1863    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1864         I != E; ++I) {
1865      if (TLI.isTypeLegal(*I)) {
1866        // If we have already found this register in a different register class,
1867        // choose the one with the largest VT specified.  For example, on
1868        // PowerPC, we favor f64 register classes over f32.
1869        if (FoundVT == MVT::Other ||
1870            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
1871          ThisVT = *I;
1872          break;
1873        }
1874      }
1875    }
1876
1877    if (ThisVT == MVT::Other) continue;
1878
1879    // NOTE: This isn't ideal.  In particular, this might allocate the
1880    // frame pointer in functions that need it (due to them not being taken
1881    // out of allocation, because a variable sized allocation hasn't been seen
1882    // yet).  This is a slight code pessimization, but should still work.
1883    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
1884         E = RC->allocation_order_end(MF); I != E; ++I)
1885      if (*I == Reg) {
1886        // We found a matching register class.  Keep looking at others in case
1887        // we find one with larger registers that this physreg is also in.
1888        FoundRC = RC;
1889        FoundVT = ThisVT;
1890        break;
1891      }
1892  }
1893  return FoundRC;
1894}
1895
1896RegsForValue SelectionDAGLowering::
1897GetRegistersForValue(const std::string &ConstrCode,
1898                     MVT::ValueType VT, bool isOutReg, bool isInReg,
1899                     std::set<unsigned> &OutputRegs,
1900                     std::set<unsigned> &InputRegs) {
1901  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
1902    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
1903  std::vector<unsigned> Regs;
1904
1905  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
1906  MVT::ValueType RegVT;
1907  MVT::ValueType ValueVT = VT;
1908
1909  if (PhysReg.first) {
1910    if (VT == MVT::Other)
1911      ValueVT = *PhysReg.second->vt_begin();
1912
1913    // Get the actual register value type.  This is important, because the user
1914    // may have asked for (e.g.) the AX register in i32 type.  We need to
1915    // remember that AX is actually i16 to get the right extension.
1916    RegVT = *PhysReg.second->vt_begin();
1917
1918    // This is a explicit reference to a physical register.
1919    Regs.push_back(PhysReg.first);
1920
1921    // If this is an expanded reference, add the rest of the regs to Regs.
1922    if (NumRegs != 1) {
1923      TargetRegisterClass::iterator I = PhysReg.second->begin();
1924      TargetRegisterClass::iterator E = PhysReg.second->end();
1925      for (; *I != PhysReg.first; ++I)
1926        assert(I != E && "Didn't find reg!");
1927
1928      // Already added the first reg.
1929      --NumRegs; ++I;
1930      for (; NumRegs; --NumRegs, ++I) {
1931        assert(I != E && "Ran out of registers to allocate!");
1932        Regs.push_back(*I);
1933      }
1934    }
1935    return RegsForValue(Regs, RegVT, ValueVT);
1936  }
1937
1938  // This is a reference to a register class.  Allocate NumRegs consecutive,
1939  // available, registers from the class.
1940  std::vector<unsigned> RegClassRegs =
1941    TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
1942
1943  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
1944  MachineFunction &MF = *CurMBB->getParent();
1945  unsigned NumAllocated = 0;
1946  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
1947    unsigned Reg = RegClassRegs[i];
1948    // See if this register is available.
1949    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
1950        (isInReg  && InputRegs.count(Reg))) {    // Already used.
1951      // Make sure we find consecutive registers.
1952      NumAllocated = 0;
1953      continue;
1954    }
1955
1956    // Check to see if this register is allocatable (i.e. don't give out the
1957    // stack pointer).
1958    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
1959    if (!RC) {
1960      // Make sure we find consecutive registers.
1961      NumAllocated = 0;
1962      continue;
1963    }
1964
1965    // Okay, this register is good, we can use it.
1966    ++NumAllocated;
1967
1968    // If we allocated enough consecutive
1969    if (NumAllocated == NumRegs) {
1970      unsigned RegStart = (i-NumAllocated)+1;
1971      unsigned RegEnd   = i+1;
1972      // Mark all of the allocated registers used.
1973      for (unsigned i = RegStart; i != RegEnd; ++i) {
1974        unsigned Reg = RegClassRegs[i];
1975        Regs.push_back(Reg);
1976        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
1977        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
1978      }
1979
1980      return RegsForValue(Regs, *RC->vt_begin(), VT);
1981    }
1982  }
1983
1984  // Otherwise, we couldn't allocate enough registers for this.
1985  return RegsForValue();
1986}
1987
1988
1989/// visitInlineAsm - Handle a call to an InlineAsm object.
1990///
1991void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
1992  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
1993
1994  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
1995                                                 MVT::Other);
1996
1997  // Note, we treat inline asms both with and without side-effects as the same.
1998  // If an inline asm doesn't have side effects and doesn't access memory, we
1999  // could not choose to not chain it.
2000  bool hasSideEffects = IA->hasSideEffects();
2001
2002  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
2003  std::vector<MVT::ValueType> ConstraintVTs;
2004
2005  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
2006  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
2007  /// if it is a def of that register.
2008  std::vector<SDOperand> AsmNodeOperands;
2009  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
2010  AsmNodeOperands.push_back(AsmStr);
2011
2012  SDOperand Chain = getRoot();
2013  SDOperand Flag;
2014
2015  // We fully assign registers here at isel time.  This is not optimal, but
2016  // should work.  For register classes that correspond to LLVM classes, we
2017  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
2018  // over the constraints, collecting fixed registers that we know we can't use.
2019  std::set<unsigned> OutputRegs, InputRegs;
2020  unsigned OpNum = 1;
2021  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2022    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2023    std::string &ConstraintCode = Constraints[i].Codes[0];
2024
2025    MVT::ValueType OpVT;
2026
2027    // Compute the value type for each operand and add it to ConstraintVTs.
2028    switch (Constraints[i].Type) {
2029    case InlineAsm::isOutput:
2030      if (!Constraints[i].isIndirectOutput) {
2031        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2032        OpVT = TLI.getValueType(I.getType());
2033      } else {
2034        const Type *OpTy = I.getOperand(OpNum)->getType();
2035        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2036        OpNum++;  // Consumes a call operand.
2037      }
2038      break;
2039    case InlineAsm::isInput:
2040      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2041      OpNum++;  // Consumes a call operand.
2042      break;
2043    case InlineAsm::isClobber:
2044      OpVT = MVT::Other;
2045      break;
2046    }
2047
2048    ConstraintVTs.push_back(OpVT);
2049
2050    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2051      continue;  // Not assigned a fixed reg.
2052
2053    // Build a list of regs that this operand uses.  This always has a single
2054    // element for promoted/expanded operands.
2055    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2056                                             false, false,
2057                                             OutputRegs, InputRegs);
2058
2059    switch (Constraints[i].Type) {
2060    case InlineAsm::isOutput:
2061      // We can't assign any other output to this register.
2062      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2063      // If this is an early-clobber output, it cannot be assigned to the same
2064      // value as the input reg.
2065      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2066        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2067      break;
2068    case InlineAsm::isInput:
2069      // We can't assign any other input to this register.
2070      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2071      break;
2072    case InlineAsm::isClobber:
2073      // Clobbered regs cannot be used as inputs or outputs.
2074      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2075      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2076      break;
2077    }
2078  }
2079
2080  // Loop over all of the inputs, copying the operand values into the
2081  // appropriate registers and processing the output regs.
2082  RegsForValue RetValRegs;
2083  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2084  OpNum = 1;
2085
2086  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2087    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2088    std::string &ConstraintCode = Constraints[i].Codes[0];
2089
2090    switch (Constraints[i].Type) {
2091    case InlineAsm::isOutput: {
2092      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2093      if (ConstraintCode.size() == 1)   // not a physreg name.
2094        CTy = TLI.getConstraintType(ConstraintCode[0]);
2095
2096      if (CTy == TargetLowering::C_Memory) {
2097        // Memory output.
2098        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2099
2100        // Check that the operand (the address to store to) isn't a float.
2101        if (!MVT::isInteger(InOperandVal.getValueType()))
2102          assert(0 && "MATCH FAIL!");
2103
2104        if (!Constraints[i].isIndirectOutput)
2105          assert(0 && "MATCH FAIL!");
2106
2107        OpNum++;  // Consumes a call operand.
2108
2109        // Extend/truncate to the right pointer type if needed.
2110        MVT::ValueType PtrType = TLI.getPointerTy();
2111        if (InOperandVal.getValueType() < PtrType)
2112          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2113        else if (InOperandVal.getValueType() > PtrType)
2114          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2115
2116        // Add information to the INLINEASM node to know about this output.
2117        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2118        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2119        AsmNodeOperands.push_back(InOperandVal);
2120        break;
2121      }
2122
2123      // Otherwise, this is a register output.
2124      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2125
2126      // If this is an early-clobber output, or if there is an input
2127      // constraint that matches this, we need to reserve the input register
2128      // so no other inputs allocate to it.
2129      bool UsesInputRegister = false;
2130      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2131        UsesInputRegister = true;
2132
2133      // Copy the output from the appropriate register.  Find a register that
2134      // we can use.
2135      RegsForValue Regs =
2136        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2137                             true, UsesInputRegister,
2138                             OutputRegs, InputRegs);
2139      assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
2140
2141      if (!Constraints[i].isIndirectOutput) {
2142        assert(RetValRegs.Regs.empty() &&
2143               "Cannot have multiple output constraints yet!");
2144        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2145        RetValRegs = Regs;
2146      } else {
2147        IndirectStoresToEmit.push_back(std::make_pair(Regs,
2148                                                      I.getOperand(OpNum)));
2149        OpNum++;  // Consumes a call operand.
2150      }
2151
2152      // Add information to the INLINEASM node to know that this register is
2153      // set.
2154      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
2155      break;
2156    }
2157    case InlineAsm::isInput: {
2158      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2159      OpNum++;  // Consumes a call operand.
2160
2161      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
2162        // If this is required to match an output register we have already set,
2163        // just use its register.
2164        unsigned OperandNo = atoi(ConstraintCode.c_str());
2165
2166        // Scan until we find the definition we already emitted of this operand.
2167        // When we find it, create a RegsForValue operand.
2168        unsigned CurOp = 2;  // The first operand.
2169        for (; OperandNo; --OperandNo) {
2170          // Advance to the next operand.
2171          unsigned NumOps =
2172            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2173          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
2174                  (NumOps & 7) == 4 /*MEM*/) &&
2175                 "Skipped past definitions?");
2176          CurOp += (NumOps>>3)+1;
2177        }
2178
2179        unsigned NumOps =
2180          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2181        assert((NumOps & 7) == 2 /*REGDEF*/ &&
2182               "Skipped past definitions?");
2183
2184        // Add NumOps>>3 registers to MatchedRegs.
2185        RegsForValue MatchedRegs;
2186        MatchedRegs.ValueVT = InOperandVal.getValueType();
2187        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
2188        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
2189          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
2190          MatchedRegs.Regs.push_back(Reg);
2191        }
2192
2193        // Use the produced MatchedRegs object to
2194        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
2195                                  TLI.getPointerTy());
2196        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2197        break;
2198      }
2199
2200      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2201      if (ConstraintCode.size() == 1)   // not a physreg name.
2202        CTy = TLI.getConstraintType(ConstraintCode[0]);
2203
2204      if (CTy == TargetLowering::C_Other) {
2205        if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
2206          assert(0 && "MATCH FAIL!");
2207
2208        // Add information to the INLINEASM node to know about this input.
2209        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2210        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2211        AsmNodeOperands.push_back(InOperandVal);
2212        break;
2213      } else if (CTy == TargetLowering::C_Memory) {
2214        // Memory input.
2215
2216        // Check that the operand isn't a float.
2217        if (!MVT::isInteger(InOperandVal.getValueType()))
2218          assert(0 && "MATCH FAIL!");
2219
2220        // Extend/truncate to the right pointer type if needed.
2221        MVT::ValueType PtrType = TLI.getPointerTy();
2222        if (InOperandVal.getValueType() < PtrType)
2223          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2224        else if (InOperandVal.getValueType() > PtrType)
2225          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2226
2227        // Add information to the INLINEASM node to know about this input.
2228        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2229        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2230        AsmNodeOperands.push_back(InOperandVal);
2231        break;
2232      }
2233
2234      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2235
2236      // Copy the input into the appropriate registers.
2237      RegsForValue InRegs =
2238        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2239                             false, true, OutputRegs, InputRegs);
2240      // FIXME: should be match fail.
2241      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2242
2243      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
2244
2245      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2246      break;
2247    }
2248    case InlineAsm::isClobber: {
2249      RegsForValue ClobberedRegs =
2250        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2251                             OutputRegs, InputRegs);
2252      // Add the clobbered value to the operand list, so that the register
2253      // allocator is aware that the physreg got clobbered.
2254      if (!ClobberedRegs.Regs.empty())
2255        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2256      break;
2257    }
2258    }
2259  }
2260
2261  // Finish up input operands.
2262  AsmNodeOperands[0] = Chain;
2263  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2264
2265  Chain = DAG.getNode(ISD::INLINEASM,
2266                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
2267                      &AsmNodeOperands[0], AsmNodeOperands.size());
2268  Flag = Chain.getValue(1);
2269
2270  // If this asm returns a register value, copy the result from that register
2271  // and set it as the value of the call.
2272  if (!RetValRegs.Regs.empty())
2273    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2274
2275  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2276
2277  // Process indirect outputs, first output all of the flagged copies out of
2278  // physregs.
2279  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2280    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2281    Value *Ptr = IndirectStoresToEmit[i].second;
2282    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2283    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2284  }
2285
2286  // Emit the non-flagged stores from the physregs.
2287  SmallVector<SDOperand, 8> OutChains;
2288  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2289    OutChains.push_back(DAG.getStore(Chain,  StoresToEmit[i].first,
2290                                    getValue(StoresToEmit[i].second),
2291                                    StoresToEmit[i].second, 0));
2292  if (!OutChains.empty())
2293    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2294                        &OutChains[0], OutChains.size());
2295  DAG.setRoot(Chain);
2296}
2297
2298
2299void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2300  SDOperand Src = getValue(I.getOperand(0));
2301
2302  MVT::ValueType IntPtr = TLI.getPointerTy();
2303
2304  if (IntPtr < Src.getValueType())
2305    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2306  else if (IntPtr > Src.getValueType())
2307    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2308
2309  // Scale the source by the type size.
2310  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
2311  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2312                    Src, getIntPtrConstant(ElementSize));
2313
2314  std::vector<std::pair<SDOperand, const Type*> > Args;
2315  Args.push_back(std::make_pair(Src, TLI.getTargetData()->getIntPtrType()));
2316
2317  std::pair<SDOperand,SDOperand> Result =
2318    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
2319                    DAG.getExternalSymbol("malloc", IntPtr),
2320                    Args, DAG);
2321  setValue(&I, Result.first);  // Pointers always fit in registers
2322  DAG.setRoot(Result.second);
2323}
2324
2325void SelectionDAGLowering::visitFree(FreeInst &I) {
2326  std::vector<std::pair<SDOperand, const Type*> > Args;
2327  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
2328                                TLI.getTargetData()->getIntPtrType()));
2329  MVT::ValueType IntPtr = TLI.getPointerTy();
2330  std::pair<SDOperand,SDOperand> Result =
2331    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
2332                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2333  DAG.setRoot(Result.second);
2334}
2335
2336// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2337// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2338// instructions are special in various ways, which require special support to
2339// insert.  The specified MachineInstr is created but not inserted into any
2340// basic blocks, and the scheduler passes ownership of it to this method.
2341MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2342                                                       MachineBasicBlock *MBB) {
2343  std::cerr << "If a target marks an instruction with "
2344               "'usesCustomDAGSchedInserter', it must implement "
2345               "TargetLowering::InsertAtEndOfBasicBlock!\n";
2346  abort();
2347  return 0;
2348}
2349
2350void SelectionDAGLowering::visitVAStart(CallInst &I) {
2351  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2352                          getValue(I.getOperand(1)),
2353                          DAG.getSrcValue(I.getOperand(1))));
2354}
2355
2356void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2357  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2358                             getValue(I.getOperand(0)),
2359                             DAG.getSrcValue(I.getOperand(0)));
2360  setValue(&I, V);
2361  DAG.setRoot(V.getValue(1));
2362}
2363
2364void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2365  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2366                          getValue(I.getOperand(1)),
2367                          DAG.getSrcValue(I.getOperand(1))));
2368}
2369
2370void SelectionDAGLowering::visitVACopy(CallInst &I) {
2371  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2372                          getValue(I.getOperand(1)),
2373                          getValue(I.getOperand(2)),
2374                          DAG.getSrcValue(I.getOperand(1)),
2375                          DAG.getSrcValue(I.getOperand(2))));
2376}
2377
2378/// TargetLowering::LowerArguments - This is the default LowerArguments
2379/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
2380/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
2381/// integrated into SDISel.
2382std::vector<SDOperand>
2383TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
2384  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
2385  std::vector<SDOperand> Ops;
2386  Ops.push_back(DAG.getRoot());
2387  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
2388  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
2389
2390  // Add one result value for each formal argument.
2391  std::vector<MVT::ValueType> RetVals;
2392  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2393    MVT::ValueType VT = getValueType(I->getType());
2394
2395    switch (getTypeAction(VT)) {
2396    default: assert(0 && "Unknown type action!");
2397    case Legal:
2398      RetVals.push_back(VT);
2399      break;
2400    case Promote:
2401      RetVals.push_back(getTypeToTransformTo(VT));
2402      break;
2403    case Expand:
2404      if (VT != MVT::Vector) {
2405        // If this is a large integer, it needs to be broken up into small
2406        // integers.  Figure out what the destination type is and how many small
2407        // integers it turns into.
2408        MVT::ValueType NVT = getTypeToTransformTo(VT);
2409        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2410        for (unsigned i = 0; i != NumVals; ++i)
2411          RetVals.push_back(NVT);
2412      } else {
2413        // Otherwise, this is a vector type.  We only support legal vectors
2414        // right now.
2415        unsigned NumElems = cast<PackedType>(I->getType())->getNumElements();
2416        const Type *EltTy = cast<PackedType>(I->getType())->getElementType();
2417
2418        // Figure out if there is a Packed type corresponding to this Vector
2419        // type.  If so, convert to the packed type.
2420        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2421        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2422          RetVals.push_back(TVT);
2423        } else {
2424          assert(0 && "Don't support illegal by-val vector arguments yet!");
2425        }
2426      }
2427      break;
2428    }
2429  }
2430
2431  RetVals.push_back(MVT::Other);
2432
2433  // Create the node.
2434  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
2435                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
2436                               &Ops[0], Ops.size()).Val;
2437
2438  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
2439
2440  // Set up the return result vector.
2441  Ops.clear();
2442  unsigned i = 0;
2443  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2444    MVT::ValueType VT = getValueType(I->getType());
2445
2446    switch (getTypeAction(VT)) {
2447    default: assert(0 && "Unknown type action!");
2448    case Legal:
2449      Ops.push_back(SDOperand(Result, i++));
2450      break;
2451    case Promote: {
2452      SDOperand Op(Result, i++);
2453      if (MVT::isInteger(VT)) {
2454        unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext
2455                                                     : ISD::AssertZext;
2456        Op = DAG.getNode(AssertOp, Op.getValueType(), Op, DAG.getValueType(VT));
2457        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2458      } else {
2459        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2460        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
2461      }
2462      Ops.push_back(Op);
2463      break;
2464    }
2465    case Expand:
2466      if (VT != MVT::Vector) {
2467        // If this is a large integer, it needs to be reassembled from small
2468        // integers.  Figure out what the source elt type is and how many small
2469        // integers it is.
2470        MVT::ValueType NVT = getTypeToTransformTo(VT);
2471        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2472        if (NumVals == 2) {
2473          SDOperand Lo = SDOperand(Result, i++);
2474          SDOperand Hi = SDOperand(Result, i++);
2475
2476          if (!isLittleEndian())
2477            std::swap(Lo, Hi);
2478
2479          Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi));
2480        } else {
2481          // Value scalarized into many values.  Unimp for now.
2482          assert(0 && "Cannot expand i64 -> i16 yet!");
2483        }
2484      } else {
2485        // Otherwise, this is a vector type.  We only support legal vectors
2486        // right now.
2487        const PackedType *PTy = cast<PackedType>(I->getType());
2488        unsigned NumElems = PTy->getNumElements();
2489        const Type *EltTy = PTy->getElementType();
2490
2491        // Figure out if there is a Packed type corresponding to this Vector
2492        // type.  If so, convert to the packed type.
2493        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2494        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2495          SDOperand N = SDOperand(Result, i++);
2496          // Handle copies from generic vectors to registers.
2497          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
2498                          DAG.getConstant(NumElems, MVT::i32),
2499                          DAG.getValueType(getValueType(EltTy)));
2500          Ops.push_back(N);
2501        } else {
2502          assert(0 && "Don't support illegal by-val vector arguments yet!");
2503          abort();
2504        }
2505      }
2506      break;
2507    }
2508  }
2509  return Ops;
2510}
2511
2512
2513/// TargetLowering::LowerCallTo - This is the default LowerCallTo
2514/// implementation, which just inserts an ISD::CALL node, which is later custom
2515/// lowered by the target to something concrete.  FIXME: When all targets are
2516/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
2517std::pair<SDOperand, SDOperand>
2518TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
2519                            unsigned CallingConv, bool isTailCall,
2520                            SDOperand Callee,
2521                            ArgListTy &Args, SelectionDAG &DAG) {
2522  SmallVector<SDOperand, 32> Ops;
2523  Ops.push_back(Chain);   // Op#0 - Chain
2524  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
2525  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
2526  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
2527  Ops.push_back(Callee);
2528
2529  // Handle all of the outgoing arguments.
2530  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
2531    MVT::ValueType VT = getValueType(Args[i].second);
2532    SDOperand Op = Args[i].first;
2533    bool isSigned = Args[i].second->isSigned();
2534    switch (getTypeAction(VT)) {
2535    default: assert(0 && "Unknown type action!");
2536    case Legal:
2537      Ops.push_back(Op);
2538      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2539      break;
2540    case Promote:
2541      if (MVT::isInteger(VT)) {
2542        unsigned ExtOp = isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2543        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
2544      } else {
2545        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2546        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
2547      }
2548      Ops.push_back(Op);
2549      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2550      break;
2551    case Expand:
2552      if (VT != MVT::Vector) {
2553        // If this is a large integer, it needs to be broken down into small
2554        // integers.  Figure out what the source elt type is and how many small
2555        // integers it is.
2556        MVT::ValueType NVT = getTypeToTransformTo(VT);
2557        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2558        if (NumVals == 2) {
2559          SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
2560                                     DAG.getConstant(0, getPointerTy()));
2561          SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
2562                                     DAG.getConstant(1, getPointerTy()));
2563          if (!isLittleEndian())
2564            std::swap(Lo, Hi);
2565
2566          Ops.push_back(Lo);
2567          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2568          Ops.push_back(Hi);
2569          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2570        } else {
2571          // Value scalarized into many values.  Unimp for now.
2572          assert(0 && "Cannot expand i64 -> i16 yet!");
2573        }
2574      } else {
2575        // Otherwise, this is a vector type.  We only support legal vectors
2576        // right now.
2577        const PackedType *PTy = cast<PackedType>(Args[i].second);
2578        unsigned NumElems = PTy->getNumElements();
2579        const Type *EltTy = PTy->getElementType();
2580
2581        // Figure out if there is a Packed type corresponding to this Vector
2582        // type.  If so, convert to the packed type.
2583        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2584        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2585          // Insert a VBIT_CONVERT of the MVT::Vector type to the packed type.
2586          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
2587          Ops.push_back(Op);
2588          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2589        } else {
2590          assert(0 && "Don't support illegal by-val vector call args yet!");
2591          abort();
2592        }
2593      }
2594      break;
2595    }
2596  }
2597
2598  // Figure out the result value types.
2599  SmallVector<MVT::ValueType, 4> RetTys;
2600
2601  if (RetTy != Type::VoidTy) {
2602    MVT::ValueType VT = getValueType(RetTy);
2603    switch (getTypeAction(VT)) {
2604    default: assert(0 && "Unknown type action!");
2605    case Legal:
2606      RetTys.push_back(VT);
2607      break;
2608    case Promote:
2609      RetTys.push_back(getTypeToTransformTo(VT));
2610      break;
2611    case Expand:
2612      if (VT != MVT::Vector) {
2613        // If this is a large integer, it needs to be reassembled from small
2614        // integers.  Figure out what the source elt type is and how many small
2615        // integers it is.
2616        MVT::ValueType NVT = getTypeToTransformTo(VT);
2617        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2618        for (unsigned i = 0; i != NumVals; ++i)
2619          RetTys.push_back(NVT);
2620      } else {
2621        // Otherwise, this is a vector type.  We only support legal vectors
2622        // right now.
2623        const PackedType *PTy = cast<PackedType>(RetTy);
2624        unsigned NumElems = PTy->getNumElements();
2625        const Type *EltTy = PTy->getElementType();
2626
2627        // Figure out if there is a Packed type corresponding to this Vector
2628        // type.  If so, convert to the packed type.
2629        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2630        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2631          RetTys.push_back(TVT);
2632        } else {
2633          assert(0 && "Don't support illegal by-val vector call results yet!");
2634          abort();
2635        }
2636      }
2637    }
2638  }
2639
2640  RetTys.push_back(MVT::Other);  // Always has a chain.
2641
2642  // Finally, create the CALL node.
2643  SDOperand Res = DAG.getNode(ISD::CALL,
2644                              DAG.getVTList(&RetTys[0], RetTys.size()),
2645                              &Ops[0], Ops.size());
2646
2647  // This returns a pair of operands.  The first element is the
2648  // return value for the function (if RetTy is not VoidTy).  The second
2649  // element is the outgoing token chain.
2650  SDOperand ResVal;
2651  if (RetTys.size() != 1) {
2652    MVT::ValueType VT = getValueType(RetTy);
2653    if (RetTys.size() == 2) {
2654      ResVal = Res;
2655
2656      // If this value was promoted, truncate it down.
2657      if (ResVal.getValueType() != VT) {
2658        if (VT == MVT::Vector) {
2659          // Insert a VBITCONVERT to convert from the packed result type to the
2660          // MVT::Vector type.
2661          unsigned NumElems = cast<PackedType>(RetTy)->getNumElements();
2662          const Type *EltTy = cast<PackedType>(RetTy)->getElementType();
2663
2664          // Figure out if there is a Packed type corresponding to this Vector
2665          // type.  If so, convert to the packed type.
2666          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2667          if (TVT != MVT::Other && isTypeLegal(TVT)) {
2668            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
2669            // "N x PTyElementVT" MVT::Vector type.
2670            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
2671                                 DAG.getConstant(NumElems, MVT::i32),
2672                                 DAG.getValueType(getValueType(EltTy)));
2673          } else {
2674            abort();
2675          }
2676        } else if (MVT::isInteger(VT)) {
2677          unsigned AssertOp = RetTy->isSigned() ?
2678                                  ISD::AssertSext : ISD::AssertZext;
2679          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
2680                               DAG.getValueType(VT));
2681          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
2682        } else {
2683          assert(MVT::isFloatingPoint(VT));
2684          ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
2685        }
2686      }
2687    } else if (RetTys.size() == 3) {
2688      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
2689                           Res.getValue(0), Res.getValue(1));
2690
2691    } else {
2692      assert(0 && "Case not handled yet!");
2693    }
2694  }
2695
2696  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
2697}
2698
2699
2700
2701// It is always conservatively correct for llvm.returnaddress and
2702// llvm.frameaddress to return 0.
2703//
2704// FIXME: Change this to insert a FRAMEADDR/RETURNADDR node, and have that be
2705// expanded to 0 if the target wants.
2706std::pair<SDOperand, SDOperand>
2707TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
2708                                        unsigned Depth, SelectionDAG &DAG) {
2709  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
2710}
2711
2712SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2713  assert(0 && "LowerOperation not implemented for this target!");
2714  abort();
2715  return SDOperand();
2716}
2717
2718SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
2719                                                 SelectionDAG &DAG) {
2720  assert(0 && "CustomPromoteOperation not implemented for this target!");
2721  abort();
2722  return SDOperand();
2723}
2724
2725void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
2726  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
2727  std::pair<SDOperand,SDOperand> Result =
2728    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
2729  setValue(&I, Result.first);
2730  DAG.setRoot(Result.second);
2731}
2732
2733/// getMemsetValue - Vectorized representation of the memset value
2734/// operand.
2735static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2736                                SelectionDAG &DAG) {
2737  MVT::ValueType CurVT = VT;
2738  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2739    uint64_t Val   = C->getValue() & 255;
2740    unsigned Shift = 8;
2741    while (CurVT != MVT::i8) {
2742      Val = (Val << Shift) | Val;
2743      Shift <<= 1;
2744      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2745    }
2746    return DAG.getConstant(Val, VT);
2747  } else {
2748    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2749    unsigned Shift = 8;
2750    while (CurVT != MVT::i8) {
2751      Value =
2752        DAG.getNode(ISD::OR, VT,
2753                    DAG.getNode(ISD::SHL, VT, Value,
2754                                DAG.getConstant(Shift, MVT::i8)), Value);
2755      Shift <<= 1;
2756      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2757    }
2758
2759    return Value;
2760  }
2761}
2762
2763/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2764/// used when a memcpy is turned into a memset when the source is a constant
2765/// string ptr.
2766static SDOperand getMemsetStringVal(MVT::ValueType VT,
2767                                    SelectionDAG &DAG, TargetLowering &TLI,
2768                                    std::string &Str, unsigned Offset) {
2769  MVT::ValueType CurVT = VT;
2770  uint64_t Val = 0;
2771  unsigned MSB = getSizeInBits(VT) / 8;
2772  if (TLI.isLittleEndian())
2773    Offset = Offset + MSB - 1;
2774  for (unsigned i = 0; i != MSB; ++i) {
2775    Val = (Val << 8) | Str[Offset];
2776    Offset += TLI.isLittleEndian() ? -1 : 1;
2777  }
2778  return DAG.getConstant(Val, VT);
2779}
2780
2781/// getMemBasePlusOffset - Returns base and offset node for the
2782static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2783                                      SelectionDAG &DAG, TargetLowering &TLI) {
2784  MVT::ValueType VT = Base.getValueType();
2785  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2786}
2787
2788/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2789/// to replace the memset / memcpy is below the threshold. It also returns the
2790/// types of the sequence of  memory ops to perform memset / memcpy.
2791static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2792                                     unsigned Limit, uint64_t Size,
2793                                     unsigned Align, TargetLowering &TLI) {
2794  MVT::ValueType VT;
2795
2796  if (TLI.allowsUnalignedMemoryAccesses()) {
2797    VT = MVT::i64;
2798  } else {
2799    switch (Align & 7) {
2800    case 0:
2801      VT = MVT::i64;
2802      break;
2803    case 4:
2804      VT = MVT::i32;
2805      break;
2806    case 2:
2807      VT = MVT::i16;
2808      break;
2809    default:
2810      VT = MVT::i8;
2811      break;
2812    }
2813  }
2814
2815  MVT::ValueType LVT = MVT::i64;
2816  while (!TLI.isTypeLegal(LVT))
2817    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2818  assert(MVT::isInteger(LVT));
2819
2820  if (VT > LVT)
2821    VT = LVT;
2822
2823  unsigned NumMemOps = 0;
2824  while (Size != 0) {
2825    unsigned VTSize = getSizeInBits(VT) / 8;
2826    while (VTSize > Size) {
2827      VT = (MVT::ValueType)((unsigned)VT - 1);
2828      VTSize >>= 1;
2829    }
2830    assert(MVT::isInteger(VT));
2831
2832    if (++NumMemOps > Limit)
2833      return false;
2834    MemOps.push_back(VT);
2835    Size -= VTSize;
2836  }
2837
2838  return true;
2839}
2840
2841void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
2842  SDOperand Op1 = getValue(I.getOperand(1));
2843  SDOperand Op2 = getValue(I.getOperand(2));
2844  SDOperand Op3 = getValue(I.getOperand(3));
2845  SDOperand Op4 = getValue(I.getOperand(4));
2846  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
2847  if (Align == 0) Align = 1;
2848
2849  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
2850    std::vector<MVT::ValueType> MemOps;
2851
2852    // Expand memset / memcpy to a series of load / store ops
2853    // if the size operand falls below a certain threshold.
2854    SmallVector<SDOperand, 8> OutChains;
2855    switch (Op) {
2856    default: break;  // Do nothing for now.
2857    case ISD::MEMSET: {
2858      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2859                                   Size->getValue(), Align, TLI)) {
2860        unsigned NumMemOps = MemOps.size();
2861        unsigned Offset = 0;
2862        for (unsigned i = 0; i < NumMemOps; i++) {
2863          MVT::ValueType VT = MemOps[i];
2864          unsigned VTSize = getSizeInBits(VT) / 8;
2865          SDOperand Value = getMemsetValue(Op2, VT, DAG);
2866          SDOperand Store = DAG.getStore(getRoot(), Value,
2867                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
2868                                         I.getOperand(1), Offset);
2869          OutChains.push_back(Store);
2870          Offset += VTSize;
2871        }
2872      }
2873      break;
2874    }
2875    case ISD::MEMCPY: {
2876      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
2877                                   Size->getValue(), Align, TLI)) {
2878        unsigned NumMemOps = MemOps.size();
2879        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
2880        GlobalAddressSDNode *G = NULL;
2881        std::string Str;
2882        bool CopyFromStr = false;
2883
2884        if (Op2.getOpcode() == ISD::GlobalAddress)
2885          G = cast<GlobalAddressSDNode>(Op2);
2886        else if (Op2.getOpcode() == ISD::ADD &&
2887                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2888                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
2889          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
2890          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
2891        }
2892        if (G) {
2893          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2894          if (GV) {
2895            Str = GV->getStringValue(false);
2896            if (!Str.empty()) {
2897              CopyFromStr = true;
2898              SrcOff += SrcDelta;
2899            }
2900          }
2901        }
2902
2903        for (unsigned i = 0; i < NumMemOps; i++) {
2904          MVT::ValueType VT = MemOps[i];
2905          unsigned VTSize = getSizeInBits(VT) / 8;
2906          SDOperand Value, Chain, Store;
2907
2908          if (CopyFromStr) {
2909            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2910            Chain = getRoot();
2911            Store =
2912              DAG.getStore(Chain, Value,
2913                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2914                           I.getOperand(1), DstOff);
2915          } else {
2916            Value = DAG.getLoad(VT, getRoot(),
2917                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
2918                        I.getOperand(2), SrcOff);
2919            Chain = Value.getValue(1);
2920            Store =
2921              DAG.getStore(Chain, Value,
2922                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2923                           I.getOperand(1), DstOff);
2924          }
2925          OutChains.push_back(Store);
2926          SrcOff += VTSize;
2927          DstOff += VTSize;
2928        }
2929      }
2930      break;
2931    }
2932    }
2933
2934    if (!OutChains.empty()) {
2935      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
2936                  &OutChains[0], OutChains.size()));
2937      return;
2938    }
2939  }
2940
2941  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
2942}
2943
2944//===----------------------------------------------------------------------===//
2945// SelectionDAGISel code
2946//===----------------------------------------------------------------------===//
2947
2948unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
2949  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
2950}
2951
2952void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
2953  // FIXME: we only modify the CFG to split critical edges.  This
2954  // updates dom and loop info.
2955  AU.addRequired<AliasAnalysis>();
2956}
2957
2958
2959/// OptimizeNoopCopyExpression - We have determined that the specified cast
2960/// instruction is a noop copy (e.g. it's casting from one pointer type to
2961/// another, int->uint, or int->sbyte on PPC.
2962///
2963/// Return true if any changes are made.
2964static bool OptimizeNoopCopyExpression(CastInst *CI) {
2965  BasicBlock *DefBB = CI->getParent();
2966
2967  /// InsertedCasts - Only insert a cast in each block once.
2968  std::map<BasicBlock*, CastInst*> InsertedCasts;
2969
2970  bool MadeChange = false;
2971  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
2972       UI != E; ) {
2973    Use &TheUse = UI.getUse();
2974    Instruction *User = cast<Instruction>(*UI);
2975
2976    // Figure out which BB this cast is used in.  For PHI's this is the
2977    // appropriate predecessor block.
2978    BasicBlock *UserBB = User->getParent();
2979    if (PHINode *PN = dyn_cast<PHINode>(User)) {
2980      unsigned OpVal = UI.getOperandNo()/2;
2981      UserBB = PN->getIncomingBlock(OpVal);
2982    }
2983
2984    // Preincrement use iterator so we don't invalidate it.
2985    ++UI;
2986
2987    // If this user is in the same block as the cast, don't change the cast.
2988    if (UserBB == DefBB) continue;
2989
2990    // If we have already inserted a cast into this block, use it.
2991    CastInst *&InsertedCast = InsertedCasts[UserBB];
2992
2993    if (!InsertedCast) {
2994      BasicBlock::iterator InsertPt = UserBB->begin();
2995      while (isa<PHINode>(InsertPt)) ++InsertPt;
2996
2997      InsertedCast =
2998        new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
2999      MadeChange = true;
3000    }
3001
3002    // Replace a use of the cast with a use of the new casat.
3003    TheUse = InsertedCast;
3004  }
3005
3006  // If we removed all uses, nuke the cast.
3007  if (CI->use_empty())
3008    CI->eraseFromParent();
3009
3010  return MadeChange;
3011}
3012
3013/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
3014/// casting to the type of GEPI.
3015static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
3016                                         Instruction *GEPI, Value *Ptr,
3017                                         Value *PtrOffset) {
3018  if (V) return V;   // Already computed.
3019
3020  BasicBlock::iterator InsertPt;
3021  if (BB == GEPI->getParent()) {
3022    // If insert into the GEP's block, insert right after the GEP.
3023    InsertPt = GEPI;
3024    ++InsertPt;
3025  } else {
3026    // Otherwise, insert at the top of BB, after any PHI nodes
3027    InsertPt = BB->begin();
3028    while (isa<PHINode>(InsertPt)) ++InsertPt;
3029  }
3030
3031  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
3032  // BB so that there is only one value live across basic blocks (the cast
3033  // operand).
3034  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
3035    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
3036      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
3037
3038  // Add the offset, cast it to the right type.
3039  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
3040  return V = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
3041}
3042
3043/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
3044/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
3045/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
3046/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
3047/// sink PtrOffset into user blocks where doing so will likely allow us to fold
3048/// the constant add into a load or store instruction.  Additionally, if a user
3049/// is a pointer-pointer cast, we look through it to find its users.
3050static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
3051                                 Constant *PtrOffset, BasicBlock *DefBB,
3052                                 GetElementPtrInst *GEPI,
3053                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
3054  while (!RepPtr->use_empty()) {
3055    Instruction *User = cast<Instruction>(RepPtr->use_back());
3056
3057    // If the user is a Pointer-Pointer cast, recurse.
3058    if (isa<CastInst>(User) && isa<PointerType>(User->getType())) {
3059      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3060
3061      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
3062      // could invalidate an iterator.
3063      User->setOperand(0, UndefValue::get(RepPtr->getType()));
3064      continue;
3065    }
3066
3067    // If this is a load of the pointer, or a store through the pointer, emit
3068    // the increment into the load/store block.
3069    Instruction *NewVal;
3070    if (isa<LoadInst>(User) ||
3071        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
3072      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
3073                                    User->getParent(), GEPI,
3074                                    Ptr, PtrOffset);
3075    } else {
3076      // If this use is not foldable into the addressing mode, use a version
3077      // emitted in the GEP block.
3078      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
3079                                    Ptr, PtrOffset);
3080    }
3081
3082    if (GEPI->getType() != RepPtr->getType()) {
3083      BasicBlock::iterator IP = NewVal;
3084      ++IP;
3085      NewVal = new CastInst(NewVal, RepPtr->getType(), "", IP);
3086    }
3087    User->replaceUsesOfWith(RepPtr, NewVal);
3088  }
3089}
3090
3091
3092/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
3093/// selection, we want to be a bit careful about some things.  In particular, if
3094/// we have a GEP instruction that is used in a different block than it is
3095/// defined, the addressing expression of the GEP cannot be folded into loads or
3096/// stores that use it.  In this case, decompose the GEP and move constant
3097/// indices into blocks that use it.
3098static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
3099                                  const TargetData *TD) {
3100  // If this GEP is only used inside the block it is defined in, there is no
3101  // need to rewrite it.
3102  bool isUsedOutsideDefBB = false;
3103  BasicBlock *DefBB = GEPI->getParent();
3104  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
3105       UI != E; ++UI) {
3106    if (cast<Instruction>(*UI)->getParent() != DefBB) {
3107      isUsedOutsideDefBB = true;
3108      break;
3109    }
3110  }
3111  if (!isUsedOutsideDefBB) return false;
3112
3113  // If this GEP has no non-zero constant indices, there is nothing we can do,
3114  // ignore it.
3115  bool hasConstantIndex = false;
3116  bool hasVariableIndex = false;
3117  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3118       E = GEPI->op_end(); OI != E; ++OI) {
3119    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
3120      if (CI->getRawValue()) {
3121        hasConstantIndex = true;
3122        break;
3123      }
3124    } else {
3125      hasVariableIndex = true;
3126    }
3127  }
3128
3129  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
3130  if (!hasConstantIndex && !hasVariableIndex) {
3131    Value *NC = new CastInst(GEPI->getOperand(0), GEPI->getType(),
3132                             GEPI->getName(), GEPI);
3133    GEPI->replaceAllUsesWith(NC);
3134    GEPI->eraseFromParent();
3135    return true;
3136  }
3137
3138  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
3139  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
3140    return false;
3141
3142  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
3143  // constant offset (which we now know is non-zero) and deal with it later.
3144  uint64_t ConstantOffset = 0;
3145  const Type *UIntPtrTy = TD->getIntPtrType();
3146  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
3147  const Type *Ty = GEPI->getOperand(0)->getType();
3148
3149  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3150       E = GEPI->op_end(); OI != E; ++OI) {
3151    Value *Idx = *OI;
3152    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
3153      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
3154      if (Field)
3155        ConstantOffset += TD->getStructLayout(StTy)->MemberOffsets[Field];
3156      Ty = StTy->getElementType(Field);
3157    } else {
3158      Ty = cast<SequentialType>(Ty)->getElementType();
3159
3160      // Handle constant subscripts.
3161      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3162        if (CI->getRawValue() == 0) continue;
3163
3164        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
3165          ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CSI->getValue();
3166        else
3167          ConstantOffset+=TD->getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
3168        continue;
3169      }
3170
3171      // Ptr = Ptr + Idx * ElementSize;
3172
3173      // Cast Idx to UIntPtrTy if needed.
3174      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
3175
3176      uint64_t ElementSize = TD->getTypeSize(Ty);
3177      // Mask off bits that should not be set.
3178      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3179      Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
3180
3181      // Multiply by the element size and add to the base.
3182      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
3183      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
3184    }
3185  }
3186
3187  // Make sure that the offset fits in uintptr_t.
3188  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3189  Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
3190
3191  // Okay, we have now emitted all of the variable index parts to the BB that
3192  // the GEP is defined in.  Loop over all of the using instructions, inserting
3193  // an "add Ptr, ConstantOffset" into each block that uses it and update the
3194  // instruction to use the newly computed value, making GEPI dead.  When the
3195  // user is a load or store instruction address, we emit the add into the user
3196  // block, otherwise we use a canonical version right next to the gep (these
3197  // won't be foldable as addresses, so we might as well share the computation).
3198
3199  std::map<BasicBlock*,Instruction*> InsertedExprs;
3200  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3201
3202  // Finally, the GEP is dead, remove it.
3203  GEPI->eraseFromParent();
3204
3205  return true;
3206}
3207
3208/// SplitCritEdgesForPHIConstants - If this block has any PHI nodes with
3209/// constant operands, and if any of the edges feeding the PHI node are
3210/// critical, split them so that the assignments of a constant to a register
3211/// will not be executed on a path that isn't relevant.
3212void SelectionDAGISel::SplitCritEdgesForPHIConstants(BasicBlock *BB) {
3213  // The most common case is that this is a PHI node with two incoming
3214  // successors handle this case efficiently, because it is simple.
3215  PHINode *PN = cast<PHINode>(BB->begin());
3216  if (PN->getNumIncomingValues() == 2) {
3217    // If neither edge is critical, we never need to split.
3218    if (PN->getIncomingBlock(0)->getTerminator()->getNumSuccessors() == 1 &&
3219        PN->getIncomingBlock(1)->getTerminator()->getNumSuccessors() == 1)
3220      return;
3221
3222    BasicBlock::iterator BBI = BB->begin();
3223    while ((PN = dyn_cast<PHINode>(BBI++))) {
3224      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3225        if (isa<Constant>(PN->getIncomingValue(i)))
3226          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
3227    }
3228    return;
3229  }
3230
3231  // Otherwise, things are a bit trickier.
3232
3233  // BE SMART HERE.
3234
3235  BasicBlock::iterator BBI = BB->begin();
3236  while ((PN = dyn_cast<PHINode>(BBI++))) {
3237    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3238      if (isa<Constant>(PN->getIncomingValue(i)))
3239        SplitCriticalEdge(PN->getIncomingBlock(i), BB);
3240  }
3241}
3242
3243
3244bool SelectionDAGISel::runOnFunction(Function &Fn) {
3245  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
3246  RegMap = MF.getSSARegMap();
3247  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
3248
3249  // First, split all critical edges for PHI nodes with incoming values that are
3250  // constants, this way the load of the constant into a vreg will not be placed
3251  // into MBBs that are used some other way.
3252  //
3253  // In this pass we also look for GEP and cast instructions that are used
3254  // across basic blocks and rewrite them to improve basic-block-at-a-time
3255  // selection.
3256  //
3257  //
3258  bool MadeChange = true;
3259  while (MadeChange) {
3260    MadeChange = false;
3261  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
3262    // If this block has any PHI nodes with constant operands, and if any of the
3263    // edges feeding the PHI node are critical, split them.
3264    if (isa<PHINode>(BB->begin()))
3265      SplitCritEdgesForPHIConstants(BB);
3266
3267    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3268      Instruction *I = BBI++;
3269      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
3270        MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
3271      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
3272        // If the source of the cast is a constant, then this should have
3273        // already been constant folded.  The only reason NOT to constant fold
3274        // it is if something (e.g. LSR) was careful to place the constant
3275        // evaluation in a block other than then one that uses it (e.g. to hoist
3276        // the address of globals out of a loop).  If this is the case, we don't
3277        // want to forward-subst the cast.
3278        if (isa<Constant>(CI->getOperand(0)))
3279          continue;
3280
3281        // If this is a noop copy, sink it into user blocks to reduce the number
3282        // of virtual registers that must be created and coallesced.
3283        MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
3284        MVT::ValueType DstVT = TLI.getValueType(CI->getType());
3285
3286        // This is an fp<->int conversion?
3287        if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
3288          continue;
3289
3290        // If this is an extension, it will be a zero or sign extension, which
3291        // isn't a noop.
3292        if (SrcVT < DstVT) continue;
3293
3294        // If these values will be promoted, find out what they will be promoted
3295        // to.  This helps us consider truncates on PPC as noop copies when they
3296        // are.
3297        if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
3298          SrcVT = TLI.getTypeToTransformTo(SrcVT);
3299        if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
3300          DstVT = TLI.getTypeToTransformTo(DstVT);
3301
3302        // If, after promotion, these are the same types, this is a noop copy.
3303        if (SrcVT == DstVT)
3304          MadeChange |= OptimizeNoopCopyExpression(CI);
3305      }
3306    }
3307  }
3308  }
3309
3310  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
3311
3312  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
3313    SelectBasicBlock(I, MF, FuncInfo);
3314
3315  return true;
3316}
3317
3318
3319SDOperand SelectionDAGISel::
3320CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
3321  SDOperand Op = SDL.getValue(V);
3322  assert((Op.getOpcode() != ISD::CopyFromReg ||
3323          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
3324         "Copy from a reg to the same reg!");
3325
3326  // If this type is not legal, we must make sure to not create an invalid
3327  // register use.
3328  MVT::ValueType SrcVT = Op.getValueType();
3329  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
3330  SelectionDAG &DAG = SDL.DAG;
3331  if (SrcVT == DestVT) {
3332    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
3333  } else if (SrcVT == MVT::Vector) {
3334    // Handle copies from generic vectors to registers.
3335    MVT::ValueType PTyElementVT, PTyLegalElementVT;
3336    unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
3337                                             PTyElementVT, PTyLegalElementVT);
3338
3339    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
3340    // MVT::Vector type.
3341    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
3342                     DAG.getConstant(NE, MVT::i32),
3343                     DAG.getValueType(PTyElementVT));
3344
3345    // Loop over all of the elements of the resultant vector,
3346    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
3347    // copying them into output registers.
3348    SmallVector<SDOperand, 8> OutChains;
3349    SDOperand Root = SDL.getRoot();
3350    for (unsigned i = 0; i != NE; ++i) {
3351      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
3352                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
3353      if (PTyElementVT == PTyLegalElementVT) {
3354        // Elements are legal.
3355        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3356      } else if (PTyLegalElementVT > PTyElementVT) {
3357        // Elements are promoted.
3358        if (MVT::isFloatingPoint(PTyLegalElementVT))
3359          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
3360        else
3361          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
3362        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3363      } else {
3364        // Elements are expanded.
3365        // The src value is expanded into multiple registers.
3366        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3367                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
3368        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3369                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
3370        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
3371        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
3372      }
3373    }
3374    return DAG.getNode(ISD::TokenFactor, MVT::Other,
3375                       &OutChains[0], OutChains.size());
3376  } else if (SrcVT < DestVT) {
3377    // The src value is promoted to the register.
3378    if (MVT::isFloatingPoint(SrcVT))
3379      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
3380    else
3381      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
3382    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
3383  } else  {
3384    // The src value is expanded into multiple registers.
3385    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3386                               Op, DAG.getConstant(0, TLI.getPointerTy()));
3387    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3388                               Op, DAG.getConstant(1, TLI.getPointerTy()));
3389    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
3390    return DAG.getCopyToReg(Op, Reg+1, Hi);
3391  }
3392}
3393
3394void SelectionDAGISel::
3395LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
3396               std::vector<SDOperand> &UnorderedChains) {
3397  // If this is the entry block, emit arguments.
3398  Function &F = *BB->getParent();
3399  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
3400  SDOperand OldRoot = SDL.DAG.getRoot();
3401  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
3402
3403  unsigned a = 0;
3404  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
3405       AI != E; ++AI, ++a)
3406    if (!AI->use_empty()) {
3407      SDL.setValue(AI, Args[a]);
3408
3409      // If this argument is live outside of the entry block, insert a copy from
3410      // whereever we got it to the vreg that other BB's will reference it as.
3411      if (FuncInfo.ValueMap.count(AI)) {
3412        SDOperand Copy =
3413          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
3414        UnorderedChains.push_back(Copy);
3415      }
3416    }
3417
3418  // Finally, if the target has anything special to do, allow it to do so.
3419  // FIXME: this should insert code into the DAG!
3420  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
3421}
3422
3423void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
3424       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
3425                                         FunctionLoweringInfo &FuncInfo) {
3426  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
3427
3428  std::vector<SDOperand> UnorderedChains;
3429
3430  // Lower any arguments needed in this block if this is the entry block.
3431  if (LLVMBB == &LLVMBB->getParent()->front())
3432    LowerArguments(LLVMBB, SDL, UnorderedChains);
3433
3434  BB = FuncInfo.MBBMap[LLVMBB];
3435  SDL.setCurrentBasicBlock(BB);
3436
3437  // Lower all of the non-terminator instructions.
3438  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
3439       I != E; ++I)
3440    SDL.visit(*I);
3441
3442  // Ensure that all instructions which are used outside of their defining
3443  // blocks are available as virtual registers.
3444  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
3445    if (!I->use_empty() && !isa<PHINode>(I)) {
3446      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
3447      if (VMI != FuncInfo.ValueMap.end())
3448        UnorderedChains.push_back(
3449                           CopyValueToVirtualRegister(SDL, I, VMI->second));
3450    }
3451
3452  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
3453  // ensure constants are generated when needed.  Remember the virtual registers
3454  // that need to be added to the Machine PHI nodes as input.  We cannot just
3455  // directly add them, because expansion might result in multiple MBB's for one
3456  // BB.  As such, the start of the BB might correspond to a different MBB than
3457  // the end.
3458  //
3459
3460  // Emit constants only once even if used by multiple PHI nodes.
3461  std::map<Constant*, unsigned> ConstantsOut;
3462
3463  // Check successor nodes PHI nodes that expect a constant to be available from
3464  // this block.
3465  TerminatorInst *TI = LLVMBB->getTerminator();
3466  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
3467    BasicBlock *SuccBB = TI->getSuccessor(succ);
3468    if (!isa<PHINode>(SuccBB->begin())) continue;
3469
3470    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
3471    PHINode *PN;
3472
3473    // At this point we know that there is a 1-1 correspondence between LLVM PHI
3474    // nodes and Machine PHI nodes, but the incoming operands have not been
3475    // emitted yet.
3476    for (BasicBlock::iterator I = SuccBB->begin();
3477         (PN = dyn_cast<PHINode>(I)); ++I)
3478      if (!PN->use_empty()) {
3479        unsigned Reg;
3480        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
3481        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
3482          unsigned &RegOut = ConstantsOut[C];
3483          if (RegOut == 0) {
3484            RegOut = FuncInfo.CreateRegForValue(C);
3485            UnorderedChains.push_back(
3486                             CopyValueToVirtualRegister(SDL, C, RegOut));
3487          }
3488          Reg = RegOut;
3489        } else {
3490          Reg = FuncInfo.ValueMap[PHIOp];
3491          if (Reg == 0) {
3492            assert(isa<AllocaInst>(PHIOp) &&
3493                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
3494                   "Didn't codegen value into a register!??");
3495            Reg = FuncInfo.CreateRegForValue(PHIOp);
3496            UnorderedChains.push_back(
3497                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
3498          }
3499        }
3500
3501        // Remember that this register needs to added to the machine PHI node as
3502        // the input for this MBB.
3503        MVT::ValueType VT = TLI.getValueType(PN->getType());
3504        unsigned NumElements;
3505        if (VT != MVT::Vector)
3506          NumElements = TLI.getNumElements(VT);
3507        else {
3508          MVT::ValueType VT1,VT2;
3509          NumElements =
3510            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
3511                                       VT1, VT2);
3512        }
3513        for (unsigned i = 0, e = NumElements; i != e; ++i)
3514          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
3515      }
3516  }
3517  ConstantsOut.clear();
3518
3519  // Turn all of the unordered chains into one factored node.
3520  if (!UnorderedChains.empty()) {
3521    SDOperand Root = SDL.getRoot();
3522    if (Root.getOpcode() != ISD::EntryToken) {
3523      unsigned i = 0, e = UnorderedChains.size();
3524      for (; i != e; ++i) {
3525        assert(UnorderedChains[i].Val->getNumOperands() > 1);
3526        if (UnorderedChains[i].Val->getOperand(0) == Root)
3527          break;  // Don't add the root if we already indirectly depend on it.
3528      }
3529
3530      if (i == e)
3531        UnorderedChains.push_back(Root);
3532    }
3533    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3534                            &UnorderedChains[0], UnorderedChains.size()));
3535  }
3536
3537  // Lower the terminator after the copies are emitted.
3538  SDL.visit(*LLVMBB->getTerminator());
3539
3540  // Copy over any CaseBlock records that may now exist due to SwitchInst
3541  // lowering, as well as any jump table information.
3542  SwitchCases.clear();
3543  SwitchCases = SDL.SwitchCases;
3544  JT = SDL.JT;
3545
3546  // Make sure the root of the DAG is up-to-date.
3547  DAG.setRoot(SDL.getRoot());
3548}
3549
3550void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
3551  // Get alias analysis for load/store combining.
3552  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
3553
3554  // Run the DAG combiner in pre-legalize mode.
3555  DAG.Combine(false, AA);
3556
3557  DEBUG(std::cerr << "Lowered selection DAG:\n");
3558  DEBUG(DAG.dump());
3559
3560  // Second step, hack on the DAG until it only uses operations and types that
3561  // the target supports.
3562  DAG.Legalize();
3563
3564  DEBUG(std::cerr << "Legalized selection DAG:\n");
3565  DEBUG(DAG.dump());
3566
3567  // Run the DAG combiner in post-legalize mode.
3568  DAG.Combine(true, AA);
3569
3570  if (ViewISelDAGs) DAG.viewGraph();
3571
3572  // Third, instruction select all of the operations to machine code, adding the
3573  // code to the MachineBasicBlock.
3574  InstructionSelectBasicBlock(DAG);
3575
3576  DEBUG(std::cerr << "Selected machine code:\n");
3577  DEBUG(BB->dump());
3578}
3579
3580void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
3581                                        FunctionLoweringInfo &FuncInfo) {
3582  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
3583  {
3584    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3585    CurDAG = &DAG;
3586
3587    // First step, lower LLVM code to some DAG.  This DAG may use operations and
3588    // types that are not supported by the target.
3589    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
3590
3591    // Second step, emit the lowered DAG as machine code.
3592    CodeGenAndEmitDAG(DAG);
3593  }
3594
3595  // Next, now that we know what the last MBB the LLVM BB expanded is, update
3596  // PHI nodes in successors.
3597  if (SwitchCases.empty() && JT.Reg == 0) {
3598    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
3599      MachineInstr *PHI = PHINodesToUpdate[i].first;
3600      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3601             "This is not a machine PHI node that we are updating!");
3602      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
3603      PHI->addMachineBasicBlockOperand(BB);
3604    }
3605    return;
3606  }
3607
3608  // If the JumpTable record is filled in, then we need to emit a jump table.
3609  // Updating the PHI nodes is tricky in this case, since we need to determine
3610  // whether the PHI is a successor of the range check MBB or the jump table MBB
3611  if (JT.Reg) {
3612    assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
3613    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3614    CurDAG = &SDAG;
3615    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3616    MachineBasicBlock *RangeBB = BB;
3617    // Set the current basic block to the mbb we wish to insert the code into
3618    BB = JT.MBB;
3619    SDL.setCurrentBasicBlock(BB);
3620    // Emit the code
3621    SDL.visitJumpTable(JT);
3622    SDAG.setRoot(SDL.getRoot());
3623    CodeGenAndEmitDAG(SDAG);
3624    // Update PHI Nodes
3625    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
3626      MachineInstr *PHI = PHINodesToUpdate[pi].first;
3627      MachineBasicBlock *PHIBB = PHI->getParent();
3628      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3629             "This is not a machine PHI node that we are updating!");
3630      if (PHIBB == JT.Default) {
3631        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
3632        PHI->addMachineBasicBlockOperand(RangeBB);
3633      }
3634      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
3635        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
3636        PHI->addMachineBasicBlockOperand(BB);
3637      }
3638    }
3639    return;
3640  }
3641
3642  // If we generated any switch lowering information, build and codegen any
3643  // additional DAGs necessary.
3644  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
3645    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3646    CurDAG = &SDAG;
3647    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3648
3649    // Set the current basic block to the mbb we wish to insert the code into
3650    BB = SwitchCases[i].ThisBB;
3651    SDL.setCurrentBasicBlock(BB);
3652
3653    // Emit the code
3654    SDL.visitSwitchCase(SwitchCases[i]);
3655    SDAG.setRoot(SDL.getRoot());
3656    CodeGenAndEmitDAG(SDAG);
3657
3658    // Handle any PHI nodes in successors of this chunk, as if we were coming
3659    // from the original BB before switch expansion.  Note that PHI nodes can
3660    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
3661    // handle them the right number of times.
3662    while ((BB = SwitchCases[i].LHSBB)) {  // Handle LHS and RHS.
3663      for (MachineBasicBlock::iterator Phi = BB->begin();
3664           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
3665        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
3666        for (unsigned pn = 0; ; ++pn) {
3667          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
3668          if (PHINodesToUpdate[pn].first == Phi) {
3669            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
3670            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
3671            break;
3672          }
3673        }
3674      }
3675
3676      // Don't process RHS if same block as LHS.
3677      if (BB == SwitchCases[i].RHSBB)
3678        SwitchCases[i].RHSBB = 0;
3679
3680      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
3681      SwitchCases[i].LHSBB = SwitchCases[i].RHSBB;
3682      SwitchCases[i].RHSBB = 0;
3683    }
3684    assert(SwitchCases[i].LHSBB == 0 && SwitchCases[i].RHSBB == 0);
3685  }
3686}
3687
3688
3689//===----------------------------------------------------------------------===//
3690/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
3691/// target node in the graph.
3692void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
3693  if (ViewSchedDAGs) DAG.viewGraph();
3694
3695  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
3696
3697  if (!Ctor) {
3698    Ctor = ISHeuristic;
3699    RegisterScheduler::setDefault(Ctor);
3700  }
3701
3702  ScheduleDAG *SL = Ctor(this, &DAG, BB);
3703  BB = SL->Run();
3704  delete SL;
3705}
3706
3707
3708HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
3709  return new HazardRecognizer();
3710}
3711
3712//===----------------------------------------------------------------------===//
3713// Helper functions used by the generated instruction selector.
3714//===----------------------------------------------------------------------===//
3715// Calls to these methods are generated by tblgen.
3716
3717/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
3718/// the dag combiner simplified the 255, we still want to match.  RHS is the
3719/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
3720/// specified in the .td file (e.g. 255).
3721bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
3722                                    int64_t DesiredMaskS) {
3723  uint64_t ActualMask = RHS->getValue();
3724  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
3725
3726  // If the actual mask exactly matches, success!
3727  if (ActualMask == DesiredMask)
3728    return true;
3729
3730  // If the actual AND mask is allowing unallowed bits, this doesn't match.
3731  if (ActualMask & ~DesiredMask)
3732    return false;
3733
3734  // Otherwise, the DAG Combiner may have proven that the value coming in is
3735  // either already zero or is not demanded.  Check for known zero input bits.
3736  uint64_t NeededMask = DesiredMask & ~ActualMask;
3737  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
3738    return true;
3739
3740  // TODO: check to see if missing bits are just not demanded.
3741
3742  // Otherwise, this pattern doesn't match.
3743  return false;
3744}
3745
3746/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
3747/// the dag combiner simplified the 255, we still want to match.  RHS is the
3748/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
3749/// specified in the .td file (e.g. 255).
3750bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
3751                                    int64_t DesiredMaskS) {
3752  uint64_t ActualMask = RHS->getValue();
3753  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
3754
3755  // If the actual mask exactly matches, success!
3756  if (ActualMask == DesiredMask)
3757    return true;
3758
3759  // If the actual AND mask is allowing unallowed bits, this doesn't match.
3760  if (ActualMask & ~DesiredMask)
3761    return false;
3762
3763  // Otherwise, the DAG Combiner may have proven that the value coming in is
3764  // either already zero or is not demanded.  Check for known zero input bits.
3765  uint64_t NeededMask = DesiredMask & ~ActualMask;
3766
3767  uint64_t KnownZero, KnownOne;
3768  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
3769
3770  // If all the missing bits in the or are already known to be set, match!
3771  if ((NeededMask & KnownOne) == NeededMask)
3772    return true;
3773
3774  // TODO: check to see if missing bits are just not demanded.
3775
3776  // Otherwise, this pattern doesn't match.
3777  return false;
3778}
3779
3780
3781/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
3782/// by tblgen.  Others should not call it.
3783void SelectionDAGISel::
3784SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
3785  std::vector<SDOperand> InOps;
3786  std::swap(InOps, Ops);
3787
3788  Ops.push_back(InOps[0]);  // input chain.
3789  Ops.push_back(InOps[1]);  // input asm string.
3790
3791  unsigned i = 2, e = InOps.size();
3792  if (InOps[e-1].getValueType() == MVT::Flag)
3793    --e;  // Don't process a flag operand if it is here.
3794
3795  while (i != e) {
3796    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
3797    if ((Flags & 7) != 4 /*MEM*/) {
3798      // Just skip over this operand, copying the operands verbatim.
3799      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
3800      i += (Flags >> 3) + 1;
3801    } else {
3802      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
3803      // Otherwise, this is a memory operand.  Ask the target to select it.
3804      std::vector<SDOperand> SelOps;
3805      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
3806        std::cerr << "Could not match memory address.  Inline asm failure!\n";
3807        exit(1);
3808      }
3809
3810      // Add this to the output node.
3811      Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
3812      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
3813      i += 2;
3814    }
3815  }
3816
3817  // Add the flag input back if present.
3818  if (e != InOps.size())
3819    Ops.push_back(InOps.back());
3820}
3821