SelectionDAGISel.cpp revision c90233b836c5d00045bbe7ca3d5d92df4825f5a1
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61//===---------------------------------------------------------------------===//
62///
63/// RegisterScheduler class - Track the registration of instruction schedulers.
64///
65//===---------------------------------------------------------------------===//
66MachinePassRegistry RegisterScheduler::Registry;
67
68//===---------------------------------------------------------------------===//
69///
70/// ISHeuristic command line option for instruction schedulers.
71///
72//===---------------------------------------------------------------------===//
73namespace {
74  cl::opt<RegisterScheduler::FunctionPassCtor, false,
75          RegisterPassParser<RegisterScheduler> >
76  ISHeuristic("sched",
77              cl::init(&createDefaultScheduler),
78              cl::desc("Instruction schedulers available:"));
79
80  static RegisterScheduler
81  defaultListDAGScheduler("default", "  Best scheduler for the target",
82                          createDefaultScheduler);
83} // namespace
84
85namespace { struct AsmOperandInfo; }
86
87namespace {
88  /// RegsForValue - This struct represents the physical registers that a
89  /// particular value is assigned and the type information about the value.
90  /// This is needed because values can be promoted into larger registers and
91  /// expanded into multiple smaller registers than the value.
92  struct VISIBILITY_HIDDEN RegsForValue {
93    /// Regs - This list hold the register (for legal and promoted values)
94    /// or register set (for expanded values) that the value should be assigned
95    /// to.
96    std::vector<unsigned> Regs;
97
98    /// RegVT - The value type of each register.
99    ///
100    MVT::ValueType RegVT;
101
102    /// ValueVT - The value type of the LLVM value, which may be promoted from
103    /// RegVT or made from merging the two expanded parts.
104    MVT::ValueType ValueVT;
105
106    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
107
108    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
109      : RegVT(regvt), ValueVT(valuevt) {
110        Regs.push_back(Reg);
111    }
112    RegsForValue(const std::vector<unsigned> &regs,
113                 MVT::ValueType regvt, MVT::ValueType valuevt)
114      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
115    }
116
117    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
118    /// this value and returns the result as a ValueVT value.  This uses
119    /// Chain/Flag as the input and updates them for the output Chain/Flag.
120    SDOperand getCopyFromRegs(SelectionDAG &DAG,
121                              SDOperand &Chain, SDOperand &Flag) const;
122
123    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
124    /// specified value into the registers specified by this object.  This uses
125    /// Chain/Flag as the input and updates them for the output Chain/Flag.
126    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
127                       SDOperand &Chain, SDOperand &Flag,
128                       MVT::ValueType PtrVT) const;
129
130    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
131    /// operand list.  This adds the code marker and includes the number of
132    /// values added into it.
133    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
134                              std::vector<SDOperand> &Ops) const;
135  };
136}
137
138namespace llvm {
139  //===--------------------------------------------------------------------===//
140  /// createDefaultScheduler - This creates an instruction scheduler appropriate
141  /// for the target.
142  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
143                                      SelectionDAG *DAG,
144                                      MachineBasicBlock *BB) {
145    TargetLowering &TLI = IS->getTargetLowering();
146
147    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
148      return createTDListDAGScheduler(IS, DAG, BB);
149    } else {
150      assert(TLI.getSchedulingPreference() ==
151           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
152      return createBURRListDAGScheduler(IS, DAG, BB);
153    }
154  }
155
156
157  //===--------------------------------------------------------------------===//
158  /// FunctionLoweringInfo - This contains information that is global to a
159  /// function that is used when lowering a region of the function.
160  class FunctionLoweringInfo {
161  public:
162    TargetLowering &TLI;
163    Function &Fn;
164    MachineFunction &MF;
165    SSARegMap *RegMap;
166
167    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
168
169    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
170    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
171
172    /// ValueMap - Since we emit code for the function a basic block at a time,
173    /// we must remember which virtual registers hold the values for
174    /// cross-basic-block values.
175    DenseMap<const Value*, unsigned> ValueMap;
176
177    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
178    /// the entry block.  This allows the allocas to be efficiently referenced
179    /// anywhere in the function.
180    std::map<const AllocaInst*, int> StaticAllocaMap;
181
182    unsigned MakeReg(MVT::ValueType VT) {
183      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
184    }
185
186    /// isExportedInst - Return true if the specified value is an instruction
187    /// exported from its block.
188    bool isExportedInst(const Value *V) {
189      return ValueMap.count(V);
190    }
191
192    unsigned CreateRegForValue(const Value *V);
193
194    unsigned InitializeRegForValue(const Value *V) {
195      unsigned &R = ValueMap[V];
196      assert(R == 0 && "Already initialized this value register!");
197      return R = CreateRegForValue(V);
198    }
199  };
200}
201
202/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
203/// PHI nodes or outside of the basic block that defines it, or used by a
204/// switch instruction, which may expand to multiple basic blocks.
205static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
206  if (isa<PHINode>(I)) return true;
207  BasicBlock *BB = I->getParent();
208  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
209    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
210        // FIXME: Remove switchinst special case.
211        isa<SwitchInst>(*UI))
212      return true;
213  return false;
214}
215
216/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
217/// entry block, return true.  This includes arguments used by switches, since
218/// the switch may expand into multiple basic blocks.
219static bool isOnlyUsedInEntryBlock(Argument *A) {
220  BasicBlock *Entry = A->getParent()->begin();
221  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
222    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
223      return false;  // Use not in entry block.
224  return true;
225}
226
227FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
228                                           Function &fn, MachineFunction &mf)
229    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
230
231  // Create a vreg for each argument register that is not dead and is used
232  // outside of the entry block for the function.
233  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
234       AI != E; ++AI)
235    if (!isOnlyUsedInEntryBlock(AI))
236      InitializeRegForValue(AI);
237
238  // Initialize the mapping of values to registers.  This is only set up for
239  // instruction values that are used outside of the block that defines
240  // them.
241  Function::iterator BB = Fn.begin(), EB = Fn.end();
242  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
243    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
244      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
245        const Type *Ty = AI->getAllocatedType();
246        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
247        unsigned Align =
248          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
249                   AI->getAlignment());
250
251        TySize *= CUI->getZExtValue();   // Get total allocated size.
252        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
253        StaticAllocaMap[AI] =
254          MF.getFrameInfo()->CreateStackObject(TySize, Align);
255      }
256
257  for (; BB != EB; ++BB)
258    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
259      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
260        if (!isa<AllocaInst>(I) ||
261            !StaticAllocaMap.count(cast<AllocaInst>(I)))
262          InitializeRegForValue(I);
263
264  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
265  // also creates the initial PHI MachineInstrs, though none of the input
266  // operands are populated.
267  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
268    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
269    MBBMap[BB] = MBB;
270    MF.getBasicBlockList().push_back(MBB);
271
272    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
273    // appropriate.
274    PHINode *PN;
275    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
276      if (PN->use_empty()) continue;
277
278      MVT::ValueType VT = TLI.getValueType(PN->getType());
279      unsigned NumElements;
280      if (VT != MVT::Vector)
281        NumElements = TLI.getNumElements(VT);
282      else {
283        MVT::ValueType VT1,VT2;
284        NumElements =
285          TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
286                                     VT1, VT2);
287      }
288      unsigned PHIReg = ValueMap[PN];
289      assert(PHIReg && "PHI node does not have an assigned virtual register!");
290      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
291      for (unsigned i = 0; i != NumElements; ++i)
292        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
293    }
294  }
295}
296
297/// CreateRegForValue - Allocate the appropriate number of virtual registers of
298/// the correctly promoted or expanded types.  Assign these registers
299/// consecutive vreg numbers and return the first assigned number.
300unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
301  MVT::ValueType VT = TLI.getValueType(V->getType());
302
303  // The number of multiples of registers that we need, to, e.g., split up
304  // a <2 x int64> -> 4 x i32 registers.
305  unsigned NumVectorRegs = 1;
306
307  // If this is a vector type, figure out what type it will decompose into
308  // and how many of the elements it will use.
309  if (VT == MVT::Vector) {
310    const VectorType *PTy = cast<VectorType>(V->getType());
311    unsigned NumElts = PTy->getNumElements();
312    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
313    MVT::ValueType VecTy = getVectorType(EltTy, NumElts);
314
315    // Divide the input until we get to a supported size.  This will always
316    // end with a scalar if the target doesn't support vectors.
317    while (NumElts > 1 && !TLI.isTypeLegal(VecTy)) {
318      NumElts >>= 1;
319      NumVectorRegs <<= 1;
320      VecTy = getVectorType(EltTy, NumElts);
321    }
322
323    // Check that VecTy isn't a 1-element vector.
324    if (NumElts == 1 && VecTy == MVT::Other)
325      VT = EltTy;
326    else
327      VT = VecTy;
328  }
329
330  // The common case is that we will only create one register for this
331  // value.  If we have that case, create and return the virtual register.
332  unsigned NV = TLI.getNumElements(VT);
333  if (NV == 1) {
334    // If we are promoting this value, pick the next largest supported type.
335    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
336    unsigned Reg = MakeReg(PromotedType);
337    // If this is a vector of supported or promoted types (e.g. 4 x i16),
338    // create all of the registers.
339    for (unsigned i = 1; i != NumVectorRegs; ++i)
340      MakeReg(PromotedType);
341    return Reg;
342  }
343
344  // If this value is represented with multiple target registers, make sure
345  // to create enough consecutive registers of the right (smaller) type.
346  VT = TLI.getTypeToExpandTo(VT);
347  unsigned R = MakeReg(VT);
348  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
349    MakeReg(VT);
350  return R;
351}
352
353//===----------------------------------------------------------------------===//
354/// SelectionDAGLowering - This is the common target-independent lowering
355/// implementation that is parameterized by a TargetLowering object.
356/// Also, targets can overload any lowering method.
357///
358namespace llvm {
359class SelectionDAGLowering {
360  MachineBasicBlock *CurMBB;
361
362  DenseMap<const Value*, SDOperand> NodeMap;
363
364  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
365  /// them up and then emit token factor nodes when possible.  This allows us to
366  /// get simple disambiguation between loads without worrying about alias
367  /// analysis.
368  std::vector<SDOperand> PendingLoads;
369
370  /// Case - A struct to record the Value for a switch case, and the
371  /// case's target basic block.
372  struct Case {
373    Constant* Low;
374    Constant* High;
375    MachineBasicBlock* BB;
376
377    Case() : Low(0), High(0), BB(0) { }
378    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
379      Low(low), High(high), BB(bb) { }
380    uint64_t size() const {
381      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
382      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
383      return (rHigh - rLow + 1ULL);
384    }
385  };
386
387  struct CaseBits {
388    uint64_t Mask;
389    MachineBasicBlock* BB;
390    unsigned Bits;
391
392    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
393      Mask(mask), BB(bb), Bits(bits) { }
394  };
395
396  typedef std::vector<Case>           CaseVector;
397  typedef std::vector<CaseBits>       CaseBitsVector;
398  typedef CaseVector::iterator        CaseItr;
399  typedef std::pair<CaseItr, CaseItr> CaseRange;
400
401  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
402  /// of conditional branches.
403  struct CaseRec {
404    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
405    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
406
407    /// CaseBB - The MBB in which to emit the compare and branch
408    MachineBasicBlock *CaseBB;
409    /// LT, GE - If nonzero, we know the current case value must be less-than or
410    /// greater-than-or-equal-to these Constants.
411    Constant *LT;
412    Constant *GE;
413    /// Range - A pair of iterators representing the range of case values to be
414    /// processed at this point in the binary search tree.
415    CaseRange Range;
416  };
417
418  typedef std::vector<CaseRec> CaseRecVector;
419
420  /// The comparison function for sorting the switch case values in the vector.
421  /// WARNING: Case ranges should be disjoint!
422  struct CaseCmp {
423    bool operator () (const Case& C1, const Case& C2) {
424      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
425      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
426      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
427      return CI1->getValue().slt(CI2->getValue());
428    }
429  };
430
431  struct CaseBitsCmp {
432    bool operator () (const CaseBits& C1, const CaseBits& C2) {
433      return C1.Bits > C2.Bits;
434    }
435  };
436
437  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
438
439public:
440  // TLI - This is information that describes the available target features we
441  // need for lowering.  This indicates when operations are unavailable,
442  // implemented with a libcall, etc.
443  TargetLowering &TLI;
444  SelectionDAG &DAG;
445  const TargetData *TD;
446
447  /// SwitchCases - Vector of CaseBlock structures used to communicate
448  /// SwitchInst code generation information.
449  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
450  /// JTCases - Vector of JumpTable structures used to communicate
451  /// SwitchInst code generation information.
452  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
453  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
454
455  /// FuncInfo - Information about the function as a whole.
456  ///
457  FunctionLoweringInfo &FuncInfo;
458
459  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
460                       FunctionLoweringInfo &funcinfo)
461    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
462      FuncInfo(funcinfo) {
463  }
464
465  /// getRoot - Return the current virtual root of the Selection DAG.
466  ///
467  SDOperand getRoot() {
468    if (PendingLoads.empty())
469      return DAG.getRoot();
470
471    if (PendingLoads.size() == 1) {
472      SDOperand Root = PendingLoads[0];
473      DAG.setRoot(Root);
474      PendingLoads.clear();
475      return Root;
476    }
477
478    // Otherwise, we have to make a token factor node.
479    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
480                                 &PendingLoads[0], PendingLoads.size());
481    PendingLoads.clear();
482    DAG.setRoot(Root);
483    return Root;
484  }
485
486  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
487
488  void visit(Instruction &I) { visit(I.getOpcode(), I); }
489
490  void visit(unsigned Opcode, User &I) {
491    // Note: this doesn't use InstVisitor, because it has to work with
492    // ConstantExpr's in addition to instructions.
493    switch (Opcode) {
494    default: assert(0 && "Unknown instruction type encountered!");
495             abort();
496      // Build the switch statement using the Instruction.def file.
497#define HANDLE_INST(NUM, OPCODE, CLASS) \
498    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
499#include "llvm/Instruction.def"
500    }
501  }
502
503  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
504
505  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
506                        const Value *SV, SDOperand Root,
507                        bool isVolatile, unsigned Alignment);
508
509  SDOperand getIntPtrConstant(uint64_t Val) {
510    return DAG.getConstant(Val, TLI.getPointerTy());
511  }
512
513  SDOperand getValue(const Value *V);
514
515  void setValue(const Value *V, SDOperand NewN) {
516    SDOperand &N = NodeMap[V];
517    assert(N.Val == 0 && "Already set a value for this node!");
518    N = NewN;
519  }
520
521  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
522                            std::set<unsigned> &OutputRegs,
523                            std::set<unsigned> &InputRegs);
524
525  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
526                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
527                            unsigned Opc);
528  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
529  void ExportFromCurrentBlock(Value *V);
530  void LowerCallTo(Instruction &I,
531                   const Type *CalledValueTy, unsigned CallingConv,
532                   bool IsTailCall, SDOperand Callee, unsigned OpIdx);
533
534  // Terminator instructions.
535  void visitRet(ReturnInst &I);
536  void visitBr(BranchInst &I);
537  void visitSwitch(SwitchInst &I);
538  void visitUnreachable(UnreachableInst &I) { /* noop */ }
539
540  // Helpers for visitSwitch
541  bool handleSmallSwitchRange(CaseRec& CR,
542                              CaseRecVector& WorkList,
543                              Value* SV,
544                              MachineBasicBlock* Default);
545  bool handleJTSwitchCase(CaseRec& CR,
546                          CaseRecVector& WorkList,
547                          Value* SV,
548                          MachineBasicBlock* Default);
549  bool handleBTSplitSwitchCase(CaseRec& CR,
550                               CaseRecVector& WorkList,
551                               Value* SV,
552                               MachineBasicBlock* Default);
553  bool handleBitTestsSwitchCase(CaseRec& CR,
554                                CaseRecVector& WorkList,
555                                Value* SV,
556                                MachineBasicBlock* Default);
557  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
558  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
559  void visitBitTestCase(MachineBasicBlock* NextMBB,
560                        unsigned Reg,
561                        SelectionDAGISel::BitTestCase &B);
562  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
563  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
564                            SelectionDAGISel::JumpTableHeader &JTH);
565
566  // These all get lowered before this pass.
567  void visitInvoke(InvokeInst &I);
568  void visitInvoke(InvokeInst &I, bool AsTerminator);
569  void visitUnwind(UnwindInst &I);
570
571  void visitScalarBinary(User &I, unsigned OpCode);
572  void visitVectorBinary(User &I, unsigned OpCode);
573  void visitEitherBinary(User &I, unsigned ScalarOp, unsigned VectorOp);
574  void visitShift(User &I, unsigned Opcode);
575  void visitAdd(User &I) {
576    if (isa<VectorType>(I.getType()))
577      visitVectorBinary(I, ISD::VADD);
578    else if (I.getType()->isFloatingPoint())
579      visitScalarBinary(I, ISD::FADD);
580    else
581      visitScalarBinary(I, ISD::ADD);
582  }
583  void visitSub(User &I);
584  void visitMul(User &I) {
585    if (isa<VectorType>(I.getType()))
586      visitVectorBinary(I, ISD::VMUL);
587    else if (I.getType()->isFloatingPoint())
588      visitScalarBinary(I, ISD::FMUL);
589    else
590      visitScalarBinary(I, ISD::MUL);
591  }
592  void visitURem(User &I) { visitScalarBinary(I, ISD::UREM); }
593  void visitSRem(User &I) { visitScalarBinary(I, ISD::SREM); }
594  void visitFRem(User &I) { visitScalarBinary(I, ISD::FREM); }
595  void visitUDiv(User &I) { visitEitherBinary(I, ISD::UDIV, ISD::VUDIV); }
596  void visitSDiv(User &I) { visitEitherBinary(I, ISD::SDIV, ISD::VSDIV); }
597  void visitFDiv(User &I) { visitEitherBinary(I, ISD::FDIV, ISD::VSDIV); }
598  void visitAnd (User &I) { visitEitherBinary(I, ISD::AND,  ISD::VAND ); }
599  void visitOr  (User &I) { visitEitherBinary(I, ISD::OR,   ISD::VOR  ); }
600  void visitXor (User &I) { visitEitherBinary(I, ISD::XOR,  ISD::VXOR ); }
601  void visitShl (User &I) { visitShift(I, ISD::SHL); }
602  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
603  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
604  void visitICmp(User &I);
605  void visitFCmp(User &I);
606  // Visit the conversion instructions
607  void visitTrunc(User &I);
608  void visitZExt(User &I);
609  void visitSExt(User &I);
610  void visitFPTrunc(User &I);
611  void visitFPExt(User &I);
612  void visitFPToUI(User &I);
613  void visitFPToSI(User &I);
614  void visitUIToFP(User &I);
615  void visitSIToFP(User &I);
616  void visitPtrToInt(User &I);
617  void visitIntToPtr(User &I);
618  void visitBitCast(User &I);
619
620  void visitExtractElement(User &I);
621  void visitInsertElement(User &I);
622  void visitShuffleVector(User &I);
623
624  void visitGetElementPtr(User &I);
625  void visitSelect(User &I);
626
627  void visitMalloc(MallocInst &I);
628  void visitFree(FreeInst &I);
629  void visitAlloca(AllocaInst &I);
630  void visitLoad(LoadInst &I);
631  void visitStore(StoreInst &I);
632  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
633  void visitCall(CallInst &I);
634  void visitInlineAsm(CallInst &I);
635  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
636  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
637
638  void visitVAStart(CallInst &I);
639  void visitVAArg(VAArgInst &I);
640  void visitVAEnd(CallInst &I);
641  void visitVACopy(CallInst &I);
642
643  void visitMemIntrinsic(CallInst &I, unsigned Op);
644
645  void visitUserOp1(Instruction &I) {
646    assert(0 && "UserOp1 should not exist at instruction selection time!");
647    abort();
648  }
649  void visitUserOp2(Instruction &I) {
650    assert(0 && "UserOp2 should not exist at instruction selection time!");
651    abort();
652  }
653};
654} // end namespace llvm
655
656SDOperand SelectionDAGLowering::getValue(const Value *V) {
657  SDOperand &N = NodeMap[V];
658  if (N.Val) return N;
659
660  const Type *VTy = V->getType();
661  MVT::ValueType VT = TLI.getValueType(VTy);
662  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
663    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
664      visit(CE->getOpcode(), *CE);
665      SDOperand N1 = NodeMap[V];
666      assert(N1.Val && "visit didn't populate the ValueMap!");
667      return N1;
668    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
669      return N = DAG.getGlobalAddress(GV, VT);
670    } else if (isa<ConstantPointerNull>(C)) {
671      return N = DAG.getConstant(0, TLI.getPointerTy());
672    } else if (isa<UndefValue>(C)) {
673      if (!isa<VectorType>(VTy))
674        return N = DAG.getNode(ISD::UNDEF, VT);
675
676      // Create a VBUILD_VECTOR of undef nodes.
677      const VectorType *PTy = cast<VectorType>(VTy);
678      unsigned NumElements = PTy->getNumElements();
679      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
680
681      SmallVector<SDOperand, 8> Ops;
682      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
683
684      // Create a VConstant node with generic Vector type.
685      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
686      Ops.push_back(DAG.getValueType(PVT));
687      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
688                             &Ops[0], Ops.size());
689    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
690      return N = DAG.getConstantFP(CFP->getValue(), VT);
691    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
692      unsigned NumElements = PTy->getNumElements();
693      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
694
695      // Now that we know the number and type of the elements, push a
696      // Constant or ConstantFP node onto the ops list for each element of
697      // the packed constant.
698      SmallVector<SDOperand, 8> Ops;
699      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
700        for (unsigned i = 0; i != NumElements; ++i)
701          Ops.push_back(getValue(CP->getOperand(i)));
702      } else {
703        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
704        SDOperand Op;
705        if (MVT::isFloatingPoint(PVT))
706          Op = DAG.getConstantFP(0, PVT);
707        else
708          Op = DAG.getConstant(0, PVT);
709        Ops.assign(NumElements, Op);
710      }
711
712      // Create a VBUILD_VECTOR node with generic Vector type.
713      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
714      Ops.push_back(DAG.getValueType(PVT));
715      return NodeMap[V] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0],
716                                      Ops.size());
717    } else {
718      // Canonicalize all constant ints to be unsigned.
719      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
720    }
721  }
722
723  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
724    std::map<const AllocaInst*, int>::iterator SI =
725    FuncInfo.StaticAllocaMap.find(AI);
726    if (SI != FuncInfo.StaticAllocaMap.end())
727      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
728  }
729
730  unsigned InReg = FuncInfo.ValueMap[V];
731  assert(InReg && "Value not in map!");
732
733  // If this type is not legal, make it so now.
734  if (VT != MVT::Vector) {
735    if (TLI.getTypeAction(VT) == TargetLowering::Expand) {
736      // Source must be expanded.  This input value is actually coming from the
737      // register pair InReg and InReg+1.
738      MVT::ValueType DestVT = TLI.getTypeToExpandTo(VT);
739      unsigned NumVals = TLI.getNumElements(VT);
740      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
741      if (NumVals == 1)
742        N = DAG.getNode(ISD::BIT_CONVERT, VT, N);
743      else {
744        assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
745        N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
746                       DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
747      }
748    } else {
749      MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
750      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
751      if (TLI.getTypeAction(VT) == TargetLowering::Promote) // Promotion case
752        N = MVT::isFloatingPoint(VT)
753          ? DAG.getNode(ISD::FP_ROUND, VT, N)
754          : DAG.getNode(ISD::TRUNCATE, VT, N);
755    }
756  } else {
757    // Otherwise, if this is a vector, make it available as a generic vector
758    // here.
759    MVT::ValueType PTyElementVT, PTyLegalElementVT;
760    const VectorType *PTy = cast<VectorType>(VTy);
761    unsigned NE = TLI.getVectorTypeBreakdown(PTy, PTyElementVT,
762                                             PTyLegalElementVT);
763
764    // Build a VBUILD_VECTOR with the input registers.
765    SmallVector<SDOperand, 8> Ops;
766    if (PTyElementVT == PTyLegalElementVT) {
767      // If the value types are legal, just VBUILD the CopyFromReg nodes.
768      for (unsigned i = 0; i != NE; ++i)
769        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
770                                         PTyElementVT));
771    } else if (PTyElementVT < PTyLegalElementVT) {
772      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
773      for (unsigned i = 0; i != NE; ++i) {
774        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
775                                          PTyElementVT);
776        if (MVT::isFloatingPoint(PTyElementVT))
777          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
778        else
779          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
780        Ops.push_back(Op);
781      }
782    } else {
783      // If the register was expanded, use BUILD_PAIR.
784      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
785      for (unsigned i = 0; i != NE/2; ++i) {
786        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
787                                           PTyElementVT);
788        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
789                                           PTyElementVT);
790        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
791      }
792    }
793
794    Ops.push_back(DAG.getConstant(NE, MVT::i32));
795    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
796    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
797
798    // Finally, use a VBIT_CONVERT to make this available as the appropriate
799    // vector type.
800    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
801                    DAG.getConstant(PTy->getNumElements(),
802                                    MVT::i32),
803                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
804  }
805
806  return N;
807}
808
809
810void SelectionDAGLowering::visitRet(ReturnInst &I) {
811  if (I.getNumOperands() == 0) {
812    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
813    return;
814  }
815  SmallVector<SDOperand, 8> NewValues;
816  NewValues.push_back(getRoot());
817  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
818    SDOperand RetOp = getValue(I.getOperand(i));
819
820    // If this is an integer return value, we need to promote it ourselves to
821    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
822    // than sign/zero.
823    // FIXME: C calling convention requires the return type to be promoted to
824    // at least 32-bit. But this is not necessary for non-C calling conventions.
825    if (MVT::isInteger(RetOp.getValueType()) &&
826        RetOp.getValueType() < MVT::i64) {
827      MVT::ValueType TmpVT;
828      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
829        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
830      else
831        TmpVT = MVT::i32;
832      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
833      const ParamAttrsList *Attrs = FTy->getParamAttrs();
834      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
835      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt))
836        ExtendKind = ISD::SIGN_EXTEND;
837      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt))
838        ExtendKind = ISD::ZERO_EXTEND;
839      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
840    }
841    NewValues.push_back(RetOp);
842    NewValues.push_back(DAG.getConstant(false, MVT::i32));
843  }
844  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
845                          &NewValues[0], NewValues.size()));
846}
847
848/// ExportFromCurrentBlock - If this condition isn't known to be exported from
849/// the current basic block, add it to ValueMap now so that we'll get a
850/// CopyTo/FromReg.
851void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
852  // No need to export constants.
853  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
854
855  // Already exported?
856  if (FuncInfo.isExportedInst(V)) return;
857
858  unsigned Reg = FuncInfo.InitializeRegForValue(V);
859  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
860}
861
862bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
863                                                    const BasicBlock *FromBB) {
864  // The operands of the setcc have to be in this block.  We don't know
865  // how to export them from some other block.
866  if (Instruction *VI = dyn_cast<Instruction>(V)) {
867    // Can export from current BB.
868    if (VI->getParent() == FromBB)
869      return true;
870
871    // Is already exported, noop.
872    return FuncInfo.isExportedInst(V);
873  }
874
875  // If this is an argument, we can export it if the BB is the entry block or
876  // if it is already exported.
877  if (isa<Argument>(V)) {
878    if (FromBB == &FromBB->getParent()->getEntryBlock())
879      return true;
880
881    // Otherwise, can only export this if it is already exported.
882    return FuncInfo.isExportedInst(V);
883  }
884
885  // Otherwise, constants can always be exported.
886  return true;
887}
888
889static bool InBlock(const Value *V, const BasicBlock *BB) {
890  if (const Instruction *I = dyn_cast<Instruction>(V))
891    return I->getParent() == BB;
892  return true;
893}
894
895/// FindMergedConditions - If Cond is an expression like
896void SelectionDAGLowering::FindMergedConditions(Value *Cond,
897                                                MachineBasicBlock *TBB,
898                                                MachineBasicBlock *FBB,
899                                                MachineBasicBlock *CurBB,
900                                                unsigned Opc) {
901  // If this node is not part of the or/and tree, emit it as a branch.
902  Instruction *BOp = dyn_cast<Instruction>(Cond);
903
904  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
905      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
906      BOp->getParent() != CurBB->getBasicBlock() ||
907      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
908      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
909    const BasicBlock *BB = CurBB->getBasicBlock();
910
911    // If the leaf of the tree is a comparison, merge the condition into
912    // the caseblock.
913    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
914        // The operands of the cmp have to be in this block.  We don't know
915        // how to export them from some other block.  If this is the first block
916        // of the sequence, no exporting is needed.
917        (CurBB == CurMBB ||
918         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
919          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
920      BOp = cast<Instruction>(Cond);
921      ISD::CondCode Condition;
922      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
923        switch (IC->getPredicate()) {
924        default: assert(0 && "Unknown icmp predicate opcode!");
925        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
926        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
927        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
928        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
929        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
930        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
931        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
932        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
933        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
934        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
935        }
936      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
937        ISD::CondCode FPC, FOC;
938        switch (FC->getPredicate()) {
939        default: assert(0 && "Unknown fcmp predicate opcode!");
940        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
941        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
942        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
943        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
944        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
945        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
946        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
947        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
948        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
949        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
950        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
951        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
952        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
953        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
954        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
955        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
956        }
957        if (FiniteOnlyFPMath())
958          Condition = FOC;
959        else
960          Condition = FPC;
961      } else {
962        Condition = ISD::SETEQ; // silence warning.
963        assert(0 && "Unknown compare instruction");
964      }
965
966      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
967                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
968      SwitchCases.push_back(CB);
969      return;
970    }
971
972    // Create a CaseBlock record representing this branch.
973    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
974                                   NULL, TBB, FBB, CurBB);
975    SwitchCases.push_back(CB);
976    return;
977  }
978
979
980  //  Create TmpBB after CurBB.
981  MachineFunction::iterator BBI = CurBB;
982  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
983  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
984
985  if (Opc == Instruction::Or) {
986    // Codegen X | Y as:
987    //   jmp_if_X TBB
988    //   jmp TmpBB
989    // TmpBB:
990    //   jmp_if_Y TBB
991    //   jmp FBB
992    //
993
994    // Emit the LHS condition.
995    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
996
997    // Emit the RHS condition into TmpBB.
998    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
999  } else {
1000    assert(Opc == Instruction::And && "Unknown merge op!");
1001    // Codegen X & Y as:
1002    //   jmp_if_X TmpBB
1003    //   jmp FBB
1004    // TmpBB:
1005    //   jmp_if_Y TBB
1006    //   jmp FBB
1007    //
1008    //  This requires creation of TmpBB after CurBB.
1009
1010    // Emit the LHS condition.
1011    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1012
1013    // Emit the RHS condition into TmpBB.
1014    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1015  }
1016}
1017
1018/// If the set of cases should be emitted as a series of branches, return true.
1019/// If we should emit this as a bunch of and/or'd together conditions, return
1020/// false.
1021static bool
1022ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1023  if (Cases.size() != 2) return true;
1024
1025  // If this is two comparisons of the same values or'd or and'd together, they
1026  // will get folded into a single comparison, so don't emit two blocks.
1027  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1028       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1029      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1030       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1031    return false;
1032  }
1033
1034  return true;
1035}
1036
1037void SelectionDAGLowering::visitBr(BranchInst &I) {
1038  // Update machine-CFG edges.
1039  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1040
1041  // Figure out which block is immediately after the current one.
1042  MachineBasicBlock *NextBlock = 0;
1043  MachineFunction::iterator BBI = CurMBB;
1044  if (++BBI != CurMBB->getParent()->end())
1045    NextBlock = BBI;
1046
1047  if (I.isUnconditional()) {
1048    // If this is not a fall-through branch, emit the branch.
1049    if (Succ0MBB != NextBlock)
1050      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1051                              DAG.getBasicBlock(Succ0MBB)));
1052
1053    // Update machine-CFG edges.
1054    CurMBB->addSuccessor(Succ0MBB);
1055
1056    return;
1057  }
1058
1059  // If this condition is one of the special cases we handle, do special stuff
1060  // now.
1061  Value *CondVal = I.getCondition();
1062  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1063
1064  // If this is a series of conditions that are or'd or and'd together, emit
1065  // this as a sequence of branches instead of setcc's with and/or operations.
1066  // For example, instead of something like:
1067  //     cmp A, B
1068  //     C = seteq
1069  //     cmp D, E
1070  //     F = setle
1071  //     or C, F
1072  //     jnz foo
1073  // Emit:
1074  //     cmp A, B
1075  //     je foo
1076  //     cmp D, E
1077  //     jle foo
1078  //
1079  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1080    if (BOp->hasOneUse() &&
1081        (BOp->getOpcode() == Instruction::And ||
1082         BOp->getOpcode() == Instruction::Or)) {
1083      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1084      // If the compares in later blocks need to use values not currently
1085      // exported from this block, export them now.  This block should always
1086      // be the first entry.
1087      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1088
1089      // Allow some cases to be rejected.
1090      if (ShouldEmitAsBranches(SwitchCases)) {
1091        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1092          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1093          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1094        }
1095
1096        // Emit the branch for this block.
1097        visitSwitchCase(SwitchCases[0]);
1098        SwitchCases.erase(SwitchCases.begin());
1099        return;
1100      }
1101
1102      // Okay, we decided not to do this, remove any inserted MBB's and clear
1103      // SwitchCases.
1104      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1105        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1106
1107      SwitchCases.clear();
1108    }
1109  }
1110
1111  // Create a CaseBlock record representing this branch.
1112  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1113                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1114  // Use visitSwitchCase to actually insert the fast branch sequence for this
1115  // cond branch.
1116  visitSwitchCase(CB);
1117}
1118
1119/// visitSwitchCase - Emits the necessary code to represent a single node in
1120/// the binary search tree resulting from lowering a switch instruction.
1121void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1122  SDOperand Cond;
1123  SDOperand CondLHS = getValue(CB.CmpLHS);
1124
1125  // Build the setcc now.
1126  if (CB.CmpMHS == NULL) {
1127    // Fold "(X == true)" to X and "(X == false)" to !X to
1128    // handle common cases produced by branch lowering.
1129    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1130      Cond = CondLHS;
1131    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1132      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1133      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1134    } else
1135      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1136  } else {
1137    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1138
1139    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1140    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1141
1142    SDOperand CmpOp = getValue(CB.CmpMHS);
1143    MVT::ValueType VT = CmpOp.getValueType();
1144
1145    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1146      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1147    } else {
1148      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1149      Cond = DAG.getSetCC(MVT::i1, SUB,
1150                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1151    }
1152
1153  }
1154
1155  // Set NextBlock to be the MBB immediately after the current one, if any.
1156  // This is used to avoid emitting unnecessary branches to the next block.
1157  MachineBasicBlock *NextBlock = 0;
1158  MachineFunction::iterator BBI = CurMBB;
1159  if (++BBI != CurMBB->getParent()->end())
1160    NextBlock = BBI;
1161
1162  // If the lhs block is the next block, invert the condition so that we can
1163  // fall through to the lhs instead of the rhs block.
1164  if (CB.TrueBB == NextBlock) {
1165    std::swap(CB.TrueBB, CB.FalseBB);
1166    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1167    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1168  }
1169  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1170                                 DAG.getBasicBlock(CB.TrueBB));
1171  if (CB.FalseBB == NextBlock)
1172    DAG.setRoot(BrCond);
1173  else
1174    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1175                            DAG.getBasicBlock(CB.FalseBB)));
1176  // Update successor info
1177  CurMBB->addSuccessor(CB.TrueBB);
1178  CurMBB->addSuccessor(CB.FalseBB);
1179}
1180
1181/// visitJumpTable - Emit JumpTable node in the current MBB
1182void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1183  // Emit the code for the jump table
1184  assert(JT.Reg != -1U && "Should lower JT Header first!");
1185  MVT::ValueType PTy = TLI.getPointerTy();
1186  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1187  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1188  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1189                          Table, Index));
1190  return;
1191}
1192
1193/// visitJumpTableHeader - This function emits necessary code to produce index
1194/// in the JumpTable from switch case.
1195void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1196                                         SelectionDAGISel::JumpTableHeader &JTH) {
1197  // Subtract the lowest switch case value from the value being switched on
1198  // and conditional branch to default mbb if the result is greater than the
1199  // difference between smallest and largest cases.
1200  SDOperand SwitchOp = getValue(JTH.SValue);
1201  MVT::ValueType VT = SwitchOp.getValueType();
1202  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1203                              DAG.getConstant(JTH.First, VT));
1204
1205  // The SDNode we just created, which holds the value being switched on
1206  // minus the the smallest case value, needs to be copied to a virtual
1207  // register so it can be used as an index into the jump table in a
1208  // subsequent basic block.  This value may be smaller or larger than the
1209  // target's pointer type, and therefore require extension or truncating.
1210  if (VT > TLI.getPointerTy())
1211    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1212  else
1213    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1214
1215  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1216  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1217  JT.Reg = JumpTableReg;
1218
1219  // Emit the range check for the jump table, and branch to the default
1220  // block for the switch statement if the value being switched on exceeds
1221  // the largest case in the switch.
1222  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1223                               DAG.getConstant(JTH.Last-JTH.First,VT),
1224                               ISD::SETUGT);
1225
1226  // Set NextBlock to be the MBB immediately after the current one, if any.
1227  // This is used to avoid emitting unnecessary branches to the next block.
1228  MachineBasicBlock *NextBlock = 0;
1229  MachineFunction::iterator BBI = CurMBB;
1230  if (++BBI != CurMBB->getParent()->end())
1231    NextBlock = BBI;
1232
1233  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1234                                 DAG.getBasicBlock(JT.Default));
1235
1236  if (JT.MBB == NextBlock)
1237    DAG.setRoot(BrCond);
1238  else
1239    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1240                            DAG.getBasicBlock(JT.MBB)));
1241
1242  return;
1243}
1244
1245/// visitBitTestHeader - This function emits necessary code to produce value
1246/// suitable for "bit tests"
1247void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1248  // Subtract the minimum value
1249  SDOperand SwitchOp = getValue(B.SValue);
1250  MVT::ValueType VT = SwitchOp.getValueType();
1251  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1252                              DAG.getConstant(B.First, VT));
1253
1254  // Check range
1255  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1256                                    DAG.getConstant(B.Range, VT),
1257                                    ISD::SETUGT);
1258
1259  SDOperand ShiftOp;
1260  if (VT > TLI.getShiftAmountTy())
1261    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1262  else
1263    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1264
1265  // Make desired shift
1266  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1267                                    DAG.getConstant(1, TLI.getPointerTy()),
1268                                    ShiftOp);
1269
1270  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1271  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1272  B.Reg = SwitchReg;
1273
1274  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1275                                  DAG.getBasicBlock(B.Default));
1276
1277  // Set NextBlock to be the MBB immediately after the current one, if any.
1278  // This is used to avoid emitting unnecessary branches to the next block.
1279  MachineBasicBlock *NextBlock = 0;
1280  MachineFunction::iterator BBI = CurMBB;
1281  if (++BBI != CurMBB->getParent()->end())
1282    NextBlock = BBI;
1283
1284  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1285  if (MBB == NextBlock)
1286    DAG.setRoot(BrRange);
1287  else
1288    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1289                            DAG.getBasicBlock(MBB)));
1290
1291  CurMBB->addSuccessor(B.Default);
1292  CurMBB->addSuccessor(MBB);
1293
1294  return;
1295}
1296
1297/// visitBitTestCase - this function produces one "bit test"
1298void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1299                                            unsigned Reg,
1300                                            SelectionDAGISel::BitTestCase &B) {
1301  // Emit bit tests and jumps
1302  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1303
1304  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1305                                SwitchVal,
1306                                DAG.getConstant(B.Mask,
1307                                                TLI.getPointerTy()));
1308  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1309                                  DAG.getConstant(0, TLI.getPointerTy()),
1310                                  ISD::SETNE);
1311  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1312                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1313
1314  // Set NextBlock to be the MBB immediately after the current one, if any.
1315  // This is used to avoid emitting unnecessary branches to the next block.
1316  MachineBasicBlock *NextBlock = 0;
1317  MachineFunction::iterator BBI = CurMBB;
1318  if (++BBI != CurMBB->getParent()->end())
1319    NextBlock = BBI;
1320
1321  if (NextMBB == NextBlock)
1322    DAG.setRoot(BrAnd);
1323  else
1324    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1325                            DAG.getBasicBlock(NextMBB)));
1326
1327  CurMBB->addSuccessor(B.TargetBB);
1328  CurMBB->addSuccessor(NextMBB);
1329
1330  return;
1331}
1332
1333void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1334  assert(0 && "Should never be visited directly");
1335}
1336void SelectionDAGLowering::visitInvoke(InvokeInst &I, bool AsTerminator) {
1337  // Retrieve successors.
1338  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1339  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1340
1341  if (!AsTerminator) {
1342    // Mark landing pad so that it doesn't get deleted in branch folding.
1343    LandingPad->setIsLandingPad();
1344
1345    // Insert a label before the invoke call to mark the try range.
1346    // This can be used to detect deletion of the invoke via the
1347    // MachineModuleInfo.
1348    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
1349    unsigned BeginLabel = MMI->NextLabelID();
1350    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
1351                            DAG.getConstant(BeginLabel, MVT::i32)));
1352
1353    LowerCallTo(I, I.getCalledValue()->getType(),
1354                   I.getCallingConv(),
1355                   false,
1356                   getValue(I.getOperand(0)),
1357                   3);
1358
1359    // Insert a label before the invoke call to mark the try range.
1360    // This can be used to detect deletion of the invoke via the
1361    // MachineModuleInfo.
1362    unsigned EndLabel = MMI->NextLabelID();
1363    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
1364                            DAG.getConstant(EndLabel, MVT::i32)));
1365
1366    // Inform MachineModuleInfo of range.
1367    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
1368
1369    // Update successor info
1370    CurMBB->addSuccessor(Return);
1371    CurMBB->addSuccessor(LandingPad);
1372  } else {
1373    // Drop into normal successor.
1374    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1375                            DAG.getBasicBlock(Return)));
1376  }
1377}
1378
1379void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1380}
1381
1382/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1383/// small case ranges).
1384bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1385                                                  CaseRecVector& WorkList,
1386                                                  Value* SV,
1387                                                  MachineBasicBlock* Default) {
1388  Case& BackCase  = *(CR.Range.second-1);
1389
1390  // Size is the number of Cases represented by this range.
1391  unsigned Size = CR.Range.second - CR.Range.first;
1392  if (Size > 3)
1393    return false;
1394
1395  // Get the MachineFunction which holds the current MBB.  This is used when
1396  // inserting any additional MBBs necessary to represent the switch.
1397  MachineFunction *CurMF = CurMBB->getParent();
1398
1399  // Figure out which block is immediately after the current one.
1400  MachineBasicBlock *NextBlock = 0;
1401  MachineFunction::iterator BBI = CR.CaseBB;
1402
1403  if (++BBI != CurMBB->getParent()->end())
1404    NextBlock = BBI;
1405
1406  // TODO: If any two of the cases has the same destination, and if one value
1407  // is the same as the other, but has one bit unset that the other has set,
1408  // use bit manipulation to do two compares at once.  For example:
1409  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1410
1411  // Rearrange the case blocks so that the last one falls through if possible.
1412  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1413    // The last case block won't fall through into 'NextBlock' if we emit the
1414    // branches in this order.  See if rearranging a case value would help.
1415    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1416      if (I->BB == NextBlock) {
1417        std::swap(*I, BackCase);
1418        break;
1419      }
1420    }
1421  }
1422
1423  // Create a CaseBlock record representing a conditional branch to
1424  // the Case's target mbb if the value being switched on SV is equal
1425  // to C.
1426  MachineBasicBlock *CurBlock = CR.CaseBB;
1427  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1428    MachineBasicBlock *FallThrough;
1429    if (I != E-1) {
1430      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1431      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1432    } else {
1433      // If the last case doesn't match, go to the default block.
1434      FallThrough = Default;
1435    }
1436
1437    Value *RHS, *LHS, *MHS;
1438    ISD::CondCode CC;
1439    if (I->High == I->Low) {
1440      // This is just small small case range :) containing exactly 1 case
1441      CC = ISD::SETEQ;
1442      LHS = SV; RHS = I->High; MHS = NULL;
1443    } else {
1444      CC = ISD::SETLE;
1445      LHS = I->Low; MHS = SV; RHS = I->High;
1446    }
1447    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1448                                   I->BB, FallThrough, CurBlock);
1449
1450    // If emitting the first comparison, just call visitSwitchCase to emit the
1451    // code into the current block.  Otherwise, push the CaseBlock onto the
1452    // vector to be later processed by SDISel, and insert the node's MBB
1453    // before the next MBB.
1454    if (CurBlock == CurMBB)
1455      visitSwitchCase(CB);
1456    else
1457      SwitchCases.push_back(CB);
1458
1459    CurBlock = FallThrough;
1460  }
1461
1462  return true;
1463}
1464
1465static inline bool areJTsAllowed(const TargetLowering &TLI) {
1466  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1467          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1468}
1469
1470/// handleJTSwitchCase - Emit jumptable for current switch case range
1471bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1472                                              CaseRecVector& WorkList,
1473                                              Value* SV,
1474                                              MachineBasicBlock* Default) {
1475  Case& FrontCase = *CR.Range.first;
1476  Case& BackCase  = *(CR.Range.second-1);
1477
1478  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1479  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1480
1481  uint64_t TSize = 0;
1482  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1483       I!=E; ++I)
1484    TSize += I->size();
1485
1486  if (!areJTsAllowed(TLI) || TSize <= 3)
1487    return false;
1488
1489  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1490  if (Density < 0.4)
1491    return false;
1492
1493  DOUT << "Lowering jump table\n"
1494       << "First entry: " << First << ". Last entry: " << Last << "\n"
1495       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1496
1497  // Get the MachineFunction which holds the current MBB.  This is used when
1498  // inserting any additional MBBs necessary to represent the switch.
1499  MachineFunction *CurMF = CurMBB->getParent();
1500
1501  // Figure out which block is immediately after the current one.
1502  MachineBasicBlock *NextBlock = 0;
1503  MachineFunction::iterator BBI = CR.CaseBB;
1504
1505  if (++BBI != CurMBB->getParent()->end())
1506    NextBlock = BBI;
1507
1508  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1509
1510  // Create a new basic block to hold the code for loading the address
1511  // of the jump table, and jumping to it.  Update successor information;
1512  // we will either branch to the default case for the switch, or the jump
1513  // table.
1514  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1515  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1516  CR.CaseBB->addSuccessor(Default);
1517  CR.CaseBB->addSuccessor(JumpTableBB);
1518
1519  // Build a vector of destination BBs, corresponding to each target
1520  // of the jump table. If the value of the jump table slot corresponds to
1521  // a case statement, push the case's BB onto the vector, otherwise, push
1522  // the default BB.
1523  std::vector<MachineBasicBlock*> DestBBs;
1524  int64_t TEI = First;
1525  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1526    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1527    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1528
1529    if ((Low <= TEI) && (TEI <= High)) {
1530      DestBBs.push_back(I->BB);
1531      if (TEI==High)
1532        ++I;
1533    } else {
1534      DestBBs.push_back(Default);
1535    }
1536  }
1537
1538  // Update successor info. Add one edge to each unique successor.
1539  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1540  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1541         E = DestBBs.end(); I != E; ++I) {
1542    if (!SuccsHandled[(*I)->getNumber()]) {
1543      SuccsHandled[(*I)->getNumber()] = true;
1544      JumpTableBB->addSuccessor(*I);
1545    }
1546  }
1547
1548  // Create a jump table index for this jump table, or return an existing
1549  // one.
1550  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1551
1552  // Set the jump table information so that we can codegen it as a second
1553  // MachineBasicBlock
1554  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1555  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1556                                        (CR.CaseBB == CurMBB));
1557  if (CR.CaseBB == CurMBB)
1558    visitJumpTableHeader(JT, JTH);
1559
1560  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1561
1562  return true;
1563}
1564
1565/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1566/// 2 subtrees.
1567bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1568                                                   CaseRecVector& WorkList,
1569                                                   Value* SV,
1570                                                   MachineBasicBlock* Default) {
1571  // Get the MachineFunction which holds the current MBB.  This is used when
1572  // inserting any additional MBBs necessary to represent the switch.
1573  MachineFunction *CurMF = CurMBB->getParent();
1574
1575  // Figure out which block is immediately after the current one.
1576  MachineBasicBlock *NextBlock = 0;
1577  MachineFunction::iterator BBI = CR.CaseBB;
1578
1579  if (++BBI != CurMBB->getParent()->end())
1580    NextBlock = BBI;
1581
1582  Case& FrontCase = *CR.Range.first;
1583  Case& BackCase  = *(CR.Range.second-1);
1584  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1585
1586  // Size is the number of Cases represented by this range.
1587  unsigned Size = CR.Range.second - CR.Range.first;
1588
1589  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1590  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1591  double FMetric = 0;
1592  CaseItr Pivot = CR.Range.first + Size/2;
1593
1594  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1595  // (heuristically) allow us to emit JumpTable's later.
1596  uint64_t TSize = 0;
1597  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1598       I!=E; ++I)
1599    TSize += I->size();
1600
1601  uint64_t LSize = FrontCase.size();
1602  uint64_t RSize = TSize-LSize;
1603  DOUT << "Selecting best pivot: \n"
1604       << "First: " << First << ", Last: " << Last <<"\n"
1605       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1606  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1607       J!=E; ++I, ++J) {
1608    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1609    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1610    assert((RBegin-LEnd>=1) && "Invalid case distance");
1611    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1612    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1613    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1614    // Should always split in some non-trivial place
1615    DOUT <<"=>Step\n"
1616         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1617         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1618         << "Metric: " << Metric << "\n";
1619    if (FMetric < Metric) {
1620      Pivot = J;
1621      FMetric = Metric;
1622      DOUT << "Current metric set to: " << FMetric << "\n";
1623    }
1624
1625    LSize += J->size();
1626    RSize -= J->size();
1627  }
1628  if (areJTsAllowed(TLI)) {
1629    // If our case is dense we *really* should handle it earlier!
1630    assert((FMetric > 0) && "Should handle dense range earlier!");
1631  } else {
1632    Pivot = CR.Range.first + Size/2;
1633  }
1634
1635  CaseRange LHSR(CR.Range.first, Pivot);
1636  CaseRange RHSR(Pivot, CR.Range.second);
1637  Constant *C = Pivot->Low;
1638  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1639
1640  // We know that we branch to the LHS if the Value being switched on is
1641  // less than the Pivot value, C.  We use this to optimize our binary
1642  // tree a bit, by recognizing that if SV is greater than or equal to the
1643  // LHS's Case Value, and that Case Value is exactly one less than the
1644  // Pivot's Value, then we can branch directly to the LHS's Target,
1645  // rather than creating a leaf node for it.
1646  if ((LHSR.second - LHSR.first) == 1 &&
1647      LHSR.first->High == CR.GE &&
1648      cast<ConstantInt>(C)->getSExtValue() ==
1649      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1650    TrueBB = LHSR.first->BB;
1651  } else {
1652    TrueBB = new MachineBasicBlock(LLVMBB);
1653    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1654    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1655  }
1656
1657  // Similar to the optimization above, if the Value being switched on is
1658  // known to be less than the Constant CR.LT, and the current Case Value
1659  // is CR.LT - 1, then we can branch directly to the target block for
1660  // the current Case Value, rather than emitting a RHS leaf node for it.
1661  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1662      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1663      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1664    FalseBB = RHSR.first->BB;
1665  } else {
1666    FalseBB = new MachineBasicBlock(LLVMBB);
1667    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1668    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1669  }
1670
1671  // Create a CaseBlock record representing a conditional branch to
1672  // the LHS node if the value being switched on SV is less than C.
1673  // Otherwise, branch to LHS.
1674  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1675                                 TrueBB, FalseBB, CR.CaseBB);
1676
1677  if (CR.CaseBB == CurMBB)
1678    visitSwitchCase(CB);
1679  else
1680    SwitchCases.push_back(CB);
1681
1682  return true;
1683}
1684
1685/// handleBitTestsSwitchCase - if current case range has few destination and
1686/// range span less, than machine word bitwidth, encode case range into series
1687/// of masks and emit bit tests with these masks.
1688bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1689                                                    CaseRecVector& WorkList,
1690                                                    Value* SV,
1691                                                    MachineBasicBlock* Default){
1692  unsigned IntPtrBits = getSizeInBits(TLI.getPointerTy());
1693
1694  Case& FrontCase = *CR.Range.first;
1695  Case& BackCase  = *(CR.Range.second-1);
1696
1697  // Get the MachineFunction which holds the current MBB.  This is used when
1698  // inserting any additional MBBs necessary to represent the switch.
1699  MachineFunction *CurMF = CurMBB->getParent();
1700
1701  unsigned numCmps = 0;
1702  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1703       I!=E; ++I) {
1704    // Single case counts one, case range - two.
1705    if (I->Low == I->High)
1706      numCmps +=1;
1707    else
1708      numCmps +=2;
1709  }
1710
1711  // Count unique destinations
1712  SmallSet<MachineBasicBlock*, 4> Dests;
1713  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1714    Dests.insert(I->BB);
1715    if (Dests.size() > 3)
1716      // Don't bother the code below, if there are too much unique destinations
1717      return false;
1718  }
1719  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1720       << "Total number of comparisons: " << numCmps << "\n";
1721
1722  // Compute span of values.
1723  Constant* minValue = FrontCase.Low;
1724  Constant* maxValue = BackCase.High;
1725  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1726                   cast<ConstantInt>(minValue)->getSExtValue();
1727  DOUT << "Compare range: " << range << "\n"
1728       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1729       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1730
1731  if (range>=IntPtrBits ||
1732      (!(Dests.size() == 1 && numCmps >= 3) &&
1733       !(Dests.size() == 2 && numCmps >= 5) &&
1734       !(Dests.size() >= 3 && numCmps >= 6)))
1735    return false;
1736
1737  DOUT << "Emitting bit tests\n";
1738  int64_t lowBound = 0;
1739
1740  // Optimize the case where all the case values fit in a
1741  // word without having to subtract minValue. In this case,
1742  // we can optimize away the subtraction.
1743  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1744      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1745    range = cast<ConstantInt>(maxValue)->getSExtValue();
1746  } else {
1747    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1748  }
1749
1750  CaseBitsVector CasesBits;
1751  unsigned i, count = 0;
1752
1753  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1754    MachineBasicBlock* Dest = I->BB;
1755    for (i = 0; i < count; ++i)
1756      if (Dest == CasesBits[i].BB)
1757        break;
1758
1759    if (i == count) {
1760      assert((count < 3) && "Too much destinations to test!");
1761      CasesBits.push_back(CaseBits(0, Dest, 0));
1762      count++;
1763    }
1764
1765    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1766    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1767
1768    for (uint64_t j = lo; j <= hi; j++) {
1769      CasesBits[i].Mask |=  1ULL << j;
1770      CasesBits[i].Bits++;
1771    }
1772
1773  }
1774  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1775
1776  SelectionDAGISel::BitTestInfo BTC;
1777
1778  // Figure out which block is immediately after the current one.
1779  MachineFunction::iterator BBI = CR.CaseBB;
1780  ++BBI;
1781
1782  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1783
1784  DOUT << "Cases:\n";
1785  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1786    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1787         << ", BB: " << CasesBits[i].BB << "\n";
1788
1789    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1790    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1791    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1792                                                CaseBB,
1793                                                CasesBits[i].BB));
1794  }
1795
1796  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1797                                     -1U, (CR.CaseBB == CurMBB),
1798                                     CR.CaseBB, Default, BTC);
1799
1800  if (CR.CaseBB == CurMBB)
1801    visitBitTestHeader(BTB);
1802
1803  BitTestCases.push_back(BTB);
1804
1805  return true;
1806}
1807
1808
1809// Clusterify - Transform simple list of Cases into list of CaseRange's
1810unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1811                                          const SwitchInst& SI) {
1812  unsigned numCmps = 0;
1813
1814  // Start with "simple" cases
1815  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1816    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1817    Cases.push_back(Case(SI.getSuccessorValue(i),
1818                         SI.getSuccessorValue(i),
1819                         SMBB));
1820  }
1821  sort(Cases.begin(), Cases.end(), CaseCmp());
1822
1823  // Merge case into clusters
1824  if (Cases.size()>=2)
1825    for (CaseItr I=Cases.begin(), J=++(Cases.begin()), E=Cases.end(); J!=E; ) {
1826      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1827      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1828      MachineBasicBlock* nextBB = J->BB;
1829      MachineBasicBlock* currentBB = I->BB;
1830
1831      // If the two neighboring cases go to the same destination, merge them
1832      // into a single case.
1833      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1834        I->High = J->High;
1835        J = Cases.erase(J);
1836      } else {
1837        I = J++;
1838      }
1839    }
1840
1841  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1842    if (I->Low != I->High)
1843      // A range counts double, since it requires two compares.
1844      ++numCmps;
1845  }
1846
1847  return numCmps;
1848}
1849
1850void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1851  // Figure out which block is immediately after the current one.
1852  MachineBasicBlock *NextBlock = 0;
1853  MachineFunction::iterator BBI = CurMBB;
1854
1855  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1856
1857  // If there is only the default destination, branch to it if it is not the
1858  // next basic block.  Otherwise, just fall through.
1859  if (SI.getNumOperands() == 2) {
1860    // Update machine-CFG edges.
1861
1862    // If this is not a fall-through branch, emit the branch.
1863    if (Default != NextBlock)
1864      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1865                              DAG.getBasicBlock(Default)));
1866
1867    CurMBB->addSuccessor(Default);
1868    return;
1869  }
1870
1871  // If there are any non-default case statements, create a vector of Cases
1872  // representing each one, and sort the vector so that we can efficiently
1873  // create a binary search tree from them.
1874  CaseVector Cases;
1875  unsigned numCmps = Clusterify(Cases, SI);
1876  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1877       << ". Total compares: " << numCmps << "\n";
1878
1879  // Get the Value to be switched on and default basic blocks, which will be
1880  // inserted into CaseBlock records, representing basic blocks in the binary
1881  // search tree.
1882  Value *SV = SI.getOperand(0);
1883
1884  // Push the initial CaseRec onto the worklist
1885  CaseRecVector WorkList;
1886  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1887
1888  while (!WorkList.empty()) {
1889    // Grab a record representing a case range to process off the worklist
1890    CaseRec CR = WorkList.back();
1891    WorkList.pop_back();
1892
1893    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1894      continue;
1895
1896    // If the range has few cases (two or less) emit a series of specific
1897    // tests.
1898    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1899      continue;
1900
1901    // If the switch has more than 5 blocks, and at least 40% dense, and the
1902    // target supports indirect branches, then emit a jump table rather than
1903    // lowering the switch to a binary tree of conditional branches.
1904    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1905      continue;
1906
1907    // Emit binary tree. We need to pick a pivot, and push left and right ranges
1908    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
1909    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
1910  }
1911}
1912
1913
1914void SelectionDAGLowering::visitSub(User &I) {
1915  // -0.0 - X --> fneg
1916  const Type *Ty = I.getType();
1917  if (isa<VectorType>(Ty)) {
1918    visitVectorBinary(I, ISD::VSUB);
1919  } else if (Ty->isFloatingPoint()) {
1920    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1921      if (CFP->isExactlyValue(-0.0)) {
1922        SDOperand Op2 = getValue(I.getOperand(1));
1923        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1924        return;
1925      }
1926    visitScalarBinary(I, ISD::FSUB);
1927  } else
1928    visitScalarBinary(I, ISD::SUB);
1929}
1930
1931void SelectionDAGLowering::visitScalarBinary(User &I, unsigned OpCode) {
1932  SDOperand Op1 = getValue(I.getOperand(0));
1933  SDOperand Op2 = getValue(I.getOperand(1));
1934
1935  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
1936}
1937
1938void
1939SelectionDAGLowering::visitVectorBinary(User &I, unsigned OpCode) {
1940  assert(isa<VectorType>(I.getType()));
1941  const VectorType *Ty = cast<VectorType>(I.getType());
1942  SDOperand Typ = DAG.getValueType(TLI.getValueType(Ty->getElementType()));
1943
1944  setValue(&I, DAG.getNode(OpCode, MVT::Vector,
1945                           getValue(I.getOperand(0)),
1946                           getValue(I.getOperand(1)),
1947                           DAG.getConstant(Ty->getNumElements(), MVT::i32),
1948                           Typ));
1949}
1950
1951void SelectionDAGLowering::visitEitherBinary(User &I, unsigned ScalarOp,
1952                                             unsigned VectorOp) {
1953  if (isa<VectorType>(I.getType()))
1954    visitVectorBinary(I, VectorOp);
1955  else
1956    visitScalarBinary(I, ScalarOp);
1957}
1958
1959void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1960  SDOperand Op1 = getValue(I.getOperand(0));
1961  SDOperand Op2 = getValue(I.getOperand(1));
1962
1963  if (TLI.getShiftAmountTy() < Op2.getValueType())
1964    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
1965  else if (TLI.getShiftAmountTy() > Op2.getValueType())
1966    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1967
1968  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1969}
1970
1971void SelectionDAGLowering::visitICmp(User &I) {
1972  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
1973  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
1974    predicate = IC->getPredicate();
1975  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
1976    predicate = ICmpInst::Predicate(IC->getPredicate());
1977  SDOperand Op1 = getValue(I.getOperand(0));
1978  SDOperand Op2 = getValue(I.getOperand(1));
1979  ISD::CondCode Opcode;
1980  switch (predicate) {
1981    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
1982    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
1983    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
1984    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
1985    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
1986    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
1987    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
1988    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
1989    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
1990    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
1991    default:
1992      assert(!"Invalid ICmp predicate value");
1993      Opcode = ISD::SETEQ;
1994      break;
1995  }
1996  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1997}
1998
1999void SelectionDAGLowering::visitFCmp(User &I) {
2000  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2001  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2002    predicate = FC->getPredicate();
2003  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2004    predicate = FCmpInst::Predicate(FC->getPredicate());
2005  SDOperand Op1 = getValue(I.getOperand(0));
2006  SDOperand Op2 = getValue(I.getOperand(1));
2007  ISD::CondCode Condition, FOC, FPC;
2008  switch (predicate) {
2009    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2010    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2011    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2012    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2013    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2014    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2015    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2016    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2017    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2018    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2019    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2020    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2021    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2022    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2023    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2024    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2025    default:
2026      assert(!"Invalid FCmp predicate value");
2027      FOC = FPC = ISD::SETFALSE;
2028      break;
2029  }
2030  if (FiniteOnlyFPMath())
2031    Condition = FOC;
2032  else
2033    Condition = FPC;
2034  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2035}
2036
2037void SelectionDAGLowering::visitSelect(User &I) {
2038  SDOperand Cond     = getValue(I.getOperand(0));
2039  SDOperand TrueVal  = getValue(I.getOperand(1));
2040  SDOperand FalseVal = getValue(I.getOperand(2));
2041  if (!isa<VectorType>(I.getType())) {
2042    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2043                             TrueVal, FalseVal));
2044  } else {
2045    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
2046                             *(TrueVal.Val->op_end()-2),
2047                             *(TrueVal.Val->op_end()-1)));
2048  }
2049}
2050
2051
2052void SelectionDAGLowering::visitTrunc(User &I) {
2053  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2054  SDOperand N = getValue(I.getOperand(0));
2055  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2056  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2057}
2058
2059void SelectionDAGLowering::visitZExt(User &I) {
2060  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2061  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2062  SDOperand N = getValue(I.getOperand(0));
2063  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2064  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2065}
2066
2067void SelectionDAGLowering::visitSExt(User &I) {
2068  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2069  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2070  SDOperand N = getValue(I.getOperand(0));
2071  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2072  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2073}
2074
2075void SelectionDAGLowering::visitFPTrunc(User &I) {
2076  // FPTrunc is never a no-op cast, no need to check
2077  SDOperand N = getValue(I.getOperand(0));
2078  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2079  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2080}
2081
2082void SelectionDAGLowering::visitFPExt(User &I){
2083  // FPTrunc is never a no-op cast, no need to check
2084  SDOperand N = getValue(I.getOperand(0));
2085  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2086  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2087}
2088
2089void SelectionDAGLowering::visitFPToUI(User &I) {
2090  // FPToUI is never a no-op cast, no need to check
2091  SDOperand N = getValue(I.getOperand(0));
2092  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2093  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2094}
2095
2096void SelectionDAGLowering::visitFPToSI(User &I) {
2097  // FPToSI is never a no-op cast, no need to check
2098  SDOperand N = getValue(I.getOperand(0));
2099  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2100  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2101}
2102
2103void SelectionDAGLowering::visitUIToFP(User &I) {
2104  // UIToFP is never a no-op cast, no need to check
2105  SDOperand N = getValue(I.getOperand(0));
2106  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2107  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2108}
2109
2110void SelectionDAGLowering::visitSIToFP(User &I){
2111  // UIToFP is never a no-op cast, no need to check
2112  SDOperand N = getValue(I.getOperand(0));
2113  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2114  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2115}
2116
2117void SelectionDAGLowering::visitPtrToInt(User &I) {
2118  // What to do depends on the size of the integer and the size of the pointer.
2119  // We can either truncate, zero extend, or no-op, accordingly.
2120  SDOperand N = getValue(I.getOperand(0));
2121  MVT::ValueType SrcVT = N.getValueType();
2122  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2123  SDOperand Result;
2124  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2125    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2126  else
2127    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2128    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2129  setValue(&I, Result);
2130}
2131
2132void SelectionDAGLowering::visitIntToPtr(User &I) {
2133  // What to do depends on the size of the integer and the size of the pointer.
2134  // We can either truncate, zero extend, or no-op, accordingly.
2135  SDOperand N = getValue(I.getOperand(0));
2136  MVT::ValueType SrcVT = N.getValueType();
2137  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2138  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2139    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2140  else
2141    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2142    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2143}
2144
2145void SelectionDAGLowering::visitBitCast(User &I) {
2146  SDOperand N = getValue(I.getOperand(0));
2147  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2148  if (DestVT == MVT::Vector) {
2149    // This is a cast to a vector from something else.
2150    // Get information about the output vector.
2151    const VectorType *DestTy = cast<VectorType>(I.getType());
2152    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2153    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
2154                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
2155                             DAG.getValueType(EltVT)));
2156    return;
2157  }
2158  MVT::ValueType SrcVT = N.getValueType();
2159  if (SrcVT == MVT::Vector) {
2160    // This is a cast from a vctor to something else.
2161    // Get information about the input vector.
2162    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
2163    return;
2164  }
2165
2166  // BitCast assures us that source and destination are the same size so this
2167  // is either a BIT_CONVERT or a no-op.
2168  if (DestVT != N.getValueType())
2169    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2170  else
2171    setValue(&I, N); // noop cast.
2172}
2173
2174void SelectionDAGLowering::visitInsertElement(User &I) {
2175  SDOperand InVec = getValue(I.getOperand(0));
2176  SDOperand InVal = getValue(I.getOperand(1));
2177  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2178                                getValue(I.getOperand(2)));
2179
2180  SDOperand Num = *(InVec.Val->op_end()-2);
2181  SDOperand Typ = *(InVec.Val->op_end()-1);
2182  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
2183                           InVec, InVal, InIdx, Num, Typ));
2184}
2185
2186void SelectionDAGLowering::visitExtractElement(User &I) {
2187  SDOperand InVec = getValue(I.getOperand(0));
2188  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2189                                getValue(I.getOperand(1)));
2190  SDOperand Typ = *(InVec.Val->op_end()-1);
2191  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
2192                           TLI.getValueType(I.getType()), InVec, InIdx));
2193}
2194
2195void SelectionDAGLowering::visitShuffleVector(User &I) {
2196  SDOperand V1   = getValue(I.getOperand(0));
2197  SDOperand V2   = getValue(I.getOperand(1));
2198  SDOperand Mask = getValue(I.getOperand(2));
2199
2200  SDOperand Num = *(V1.Val->op_end()-2);
2201  SDOperand Typ = *(V2.Val->op_end()-1);
2202  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
2203                           V1, V2, Mask, Num, Typ));
2204}
2205
2206
2207void SelectionDAGLowering::visitGetElementPtr(User &I) {
2208  SDOperand N = getValue(I.getOperand(0));
2209  const Type *Ty = I.getOperand(0)->getType();
2210
2211  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2212       OI != E; ++OI) {
2213    Value *Idx = *OI;
2214    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2215      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2216      if (Field) {
2217        // N = N + Offset
2218        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2219        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2220                        getIntPtrConstant(Offset));
2221      }
2222      Ty = StTy->getElementType(Field);
2223    } else {
2224      Ty = cast<SequentialType>(Ty)->getElementType();
2225
2226      // If this is a constant subscript, handle it quickly.
2227      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2228        if (CI->getZExtValue() == 0) continue;
2229        uint64_t Offs =
2230            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2231        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2232        continue;
2233      }
2234
2235      // N = N + Idx * ElementSize;
2236      uint64_t ElementSize = TD->getTypeSize(Ty);
2237      SDOperand IdxN = getValue(Idx);
2238
2239      // If the index is smaller or larger than intptr_t, truncate or extend
2240      // it.
2241      if (IdxN.getValueType() < N.getValueType()) {
2242        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2243      } else if (IdxN.getValueType() > N.getValueType())
2244        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2245
2246      // If this is a multiply by a power of two, turn it into a shl
2247      // immediately.  This is a very common case.
2248      if (isPowerOf2_64(ElementSize)) {
2249        unsigned Amt = Log2_64(ElementSize);
2250        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2251                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2252        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2253        continue;
2254      }
2255
2256      SDOperand Scale = getIntPtrConstant(ElementSize);
2257      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2258      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2259    }
2260  }
2261  setValue(&I, N);
2262}
2263
2264void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2265  // If this is a fixed sized alloca in the entry block of the function,
2266  // allocate it statically on the stack.
2267  if (FuncInfo.StaticAllocaMap.count(&I))
2268    return;   // getValue will auto-populate this.
2269
2270  const Type *Ty = I.getAllocatedType();
2271  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
2272  unsigned Align =
2273    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2274             I.getAlignment());
2275
2276  SDOperand AllocSize = getValue(I.getArraySize());
2277  MVT::ValueType IntPtr = TLI.getPointerTy();
2278  if (IntPtr < AllocSize.getValueType())
2279    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2280  else if (IntPtr > AllocSize.getValueType())
2281    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2282
2283  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2284                          getIntPtrConstant(TySize));
2285
2286  // Handle alignment.  If the requested alignment is less than or equal to the
2287  // stack alignment, ignore it and round the size of the allocation up to the
2288  // stack alignment size.  If the size is greater than the stack alignment, we
2289  // note this in the DYNAMIC_STACKALLOC node.
2290  unsigned StackAlign =
2291    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2292  if (Align <= StackAlign) {
2293    Align = 0;
2294    // Add SA-1 to the size.
2295    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2296                            getIntPtrConstant(StackAlign-1));
2297    // Mask out the low bits for alignment purposes.
2298    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2299                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2300  }
2301
2302  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2303  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2304                                                    MVT::Other);
2305  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2306  setValue(&I, DSA);
2307  DAG.setRoot(DSA.getValue(1));
2308
2309  // Inform the Frame Information that we have just allocated a variable-sized
2310  // object.
2311  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2312}
2313
2314void SelectionDAGLowering::visitLoad(LoadInst &I) {
2315  SDOperand Ptr = getValue(I.getOperand(0));
2316
2317  SDOperand Root;
2318  if (I.isVolatile())
2319    Root = getRoot();
2320  else {
2321    // Do not serialize non-volatile loads against each other.
2322    Root = DAG.getRoot();
2323  }
2324
2325  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2326                           Root, I.isVolatile(), I.getAlignment()));
2327}
2328
2329SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2330                                            const Value *SV, SDOperand Root,
2331                                            bool isVolatile,
2332                                            unsigned Alignment) {
2333  SDOperand L;
2334  if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
2335    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
2336    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
2337                       DAG.getSrcValue(SV));
2338  } else {
2339    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2340                    isVolatile, Alignment);
2341  }
2342
2343  if (isVolatile)
2344    DAG.setRoot(L.getValue(1));
2345  else
2346    PendingLoads.push_back(L.getValue(1));
2347
2348  return L;
2349}
2350
2351
2352void SelectionDAGLowering::visitStore(StoreInst &I) {
2353  Value *SrcV = I.getOperand(0);
2354  SDOperand Src = getValue(SrcV);
2355  SDOperand Ptr = getValue(I.getOperand(1));
2356  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2357                           I.isVolatile(), I.getAlignment()));
2358}
2359
2360/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2361/// access memory and has no other side effects at all.
2362static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2363#define GET_NO_MEMORY_INTRINSICS
2364#include "llvm/Intrinsics.gen"
2365#undef GET_NO_MEMORY_INTRINSICS
2366  return false;
2367}
2368
2369// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2370// have any side-effects or if it only reads memory.
2371static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2372#define GET_SIDE_EFFECT_INFO
2373#include "llvm/Intrinsics.gen"
2374#undef GET_SIDE_EFFECT_INFO
2375  return false;
2376}
2377
2378/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2379/// node.
2380void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2381                                                unsigned Intrinsic) {
2382  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2383  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2384
2385  // Build the operand list.
2386  SmallVector<SDOperand, 8> Ops;
2387  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2388    if (OnlyLoad) {
2389      // We don't need to serialize loads against other loads.
2390      Ops.push_back(DAG.getRoot());
2391    } else {
2392      Ops.push_back(getRoot());
2393    }
2394  }
2395
2396  // Add the intrinsic ID as an integer operand.
2397  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2398
2399  // Add all operands of the call to the operand list.
2400  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2401    SDOperand Op = getValue(I.getOperand(i));
2402
2403    // If this is a vector type, force it to the right vector type.
2404    if (Op.getValueType() == MVT::Vector) {
2405      const VectorType *OpTy = cast<VectorType>(I.getOperand(i)->getType());
2406      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
2407
2408      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
2409      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
2410      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
2411    }
2412
2413    assert(TLI.isTypeLegal(Op.getValueType()) &&
2414           "Intrinsic uses a non-legal type?");
2415    Ops.push_back(Op);
2416  }
2417
2418  std::vector<MVT::ValueType> VTs;
2419  if (I.getType() != Type::VoidTy) {
2420    MVT::ValueType VT = TLI.getValueType(I.getType());
2421    if (VT == MVT::Vector) {
2422      const VectorType *DestTy = cast<VectorType>(I.getType());
2423      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2424
2425      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2426      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2427    }
2428
2429    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2430    VTs.push_back(VT);
2431  }
2432  if (HasChain)
2433    VTs.push_back(MVT::Other);
2434
2435  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2436
2437  // Create the node.
2438  SDOperand Result;
2439  if (!HasChain)
2440    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2441                         &Ops[0], Ops.size());
2442  else if (I.getType() != Type::VoidTy)
2443    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2444                         &Ops[0], Ops.size());
2445  else
2446    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2447                         &Ops[0], Ops.size());
2448
2449  if (HasChain) {
2450    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2451    if (OnlyLoad)
2452      PendingLoads.push_back(Chain);
2453    else
2454      DAG.setRoot(Chain);
2455  }
2456  if (I.getType() != Type::VoidTy) {
2457    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2458      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
2459      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
2460                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
2461                           DAG.getValueType(EVT));
2462    }
2463    setValue(&I, Result);
2464  }
2465}
2466
2467/// ExtractGlobalVariable - If C is a global variable, or a bitcast of one
2468/// (possibly constant folded), return it.  Otherwise return NULL.
2469static GlobalVariable *ExtractGlobalVariable (Constant *C) {
2470  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
2471    return GV;
2472  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2473    if (CE->getOpcode() == Instruction::BitCast)
2474      return dyn_cast<GlobalVariable>(CE->getOperand(0));
2475    else if (CE->getOpcode() == Instruction::GetElementPtr) {
2476      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2477        if (!CE->getOperand(i)->isNullValue())
2478          return NULL;
2479      return dyn_cast<GlobalVariable>(CE->getOperand(0));
2480    }
2481  }
2482  return NULL;
2483}
2484
2485/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2486/// we want to emit this as a call to a named external function, return the name
2487/// otherwise lower it and return null.
2488const char *
2489SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2490  switch (Intrinsic) {
2491  default:
2492    // By default, turn this into a target intrinsic node.
2493    visitTargetIntrinsic(I, Intrinsic);
2494    return 0;
2495  case Intrinsic::vastart:  visitVAStart(I); return 0;
2496  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2497  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2498  case Intrinsic::returnaddress:
2499    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2500                             getValue(I.getOperand(1))));
2501    return 0;
2502  case Intrinsic::frameaddress:
2503    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2504                             getValue(I.getOperand(1))));
2505    return 0;
2506  case Intrinsic::setjmp:
2507    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2508    break;
2509  case Intrinsic::longjmp:
2510    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2511    break;
2512  case Intrinsic::memcpy_i32:
2513  case Intrinsic::memcpy_i64:
2514    visitMemIntrinsic(I, ISD::MEMCPY);
2515    return 0;
2516  case Intrinsic::memset_i32:
2517  case Intrinsic::memset_i64:
2518    visitMemIntrinsic(I, ISD::MEMSET);
2519    return 0;
2520  case Intrinsic::memmove_i32:
2521  case Intrinsic::memmove_i64:
2522    visitMemIntrinsic(I, ISD::MEMMOVE);
2523    return 0;
2524
2525  case Intrinsic::dbg_stoppoint: {
2526    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2527    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2528    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2529      SDOperand Ops[5];
2530
2531      Ops[0] = getRoot();
2532      Ops[1] = getValue(SPI.getLineValue());
2533      Ops[2] = getValue(SPI.getColumnValue());
2534
2535      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2536      assert(DD && "Not a debug information descriptor");
2537      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2538
2539      Ops[3] = DAG.getString(CompileUnit->getFileName());
2540      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2541
2542      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2543    }
2544
2545    return 0;
2546  }
2547  case Intrinsic::dbg_region_start: {
2548    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2549    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2550    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2551      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2552      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2553                              DAG.getConstant(LabelID, MVT::i32)));
2554    }
2555
2556    return 0;
2557  }
2558  case Intrinsic::dbg_region_end: {
2559    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2560    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2561    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2562      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2563      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2564                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2565    }
2566
2567    return 0;
2568  }
2569  case Intrinsic::dbg_func_start: {
2570    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2571    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2572    if (MMI && FSI.getSubprogram() &&
2573        MMI->Verify(FSI.getSubprogram())) {
2574      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2575      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2576                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2577    }
2578
2579    return 0;
2580  }
2581  case Intrinsic::dbg_declare: {
2582    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2583    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2584    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2585      SDOperand AddressOp  = getValue(DI.getAddress());
2586      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2587        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2588    }
2589
2590    return 0;
2591  }
2592
2593  case Intrinsic::eh_exception: {
2594    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2595
2596    if (MMI) {
2597      // Add a label to mark the beginning of the landing pad.  Deletion of the
2598      // landing pad can thus be detected via the MachineModuleInfo.
2599      unsigned LabelID = MMI->addLandingPad(CurMBB);
2600      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
2601                              DAG.getConstant(LabelID, MVT::i32)));
2602
2603      // Mark exception register as live in.
2604      unsigned Reg = TLI.getExceptionAddressRegister();
2605      if (Reg) CurMBB->addLiveIn(Reg);
2606
2607      // Insert the EXCEPTIONADDR instruction.
2608      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2609      SDOperand Ops[1];
2610      Ops[0] = DAG.getRoot();
2611      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2612      setValue(&I, Op);
2613      DAG.setRoot(Op.getValue(1));
2614    } else {
2615      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2616    }
2617    return 0;
2618  }
2619
2620  case Intrinsic::eh_selector:
2621  case Intrinsic::eh_filter:{
2622    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2623
2624    if (MMI) {
2625      // Inform the MachineModuleInfo of the personality for this landing pad.
2626      ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(2));
2627      assert(CE && CE->getOpcode() == Instruction::BitCast &&
2628             isa<Function>(CE->getOperand(0)) &&
2629             "Personality should be a function");
2630      MMI->addPersonality(CurMBB, cast<Function>(CE->getOperand(0)));
2631      if (Intrinsic == Intrinsic::eh_filter)
2632        MMI->setIsFilterLandingPad(CurMBB);
2633
2634      // Gather all the type infos for this landing pad and pass them along to
2635      // MachineModuleInfo.
2636      std::vector<GlobalVariable *> TyInfo;
2637      for (unsigned i = 3, N = I.getNumOperands(); i < N; ++i) {
2638        Constant *C = cast<Constant>(I.getOperand(i));
2639        GlobalVariable *GV = ExtractGlobalVariable(C);
2640        assert (GV || (isa<ConstantInt>(C) &&
2641                       cast<ConstantInt>(C)->isNullValue()) &&
2642                "TypeInfo must be a global variable or NULL");
2643        TyInfo.push_back(GV);
2644      }
2645      MMI->addCatchTypeInfo(CurMBB, TyInfo);
2646
2647      // Mark exception selector register as live in.
2648      unsigned Reg = TLI.getExceptionSelectorRegister();
2649      if (Reg) CurMBB->addLiveIn(Reg);
2650
2651      // Insert the EHSELECTION instruction.
2652      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2653      SDOperand Ops[2];
2654      Ops[0] = getValue(I.getOperand(1));
2655      Ops[1] = getRoot();
2656      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2657      setValue(&I, Op);
2658      DAG.setRoot(Op.getValue(1));
2659    } else {
2660      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2661    }
2662
2663    return 0;
2664  }
2665
2666  case Intrinsic::eh_typeid_for: {
2667    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2668
2669    if (MMI) {
2670      // Find the type id for the given typeinfo.
2671      Constant *C = cast<Constant>(I.getOperand(1));
2672      GlobalVariable *GV = ExtractGlobalVariable(C);
2673      assert (GV || (isa<ConstantInt>(C) &&
2674                     cast<ConstantInt>(C)->isNullValue()) &&
2675              "TypeInfo must be a global variable or NULL");
2676
2677      unsigned TypeID = MMI->getTypeIDFor(GV);
2678      setValue(&I, DAG.getConstant(TypeID, MVT::i32));
2679    } else {
2680      setValue(&I, DAG.getConstant(0, MVT::i32));
2681    }
2682
2683    return 0;
2684  }
2685
2686  case Intrinsic::sqrt_f32:
2687  case Intrinsic::sqrt_f64:
2688    setValue(&I, DAG.getNode(ISD::FSQRT,
2689                             getValue(I.getOperand(1)).getValueType(),
2690                             getValue(I.getOperand(1))));
2691    return 0;
2692  case Intrinsic::powi_f32:
2693  case Intrinsic::powi_f64:
2694    setValue(&I, DAG.getNode(ISD::FPOWI,
2695                             getValue(I.getOperand(1)).getValueType(),
2696                             getValue(I.getOperand(1)),
2697                             getValue(I.getOperand(2))));
2698    return 0;
2699  case Intrinsic::pcmarker: {
2700    SDOperand Tmp = getValue(I.getOperand(1));
2701    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2702    return 0;
2703  }
2704  case Intrinsic::readcyclecounter: {
2705    SDOperand Op = getRoot();
2706    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2707                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2708                                &Op, 1);
2709    setValue(&I, Tmp);
2710    DAG.setRoot(Tmp.getValue(1));
2711    return 0;
2712  }
2713  case Intrinsic::part_select: {
2714    // Currently not implemented: just abort
2715    assert(0 && "part_select intrinsic not implemented");
2716    abort();
2717  }
2718  case Intrinsic::part_set: {
2719    // Currently not implemented: just abort
2720    assert(0 && "part_set intrinsic not implemented");
2721    abort();
2722  }
2723  case Intrinsic::bswap:
2724    setValue(&I, DAG.getNode(ISD::BSWAP,
2725                             getValue(I.getOperand(1)).getValueType(),
2726                             getValue(I.getOperand(1))));
2727    return 0;
2728  case Intrinsic::cttz: {
2729    SDOperand Arg = getValue(I.getOperand(1));
2730    MVT::ValueType Ty = Arg.getValueType();
2731    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2732    if (Ty < MVT::i32)
2733      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2734    else if (Ty > MVT::i32)
2735      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2736    setValue(&I, result);
2737    return 0;
2738  }
2739  case Intrinsic::ctlz: {
2740    SDOperand Arg = getValue(I.getOperand(1));
2741    MVT::ValueType Ty = Arg.getValueType();
2742    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2743    if (Ty < MVT::i32)
2744      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2745    else if (Ty > MVT::i32)
2746      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2747    setValue(&I, result);
2748    return 0;
2749  }
2750  case Intrinsic::ctpop: {
2751    SDOperand Arg = getValue(I.getOperand(1));
2752    MVT::ValueType Ty = Arg.getValueType();
2753    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2754    if (Ty < MVT::i32)
2755      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2756    else if (Ty > MVT::i32)
2757      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2758    setValue(&I, result);
2759    return 0;
2760  }
2761  case Intrinsic::stacksave: {
2762    SDOperand Op = getRoot();
2763    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2764              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2765    setValue(&I, Tmp);
2766    DAG.setRoot(Tmp.getValue(1));
2767    return 0;
2768  }
2769  case Intrinsic::stackrestore: {
2770    SDOperand Tmp = getValue(I.getOperand(1));
2771    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2772    return 0;
2773  }
2774  case Intrinsic::prefetch:
2775    // FIXME: Currently discarding prefetches.
2776    return 0;
2777  }
2778}
2779
2780
2781void SelectionDAGLowering::LowerCallTo(Instruction &I,
2782                                       const Type *CalledValueTy,
2783                                       unsigned CallingConv,
2784                                       bool IsTailCall,
2785                                       SDOperand Callee, unsigned OpIdx) {
2786  const PointerType *PT = cast<PointerType>(CalledValueTy);
2787  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2788  const ParamAttrsList *Attrs = FTy->getParamAttrs();
2789
2790  TargetLowering::ArgListTy Args;
2791  TargetLowering::ArgListEntry Entry;
2792  Args.reserve(I.getNumOperands());
2793  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2794    Value *Arg = I.getOperand(i);
2795    SDOperand ArgNode = getValue(Arg);
2796    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2797
2798    unsigned attrInd = i - OpIdx + 1;
2799    Entry.isSExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
2800    Entry.isZExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
2801    Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
2802    Entry.isSRet  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
2803    Args.push_back(Entry);
2804  }
2805
2806  std::pair<SDOperand,SDOperand> Result =
2807    TLI.LowerCallTo(getRoot(), I.getType(),
2808                    Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2809                    FTy->isVarArg(), CallingConv, IsTailCall,
2810                    Callee, Args, DAG);
2811  if (I.getType() != Type::VoidTy)
2812    setValue(&I, Result.first);
2813  DAG.setRoot(Result.second);
2814}
2815
2816
2817void SelectionDAGLowering::visitCall(CallInst &I) {
2818  const char *RenameFn = 0;
2819  if (Function *F = I.getCalledFunction()) {
2820    if (F->isDeclaration())
2821      if (unsigned IID = F->getIntrinsicID()) {
2822        RenameFn = visitIntrinsicCall(I, IID);
2823        if (!RenameFn)
2824          return;
2825      } else {    // Not an LLVM intrinsic.
2826        const std::string &Name = F->getName();
2827        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2828          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2829              I.getOperand(1)->getType()->isFloatingPoint() &&
2830              I.getType() == I.getOperand(1)->getType() &&
2831              I.getType() == I.getOperand(2)->getType()) {
2832            SDOperand LHS = getValue(I.getOperand(1));
2833            SDOperand RHS = getValue(I.getOperand(2));
2834            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2835                                     LHS, RHS));
2836            return;
2837          }
2838        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2839          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2840              I.getOperand(1)->getType()->isFloatingPoint() &&
2841              I.getType() == I.getOperand(1)->getType()) {
2842            SDOperand Tmp = getValue(I.getOperand(1));
2843            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2844            return;
2845          }
2846        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2847          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2848              I.getOperand(1)->getType()->isFloatingPoint() &&
2849              I.getType() == I.getOperand(1)->getType()) {
2850            SDOperand Tmp = getValue(I.getOperand(1));
2851            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2852            return;
2853          }
2854        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2855          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2856              I.getOperand(1)->getType()->isFloatingPoint() &&
2857              I.getType() == I.getOperand(1)->getType()) {
2858            SDOperand Tmp = getValue(I.getOperand(1));
2859            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2860            return;
2861          }
2862        }
2863      }
2864  } else if (isa<InlineAsm>(I.getOperand(0))) {
2865    visitInlineAsm(I);
2866    return;
2867  }
2868
2869  SDOperand Callee;
2870  if (!RenameFn)
2871    Callee = getValue(I.getOperand(0));
2872  else
2873    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2874
2875  LowerCallTo(I, I.getCalledValue()->getType(),
2876                 I.getCallingConv(),
2877                 I.isTailCall(),
2878                 Callee,
2879                 1);
2880}
2881
2882
2883SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2884                                        SDOperand &Chain, SDOperand &Flag)const{
2885  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
2886  Chain = Val.getValue(1);
2887  Flag  = Val.getValue(2);
2888
2889  // If the result was expanded, copy from the top part.
2890  if (Regs.size() > 1) {
2891    assert(Regs.size() == 2 &&
2892           "Cannot expand to more than 2 elts yet!");
2893    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
2894    Chain = Hi.getValue(1);
2895    Flag  = Hi.getValue(2);
2896    if (DAG.getTargetLoweringInfo().isLittleEndian())
2897      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
2898    else
2899      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
2900  }
2901
2902  // Otherwise, if the return value was promoted or extended, truncate it to the
2903  // appropriate type.
2904  if (RegVT == ValueVT)
2905    return Val;
2906
2907  if (MVT::isVector(RegVT)) {
2908    assert(ValueVT == MVT::Vector && "Unknown vector conversion!");
2909    return DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Val,
2910                       DAG.getConstant(MVT::getVectorNumElements(RegVT),
2911                                       MVT::i32),
2912                       DAG.getValueType(MVT::getVectorBaseType(RegVT)));
2913  }
2914
2915  if (MVT::isInteger(RegVT)) {
2916    if (ValueVT < RegVT)
2917      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
2918    else
2919      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
2920  }
2921
2922  assert(MVT::isFloatingPoint(RegVT) && MVT::isFloatingPoint(ValueVT));
2923  return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
2924}
2925
2926/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2927/// specified value into the registers specified by this object.  This uses
2928/// Chain/Flag as the input and updates them for the output Chain/Flag.
2929void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2930                                 SDOperand &Chain, SDOperand &Flag,
2931                                 MVT::ValueType PtrVT) const {
2932  if (Regs.size() == 1) {
2933    // If there is a single register and the types differ, this must be
2934    // a promotion.
2935    if (RegVT != ValueVT) {
2936      if (MVT::isVector(RegVT)) {
2937        assert(Val.getValueType() == MVT::Vector &&"Not a vector-vector cast?");
2938        Val = DAG.getNode(ISD::VBIT_CONVERT, RegVT, Val);
2939      } else if (MVT::isInteger(RegVT) && MVT::isInteger(Val.getValueType())) {
2940        if (RegVT < ValueVT)
2941          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
2942        else
2943          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
2944      } else if (MVT::isFloatingPoint(RegVT) &&
2945                 MVT::isFloatingPoint(Val.getValueType())) {
2946        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
2947      } else if (MVT::getSizeInBits(RegVT) ==
2948                 MVT::getSizeInBits(Val.getValueType())) {
2949        Val = DAG.getNode(ISD::BIT_CONVERT, RegVT, Val);
2950      } else {
2951        assert(0 && "Unknown mismatch!");
2952      }
2953    }
2954    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
2955    Flag = Chain.getValue(1);
2956  } else {
2957    std::vector<unsigned> R(Regs);
2958    if (!DAG.getTargetLoweringInfo().isLittleEndian())
2959      std::reverse(R.begin(), R.end());
2960
2961    for (unsigned i = 0, e = R.size(); i != e; ++i) {
2962      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
2963                                   DAG.getConstant(i, PtrVT));
2964      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
2965      Flag = Chain.getValue(1);
2966    }
2967  }
2968}
2969
2970/// AddInlineAsmOperands - Add this value to the specified inlineasm node
2971/// operand list.  This adds the code marker and includes the number of
2972/// values added into it.
2973void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
2974                                        std::vector<SDOperand> &Ops) const {
2975  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
2976  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
2977  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
2978    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
2979}
2980
2981/// isAllocatableRegister - If the specified register is safe to allocate,
2982/// i.e. it isn't a stack pointer or some other special register, return the
2983/// register class for the register.  Otherwise, return null.
2984static const TargetRegisterClass *
2985isAllocatableRegister(unsigned Reg, MachineFunction &MF,
2986                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
2987  MVT::ValueType FoundVT = MVT::Other;
2988  const TargetRegisterClass *FoundRC = 0;
2989  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
2990       E = MRI->regclass_end(); RCI != E; ++RCI) {
2991    MVT::ValueType ThisVT = MVT::Other;
2992
2993    const TargetRegisterClass *RC = *RCI;
2994    // If none of the the value types for this register class are valid, we
2995    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2996    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2997         I != E; ++I) {
2998      if (TLI.isTypeLegal(*I)) {
2999        // If we have already found this register in a different register class,
3000        // choose the one with the largest VT specified.  For example, on
3001        // PowerPC, we favor f64 register classes over f32.
3002        if (FoundVT == MVT::Other ||
3003            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3004          ThisVT = *I;
3005          break;
3006        }
3007      }
3008    }
3009
3010    if (ThisVT == MVT::Other) continue;
3011
3012    // NOTE: This isn't ideal.  In particular, this might allocate the
3013    // frame pointer in functions that need it (due to them not being taken
3014    // out of allocation, because a variable sized allocation hasn't been seen
3015    // yet).  This is a slight code pessimization, but should still work.
3016    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3017         E = RC->allocation_order_end(MF); I != E; ++I)
3018      if (*I == Reg) {
3019        // We found a matching register class.  Keep looking at others in case
3020        // we find one with larger registers that this physreg is also in.
3021        FoundRC = RC;
3022        FoundVT = ThisVT;
3023        break;
3024      }
3025  }
3026  return FoundRC;
3027}
3028
3029
3030namespace {
3031/// AsmOperandInfo - This contains information for each constraint that we are
3032/// lowering.
3033struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3034  /// ConstraintCode - This contains the actual string for the code, like "m".
3035  std::string ConstraintCode;
3036
3037  /// ConstraintType - Information about the constraint code, e.g. Register,
3038  /// RegisterClass, Memory, Other, Unknown.
3039  TargetLowering::ConstraintType ConstraintType;
3040
3041  /// CallOperand/CallOperandval - If this is the result output operand or a
3042  /// clobber, this is null, otherwise it is the incoming operand to the
3043  /// CallInst.  This gets modified as the asm is processed.
3044  SDOperand CallOperand;
3045  Value *CallOperandVal;
3046
3047  /// ConstraintVT - The ValueType for the operand value.
3048  MVT::ValueType ConstraintVT;
3049
3050  /// AssignedRegs - If this is a register or register class operand, this
3051  /// contains the set of register corresponding to the operand.
3052  RegsForValue AssignedRegs;
3053
3054  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3055    : InlineAsm::ConstraintInfo(info),
3056      ConstraintType(TargetLowering::C_Unknown),
3057      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3058  }
3059
3060  void ComputeConstraintToUse(const TargetLowering &TLI);
3061
3062  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3063  /// busy in OutputRegs/InputRegs.
3064  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3065                         std::set<unsigned> &OutputRegs,
3066                         std::set<unsigned> &InputRegs) const {
3067     if (isOutReg)
3068       OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3069     if (isInReg)
3070       InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3071   }
3072};
3073} // end anon namespace.
3074
3075/// getConstraintGenerality - Return an integer indicating how general CT is.
3076static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3077  switch (CT) {
3078    default: assert(0 && "Unknown constraint type!");
3079    case TargetLowering::C_Other:
3080    case TargetLowering::C_Unknown:
3081      return 0;
3082    case TargetLowering::C_Register:
3083      return 1;
3084    case TargetLowering::C_RegisterClass:
3085      return 2;
3086    case TargetLowering::C_Memory:
3087      return 3;
3088  }
3089}
3090
3091void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3092  assert(!Codes.empty() && "Must have at least one constraint");
3093
3094  std::string *Current = &Codes[0];
3095  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3096  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3097    ConstraintCode = *Current;
3098    ConstraintType = CurType;
3099    return;
3100  }
3101
3102  unsigned CurGenerality = getConstraintGenerality(CurType);
3103
3104  // If we have multiple constraints, try to pick the most general one ahead
3105  // of time.  This isn't a wonderful solution, but handles common cases.
3106  for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3107    TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3108    unsigned ThisGenerality = getConstraintGenerality(ThisType);
3109    if (ThisGenerality > CurGenerality) {
3110      // This constraint letter is more general than the previous one,
3111      // use it.
3112      CurType = ThisType;
3113      Current = &Codes[j];
3114      CurGenerality = ThisGenerality;
3115    }
3116  }
3117
3118  ConstraintCode = *Current;
3119  ConstraintType = CurType;
3120}
3121
3122
3123void SelectionDAGLowering::
3124GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3125                     std::set<unsigned> &OutputRegs,
3126                     std::set<unsigned> &InputRegs) {
3127  // Compute whether this value requires an input register, an output register,
3128  // or both.
3129  bool isOutReg = false;
3130  bool isInReg = false;
3131  switch (OpInfo.Type) {
3132  case InlineAsm::isOutput:
3133    isOutReg = true;
3134
3135    // If this is an early-clobber output, or if there is an input
3136    // constraint that matches this, we need to reserve the input register
3137    // so no other inputs allocate to it.
3138    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3139    break;
3140  case InlineAsm::isInput:
3141    isInReg = true;
3142    isOutReg = false;
3143    break;
3144  case InlineAsm::isClobber:
3145    isOutReg = true;
3146    isInReg = true;
3147    break;
3148  }
3149
3150
3151  MachineFunction &MF = DAG.getMachineFunction();
3152  std::vector<unsigned> Regs;
3153
3154  // If this is a constraint for a single physreg, or a constraint for a
3155  // register class, find it.
3156  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3157    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3158                                     OpInfo.ConstraintVT);
3159
3160  unsigned NumRegs = 1;
3161  if (OpInfo.ConstraintVT != MVT::Other)
3162    NumRegs = TLI.getNumElements(OpInfo.ConstraintVT);
3163  MVT::ValueType RegVT;
3164  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3165
3166
3167  // If this is a constraint for a specific physical register, like {r17},
3168  // assign it now.
3169  if (PhysReg.first) {
3170    if (OpInfo.ConstraintVT == MVT::Other)
3171      ValueVT = *PhysReg.second->vt_begin();
3172
3173    // Get the actual register value type.  This is important, because the user
3174    // may have asked for (e.g.) the AX register in i32 type.  We need to
3175    // remember that AX is actually i16 to get the right extension.
3176    RegVT = *PhysReg.second->vt_begin();
3177
3178    // This is a explicit reference to a physical register.
3179    Regs.push_back(PhysReg.first);
3180
3181    // If this is an expanded reference, add the rest of the regs to Regs.
3182    if (NumRegs != 1) {
3183      TargetRegisterClass::iterator I = PhysReg.second->begin();
3184      TargetRegisterClass::iterator E = PhysReg.second->end();
3185      for (; *I != PhysReg.first; ++I)
3186        assert(I != E && "Didn't find reg!");
3187
3188      // Already added the first reg.
3189      --NumRegs; ++I;
3190      for (; NumRegs; --NumRegs, ++I) {
3191        assert(I != E && "Ran out of registers to allocate!");
3192        Regs.push_back(*I);
3193      }
3194    }
3195    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3196    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3197    return;
3198  }
3199
3200  // Otherwise, if this was a reference to an LLVM register class, create vregs
3201  // for this reference.
3202  std::vector<unsigned> RegClassRegs;
3203  if (PhysReg.second) {
3204    // If this is an early clobber or tied register, our regalloc doesn't know
3205    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3206    // and let the regalloc do the right thing.
3207    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3208        // If there is some other early clobber and this is an input register,
3209        // then we are forced to pre-allocate the input reg so it doesn't
3210        // conflict with the earlyclobber.
3211        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3212      RegVT = *PhysReg.second->vt_begin();
3213
3214      if (OpInfo.ConstraintVT == MVT::Other)
3215        ValueVT = RegVT;
3216
3217      // Create the appropriate number of virtual registers.
3218      SSARegMap *RegMap = MF.getSSARegMap();
3219      for (; NumRegs; --NumRegs)
3220        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3221
3222      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3223      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3224      return;
3225    }
3226
3227    // Otherwise, we can't allocate it.  Let the code below figure out how to
3228    // maintain these constraints.
3229    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3230
3231  } else {
3232    // This is a reference to a register class that doesn't directly correspond
3233    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3234    // registers from the class.
3235    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3236                                                         OpInfo.ConstraintVT);
3237  }
3238
3239  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3240  unsigned NumAllocated = 0;
3241  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3242    unsigned Reg = RegClassRegs[i];
3243    // See if this register is available.
3244    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3245        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3246      // Make sure we find consecutive registers.
3247      NumAllocated = 0;
3248      continue;
3249    }
3250
3251    // Check to see if this register is allocatable (i.e. don't give out the
3252    // stack pointer).
3253    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3254    if (!RC) {
3255      // Make sure we find consecutive registers.
3256      NumAllocated = 0;
3257      continue;
3258    }
3259
3260    // Okay, this register is good, we can use it.
3261    ++NumAllocated;
3262
3263    // If we allocated enough consecutive registers, succeed.
3264    if (NumAllocated == NumRegs) {
3265      unsigned RegStart = (i-NumAllocated)+1;
3266      unsigned RegEnd   = i+1;
3267      // Mark all of the allocated registers used.
3268      for (unsigned i = RegStart; i != RegEnd; ++i)
3269        Regs.push_back(RegClassRegs[i]);
3270
3271      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3272                                         OpInfo.ConstraintVT);
3273      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3274      return;
3275    }
3276  }
3277
3278  // Otherwise, we couldn't allocate enough registers for this.
3279  return;
3280}
3281
3282
3283/// visitInlineAsm - Handle a call to an InlineAsm object.
3284///
3285void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
3286  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
3287
3288  /// ConstraintOperands - Information about all of the constraints.
3289  std::vector<AsmOperandInfo> ConstraintOperands;
3290
3291  SDOperand Chain = getRoot();
3292  SDOperand Flag;
3293
3294  std::set<unsigned> OutputRegs, InputRegs;
3295
3296  // Do a prepass over the constraints, canonicalizing them, and building up the
3297  // ConstraintOperands list.
3298  std::vector<InlineAsm::ConstraintInfo>
3299    ConstraintInfos = IA->ParseConstraints();
3300
3301  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3302  // constraint.  If so, we can't let the register allocator allocate any input
3303  // registers, because it will not know to avoid the earlyclobbered output reg.
3304  bool SawEarlyClobber = false;
3305
3306  unsigned OpNo = 1;   // OpNo - The operand of the CallInst.
3307  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3308    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3309    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3310
3311    MVT::ValueType OpVT = MVT::Other;
3312
3313    // Compute the value type for each operand.
3314    switch (OpInfo.Type) {
3315    case InlineAsm::isOutput:
3316      if (!OpInfo.isIndirect) {
3317        // The return value of the call is this value.  As such, there is no
3318        // corresponding argument.
3319        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3320        OpVT = TLI.getValueType(I.getType());
3321      } else {
3322        OpInfo.CallOperandVal = I.getOperand(OpNo++);
3323      }
3324      break;
3325    case InlineAsm::isInput:
3326      OpInfo.CallOperandVal = I.getOperand(OpNo++);
3327      break;
3328    case InlineAsm::isClobber:
3329      // Nothing to do.
3330      break;
3331    }
3332
3333    // If this is an input or an indirect output, process the call argument.
3334    if (OpInfo.CallOperandVal) {
3335      OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3336      const Type *OpTy = OpInfo.CallOperandVal->getType();
3337      // If this is an indirect operand, the operand is a pointer to the
3338      // accessed type.
3339      if (OpInfo.isIndirect)
3340        OpTy = cast<PointerType>(OpTy)->getElementType();
3341
3342      // If OpTy is not a first-class value, it may be a struct/union that we
3343      // can tile with integers.
3344      if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3345        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3346        switch (BitSize) {
3347        default: break;
3348        case 1:
3349        case 8:
3350        case 16:
3351        case 32:
3352        case 64:
3353          OpTy = IntegerType::get(BitSize);
3354          break;
3355        }
3356      }
3357
3358      OpVT = TLI.getValueType(OpTy, true);
3359    }
3360
3361    OpInfo.ConstraintVT = OpVT;
3362
3363    // Compute the constraint code and ConstraintType to use.
3364    OpInfo.ComputeConstraintToUse(TLI);
3365
3366    // Keep track of whether we see an earlyclobber.
3367    SawEarlyClobber |= OpInfo.isEarlyClobber;
3368
3369    // If this is a memory input, and if the operand is not indirect, do what we
3370    // need to to provide an address for the memory input.
3371    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3372        !OpInfo.isIndirect) {
3373      assert(OpInfo.Type == InlineAsm::isInput &&
3374             "Can only indirectify direct input operands!");
3375
3376      // Memory operands really want the address of the value.  If we don't have
3377      // an indirect input, put it in the constpool if we can, otherwise spill
3378      // it to a stack slot.
3379
3380      // If the operand is a float, integer, or vector constant, spill to a
3381      // constant pool entry to get its address.
3382      Value *OpVal = OpInfo.CallOperandVal;
3383      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3384          isa<ConstantVector>(OpVal)) {
3385        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3386                                                 TLI.getPointerTy());
3387      } else {
3388        // Otherwise, create a stack slot and emit a store to it before the
3389        // asm.
3390        const Type *Ty = OpVal->getType();
3391        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
3392        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3393        MachineFunction &MF = DAG.getMachineFunction();
3394        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3395        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3396        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3397        OpInfo.CallOperand = StackSlot;
3398      }
3399
3400      // There is no longer a Value* corresponding to this operand.
3401      OpInfo.CallOperandVal = 0;
3402      // It is now an indirect operand.
3403      OpInfo.isIndirect = true;
3404    }
3405
3406    // If this constraint is for a specific register, allocate it before
3407    // anything else.
3408    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3409      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3410  }
3411  ConstraintInfos.clear();
3412
3413
3414  // Second pass - Loop over all of the operands, assigning virtual or physregs
3415  // to registerclass operands.
3416  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3417    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3418
3419    // C_Register operands have already been allocated, Other/Memory don't need
3420    // to be.
3421    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3422      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3423  }
3424
3425  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3426  std::vector<SDOperand> AsmNodeOperands;
3427  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3428  AsmNodeOperands.push_back(
3429          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3430
3431
3432  // Loop over all of the inputs, copying the operand values into the
3433  // appropriate registers and processing the output regs.
3434  RegsForValue RetValRegs;
3435
3436  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3437  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3438
3439  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3440    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3441
3442    switch (OpInfo.Type) {
3443    case InlineAsm::isOutput: {
3444      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3445          OpInfo.ConstraintType != TargetLowering::C_Register) {
3446        // Memory output, or 'other' output (e.g. 'X' constraint).
3447        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3448
3449        // Add information to the INLINEASM node to know about this output.
3450        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3451        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3452                                                        TLI.getPointerTy()));
3453        AsmNodeOperands.push_back(OpInfo.CallOperand);
3454        break;
3455      }
3456
3457      // Otherwise, this is a register or register class output.
3458
3459      // Copy the output from the appropriate register.  Find a register that
3460      // we can use.
3461      if (OpInfo.AssignedRegs.Regs.empty()) {
3462        cerr << "Couldn't allocate output reg for contraint '"
3463             << OpInfo.ConstraintCode << "'!\n";
3464        exit(1);
3465      }
3466
3467      if (!OpInfo.isIndirect) {
3468        // This is the result value of the call.
3469        assert(RetValRegs.Regs.empty() &&
3470               "Cannot have multiple output constraints yet!");
3471        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3472        RetValRegs = OpInfo.AssignedRegs;
3473      } else {
3474        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3475                                                      OpInfo.CallOperandVal));
3476      }
3477
3478      // Add information to the INLINEASM node to know that this register is
3479      // set.
3480      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3481                                               AsmNodeOperands);
3482      break;
3483    }
3484    case InlineAsm::isInput: {
3485      SDOperand InOperandVal = OpInfo.CallOperand;
3486
3487      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3488        // If this is required to match an output register we have already set,
3489        // just use its register.
3490        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3491
3492        // Scan until we find the definition we already emitted of this operand.
3493        // When we find it, create a RegsForValue operand.
3494        unsigned CurOp = 2;  // The first operand.
3495        for (; OperandNo; --OperandNo) {
3496          // Advance to the next operand.
3497          unsigned NumOps =
3498            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3499          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3500                  (NumOps & 7) == 4 /*MEM*/) &&
3501                 "Skipped past definitions?");
3502          CurOp += (NumOps>>3)+1;
3503        }
3504
3505        unsigned NumOps =
3506          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3507        if ((NumOps & 7) == 2 /*REGDEF*/) {
3508          // Add NumOps>>3 registers to MatchedRegs.
3509          RegsForValue MatchedRegs;
3510          MatchedRegs.ValueVT = InOperandVal.getValueType();
3511          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3512          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3513            unsigned Reg =
3514              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3515            MatchedRegs.Regs.push_back(Reg);
3516          }
3517
3518          // Use the produced MatchedRegs object to
3519          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
3520                                    TLI.getPointerTy());
3521          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3522          break;
3523        } else {
3524          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3525          assert(0 && "matching constraints for memory operands unimp");
3526        }
3527      }
3528
3529      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3530        assert(!OpInfo.isIndirect &&
3531               "Don't know how to handle indirect other inputs yet!");
3532
3533        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
3534                                                       OpInfo.ConstraintCode[0],
3535                                                       DAG);
3536        if (!InOperandVal.Val) {
3537          cerr << "Invalid operand for inline asm constraint '"
3538               << OpInfo.ConstraintCode << "'!\n";
3539          exit(1);
3540        }
3541
3542        // Add information to the INLINEASM node to know about this input.
3543        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
3544        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3545                                                        TLI.getPointerTy()));
3546        AsmNodeOperands.push_back(InOperandVal);
3547        break;
3548      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3549        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3550        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3551               "Memory operands expect pointer values");
3552
3553        // Add information to the INLINEASM node to know about this input.
3554        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3555        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3556                                                        TLI.getPointerTy()));
3557        AsmNodeOperands.push_back(InOperandVal);
3558        break;
3559      }
3560
3561      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3562              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3563             "Unknown constraint type!");
3564      assert(!OpInfo.isIndirect &&
3565             "Don't know how to handle indirect register inputs yet!");
3566
3567      // Copy the input into the appropriate registers.
3568      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3569             "Couldn't allocate input reg!");
3570
3571      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
3572                                        TLI.getPointerTy());
3573
3574      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3575                                               AsmNodeOperands);
3576      break;
3577    }
3578    case InlineAsm::isClobber: {
3579      // Add the clobbered value to the operand list, so that the register
3580      // allocator is aware that the physreg got clobbered.
3581      if (!OpInfo.AssignedRegs.Regs.empty())
3582        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3583                                                 AsmNodeOperands);
3584      break;
3585    }
3586    }
3587  }
3588
3589  // Finish up input operands.
3590  AsmNodeOperands[0] = Chain;
3591  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3592
3593  Chain = DAG.getNode(ISD::INLINEASM,
3594                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3595                      &AsmNodeOperands[0], AsmNodeOperands.size());
3596  Flag = Chain.getValue(1);
3597
3598  // If this asm returns a register value, copy the result from that register
3599  // and set it as the value of the call.
3600  if (!RetValRegs.Regs.empty()) {
3601    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, Flag);
3602
3603    // If the result of the inline asm is a vector, it may have the wrong
3604    // width/num elts.  Make sure to convert it to the right type with
3605    // vbit_convert.
3606    if (Val.getValueType() == MVT::Vector) {
3607      const VectorType *VTy = cast<VectorType>(I.getType());
3608      unsigned DesiredNumElts = VTy->getNumElements();
3609      MVT::ValueType DesiredEltVT = TLI.getValueType(VTy->getElementType());
3610
3611      Val = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Val,
3612                        DAG.getConstant(DesiredNumElts, MVT::i32),
3613                        DAG.getValueType(DesiredEltVT));
3614    }
3615
3616    setValue(&I, Val);
3617  }
3618
3619  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3620
3621  // Process indirect outputs, first output all of the flagged copies out of
3622  // physregs.
3623  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3624    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3625    Value *Ptr = IndirectStoresToEmit[i].second;
3626    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
3627    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3628  }
3629
3630  // Emit the non-flagged stores from the physregs.
3631  SmallVector<SDOperand, 8> OutChains;
3632  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3633    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3634                                    getValue(StoresToEmit[i].second),
3635                                    StoresToEmit[i].second, 0));
3636  if (!OutChains.empty())
3637    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3638                        &OutChains[0], OutChains.size());
3639  DAG.setRoot(Chain);
3640}
3641
3642
3643void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3644  SDOperand Src = getValue(I.getOperand(0));
3645
3646  MVT::ValueType IntPtr = TLI.getPointerTy();
3647
3648  if (IntPtr < Src.getValueType())
3649    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3650  else if (IntPtr > Src.getValueType())
3651    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3652
3653  // Scale the source by the type size.
3654  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
3655  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3656                    Src, getIntPtrConstant(ElementSize));
3657
3658  TargetLowering::ArgListTy Args;
3659  TargetLowering::ArgListEntry Entry;
3660  Entry.Node = Src;
3661  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3662  Args.push_back(Entry);
3663
3664  std::pair<SDOperand,SDOperand> Result =
3665    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3666                    DAG.getExternalSymbol("malloc", IntPtr),
3667                    Args, DAG);
3668  setValue(&I, Result.first);  // Pointers always fit in registers
3669  DAG.setRoot(Result.second);
3670}
3671
3672void SelectionDAGLowering::visitFree(FreeInst &I) {
3673  TargetLowering::ArgListTy Args;
3674  TargetLowering::ArgListEntry Entry;
3675  Entry.Node = getValue(I.getOperand(0));
3676  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3677  Args.push_back(Entry);
3678  MVT::ValueType IntPtr = TLI.getPointerTy();
3679  std::pair<SDOperand,SDOperand> Result =
3680    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3681                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3682  DAG.setRoot(Result.second);
3683}
3684
3685// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3686// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3687// instructions are special in various ways, which require special support to
3688// insert.  The specified MachineInstr is created but not inserted into any
3689// basic blocks, and the scheduler passes ownership of it to this method.
3690MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3691                                                       MachineBasicBlock *MBB) {
3692  cerr << "If a target marks an instruction with "
3693       << "'usesCustomDAGSchedInserter', it must implement "
3694       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3695  abort();
3696  return 0;
3697}
3698
3699void SelectionDAGLowering::visitVAStart(CallInst &I) {
3700  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3701                          getValue(I.getOperand(1)),
3702                          DAG.getSrcValue(I.getOperand(1))));
3703}
3704
3705void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3706  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3707                             getValue(I.getOperand(0)),
3708                             DAG.getSrcValue(I.getOperand(0)));
3709  setValue(&I, V);
3710  DAG.setRoot(V.getValue(1));
3711}
3712
3713void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3714  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3715                          getValue(I.getOperand(1)),
3716                          DAG.getSrcValue(I.getOperand(1))));
3717}
3718
3719void SelectionDAGLowering::visitVACopy(CallInst &I) {
3720  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3721                          getValue(I.getOperand(1)),
3722                          getValue(I.getOperand(2)),
3723                          DAG.getSrcValue(I.getOperand(1)),
3724                          DAG.getSrcValue(I.getOperand(2))));
3725}
3726
3727/// ExpandScalarFormalArgs - Recursively expand the formal_argument node, either
3728/// bit_convert it or join a pair of them with a BUILD_PAIR when appropriate.
3729static SDOperand ExpandScalarFormalArgs(MVT::ValueType VT, SDNode *Arg,
3730                                        unsigned &i, SelectionDAG &DAG,
3731                                        TargetLowering &TLI) {
3732  if (TLI.getTypeAction(VT) != TargetLowering::Expand)
3733    return SDOperand(Arg, i++);
3734
3735  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3736  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3737  if (NumVals == 1) {
3738    return DAG.getNode(ISD::BIT_CONVERT, VT,
3739                       ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI));
3740  } else if (NumVals == 2) {
3741    SDOperand Lo = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
3742    SDOperand Hi = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
3743    if (!TLI.isLittleEndian())
3744      std::swap(Lo, Hi);
3745    return DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
3746  } else {
3747    // Value scalarized into many values.  Unimp for now.
3748    assert(0 && "Cannot expand i64 -> i16 yet!");
3749  }
3750  return SDOperand();
3751}
3752
3753/// TargetLowering::LowerArguments - This is the default LowerArguments
3754/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3755/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3756/// integrated into SDISel.
3757std::vector<SDOperand>
3758TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3759  const FunctionType *FTy = F.getFunctionType();
3760  const ParamAttrsList *Attrs = FTy->getParamAttrs();
3761  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3762  std::vector<SDOperand> Ops;
3763  Ops.push_back(DAG.getRoot());
3764  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3765  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3766
3767  // Add one result value for each formal argument.
3768  std::vector<MVT::ValueType> RetVals;
3769  unsigned j = 1;
3770  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3771       I != E; ++I, ++j) {
3772    MVT::ValueType VT = getValueType(I->getType());
3773    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3774    unsigned OriginalAlignment =
3775      getTargetData()->getABITypeAlignment(I->getType());
3776
3777    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3778    // that is zero extended!
3779    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt))
3780      Flags &= ~(ISD::ParamFlags::SExt);
3781    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt))
3782      Flags |= ISD::ParamFlags::SExt;
3783    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg))
3784      Flags |= ISD::ParamFlags::InReg;
3785    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet))
3786      Flags |= ISD::ParamFlags::StructReturn;
3787    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3788
3789    switch (getTypeAction(VT)) {
3790    default: assert(0 && "Unknown type action!");
3791    case Legal:
3792      RetVals.push_back(VT);
3793      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3794      break;
3795    case Promote:
3796      RetVals.push_back(getTypeToTransformTo(VT));
3797      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3798      break;
3799    case Expand:
3800      if (VT != MVT::Vector) {
3801        // If this is a large integer, it needs to be broken up into small
3802        // integers.  Figure out what the destination type is and how many small
3803        // integers it turns into.
3804        MVT::ValueType NVT = getTypeToExpandTo(VT);
3805        unsigned NumVals = getNumElements(VT);
3806        for (unsigned i = 0; i != NumVals; ++i) {
3807          RetVals.push_back(NVT);
3808          // if it isn't first piece, alignment must be 1
3809          if (i > 0)
3810            Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3811              (1 << ISD::ParamFlags::OrigAlignmentOffs);
3812          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3813        }
3814      } else {
3815        // Otherwise, this is a vector type.  We only support legal vectors
3816        // right now.
3817        unsigned NumElems = cast<VectorType>(I->getType())->getNumElements();
3818        const Type *EltTy = cast<VectorType>(I->getType())->getElementType();
3819
3820        // Figure out if there is a Packed type corresponding to this Vector
3821        // type.  If so, convert to the vector type.
3822        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3823        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3824          RetVals.push_back(TVT);
3825          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3826        } else {
3827          assert(0 && "Don't support illegal by-val vector arguments yet!");
3828        }
3829      }
3830      break;
3831    }
3832  }
3833
3834  RetVals.push_back(MVT::Other);
3835
3836  // Create the node.
3837  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3838                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3839                               &Ops[0], Ops.size()).Val;
3840
3841  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
3842
3843  // Set up the return result vector.
3844  Ops.clear();
3845  unsigned i = 0;
3846  unsigned Idx = 1;
3847  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3848      ++I, ++Idx) {
3849    MVT::ValueType VT = getValueType(I->getType());
3850
3851    switch (getTypeAction(VT)) {
3852    default: assert(0 && "Unknown type action!");
3853    case Legal:
3854      Ops.push_back(SDOperand(Result, i++));
3855      break;
3856    case Promote: {
3857      SDOperand Op(Result, i++);
3858      if (MVT::isInteger(VT)) {
3859        if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt))
3860          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3861                           DAG.getValueType(VT));
3862        else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt))
3863          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3864                           DAG.getValueType(VT));
3865        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3866      } else {
3867        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3868        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3869      }
3870      Ops.push_back(Op);
3871      break;
3872    }
3873    case Expand:
3874      if (VT != MVT::Vector) {
3875        // If this is a large integer or a floating point node that needs to be
3876        // expanded, it needs to be reassembled from small integers.  Figure out
3877        // what the source elt type is and how many small integers it is.
3878        Ops.push_back(ExpandScalarFormalArgs(VT, Result, i, DAG, *this));
3879      } else {
3880        // Otherwise, this is a vector type.  We only support legal vectors
3881        // right now.
3882        const VectorType *PTy = cast<VectorType>(I->getType());
3883        unsigned NumElems = PTy->getNumElements();
3884        const Type *EltTy = PTy->getElementType();
3885
3886        // Figure out if there is a Packed type corresponding to this Vector
3887        // type.  If so, convert to the vector type.
3888        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3889        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3890          SDOperand N = SDOperand(Result, i++);
3891          // Handle copies from generic vectors to registers.
3892          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
3893                          DAG.getConstant(NumElems, MVT::i32),
3894                          DAG.getValueType(getValueType(EltTy)));
3895          Ops.push_back(N);
3896        } else {
3897          assert(0 && "Don't support illegal by-val vector arguments yet!");
3898          abort();
3899        }
3900      }
3901      break;
3902    }
3903  }
3904  return Ops;
3905}
3906
3907
3908/// ExpandScalarCallArgs - Recursively expand call argument node by
3909/// bit_converting it or extract a pair of elements from the larger  node.
3910static void ExpandScalarCallArgs(MVT::ValueType VT, SDOperand Arg,
3911                                 unsigned Flags,
3912                                 SmallVector<SDOperand, 32> &Ops,
3913                                 SelectionDAG &DAG,
3914                                 TargetLowering &TLI,
3915                                 bool isFirst = true) {
3916
3917  if (TLI.getTypeAction(VT) != TargetLowering::Expand) {
3918    // if it isn't first piece, alignment must be 1
3919    if (!isFirst)
3920      Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3921        (1 << ISD::ParamFlags::OrigAlignmentOffs);
3922    Ops.push_back(Arg);
3923    Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3924    return;
3925  }
3926
3927  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3928  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3929  if (NumVals == 1) {
3930    Arg = DAG.getNode(ISD::BIT_CONVERT, EVT, Arg);
3931    ExpandScalarCallArgs(EVT, Arg, Flags, Ops, DAG, TLI, isFirst);
3932  } else if (NumVals == 2) {
3933    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3934                               DAG.getConstant(0, TLI.getPointerTy()));
3935    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3936                               DAG.getConstant(1, TLI.getPointerTy()));
3937    if (!TLI.isLittleEndian())
3938      std::swap(Lo, Hi);
3939    ExpandScalarCallArgs(EVT, Lo, Flags, Ops, DAG, TLI, isFirst);
3940    ExpandScalarCallArgs(EVT, Hi, Flags, Ops, DAG, TLI, false);
3941  } else {
3942    // Value scalarized into many values.  Unimp for now.
3943    assert(0 && "Cannot expand i64 -> i16 yet!");
3944  }
3945}
3946
3947/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3948/// implementation, which just inserts an ISD::CALL node, which is later custom
3949/// lowered by the target to something concrete.  FIXME: When all targets are
3950/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3951std::pair<SDOperand, SDOperand>
3952TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3953                            bool RetTyIsSigned, bool isVarArg,
3954                            unsigned CallingConv, bool isTailCall,
3955                            SDOperand Callee,
3956                            ArgListTy &Args, SelectionDAG &DAG) {
3957  SmallVector<SDOperand, 32> Ops;
3958  Ops.push_back(Chain);   // Op#0 - Chain
3959  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3960  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3961  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3962  Ops.push_back(Callee);
3963
3964  // Handle all of the outgoing arguments.
3965  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3966    MVT::ValueType VT = getValueType(Args[i].Ty);
3967    SDOperand Op = Args[i].Node;
3968    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3969    unsigned OriginalAlignment =
3970      getTargetData()->getABITypeAlignment(Args[i].Ty);
3971
3972    if (Args[i].isSExt)
3973      Flags |= ISD::ParamFlags::SExt;
3974    if (Args[i].isZExt)
3975      Flags |= ISD::ParamFlags::ZExt;
3976    if (Args[i].isInReg)
3977      Flags |= ISD::ParamFlags::InReg;
3978    if (Args[i].isSRet)
3979      Flags |= ISD::ParamFlags::StructReturn;
3980    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
3981
3982    switch (getTypeAction(VT)) {
3983    default: assert(0 && "Unknown type action!");
3984    case Legal:
3985      Ops.push_back(Op);
3986      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3987      break;
3988    case Promote:
3989      if (MVT::isInteger(VT)) {
3990        unsigned ExtOp;
3991        if (Args[i].isSExt)
3992          ExtOp = ISD::SIGN_EXTEND;
3993        else if (Args[i].isZExt)
3994          ExtOp = ISD::ZERO_EXTEND;
3995        else
3996          ExtOp = ISD::ANY_EXTEND;
3997        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3998      } else {
3999        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
4000        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
4001      }
4002      Ops.push_back(Op);
4003      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4004      break;
4005    case Expand:
4006      if (VT != MVT::Vector) {
4007        // If this is a large integer, it needs to be broken down into small
4008        // integers.  Figure out what the source elt type is and how many small
4009        // integers it is.
4010        ExpandScalarCallArgs(VT, Op, Flags, Ops, DAG, *this);
4011      } else {
4012        // Otherwise, this is a vector type.  We only support legal vectors
4013        // right now.
4014        const VectorType *PTy = cast<VectorType>(Args[i].Ty);
4015        unsigned NumElems = PTy->getNumElements();
4016        const Type *EltTy = PTy->getElementType();
4017
4018        // Figure out if there is a Packed type corresponding to this Vector
4019        // type.  If so, convert to the vector type.
4020        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
4021        if (TVT != MVT::Other && isTypeLegal(TVT)) {
4022          // Insert a VBIT_CONVERT of the MVT::Vector type to the vector type.
4023          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
4024          Ops.push_back(Op);
4025          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4026        } else {
4027          assert(0 && "Don't support illegal by-val vector call args yet!");
4028          abort();
4029        }
4030      }
4031      break;
4032    }
4033  }
4034
4035  // Figure out the result value types.
4036  SmallVector<MVT::ValueType, 4> RetTys;
4037
4038  if (RetTy != Type::VoidTy) {
4039    MVT::ValueType VT = getValueType(RetTy);
4040    switch (getTypeAction(VT)) {
4041    default: assert(0 && "Unknown type action!");
4042    case Legal:
4043      RetTys.push_back(VT);
4044      break;
4045    case Promote:
4046      RetTys.push_back(getTypeToTransformTo(VT));
4047      break;
4048    case Expand:
4049      if (VT != MVT::Vector) {
4050        // If this is a large integer, it needs to be reassembled from small
4051        // integers.  Figure out what the source elt type is and how many small
4052        // integers it is.
4053        MVT::ValueType NVT = getTypeToExpandTo(VT);
4054        unsigned NumVals = getNumElements(VT);
4055        for (unsigned i = 0; i != NumVals; ++i)
4056          RetTys.push_back(NVT);
4057      } else {
4058        // Otherwise, this is a vector type.  We only support legal vectors
4059        // right now.
4060        const VectorType *PTy = cast<VectorType>(RetTy);
4061        unsigned NumElems = PTy->getNumElements();
4062        const Type *EltTy = PTy->getElementType();
4063
4064        // Figure out if there is a Packed type corresponding to this Vector
4065        // type.  If so, convert to the vector type.
4066        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
4067        if (TVT != MVT::Other && isTypeLegal(TVT)) {
4068          RetTys.push_back(TVT);
4069        } else {
4070          assert(0 && "Don't support illegal by-val vector call results yet!");
4071          abort();
4072        }
4073      }
4074    }
4075  }
4076
4077  RetTys.push_back(MVT::Other);  // Always has a chain.
4078
4079  // Finally, create the CALL node.
4080  SDOperand Res = DAG.getNode(ISD::CALL,
4081                              DAG.getVTList(&RetTys[0], RetTys.size()),
4082                              &Ops[0], Ops.size());
4083
4084  // This returns a pair of operands.  The first element is the
4085  // return value for the function (if RetTy is not VoidTy).  The second
4086  // element is the outgoing token chain.
4087  SDOperand ResVal;
4088  if (RetTys.size() != 1) {
4089    MVT::ValueType VT = getValueType(RetTy);
4090    if (RetTys.size() == 2) {
4091      ResVal = Res;
4092
4093      // If this value was promoted, truncate it down.
4094      if (ResVal.getValueType() != VT) {
4095        if (VT == MVT::Vector) {
4096          // Insert a VBIT_CONVERT to convert from the packed result type to the
4097          // MVT::Vector type.
4098          unsigned NumElems = cast<VectorType>(RetTy)->getNumElements();
4099          const Type *EltTy = cast<VectorType>(RetTy)->getElementType();
4100
4101          // Figure out if there is a Packed type corresponding to this Vector
4102          // type.  If so, convert to the vector type.
4103          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy),NumElems);
4104          if (TVT != MVT::Other && isTypeLegal(TVT)) {
4105            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
4106            // "N x PTyElementVT" MVT::Vector type.
4107            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
4108                                 DAG.getConstant(NumElems, MVT::i32),
4109                                 DAG.getValueType(getValueType(EltTy)));
4110          } else {
4111            abort();
4112          }
4113        } else if (MVT::isInteger(VT)) {
4114          unsigned AssertOp = ISD::AssertSext;
4115          if (!RetTyIsSigned)
4116            AssertOp = ISD::AssertZext;
4117          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
4118                               DAG.getValueType(VT));
4119          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
4120        } else {
4121          assert(MVT::isFloatingPoint(VT));
4122          if (getTypeAction(VT) == Expand)
4123            ResVal = DAG.getNode(ISD::BIT_CONVERT, VT, ResVal);
4124          else
4125            ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
4126        }
4127      }
4128    } else if (RetTys.size() == 3) {
4129      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
4130                           Res.getValue(0), Res.getValue(1));
4131
4132    } else {
4133      assert(0 && "Case not handled yet!");
4134    }
4135  }
4136
4137  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
4138}
4139
4140SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4141  assert(0 && "LowerOperation not implemented for this target!");
4142  abort();
4143  return SDOperand();
4144}
4145
4146SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4147                                                 SelectionDAG &DAG) {
4148  assert(0 && "CustomPromoteOperation not implemented for this target!");
4149  abort();
4150  return SDOperand();
4151}
4152
4153/// getMemsetValue - Vectorized representation of the memset value
4154/// operand.
4155static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4156                                SelectionDAG &DAG) {
4157  MVT::ValueType CurVT = VT;
4158  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4159    uint64_t Val   = C->getValue() & 255;
4160    unsigned Shift = 8;
4161    while (CurVT != MVT::i8) {
4162      Val = (Val << Shift) | Val;
4163      Shift <<= 1;
4164      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4165    }
4166    return DAG.getConstant(Val, VT);
4167  } else {
4168    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4169    unsigned Shift = 8;
4170    while (CurVT != MVT::i8) {
4171      Value =
4172        DAG.getNode(ISD::OR, VT,
4173                    DAG.getNode(ISD::SHL, VT, Value,
4174                                DAG.getConstant(Shift, MVT::i8)), Value);
4175      Shift <<= 1;
4176      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4177    }
4178
4179    return Value;
4180  }
4181}
4182
4183/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4184/// used when a memcpy is turned into a memset when the source is a constant
4185/// string ptr.
4186static SDOperand getMemsetStringVal(MVT::ValueType VT,
4187                                    SelectionDAG &DAG, TargetLowering &TLI,
4188                                    std::string &Str, unsigned Offset) {
4189  uint64_t Val = 0;
4190  unsigned MSB = getSizeInBits(VT) / 8;
4191  if (TLI.isLittleEndian())
4192    Offset = Offset + MSB - 1;
4193  for (unsigned i = 0; i != MSB; ++i) {
4194    Val = (Val << 8) | (unsigned char)Str[Offset];
4195    Offset += TLI.isLittleEndian() ? -1 : 1;
4196  }
4197  return DAG.getConstant(Val, VT);
4198}
4199
4200/// getMemBasePlusOffset - Returns base and offset node for the
4201static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4202                                      SelectionDAG &DAG, TargetLowering &TLI) {
4203  MVT::ValueType VT = Base.getValueType();
4204  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4205}
4206
4207/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4208/// to replace the memset / memcpy is below the threshold. It also returns the
4209/// types of the sequence of  memory ops to perform memset / memcpy.
4210static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4211                                     unsigned Limit, uint64_t Size,
4212                                     unsigned Align, TargetLowering &TLI) {
4213  MVT::ValueType VT;
4214
4215  if (TLI.allowsUnalignedMemoryAccesses()) {
4216    VT = MVT::i64;
4217  } else {
4218    switch (Align & 7) {
4219    case 0:
4220      VT = MVT::i64;
4221      break;
4222    case 4:
4223      VT = MVT::i32;
4224      break;
4225    case 2:
4226      VT = MVT::i16;
4227      break;
4228    default:
4229      VT = MVT::i8;
4230      break;
4231    }
4232  }
4233
4234  MVT::ValueType LVT = MVT::i64;
4235  while (!TLI.isTypeLegal(LVT))
4236    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4237  assert(MVT::isInteger(LVT));
4238
4239  if (VT > LVT)
4240    VT = LVT;
4241
4242  unsigned NumMemOps = 0;
4243  while (Size != 0) {
4244    unsigned VTSize = getSizeInBits(VT) / 8;
4245    while (VTSize > Size) {
4246      VT = (MVT::ValueType)((unsigned)VT - 1);
4247      VTSize >>= 1;
4248    }
4249    assert(MVT::isInteger(VT));
4250
4251    if (++NumMemOps > Limit)
4252      return false;
4253    MemOps.push_back(VT);
4254    Size -= VTSize;
4255  }
4256
4257  return true;
4258}
4259
4260void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4261  SDOperand Op1 = getValue(I.getOperand(1));
4262  SDOperand Op2 = getValue(I.getOperand(2));
4263  SDOperand Op3 = getValue(I.getOperand(3));
4264  SDOperand Op4 = getValue(I.getOperand(4));
4265  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4266  if (Align == 0) Align = 1;
4267
4268  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4269    std::vector<MVT::ValueType> MemOps;
4270
4271    // Expand memset / memcpy to a series of load / store ops
4272    // if the size operand falls below a certain threshold.
4273    SmallVector<SDOperand, 8> OutChains;
4274    switch (Op) {
4275    default: break;  // Do nothing for now.
4276    case ISD::MEMSET: {
4277      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4278                                   Size->getValue(), Align, TLI)) {
4279        unsigned NumMemOps = MemOps.size();
4280        unsigned Offset = 0;
4281        for (unsigned i = 0; i < NumMemOps; i++) {
4282          MVT::ValueType VT = MemOps[i];
4283          unsigned VTSize = getSizeInBits(VT) / 8;
4284          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4285          SDOperand Store = DAG.getStore(getRoot(), Value,
4286                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4287                                         I.getOperand(1), Offset);
4288          OutChains.push_back(Store);
4289          Offset += VTSize;
4290        }
4291      }
4292      break;
4293    }
4294    case ISD::MEMCPY: {
4295      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4296                                   Size->getValue(), Align, TLI)) {
4297        unsigned NumMemOps = MemOps.size();
4298        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4299        GlobalAddressSDNode *G = NULL;
4300        std::string Str;
4301        bool CopyFromStr = false;
4302
4303        if (Op2.getOpcode() == ISD::GlobalAddress)
4304          G = cast<GlobalAddressSDNode>(Op2);
4305        else if (Op2.getOpcode() == ISD::ADD &&
4306                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4307                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4308          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4309          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4310        }
4311        if (G) {
4312          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4313          if (GV && GV->isConstant()) {
4314            Str = GV->getStringValue(false);
4315            if (!Str.empty()) {
4316              CopyFromStr = true;
4317              SrcOff += SrcDelta;
4318            }
4319          }
4320        }
4321
4322        for (unsigned i = 0; i < NumMemOps; i++) {
4323          MVT::ValueType VT = MemOps[i];
4324          unsigned VTSize = getSizeInBits(VT) / 8;
4325          SDOperand Value, Chain, Store;
4326
4327          if (CopyFromStr) {
4328            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4329            Chain = getRoot();
4330            Store =
4331              DAG.getStore(Chain, Value,
4332                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4333                           I.getOperand(1), DstOff);
4334          } else {
4335            Value = DAG.getLoad(VT, getRoot(),
4336                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4337                        I.getOperand(2), SrcOff);
4338            Chain = Value.getValue(1);
4339            Store =
4340              DAG.getStore(Chain, Value,
4341                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4342                           I.getOperand(1), DstOff);
4343          }
4344          OutChains.push_back(Store);
4345          SrcOff += VTSize;
4346          DstOff += VTSize;
4347        }
4348      }
4349      break;
4350    }
4351    }
4352
4353    if (!OutChains.empty()) {
4354      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4355                  &OutChains[0], OutChains.size()));
4356      return;
4357    }
4358  }
4359
4360  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
4361}
4362
4363//===----------------------------------------------------------------------===//
4364// SelectionDAGISel code
4365//===----------------------------------------------------------------------===//
4366
4367unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4368  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4369}
4370
4371void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4372  AU.addRequired<AliasAnalysis>();
4373  AU.setPreservesAll();
4374}
4375
4376
4377
4378bool SelectionDAGISel::runOnFunction(Function &Fn) {
4379  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4380  RegMap = MF.getSSARegMap();
4381  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4382
4383  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4384
4385  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4386    SelectBasicBlock(I, MF, FuncInfo);
4387
4388  // Add function live-ins to entry block live-in set.
4389  BasicBlock *EntryBB = &Fn.getEntryBlock();
4390  BB = FuncInfo.MBBMap[EntryBB];
4391  if (!MF.livein_empty())
4392    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4393           E = MF.livein_end(); I != E; ++I)
4394      BB->addLiveIn(I->first);
4395
4396  return true;
4397}
4398
4399SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4400                                                           unsigned Reg) {
4401  SDOperand Op = getValue(V);
4402  assert((Op.getOpcode() != ISD::CopyFromReg ||
4403          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4404         "Copy from a reg to the same reg!");
4405
4406  // If this type is not legal, we must make sure to not create an invalid
4407  // register use.
4408  MVT::ValueType SrcVT = Op.getValueType();
4409  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
4410  if (SrcVT == DestVT) {
4411    return DAG.getCopyToReg(getRoot(), Reg, Op);
4412  } else if (SrcVT == MVT::Vector) {
4413    // Handle copies from generic vectors to registers.
4414    MVT::ValueType PTyElementVT, PTyLegalElementVT;
4415    unsigned NE = TLI.getVectorTypeBreakdown(cast<VectorType>(V->getType()),
4416                                             PTyElementVT, PTyLegalElementVT);
4417
4418    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
4419    // MVT::Vector type.
4420    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
4421                     DAG.getConstant(NE, MVT::i32),
4422                     DAG.getValueType(PTyElementVT));
4423
4424    // Loop over all of the elements of the resultant vector,
4425    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
4426    // copying them into output registers.
4427    SmallVector<SDOperand, 8> OutChains;
4428    SDOperand Root = getRoot();
4429    for (unsigned i = 0; i != NE; ++i) {
4430      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
4431                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
4432      if (PTyElementVT == PTyLegalElementVT) {
4433        // Elements are legal.
4434        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
4435      } else if (PTyLegalElementVT > PTyElementVT) {
4436        // Elements are promoted.
4437        if (MVT::isFloatingPoint(PTyLegalElementVT))
4438          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
4439        else
4440          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
4441        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
4442      } else {
4443        // Elements are expanded.
4444        // The src value is expanded into multiple registers.
4445        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
4446                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
4447        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
4448                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
4449        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
4450        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
4451      }
4452    }
4453    return DAG.getNode(ISD::TokenFactor, MVT::Other,
4454                       &OutChains[0], OutChains.size());
4455  } else if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) {
4456    // The src value is promoted to the register.
4457    if (MVT::isFloatingPoint(SrcVT))
4458      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
4459    else
4460      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
4461    return DAG.getCopyToReg(getRoot(), Reg, Op);
4462  } else  {
4463    DestVT = TLI.getTypeToExpandTo(SrcVT);
4464    unsigned NumVals = TLI.getNumElements(SrcVT);
4465    if (NumVals == 1)
4466      return DAG.getCopyToReg(getRoot(), Reg,
4467                              DAG.getNode(ISD::BIT_CONVERT, DestVT, Op));
4468    assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
4469    // The src value is expanded into multiple registers.
4470    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
4471                               Op, DAG.getConstant(0, TLI.getPointerTy()));
4472    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
4473                               Op, DAG.getConstant(1, TLI.getPointerTy()));
4474    Op = DAG.getCopyToReg(getRoot(), Reg, Lo);
4475    return DAG.getCopyToReg(Op, Reg+1, Hi);
4476  }
4477}
4478
4479void SelectionDAGISel::
4480LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4481               std::vector<SDOperand> &UnorderedChains) {
4482  // If this is the entry block, emit arguments.
4483  Function &F = *LLVMBB->getParent();
4484  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4485  SDOperand OldRoot = SDL.DAG.getRoot();
4486  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4487
4488  unsigned a = 0;
4489  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4490       AI != E; ++AI, ++a)
4491    if (!AI->use_empty()) {
4492      SDL.setValue(AI, Args[a]);
4493
4494      // If this argument is live outside of the entry block, insert a copy from
4495      // whereever we got it to the vreg that other BB's will reference it as.
4496      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4497      if (VMI != FuncInfo.ValueMap.end()) {
4498        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4499        UnorderedChains.push_back(Copy);
4500      }
4501    }
4502
4503  // Finally, if the target has anything special to do, allow it to do so.
4504  // FIXME: this should insert code into the DAG!
4505  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4506}
4507
4508void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4509       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4510                                         FunctionLoweringInfo &FuncInfo) {
4511  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
4512
4513  std::vector<SDOperand> UnorderedChains;
4514
4515  // Lower any arguments needed in this block if this is the entry block.
4516  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4517    LowerArguments(LLVMBB, SDL, UnorderedChains);
4518
4519  BB = FuncInfo.MBBMap[LLVMBB];
4520  SDL.setCurrentBasicBlock(BB);
4521
4522  // Lower all of the non-terminator instructions.
4523  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4524       I != E; ++I)
4525    SDL.visit(*I);
4526
4527  // Lower call part of invoke.
4528  InvokeInst *Invoke = dyn_cast<InvokeInst>(LLVMBB->getTerminator());
4529  if (Invoke) SDL.visitInvoke(*Invoke, false);
4530
4531  // Ensure that all instructions which are used outside of their defining
4532  // blocks are available as virtual registers.
4533  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4534    if (!I->use_empty() && !isa<PHINode>(I)) {
4535      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4536      if (VMI != FuncInfo.ValueMap.end())
4537        UnorderedChains.push_back(
4538                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4539    }
4540
4541  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4542  // ensure constants are generated when needed.  Remember the virtual registers
4543  // that need to be added to the Machine PHI nodes as input.  We cannot just
4544  // directly add them, because expansion might result in multiple MBB's for one
4545  // BB.  As such, the start of the BB might correspond to a different MBB than
4546  // the end.
4547  //
4548  TerminatorInst *TI = LLVMBB->getTerminator();
4549
4550  // Emit constants only once even if used by multiple PHI nodes.
4551  std::map<Constant*, unsigned> ConstantsOut;
4552
4553  // Vector bool would be better, but vector<bool> is really slow.
4554  std::vector<unsigned char> SuccsHandled;
4555  if (TI->getNumSuccessors())
4556    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4557
4558  // Check successor nodes PHI nodes that expect a constant to be available from
4559  // this block.
4560  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4561    BasicBlock *SuccBB = TI->getSuccessor(succ);
4562    if (!isa<PHINode>(SuccBB->begin())) continue;
4563    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4564
4565    // If this terminator has multiple identical successors (common for
4566    // switches), only handle each succ once.
4567    unsigned SuccMBBNo = SuccMBB->getNumber();
4568    if (SuccsHandled[SuccMBBNo]) continue;
4569    SuccsHandled[SuccMBBNo] = true;
4570
4571    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4572    PHINode *PN;
4573
4574    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4575    // nodes and Machine PHI nodes, but the incoming operands have not been
4576    // emitted yet.
4577    for (BasicBlock::iterator I = SuccBB->begin();
4578         (PN = dyn_cast<PHINode>(I)); ++I) {
4579      // Ignore dead phi's.
4580      if (PN->use_empty()) continue;
4581
4582      unsigned Reg;
4583      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4584
4585      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4586        unsigned &RegOut = ConstantsOut[C];
4587        if (RegOut == 0) {
4588          RegOut = FuncInfo.CreateRegForValue(C);
4589          UnorderedChains.push_back(
4590                           SDL.CopyValueToVirtualRegister(C, RegOut));
4591        }
4592        Reg = RegOut;
4593      } else {
4594        Reg = FuncInfo.ValueMap[PHIOp];
4595        if (Reg == 0) {
4596          assert(isa<AllocaInst>(PHIOp) &&
4597                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4598                 "Didn't codegen value into a register!??");
4599          Reg = FuncInfo.CreateRegForValue(PHIOp);
4600          UnorderedChains.push_back(
4601                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4602        }
4603      }
4604
4605      // Remember that this register needs to added to the machine PHI node as
4606      // the input for this MBB.
4607      MVT::ValueType VT = TLI.getValueType(PN->getType());
4608      unsigned NumElements;
4609      if (VT != MVT::Vector)
4610        NumElements = TLI.getNumElements(VT);
4611      else {
4612        MVT::ValueType VT1,VT2;
4613        NumElements =
4614          TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
4615                                     VT1, VT2);
4616      }
4617      for (unsigned i = 0, e = NumElements; i != e; ++i)
4618        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4619    }
4620  }
4621  ConstantsOut.clear();
4622
4623  // Turn all of the unordered chains into one factored node.
4624  if (!UnorderedChains.empty()) {
4625    SDOperand Root = SDL.getRoot();
4626    if (Root.getOpcode() != ISD::EntryToken) {
4627      unsigned i = 0, e = UnorderedChains.size();
4628      for (; i != e; ++i) {
4629        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4630        if (UnorderedChains[i].Val->getOperand(0) == Root)
4631          break;  // Don't add the root if we already indirectly depend on it.
4632      }
4633
4634      if (i == e)
4635        UnorderedChains.push_back(Root);
4636    }
4637    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4638                            &UnorderedChains[0], UnorderedChains.size()));
4639  }
4640
4641  // Lower the terminator after the copies are emitted.
4642  if (Invoke) {
4643    // Just the branch part of invoke.
4644    SDL.visitInvoke(*Invoke, true);
4645  } else {
4646    SDL.visit(*LLVMBB->getTerminator());
4647  }
4648
4649  // Copy over any CaseBlock records that may now exist due to SwitchInst
4650  // lowering, as well as any jump table information.
4651  SwitchCases.clear();
4652  SwitchCases = SDL.SwitchCases;
4653  JTCases.clear();
4654  JTCases = SDL.JTCases;
4655  BitTestCases.clear();
4656  BitTestCases = SDL.BitTestCases;
4657
4658  // Make sure the root of the DAG is up-to-date.
4659  DAG.setRoot(SDL.getRoot());
4660}
4661
4662void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4663  // Get alias analysis for load/store combining.
4664  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4665
4666  // Run the DAG combiner in pre-legalize mode.
4667  DAG.Combine(false, AA);
4668
4669  DOUT << "Lowered selection DAG:\n";
4670  DEBUG(DAG.dump());
4671
4672  // Second step, hack on the DAG until it only uses operations and types that
4673  // the target supports.
4674  DAG.Legalize();
4675
4676  DOUT << "Legalized selection DAG:\n";
4677  DEBUG(DAG.dump());
4678
4679  // Run the DAG combiner in post-legalize mode.
4680  DAG.Combine(true, AA);
4681
4682  if (ViewISelDAGs) DAG.viewGraph();
4683
4684  // Third, instruction select all of the operations to machine code, adding the
4685  // code to the MachineBasicBlock.
4686  InstructionSelectBasicBlock(DAG);
4687
4688  DOUT << "Selected machine code:\n";
4689  DEBUG(BB->dump());
4690}
4691
4692void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4693                                        FunctionLoweringInfo &FuncInfo) {
4694  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4695  {
4696    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4697    CurDAG = &DAG;
4698
4699    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4700    // types that are not supported by the target.
4701    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4702
4703    // Second step, emit the lowered DAG as machine code.
4704    CodeGenAndEmitDAG(DAG);
4705  }
4706
4707  DOUT << "Total amount of phi nodes to update: "
4708       << PHINodesToUpdate.size() << "\n";
4709  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4710          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4711               << ", " << PHINodesToUpdate[i].second << ")\n";);
4712
4713  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4714  // PHI nodes in successors.
4715  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4716    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4717      MachineInstr *PHI = PHINodesToUpdate[i].first;
4718      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4719             "This is not a machine PHI node that we are updating!");
4720      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4721      PHI->addMachineBasicBlockOperand(BB);
4722    }
4723    return;
4724  }
4725
4726  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4727    // Lower header first, if it wasn't already lowered
4728    if (!BitTestCases[i].Emitted) {
4729      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4730      CurDAG = &HSDAG;
4731      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4732      // Set the current basic block to the mbb we wish to insert the code into
4733      BB = BitTestCases[i].Parent;
4734      HSDL.setCurrentBasicBlock(BB);
4735      // Emit the code
4736      HSDL.visitBitTestHeader(BitTestCases[i]);
4737      HSDAG.setRoot(HSDL.getRoot());
4738      CodeGenAndEmitDAG(HSDAG);
4739    }
4740
4741    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4742      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4743      CurDAG = &BSDAG;
4744      SelectionDAGLowering BSDL(BSDAG, TLI, FuncInfo);
4745      // Set the current basic block to the mbb we wish to insert the code into
4746      BB = BitTestCases[i].Cases[j].ThisBB;
4747      BSDL.setCurrentBasicBlock(BB);
4748      // Emit the code
4749      if (j+1 != ej)
4750        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4751                              BitTestCases[i].Reg,
4752                              BitTestCases[i].Cases[j]);
4753      else
4754        BSDL.visitBitTestCase(BitTestCases[i].Default,
4755                              BitTestCases[i].Reg,
4756                              BitTestCases[i].Cases[j]);
4757
4758
4759      BSDAG.setRoot(BSDL.getRoot());
4760      CodeGenAndEmitDAG(BSDAG);
4761    }
4762
4763    // Update PHI Nodes
4764    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4765      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4766      MachineBasicBlock *PHIBB = PHI->getParent();
4767      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4768             "This is not a machine PHI node that we are updating!");
4769      // This is "default" BB. We have two jumps to it. From "header" BB and
4770      // from last "case" BB.
4771      if (PHIBB == BitTestCases[i].Default) {
4772        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4773        PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4774        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4775        PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4776      }
4777      // One of "cases" BB.
4778      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4779        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4780        if (cBB->succ_end() !=
4781            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4782          PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4783          PHI->addMachineBasicBlockOperand(cBB);
4784        }
4785      }
4786    }
4787  }
4788
4789  // If the JumpTable record is filled in, then we need to emit a jump table.
4790  // Updating the PHI nodes is tricky in this case, since we need to determine
4791  // whether the PHI is a successor of the range check MBB or the jump table MBB
4792  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4793    // Lower header first, if it wasn't already lowered
4794    if (!JTCases[i].first.Emitted) {
4795      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4796      CurDAG = &HSDAG;
4797      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4798      // Set the current basic block to the mbb we wish to insert the code into
4799      BB = JTCases[i].first.HeaderBB;
4800      HSDL.setCurrentBasicBlock(BB);
4801      // Emit the code
4802      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4803      HSDAG.setRoot(HSDL.getRoot());
4804      CodeGenAndEmitDAG(HSDAG);
4805    }
4806
4807    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4808    CurDAG = &JSDAG;
4809    SelectionDAGLowering JSDL(JSDAG, TLI, FuncInfo);
4810    // Set the current basic block to the mbb we wish to insert the code into
4811    BB = JTCases[i].second.MBB;
4812    JSDL.setCurrentBasicBlock(BB);
4813    // Emit the code
4814    JSDL.visitJumpTable(JTCases[i].second);
4815    JSDAG.setRoot(JSDL.getRoot());
4816    CodeGenAndEmitDAG(JSDAG);
4817
4818    // Update PHI Nodes
4819    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4820      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4821      MachineBasicBlock *PHIBB = PHI->getParent();
4822      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4823             "This is not a machine PHI node that we are updating!");
4824      // "default" BB. We can go there only from header BB.
4825      if (PHIBB == JTCases[i].second.Default) {
4826        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4827        PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4828      }
4829      // JT BB. Just iterate over successors here
4830      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4831        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4832        PHI->addMachineBasicBlockOperand(BB);
4833      }
4834    }
4835  }
4836
4837  // If the switch block involved a branch to one of the actual successors, we
4838  // need to update PHI nodes in that block.
4839  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4840    MachineInstr *PHI = PHINodesToUpdate[i].first;
4841    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4842           "This is not a machine PHI node that we are updating!");
4843    if (BB->isSuccessor(PHI->getParent())) {
4844      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4845      PHI->addMachineBasicBlockOperand(BB);
4846    }
4847  }
4848
4849  // If we generated any switch lowering information, build and codegen any
4850  // additional DAGs necessary.
4851  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4852    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4853    CurDAG = &SDAG;
4854    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4855
4856    // Set the current basic block to the mbb we wish to insert the code into
4857    BB = SwitchCases[i].ThisBB;
4858    SDL.setCurrentBasicBlock(BB);
4859
4860    // Emit the code
4861    SDL.visitSwitchCase(SwitchCases[i]);
4862    SDAG.setRoot(SDL.getRoot());
4863    CodeGenAndEmitDAG(SDAG);
4864
4865    // Handle any PHI nodes in successors of this chunk, as if we were coming
4866    // from the original BB before switch expansion.  Note that PHI nodes can
4867    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4868    // handle them the right number of times.
4869    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4870      for (MachineBasicBlock::iterator Phi = BB->begin();
4871           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4872        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4873        for (unsigned pn = 0; ; ++pn) {
4874          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4875          if (PHINodesToUpdate[pn].first == Phi) {
4876            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4877            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4878            break;
4879          }
4880        }
4881      }
4882
4883      // Don't process RHS if same block as LHS.
4884      if (BB == SwitchCases[i].FalseBB)
4885        SwitchCases[i].FalseBB = 0;
4886
4887      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4888      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4889      SwitchCases[i].FalseBB = 0;
4890    }
4891    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4892  }
4893}
4894
4895
4896//===----------------------------------------------------------------------===//
4897/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4898/// target node in the graph.
4899void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4900  if (ViewSchedDAGs) DAG.viewGraph();
4901
4902  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4903
4904  if (!Ctor) {
4905    Ctor = ISHeuristic;
4906    RegisterScheduler::setDefault(Ctor);
4907  }
4908
4909  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4910  BB = SL->Run();
4911  delete SL;
4912}
4913
4914
4915HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4916  return new HazardRecognizer();
4917}
4918
4919//===----------------------------------------------------------------------===//
4920// Helper functions used by the generated instruction selector.
4921//===----------------------------------------------------------------------===//
4922// Calls to these methods are generated by tblgen.
4923
4924/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4925/// the dag combiner simplified the 255, we still want to match.  RHS is the
4926/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4927/// specified in the .td file (e.g. 255).
4928bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4929                                    int64_t DesiredMaskS) {
4930  uint64_t ActualMask = RHS->getValue();
4931  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4932
4933  // If the actual mask exactly matches, success!
4934  if (ActualMask == DesiredMask)
4935    return true;
4936
4937  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4938  if (ActualMask & ~DesiredMask)
4939    return false;
4940
4941  // Otherwise, the DAG Combiner may have proven that the value coming in is
4942  // either already zero or is not demanded.  Check for known zero input bits.
4943  uint64_t NeededMask = DesiredMask & ~ActualMask;
4944  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
4945    return true;
4946
4947  // TODO: check to see if missing bits are just not demanded.
4948
4949  // Otherwise, this pattern doesn't match.
4950  return false;
4951}
4952
4953/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4954/// the dag combiner simplified the 255, we still want to match.  RHS is the
4955/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4956/// specified in the .td file (e.g. 255).
4957bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4958                                    int64_t DesiredMaskS) {
4959  uint64_t ActualMask = RHS->getValue();
4960  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4961
4962  // If the actual mask exactly matches, success!
4963  if (ActualMask == DesiredMask)
4964    return true;
4965
4966  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4967  if (ActualMask & ~DesiredMask)
4968    return false;
4969
4970  // Otherwise, the DAG Combiner may have proven that the value coming in is
4971  // either already zero or is not demanded.  Check for known zero input bits.
4972  uint64_t NeededMask = DesiredMask & ~ActualMask;
4973
4974  uint64_t KnownZero, KnownOne;
4975  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4976
4977  // If all the missing bits in the or are already known to be set, match!
4978  if ((NeededMask & KnownOne) == NeededMask)
4979    return true;
4980
4981  // TODO: check to see if missing bits are just not demanded.
4982
4983  // Otherwise, this pattern doesn't match.
4984  return false;
4985}
4986
4987
4988/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4989/// by tblgen.  Others should not call it.
4990void SelectionDAGISel::
4991SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4992  std::vector<SDOperand> InOps;
4993  std::swap(InOps, Ops);
4994
4995  Ops.push_back(InOps[0]);  // input chain.
4996  Ops.push_back(InOps[1]);  // input asm string.
4997
4998  unsigned i = 2, e = InOps.size();
4999  if (InOps[e-1].getValueType() == MVT::Flag)
5000    --e;  // Don't process a flag operand if it is here.
5001
5002  while (i != e) {
5003    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5004    if ((Flags & 7) != 4 /*MEM*/) {
5005      // Just skip over this operand, copying the operands verbatim.
5006      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5007      i += (Flags >> 3) + 1;
5008    } else {
5009      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5010      // Otherwise, this is a memory operand.  Ask the target to select it.
5011      std::vector<SDOperand> SelOps;
5012      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5013        cerr << "Could not match memory address.  Inline asm failure!\n";
5014        exit(1);
5015      }
5016
5017      // Add this to the output node.
5018      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5019      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5020                                          IntPtrTy));
5021      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5022      i += 2;
5023    }
5024  }
5025
5026  // Add the flag input back if present.
5027  if (e != InOps.size())
5028    Ops.push_back(InOps.back());
5029}
5030
5031char SelectionDAGISel::ID = 0;
5032