SelectionDAGISel.cpp revision cbe762b5d165c565feb98b745e93b71d208a1e36
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Support/Compiler.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/Timer.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
56STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
57
58static cl::opt<bool>
59EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
60          cl::desc("Enable verbose messages in the \"fast\" "
61                   "instruction selector"));
62static cl::opt<bool>
63EnableFastISelAbort("fast-isel-abort", cl::Hidden,
64          cl::desc("Enable abort calls when \"fast\" instruction fails"));
65
66#ifndef NDEBUG
67static cl::opt<bool>
68ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
69          cl::desc("Pop up a window to show dags before the first "
70                   "dag combine pass"));
71static cl::opt<bool>
72ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
73          cl::desc("Pop up a window to show dags before legalize types"));
74static cl::opt<bool>
75ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
76          cl::desc("Pop up a window to show dags before legalize"));
77static cl::opt<bool>
78ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the second "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before the post legalize types"
84                   " dag combine pass"));
85static cl::opt<bool>
86ViewISelDAGs("view-isel-dags", cl::Hidden,
87          cl::desc("Pop up a window to show isel dags as they are selected"));
88static cl::opt<bool>
89ViewSchedDAGs("view-sched-dags", cl::Hidden,
90          cl::desc("Pop up a window to show sched dags as they are processed"));
91static cl::opt<bool>
92ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
93      cl::desc("Pop up a window to show SUnit dags after they are processed"));
94#else
95static const bool ViewDAGCombine1 = false,
96                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
97                  ViewDAGCombine2 = false,
98                  ViewDAGCombineLT = false,
99                  ViewISelDAGs = false, ViewSchedDAGs = false,
100                  ViewSUnitDAGs = false;
101#endif
102
103//===---------------------------------------------------------------------===//
104///
105/// RegisterScheduler class - Track the registration of instruction schedulers.
106///
107//===---------------------------------------------------------------------===//
108MachinePassRegistry RegisterScheduler::Registry;
109
110//===---------------------------------------------------------------------===//
111///
112/// ISHeuristic command line option for instruction schedulers.
113///
114//===---------------------------------------------------------------------===//
115static cl::opt<RegisterScheduler::FunctionPassCtor, false,
116               RegisterPassParser<RegisterScheduler> >
117ISHeuristic("pre-RA-sched",
118            cl::init(&createDefaultScheduler),
119            cl::desc("Instruction schedulers available (before register"
120                     " allocation):"));
121
122static RegisterScheduler
123defaultListDAGScheduler("default", "Best scheduler for the target",
124                        createDefaultScheduler);
125
126namespace llvm {
127  //===--------------------------------------------------------------------===//
128  /// createDefaultScheduler - This creates an instruction scheduler appropriate
129  /// for the target.
130  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
131                                             CodeGenOpt::Level OptLevel) {
132    const TargetLowering &TLI = IS->getTargetLowering();
133
134    if (OptLevel == CodeGenOpt::None)
135      return createFastDAGScheduler(IS, OptLevel);
136    if (TLI.getSchedulingPreference() == Sched::Latency)
137      return createTDListDAGScheduler(IS, OptLevel);
138    if (TLI.getSchedulingPreference() == Sched::RegPressure)
139      return createBURRListDAGScheduler(IS, OptLevel);
140    assert(TLI.getSchedulingPreference() == Sched::Hybrid &&
141           "Unknown sched type!");
142    return createHybridListDAGScheduler(IS, OptLevel);
143  }
144}
145
146// EmitInstrWithCustomInserter - This method should be implemented by targets
147// that mark instructions with the 'usesCustomInserter' flag.  These
148// instructions are special in various ways, which require special support to
149// insert.  The specified MachineInstr is created but not inserted into any
150// basic blocks, and this method is called to expand it into a sequence of
151// instructions, potentially also creating new basic blocks and control flow.
152// When new basic blocks are inserted and the edges from MBB to its successors
153// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
154// DenseMap.
155MachineBasicBlock *
156TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
157                                            MachineBasicBlock *MBB) const {
158#ifndef NDEBUG
159  dbgs() << "If a target marks an instruction with "
160          "'usesCustomInserter', it must implement "
161          "TargetLowering::EmitInstrWithCustomInserter!";
162#endif
163  llvm_unreachable(0);
164  return 0;
165}
166
167//===----------------------------------------------------------------------===//
168// SelectionDAGISel code
169//===----------------------------------------------------------------------===//
170
171SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
172  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
173  FuncInfo(new FunctionLoweringInfo(TLI)),
174  CurDAG(new SelectionDAG(tm)),
175  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
176  GFI(),
177  OptLevel(OL),
178  DAGSize(0)
179{}
180
181SelectionDAGISel::~SelectionDAGISel() {
182  delete SDB;
183  delete CurDAG;
184  delete FuncInfo;
185}
186
187void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
188  AU.addRequired<AliasAnalysis>();
189  AU.addPreserved<AliasAnalysis>();
190  AU.addRequired<GCModuleInfo>();
191  AU.addPreserved<GCModuleInfo>();
192  MachineFunctionPass::getAnalysisUsage(AU);
193}
194
195/// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
196/// other function that gcc recognizes as "returning twice". This is used to
197/// limit code-gen optimizations on the machine function.
198///
199/// FIXME: Remove after <rdar://problem/8031714> is fixed.
200static bool FunctionCallsSetJmp(const Function *F) {
201  const Module *M = F->getParent();
202  static const char *ReturnsTwiceFns[] = {
203    "setjmp",
204    "sigsetjmp",
205    "setjmp_syscall",
206    "savectx",
207    "qsetjmp",
208    "vfork",
209    "getcontext"
210  };
211#define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
212
213  for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
214    if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
215      if (!Callee->use_empty())
216        for (Value::const_use_iterator
217               I = Callee->use_begin(), E = Callee->use_end();
218             I != E; ++I)
219          if (const CallInst *CI = dyn_cast<CallInst>(I))
220            if (CI->getParent()->getParent() == F)
221              return true;
222    }
223
224  return false;
225#undef NUM_RETURNS_TWICE_FNS
226}
227
228bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
229  // Do some sanity-checking on the command-line options.
230  assert((!EnableFastISelVerbose || EnableFastISel) &&
231         "-fast-isel-verbose requires -fast-isel");
232  assert((!EnableFastISelAbort || EnableFastISel) &&
233         "-fast-isel-abort requires -fast-isel");
234
235  const Function &Fn = *mf.getFunction();
236  const TargetInstrInfo &TII = *TM.getInstrInfo();
237  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
238
239  MF = &mf;
240  RegInfo = &MF->getRegInfo();
241  AA = &getAnalysis<AliasAnalysis>();
242  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
243
244  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
245
246  CurDAG->init(*MF);
247  FuncInfo->set(Fn, *MF);
248  SDB->init(GFI, *AA);
249
250  SelectAllBasicBlocks(Fn);
251
252  // If the first basic block in the function has live ins that need to be
253  // copied into vregs, emit the copies into the top of the block before
254  // emitting the code for the block.
255  MachineBasicBlock *EntryMBB = MF->begin();
256  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
257
258  DenseMap<unsigned, unsigned> LiveInMap;
259  if (!FuncInfo->ArgDbgValues.empty())
260    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
261           E = RegInfo->livein_end(); LI != E; ++LI)
262      if (LI->second)
263        LiveInMap.insert(std::make_pair(LI->first, LI->second));
264
265  // Insert DBG_VALUE instructions for function arguments to the entry block.
266  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
267    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
268    unsigned Reg = MI->getOperand(0).getReg();
269    if (TargetRegisterInfo::isPhysicalRegister(Reg))
270      EntryMBB->insert(EntryMBB->begin(), MI);
271    else {
272      MachineInstr *Def = RegInfo->getVRegDef(Reg);
273      MachineBasicBlock::iterator InsertPos = Def;
274      // FIXME: VR def may not be in entry block.
275      Def->getParent()->insert(llvm::next(InsertPos), MI);
276    }
277
278    // If Reg is live-in then update debug info to track its copy in a vreg.
279    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
280    if (LDI != LiveInMap.end()) {
281      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
282      MachineBasicBlock::iterator InsertPos = Def;
283      const MDNode *Variable =
284        MI->getOperand(MI->getNumOperands()-1).getMetadata();
285      unsigned Offset = MI->getOperand(1).getImm();
286      // Def is never a terminator here, so it is ok to increment InsertPos.
287      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
288              TII.get(TargetOpcode::DBG_VALUE))
289        .addReg(LDI->second, RegState::Debug)
290        .addImm(Offset).addMetadata(Variable);
291    }
292  }
293
294  // Determine if there are any calls in this machine function.
295  MachineFrameInfo *MFI = MF->getFrameInfo();
296  if (!MFI->hasCalls()) {
297    for (MachineFunction::const_iterator
298           I = MF->begin(), E = MF->end(); I != E; ++I) {
299      const MachineBasicBlock *MBB = I;
300      for (MachineBasicBlock::const_iterator
301             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
302        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
303        if (II->isInlineAsm() || (TID.isCall() && !TID.isReturn())) {
304          MFI->setHasCalls(true);
305          goto done;
306        }
307      }
308    }
309  done:;
310  }
311
312  // Determine if there is a call to setjmp in the machine function.
313  MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
314
315  // Release function-specific state. SDB and CurDAG are already cleared
316  // at this point.
317  FuncInfo->clear();
318
319  return true;
320}
321
322MachineBasicBlock *
323SelectionDAGISel::SelectBasicBlock(MachineBasicBlock *BB,
324                                   const BasicBlock *LLVMBB,
325                                   BasicBlock::const_iterator Begin,
326                                   BasicBlock::const_iterator End,
327                                   bool &HadTailCall) {
328  // Lower all of the non-terminator instructions. If a call is emitted
329  // as a tail call, cease emitting nodes for this block. Terminators
330  // are handled below.
331  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
332    SDB->visit(*I);
333
334  // Make sure the root of the DAG is up-to-date.
335  CurDAG->setRoot(SDB->getControlRoot());
336  HadTailCall = SDB->HasTailCall;
337  SDB->clear();
338
339  // Final step, emit the lowered DAG as machine code.
340  return CodeGenAndEmitDAG(BB);
341}
342
343namespace {
344/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
345/// nodes from the worklist.
346class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
347  SmallVector<SDNode*, 128> &Worklist;
348  SmallPtrSet<SDNode*, 128> &InWorklist;
349public:
350  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
351                       SmallPtrSet<SDNode*, 128> &inwl)
352    : Worklist(wl), InWorklist(inwl) {}
353
354  void RemoveFromWorklist(SDNode *N) {
355    if (!InWorklist.erase(N)) return;
356
357    SmallVector<SDNode*, 128>::iterator I =
358    std::find(Worklist.begin(), Worklist.end(), N);
359    assert(I != Worklist.end() && "Not in worklist");
360
361    *I = Worklist.back();
362    Worklist.pop_back();
363  }
364
365  virtual void NodeDeleted(SDNode *N, SDNode *E) {
366    RemoveFromWorklist(N);
367  }
368
369  virtual void NodeUpdated(SDNode *N) {
370    // Ignore updates.
371  }
372};
373}
374
375/// TrivialTruncElim - Eliminate some trivial nops that can result from
376/// ShrinkDemandedOps: (trunc (ext n)) -> n.
377static bool TrivialTruncElim(SDValue Op,
378                             TargetLowering::TargetLoweringOpt &TLO) {
379  SDValue N0 = Op.getOperand(0);
380  EVT VT = Op.getValueType();
381  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
382       N0.getOpcode() == ISD::SIGN_EXTEND ||
383       N0.getOpcode() == ISD::ANY_EXTEND) &&
384      N0.getOperand(0).getValueType() == VT) {
385    return TLO.CombineTo(Op, N0.getOperand(0));
386  }
387  return false;
388}
389
390/// ShrinkDemandedOps - A late transformation pass that shrink expressions
391/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
392/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
393void SelectionDAGISel::ShrinkDemandedOps() {
394  SmallVector<SDNode*, 128> Worklist;
395  SmallPtrSet<SDNode*, 128> InWorklist;
396
397  // Add all the dag nodes to the worklist.
398  Worklist.reserve(CurDAG->allnodes_size());
399  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
400       E = CurDAG->allnodes_end(); I != E; ++I) {
401    Worklist.push_back(I);
402    InWorklist.insert(I);
403  }
404
405  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true, true, true);
406  while (!Worklist.empty()) {
407    SDNode *N = Worklist.pop_back_val();
408    InWorklist.erase(N);
409
410    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
411      // Deleting this node may make its operands dead, add them to the worklist
412      // if they aren't already there.
413      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
414        if (InWorklist.insert(N->getOperand(i).getNode()))
415          Worklist.push_back(N->getOperand(i).getNode());
416
417      CurDAG->DeleteNode(N);
418      continue;
419    }
420
421    // Run ShrinkDemandedOp on scalar binary operations.
422    if (N->getNumValues() != 1 ||
423        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
424      continue;
425
426    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
427    APInt Demanded = APInt::getAllOnesValue(BitWidth);
428    APInt KnownZero, KnownOne;
429    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
430                                  KnownZero, KnownOne, TLO) &&
431        (N->getOpcode() != ISD::TRUNCATE ||
432         !TrivialTruncElim(SDValue(N, 0), TLO)))
433      continue;
434
435    // Revisit the node.
436    assert(!InWorklist.count(N) && "Already in worklist");
437    Worklist.push_back(N);
438    InWorklist.insert(N);
439
440    // Replace the old value with the new one.
441    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
442          TLO.Old.getNode()->dump(CurDAG);
443          errs() << "\nWith: ";
444          TLO.New.getNode()->dump(CurDAG);
445          errs() << '\n');
446
447    if (InWorklist.insert(TLO.New.getNode()))
448      Worklist.push_back(TLO.New.getNode());
449
450    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
451    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
452
453    if (!TLO.Old.getNode()->use_empty()) continue;
454
455    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
456         i != e; ++i) {
457      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
458      if (OpNode->hasOneUse()) {
459        // Add OpNode to the end of the list to revisit.
460        DeadNodes.RemoveFromWorklist(OpNode);
461        Worklist.push_back(OpNode);
462        InWorklist.insert(OpNode);
463      }
464    }
465
466    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
467    CurDAG->DeleteNode(TLO.Old.getNode());
468  }
469}
470
471void SelectionDAGISel::ComputeLiveOutVRegInfo() {
472  SmallPtrSet<SDNode*, 128> VisitedNodes;
473  SmallVector<SDNode*, 128> Worklist;
474
475  Worklist.push_back(CurDAG->getRoot().getNode());
476
477  APInt Mask;
478  APInt KnownZero;
479  APInt KnownOne;
480
481  do {
482    SDNode *N = Worklist.pop_back_val();
483
484    // If we've already seen this node, ignore it.
485    if (!VisitedNodes.insert(N))
486      continue;
487
488    // Otherwise, add all chain operands to the worklist.
489    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
490      if (N->getOperand(i).getValueType() == MVT::Other)
491        Worklist.push_back(N->getOperand(i).getNode());
492
493    // If this is a CopyToReg with a vreg dest, process it.
494    if (N->getOpcode() != ISD::CopyToReg)
495      continue;
496
497    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
498    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
499      continue;
500
501    // Ignore non-scalar or non-integer values.
502    SDValue Src = N->getOperand(2);
503    EVT SrcVT = Src.getValueType();
504    if (!SrcVT.isInteger() || SrcVT.isVector())
505      continue;
506
507    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
508    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
509    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
510
511    // Only install this information if it tells us something.
512    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
513      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
514      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
515        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
516      FunctionLoweringInfo::LiveOutInfo &LOI =
517        FuncInfo->LiveOutRegInfo[DestReg];
518      LOI.NumSignBits = NumSignBits;
519      LOI.KnownOne = KnownOne;
520      LOI.KnownZero = KnownZero;
521    }
522  } while (!Worklist.empty());
523}
524
525MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
526  std::string GroupName;
527  if (TimePassesIsEnabled)
528    GroupName = "Instruction Selection and Scheduling";
529  std::string BlockName;
530  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
531      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
532      ViewSUnitDAGs)
533    BlockName = MF->getFunction()->getNameStr() + ":" +
534                BB->getBasicBlock()->getNameStr();
535
536  DEBUG(dbgs() << "Initial selection DAG:\n"; CurDAG->dump());
537
538  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
539
540  // Run the DAG combiner in pre-legalize mode.
541  {
542    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
543    CurDAG->Combine(Unrestricted, *AA, OptLevel);
544  }
545
546  DEBUG(dbgs() << "Optimized lowered selection DAG:\n"; CurDAG->dump());
547
548  // Second step, hack on the DAG until it only uses operations and types that
549  // the target supports.
550  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
551                                               BlockName);
552
553  bool Changed;
554  {
555    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
556    Changed = CurDAG->LegalizeTypes();
557  }
558
559  DEBUG(dbgs() << "Type-legalized selection DAG:\n"; CurDAG->dump());
560
561  if (Changed) {
562    if (ViewDAGCombineLT)
563      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
564
565    // Run the DAG combiner in post-type-legalize mode.
566    {
567      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
568                         TimePassesIsEnabled);
569      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
570    }
571
572    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n";
573          CurDAG->dump());
574  }
575
576  {
577    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
578    Changed = CurDAG->LegalizeVectors();
579  }
580
581  if (Changed) {
582    {
583      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
584      CurDAG->LegalizeTypes();
585    }
586
587    if (ViewDAGCombineLT)
588      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
589
590    // Run the DAG combiner in post-type-legalize mode.
591    {
592      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
593                         TimePassesIsEnabled);
594      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
595    }
596
597    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n";
598          CurDAG->dump());
599  }
600
601  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
602
603  {
604    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
605    CurDAG->Legalize(OptLevel);
606  }
607
608  DEBUG(dbgs() << "Legalized selection DAG:\n"; CurDAG->dump());
609
610  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
611
612  // Run the DAG combiner in post-legalize mode.
613  {
614    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
615    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
616  }
617
618  DEBUG(dbgs() << "Optimized legalized selection DAG:\n"; CurDAG->dump());
619
620  if (OptLevel != CodeGenOpt::None) {
621    ShrinkDemandedOps();
622    ComputeLiveOutVRegInfo();
623  }
624
625  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
626
627  // Third, instruction select all of the operations to machine code, adding the
628  // code to the MachineBasicBlock.
629  {
630    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
631    DoInstructionSelection();
632  }
633
634  DEBUG(dbgs() << "Selected selection DAG:\n"; CurDAG->dump());
635
636  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
637
638  // Schedule machine code.
639  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
640  {
641    NamedRegionTimer T("Instruction Scheduling", GroupName,
642                       TimePassesIsEnabled);
643    Scheduler->Run(CurDAG, BB, BB->end());
644  }
645
646  if (ViewSUnitDAGs) Scheduler->viewGraph();
647
648  // Emit machine code to BB.  This can change 'BB' to the last block being
649  // inserted into.
650  {
651    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
652    BB = Scheduler->EmitSchedule();
653  }
654
655  // Free the scheduler state.
656  {
657    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
658                       TimePassesIsEnabled);
659    delete Scheduler;
660  }
661
662  // Free the SelectionDAG state, now that we're finished with it.
663  CurDAG->clear();
664
665  return BB;
666}
667
668void SelectionDAGISel::DoInstructionSelection() {
669  DEBUG(errs() << "===== Instruction selection begins:\n");
670
671  PreprocessISelDAG();
672
673  // Select target instructions for the DAG.
674  {
675    // Number all nodes with a topological order and set DAGSize.
676    DAGSize = CurDAG->AssignTopologicalOrder();
677
678    // Create a dummy node (which is not added to allnodes), that adds
679    // a reference to the root node, preventing it from being deleted,
680    // and tracking any changes of the root.
681    HandleSDNode Dummy(CurDAG->getRoot());
682    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
683    ++ISelPosition;
684
685    // The AllNodes list is now topological-sorted. Visit the
686    // nodes by starting at the end of the list (the root of the
687    // graph) and preceding back toward the beginning (the entry
688    // node).
689    while (ISelPosition != CurDAG->allnodes_begin()) {
690      SDNode *Node = --ISelPosition;
691      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
692      // but there are currently some corner cases that it misses. Also, this
693      // makes it theoretically possible to disable the DAGCombiner.
694      if (Node->use_empty())
695        continue;
696
697      SDNode *ResNode = Select(Node);
698
699      // FIXME: This is pretty gross.  'Select' should be changed to not return
700      // anything at all and this code should be nuked with a tactical strike.
701
702      // If node should not be replaced, continue with the next one.
703      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
704        continue;
705      // Replace node.
706      if (ResNode)
707        ReplaceUses(Node, ResNode);
708
709      // If after the replacement this node is not used any more,
710      // remove this dead node.
711      if (Node->use_empty()) { // Don't delete EntryToken, etc.
712        ISelUpdater ISU(ISelPosition);
713        CurDAG->RemoveDeadNode(Node, &ISU);
714      }
715    }
716
717    CurDAG->setRoot(Dummy.getValue());
718  }
719
720  DEBUG(errs() << "===== Instruction selection ends:\n");
721
722  PostprocessISelDAG();
723}
724
725/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
726/// do other setup for EH landing-pad blocks.
727void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
728  // Add a label to mark the beginning of the landing pad.  Deletion of the
729  // landing pad can thus be detected via the MachineModuleInfo.
730  MCSymbol *Label = MF->getMMI().addLandingPad(BB);
731
732  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
733  BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
734
735  // Mark exception register as live in.
736  unsigned Reg = TLI.getExceptionAddressRegister();
737  if (Reg) BB->addLiveIn(Reg);
738
739  // Mark exception selector register as live in.
740  Reg = TLI.getExceptionSelectorRegister();
741  if (Reg) BB->addLiveIn(Reg);
742
743  // FIXME: Hack around an exception handling flaw (PR1508): the personality
744  // function and list of typeids logically belong to the invoke (or, if you
745  // like, the basic block containing the invoke), and need to be associated
746  // with it in the dwarf exception handling tables.  Currently however the
747  // information is provided by an intrinsic (eh.selector) that can be moved
748  // to unexpected places by the optimizers: if the unwind edge is critical,
749  // then breaking it can result in the intrinsics being in the successor of
750  // the landing pad, not the landing pad itself.  This results
751  // in exceptions not being caught because no typeids are associated with
752  // the invoke.  This may not be the only way things can go wrong, but it
753  // is the only way we try to work around for the moment.
754  const BasicBlock *LLVMBB = BB->getBasicBlock();
755  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
756
757  if (Br && Br->isUnconditional()) { // Critical edge?
758    BasicBlock::const_iterator I, E;
759    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
760      if (isa<EHSelectorInst>(I))
761        break;
762
763    if (I == E)
764      // No catch info found - try to extract some from the successor.
765      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
766  }
767}
768
769void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
770  // Initialize the Fast-ISel state, if needed.
771  FastISel *FastIS = 0;
772  if (EnableFastISel)
773    FastIS = TLI.createFastISel(*MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
774                                FuncInfo->StaticAllocaMap,
775                                FuncInfo->PHINodesToUpdate
776#ifndef NDEBUG
777                                , FuncInfo->CatchInfoLost
778#endif
779                                );
780
781  // Iterate over all basic blocks in the function.
782  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
783    const BasicBlock *LLVMBB = &*I;
784    MachineBasicBlock *BB = FuncInfo->MBBMap[LLVMBB];
785
786    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
787    BasicBlock::const_iterator const End = LLVMBB->end();
788    BasicBlock::const_iterator BI = Begin;
789
790    // Lower any arguments needed in this block if this is the entry block.
791    if (LLVMBB == &Fn.getEntryBlock())
792      LowerArguments(LLVMBB);
793
794    // Setup an EH landing-pad block.
795    if (BB->isLandingPad())
796      PrepareEHLandingPad(BB);
797
798    // Before doing SelectionDAG ISel, see if FastISel has been requested.
799    if (FastIS) {
800      // Emit code for any incoming arguments. This must happen before
801      // beginning FastISel on the entry block.
802      if (LLVMBB == &Fn.getEntryBlock()) {
803        CurDAG->setRoot(SDB->getControlRoot());
804        SDB->clear();
805        BB = CodeGenAndEmitDAG(BB);
806      }
807      FastIS->startNewBlock(BB);
808      // Do FastISel on as many instructions as possible.
809      for (; BI != End; ++BI) {
810        // Try to select the instruction with FastISel.
811        if (FastIS->SelectInstruction(BI))
812          continue;
813
814        // Then handle certain instructions as single-LLVM-Instruction blocks.
815        if (isa<CallInst>(BI)) {
816          ++NumFastIselFailures;
817          if (EnableFastISelVerbose || EnableFastISelAbort) {
818            dbgs() << "FastISel missed call: ";
819            BI->dump();
820          }
821
822          if (!BI->getType()->isVoidTy() && !BI->use_empty()) {
823            unsigned &R = FuncInfo->ValueMap[BI];
824            if (!R)
825              R = FuncInfo->CreateRegForValue(BI);
826          }
827
828          bool HadTailCall = false;
829          BB = SelectBasicBlock(BB, LLVMBB, BI, llvm::next(BI), HadTailCall);
830
831          // If the call was emitted as a tail call, we're done with the block.
832          if (HadTailCall) {
833            BI = End;
834            break;
835          }
836
837          // If the instruction was codegen'd with multiple blocks,
838          // inform the FastISel object where to resume inserting.
839          FastIS->setCurrentBlock(BB);
840          continue;
841        }
842
843        // Otherwise, give up on FastISel for the rest of the block.
844        // For now, be a little lenient about non-branch terminators.
845        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
846          ++NumFastIselFailures;
847          if (EnableFastISelVerbose || EnableFastISelAbort) {
848            dbgs() << "FastISel miss: ";
849            BI->dump();
850          }
851          if (EnableFastISelAbort)
852            // The "fast" selector couldn't handle something and bailed.
853            // For the purpose of debugging, just abort.
854            llvm_unreachable("FastISel didn't select the entire block");
855        }
856        break;
857      }
858    }
859
860    // Run SelectionDAG instruction selection on the remainder of the block
861    // not handled by FastISel. If FastISel is not run, this is the entire
862    // block.
863    if (BI != End) {
864      bool HadTailCall;
865      BB = SelectBasicBlock(BB, LLVMBB, BI, End, HadTailCall);
866    }
867
868    FinishBasicBlock(BB);
869    FuncInfo->PHINodesToUpdate.clear();
870  }
871
872  delete FastIS;
873}
874
875void
876SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
877
878  DEBUG(dbgs() << "Total amount of phi nodes to update: "
879               << FuncInfo->PHINodesToUpdate.size() << "\n";
880        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
881          dbgs() << "Node " << i << " : ("
882                 << FuncInfo->PHINodesToUpdate[i].first
883                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
884
885  // Next, now that we know what the last MBB the LLVM BB expanded is, update
886  // PHI nodes in successors.
887  if (SDB->SwitchCases.empty() &&
888      SDB->JTCases.empty() &&
889      SDB->BitTestCases.empty()) {
890    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
891      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
892      assert(PHI->isPHI() &&
893             "This is not a machine PHI node that we are updating!");
894      if (!BB->isSuccessor(PHI->getParent()))
895        continue;
896      PHI->addOperand(
897        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
898      PHI->addOperand(MachineOperand::CreateMBB(BB));
899    }
900    return;
901  }
902
903  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
904    // Lower header first, if it wasn't already lowered
905    if (!SDB->BitTestCases[i].Emitted) {
906      // Set the current basic block to the mbb we wish to insert the code into
907      BB = SDB->BitTestCases[i].Parent;
908      // Emit the code
909      SDB->visitBitTestHeader(SDB->BitTestCases[i], BB);
910      CurDAG->setRoot(SDB->getRoot());
911      SDB->clear();
912      BB = CodeGenAndEmitDAG(BB);
913    }
914
915    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
916      // Set the current basic block to the mbb we wish to insert the code into
917      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
918      // Emit the code
919      if (j+1 != ej)
920        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
921                              SDB->BitTestCases[i].Reg,
922                              SDB->BitTestCases[i].Cases[j],
923                              BB);
924      else
925        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
926                              SDB->BitTestCases[i].Reg,
927                              SDB->BitTestCases[i].Cases[j],
928                              BB);
929
930
931      CurDAG->setRoot(SDB->getRoot());
932      SDB->clear();
933      BB = CodeGenAndEmitDAG(BB);
934    }
935
936    // Update PHI Nodes
937    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
938         pi != pe; ++pi) {
939      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
940      MachineBasicBlock *PHIBB = PHI->getParent();
941      assert(PHI->isPHI() &&
942             "This is not a machine PHI node that we are updating!");
943      // This is "default" BB. We have two jumps to it. From "header" BB and
944      // from last "case" BB.
945      if (PHIBB == SDB->BitTestCases[i].Default) {
946        PHI->addOperand(MachineOperand::
947                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
948                                  false));
949        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
950        PHI->addOperand(MachineOperand::
951                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
952                                  false));
953        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
954                                                  back().ThisBB));
955      }
956      // One of "cases" BB.
957      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
958           j != ej; ++j) {
959        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
960        if (cBB->isSuccessor(PHIBB)) {
961          PHI->addOperand(MachineOperand::
962                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
963                                    false));
964          PHI->addOperand(MachineOperand::CreateMBB(cBB));
965        }
966      }
967    }
968  }
969  SDB->BitTestCases.clear();
970
971  // If the JumpTable record is filled in, then we need to emit a jump table.
972  // Updating the PHI nodes is tricky in this case, since we need to determine
973  // whether the PHI is a successor of the range check MBB or the jump table MBB
974  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
975    // Lower header first, if it wasn't already lowered
976    if (!SDB->JTCases[i].first.Emitted) {
977      // Set the current basic block to the mbb we wish to insert the code into
978      BB = SDB->JTCases[i].first.HeaderBB;
979      // Emit the code
980      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
981                                BB);
982      CurDAG->setRoot(SDB->getRoot());
983      SDB->clear();
984      BB = CodeGenAndEmitDAG(BB);
985    }
986
987    // Set the current basic block to the mbb we wish to insert the code into
988    BB = SDB->JTCases[i].second.MBB;
989    // Emit the code
990    SDB->visitJumpTable(SDB->JTCases[i].second);
991    CurDAG->setRoot(SDB->getRoot());
992    SDB->clear();
993    BB = CodeGenAndEmitDAG(BB);
994
995    // Update PHI Nodes
996    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
997         pi != pe; ++pi) {
998      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
999      MachineBasicBlock *PHIBB = PHI->getParent();
1000      assert(PHI->isPHI() &&
1001             "This is not a machine PHI node that we are updating!");
1002      // "default" BB. We can go there only from header BB.
1003      if (PHIBB == SDB->JTCases[i].second.Default) {
1004        PHI->addOperand
1005          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1006                                     false));
1007        PHI->addOperand
1008          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1009      }
1010      // JT BB. Just iterate over successors here
1011      if (BB->isSuccessor(PHIBB)) {
1012        PHI->addOperand
1013          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1014                                     false));
1015        PHI->addOperand(MachineOperand::CreateMBB(BB));
1016      }
1017    }
1018  }
1019  SDB->JTCases.clear();
1020
1021  // If the switch block involved a branch to one of the actual successors, we
1022  // need to update PHI nodes in that block.
1023  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1024    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1025    assert(PHI->isPHI() &&
1026           "This is not a machine PHI node that we are updating!");
1027    if (BB->isSuccessor(PHI->getParent())) {
1028      PHI->addOperand(
1029        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1030      PHI->addOperand(MachineOperand::CreateMBB(BB));
1031    }
1032  }
1033
1034  // If we generated any switch lowering information, build and codegen any
1035  // additional DAGs necessary.
1036  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1037    // Set the current basic block to the mbb we wish to insert the code into
1038    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1039
1040    // Determine the unique successors.
1041    SmallVector<MachineBasicBlock *, 2> Succs;
1042    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1043    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1044      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1045
1046    // Emit the code. Note that this could result in ThisBB being split, so
1047    // we need to check for updates.
1048    SDB->visitSwitchCase(SDB->SwitchCases[i], BB);
1049    CurDAG->setRoot(SDB->getRoot());
1050    SDB->clear();
1051    ThisBB = CodeGenAndEmitDAG(BB);
1052
1053    // Handle any PHI nodes in successors of this chunk, as if we were coming
1054    // from the original BB before switch expansion.  Note that PHI nodes can
1055    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1056    // handle them the right number of times.
1057    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1058      BB = Succs[i];
1059      // BB may have been removed from the CFG if a branch was constant folded.
1060      if (ThisBB->isSuccessor(BB)) {
1061        for (MachineBasicBlock::iterator Phi = BB->begin();
1062             Phi != BB->end() && Phi->isPHI();
1063             ++Phi) {
1064          // This value for this PHI node is recorded in PHINodesToUpdate.
1065          for (unsigned pn = 0; ; ++pn) {
1066            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1067                   "Didn't find PHI entry!");
1068            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1069              Phi->addOperand(MachineOperand::
1070                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1071                                        false));
1072              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1073              break;
1074            }
1075          }
1076        }
1077      }
1078    }
1079  }
1080  SDB->SwitchCases.clear();
1081}
1082
1083
1084/// Create the scheduler. If a specific scheduler was specified
1085/// via the SchedulerRegistry, use it, otherwise select the
1086/// one preferred by the target.
1087///
1088ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1089  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1090
1091  if (!Ctor) {
1092    Ctor = ISHeuristic;
1093    RegisterScheduler::setDefault(Ctor);
1094  }
1095
1096  return Ctor(this, OptLevel);
1097}
1098
1099ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1100  return new ScheduleHazardRecognizer();
1101}
1102
1103//===----------------------------------------------------------------------===//
1104// Helper functions used by the generated instruction selector.
1105//===----------------------------------------------------------------------===//
1106// Calls to these methods are generated by tblgen.
1107
1108/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1109/// the dag combiner simplified the 255, we still want to match.  RHS is the
1110/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1111/// specified in the .td file (e.g. 255).
1112bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1113                                    int64_t DesiredMaskS) const {
1114  const APInt &ActualMask = RHS->getAPIntValue();
1115  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1116
1117  // If the actual mask exactly matches, success!
1118  if (ActualMask == DesiredMask)
1119    return true;
1120
1121  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1122  if (ActualMask.intersects(~DesiredMask))
1123    return false;
1124
1125  // Otherwise, the DAG Combiner may have proven that the value coming in is
1126  // either already zero or is not demanded.  Check for known zero input bits.
1127  APInt NeededMask = DesiredMask & ~ActualMask;
1128  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1129    return true;
1130
1131  // TODO: check to see if missing bits are just not demanded.
1132
1133  // Otherwise, this pattern doesn't match.
1134  return false;
1135}
1136
1137/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1138/// the dag combiner simplified the 255, we still want to match.  RHS is the
1139/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1140/// specified in the .td file (e.g. 255).
1141bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1142                                   int64_t DesiredMaskS) const {
1143  const APInt &ActualMask = RHS->getAPIntValue();
1144  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1145
1146  // If the actual mask exactly matches, success!
1147  if (ActualMask == DesiredMask)
1148    return true;
1149
1150  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1151  if (ActualMask.intersects(~DesiredMask))
1152    return false;
1153
1154  // Otherwise, the DAG Combiner may have proven that the value coming in is
1155  // either already zero or is not demanded.  Check for known zero input bits.
1156  APInt NeededMask = DesiredMask & ~ActualMask;
1157
1158  APInt KnownZero, KnownOne;
1159  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1160
1161  // If all the missing bits in the or are already known to be set, match!
1162  if ((NeededMask & KnownOne) == NeededMask)
1163    return true;
1164
1165  // TODO: check to see if missing bits are just not demanded.
1166
1167  // Otherwise, this pattern doesn't match.
1168  return false;
1169}
1170
1171
1172/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1173/// by tblgen.  Others should not call it.
1174void SelectionDAGISel::
1175SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1176  std::vector<SDValue> InOps;
1177  std::swap(InOps, Ops);
1178
1179  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1180  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1181  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1182
1183  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1184  if (InOps[e-1].getValueType() == MVT::Flag)
1185    --e;  // Don't process a flag operand if it is here.
1186
1187  while (i != e) {
1188    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1189    if (!InlineAsm::isMemKind(Flags)) {
1190      // Just skip over this operand, copying the operands verbatim.
1191      Ops.insert(Ops.end(), InOps.begin()+i,
1192                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1193      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1194    } else {
1195      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1196             "Memory operand with multiple values?");
1197      // Otherwise, this is a memory operand.  Ask the target to select it.
1198      std::vector<SDValue> SelOps;
1199      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1200        report_fatal_error("Could not match memory address.  Inline asm"
1201                           " failure!");
1202
1203      // Add this to the output node.
1204      unsigned NewFlags =
1205        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1206      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1207      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1208      i += 2;
1209    }
1210  }
1211
1212  // Add the flag input back if present.
1213  if (e != InOps.size())
1214    Ops.push_back(InOps.back());
1215}
1216
1217/// findFlagUse - Return use of EVT::Flag value produced by the specified
1218/// SDNode.
1219///
1220static SDNode *findFlagUse(SDNode *N) {
1221  unsigned FlagResNo = N->getNumValues()-1;
1222  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1223    SDUse &Use = I.getUse();
1224    if (Use.getResNo() == FlagResNo)
1225      return Use.getUser();
1226  }
1227  return NULL;
1228}
1229
1230/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1231/// This function recursively traverses up the operand chain, ignoring
1232/// certain nodes.
1233static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1234                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1235                          bool IgnoreChains) {
1236  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1237  // greater than all of its (recursive) operands.  If we scan to a point where
1238  // 'use' is smaller than the node we're scanning for, then we know we will
1239  // never find it.
1240  //
1241  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1242  // happen because we scan down to newly selected nodes in the case of flag
1243  // uses.
1244  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1245    return false;
1246
1247  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1248  // won't fail if we scan it again.
1249  if (!Visited.insert(Use))
1250    return false;
1251
1252  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1253    // Ignore chain uses, they are validated by HandleMergeInputChains.
1254    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1255      continue;
1256
1257    SDNode *N = Use->getOperand(i).getNode();
1258    if (N == Def) {
1259      if (Use == ImmedUse || Use == Root)
1260        continue;  // We are not looking for immediate use.
1261      assert(N != Root);
1262      return true;
1263    }
1264
1265    // Traverse up the operand chain.
1266    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1267      return true;
1268  }
1269  return false;
1270}
1271
1272/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1273/// operand node N of U during instruction selection that starts at Root.
1274bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1275                                          SDNode *Root) const {
1276  if (OptLevel == CodeGenOpt::None) return false;
1277  return N.hasOneUse();
1278}
1279
1280/// IsLegalToFold - Returns true if the specific operand node N of
1281/// U can be folded during instruction selection that starts at Root.
1282bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1283                                     CodeGenOpt::Level OptLevel,
1284                                     bool IgnoreChains) {
1285  if (OptLevel == CodeGenOpt::None) return false;
1286
1287  // If Root use can somehow reach N through a path that that doesn't contain
1288  // U then folding N would create a cycle. e.g. In the following
1289  // diagram, Root can reach N through X. If N is folded into into Root, then
1290  // X is both a predecessor and a successor of U.
1291  //
1292  //          [N*]           //
1293  //         ^   ^           //
1294  //        /     \          //
1295  //      [U*]    [X]?       //
1296  //        ^     ^          //
1297  //         \   /           //
1298  //          \ /            //
1299  //         [Root*]         //
1300  //
1301  // * indicates nodes to be folded together.
1302  //
1303  // If Root produces a flag, then it gets (even more) interesting. Since it
1304  // will be "glued" together with its flag use in the scheduler, we need to
1305  // check if it might reach N.
1306  //
1307  //          [N*]           //
1308  //         ^   ^           //
1309  //        /     \          //
1310  //      [U*]    [X]?       //
1311  //        ^       ^        //
1312  //         \       \       //
1313  //          \      |       //
1314  //         [Root*] |       //
1315  //          ^      |       //
1316  //          f      |       //
1317  //          |      /       //
1318  //         [Y]    /        //
1319  //           ^   /         //
1320  //           f  /          //
1321  //           | /           //
1322  //          [FU]           //
1323  //
1324  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1325  // (call it Fold), then X is a predecessor of FU and a successor of
1326  // Fold. But since Fold and FU are flagged together, this will create
1327  // a cycle in the scheduling graph.
1328
1329  // If the node has flags, walk down the graph to the "lowest" node in the
1330  // flagged set.
1331  EVT VT = Root->getValueType(Root->getNumValues()-1);
1332  while (VT == MVT::Flag) {
1333    SDNode *FU = findFlagUse(Root);
1334    if (FU == NULL)
1335      break;
1336    Root = FU;
1337    VT = Root->getValueType(Root->getNumValues()-1);
1338
1339    // If our query node has a flag result with a use, we've walked up it.  If
1340    // the user (which has already been selected) has a chain or indirectly uses
1341    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1342    // this, we cannot ignore chains in this predicate.
1343    IgnoreChains = false;
1344  }
1345
1346
1347  SmallPtrSet<SDNode*, 16> Visited;
1348  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1349}
1350
1351SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1352  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1353  SelectInlineAsmMemoryOperands(Ops);
1354
1355  std::vector<EVT> VTs;
1356  VTs.push_back(MVT::Other);
1357  VTs.push_back(MVT::Flag);
1358  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1359                                VTs, &Ops[0], Ops.size());
1360  New->setNodeId(-1);
1361  return New.getNode();
1362}
1363
1364SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1365  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1366}
1367
1368/// GetVBR - decode a vbr encoding whose top bit is set.
1369ALWAYS_INLINE static uint64_t
1370GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1371  assert(Val >= 128 && "Not a VBR");
1372  Val &= 127;  // Remove first vbr bit.
1373
1374  unsigned Shift = 7;
1375  uint64_t NextBits;
1376  do {
1377    NextBits = MatcherTable[Idx++];
1378    Val |= (NextBits&127) << Shift;
1379    Shift += 7;
1380  } while (NextBits & 128);
1381
1382  return Val;
1383}
1384
1385
1386/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1387/// interior flag and chain results to use the new flag and chain results.
1388void SelectionDAGISel::
1389UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1390                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1391                     SDValue InputFlag,
1392                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1393                     bool isMorphNodeTo) {
1394  SmallVector<SDNode*, 4> NowDeadNodes;
1395
1396  ISelUpdater ISU(ISelPosition);
1397
1398  // Now that all the normal results are replaced, we replace the chain and
1399  // flag results if present.
1400  if (!ChainNodesMatched.empty()) {
1401    assert(InputChain.getNode() != 0 &&
1402           "Matched input chains but didn't produce a chain");
1403    // Loop over all of the nodes we matched that produced a chain result.
1404    // Replace all the chain results with the final chain we ended up with.
1405    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1406      SDNode *ChainNode = ChainNodesMatched[i];
1407
1408      // If this node was already deleted, don't look at it.
1409      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1410        continue;
1411
1412      // Don't replace the results of the root node if we're doing a
1413      // MorphNodeTo.
1414      if (ChainNode == NodeToMatch && isMorphNodeTo)
1415        continue;
1416
1417      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1418      if (ChainVal.getValueType() == MVT::Flag)
1419        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1420      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1421      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1422
1423      // If the node became dead and we haven't already seen it, delete it.
1424      if (ChainNode->use_empty() &&
1425          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1426        NowDeadNodes.push_back(ChainNode);
1427    }
1428  }
1429
1430  // If the result produces a flag, update any flag results in the matched
1431  // pattern with the flag result.
1432  if (InputFlag.getNode() != 0) {
1433    // Handle any interior nodes explicitly marked.
1434    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1435      SDNode *FRN = FlagResultNodesMatched[i];
1436
1437      // If this node was already deleted, don't look at it.
1438      if (FRN->getOpcode() == ISD::DELETED_NODE)
1439        continue;
1440
1441      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1442             "Doesn't have a flag result");
1443      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1444                                        InputFlag, &ISU);
1445
1446      // If the node became dead and we haven't already seen it, delete it.
1447      if (FRN->use_empty() &&
1448          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1449        NowDeadNodes.push_back(FRN);
1450    }
1451  }
1452
1453  if (!NowDeadNodes.empty())
1454    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1455
1456  DEBUG(errs() << "ISEL: Match complete!\n");
1457}
1458
1459enum ChainResult {
1460  CR_Simple,
1461  CR_InducesCycle,
1462  CR_LeadsToInteriorNode
1463};
1464
1465/// WalkChainUsers - Walk down the users of the specified chained node that is
1466/// part of the pattern we're matching, looking at all of the users we find.
1467/// This determines whether something is an interior node, whether we have a
1468/// non-pattern node in between two pattern nodes (which prevent folding because
1469/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1470/// between pattern nodes (in which case the TF becomes part of the pattern).
1471///
1472/// The walk we do here is guaranteed to be small because we quickly get down to
1473/// already selected nodes "below" us.
1474static ChainResult
1475WalkChainUsers(SDNode *ChainedNode,
1476               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1477               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1478  ChainResult Result = CR_Simple;
1479
1480  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1481         E = ChainedNode->use_end(); UI != E; ++UI) {
1482    // Make sure the use is of the chain, not some other value we produce.
1483    if (UI.getUse().getValueType() != MVT::Other) continue;
1484
1485    SDNode *User = *UI;
1486
1487    // If we see an already-selected machine node, then we've gone beyond the
1488    // pattern that we're selecting down into the already selected chunk of the
1489    // DAG.
1490    if (User->isMachineOpcode() ||
1491        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1492      continue;
1493
1494    if (User->getOpcode() == ISD::CopyToReg ||
1495        User->getOpcode() == ISD::CopyFromReg ||
1496        User->getOpcode() == ISD::INLINEASM ||
1497        User->getOpcode() == ISD::EH_LABEL) {
1498      // If their node ID got reset to -1 then they've already been selected.
1499      // Treat them like a MachineOpcode.
1500      if (User->getNodeId() == -1)
1501        continue;
1502    }
1503
1504    // If we have a TokenFactor, we handle it specially.
1505    if (User->getOpcode() != ISD::TokenFactor) {
1506      // If the node isn't a token factor and isn't part of our pattern, then it
1507      // must be a random chained node in between two nodes we're selecting.
1508      // This happens when we have something like:
1509      //   x = load ptr
1510      //   call
1511      //   y = x+4
1512      //   store y -> ptr
1513      // Because we structurally match the load/store as a read/modify/write,
1514      // but the call is chained between them.  We cannot fold in this case
1515      // because it would induce a cycle in the graph.
1516      if (!std::count(ChainedNodesInPattern.begin(),
1517                      ChainedNodesInPattern.end(), User))
1518        return CR_InducesCycle;
1519
1520      // Otherwise we found a node that is part of our pattern.  For example in:
1521      //   x = load ptr
1522      //   y = x+4
1523      //   store y -> ptr
1524      // This would happen when we're scanning down from the load and see the
1525      // store as a user.  Record that there is a use of ChainedNode that is
1526      // part of the pattern and keep scanning uses.
1527      Result = CR_LeadsToInteriorNode;
1528      InteriorChainedNodes.push_back(User);
1529      continue;
1530    }
1531
1532    // If we found a TokenFactor, there are two cases to consider: first if the
1533    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1534    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1535    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1536    //     [Load chain]
1537    //         ^
1538    //         |
1539    //       [Load]
1540    //       ^    ^
1541    //       |    \                    DAG's like cheese
1542    //      /       \                       do you?
1543    //     /         |
1544    // [TokenFactor] [Op]
1545    //     ^          ^
1546    //     |          |
1547    //      \        /
1548    //       \      /
1549    //       [Store]
1550    //
1551    // In this case, the TokenFactor becomes part of our match and we rewrite it
1552    // as a new TokenFactor.
1553    //
1554    // To distinguish these two cases, do a recursive walk down the uses.
1555    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1556    case CR_Simple:
1557      // If the uses of the TokenFactor are just already-selected nodes, ignore
1558      // it, it is "below" our pattern.
1559      continue;
1560    case CR_InducesCycle:
1561      // If the uses of the TokenFactor lead to nodes that are not part of our
1562      // pattern that are not selected, folding would turn this into a cycle,
1563      // bail out now.
1564      return CR_InducesCycle;
1565    case CR_LeadsToInteriorNode:
1566      break;  // Otherwise, keep processing.
1567    }
1568
1569    // Okay, we know we're in the interesting interior case.  The TokenFactor
1570    // is now going to be considered part of the pattern so that we rewrite its
1571    // uses (it may have uses that are not part of the pattern) with the
1572    // ultimate chain result of the generated code.  We will also add its chain
1573    // inputs as inputs to the ultimate TokenFactor we create.
1574    Result = CR_LeadsToInteriorNode;
1575    ChainedNodesInPattern.push_back(User);
1576    InteriorChainedNodes.push_back(User);
1577    continue;
1578  }
1579
1580  return Result;
1581}
1582
1583/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1584/// operation for when the pattern matched at least one node with a chains.  The
1585/// input vector contains a list of all of the chained nodes that we match.  We
1586/// must determine if this is a valid thing to cover (i.e. matching it won't
1587/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1588/// be used as the input node chain for the generated nodes.
1589static SDValue
1590HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1591                       SelectionDAG *CurDAG) {
1592  // Walk all of the chained nodes we've matched, recursively scanning down the
1593  // users of the chain result. This adds any TokenFactor nodes that are caught
1594  // in between chained nodes to the chained and interior nodes list.
1595  SmallVector<SDNode*, 3> InteriorChainedNodes;
1596  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1597    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1598                       InteriorChainedNodes) == CR_InducesCycle)
1599      return SDValue(); // Would induce a cycle.
1600  }
1601
1602  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1603  // that we are interested in.  Form our input TokenFactor node.
1604  SmallVector<SDValue, 3> InputChains;
1605  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1606    // Add the input chain of this node to the InputChains list (which will be
1607    // the operands of the generated TokenFactor) if it's not an interior node.
1608    SDNode *N = ChainNodesMatched[i];
1609    if (N->getOpcode() != ISD::TokenFactor) {
1610      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1611        continue;
1612
1613      // Otherwise, add the input chain.
1614      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1615      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1616      InputChains.push_back(InChain);
1617      continue;
1618    }
1619
1620    // If we have a token factor, we want to add all inputs of the token factor
1621    // that are not part of the pattern we're matching.
1622    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1623      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1624                      N->getOperand(op).getNode()))
1625        InputChains.push_back(N->getOperand(op));
1626    }
1627  }
1628
1629  SDValue Res;
1630  if (InputChains.size() == 1)
1631    return InputChains[0];
1632  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1633                         MVT::Other, &InputChains[0], InputChains.size());
1634}
1635
1636/// MorphNode - Handle morphing a node in place for the selector.
1637SDNode *SelectionDAGISel::
1638MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1639          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1640  // It is possible we're using MorphNodeTo to replace a node with no
1641  // normal results with one that has a normal result (or we could be
1642  // adding a chain) and the input could have flags and chains as well.
1643  // In this case we need to shift the operands down.
1644  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1645  // than the old isel though.
1646  int OldFlagResultNo = -1, OldChainResultNo = -1;
1647
1648  unsigned NTMNumResults = Node->getNumValues();
1649  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1650    OldFlagResultNo = NTMNumResults-1;
1651    if (NTMNumResults != 1 &&
1652        Node->getValueType(NTMNumResults-2) == MVT::Other)
1653      OldChainResultNo = NTMNumResults-2;
1654  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1655    OldChainResultNo = NTMNumResults-1;
1656
1657  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1658  // that this deletes operands of the old node that become dead.
1659  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1660
1661  // MorphNodeTo can operate in two ways: if an existing node with the
1662  // specified operands exists, it can just return it.  Otherwise, it
1663  // updates the node in place to have the requested operands.
1664  if (Res == Node) {
1665    // If we updated the node in place, reset the node ID.  To the isel,
1666    // this should be just like a newly allocated machine node.
1667    Res->setNodeId(-1);
1668  }
1669
1670  unsigned ResNumResults = Res->getNumValues();
1671  // Move the flag if needed.
1672  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1673      (unsigned)OldFlagResultNo != ResNumResults-1)
1674    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1675                                      SDValue(Res, ResNumResults-1));
1676
1677  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1678  --ResNumResults;
1679
1680  // Move the chain reference if needed.
1681  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1682      (unsigned)OldChainResultNo != ResNumResults-1)
1683    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1684                                      SDValue(Res, ResNumResults-1));
1685
1686  // Otherwise, no replacement happened because the node already exists. Replace
1687  // Uses of the old node with the new one.
1688  if (Res != Node)
1689    CurDAG->ReplaceAllUsesWith(Node, Res);
1690
1691  return Res;
1692}
1693
1694/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1695ALWAYS_INLINE static bool
1696CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1697          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1698  // Accept if it is exactly the same as a previously recorded node.
1699  unsigned RecNo = MatcherTable[MatcherIndex++];
1700  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1701  return N == RecordedNodes[RecNo];
1702}
1703
1704/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1705ALWAYS_INLINE static bool
1706CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1707                      SelectionDAGISel &SDISel) {
1708  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1709}
1710
1711/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1712ALWAYS_INLINE static bool
1713CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1714                   SelectionDAGISel &SDISel, SDNode *N) {
1715  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1716}
1717
1718ALWAYS_INLINE static bool
1719CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1720            SDNode *N) {
1721  uint16_t Opc = MatcherTable[MatcherIndex++];
1722  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1723  return N->getOpcode() == Opc;
1724}
1725
1726ALWAYS_INLINE static bool
1727CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1728          SDValue N, const TargetLowering &TLI) {
1729  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1730  if (N.getValueType() == VT) return true;
1731
1732  // Handle the case when VT is iPTR.
1733  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1734}
1735
1736ALWAYS_INLINE static bool
1737CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1738               SDValue N, const TargetLowering &TLI,
1739               unsigned ChildNo) {
1740  if (ChildNo >= N.getNumOperands())
1741    return false;  // Match fails if out of range child #.
1742  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1743}
1744
1745
1746ALWAYS_INLINE static bool
1747CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1748              SDValue N) {
1749  return cast<CondCodeSDNode>(N)->get() ==
1750      (ISD::CondCode)MatcherTable[MatcherIndex++];
1751}
1752
1753ALWAYS_INLINE static bool
1754CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1755               SDValue N, const TargetLowering &TLI) {
1756  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1757  if (cast<VTSDNode>(N)->getVT() == VT)
1758    return true;
1759
1760  // Handle the case when VT is iPTR.
1761  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1762}
1763
1764ALWAYS_INLINE static bool
1765CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1766             SDValue N) {
1767  int64_t Val = MatcherTable[MatcherIndex++];
1768  if (Val & 128)
1769    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1770
1771  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1772  return C != 0 && C->getSExtValue() == Val;
1773}
1774
1775ALWAYS_INLINE static bool
1776CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1777            SDValue N, SelectionDAGISel &SDISel) {
1778  int64_t Val = MatcherTable[MatcherIndex++];
1779  if (Val & 128)
1780    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1781
1782  if (N->getOpcode() != ISD::AND) return false;
1783
1784  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1785  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1786}
1787
1788ALWAYS_INLINE static bool
1789CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1790           SDValue N, SelectionDAGISel &SDISel) {
1791  int64_t Val = MatcherTable[MatcherIndex++];
1792  if (Val & 128)
1793    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1794
1795  if (N->getOpcode() != ISD::OR) return false;
1796
1797  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1798  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1799}
1800
1801/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1802/// scope, evaluate the current node.  If the current predicate is known to
1803/// fail, set Result=true and return anything.  If the current predicate is
1804/// known to pass, set Result=false and return the MatcherIndex to continue
1805/// with.  If the current predicate is unknown, set Result=false and return the
1806/// MatcherIndex to continue with.
1807static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1808                                       unsigned Index, SDValue N,
1809                                       bool &Result, SelectionDAGISel &SDISel,
1810                                       SmallVectorImpl<SDValue> &RecordedNodes){
1811  switch (Table[Index++]) {
1812  default:
1813    Result = false;
1814    return Index-1;  // Could not evaluate this predicate.
1815  case SelectionDAGISel::OPC_CheckSame:
1816    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1817    return Index;
1818  case SelectionDAGISel::OPC_CheckPatternPredicate:
1819    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1820    return Index;
1821  case SelectionDAGISel::OPC_CheckPredicate:
1822    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1823    return Index;
1824  case SelectionDAGISel::OPC_CheckOpcode:
1825    Result = !::CheckOpcode(Table, Index, N.getNode());
1826    return Index;
1827  case SelectionDAGISel::OPC_CheckType:
1828    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1829    return Index;
1830  case SelectionDAGISel::OPC_CheckChild0Type:
1831  case SelectionDAGISel::OPC_CheckChild1Type:
1832  case SelectionDAGISel::OPC_CheckChild2Type:
1833  case SelectionDAGISel::OPC_CheckChild3Type:
1834  case SelectionDAGISel::OPC_CheckChild4Type:
1835  case SelectionDAGISel::OPC_CheckChild5Type:
1836  case SelectionDAGISel::OPC_CheckChild6Type:
1837  case SelectionDAGISel::OPC_CheckChild7Type:
1838    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1839                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1840    return Index;
1841  case SelectionDAGISel::OPC_CheckCondCode:
1842    Result = !::CheckCondCode(Table, Index, N);
1843    return Index;
1844  case SelectionDAGISel::OPC_CheckValueType:
1845    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1846    return Index;
1847  case SelectionDAGISel::OPC_CheckInteger:
1848    Result = !::CheckInteger(Table, Index, N);
1849    return Index;
1850  case SelectionDAGISel::OPC_CheckAndImm:
1851    Result = !::CheckAndImm(Table, Index, N, SDISel);
1852    return Index;
1853  case SelectionDAGISel::OPC_CheckOrImm:
1854    Result = !::CheckOrImm(Table, Index, N, SDISel);
1855    return Index;
1856  }
1857}
1858
1859namespace {
1860
1861struct MatchScope {
1862  /// FailIndex - If this match fails, this is the index to continue with.
1863  unsigned FailIndex;
1864
1865  /// NodeStack - The node stack when the scope was formed.
1866  SmallVector<SDValue, 4> NodeStack;
1867
1868  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1869  unsigned NumRecordedNodes;
1870
1871  /// NumMatchedMemRefs - The number of matched memref entries.
1872  unsigned NumMatchedMemRefs;
1873
1874  /// InputChain/InputFlag - The current chain/flag
1875  SDValue InputChain, InputFlag;
1876
1877  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1878  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1879};
1880
1881}
1882
1883SDNode *SelectionDAGISel::
1884SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1885                 unsigned TableSize) {
1886  // FIXME: Should these even be selected?  Handle these cases in the caller?
1887  switch (NodeToMatch->getOpcode()) {
1888  default:
1889    break;
1890  case ISD::EntryToken:       // These nodes remain the same.
1891  case ISD::BasicBlock:
1892  case ISD::Register:
1893  //case ISD::VALUETYPE:
1894  //case ISD::CONDCODE:
1895  case ISD::HANDLENODE:
1896  case ISD::MDNODE_SDNODE:
1897  case ISD::TargetConstant:
1898  case ISD::TargetConstantFP:
1899  case ISD::TargetConstantPool:
1900  case ISD::TargetFrameIndex:
1901  case ISD::TargetExternalSymbol:
1902  case ISD::TargetBlockAddress:
1903  case ISD::TargetJumpTable:
1904  case ISD::TargetGlobalTLSAddress:
1905  case ISD::TargetGlobalAddress:
1906  case ISD::TokenFactor:
1907  case ISD::CopyFromReg:
1908  case ISD::CopyToReg:
1909  case ISD::EH_LABEL:
1910    NodeToMatch->setNodeId(-1); // Mark selected.
1911    return 0;
1912  case ISD::AssertSext:
1913  case ISD::AssertZext:
1914    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1915                                      NodeToMatch->getOperand(0));
1916    return 0;
1917  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1918  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1919  }
1920
1921  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1922
1923  // Set up the node stack with NodeToMatch as the only node on the stack.
1924  SmallVector<SDValue, 8> NodeStack;
1925  SDValue N = SDValue(NodeToMatch, 0);
1926  NodeStack.push_back(N);
1927
1928  // MatchScopes - Scopes used when matching, if a match failure happens, this
1929  // indicates where to continue checking.
1930  SmallVector<MatchScope, 8> MatchScopes;
1931
1932  // RecordedNodes - This is the set of nodes that have been recorded by the
1933  // state machine.
1934  SmallVector<SDValue, 8> RecordedNodes;
1935
1936  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1937  // pattern.
1938  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1939
1940  // These are the current input chain and flag for use when generating nodes.
1941  // Various Emit operations change these.  For example, emitting a copytoreg
1942  // uses and updates these.
1943  SDValue InputChain, InputFlag;
1944
1945  // ChainNodesMatched - If a pattern matches nodes that have input/output
1946  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1947  // which ones they are.  The result is captured into this list so that we can
1948  // update the chain results when the pattern is complete.
1949  SmallVector<SDNode*, 3> ChainNodesMatched;
1950  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1951
1952  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1953        NodeToMatch->dump(CurDAG);
1954        errs() << '\n');
1955
1956  // Determine where to start the interpreter.  Normally we start at opcode #0,
1957  // but if the state machine starts with an OPC_SwitchOpcode, then we
1958  // accelerate the first lookup (which is guaranteed to be hot) with the
1959  // OpcodeOffset table.
1960  unsigned MatcherIndex = 0;
1961
1962  if (!OpcodeOffset.empty()) {
1963    // Already computed the OpcodeOffset table, just index into it.
1964    if (N.getOpcode() < OpcodeOffset.size())
1965      MatcherIndex = OpcodeOffset[N.getOpcode()];
1966    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1967
1968  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1969    // Otherwise, the table isn't computed, but the state machine does start
1970    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1971    // is the first time we're selecting an instruction.
1972    unsigned Idx = 1;
1973    while (1) {
1974      // Get the size of this case.
1975      unsigned CaseSize = MatcherTable[Idx++];
1976      if (CaseSize & 128)
1977        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1978      if (CaseSize == 0) break;
1979
1980      // Get the opcode, add the index to the table.
1981      uint16_t Opc = MatcherTable[Idx++];
1982      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
1983      if (Opc >= OpcodeOffset.size())
1984        OpcodeOffset.resize((Opc+1)*2);
1985      OpcodeOffset[Opc] = Idx;
1986      Idx += CaseSize;
1987    }
1988
1989    // Okay, do the lookup for the first opcode.
1990    if (N.getOpcode() < OpcodeOffset.size())
1991      MatcherIndex = OpcodeOffset[N.getOpcode()];
1992  }
1993
1994  while (1) {
1995    assert(MatcherIndex < TableSize && "Invalid index");
1996#ifndef NDEBUG
1997    unsigned CurrentOpcodeIndex = MatcherIndex;
1998#endif
1999    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2000    switch (Opcode) {
2001    case OPC_Scope: {
2002      // Okay, the semantics of this operation are that we should push a scope
2003      // then evaluate the first child.  However, pushing a scope only to have
2004      // the first check fail (which then pops it) is inefficient.  If we can
2005      // determine immediately that the first check (or first several) will
2006      // immediately fail, don't even bother pushing a scope for them.
2007      unsigned FailIndex;
2008
2009      while (1) {
2010        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2011        if (NumToSkip & 128)
2012          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2013        // Found the end of the scope with no match.
2014        if (NumToSkip == 0) {
2015          FailIndex = 0;
2016          break;
2017        }
2018
2019        FailIndex = MatcherIndex+NumToSkip;
2020
2021        unsigned MatcherIndexOfPredicate = MatcherIndex;
2022        (void)MatcherIndexOfPredicate; // silence warning.
2023
2024        // If we can't evaluate this predicate without pushing a scope (e.g. if
2025        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2026        // push the scope and evaluate the full predicate chain.
2027        bool Result;
2028        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2029                                              Result, *this, RecordedNodes);
2030        if (!Result)
2031          break;
2032
2033        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2034                     << "index " << MatcherIndexOfPredicate
2035                     << ", continuing at " << FailIndex << "\n");
2036        ++NumDAGIselRetries;
2037
2038        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2039        // move to the next case.
2040        MatcherIndex = FailIndex;
2041      }
2042
2043      // If the whole scope failed to match, bail.
2044      if (FailIndex == 0) break;
2045
2046      // Push a MatchScope which indicates where to go if the first child fails
2047      // to match.
2048      MatchScope NewEntry;
2049      NewEntry.FailIndex = FailIndex;
2050      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2051      NewEntry.NumRecordedNodes = RecordedNodes.size();
2052      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2053      NewEntry.InputChain = InputChain;
2054      NewEntry.InputFlag = InputFlag;
2055      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2056      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2057      MatchScopes.push_back(NewEntry);
2058      continue;
2059    }
2060    case OPC_RecordNode:
2061      // Remember this node, it may end up being an operand in the pattern.
2062      RecordedNodes.push_back(N);
2063      continue;
2064
2065    case OPC_RecordChild0: case OPC_RecordChild1:
2066    case OPC_RecordChild2: case OPC_RecordChild3:
2067    case OPC_RecordChild4: case OPC_RecordChild5:
2068    case OPC_RecordChild6: case OPC_RecordChild7: {
2069      unsigned ChildNo = Opcode-OPC_RecordChild0;
2070      if (ChildNo >= N.getNumOperands())
2071        break;  // Match fails if out of range child #.
2072
2073      RecordedNodes.push_back(N->getOperand(ChildNo));
2074      continue;
2075    }
2076    case OPC_RecordMemRef:
2077      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2078      continue;
2079
2080    case OPC_CaptureFlagInput:
2081      // If the current node has an input flag, capture it in InputFlag.
2082      if (N->getNumOperands() != 0 &&
2083          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2084        InputFlag = N->getOperand(N->getNumOperands()-1);
2085      continue;
2086
2087    case OPC_MoveChild: {
2088      unsigned ChildNo = MatcherTable[MatcherIndex++];
2089      if (ChildNo >= N.getNumOperands())
2090        break;  // Match fails if out of range child #.
2091      N = N.getOperand(ChildNo);
2092      NodeStack.push_back(N);
2093      continue;
2094    }
2095
2096    case OPC_MoveParent:
2097      // Pop the current node off the NodeStack.
2098      NodeStack.pop_back();
2099      assert(!NodeStack.empty() && "Node stack imbalance!");
2100      N = NodeStack.back();
2101      continue;
2102
2103    case OPC_CheckSame:
2104      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2105      continue;
2106    case OPC_CheckPatternPredicate:
2107      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2108      continue;
2109    case OPC_CheckPredicate:
2110      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2111                                N.getNode()))
2112        break;
2113      continue;
2114    case OPC_CheckComplexPat: {
2115      unsigned CPNum = MatcherTable[MatcherIndex++];
2116      unsigned RecNo = MatcherTable[MatcherIndex++];
2117      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2118      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2119                               RecordedNodes))
2120        break;
2121      continue;
2122    }
2123    case OPC_CheckOpcode:
2124      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2125      continue;
2126
2127    case OPC_CheckType:
2128      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2129      continue;
2130
2131    case OPC_SwitchOpcode: {
2132      unsigned CurNodeOpcode = N.getOpcode();
2133      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2134      unsigned CaseSize;
2135      while (1) {
2136        // Get the size of this case.
2137        CaseSize = MatcherTable[MatcherIndex++];
2138        if (CaseSize & 128)
2139          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2140        if (CaseSize == 0) break;
2141
2142        uint16_t Opc = MatcherTable[MatcherIndex++];
2143        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2144
2145        // If the opcode matches, then we will execute this case.
2146        if (CurNodeOpcode == Opc)
2147          break;
2148
2149        // Otherwise, skip over this case.
2150        MatcherIndex += CaseSize;
2151      }
2152
2153      // If no cases matched, bail out.
2154      if (CaseSize == 0) break;
2155
2156      // Otherwise, execute the case we found.
2157      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2158                   << " to " << MatcherIndex << "\n");
2159      continue;
2160    }
2161
2162    case OPC_SwitchType: {
2163      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2164      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2165      unsigned CaseSize;
2166      while (1) {
2167        // Get the size of this case.
2168        CaseSize = MatcherTable[MatcherIndex++];
2169        if (CaseSize & 128)
2170          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2171        if (CaseSize == 0) break;
2172
2173        MVT::SimpleValueType CaseVT =
2174          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2175        if (CaseVT == MVT::iPTR)
2176          CaseVT = TLI.getPointerTy().SimpleTy;
2177
2178        // If the VT matches, then we will execute this case.
2179        if (CurNodeVT == CaseVT)
2180          break;
2181
2182        // Otherwise, skip over this case.
2183        MatcherIndex += CaseSize;
2184      }
2185
2186      // If no cases matched, bail out.
2187      if (CaseSize == 0) break;
2188
2189      // Otherwise, execute the case we found.
2190      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2191                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2192      continue;
2193    }
2194    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2195    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2196    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2197    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2198      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2199                            Opcode-OPC_CheckChild0Type))
2200        break;
2201      continue;
2202    case OPC_CheckCondCode:
2203      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2204      continue;
2205    case OPC_CheckValueType:
2206      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2207      continue;
2208    case OPC_CheckInteger:
2209      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2210      continue;
2211    case OPC_CheckAndImm:
2212      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2213      continue;
2214    case OPC_CheckOrImm:
2215      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2216      continue;
2217
2218    case OPC_CheckFoldableChainNode: {
2219      assert(NodeStack.size() != 1 && "No parent node");
2220      // Verify that all intermediate nodes between the root and this one have
2221      // a single use.
2222      bool HasMultipleUses = false;
2223      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2224        if (!NodeStack[i].hasOneUse()) {
2225          HasMultipleUses = true;
2226          break;
2227        }
2228      if (HasMultipleUses) break;
2229
2230      // Check to see that the target thinks this is profitable to fold and that
2231      // we can fold it without inducing cycles in the graph.
2232      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2233                              NodeToMatch) ||
2234          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2235                         NodeToMatch, OptLevel,
2236                         true/*We validate our own chains*/))
2237        break;
2238
2239      continue;
2240    }
2241    case OPC_EmitInteger: {
2242      MVT::SimpleValueType VT =
2243        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2244      int64_t Val = MatcherTable[MatcherIndex++];
2245      if (Val & 128)
2246        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2247      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2248      continue;
2249    }
2250    case OPC_EmitRegister: {
2251      MVT::SimpleValueType VT =
2252        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2253      unsigned RegNo = MatcherTable[MatcherIndex++];
2254      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2255      continue;
2256    }
2257
2258    case OPC_EmitConvertToTarget:  {
2259      // Convert from IMM/FPIMM to target version.
2260      unsigned RecNo = MatcherTable[MatcherIndex++];
2261      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2262      SDValue Imm = RecordedNodes[RecNo];
2263
2264      if (Imm->getOpcode() == ISD::Constant) {
2265        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2266        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2267      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2268        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2269        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2270      }
2271
2272      RecordedNodes.push_back(Imm);
2273      continue;
2274    }
2275
2276    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2277    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2278      // These are space-optimized forms of OPC_EmitMergeInputChains.
2279      assert(InputChain.getNode() == 0 &&
2280             "EmitMergeInputChains should be the first chain producing node");
2281      assert(ChainNodesMatched.empty() &&
2282             "Should only have one EmitMergeInputChains per match");
2283
2284      // Read all of the chained nodes.
2285      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2286      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2287      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2288
2289      // FIXME: What if other value results of the node have uses not matched
2290      // by this pattern?
2291      if (ChainNodesMatched.back() != NodeToMatch &&
2292          !RecordedNodes[RecNo].hasOneUse()) {
2293        ChainNodesMatched.clear();
2294        break;
2295      }
2296
2297      // Merge the input chains if they are not intra-pattern references.
2298      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2299
2300      if (InputChain.getNode() == 0)
2301        break;  // Failed to merge.
2302      continue;
2303    }
2304
2305    case OPC_EmitMergeInputChains: {
2306      assert(InputChain.getNode() == 0 &&
2307             "EmitMergeInputChains should be the first chain producing node");
2308      // This node gets a list of nodes we matched in the input that have
2309      // chains.  We want to token factor all of the input chains to these nodes
2310      // together.  However, if any of the input chains is actually one of the
2311      // nodes matched in this pattern, then we have an intra-match reference.
2312      // Ignore these because the newly token factored chain should not refer to
2313      // the old nodes.
2314      unsigned NumChains = MatcherTable[MatcherIndex++];
2315      assert(NumChains != 0 && "Can't TF zero chains");
2316
2317      assert(ChainNodesMatched.empty() &&
2318             "Should only have one EmitMergeInputChains per match");
2319
2320      // Read all of the chained nodes.
2321      for (unsigned i = 0; i != NumChains; ++i) {
2322        unsigned RecNo = MatcherTable[MatcherIndex++];
2323        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2324        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2325
2326        // FIXME: What if other value results of the node have uses not matched
2327        // by this pattern?
2328        if (ChainNodesMatched.back() != NodeToMatch &&
2329            !RecordedNodes[RecNo].hasOneUse()) {
2330          ChainNodesMatched.clear();
2331          break;
2332        }
2333      }
2334
2335      // If the inner loop broke out, the match fails.
2336      if (ChainNodesMatched.empty())
2337        break;
2338
2339      // Merge the input chains if they are not intra-pattern references.
2340      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2341
2342      if (InputChain.getNode() == 0)
2343        break;  // Failed to merge.
2344
2345      continue;
2346    }
2347
2348    case OPC_EmitCopyToReg: {
2349      unsigned RecNo = MatcherTable[MatcherIndex++];
2350      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2351      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2352
2353      if (InputChain.getNode() == 0)
2354        InputChain = CurDAG->getEntryNode();
2355
2356      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2357                                        DestPhysReg, RecordedNodes[RecNo],
2358                                        InputFlag);
2359
2360      InputFlag = InputChain.getValue(1);
2361      continue;
2362    }
2363
2364    case OPC_EmitNodeXForm: {
2365      unsigned XFormNo = MatcherTable[MatcherIndex++];
2366      unsigned RecNo = MatcherTable[MatcherIndex++];
2367      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2368      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2369      continue;
2370    }
2371
2372    case OPC_EmitNode:
2373    case OPC_MorphNodeTo: {
2374      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2375      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2376      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2377      // Get the result VT list.
2378      unsigned NumVTs = MatcherTable[MatcherIndex++];
2379      SmallVector<EVT, 4> VTs;
2380      for (unsigned i = 0; i != NumVTs; ++i) {
2381        MVT::SimpleValueType VT =
2382          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2383        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2384        VTs.push_back(VT);
2385      }
2386
2387      if (EmitNodeInfo & OPFL_Chain)
2388        VTs.push_back(MVT::Other);
2389      if (EmitNodeInfo & OPFL_FlagOutput)
2390        VTs.push_back(MVT::Flag);
2391
2392      // This is hot code, so optimize the two most common cases of 1 and 2
2393      // results.
2394      SDVTList VTList;
2395      if (VTs.size() == 1)
2396        VTList = CurDAG->getVTList(VTs[0]);
2397      else if (VTs.size() == 2)
2398        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2399      else
2400        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2401
2402      // Get the operand list.
2403      unsigned NumOps = MatcherTable[MatcherIndex++];
2404      SmallVector<SDValue, 8> Ops;
2405      for (unsigned i = 0; i != NumOps; ++i) {
2406        unsigned RecNo = MatcherTable[MatcherIndex++];
2407        if (RecNo & 128)
2408          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2409
2410        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2411        Ops.push_back(RecordedNodes[RecNo]);
2412      }
2413
2414      // If there are variadic operands to add, handle them now.
2415      if (EmitNodeInfo & OPFL_VariadicInfo) {
2416        // Determine the start index to copy from.
2417        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2418        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2419        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2420               "Invalid variadic node");
2421        // Copy all of the variadic operands, not including a potential flag
2422        // input.
2423        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2424             i != e; ++i) {
2425          SDValue V = NodeToMatch->getOperand(i);
2426          if (V.getValueType() == MVT::Flag) break;
2427          Ops.push_back(V);
2428        }
2429      }
2430
2431      // If this has chain/flag inputs, add them.
2432      if (EmitNodeInfo & OPFL_Chain)
2433        Ops.push_back(InputChain);
2434      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2435        Ops.push_back(InputFlag);
2436
2437      // Create the node.
2438      SDNode *Res = 0;
2439      if (Opcode != OPC_MorphNodeTo) {
2440        // If this is a normal EmitNode command, just create the new node and
2441        // add the results to the RecordedNodes list.
2442        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2443                                     VTList, Ops.data(), Ops.size());
2444
2445        // Add all the non-flag/non-chain results to the RecordedNodes list.
2446        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2447          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2448          RecordedNodes.push_back(SDValue(Res, i));
2449        }
2450
2451      } else {
2452        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2453                        EmitNodeInfo);
2454      }
2455
2456      // If the node had chain/flag results, update our notion of the current
2457      // chain and flag.
2458      if (EmitNodeInfo & OPFL_FlagOutput) {
2459        InputFlag = SDValue(Res, VTs.size()-1);
2460        if (EmitNodeInfo & OPFL_Chain)
2461          InputChain = SDValue(Res, VTs.size()-2);
2462      } else if (EmitNodeInfo & OPFL_Chain)
2463        InputChain = SDValue(Res, VTs.size()-1);
2464
2465      // If the OPFL_MemRefs flag is set on this node, slap all of the
2466      // accumulated memrefs onto it.
2467      //
2468      // FIXME: This is vastly incorrect for patterns with multiple outputs
2469      // instructions that access memory and for ComplexPatterns that match
2470      // loads.
2471      if (EmitNodeInfo & OPFL_MemRefs) {
2472        MachineSDNode::mmo_iterator MemRefs =
2473          MF->allocateMemRefsArray(MatchedMemRefs.size());
2474        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2475        cast<MachineSDNode>(Res)
2476          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2477      }
2478
2479      DEBUG(errs() << "  "
2480                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2481                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2482
2483      // If this was a MorphNodeTo then we're completely done!
2484      if (Opcode == OPC_MorphNodeTo) {
2485        // Update chain and flag uses.
2486        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2487                             InputFlag, FlagResultNodesMatched, true);
2488        return Res;
2489      }
2490
2491      continue;
2492    }
2493
2494    case OPC_MarkFlagResults: {
2495      unsigned NumNodes = MatcherTable[MatcherIndex++];
2496
2497      // Read and remember all the flag-result nodes.
2498      for (unsigned i = 0; i != NumNodes; ++i) {
2499        unsigned RecNo = MatcherTable[MatcherIndex++];
2500        if (RecNo & 128)
2501          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2502
2503        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2504        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2505      }
2506      continue;
2507    }
2508
2509    case OPC_CompleteMatch: {
2510      // The match has been completed, and any new nodes (if any) have been
2511      // created.  Patch up references to the matched dag to use the newly
2512      // created nodes.
2513      unsigned NumResults = MatcherTable[MatcherIndex++];
2514
2515      for (unsigned i = 0; i != NumResults; ++i) {
2516        unsigned ResSlot = MatcherTable[MatcherIndex++];
2517        if (ResSlot & 128)
2518          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2519
2520        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2521        SDValue Res = RecordedNodes[ResSlot];
2522
2523        assert(i < NodeToMatch->getNumValues() &&
2524               NodeToMatch->getValueType(i) != MVT::Other &&
2525               NodeToMatch->getValueType(i) != MVT::Flag &&
2526               "Invalid number of results to complete!");
2527        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2528                NodeToMatch->getValueType(i) == MVT::iPTR ||
2529                Res.getValueType() == MVT::iPTR ||
2530                NodeToMatch->getValueType(i).getSizeInBits() ==
2531                    Res.getValueType().getSizeInBits()) &&
2532               "invalid replacement");
2533        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2534      }
2535
2536      // If the root node defines a flag, add it to the flag nodes to update
2537      // list.
2538      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2539        FlagResultNodesMatched.push_back(NodeToMatch);
2540
2541      // Update chain and flag uses.
2542      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2543                           InputFlag, FlagResultNodesMatched, false);
2544
2545      assert(NodeToMatch->use_empty() &&
2546             "Didn't replace all uses of the node?");
2547
2548      // FIXME: We just return here, which interacts correctly with SelectRoot
2549      // above.  We should fix this to not return an SDNode* anymore.
2550      return 0;
2551    }
2552    }
2553
2554    // If the code reached this point, then the match failed.  See if there is
2555    // another child to try in the current 'Scope', otherwise pop it until we
2556    // find a case to check.
2557    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2558    ++NumDAGIselRetries;
2559    while (1) {
2560      if (MatchScopes.empty()) {
2561        CannotYetSelect(NodeToMatch);
2562        return 0;
2563      }
2564
2565      // Restore the interpreter state back to the point where the scope was
2566      // formed.
2567      MatchScope &LastScope = MatchScopes.back();
2568      RecordedNodes.resize(LastScope.NumRecordedNodes);
2569      NodeStack.clear();
2570      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2571      N = NodeStack.back();
2572
2573      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2574        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2575      MatcherIndex = LastScope.FailIndex;
2576
2577      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2578
2579      InputChain = LastScope.InputChain;
2580      InputFlag = LastScope.InputFlag;
2581      if (!LastScope.HasChainNodesMatched)
2582        ChainNodesMatched.clear();
2583      if (!LastScope.HasFlagResultNodesMatched)
2584        FlagResultNodesMatched.clear();
2585
2586      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2587      // we have reached the end of this scope, otherwise we have another child
2588      // in the current scope to try.
2589      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2590      if (NumToSkip & 128)
2591        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2592
2593      // If we have another child in this scope to match, update FailIndex and
2594      // try it.
2595      if (NumToSkip != 0) {
2596        LastScope.FailIndex = MatcherIndex+NumToSkip;
2597        break;
2598      }
2599
2600      // End of this scope, pop it and try the next child in the containing
2601      // scope.
2602      MatchScopes.pop_back();
2603    }
2604  }
2605}
2606
2607
2608
2609void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2610  std::string msg;
2611  raw_string_ostream Msg(msg);
2612  Msg << "Cannot yet select: ";
2613
2614  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2615      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2616      N->getOpcode() != ISD::INTRINSIC_VOID) {
2617    N->printrFull(Msg, CurDAG);
2618  } else {
2619    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2620    unsigned iid =
2621      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2622    if (iid < Intrinsic::num_intrinsics)
2623      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2624    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2625      Msg << "target intrinsic %" << TII->getName(iid);
2626    else
2627      Msg << "unknown intrinsic #" << iid;
2628  }
2629  report_fatal_error(Msg.str());
2630}
2631
2632char SelectionDAGISel::ID = 0;
2633