SelectionDAGISel.cpp revision caa8870fe09f5526e611434b6bb9f7040c7dfa60
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionAnalysis.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/CodeGen/DwarfWriter.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/Timer.h"
58#include "llvm/Support/raw_ostream.h"
59#include "llvm/ADT/Statistic.h"
60#include <algorithm>
61using namespace llvm;
62
63STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
64
65static cl::opt<bool>
66EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
67          cl::desc("Enable verbose messages in the \"fast\" "
68                   "instruction selector"));
69static cl::opt<bool>
70EnableFastISelAbort("fast-isel-abort", cl::Hidden,
71          cl::desc("Enable abort calls when \"fast\" instruction fails"));
72static cl::opt<bool>
73SchedLiveInCopies("schedule-livein-copies", cl::Hidden,
74                  cl::desc("Schedule copies of livein registers"),
75                  cl::init(false));
76
77#ifndef NDEBUG
78static cl::opt<bool>
79ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
80          cl::desc("Pop up a window to show dags before the first "
81                   "dag combine pass"));
82static cl::opt<bool>
83ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize types"));
85static cl::opt<bool>
86ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before legalize"));
88static cl::opt<bool>
89ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
90          cl::desc("Pop up a window to show dags before the second "
91                   "dag combine pass"));
92static cl::opt<bool>
93ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
94          cl::desc("Pop up a window to show dags before the post legalize types"
95                   " dag combine pass"));
96static cl::opt<bool>
97ViewISelDAGs("view-isel-dags", cl::Hidden,
98          cl::desc("Pop up a window to show isel dags as they are selected"));
99static cl::opt<bool>
100ViewSchedDAGs("view-sched-dags", cl::Hidden,
101          cl::desc("Pop up a window to show sched dags as they are processed"));
102static cl::opt<bool>
103ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
104      cl::desc("Pop up a window to show SUnit dags after they are processed"));
105#else
106static const bool ViewDAGCombine1 = false,
107                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
108                  ViewDAGCombine2 = false,
109                  ViewDAGCombineLT = false,
110                  ViewISelDAGs = false, ViewSchedDAGs = false,
111                  ViewSUnitDAGs = false;
112#endif
113
114//===---------------------------------------------------------------------===//
115///
116/// RegisterScheduler class - Track the registration of instruction schedulers.
117///
118//===---------------------------------------------------------------------===//
119MachinePassRegistry RegisterScheduler::Registry;
120
121//===---------------------------------------------------------------------===//
122///
123/// ISHeuristic command line option for instruction schedulers.
124///
125//===---------------------------------------------------------------------===//
126static cl::opt<RegisterScheduler::FunctionPassCtor, false,
127               RegisterPassParser<RegisterScheduler> >
128ISHeuristic("pre-RA-sched",
129            cl::init(&createDefaultScheduler),
130            cl::desc("Instruction schedulers available (before register"
131                     " allocation):"));
132
133static RegisterScheduler
134defaultListDAGScheduler("default", "Best scheduler for the target",
135                        createDefaultScheduler);
136
137namespace llvm {
138  //===--------------------------------------------------------------------===//
139  /// createDefaultScheduler - This creates an instruction scheduler appropriate
140  /// for the target.
141  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
142                                             CodeGenOpt::Level OptLevel) {
143    const TargetLowering &TLI = IS->getTargetLowering();
144
145    if (OptLevel == CodeGenOpt::None)
146      return createFastDAGScheduler(IS, OptLevel);
147    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
148      return createTDListDAGScheduler(IS, OptLevel);
149    assert(TLI.getSchedulingPreference() ==
150           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
151    return createBURRListDAGScheduler(IS, OptLevel);
152  }
153}
154
155// EmitInstrWithCustomInserter - This method should be implemented by targets
156// that mark instructions with the 'usesCustomInserter' flag.  These
157// instructions are special in various ways, which require special support to
158// insert.  The specified MachineInstr is created but not inserted into any
159// basic blocks, and this method is called to expand it into a sequence of
160// instructions, potentially also creating new basic blocks and control flow.
161// When new basic blocks are inserted and the edges from MBB to its successors
162// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
163// DenseMap.
164MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
165                                                         MachineBasicBlock *MBB,
166                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
167#ifndef NDEBUG
168  dbgs() << "If a target marks an instruction with "
169          "'usesCustomInserter', it must implement "
170          "TargetLowering::EmitInstrWithCustomInserter!";
171#endif
172  llvm_unreachable(0);
173  return 0;
174}
175
176/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
177/// physical register has only a single copy use, then coalesced the copy
178/// if possible.
179static void EmitLiveInCopy(MachineBasicBlock *MBB,
180                           MachineBasicBlock::iterator &InsertPos,
181                           unsigned VirtReg, unsigned PhysReg,
182                           const TargetRegisterClass *RC,
183                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
184                           const MachineRegisterInfo &MRI,
185                           const TargetRegisterInfo &TRI,
186                           const TargetInstrInfo &TII) {
187  unsigned NumUses = 0;
188  MachineInstr *UseMI = NULL;
189  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
190         UE = MRI.use_end(); UI != UE; ++UI) {
191    UseMI = &*UI;
192    if (++NumUses > 1)
193      break;
194  }
195
196  // If the number of uses is not one, or the use is not a move instruction,
197  // don't coalesce. Also, only coalesce away a virtual register to virtual
198  // register copy.
199  bool Coalesced = false;
200  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
201  if (NumUses == 1 &&
202      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
203      TargetRegisterInfo::isVirtualRegister(DstReg)) {
204    VirtReg = DstReg;
205    Coalesced = true;
206  }
207
208  // Now find an ideal location to insert the copy.
209  MachineBasicBlock::iterator Pos = InsertPos;
210  while (Pos != MBB->begin()) {
211    MachineInstr *PrevMI = prior(Pos);
212    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
213    // copyRegToReg might emit multiple instructions to do a copy.
214    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
215    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
216      // This is what the BB looks like right now:
217      // r1024 = mov r0
218      // ...
219      // r1    = mov r1024
220      //
221      // We want to insert "r1025 = mov r1". Inserting this copy below the
222      // move to r1024 makes it impossible for that move to be coalesced.
223      //
224      // r1025 = mov r1
225      // r1024 = mov r0
226      // ...
227      // r1    = mov 1024
228      // r2    = mov 1025
229      break; // Woot! Found a good location.
230    --Pos;
231  }
232
233  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
234  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
235  (void) Emitted;
236
237  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
238  if (Coalesced) {
239    if (&*InsertPos == UseMI) ++InsertPos;
240    MBB->erase(UseMI);
241  }
242}
243
244/// EmitLiveInCopies - If this is the first basic block in the function,
245/// and if it has live ins that need to be copied into vregs, emit the
246/// copies into the block.
247static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
248                             const MachineRegisterInfo &MRI,
249                             const TargetRegisterInfo &TRI,
250                             const TargetInstrInfo &TII) {
251  if (SchedLiveInCopies) {
252    // Emit the copies at a heuristically-determined location in the block.
253    DenseMap<MachineInstr*, unsigned> CopyRegMap;
254    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
255    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
256           E = MRI.livein_end(); LI != E; ++LI)
257      if (LI->second) {
258        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
259        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
260                       RC, CopyRegMap, MRI, TRI, TII);
261      }
262  } else {
263    // Emit the copies into the top of the block.
264    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
265           E = MRI.livein_end(); LI != E; ++LI)
266      if (LI->second) {
267        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
268        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
269                                        LI->second, LI->first, RC, RC);
270        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
271        (void) Emitted;
272      }
273  }
274}
275
276//===----------------------------------------------------------------------===//
277// SelectionDAGISel code
278//===----------------------------------------------------------------------===//
279
280SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
281  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
282  FuncInfo(new FunctionLoweringInfo(TLI)),
283  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
284  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
285  GFI(),
286  OptLevel(OL),
287  DAGSize(0)
288{}
289
290SelectionDAGISel::~SelectionDAGISel() {
291  delete SDB;
292  delete CurDAG;
293  delete FuncInfo;
294}
295
296unsigned SelectionDAGISel::MakeReg(EVT VT) {
297  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
298}
299
300void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
301  AU.addRequired<AliasAnalysis>();
302  AU.addPreserved<AliasAnalysis>();
303  AU.addRequired<GCModuleInfo>();
304  AU.addPreserved<GCModuleInfo>();
305  AU.addRequired<DwarfWriter>();
306  AU.addPreserved<DwarfWriter>();
307  MachineFunctionPass::getAnalysisUsage(AU);
308}
309
310bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
311  Function &Fn = *mf.getFunction();
312
313  // Do some sanity-checking on the command-line options.
314  assert((!EnableFastISelVerbose || EnableFastISel) &&
315         "-fast-isel-verbose requires -fast-isel");
316  assert((!EnableFastISelAbort || EnableFastISel) &&
317         "-fast-isel-abort requires -fast-isel");
318
319  // Get alias analysis for load/store combining.
320  AA = &getAnalysis<AliasAnalysis>();
321
322  MF = &mf;
323  const TargetInstrInfo &TII = *TM.getInstrInfo();
324  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
325
326  if (Fn.hasGC())
327    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
328  else
329    GFI = 0;
330  RegInfo = &MF->getRegInfo();
331  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
332
333  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
334  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
335  CurDAG->init(*MF, MMI, DW);
336  FuncInfo->set(Fn, *MF, EnableFastISel);
337  SDB->init(GFI, *AA);
338
339  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
340    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
341      // Mark landing pad.
342      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
343
344  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
345
346  // If the first basic block in the function has live ins that need to be
347  // copied into vregs, emit the copies into the top of the block before
348  // emitting the code for the block.
349  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
350
351  // Add function live-ins to entry block live-in set.
352  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
353         E = RegInfo->livein_end(); I != E; ++I)
354    MF->begin()->addLiveIn(I->first);
355
356#ifndef NDEBUG
357  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
358         "Not all catch info was assigned to a landing pad!");
359#endif
360
361  FuncInfo->clear();
362
363  return true;
364}
365
366/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
367/// attached with this instruction.
368static void SetDebugLoc(unsigned MDDbgKind, Instruction *I,
369                        SelectionDAGBuilder *SDB,
370                        FastISel *FastIS, MachineFunction *MF) {
371  if (MDNode *Dbg = I->getMetadata(MDDbgKind)) {
372    DILocation DILoc(Dbg);
373    DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo());
374
375    SDB->setCurDebugLoc(Loc);
376
377    if (FastIS)
378      FastIS->setCurDebugLoc(Loc);
379
380    // If the function doesn't have a default debug location yet, set
381    // it. This is kind of a hack.
382    if (MF->getDefaultDebugLoc().isUnknown())
383      MF->setDefaultDebugLoc(Loc);
384  }
385}
386
387/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
388static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
389  SDB->setCurDebugLoc(DebugLoc::getUnknownLoc());
390  if (FastIS)
391    FastIS->setCurDebugLoc(DebugLoc::getUnknownLoc());
392}
393
394void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
395                                        BasicBlock::iterator Begin,
396                                        BasicBlock::iterator End,
397                                        bool &HadTailCall) {
398  SDB->setCurrentBasicBlock(BB);
399  unsigned MDDbgKind = LLVMBB->getContext().getMDKindID("dbg");
400
401  // Lower all of the non-terminator instructions. If a call is emitted
402  // as a tail call, cease emitting nodes for this block.
403  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
404    SetDebugLoc(MDDbgKind, I, SDB, 0, MF);
405
406    if (!isa<TerminatorInst>(I)) {
407      SDB->visit(*I);
408
409      // Set the current debug location back to "unknown" so that it doesn't
410      // spuriously apply to subsequent instructions.
411      ResetDebugLoc(SDB, 0);
412    }
413  }
414
415  if (!SDB->HasTailCall) {
416    // Ensure that all instructions which are used outside of their defining
417    // blocks are available as virtual registers.  Invoke is handled elsewhere.
418    for (BasicBlock::iterator I = Begin; I != End; ++I)
419      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
420        SDB->CopyToExportRegsIfNeeded(I);
421
422    // Handle PHI nodes in successor blocks.
423    if (End == LLVMBB->end()) {
424      HandlePHINodesInSuccessorBlocks(LLVMBB);
425
426      // Lower the terminator after the copies are emitted.
427      SetDebugLoc(MDDbgKind, LLVMBB->getTerminator(), SDB, 0, MF);
428      SDB->visit(*LLVMBB->getTerminator());
429      ResetDebugLoc(SDB, 0);
430    }
431  }
432
433  // Make sure the root of the DAG is up-to-date.
434  CurDAG->setRoot(SDB->getControlRoot());
435
436  // Final step, emit the lowered DAG as machine code.
437  CodeGenAndEmitDAG();
438  HadTailCall = SDB->HasTailCall;
439  SDB->clear();
440}
441
442namespace {
443/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
444/// nodes from the worklist.
445class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
446  SmallVector<SDNode*, 128> &Worklist;
447  SmallPtrSet<SDNode*, 128> &InWorklist;
448public:
449  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
450                       SmallPtrSet<SDNode*, 128> &inwl)
451    : Worklist(wl), InWorklist(inwl) {}
452
453  void RemoveFromWorklist(SDNode *N) {
454    if (!InWorklist.erase(N)) return;
455
456    SmallVector<SDNode*, 128>::iterator I =
457    std::find(Worklist.begin(), Worklist.end(), N);
458    assert(I != Worklist.end() && "Not in worklist");
459
460    *I = Worklist.back();
461    Worklist.pop_back();
462  }
463
464  virtual void NodeDeleted(SDNode *N, SDNode *E) {
465    RemoveFromWorklist(N);
466  }
467
468  virtual void NodeUpdated(SDNode *N) {
469    // Ignore updates.
470  }
471};
472}
473
474/// TrivialTruncElim - Eliminate some trivial nops that can result from
475/// ShrinkDemandedOps: (trunc (ext n)) -> n.
476static bool TrivialTruncElim(SDValue Op,
477                             TargetLowering::TargetLoweringOpt &TLO) {
478  SDValue N0 = Op.getOperand(0);
479  EVT VT = Op.getValueType();
480  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
481       N0.getOpcode() == ISD::SIGN_EXTEND ||
482       N0.getOpcode() == ISD::ANY_EXTEND) &&
483      N0.getOperand(0).getValueType() == VT) {
484    return TLO.CombineTo(Op, N0.getOperand(0));
485  }
486  return false;
487}
488
489/// ShrinkDemandedOps - A late transformation pass that shrink expressions
490/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
491/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
492void SelectionDAGISel::ShrinkDemandedOps() {
493  SmallVector<SDNode*, 128> Worklist;
494  SmallPtrSet<SDNode*, 128> InWorklist;
495
496  // Add all the dag nodes to the worklist.
497  Worklist.reserve(CurDAG->allnodes_size());
498  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
499       E = CurDAG->allnodes_end(); I != E; ++I) {
500    Worklist.push_back(I);
501    InWorklist.insert(I);
502  }
503
504  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
505  while (!Worklist.empty()) {
506    SDNode *N = Worklist.pop_back_val();
507    InWorklist.erase(N);
508
509    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
510      // Deleting this node may make its operands dead, add them to the worklist
511      // if they aren't already there.
512      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
513        if (InWorklist.insert(N->getOperand(i).getNode()))
514          Worklist.push_back(N->getOperand(i).getNode());
515
516      CurDAG->DeleteNode(N);
517      continue;
518    }
519
520    // Run ShrinkDemandedOp on scalar binary operations.
521    if (N->getNumValues() != 1 ||
522        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
523      continue;
524
525    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
526    APInt Demanded = APInt::getAllOnesValue(BitWidth);
527    APInt KnownZero, KnownOne;
528    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
529                                  KnownZero, KnownOne, TLO) &&
530        (N->getOpcode() != ISD::TRUNCATE ||
531         !TrivialTruncElim(SDValue(N, 0), TLO)))
532      continue;
533
534    // Revisit the node.
535    assert(!InWorklist.count(N) && "Already in worklist");
536    Worklist.push_back(N);
537    InWorklist.insert(N);
538
539    // Replace the old value with the new one.
540    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
541          TLO.Old.getNode()->dump(CurDAG);
542          errs() << "\nWith: ";
543          TLO.New.getNode()->dump(CurDAG);
544          errs() << '\n');
545
546    if (InWorklist.insert(TLO.New.getNode()))
547      Worklist.push_back(TLO.New.getNode());
548
549    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
550    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
551
552    if (!TLO.Old.getNode()->use_empty()) continue;
553
554    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
555         i != e; ++i) {
556      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
557      if (OpNode->hasOneUse()) {
558        // Add OpNode to the end of the list to revisit.
559        DeadNodes.RemoveFromWorklist(OpNode);
560        Worklist.push_back(OpNode);
561        InWorklist.insert(OpNode);
562      }
563    }
564
565    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
566    CurDAG->DeleteNode(TLO.Old.getNode());
567  }
568}
569
570void SelectionDAGISel::ComputeLiveOutVRegInfo() {
571  SmallPtrSet<SDNode*, 128> VisitedNodes;
572  SmallVector<SDNode*, 128> Worklist;
573
574  Worklist.push_back(CurDAG->getRoot().getNode());
575
576  APInt Mask;
577  APInt KnownZero;
578  APInt KnownOne;
579
580  do {
581    SDNode *N = Worklist.pop_back_val();
582
583    // If we've already seen this node, ignore it.
584    if (!VisitedNodes.insert(N))
585      continue;
586
587    // Otherwise, add all chain operands to the worklist.
588    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
589      if (N->getOperand(i).getValueType() == MVT::Other)
590        Worklist.push_back(N->getOperand(i).getNode());
591
592    // If this is a CopyToReg with a vreg dest, process it.
593    if (N->getOpcode() != ISD::CopyToReg)
594      continue;
595
596    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
597    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
598      continue;
599
600    // Ignore non-scalar or non-integer values.
601    SDValue Src = N->getOperand(2);
602    EVT SrcVT = Src.getValueType();
603    if (!SrcVT.isInteger() || SrcVT.isVector())
604      continue;
605
606    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
607    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
608    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
609
610    // Only install this information if it tells us something.
611    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
612      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
613      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
614        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
615      FunctionLoweringInfo::LiveOutInfo &LOI =
616        FuncInfo->LiveOutRegInfo[DestReg];
617      LOI.NumSignBits = NumSignBits;
618      LOI.KnownOne = KnownOne;
619      LOI.KnownZero = KnownZero;
620    }
621  } while (!Worklist.empty());
622}
623
624void SelectionDAGISel::CodeGenAndEmitDAG() {
625  std::string GroupName;
626  if (TimePassesIsEnabled)
627    GroupName = "Instruction Selection and Scheduling";
628  std::string BlockName;
629  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
630      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
631      ViewSUnitDAGs)
632    BlockName = MF->getFunction()->getNameStr() + ":" +
633                BB->getBasicBlock()->getNameStr();
634
635  DEBUG(dbgs() << "Initial selection DAG:\n");
636  DEBUG(CurDAG->dump());
637
638  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
639
640  // Run the DAG combiner in pre-legalize mode.
641  if (TimePassesIsEnabled) {
642    NamedRegionTimer T("DAG Combining 1", GroupName);
643    CurDAG->Combine(Unrestricted, *AA, OptLevel);
644  } else {
645    CurDAG->Combine(Unrestricted, *AA, OptLevel);
646  }
647
648  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
649  DEBUG(CurDAG->dump());
650
651  // Second step, hack on the DAG until it only uses operations and types that
652  // the target supports.
653  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
654                                               BlockName);
655
656  bool Changed;
657  if (TimePassesIsEnabled) {
658    NamedRegionTimer T("Type Legalization", GroupName);
659    Changed = CurDAG->LegalizeTypes();
660  } else {
661    Changed = CurDAG->LegalizeTypes();
662  }
663
664  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
665  DEBUG(CurDAG->dump());
666
667  if (Changed) {
668    if (ViewDAGCombineLT)
669      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
670
671    // Run the DAG combiner in post-type-legalize mode.
672    if (TimePassesIsEnabled) {
673      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
674      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
675    } else {
676      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
677    }
678
679    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
680    DEBUG(CurDAG->dump());
681  }
682
683  if (TimePassesIsEnabled) {
684    NamedRegionTimer T("Vector Legalization", GroupName);
685    Changed = CurDAG->LegalizeVectors();
686  } else {
687    Changed = CurDAG->LegalizeVectors();
688  }
689
690  if (Changed) {
691    if (TimePassesIsEnabled) {
692      NamedRegionTimer T("Type Legalization 2", GroupName);
693      CurDAG->LegalizeTypes();
694    } else {
695      CurDAG->LegalizeTypes();
696    }
697
698    if (ViewDAGCombineLT)
699      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
700
701    // Run the DAG combiner in post-type-legalize mode.
702    if (TimePassesIsEnabled) {
703      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
704      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
705    } else {
706      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
707    }
708
709    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
710    DEBUG(CurDAG->dump());
711  }
712
713  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
714
715  if (TimePassesIsEnabled) {
716    NamedRegionTimer T("DAG Legalization", GroupName);
717    CurDAG->Legalize(OptLevel);
718  } else {
719    CurDAG->Legalize(OptLevel);
720  }
721
722  DEBUG(dbgs() << "Legalized selection DAG:\n");
723  DEBUG(CurDAG->dump());
724
725  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
726
727  // Run the DAG combiner in post-legalize mode.
728  if (TimePassesIsEnabled) {
729    NamedRegionTimer T("DAG Combining 2", GroupName);
730    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
731  } else {
732    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
733  }
734
735  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
736  DEBUG(CurDAG->dump());
737
738  if (OptLevel != CodeGenOpt::None) {
739    ShrinkDemandedOps();
740    ComputeLiveOutVRegInfo();
741  }
742
743  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
744
745  // Third, instruction select all of the operations to machine code, adding the
746  // code to the MachineBasicBlock.
747  if (TimePassesIsEnabled) {
748    NamedRegionTimer T("Instruction Selection", GroupName);
749    DoInstructionSelection();
750  } else {
751    DoInstructionSelection();
752  }
753
754  DEBUG(dbgs() << "Selected selection DAG:\n");
755  DEBUG(CurDAG->dump());
756
757  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
758
759  // Schedule machine code.
760  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
761  if (TimePassesIsEnabled) {
762    NamedRegionTimer T("Instruction Scheduling", GroupName);
763    Scheduler->Run(CurDAG, BB, BB->end());
764  } else {
765    Scheduler->Run(CurDAG, BB, BB->end());
766  }
767
768  if (ViewSUnitDAGs) Scheduler->viewGraph();
769
770  // Emit machine code to BB.  This can change 'BB' to the last block being
771  // inserted into.
772  if (TimePassesIsEnabled) {
773    NamedRegionTimer T("Instruction Creation", GroupName);
774    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
775  } else {
776    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
777  }
778
779  // Free the scheduler state.
780  if (TimePassesIsEnabled) {
781    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
782    delete Scheduler;
783  } else {
784    delete Scheduler;
785  }
786
787  DEBUG(dbgs() << "Selected machine code:\n");
788  DEBUG(BB->dump());
789}
790
791void SelectionDAGISel::DoInstructionSelection() {
792  DEBUG(errs() << "===== Instruction selection begins:\n");
793
794  PreprocessISelDAG();
795
796  // Select target instructions for the DAG.
797  {
798    // Number all nodes with a topological order and set DAGSize.
799    DAGSize = CurDAG->AssignTopologicalOrder();
800
801    // Create a dummy node (which is not added to allnodes), that adds
802    // a reference to the root node, preventing it from being deleted,
803    // and tracking any changes of the root.
804    HandleSDNode Dummy(CurDAG->getRoot());
805    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
806    ++ISelPosition;
807
808    // The AllNodes list is now topological-sorted. Visit the
809    // nodes by starting at the end of the list (the root of the
810    // graph) and preceding back toward the beginning (the entry
811    // node).
812    while (ISelPosition != CurDAG->allnodes_begin()) {
813      SDNode *Node = --ISelPosition;
814      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
815      // but there are currently some corner cases that it misses. Also, this
816      // makes it theoretically possible to disable the DAGCombiner.
817      if (Node->use_empty())
818        continue;
819
820      SDNode *ResNode = Select(Node);
821
822      // FIXME: This is pretty gross.  'Select' should be changed to not return
823      // anything at all and this code should be nuked with a tactical strike.
824
825      // If node should not be replaced, continue with the next one.
826      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
827        continue;
828      // Replace node.
829      if (ResNode)
830        ReplaceUses(Node, ResNode);
831
832      // If after the replacement this node is not used any more,
833      // remove this dead node.
834      if (Node->use_empty()) { // Don't delete EntryToken, etc.
835        ISelUpdater ISU(ISelPosition);
836        CurDAG->RemoveDeadNode(Node, &ISU);
837      }
838    }
839
840    CurDAG->setRoot(Dummy.getValue());
841  }
842  DEBUG(errs() << "===== Instruction selection ends:\n");
843
844  PostprocessISelDAG();
845}
846
847
848void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
849                                            MachineFunction &MF,
850                                            MachineModuleInfo *MMI,
851                                            DwarfWriter *DW,
852                                            const TargetInstrInfo &TII) {
853  // Initialize the Fast-ISel state, if needed.
854  FastISel *FastIS = 0;
855  if (EnableFastISel)
856    FastIS = TLI.createFastISel(MF, MMI, DW,
857                                FuncInfo->ValueMap,
858                                FuncInfo->MBBMap,
859                                FuncInfo->StaticAllocaMap
860#ifndef NDEBUG
861                                , FuncInfo->CatchInfoLost
862#endif
863                                );
864
865  unsigned MDDbgKind = Fn.getContext().getMDKindID("dbg");
866
867  // Iterate over all basic blocks in the function.
868  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
869    BasicBlock *LLVMBB = &*I;
870    BB = FuncInfo->MBBMap[LLVMBB];
871
872    BasicBlock::iterator const Begin = LLVMBB->begin();
873    BasicBlock::iterator const End = LLVMBB->end();
874    BasicBlock::iterator BI = Begin;
875
876    // Lower any arguments needed in this block if this is the entry block.
877    bool SuppressFastISel = false;
878    if (LLVMBB == &Fn.getEntryBlock()) {
879      LowerArguments(LLVMBB);
880
881      // If any of the arguments has the byval attribute, forgo
882      // fast-isel in the entry block.
883      if (FastIS) {
884        unsigned j = 1;
885        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
886             I != E; ++I, ++j)
887          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
888            if (EnableFastISelVerbose || EnableFastISelAbort)
889              dbgs() << "FastISel skips entry block due to byval argument\n";
890            SuppressFastISel = true;
891            break;
892          }
893      }
894    }
895
896    if (MMI && BB->isLandingPad()) {
897      // Add a label to mark the beginning of the landing pad.  Deletion of the
898      // landing pad can thus be detected via the MachineModuleInfo.
899      MCSymbol *Label = MMI->addLandingPad(BB);
900
901      const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL);
902      BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
903
904      // Mark exception register as live in.
905      unsigned Reg = TLI.getExceptionAddressRegister();
906      if (Reg) BB->addLiveIn(Reg);
907
908      // Mark exception selector register as live in.
909      Reg = TLI.getExceptionSelectorRegister();
910      if (Reg) BB->addLiveIn(Reg);
911
912      // FIXME: Hack around an exception handling flaw (PR1508): the personality
913      // function and list of typeids logically belong to the invoke (or, if you
914      // like, the basic block containing the invoke), and need to be associated
915      // with it in the dwarf exception handling tables.  Currently however the
916      // information is provided by an intrinsic (eh.selector) that can be moved
917      // to unexpected places by the optimizers: if the unwind edge is critical,
918      // then breaking it can result in the intrinsics being in the successor of
919      // the landing pad, not the landing pad itself.  This results
920      // in exceptions not being caught because no typeids are associated with
921      // the invoke.  This may not be the only way things can go wrong, but it
922      // is the only way we try to work around for the moment.
923      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
924
925      if (Br && Br->isUnconditional()) { // Critical edge?
926        BasicBlock::iterator I, E;
927        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
928          if (isa<EHSelectorInst>(I))
929            break;
930
931        if (I == E)
932          // No catch info found - try to extract some from the successor.
933          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
934      }
935    }
936
937    // Before doing SelectionDAG ISel, see if FastISel has been requested.
938    if (FastIS && !SuppressFastISel) {
939      // Emit code for any incoming arguments. This must happen before
940      // beginning FastISel on the entry block.
941      if (LLVMBB == &Fn.getEntryBlock()) {
942        CurDAG->setRoot(SDB->getControlRoot());
943        CodeGenAndEmitDAG();
944        SDB->clear();
945      }
946      FastIS->startNewBlock(BB);
947      // Do FastISel on as many instructions as possible.
948      for (; BI != End; ++BI) {
949        // Just before the terminator instruction, insert instructions to
950        // feed PHI nodes in successor blocks.
951        if (isa<TerminatorInst>(BI))
952          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
953            ++NumFastIselFailures;
954            ResetDebugLoc(SDB, FastIS);
955            if (EnableFastISelVerbose || EnableFastISelAbort) {
956              dbgs() << "FastISel miss: ";
957              BI->dump();
958            }
959            assert(!EnableFastISelAbort &&
960                   "FastISel didn't handle a PHI in a successor");
961            break;
962          }
963
964        SetDebugLoc(MDDbgKind, BI, SDB, FastIS, &MF);
965
966        // Try to select the instruction with FastISel.
967        if (FastIS->SelectInstruction(BI)) {
968          ResetDebugLoc(SDB, FastIS);
969          continue;
970        }
971
972        // Clear out the debug location so that it doesn't carry over to
973        // unrelated instructions.
974        ResetDebugLoc(SDB, FastIS);
975
976        // Then handle certain instructions as single-LLVM-Instruction blocks.
977        if (isa<CallInst>(BI)) {
978          ++NumFastIselFailures;
979          if (EnableFastISelVerbose || EnableFastISelAbort) {
980            dbgs() << "FastISel missed call: ";
981            BI->dump();
982          }
983
984          if (!BI->getType()->isVoidTy()) {
985            unsigned &R = FuncInfo->ValueMap[BI];
986            if (!R)
987              R = FuncInfo->CreateRegForValue(BI);
988          }
989
990          bool HadTailCall = false;
991          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
992
993          // If the call was emitted as a tail call, we're done with the block.
994          if (HadTailCall) {
995            BI = End;
996            break;
997          }
998
999          // If the instruction was codegen'd with multiple blocks,
1000          // inform the FastISel object where to resume inserting.
1001          FastIS->setCurrentBlock(BB);
1002          continue;
1003        }
1004
1005        // Otherwise, give up on FastISel for the rest of the block.
1006        // For now, be a little lenient about non-branch terminators.
1007        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
1008          ++NumFastIselFailures;
1009          if (EnableFastISelVerbose || EnableFastISelAbort) {
1010            dbgs() << "FastISel miss: ";
1011            BI->dump();
1012          }
1013          if (EnableFastISelAbort)
1014            // The "fast" selector couldn't handle something and bailed.
1015            // For the purpose of debugging, just abort.
1016            llvm_unreachable("FastISel didn't select the entire block");
1017        }
1018        break;
1019      }
1020    }
1021
1022    // Run SelectionDAG instruction selection on the remainder of the block
1023    // not handled by FastISel. If FastISel is not run, this is the entire
1024    // block.
1025    if (BI != End) {
1026      bool HadTailCall;
1027      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
1028    }
1029
1030    FinishBasicBlock();
1031  }
1032
1033  delete FastIS;
1034}
1035
1036void
1037SelectionDAGISel::FinishBasicBlock() {
1038
1039  DEBUG(dbgs() << "Target-post-processed machine code:\n");
1040  DEBUG(BB->dump());
1041
1042  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1043               << SDB->PHINodesToUpdate.size() << "\n");
1044  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
1045          dbgs() << "Node " << i << " : ("
1046                 << SDB->PHINodesToUpdate[i].first
1047                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
1048
1049  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1050  // PHI nodes in successors.
1051  if (SDB->SwitchCases.empty() &&
1052      SDB->JTCases.empty() &&
1053      SDB->BitTestCases.empty()) {
1054    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1055      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1056      assert(PHI->isPHI() &&
1057             "This is not a machine PHI node that we are updating!");
1058      if (!BB->isSuccessor(PHI->getParent()))
1059        continue;
1060      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1061                                                false));
1062      PHI->addOperand(MachineOperand::CreateMBB(BB));
1063    }
1064    SDB->PHINodesToUpdate.clear();
1065    return;
1066  }
1067
1068  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1069    // Lower header first, if it wasn't already lowered
1070    if (!SDB->BitTestCases[i].Emitted) {
1071      // Set the current basic block to the mbb we wish to insert the code into
1072      BB = SDB->BitTestCases[i].Parent;
1073      SDB->setCurrentBasicBlock(BB);
1074      // Emit the code
1075      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
1076      CurDAG->setRoot(SDB->getRoot());
1077      CodeGenAndEmitDAG();
1078      SDB->clear();
1079    }
1080
1081    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1082      // Set the current basic block to the mbb we wish to insert the code into
1083      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
1084      SDB->setCurrentBasicBlock(BB);
1085      // Emit the code
1086      if (j+1 != ej)
1087        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
1088                              SDB->BitTestCases[i].Reg,
1089                              SDB->BitTestCases[i].Cases[j]);
1090      else
1091        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
1092                              SDB->BitTestCases[i].Reg,
1093                              SDB->BitTestCases[i].Cases[j]);
1094
1095
1096      CurDAG->setRoot(SDB->getRoot());
1097      CodeGenAndEmitDAG();
1098      SDB->clear();
1099    }
1100
1101    // Update PHI Nodes
1102    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1103      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1104      MachineBasicBlock *PHIBB = PHI->getParent();
1105      assert(PHI->isPHI() &&
1106             "This is not a machine PHI node that we are updating!");
1107      // This is "default" BB. We have two jumps to it. From "header" BB and
1108      // from last "case" BB.
1109      if (PHIBB == SDB->BitTestCases[i].Default) {
1110        PHI->addOperand(MachineOperand::
1111                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1112        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1113        PHI->addOperand(MachineOperand::
1114                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1115        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1116                                                  back().ThisBB));
1117      }
1118      // One of "cases" BB.
1119      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1120           j != ej; ++j) {
1121        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1122        if (cBB->isSuccessor(PHIBB)) {
1123          PHI->addOperand(MachineOperand::
1124                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1125          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1126        }
1127      }
1128    }
1129  }
1130  SDB->BitTestCases.clear();
1131
1132  // If the JumpTable record is filled in, then we need to emit a jump table.
1133  // Updating the PHI nodes is tricky in this case, since we need to determine
1134  // whether the PHI is a successor of the range check MBB or the jump table MBB
1135  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1136    // Lower header first, if it wasn't already lowered
1137    if (!SDB->JTCases[i].first.Emitted) {
1138      // Set the current basic block to the mbb we wish to insert the code into
1139      BB = SDB->JTCases[i].first.HeaderBB;
1140      SDB->setCurrentBasicBlock(BB);
1141      // Emit the code
1142      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
1143      CurDAG->setRoot(SDB->getRoot());
1144      CodeGenAndEmitDAG();
1145      SDB->clear();
1146    }
1147
1148    // Set the current basic block to the mbb we wish to insert the code into
1149    BB = SDB->JTCases[i].second.MBB;
1150    SDB->setCurrentBasicBlock(BB);
1151    // Emit the code
1152    SDB->visitJumpTable(SDB->JTCases[i].second);
1153    CurDAG->setRoot(SDB->getRoot());
1154    CodeGenAndEmitDAG();
1155    SDB->clear();
1156
1157    // Update PHI Nodes
1158    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1159      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1160      MachineBasicBlock *PHIBB = PHI->getParent();
1161      assert(PHI->isPHI() &&
1162             "This is not a machine PHI node that we are updating!");
1163      // "default" BB. We can go there only from header BB.
1164      if (PHIBB == SDB->JTCases[i].second.Default) {
1165        PHI->addOperand
1166          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1167        PHI->addOperand
1168          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1169      }
1170      // JT BB. Just iterate over successors here
1171      if (BB->isSuccessor(PHIBB)) {
1172        PHI->addOperand
1173          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1174        PHI->addOperand(MachineOperand::CreateMBB(BB));
1175      }
1176    }
1177  }
1178  SDB->JTCases.clear();
1179
1180  // If the switch block involved a branch to one of the actual successors, we
1181  // need to update PHI nodes in that block.
1182  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1183    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1184    assert(PHI->isPHI() &&
1185           "This is not a machine PHI node that we are updating!");
1186    if (BB->isSuccessor(PHI->getParent())) {
1187      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1188                                                false));
1189      PHI->addOperand(MachineOperand::CreateMBB(BB));
1190    }
1191  }
1192
1193  // If we generated any switch lowering information, build and codegen any
1194  // additional DAGs necessary.
1195  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1196    // Set the current basic block to the mbb we wish to insert the code into
1197    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1198    SDB->setCurrentBasicBlock(BB);
1199
1200    // Emit the code
1201    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1202    CurDAG->setRoot(SDB->getRoot());
1203    CodeGenAndEmitDAG();
1204
1205    // Handle any PHI nodes in successors of this chunk, as if we were coming
1206    // from the original BB before switch expansion.  Note that PHI nodes can
1207    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1208    // handle them the right number of times.
1209    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1210      // If new BB's are created during scheduling, the edges may have been
1211      // updated. That is, the edge from ThisBB to BB may have been split and
1212      // BB's predecessor is now another block.
1213      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1214        SDB->EdgeMapping.find(BB);
1215      if (EI != SDB->EdgeMapping.end())
1216        ThisBB = EI->second;
1217
1218      // BB may have been removed from the CFG if a branch was constant folded.
1219      if (ThisBB->isSuccessor(BB)) {
1220        for (MachineBasicBlock::iterator Phi = BB->begin();
1221             Phi != BB->end() && Phi->isPHI();
1222             ++Phi) {
1223          // This value for this PHI node is recorded in PHINodesToUpdate.
1224          for (unsigned pn = 0; ; ++pn) {
1225            assert(pn != SDB->PHINodesToUpdate.size() &&
1226                   "Didn't find PHI entry!");
1227            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1228              Phi->addOperand(MachineOperand::
1229                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1230                                        false));
1231              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1232              break;
1233            }
1234          }
1235        }
1236      }
1237
1238      // Don't process RHS if same block as LHS.
1239      if (BB == SDB->SwitchCases[i].FalseBB)
1240        SDB->SwitchCases[i].FalseBB = 0;
1241
1242      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1243      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1244      SDB->SwitchCases[i].FalseBB = 0;
1245    }
1246    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1247    SDB->clear();
1248  }
1249  SDB->SwitchCases.clear();
1250
1251  SDB->PHINodesToUpdate.clear();
1252}
1253
1254
1255/// Create the scheduler. If a specific scheduler was specified
1256/// via the SchedulerRegistry, use it, otherwise select the
1257/// one preferred by the target.
1258///
1259ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1260  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1261
1262  if (!Ctor) {
1263    Ctor = ISHeuristic;
1264    RegisterScheduler::setDefault(Ctor);
1265  }
1266
1267  return Ctor(this, OptLevel);
1268}
1269
1270ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1271  return new ScheduleHazardRecognizer();
1272}
1273
1274//===----------------------------------------------------------------------===//
1275// Helper functions used by the generated instruction selector.
1276//===----------------------------------------------------------------------===//
1277// Calls to these methods are generated by tblgen.
1278
1279/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1280/// the dag combiner simplified the 255, we still want to match.  RHS is the
1281/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1282/// specified in the .td file (e.g. 255).
1283bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1284                                    int64_t DesiredMaskS) const {
1285  const APInt &ActualMask = RHS->getAPIntValue();
1286  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1287
1288  // If the actual mask exactly matches, success!
1289  if (ActualMask == DesiredMask)
1290    return true;
1291
1292  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1293  if (ActualMask.intersects(~DesiredMask))
1294    return false;
1295
1296  // Otherwise, the DAG Combiner may have proven that the value coming in is
1297  // either already zero or is not demanded.  Check for known zero input bits.
1298  APInt NeededMask = DesiredMask & ~ActualMask;
1299  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1300    return true;
1301
1302  // TODO: check to see if missing bits are just not demanded.
1303
1304  // Otherwise, this pattern doesn't match.
1305  return false;
1306}
1307
1308/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1309/// the dag combiner simplified the 255, we still want to match.  RHS is the
1310/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1311/// specified in the .td file (e.g. 255).
1312bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1313                                   int64_t DesiredMaskS) const {
1314  const APInt &ActualMask = RHS->getAPIntValue();
1315  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1316
1317  // If the actual mask exactly matches, success!
1318  if (ActualMask == DesiredMask)
1319    return true;
1320
1321  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1322  if (ActualMask.intersects(~DesiredMask))
1323    return false;
1324
1325  // Otherwise, the DAG Combiner may have proven that the value coming in is
1326  // either already zero or is not demanded.  Check for known zero input bits.
1327  APInt NeededMask = DesiredMask & ~ActualMask;
1328
1329  APInt KnownZero, KnownOne;
1330  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1331
1332  // If all the missing bits in the or are already known to be set, match!
1333  if ((NeededMask & KnownOne) == NeededMask)
1334    return true;
1335
1336  // TODO: check to see if missing bits are just not demanded.
1337
1338  // Otherwise, this pattern doesn't match.
1339  return false;
1340}
1341
1342
1343/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1344/// by tblgen.  Others should not call it.
1345void SelectionDAGISel::
1346SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1347  std::vector<SDValue> InOps;
1348  std::swap(InOps, Ops);
1349
1350  Ops.push_back(InOps[0]);  // input chain.
1351  Ops.push_back(InOps[1]);  // input asm string.
1352
1353  unsigned i = 2, e = InOps.size();
1354  if (InOps[e-1].getValueType() == MVT::Flag)
1355    --e;  // Don't process a flag operand if it is here.
1356
1357  while (i != e) {
1358    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1359    if ((Flags & 7) != 4 /*MEM*/) {
1360      // Just skip over this operand, copying the operands verbatim.
1361      Ops.insert(Ops.end(), InOps.begin()+i,
1362                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1363      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1364    } else {
1365      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1366             "Memory operand with multiple values?");
1367      // Otherwise, this is a memory operand.  Ask the target to select it.
1368      std::vector<SDValue> SelOps;
1369      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1370        llvm_report_error("Could not match memory address.  Inline asm"
1371                          " failure!");
1372      }
1373
1374      // Add this to the output node.
1375      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1376                                              MVT::i32));
1377      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1378      i += 2;
1379    }
1380  }
1381
1382  // Add the flag input back if present.
1383  if (e != InOps.size())
1384    Ops.push_back(InOps.back());
1385}
1386
1387/// findFlagUse - Return use of EVT::Flag value produced by the specified
1388/// SDNode.
1389///
1390static SDNode *findFlagUse(SDNode *N) {
1391  unsigned FlagResNo = N->getNumValues()-1;
1392  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1393    SDUse &Use = I.getUse();
1394    if (Use.getResNo() == FlagResNo)
1395      return Use.getUser();
1396  }
1397  return NULL;
1398}
1399
1400/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1401/// This function recursively traverses up the operand chain, ignoring
1402/// certain nodes.
1403static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1404                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1405                          bool IgnoreChains) {
1406  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1407  // greater than all of its (recursive) operands.  If we scan to a point where
1408  // 'use' is smaller than the node we're scanning for, then we know we will
1409  // never find it.
1410  //
1411  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1412  // happen because we scan down to newly selected nodes in the case of flag
1413  // uses.
1414  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1415    return false;
1416
1417  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1418  // won't fail if we scan it again.
1419  if (!Visited.insert(Use))
1420    return false;
1421
1422  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1423    // Ignore chain uses, they are validated by HandleMergeInputChains.
1424    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1425      continue;
1426
1427    SDNode *N = Use->getOperand(i).getNode();
1428    if (N == Def) {
1429      if (Use == ImmedUse || Use == Root)
1430        continue;  // We are not looking for immediate use.
1431      assert(N != Root);
1432      return true;
1433    }
1434
1435    // Traverse up the operand chain.
1436    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1437      return true;
1438  }
1439  return false;
1440}
1441
1442/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1443/// operand node N of U during instruction selection that starts at Root.
1444bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1445                                          SDNode *Root) const {
1446  if (OptLevel == CodeGenOpt::None) return false;
1447  return N.hasOneUse();
1448}
1449
1450/// IsLegalToFold - Returns true if the specific operand node N of
1451/// U can be folded during instruction selection that starts at Root.
1452bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1453                                     bool IgnoreChains) const {
1454  if (OptLevel == CodeGenOpt::None) return false;
1455
1456  // If Root use can somehow reach N through a path that that doesn't contain
1457  // U then folding N would create a cycle. e.g. In the following
1458  // diagram, Root can reach N through X. If N is folded into into Root, then
1459  // X is both a predecessor and a successor of U.
1460  //
1461  //          [N*]           //
1462  //         ^   ^           //
1463  //        /     \          //
1464  //      [U*]    [X]?       //
1465  //        ^     ^          //
1466  //         \   /           //
1467  //          \ /            //
1468  //         [Root*]         //
1469  //
1470  // * indicates nodes to be folded together.
1471  //
1472  // If Root produces a flag, then it gets (even more) interesting. Since it
1473  // will be "glued" together with its flag use in the scheduler, we need to
1474  // check if it might reach N.
1475  //
1476  //          [N*]           //
1477  //         ^   ^           //
1478  //        /     \          //
1479  //      [U*]    [X]?       //
1480  //        ^       ^        //
1481  //         \       \       //
1482  //          \      |       //
1483  //         [Root*] |       //
1484  //          ^      |       //
1485  //          f      |       //
1486  //          |      /       //
1487  //         [Y]    /        //
1488  //           ^   /         //
1489  //           f  /          //
1490  //           | /           //
1491  //          [FU]           //
1492  //
1493  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1494  // (call it Fold), then X is a predecessor of FU and a successor of
1495  // Fold. But since Fold and FU are flagged together, this will create
1496  // a cycle in the scheduling graph.
1497
1498  // If the node has flags, walk down the graph to the "lowest" node in the
1499  // flagged set.
1500  EVT VT = Root->getValueType(Root->getNumValues()-1);
1501  while (VT == MVT::Flag) {
1502    SDNode *FU = findFlagUse(Root);
1503    if (FU == NULL)
1504      break;
1505    Root = FU;
1506    VT = Root->getValueType(Root->getNumValues()-1);
1507
1508    // If our query node has a flag result with a use, we've walked up it.  If
1509    // the user (which has already been selected) has a chain or indirectly uses
1510    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1511    // this, we cannot ignore chains in this predicate.
1512    IgnoreChains = false;
1513  }
1514
1515
1516  SmallPtrSet<SDNode*, 16> Visited;
1517  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1518}
1519
1520SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1521  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1522  SelectInlineAsmMemoryOperands(Ops);
1523
1524  std::vector<EVT> VTs;
1525  VTs.push_back(MVT::Other);
1526  VTs.push_back(MVT::Flag);
1527  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1528                                VTs, &Ops[0], Ops.size());
1529  New->setNodeId(-1);
1530  return New.getNode();
1531}
1532
1533SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1534  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1535}
1536
1537/// GetVBR - decode a vbr encoding whose top bit is set.
1538ALWAYS_INLINE static uint64_t
1539GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1540  assert(Val >= 128 && "Not a VBR");
1541  Val &= 127;  // Remove first vbr bit.
1542
1543  unsigned Shift = 7;
1544  uint64_t NextBits;
1545  do {
1546    NextBits = MatcherTable[Idx++];
1547    Val |= (NextBits&127) << Shift;
1548    Shift += 7;
1549  } while (NextBits & 128);
1550
1551  return Val;
1552}
1553
1554
1555/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1556/// interior flag and chain results to use the new flag and chain results.
1557void SelectionDAGISel::
1558UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1559                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1560                     SDValue InputFlag,
1561                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1562                     bool isMorphNodeTo) {
1563  SmallVector<SDNode*, 4> NowDeadNodes;
1564
1565  ISelUpdater ISU(ISelPosition);
1566
1567  // Now that all the normal results are replaced, we replace the chain and
1568  // flag results if present.
1569  if (!ChainNodesMatched.empty()) {
1570    assert(InputChain.getNode() != 0 &&
1571           "Matched input chains but didn't produce a chain");
1572    // Loop over all of the nodes we matched that produced a chain result.
1573    // Replace all the chain results with the final chain we ended up with.
1574    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1575      SDNode *ChainNode = ChainNodesMatched[i];
1576
1577      // If this node was already deleted, don't look at it.
1578      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1579        continue;
1580
1581      // Don't replace the results of the root node if we're doing a
1582      // MorphNodeTo.
1583      if (ChainNode == NodeToMatch && isMorphNodeTo)
1584        continue;
1585
1586      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1587      if (ChainVal.getValueType() == MVT::Flag)
1588        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1589      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1590      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1591
1592      // If the node became dead and we haven't already seen it, delete it.
1593      if (ChainNode->use_empty() &&
1594          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1595        NowDeadNodes.push_back(ChainNode);
1596    }
1597  }
1598
1599  // If the result produces a flag, update any flag results in the matched
1600  // pattern with the flag result.
1601  if (InputFlag.getNode() != 0) {
1602    // Handle any interior nodes explicitly marked.
1603    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1604      SDNode *FRN = FlagResultNodesMatched[i];
1605
1606      // If this node was already deleted, don't look at it.
1607      if (FRN->getOpcode() == ISD::DELETED_NODE)
1608        continue;
1609
1610      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1611             "Doesn't have a flag result");
1612      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1613                                        InputFlag, &ISU);
1614
1615      // If the node became dead and we haven't already seen it, delete it.
1616      if (FRN->use_empty() &&
1617          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1618        NowDeadNodes.push_back(FRN);
1619    }
1620  }
1621
1622  if (!NowDeadNodes.empty())
1623    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1624
1625  DEBUG(errs() << "ISEL: Match complete!\n");
1626}
1627
1628enum ChainResult {
1629  CR_Simple,
1630  CR_InducesCycle,
1631  CR_LeadsToInteriorNode
1632};
1633
1634/// WalkChainUsers - Walk down the users of the specified chained node that is
1635/// part of the pattern we're matching, looking at all of the users we find.
1636/// This determines whether something is an interior node, whether we have a
1637/// non-pattern node in between two pattern nodes (which prevent folding because
1638/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1639/// between pattern nodes (in which case the TF becomes part of the pattern).
1640///
1641/// The walk we do here is guaranteed to be small because we quickly get down to
1642/// already selected nodes "below" us.
1643static ChainResult
1644WalkChainUsers(SDNode *ChainedNode,
1645               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1646               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1647  ChainResult Result = CR_Simple;
1648
1649  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1650         E = ChainedNode->use_end(); UI != E; ++UI) {
1651    // Make sure the use is of the chain, not some other value we produce.
1652    if (UI.getUse().getValueType() != MVT::Other) continue;
1653
1654    SDNode *User = *UI;
1655
1656    // If we see an already-selected machine node, then we've gone beyond the
1657    // pattern that we're selecting down into the already selected chunk of the
1658    // DAG.
1659    if (User->isMachineOpcode() ||
1660        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1661      continue;
1662
1663    if (User->getOpcode() == ISD::CopyToReg ||
1664        User->getOpcode() == ISD::CopyFromReg ||
1665        User->getOpcode() == ISD::INLINEASM ||
1666        User->getOpcode() == ISD::EH_LABEL) {
1667      // If their node ID got reset to -1 then they've already been selected.
1668      // Treat them like a MachineOpcode.
1669      if (User->getNodeId() == -1)
1670        continue;
1671    }
1672
1673    // If we have a TokenFactor, we handle it specially.
1674    if (User->getOpcode() != ISD::TokenFactor) {
1675      // If the node isn't a token factor and isn't part of our pattern, then it
1676      // must be a random chained node in between two nodes we're selecting.
1677      // This happens when we have something like:
1678      //   x = load ptr
1679      //   call
1680      //   y = x+4
1681      //   store y -> ptr
1682      // Because we structurally match the load/store as a read/modify/write,
1683      // but the call is chained between them.  We cannot fold in this case
1684      // because it would induce a cycle in the graph.
1685      if (!std::count(ChainedNodesInPattern.begin(),
1686                      ChainedNodesInPattern.end(), User))
1687        return CR_InducesCycle;
1688
1689      // Otherwise we found a node that is part of our pattern.  For example in:
1690      //   x = load ptr
1691      //   y = x+4
1692      //   store y -> ptr
1693      // This would happen when we're scanning down from the load and see the
1694      // store as a user.  Record that there is a use of ChainedNode that is
1695      // part of the pattern and keep scanning uses.
1696      Result = CR_LeadsToInteriorNode;
1697      InteriorChainedNodes.push_back(User);
1698      continue;
1699    }
1700
1701    // If we found a TokenFactor, there are two cases to consider: first if the
1702    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1703    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1704    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1705    //     [Load chain]
1706    //         ^
1707    //         |
1708    //       [Load]
1709    //       ^    ^
1710    //       |    \                    DAG's like cheese
1711    //      /       \                       do you?
1712    //     /         |
1713    // [TokenFactor] [Op]
1714    //     ^          ^
1715    //     |          |
1716    //      \        /
1717    //       \      /
1718    //       [Store]
1719    //
1720    // In this case, the TokenFactor becomes part of our match and we rewrite it
1721    // as a new TokenFactor.
1722    //
1723    // To distinguish these two cases, do a recursive walk down the uses.
1724    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1725    case CR_Simple:
1726      // If the uses of the TokenFactor are just already-selected nodes, ignore
1727      // it, it is "below" our pattern.
1728      continue;
1729    case CR_InducesCycle:
1730      // If the uses of the TokenFactor lead to nodes that are not part of our
1731      // pattern that are not selected, folding would turn this into a cycle,
1732      // bail out now.
1733      return CR_InducesCycle;
1734    case CR_LeadsToInteriorNode:
1735      break;  // Otherwise, keep processing.
1736    }
1737
1738    // Okay, we know we're in the interesting interior case.  The TokenFactor
1739    // is now going to be considered part of the pattern so that we rewrite its
1740    // uses (it may have uses that are not part of the pattern) with the
1741    // ultimate chain result of the generated code.  We will also add its chain
1742    // inputs as inputs to the ultimate TokenFactor we create.
1743    Result = CR_LeadsToInteriorNode;
1744    ChainedNodesInPattern.push_back(User);
1745    InteriorChainedNodes.push_back(User);
1746    continue;
1747  }
1748
1749  return Result;
1750}
1751
1752/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1753/// operation for when the pattern matched at least one node with a chains.  The
1754/// input vector contains a list of all of the chained nodes that we match.  We
1755/// must determine if this is a valid thing to cover (i.e. matching it won't
1756/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1757/// be used as the input node chain for the generated nodes.
1758static SDValue
1759HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1760                       SelectionDAG *CurDAG) {
1761  // Walk all of the chained nodes we've matched, recursively scanning down the
1762  // users of the chain result. This adds any TokenFactor nodes that are caught
1763  // in between chained nodes to the chained and interior nodes list.
1764  SmallVector<SDNode*, 3> InteriorChainedNodes;
1765  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1766    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1767                       InteriorChainedNodes) == CR_InducesCycle)
1768      return SDValue(); // Would induce a cycle.
1769  }
1770
1771  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1772  // that we are interested in.  Form our input TokenFactor node.
1773  SmallVector<SDValue, 3> InputChains;
1774  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1775    // Add the input chain of this node to the InputChains list (which will be
1776    // the operands of the generated TokenFactor) if it's not an interior node.
1777    SDNode *N = ChainNodesMatched[i];
1778    if (N->getOpcode() != ISD::TokenFactor) {
1779      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1780        continue;
1781
1782      // Otherwise, add the input chain.
1783      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1784      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1785      InputChains.push_back(InChain);
1786      continue;
1787    }
1788
1789    // If we have a token factor, we want to add all inputs of the token factor
1790    // that are not part of the pattern we're matching.
1791    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1792      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1793                      N->getOperand(op).getNode()))
1794        InputChains.push_back(N->getOperand(op));
1795    }
1796  }
1797
1798  SDValue Res;
1799  if (InputChains.size() == 1)
1800    return InputChains[0];
1801  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1802                         MVT::Other, &InputChains[0], InputChains.size());
1803}
1804
1805/// MorphNode - Handle morphing a node in place for the selector.
1806SDNode *SelectionDAGISel::
1807MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1808          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1809  // It is possible we're using MorphNodeTo to replace a node with no
1810  // normal results with one that has a normal result (or we could be
1811  // adding a chain) and the input could have flags and chains as well.
1812  // In this case we need to shift the operands down.
1813  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1814  // than the old isel though.
1815  int OldFlagResultNo = -1, OldChainResultNo = -1;
1816
1817  unsigned NTMNumResults = Node->getNumValues();
1818  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1819    OldFlagResultNo = NTMNumResults-1;
1820    if (NTMNumResults != 1 &&
1821        Node->getValueType(NTMNumResults-2) == MVT::Other)
1822      OldChainResultNo = NTMNumResults-2;
1823  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1824    OldChainResultNo = NTMNumResults-1;
1825
1826  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1827  // that this deletes operands of the old node that become dead.
1828  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1829
1830  // MorphNodeTo can operate in two ways: if an existing node with the
1831  // specified operands exists, it can just return it.  Otherwise, it
1832  // updates the node in place to have the requested operands.
1833  if (Res == Node) {
1834    // If we updated the node in place, reset the node ID.  To the isel,
1835    // this should be just like a newly allocated machine node.
1836    Res->setNodeId(-1);
1837  }
1838
1839  unsigned ResNumResults = Res->getNumValues();
1840  // Move the flag if needed.
1841  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1842      (unsigned)OldFlagResultNo != ResNumResults-1)
1843    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1844                                      SDValue(Res, ResNumResults-1));
1845
1846  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1847  --ResNumResults;
1848
1849  // Move the chain reference if needed.
1850  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1851      (unsigned)OldChainResultNo != ResNumResults-1)
1852    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1853                                      SDValue(Res, ResNumResults-1));
1854
1855  // Otherwise, no replacement happened because the node already exists. Replace
1856  // Uses of the old node with the new one.
1857  if (Res != Node)
1858    CurDAG->ReplaceAllUsesWith(Node, Res);
1859
1860  return Res;
1861}
1862
1863/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1864ALWAYS_INLINE static bool
1865CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1866          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1867  // Accept if it is exactly the same as a previously recorded node.
1868  unsigned RecNo = MatcherTable[MatcherIndex++];
1869  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1870  return N == RecordedNodes[RecNo];
1871}
1872
1873/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1874ALWAYS_INLINE static bool
1875CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1876                      SelectionDAGISel &SDISel) {
1877  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1878}
1879
1880/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1881ALWAYS_INLINE static bool
1882CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1883                   SelectionDAGISel &SDISel, SDNode *N) {
1884  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1885}
1886
1887ALWAYS_INLINE static bool
1888CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1889            SDNode *N) {
1890  uint16_t Opc = MatcherTable[MatcherIndex++];
1891  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1892  return N->getOpcode() == Opc;
1893}
1894
1895ALWAYS_INLINE static bool
1896CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1897          SDValue N, const TargetLowering &TLI) {
1898  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1899  if (N.getValueType() == VT) return true;
1900
1901  // Handle the case when VT is iPTR.
1902  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1903}
1904
1905ALWAYS_INLINE static bool
1906CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1907               SDValue N, const TargetLowering &TLI,
1908               unsigned ChildNo) {
1909  if (ChildNo >= N.getNumOperands())
1910    return false;  // Match fails if out of range child #.
1911  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1912}
1913
1914
1915ALWAYS_INLINE static bool
1916CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1917              SDValue N) {
1918  return cast<CondCodeSDNode>(N)->get() ==
1919      (ISD::CondCode)MatcherTable[MatcherIndex++];
1920}
1921
1922ALWAYS_INLINE static bool
1923CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1924               SDValue N, const TargetLowering &TLI) {
1925  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1926  if (cast<VTSDNode>(N)->getVT() == VT)
1927    return true;
1928
1929  // Handle the case when VT is iPTR.
1930  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1931}
1932
1933ALWAYS_INLINE static bool
1934CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1935             SDValue N) {
1936  int64_t Val = MatcherTable[MatcherIndex++];
1937  if (Val & 128)
1938    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1939
1940  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1941  return C != 0 && C->getSExtValue() == Val;
1942}
1943
1944ALWAYS_INLINE static bool
1945CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1946            SDValue N, SelectionDAGISel &SDISel) {
1947  int64_t Val = MatcherTable[MatcherIndex++];
1948  if (Val & 128)
1949    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1950
1951  if (N->getOpcode() != ISD::AND) return false;
1952
1953  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1954  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1955}
1956
1957ALWAYS_INLINE static bool
1958CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1959           SDValue N, SelectionDAGISel &SDISel) {
1960  int64_t Val = MatcherTable[MatcherIndex++];
1961  if (Val & 128)
1962    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1963
1964  if (N->getOpcode() != ISD::OR) return false;
1965
1966  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1967  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1968}
1969
1970/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1971/// scope, evaluate the current node.  If the current predicate is known to
1972/// fail, set Result=true and return anything.  If the current predicate is
1973/// known to pass, set Result=false and return the MatcherIndex to continue
1974/// with.  If the current predicate is unknown, set Result=false and return the
1975/// MatcherIndex to continue with.
1976static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1977                                       unsigned Index, SDValue N,
1978                                       bool &Result, SelectionDAGISel &SDISel,
1979                                       SmallVectorImpl<SDValue> &RecordedNodes){
1980  switch (Table[Index++]) {
1981  default:
1982    Result = false;
1983    return Index-1;  // Could not evaluate this predicate.
1984  case SelectionDAGISel::OPC_CheckSame:
1985    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1986    return Index;
1987  case SelectionDAGISel::OPC_CheckPatternPredicate:
1988    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1989    return Index;
1990  case SelectionDAGISel::OPC_CheckPredicate:
1991    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1992    return Index;
1993  case SelectionDAGISel::OPC_CheckOpcode:
1994    Result = !::CheckOpcode(Table, Index, N.getNode());
1995    return Index;
1996  case SelectionDAGISel::OPC_CheckType:
1997    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1998    return Index;
1999  case SelectionDAGISel::OPC_CheckChild0Type:
2000  case SelectionDAGISel::OPC_CheckChild1Type:
2001  case SelectionDAGISel::OPC_CheckChild2Type:
2002  case SelectionDAGISel::OPC_CheckChild3Type:
2003  case SelectionDAGISel::OPC_CheckChild4Type:
2004  case SelectionDAGISel::OPC_CheckChild5Type:
2005  case SelectionDAGISel::OPC_CheckChild6Type:
2006  case SelectionDAGISel::OPC_CheckChild7Type:
2007    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2008                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2009    return Index;
2010  case SelectionDAGISel::OPC_CheckCondCode:
2011    Result = !::CheckCondCode(Table, Index, N);
2012    return Index;
2013  case SelectionDAGISel::OPC_CheckValueType:
2014    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2015    return Index;
2016  case SelectionDAGISel::OPC_CheckInteger:
2017    Result = !::CheckInteger(Table, Index, N);
2018    return Index;
2019  case SelectionDAGISel::OPC_CheckAndImm:
2020    Result = !::CheckAndImm(Table, Index, N, SDISel);
2021    return Index;
2022  case SelectionDAGISel::OPC_CheckOrImm:
2023    Result = !::CheckOrImm(Table, Index, N, SDISel);
2024    return Index;
2025  }
2026}
2027
2028
2029struct MatchScope {
2030  /// FailIndex - If this match fails, this is the index to continue with.
2031  unsigned FailIndex;
2032
2033  /// NodeStack - The node stack when the scope was formed.
2034  SmallVector<SDValue, 4> NodeStack;
2035
2036  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2037  unsigned NumRecordedNodes;
2038
2039  /// NumMatchedMemRefs - The number of matched memref entries.
2040  unsigned NumMatchedMemRefs;
2041
2042  /// InputChain/InputFlag - The current chain/flag
2043  SDValue InputChain, InputFlag;
2044
2045  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2046  bool HasChainNodesMatched, HasFlagResultNodesMatched;
2047};
2048
2049SDNode *SelectionDAGISel::
2050SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2051                 unsigned TableSize) {
2052  // FIXME: Should these even be selected?  Handle these cases in the caller?
2053  switch (NodeToMatch->getOpcode()) {
2054  default:
2055    break;
2056  case ISD::EntryToken:       // These nodes remain the same.
2057  case ISD::BasicBlock:
2058  case ISD::Register:
2059  //case ISD::VALUETYPE:
2060  //case ISD::CONDCODE:
2061  case ISD::HANDLENODE:
2062  case ISD::TargetConstant:
2063  case ISD::TargetConstantFP:
2064  case ISD::TargetConstantPool:
2065  case ISD::TargetFrameIndex:
2066  case ISD::TargetExternalSymbol:
2067  case ISD::TargetBlockAddress:
2068  case ISD::TargetJumpTable:
2069  case ISD::TargetGlobalTLSAddress:
2070  case ISD::TargetGlobalAddress:
2071  case ISD::TokenFactor:
2072  case ISD::CopyFromReg:
2073  case ISD::CopyToReg:
2074  case ISD::EH_LABEL:
2075    NodeToMatch->setNodeId(-1); // Mark selected.
2076    return 0;
2077  case ISD::AssertSext:
2078  case ISD::AssertZext:
2079    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2080                                      NodeToMatch->getOperand(0));
2081    return 0;
2082  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2083  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2084  }
2085
2086  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2087
2088  // Set up the node stack with NodeToMatch as the only node on the stack.
2089  SmallVector<SDValue, 8> NodeStack;
2090  SDValue N = SDValue(NodeToMatch, 0);
2091  NodeStack.push_back(N);
2092
2093  // MatchScopes - Scopes used when matching, if a match failure happens, this
2094  // indicates where to continue checking.
2095  SmallVector<MatchScope, 8> MatchScopes;
2096
2097  // RecordedNodes - This is the set of nodes that have been recorded by the
2098  // state machine.
2099  SmallVector<SDValue, 8> RecordedNodes;
2100
2101  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2102  // pattern.
2103  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2104
2105  // These are the current input chain and flag for use when generating nodes.
2106  // Various Emit operations change these.  For example, emitting a copytoreg
2107  // uses and updates these.
2108  SDValue InputChain, InputFlag;
2109
2110  // ChainNodesMatched - If a pattern matches nodes that have input/output
2111  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2112  // which ones they are.  The result is captured into this list so that we can
2113  // update the chain results when the pattern is complete.
2114  SmallVector<SDNode*, 3> ChainNodesMatched;
2115  SmallVector<SDNode*, 3> FlagResultNodesMatched;
2116
2117  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2118        NodeToMatch->dump(CurDAG);
2119        errs() << '\n');
2120
2121  // Determine where to start the interpreter.  Normally we start at opcode #0,
2122  // but if the state machine starts with an OPC_SwitchOpcode, then we
2123  // accelerate the first lookup (which is guaranteed to be hot) with the
2124  // OpcodeOffset table.
2125  unsigned MatcherIndex = 0;
2126
2127  if (!OpcodeOffset.empty()) {
2128    // Already computed the OpcodeOffset table, just index into it.
2129    if (N.getOpcode() < OpcodeOffset.size())
2130      MatcherIndex = OpcodeOffset[N.getOpcode()];
2131    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2132
2133  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2134    // Otherwise, the table isn't computed, but the state machine does start
2135    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2136    // is the first time we're selecting an instruction.
2137    unsigned Idx = 1;
2138    while (1) {
2139      // Get the size of this case.
2140      unsigned CaseSize = MatcherTable[Idx++];
2141      if (CaseSize & 128)
2142        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2143      if (CaseSize == 0) break;
2144
2145      // Get the opcode, add the index to the table.
2146      uint16_t Opc = MatcherTable[Idx++];
2147      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2148      if (Opc >= OpcodeOffset.size())
2149        OpcodeOffset.resize((Opc+1)*2);
2150      OpcodeOffset[Opc] = Idx;
2151      Idx += CaseSize;
2152    }
2153
2154    // Okay, do the lookup for the first opcode.
2155    if (N.getOpcode() < OpcodeOffset.size())
2156      MatcherIndex = OpcodeOffset[N.getOpcode()];
2157  }
2158
2159  while (1) {
2160    assert(MatcherIndex < TableSize && "Invalid index");
2161#ifndef NDEBUG
2162    unsigned CurrentOpcodeIndex = MatcherIndex;
2163#endif
2164    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2165    switch (Opcode) {
2166    case OPC_Scope: {
2167      // Okay, the semantics of this operation are that we should push a scope
2168      // then evaluate the first child.  However, pushing a scope only to have
2169      // the first check fail (which then pops it) is inefficient.  If we can
2170      // determine immediately that the first check (or first several) will
2171      // immediately fail, don't even bother pushing a scope for them.
2172      unsigned FailIndex;
2173
2174      while (1) {
2175        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2176        if (NumToSkip & 128)
2177          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2178        // Found the end of the scope with no match.
2179        if (NumToSkip == 0) {
2180          FailIndex = 0;
2181          break;
2182        }
2183
2184        FailIndex = MatcherIndex+NumToSkip;
2185
2186        unsigned MatcherIndexOfPredicate = MatcherIndex;
2187        (void)MatcherIndexOfPredicate; // silence warning.
2188
2189        // If we can't evaluate this predicate without pushing a scope (e.g. if
2190        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2191        // push the scope and evaluate the full predicate chain.
2192        bool Result;
2193        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2194                                              Result, *this, RecordedNodes);
2195        if (!Result)
2196          break;
2197
2198        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2199                     << "index " << MatcherIndexOfPredicate
2200                     << ", continuing at " << FailIndex << "\n");
2201
2202
2203        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2204        // move to the next case.
2205        MatcherIndex = FailIndex;
2206      }
2207
2208      // If the whole scope failed to match, bail.
2209      if (FailIndex == 0) break;
2210
2211      // Push a MatchScope which indicates where to go if the first child fails
2212      // to match.
2213      MatchScope NewEntry;
2214      NewEntry.FailIndex = FailIndex;
2215      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2216      NewEntry.NumRecordedNodes = RecordedNodes.size();
2217      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2218      NewEntry.InputChain = InputChain;
2219      NewEntry.InputFlag = InputFlag;
2220      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2221      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2222      MatchScopes.push_back(NewEntry);
2223      continue;
2224    }
2225    case OPC_RecordNode:
2226      // Remember this node, it may end up being an operand in the pattern.
2227      RecordedNodes.push_back(N);
2228      continue;
2229
2230    case OPC_RecordChild0: case OPC_RecordChild1:
2231    case OPC_RecordChild2: case OPC_RecordChild3:
2232    case OPC_RecordChild4: case OPC_RecordChild5:
2233    case OPC_RecordChild6: case OPC_RecordChild7: {
2234      unsigned ChildNo = Opcode-OPC_RecordChild0;
2235      if (ChildNo >= N.getNumOperands())
2236        break;  // Match fails if out of range child #.
2237
2238      RecordedNodes.push_back(N->getOperand(ChildNo));
2239      continue;
2240    }
2241    case OPC_RecordMemRef:
2242      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2243      continue;
2244
2245    case OPC_CaptureFlagInput:
2246      // If the current node has an input flag, capture it in InputFlag.
2247      if (N->getNumOperands() != 0 &&
2248          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2249        InputFlag = N->getOperand(N->getNumOperands()-1);
2250      continue;
2251
2252    case OPC_MoveChild: {
2253      unsigned ChildNo = MatcherTable[MatcherIndex++];
2254      if (ChildNo >= N.getNumOperands())
2255        break;  // Match fails if out of range child #.
2256      N = N.getOperand(ChildNo);
2257      NodeStack.push_back(N);
2258      continue;
2259    }
2260
2261    case OPC_MoveParent:
2262      // Pop the current node off the NodeStack.
2263      NodeStack.pop_back();
2264      assert(!NodeStack.empty() && "Node stack imbalance!");
2265      N = NodeStack.back();
2266      continue;
2267
2268    case OPC_CheckSame:
2269      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2270      continue;
2271    case OPC_CheckPatternPredicate:
2272      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2273      continue;
2274    case OPC_CheckPredicate:
2275      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2276                                N.getNode()))
2277        break;
2278      continue;
2279    case OPC_CheckComplexPat: {
2280      unsigned CPNum = MatcherTable[MatcherIndex++];
2281      unsigned RecNo = MatcherTable[MatcherIndex++];
2282      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2283      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2284                               RecordedNodes))
2285        break;
2286      continue;
2287    }
2288    case OPC_CheckOpcode:
2289      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2290      continue;
2291
2292    case OPC_CheckType:
2293      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2294      continue;
2295
2296    case OPC_SwitchOpcode: {
2297      unsigned CurNodeOpcode = N.getOpcode();
2298      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2299      unsigned CaseSize;
2300      while (1) {
2301        // Get the size of this case.
2302        CaseSize = MatcherTable[MatcherIndex++];
2303        if (CaseSize & 128)
2304          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2305        if (CaseSize == 0) break;
2306
2307        uint16_t Opc = MatcherTable[MatcherIndex++];
2308        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2309
2310        // If the opcode matches, then we will execute this case.
2311        if (CurNodeOpcode == Opc)
2312          break;
2313
2314        // Otherwise, skip over this case.
2315        MatcherIndex += CaseSize;
2316      }
2317
2318      // If no cases matched, bail out.
2319      if (CaseSize == 0) break;
2320
2321      // Otherwise, execute the case we found.
2322      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2323                   << " to " << MatcherIndex << "\n");
2324      continue;
2325    }
2326
2327    case OPC_SwitchType: {
2328      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2329      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2330      unsigned CaseSize;
2331      while (1) {
2332        // Get the size of this case.
2333        CaseSize = MatcherTable[MatcherIndex++];
2334        if (CaseSize & 128)
2335          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2336        if (CaseSize == 0) break;
2337
2338        MVT::SimpleValueType CaseVT =
2339          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2340        if (CaseVT == MVT::iPTR)
2341          CaseVT = TLI.getPointerTy().SimpleTy;
2342
2343        // If the VT matches, then we will execute this case.
2344        if (CurNodeVT == CaseVT)
2345          break;
2346
2347        // Otherwise, skip over this case.
2348        MatcherIndex += CaseSize;
2349      }
2350
2351      // If no cases matched, bail out.
2352      if (CaseSize == 0) break;
2353
2354      // Otherwise, execute the case we found.
2355      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2356                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2357      continue;
2358    }
2359    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2360    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2361    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2362    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2363      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2364                            Opcode-OPC_CheckChild0Type))
2365        break;
2366      continue;
2367    case OPC_CheckCondCode:
2368      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2369      continue;
2370    case OPC_CheckValueType:
2371      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2372      continue;
2373    case OPC_CheckInteger:
2374      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2375      continue;
2376    case OPC_CheckAndImm:
2377      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2378      continue;
2379    case OPC_CheckOrImm:
2380      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2381      continue;
2382
2383    case OPC_CheckFoldableChainNode: {
2384      assert(NodeStack.size() != 1 && "No parent node");
2385      // Verify that all intermediate nodes between the root and this one have
2386      // a single use.
2387      bool HasMultipleUses = false;
2388      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2389        if (!NodeStack[i].hasOneUse()) {
2390          HasMultipleUses = true;
2391          break;
2392        }
2393      if (HasMultipleUses) break;
2394
2395      // Check to see that the target thinks this is profitable to fold and that
2396      // we can fold it without inducing cycles in the graph.
2397      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2398                              NodeToMatch) ||
2399          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2400                         NodeToMatch, true/*We validate our own chains*/))
2401        break;
2402
2403      continue;
2404    }
2405    case OPC_EmitInteger: {
2406      MVT::SimpleValueType VT =
2407        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2408      int64_t Val = MatcherTable[MatcherIndex++];
2409      if (Val & 128)
2410        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2411      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2412      continue;
2413    }
2414    case OPC_EmitRegister: {
2415      MVT::SimpleValueType VT =
2416        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2417      unsigned RegNo = MatcherTable[MatcherIndex++];
2418      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2419      continue;
2420    }
2421
2422    case OPC_EmitConvertToTarget:  {
2423      // Convert from IMM/FPIMM to target version.
2424      unsigned RecNo = MatcherTable[MatcherIndex++];
2425      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2426      SDValue Imm = RecordedNodes[RecNo];
2427
2428      if (Imm->getOpcode() == ISD::Constant) {
2429        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2430        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2431      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2432        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2433        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2434      }
2435
2436      RecordedNodes.push_back(Imm);
2437      continue;
2438    }
2439
2440    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2441    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2442      // These are space-optimized forms of OPC_EmitMergeInputChains.
2443      assert(InputChain.getNode() == 0 &&
2444             "EmitMergeInputChains should be the first chain producing node");
2445      assert(ChainNodesMatched.empty() &&
2446             "Should only have one EmitMergeInputChains per match");
2447
2448      // Read all of the chained nodes.
2449      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2450      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2451      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2452
2453      // FIXME: What if other value results of the node have uses not matched
2454      // by this pattern?
2455      if (ChainNodesMatched.back() != NodeToMatch &&
2456          !RecordedNodes[RecNo].hasOneUse()) {
2457        ChainNodesMatched.clear();
2458        break;
2459      }
2460
2461      // Merge the input chains if they are not intra-pattern references.
2462      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2463
2464      if (InputChain.getNode() == 0)
2465        break;  // Failed to merge.
2466      continue;
2467    }
2468
2469    case OPC_EmitMergeInputChains: {
2470      assert(InputChain.getNode() == 0 &&
2471             "EmitMergeInputChains should be the first chain producing node");
2472      // This node gets a list of nodes we matched in the input that have
2473      // chains.  We want to token factor all of the input chains to these nodes
2474      // together.  However, if any of the input chains is actually one of the
2475      // nodes matched in this pattern, then we have an intra-match reference.
2476      // Ignore these because the newly token factored chain should not refer to
2477      // the old nodes.
2478      unsigned NumChains = MatcherTable[MatcherIndex++];
2479      assert(NumChains != 0 && "Can't TF zero chains");
2480
2481      assert(ChainNodesMatched.empty() &&
2482             "Should only have one EmitMergeInputChains per match");
2483
2484      // Read all of the chained nodes.
2485      for (unsigned i = 0; i != NumChains; ++i) {
2486        unsigned RecNo = MatcherTable[MatcherIndex++];
2487        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2488        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2489
2490        // FIXME: What if other value results of the node have uses not matched
2491        // by this pattern?
2492        if (ChainNodesMatched.back() != NodeToMatch &&
2493            !RecordedNodes[RecNo].hasOneUse()) {
2494          ChainNodesMatched.clear();
2495          break;
2496        }
2497      }
2498
2499      // If the inner loop broke out, the match fails.
2500      if (ChainNodesMatched.empty())
2501        break;
2502
2503      // Merge the input chains if they are not intra-pattern references.
2504      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2505
2506      if (InputChain.getNode() == 0)
2507        break;  // Failed to merge.
2508
2509      continue;
2510    }
2511
2512    case OPC_EmitCopyToReg: {
2513      unsigned RecNo = MatcherTable[MatcherIndex++];
2514      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2515      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2516
2517      if (InputChain.getNode() == 0)
2518        InputChain = CurDAG->getEntryNode();
2519
2520      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2521                                        DestPhysReg, RecordedNodes[RecNo],
2522                                        InputFlag);
2523
2524      InputFlag = InputChain.getValue(1);
2525      continue;
2526    }
2527
2528    case OPC_EmitNodeXForm: {
2529      unsigned XFormNo = MatcherTable[MatcherIndex++];
2530      unsigned RecNo = MatcherTable[MatcherIndex++];
2531      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2532      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2533      continue;
2534    }
2535
2536    case OPC_EmitNode:
2537    case OPC_MorphNodeTo: {
2538      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2539      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2540      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2541      // Get the result VT list.
2542      unsigned NumVTs = MatcherTable[MatcherIndex++];
2543      SmallVector<EVT, 4> VTs;
2544      for (unsigned i = 0; i != NumVTs; ++i) {
2545        MVT::SimpleValueType VT =
2546          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2547        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2548        VTs.push_back(VT);
2549      }
2550
2551      if (EmitNodeInfo & OPFL_Chain)
2552        VTs.push_back(MVT::Other);
2553      if (EmitNodeInfo & OPFL_FlagOutput)
2554        VTs.push_back(MVT::Flag);
2555
2556      // This is hot code, so optimize the two most common cases of 1 and 2
2557      // results.
2558      SDVTList VTList;
2559      if (VTs.size() == 1)
2560        VTList = CurDAG->getVTList(VTs[0]);
2561      else if (VTs.size() == 2)
2562        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2563      else
2564        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2565
2566      // Get the operand list.
2567      unsigned NumOps = MatcherTable[MatcherIndex++];
2568      SmallVector<SDValue, 8> Ops;
2569      for (unsigned i = 0; i != NumOps; ++i) {
2570        unsigned RecNo = MatcherTable[MatcherIndex++];
2571        if (RecNo & 128)
2572          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2573
2574        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2575        Ops.push_back(RecordedNodes[RecNo]);
2576      }
2577
2578      // If there are variadic operands to add, handle them now.
2579      if (EmitNodeInfo & OPFL_VariadicInfo) {
2580        // Determine the start index to copy from.
2581        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2582        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2583        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2584               "Invalid variadic node");
2585        // Copy all of the variadic operands, not including a potential flag
2586        // input.
2587        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2588             i != e; ++i) {
2589          SDValue V = NodeToMatch->getOperand(i);
2590          if (V.getValueType() == MVT::Flag) break;
2591          Ops.push_back(V);
2592        }
2593      }
2594
2595      // If this has chain/flag inputs, add them.
2596      if (EmitNodeInfo & OPFL_Chain)
2597        Ops.push_back(InputChain);
2598      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2599        Ops.push_back(InputFlag);
2600
2601      // Create the node.
2602      SDNode *Res = 0;
2603      if (Opcode != OPC_MorphNodeTo) {
2604        // If this is a normal EmitNode command, just create the new node and
2605        // add the results to the RecordedNodes list.
2606        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2607                                     VTList, Ops.data(), Ops.size());
2608
2609        // Add all the non-flag/non-chain results to the RecordedNodes list.
2610        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2611          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2612          RecordedNodes.push_back(SDValue(Res, i));
2613        }
2614
2615      } else {
2616        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2617                        EmitNodeInfo);
2618      }
2619
2620      // If the node had chain/flag results, update our notion of the current
2621      // chain and flag.
2622      if (EmitNodeInfo & OPFL_FlagOutput) {
2623        InputFlag = SDValue(Res, VTs.size()-1);
2624        if (EmitNodeInfo & OPFL_Chain)
2625          InputChain = SDValue(Res, VTs.size()-2);
2626      } else if (EmitNodeInfo & OPFL_Chain)
2627        InputChain = SDValue(Res, VTs.size()-1);
2628
2629      // If the OPFL_MemRefs flag is set on this node, slap all of the
2630      // accumulated memrefs onto it.
2631      //
2632      // FIXME: This is vastly incorrect for patterns with multiple outputs
2633      // instructions that access memory and for ComplexPatterns that match
2634      // loads.
2635      if (EmitNodeInfo & OPFL_MemRefs) {
2636        MachineSDNode::mmo_iterator MemRefs =
2637          MF->allocateMemRefsArray(MatchedMemRefs.size());
2638        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2639        cast<MachineSDNode>(Res)
2640          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2641      }
2642
2643      DEBUG(errs() << "  "
2644                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2645                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2646
2647      // If this was a MorphNodeTo then we're completely done!
2648      if (Opcode == OPC_MorphNodeTo) {
2649        // Update chain and flag uses.
2650        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2651                             InputFlag, FlagResultNodesMatched, true);
2652        return Res;
2653      }
2654
2655      continue;
2656    }
2657
2658    case OPC_MarkFlagResults: {
2659      unsigned NumNodes = MatcherTable[MatcherIndex++];
2660
2661      // Read and remember all the flag-result nodes.
2662      for (unsigned i = 0; i != NumNodes; ++i) {
2663        unsigned RecNo = MatcherTable[MatcherIndex++];
2664        if (RecNo & 128)
2665          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2666
2667        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2668        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2669      }
2670      continue;
2671    }
2672
2673    case OPC_CompleteMatch: {
2674      // The match has been completed, and any new nodes (if any) have been
2675      // created.  Patch up references to the matched dag to use the newly
2676      // created nodes.
2677      unsigned NumResults = MatcherTable[MatcherIndex++];
2678
2679      for (unsigned i = 0; i != NumResults; ++i) {
2680        unsigned ResSlot = MatcherTable[MatcherIndex++];
2681        if (ResSlot & 128)
2682          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2683
2684        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2685        SDValue Res = RecordedNodes[ResSlot];
2686
2687        assert(i < NodeToMatch->getNumValues() &&
2688               NodeToMatch->getValueType(i) != MVT::Other &&
2689               NodeToMatch->getValueType(i) != MVT::Flag &&
2690               "Invalid number of results to complete!");
2691        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2692                NodeToMatch->getValueType(i) == MVT::iPTR ||
2693                Res.getValueType() == MVT::iPTR ||
2694                NodeToMatch->getValueType(i).getSizeInBits() ==
2695                    Res.getValueType().getSizeInBits()) &&
2696               "invalid replacement");
2697        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2698      }
2699
2700      // If the root node defines a flag, add it to the flag nodes to update
2701      // list.
2702      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2703        FlagResultNodesMatched.push_back(NodeToMatch);
2704
2705      // Update chain and flag uses.
2706      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2707                           InputFlag, FlagResultNodesMatched, false);
2708
2709      assert(NodeToMatch->use_empty() &&
2710             "Didn't replace all uses of the node?");
2711
2712      // FIXME: We just return here, which interacts correctly with SelectRoot
2713      // above.  We should fix this to not return an SDNode* anymore.
2714      return 0;
2715    }
2716    }
2717
2718    // If the code reached this point, then the match failed.  See if there is
2719    // another child to try in the current 'Scope', otherwise pop it until we
2720    // find a case to check.
2721    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2722    while (1) {
2723      if (MatchScopes.empty()) {
2724        CannotYetSelect(NodeToMatch);
2725        return 0;
2726      }
2727
2728      // Restore the interpreter state back to the point where the scope was
2729      // formed.
2730      MatchScope &LastScope = MatchScopes.back();
2731      RecordedNodes.resize(LastScope.NumRecordedNodes);
2732      NodeStack.clear();
2733      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2734      N = NodeStack.back();
2735
2736      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2737        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2738      MatcherIndex = LastScope.FailIndex;
2739
2740      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2741
2742      InputChain = LastScope.InputChain;
2743      InputFlag = LastScope.InputFlag;
2744      if (!LastScope.HasChainNodesMatched)
2745        ChainNodesMatched.clear();
2746      if (!LastScope.HasFlagResultNodesMatched)
2747        FlagResultNodesMatched.clear();
2748
2749      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2750      // we have reached the end of this scope, otherwise we have another child
2751      // in the current scope to try.
2752      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2753      if (NumToSkip & 128)
2754        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2755
2756      // If we have another child in this scope to match, update FailIndex and
2757      // try it.
2758      if (NumToSkip != 0) {
2759        LastScope.FailIndex = MatcherIndex+NumToSkip;
2760        break;
2761      }
2762
2763      // End of this scope, pop it and try the next child in the containing
2764      // scope.
2765      MatchScopes.pop_back();
2766    }
2767  }
2768}
2769
2770
2771
2772void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2773  std::string msg;
2774  raw_string_ostream Msg(msg);
2775  Msg << "Cannot yet select: ";
2776
2777  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2778      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2779      N->getOpcode() != ISD::INTRINSIC_VOID) {
2780    N->printrFull(Msg, CurDAG);
2781  } else {
2782    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2783    unsigned iid =
2784      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2785    if (iid < Intrinsic::num_intrinsics)
2786      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2787    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2788      Msg << "target intrinsic %" << TII->getName(iid);
2789    else
2790      Msg << "unknown intrinsic #" << iid;
2791  }
2792  llvm_report_error(Msg.str());
2793}
2794
2795char SelectionDAGISel::ID = 0;
2796