SelectionDAGISel.cpp revision cc863aa72c83309f15f9175f97cad1dffb8d689b
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61//===---------------------------------------------------------------------===//
62///
63/// RegisterScheduler class - Track the registration of instruction schedulers.
64///
65//===---------------------------------------------------------------------===//
66MachinePassRegistry RegisterScheduler::Registry;
67
68//===---------------------------------------------------------------------===//
69///
70/// ISHeuristic command line option for instruction schedulers.
71///
72//===---------------------------------------------------------------------===//
73namespace {
74  cl::opt<RegisterScheduler::FunctionPassCtor, false,
75          RegisterPassParser<RegisterScheduler> >
76  ISHeuristic("pre-RA-sched",
77              cl::init(&createDefaultScheduler),
78              cl::desc("Instruction schedulers available (before register allocation):"));
79
80  static RegisterScheduler
81  defaultListDAGScheduler("default", "  Best scheduler for the target",
82                          createDefaultScheduler);
83} // namespace
84
85namespace { struct AsmOperandInfo; }
86
87namespace {
88  /// RegsForValue - This struct represents the physical registers that a
89  /// particular value is assigned and the type information about the value.
90  /// This is needed because values can be promoted into larger registers and
91  /// expanded into multiple smaller registers than the value.
92  struct VISIBILITY_HIDDEN RegsForValue {
93    /// Regs - This list holds the register (for legal and promoted values)
94    /// or register set (for expanded values) that the value should be assigned
95    /// to.
96    std::vector<unsigned> Regs;
97
98    /// RegVT - The value type of each register.
99    ///
100    MVT::ValueType RegVT;
101
102    /// ValueVT - The value type of the LLVM value, which may be promoted from
103    /// RegVT or made from merging the two expanded parts.
104    MVT::ValueType ValueVT;
105
106    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
107
108    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
109      : RegVT(regvt), ValueVT(valuevt) {
110        Regs.push_back(Reg);
111    }
112    RegsForValue(const std::vector<unsigned> &regs,
113                 MVT::ValueType regvt, MVT::ValueType valuevt)
114      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
115    }
116
117    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
118    /// this value and returns the result as a ValueVT value.  This uses
119    /// Chain/Flag as the input and updates them for the output Chain/Flag.
120    /// If the Flag pointer is NULL, no flag is used.
121    SDOperand getCopyFromRegs(SelectionDAG &DAG,
122                              SDOperand &Chain, SDOperand *Flag) const;
123
124    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
125    /// specified value into the registers specified by this object.  This uses
126    /// Chain/Flag as the input and updates them for the output Chain/Flag.
127    /// If the Flag pointer is NULL, no flag is used.
128    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
129                       SDOperand &Chain, SDOperand *Flag) const;
130
131    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
132    /// operand list.  This adds the code marker and includes the number of
133    /// values added into it.
134    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
135                              std::vector<SDOperand> &Ops) const;
136  };
137}
138
139namespace llvm {
140  //===--------------------------------------------------------------------===//
141  /// createDefaultScheduler - This creates an instruction scheduler appropriate
142  /// for the target.
143  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
144                                      SelectionDAG *DAG,
145                                      MachineBasicBlock *BB) {
146    TargetLowering &TLI = IS->getTargetLowering();
147
148    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
149      return createTDListDAGScheduler(IS, DAG, BB);
150    } else {
151      assert(TLI.getSchedulingPreference() ==
152           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
153      return createBURRListDAGScheduler(IS, DAG, BB);
154    }
155  }
156
157
158  //===--------------------------------------------------------------------===//
159  /// FunctionLoweringInfo - This contains information that is global to a
160  /// function that is used when lowering a region of the function.
161  class FunctionLoweringInfo {
162  public:
163    TargetLowering &TLI;
164    Function &Fn;
165    MachineFunction &MF;
166    SSARegMap *RegMap;
167
168    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
169
170    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
171    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
172
173    /// ValueMap - Since we emit code for the function a basic block at a time,
174    /// we must remember which virtual registers hold the values for
175    /// cross-basic-block values.
176    DenseMap<const Value*, unsigned> ValueMap;
177
178    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
179    /// the entry block.  This allows the allocas to be efficiently referenced
180    /// anywhere in the function.
181    std::map<const AllocaInst*, int> StaticAllocaMap;
182
183#ifndef NDEBUG
184    SmallSet<Instruction*, 8> CatchInfoLost;
185    SmallSet<Instruction*, 8> CatchInfoFound;
186#endif
187
188    unsigned MakeReg(MVT::ValueType VT) {
189      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
190    }
191
192    /// isExportedInst - Return true if the specified value is an instruction
193    /// exported from its block.
194    bool isExportedInst(const Value *V) {
195      return ValueMap.count(V);
196    }
197
198    unsigned CreateRegForValue(const Value *V);
199
200    unsigned InitializeRegForValue(const Value *V) {
201      unsigned &R = ValueMap[V];
202      assert(R == 0 && "Already initialized this value register!");
203      return R = CreateRegForValue(V);
204    }
205  };
206}
207
208/// isSelector - Return true if this instruction is a call to the
209/// eh.selector intrinsic.
210static bool isSelector(Instruction *I) {
211  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
212    return II->getIntrinsicID() == Intrinsic::eh_selector;
213  return false;
214}
215
216/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
217/// PHI nodes or outside of the basic block that defines it, or used by a
218/// switch instruction, which may expand to multiple basic blocks.
219static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
220  if (isa<PHINode>(I)) return true;
221  BasicBlock *BB = I->getParent();
222  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
223    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
224        // FIXME: Remove switchinst special case.
225        isa<SwitchInst>(*UI))
226      return true;
227  return false;
228}
229
230/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
231/// entry block, return true.  This includes arguments used by switches, since
232/// the switch may expand into multiple basic blocks.
233static bool isOnlyUsedInEntryBlock(Argument *A) {
234  BasicBlock *Entry = A->getParent()->begin();
235  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
236    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
237      return false;  // Use not in entry block.
238  return true;
239}
240
241FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
242                                           Function &fn, MachineFunction &mf)
243    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
244
245  // Create a vreg for each argument register that is not dead and is used
246  // outside of the entry block for the function.
247  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
248       AI != E; ++AI)
249    if (!isOnlyUsedInEntryBlock(AI))
250      InitializeRegForValue(AI);
251
252  // Initialize the mapping of values to registers.  This is only set up for
253  // instruction values that are used outside of the block that defines
254  // them.
255  Function::iterator BB = Fn.begin(), EB = Fn.end();
256  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
257    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
258      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
259        const Type *Ty = AI->getAllocatedType();
260        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
261        unsigned Align =
262          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
263                   AI->getAlignment());
264
265        TySize *= CUI->getZExtValue();   // Get total allocated size.
266        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
267        StaticAllocaMap[AI] =
268          MF.getFrameInfo()->CreateStackObject(TySize, Align);
269      }
270
271  for (; BB != EB; ++BB)
272    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
273      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
274        if (!isa<AllocaInst>(I) ||
275            !StaticAllocaMap.count(cast<AllocaInst>(I)))
276          InitializeRegForValue(I);
277
278  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
279  // also creates the initial PHI MachineInstrs, though none of the input
280  // operands are populated.
281  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
282    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
283    MBBMap[BB] = MBB;
284    MF.getBasicBlockList().push_back(MBB);
285
286    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
287    // appropriate.
288    PHINode *PN;
289    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
290      if (PN->use_empty()) continue;
291
292      MVT::ValueType VT = TLI.getValueType(PN->getType());
293      unsigned NumRegisters = TLI.getNumRegisters(VT);
294      unsigned PHIReg = ValueMap[PN];
295      assert(PHIReg && "PHI node does not have an assigned virtual register!");
296      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
297      for (unsigned i = 0; i != NumRegisters; ++i)
298        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
299    }
300  }
301}
302
303/// CreateRegForValue - Allocate the appropriate number of virtual registers of
304/// the correctly promoted or expanded types.  Assign these registers
305/// consecutive vreg numbers and return the first assigned number.
306unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
307  MVT::ValueType VT = TLI.getValueType(V->getType());
308
309  unsigned NumRegisters = TLI.getNumRegisters(VT);
310  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
311
312  unsigned R = MakeReg(RegisterVT);
313  for (unsigned i = 1; i != NumRegisters; ++i)
314    MakeReg(RegisterVT);
315
316  return R;
317}
318
319//===----------------------------------------------------------------------===//
320/// SelectionDAGLowering - This is the common target-independent lowering
321/// implementation that is parameterized by a TargetLowering object.
322/// Also, targets can overload any lowering method.
323///
324namespace llvm {
325class SelectionDAGLowering {
326  MachineBasicBlock *CurMBB;
327
328  DenseMap<const Value*, SDOperand> NodeMap;
329
330  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
331  /// them up and then emit token factor nodes when possible.  This allows us to
332  /// get simple disambiguation between loads without worrying about alias
333  /// analysis.
334  std::vector<SDOperand> PendingLoads;
335
336  /// Case - A struct to record the Value for a switch case, and the
337  /// case's target basic block.
338  struct Case {
339    Constant* Low;
340    Constant* High;
341    MachineBasicBlock* BB;
342
343    Case() : Low(0), High(0), BB(0) { }
344    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
345      Low(low), High(high), BB(bb) { }
346    uint64_t size() const {
347      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
348      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
349      return (rHigh - rLow + 1ULL);
350    }
351  };
352
353  struct CaseBits {
354    uint64_t Mask;
355    MachineBasicBlock* BB;
356    unsigned Bits;
357
358    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
359      Mask(mask), BB(bb), Bits(bits) { }
360  };
361
362  typedef std::vector<Case>           CaseVector;
363  typedef std::vector<CaseBits>       CaseBitsVector;
364  typedef CaseVector::iterator        CaseItr;
365  typedef std::pair<CaseItr, CaseItr> CaseRange;
366
367  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
368  /// of conditional branches.
369  struct CaseRec {
370    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
371    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
372
373    /// CaseBB - The MBB in which to emit the compare and branch
374    MachineBasicBlock *CaseBB;
375    /// LT, GE - If nonzero, we know the current case value must be less-than or
376    /// greater-than-or-equal-to these Constants.
377    Constant *LT;
378    Constant *GE;
379    /// Range - A pair of iterators representing the range of case values to be
380    /// processed at this point in the binary search tree.
381    CaseRange Range;
382  };
383
384  typedef std::vector<CaseRec> CaseRecVector;
385
386  /// The comparison function for sorting the switch case values in the vector.
387  /// WARNING: Case ranges should be disjoint!
388  struct CaseCmp {
389    bool operator () (const Case& C1, const Case& C2) {
390      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
391      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
392      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
393      return CI1->getValue().slt(CI2->getValue());
394    }
395  };
396
397  struct CaseBitsCmp {
398    bool operator () (const CaseBits& C1, const CaseBits& C2) {
399      return C1.Bits > C2.Bits;
400    }
401  };
402
403  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
404
405public:
406  // TLI - This is information that describes the available target features we
407  // need for lowering.  This indicates when operations are unavailable,
408  // implemented with a libcall, etc.
409  TargetLowering &TLI;
410  SelectionDAG &DAG;
411  const TargetData *TD;
412  AliasAnalysis &AA;
413
414  /// SwitchCases - Vector of CaseBlock structures used to communicate
415  /// SwitchInst code generation information.
416  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
417  /// JTCases - Vector of JumpTable structures used to communicate
418  /// SwitchInst code generation information.
419  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
420  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
421
422  /// FuncInfo - Information about the function as a whole.
423  ///
424  FunctionLoweringInfo &FuncInfo;
425
426  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
427                       AliasAnalysis &aa,
428                       FunctionLoweringInfo &funcinfo)
429    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
430      FuncInfo(funcinfo) {
431  }
432
433  /// getRoot - Return the current virtual root of the Selection DAG.
434  ///
435  SDOperand getRoot() {
436    if (PendingLoads.empty())
437      return DAG.getRoot();
438
439    if (PendingLoads.size() == 1) {
440      SDOperand Root = PendingLoads[0];
441      DAG.setRoot(Root);
442      PendingLoads.clear();
443      return Root;
444    }
445
446    // Otherwise, we have to make a token factor node.
447    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
448                                 &PendingLoads[0], PendingLoads.size());
449    PendingLoads.clear();
450    DAG.setRoot(Root);
451    return Root;
452  }
453
454  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
455
456  void visit(Instruction &I) { visit(I.getOpcode(), I); }
457
458  void visit(unsigned Opcode, User &I) {
459    // Note: this doesn't use InstVisitor, because it has to work with
460    // ConstantExpr's in addition to instructions.
461    switch (Opcode) {
462    default: assert(0 && "Unknown instruction type encountered!");
463             abort();
464      // Build the switch statement using the Instruction.def file.
465#define HANDLE_INST(NUM, OPCODE, CLASS) \
466    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
467#include "llvm/Instruction.def"
468    }
469  }
470
471  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
472
473  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
474                        const Value *SV, SDOperand Root,
475                        bool isVolatile, unsigned Alignment);
476
477  SDOperand getIntPtrConstant(uint64_t Val) {
478    return DAG.getConstant(Val, TLI.getPointerTy());
479  }
480
481  SDOperand getValue(const Value *V);
482
483  void setValue(const Value *V, SDOperand NewN) {
484    SDOperand &N = NodeMap[V];
485    assert(N.Val == 0 && "Already set a value for this node!");
486    N = NewN;
487  }
488
489  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
490                            std::set<unsigned> &OutputRegs,
491                            std::set<unsigned> &InputRegs);
492
493  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
494                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
495                            unsigned Opc);
496  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
497  void ExportFromCurrentBlock(Value *V);
498  void LowerCallTo(Instruction &I,
499                   const Type *CalledValueTy, unsigned CallingConv,
500                   bool IsTailCall, SDOperand Callee, unsigned OpIdx,
501                   MachineBasicBlock *LandingPad = NULL);
502
503  // Terminator instructions.
504  void visitRet(ReturnInst &I);
505  void visitBr(BranchInst &I);
506  void visitSwitch(SwitchInst &I);
507  void visitUnreachable(UnreachableInst &I) { /* noop */ }
508
509  // Helpers for visitSwitch
510  bool handleSmallSwitchRange(CaseRec& CR,
511                              CaseRecVector& WorkList,
512                              Value* SV,
513                              MachineBasicBlock* Default);
514  bool handleJTSwitchCase(CaseRec& CR,
515                          CaseRecVector& WorkList,
516                          Value* SV,
517                          MachineBasicBlock* Default);
518  bool handleBTSplitSwitchCase(CaseRec& CR,
519                               CaseRecVector& WorkList,
520                               Value* SV,
521                               MachineBasicBlock* Default);
522  bool handleBitTestsSwitchCase(CaseRec& CR,
523                                CaseRecVector& WorkList,
524                                Value* SV,
525                                MachineBasicBlock* Default);
526  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
527  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
528  void visitBitTestCase(MachineBasicBlock* NextMBB,
529                        unsigned Reg,
530                        SelectionDAGISel::BitTestCase &B);
531  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
532  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
533                            SelectionDAGISel::JumpTableHeader &JTH);
534
535  // These all get lowered before this pass.
536  void visitInvoke(InvokeInst &I);
537  void visitUnwind(UnwindInst &I);
538
539  void visitBinary(User &I, unsigned OpCode);
540  void visitShift(User &I, unsigned Opcode);
541  void visitAdd(User &I) {
542    if (I.getType()->isFPOrFPVector())
543      visitBinary(I, ISD::FADD);
544    else
545      visitBinary(I, ISD::ADD);
546  }
547  void visitSub(User &I);
548  void visitMul(User &I) {
549    if (I.getType()->isFPOrFPVector())
550      visitBinary(I, ISD::FMUL);
551    else
552      visitBinary(I, ISD::MUL);
553  }
554  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
555  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
556  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
557  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
558  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
559  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
560  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
561  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
562  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
563  void visitShl (User &I) { visitShift(I, ISD::SHL); }
564  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
565  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
566  void visitICmp(User &I);
567  void visitFCmp(User &I);
568  // Visit the conversion instructions
569  void visitTrunc(User &I);
570  void visitZExt(User &I);
571  void visitSExt(User &I);
572  void visitFPTrunc(User &I);
573  void visitFPExt(User &I);
574  void visitFPToUI(User &I);
575  void visitFPToSI(User &I);
576  void visitUIToFP(User &I);
577  void visitSIToFP(User &I);
578  void visitPtrToInt(User &I);
579  void visitIntToPtr(User &I);
580  void visitBitCast(User &I);
581
582  void visitExtractElement(User &I);
583  void visitInsertElement(User &I);
584  void visitShuffleVector(User &I);
585
586  void visitGetElementPtr(User &I);
587  void visitSelect(User &I);
588
589  void visitMalloc(MallocInst &I);
590  void visitFree(FreeInst &I);
591  void visitAlloca(AllocaInst &I);
592  void visitLoad(LoadInst &I);
593  void visitStore(StoreInst &I);
594  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
595  void visitCall(CallInst &I);
596  void visitInlineAsm(CallInst &I);
597  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
598  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
599
600  void visitVAStart(CallInst &I);
601  void visitVAArg(VAArgInst &I);
602  void visitVAEnd(CallInst &I);
603  void visitVACopy(CallInst &I);
604
605  void visitMemIntrinsic(CallInst &I, unsigned Op);
606
607  void visitUserOp1(Instruction &I) {
608    assert(0 && "UserOp1 should not exist at instruction selection time!");
609    abort();
610  }
611  void visitUserOp2(Instruction &I) {
612    assert(0 && "UserOp2 should not exist at instruction selection time!");
613    abort();
614  }
615};
616} // end namespace llvm
617
618
619/// getCopyFromParts - Create a value that contains the
620/// specified legal parts combined into the value they represent.
621static SDOperand getCopyFromParts(SelectionDAG &DAG,
622                                  const SDOperand *Parts,
623                                  unsigned NumParts,
624                                  MVT::ValueType PartVT,
625                                  MVT::ValueType ValueVT,
626                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
627  if (!MVT::isVector(ValueVT) || NumParts == 1) {
628    SDOperand Val = Parts[0];
629
630    // If the value was expanded, copy from the top part.
631    if (NumParts > 1) {
632      assert(NumParts == 2 &&
633             "Cannot expand to more than 2 elts yet!");
634      SDOperand Hi = Parts[1];
635      if (!DAG.getTargetLoweringInfo().isLittleEndian())
636        std::swap(Val, Hi);
637      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
638    }
639
640    // Otherwise, if the value was promoted or extended, truncate it to the
641    // appropriate type.
642    if (PartVT == ValueVT)
643      return Val;
644
645    if (MVT::isVector(PartVT)) {
646      assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
647      return DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
648    }
649
650    if (MVT::isInteger(PartVT) &&
651        MVT::isInteger(ValueVT)) {
652      if (ValueVT < PartVT) {
653        // For a truncate, see if we have any information to
654        // indicate whether the truncated bits will always be
655        // zero or sign-extension.
656        if (AssertOp != ISD::DELETED_NODE)
657          Val = DAG.getNode(AssertOp, PartVT, Val,
658                            DAG.getValueType(ValueVT));
659        return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
660      } else {
661        return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
662      }
663    }
664
665    if (MVT::isFloatingPoint(PartVT) &&
666        MVT::isFloatingPoint(ValueVT))
667      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
668
669    if (MVT::getSizeInBits(PartVT) ==
670        MVT::getSizeInBits(ValueVT))
671      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
672
673    assert(0 && "Unknown mismatch!");
674  }
675
676  // Handle a multi-element vector.
677  MVT::ValueType IntermediateVT, RegisterVT;
678  unsigned NumIntermediates;
679  unsigned NumRegs =
680    DAG.getTargetLoweringInfo()
681      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
682                              RegisterVT);
683
684  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
685  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
686  assert(RegisterVT == Parts[0].getValueType() &&
687         "Part type doesn't match part!");
688
689  // Assemble the parts into intermediate operands.
690  SmallVector<SDOperand, 8> Ops(NumIntermediates);
691  if (NumIntermediates == NumParts) {
692    // If the register was not expanded, truncate or copy the value,
693    // as appropriate.
694    for (unsigned i = 0; i != NumParts; ++i)
695      Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
696                                PartVT, IntermediateVT);
697  } else if (NumParts > 0) {
698    // If the intermediate type was expanded, build the intermediate operands
699    // from the parts.
700    assert(NumParts % NumIntermediates == 0 &&
701           "Must expand into a divisible number of parts!");
702    unsigned Factor = NumParts / NumIntermediates;
703    for (unsigned i = 0; i != NumIntermediates; ++i)
704      Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
705                                PartVT, IntermediateVT);
706  }
707
708  // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
709  // operands.
710  return DAG.getNode(MVT::isVector(IntermediateVT) ?
711                       ISD::CONCAT_VECTORS :
712                       ISD::BUILD_VECTOR,
713                     ValueVT, &Ops[0], NumIntermediates);
714}
715
716/// getCopyToParts - Create a series of nodes that contain the
717/// specified value split into legal parts.
718static void getCopyToParts(SelectionDAG &DAG,
719                           SDOperand Val,
720                           SDOperand *Parts,
721                           unsigned NumParts,
722                           MVT::ValueType PartVT) {
723  TargetLowering &TLI = DAG.getTargetLoweringInfo();
724  MVT::ValueType PtrVT = TLI.getPointerTy();
725  MVT::ValueType ValueVT = Val.getValueType();
726
727  if (!MVT::isVector(ValueVT) || NumParts == 1) {
728    // If the value was expanded, copy from the parts.
729    if (NumParts > 1) {
730      for (unsigned i = 0; i != NumParts; ++i)
731        Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
732                               DAG.getConstant(i, PtrVT));
733      if (!DAG.getTargetLoweringInfo().isLittleEndian())
734        std::reverse(Parts, Parts + NumParts);
735      return;
736    }
737
738    // If there is a single part and the types differ, this must be
739    // a promotion.
740    if (PartVT != ValueVT) {
741      if (MVT::isVector(PartVT)) {
742        assert(MVT::isVector(ValueVT) &&
743               "Not a vector-vector cast?");
744        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
745      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
746        if (PartVT < ValueVT)
747          Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
748        else
749          Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
750      } else if (MVT::isFloatingPoint(PartVT) &&
751                 MVT::isFloatingPoint(ValueVT)) {
752        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
753      } else if (MVT::getSizeInBits(PartVT) ==
754                 MVT::getSizeInBits(ValueVT)) {
755        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
756      } else {
757        assert(0 && "Unknown mismatch!");
758      }
759    }
760    Parts[0] = Val;
761    return;
762  }
763
764  // Handle a multi-element vector.
765  MVT::ValueType IntermediateVT, RegisterVT;
766  unsigned NumIntermediates;
767  unsigned NumRegs =
768    DAG.getTargetLoweringInfo()
769      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
770                              RegisterVT);
771  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
772
773  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
774  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
775
776  // Split the vector into intermediate operands.
777  SmallVector<SDOperand, 8> Ops(NumIntermediates);
778  for (unsigned i = 0; i != NumIntermediates; ++i)
779    if (MVT::isVector(IntermediateVT))
780      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
781                           IntermediateVT, Val,
782                           DAG.getConstant(i * (NumElements / NumIntermediates),
783                                           PtrVT));
784    else
785      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
786                           IntermediateVT, Val,
787                           DAG.getConstant(i, PtrVT));
788
789  // Split the intermediate operands into legal parts.
790  if (NumParts == NumIntermediates) {
791    // If the register was not expanded, promote or copy the value,
792    // as appropriate.
793    for (unsigned i = 0; i != NumParts; ++i)
794      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
795  } else if (NumParts > 0) {
796    // If the intermediate type was expanded, split each the value into
797    // legal parts.
798    assert(NumParts % NumIntermediates == 0 &&
799           "Must expand into a divisible number of parts!");
800    unsigned Factor = NumParts / NumIntermediates;
801    for (unsigned i = 0; i != NumIntermediates; ++i)
802      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
803  }
804}
805
806
807SDOperand SelectionDAGLowering::getValue(const Value *V) {
808  SDOperand &N = NodeMap[V];
809  if (N.Val) return N;
810
811  const Type *VTy = V->getType();
812  MVT::ValueType VT = TLI.getValueType(VTy);
813  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
814    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
815      visit(CE->getOpcode(), *CE);
816      SDOperand N1 = NodeMap[V];
817      assert(N1.Val && "visit didn't populate the ValueMap!");
818      return N1;
819    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
820      return N = DAG.getGlobalAddress(GV, VT);
821    } else if (isa<ConstantPointerNull>(C)) {
822      return N = DAG.getConstant(0, TLI.getPointerTy());
823    } else if (isa<UndefValue>(C)) {
824      if (!isa<VectorType>(VTy))
825        return N = DAG.getNode(ISD::UNDEF, VT);
826
827      // Create a BUILD_VECTOR of undef nodes.
828      const VectorType *PTy = cast<VectorType>(VTy);
829      unsigned NumElements = PTy->getNumElements();
830      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
831
832      SmallVector<SDOperand, 8> Ops;
833      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
834
835      // Create a VConstant node with generic Vector type.
836      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
837      return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
838                             &Ops[0], Ops.size());
839    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
840      return N = DAG.getConstantFP(CFP->getValue(), VT);
841    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
842      unsigned NumElements = PTy->getNumElements();
843      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
844
845      // Now that we know the number and type of the elements, push a
846      // Constant or ConstantFP node onto the ops list for each element of
847      // the vector constant.
848      SmallVector<SDOperand, 8> Ops;
849      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
850        for (unsigned i = 0; i != NumElements; ++i)
851          Ops.push_back(getValue(CP->getOperand(i)));
852      } else {
853        assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
854        SDOperand Op;
855        if (MVT::isFloatingPoint(PVT))
856          Op = DAG.getConstantFP(0, PVT);
857        else
858          Op = DAG.getConstant(0, PVT);
859        Ops.assign(NumElements, Op);
860      }
861
862      // Create a BUILD_VECTOR node.
863      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
864      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
865                                      Ops.size());
866    } else {
867      // Canonicalize all constant ints to be unsigned.
868      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
869    }
870  }
871
872  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
873    std::map<const AllocaInst*, int>::iterator SI =
874    FuncInfo.StaticAllocaMap.find(AI);
875    if (SI != FuncInfo.StaticAllocaMap.end())
876      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
877  }
878
879  unsigned InReg = FuncInfo.ValueMap[V];
880  assert(InReg && "Value not in map!");
881
882  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
883  unsigned NumRegs = TLI.getNumRegisters(VT);
884
885  std::vector<unsigned> Regs(NumRegs);
886  for (unsigned i = 0; i != NumRegs; ++i)
887    Regs[i] = InReg + i;
888
889  RegsForValue RFV(Regs, RegisterVT, VT);
890  SDOperand Chain = DAG.getEntryNode();
891
892  return RFV.getCopyFromRegs(DAG, Chain, NULL);
893}
894
895
896void SelectionDAGLowering::visitRet(ReturnInst &I) {
897  if (I.getNumOperands() == 0) {
898    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
899    return;
900  }
901  SmallVector<SDOperand, 8> NewValues;
902  NewValues.push_back(getRoot());
903  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
904    SDOperand RetOp = getValue(I.getOperand(i));
905
906    // If this is an integer return value, we need to promote it ourselves to
907    // the full width of a register, since getCopyToParts and Legalize will use
908    // ANY_EXTEND rather than sign/zero.
909    // FIXME: C calling convention requires the return type to be promoted to
910    // at least 32-bit. But this is not necessary for non-C calling conventions.
911    if (MVT::isInteger(RetOp.getValueType()) &&
912        RetOp.getValueType() < MVT::i64) {
913      MVT::ValueType TmpVT;
914      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
915        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
916      else
917        TmpVT = MVT::i32;
918      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
919      const ParamAttrsList *Attrs = FTy->getParamAttrs();
920      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
921      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt))
922        ExtendKind = ISD::SIGN_EXTEND;
923      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt))
924        ExtendKind = ISD::ZERO_EXTEND;
925      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
926      NewValues.push_back(RetOp);
927      NewValues.push_back(DAG.getConstant(false, MVT::i32));
928    } else {
929      MVT::ValueType VT = RetOp.getValueType();
930      unsigned NumParts = TLI.getNumRegisters(VT);
931      MVT::ValueType PartVT = TLI.getRegisterType(VT);
932      SmallVector<SDOperand, 4> Parts(NumParts);
933      getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT);
934      for (unsigned i = 0; i < NumParts; ++i) {
935        NewValues.push_back(Parts[i]);
936        NewValues.push_back(DAG.getConstant(false, MVT::i32));
937      }
938    }
939  }
940  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
941                          &NewValues[0], NewValues.size()));
942}
943
944/// ExportFromCurrentBlock - If this condition isn't known to be exported from
945/// the current basic block, add it to ValueMap now so that we'll get a
946/// CopyTo/FromReg.
947void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
948  // No need to export constants.
949  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
950
951  // Already exported?
952  if (FuncInfo.isExportedInst(V)) return;
953
954  unsigned Reg = FuncInfo.InitializeRegForValue(V);
955  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
956}
957
958bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
959                                                    const BasicBlock *FromBB) {
960  // The operands of the setcc have to be in this block.  We don't know
961  // how to export them from some other block.
962  if (Instruction *VI = dyn_cast<Instruction>(V)) {
963    // Can export from current BB.
964    if (VI->getParent() == FromBB)
965      return true;
966
967    // Is already exported, noop.
968    return FuncInfo.isExportedInst(V);
969  }
970
971  // If this is an argument, we can export it if the BB is the entry block or
972  // if it is already exported.
973  if (isa<Argument>(V)) {
974    if (FromBB == &FromBB->getParent()->getEntryBlock())
975      return true;
976
977    // Otherwise, can only export this if it is already exported.
978    return FuncInfo.isExportedInst(V);
979  }
980
981  // Otherwise, constants can always be exported.
982  return true;
983}
984
985static bool InBlock(const Value *V, const BasicBlock *BB) {
986  if (const Instruction *I = dyn_cast<Instruction>(V))
987    return I->getParent() == BB;
988  return true;
989}
990
991/// FindMergedConditions - If Cond is an expression like
992void SelectionDAGLowering::FindMergedConditions(Value *Cond,
993                                                MachineBasicBlock *TBB,
994                                                MachineBasicBlock *FBB,
995                                                MachineBasicBlock *CurBB,
996                                                unsigned Opc) {
997  // If this node is not part of the or/and tree, emit it as a branch.
998  Instruction *BOp = dyn_cast<Instruction>(Cond);
999
1000  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1001      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1002      BOp->getParent() != CurBB->getBasicBlock() ||
1003      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1004      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1005    const BasicBlock *BB = CurBB->getBasicBlock();
1006
1007    // If the leaf of the tree is a comparison, merge the condition into
1008    // the caseblock.
1009    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1010        // The operands of the cmp have to be in this block.  We don't know
1011        // how to export them from some other block.  If this is the first block
1012        // of the sequence, no exporting is needed.
1013        (CurBB == CurMBB ||
1014         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1015          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1016      BOp = cast<Instruction>(Cond);
1017      ISD::CondCode Condition;
1018      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1019        switch (IC->getPredicate()) {
1020        default: assert(0 && "Unknown icmp predicate opcode!");
1021        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1022        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1023        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1024        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1025        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1026        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1027        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1028        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1029        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1030        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1031        }
1032      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1033        ISD::CondCode FPC, FOC;
1034        switch (FC->getPredicate()) {
1035        default: assert(0 && "Unknown fcmp predicate opcode!");
1036        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1037        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1038        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1039        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1040        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1041        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1042        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1043        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1044        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1045        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1046        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1047        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1048        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1049        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1050        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1051        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1052        }
1053        if (FiniteOnlyFPMath())
1054          Condition = FOC;
1055        else
1056          Condition = FPC;
1057      } else {
1058        Condition = ISD::SETEQ; // silence warning.
1059        assert(0 && "Unknown compare instruction");
1060      }
1061
1062      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1063                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1064      SwitchCases.push_back(CB);
1065      return;
1066    }
1067
1068    // Create a CaseBlock record representing this branch.
1069    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1070                                   NULL, TBB, FBB, CurBB);
1071    SwitchCases.push_back(CB);
1072    return;
1073  }
1074
1075
1076  //  Create TmpBB after CurBB.
1077  MachineFunction::iterator BBI = CurBB;
1078  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1079  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1080
1081  if (Opc == Instruction::Or) {
1082    // Codegen X | Y as:
1083    //   jmp_if_X TBB
1084    //   jmp TmpBB
1085    // TmpBB:
1086    //   jmp_if_Y TBB
1087    //   jmp FBB
1088    //
1089
1090    // Emit the LHS condition.
1091    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1092
1093    // Emit the RHS condition into TmpBB.
1094    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1095  } else {
1096    assert(Opc == Instruction::And && "Unknown merge op!");
1097    // Codegen X & Y as:
1098    //   jmp_if_X TmpBB
1099    //   jmp FBB
1100    // TmpBB:
1101    //   jmp_if_Y TBB
1102    //   jmp FBB
1103    //
1104    //  This requires creation of TmpBB after CurBB.
1105
1106    // Emit the LHS condition.
1107    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1108
1109    // Emit the RHS condition into TmpBB.
1110    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1111  }
1112}
1113
1114/// If the set of cases should be emitted as a series of branches, return true.
1115/// If we should emit this as a bunch of and/or'd together conditions, return
1116/// false.
1117static bool
1118ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1119  if (Cases.size() != 2) return true;
1120
1121  // If this is two comparisons of the same values or'd or and'd together, they
1122  // will get folded into a single comparison, so don't emit two blocks.
1123  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1124       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1125      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1126       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1127    return false;
1128  }
1129
1130  return true;
1131}
1132
1133void SelectionDAGLowering::visitBr(BranchInst &I) {
1134  // Update machine-CFG edges.
1135  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1136
1137  // Figure out which block is immediately after the current one.
1138  MachineBasicBlock *NextBlock = 0;
1139  MachineFunction::iterator BBI = CurMBB;
1140  if (++BBI != CurMBB->getParent()->end())
1141    NextBlock = BBI;
1142
1143  if (I.isUnconditional()) {
1144    // If this is not a fall-through branch, emit the branch.
1145    if (Succ0MBB != NextBlock)
1146      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1147                              DAG.getBasicBlock(Succ0MBB)));
1148
1149    // Update machine-CFG edges.
1150    CurMBB->addSuccessor(Succ0MBB);
1151
1152    return;
1153  }
1154
1155  // If this condition is one of the special cases we handle, do special stuff
1156  // now.
1157  Value *CondVal = I.getCondition();
1158  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1159
1160  // If this is a series of conditions that are or'd or and'd together, emit
1161  // this as a sequence of branches instead of setcc's with and/or operations.
1162  // For example, instead of something like:
1163  //     cmp A, B
1164  //     C = seteq
1165  //     cmp D, E
1166  //     F = setle
1167  //     or C, F
1168  //     jnz foo
1169  // Emit:
1170  //     cmp A, B
1171  //     je foo
1172  //     cmp D, E
1173  //     jle foo
1174  //
1175  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1176    if (BOp->hasOneUse() &&
1177        (BOp->getOpcode() == Instruction::And ||
1178         BOp->getOpcode() == Instruction::Or)) {
1179      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1180      // If the compares in later blocks need to use values not currently
1181      // exported from this block, export them now.  This block should always
1182      // be the first entry.
1183      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1184
1185      // Allow some cases to be rejected.
1186      if (ShouldEmitAsBranches(SwitchCases)) {
1187        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1188          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1189          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1190        }
1191
1192        // Emit the branch for this block.
1193        visitSwitchCase(SwitchCases[0]);
1194        SwitchCases.erase(SwitchCases.begin());
1195        return;
1196      }
1197
1198      // Okay, we decided not to do this, remove any inserted MBB's and clear
1199      // SwitchCases.
1200      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1201        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1202
1203      SwitchCases.clear();
1204    }
1205  }
1206
1207  // Create a CaseBlock record representing this branch.
1208  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1209                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1210  // Use visitSwitchCase to actually insert the fast branch sequence for this
1211  // cond branch.
1212  visitSwitchCase(CB);
1213}
1214
1215/// visitSwitchCase - Emits the necessary code to represent a single node in
1216/// the binary search tree resulting from lowering a switch instruction.
1217void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1218  SDOperand Cond;
1219  SDOperand CondLHS = getValue(CB.CmpLHS);
1220
1221  // Build the setcc now.
1222  if (CB.CmpMHS == NULL) {
1223    // Fold "(X == true)" to X and "(X == false)" to !X to
1224    // handle common cases produced by branch lowering.
1225    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1226      Cond = CondLHS;
1227    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1228      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1229      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1230    } else
1231      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1232  } else {
1233    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1234
1235    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1236    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1237
1238    SDOperand CmpOp = getValue(CB.CmpMHS);
1239    MVT::ValueType VT = CmpOp.getValueType();
1240
1241    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1242      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1243    } else {
1244      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1245      Cond = DAG.getSetCC(MVT::i1, SUB,
1246                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1247    }
1248
1249  }
1250
1251  // Set NextBlock to be the MBB immediately after the current one, if any.
1252  // This is used to avoid emitting unnecessary branches to the next block.
1253  MachineBasicBlock *NextBlock = 0;
1254  MachineFunction::iterator BBI = CurMBB;
1255  if (++BBI != CurMBB->getParent()->end())
1256    NextBlock = BBI;
1257
1258  // If the lhs block is the next block, invert the condition so that we can
1259  // fall through to the lhs instead of the rhs block.
1260  if (CB.TrueBB == NextBlock) {
1261    std::swap(CB.TrueBB, CB.FalseBB);
1262    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1263    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1264  }
1265  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1266                                 DAG.getBasicBlock(CB.TrueBB));
1267  if (CB.FalseBB == NextBlock)
1268    DAG.setRoot(BrCond);
1269  else
1270    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1271                            DAG.getBasicBlock(CB.FalseBB)));
1272  // Update successor info
1273  CurMBB->addSuccessor(CB.TrueBB);
1274  CurMBB->addSuccessor(CB.FalseBB);
1275}
1276
1277/// visitJumpTable - Emit JumpTable node in the current MBB
1278void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1279  // Emit the code for the jump table
1280  assert(JT.Reg != -1U && "Should lower JT Header first!");
1281  MVT::ValueType PTy = TLI.getPointerTy();
1282  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1283  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1284  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1285                          Table, Index));
1286  return;
1287}
1288
1289/// visitJumpTableHeader - This function emits necessary code to produce index
1290/// in the JumpTable from switch case.
1291void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1292                                         SelectionDAGISel::JumpTableHeader &JTH) {
1293  // Subtract the lowest switch case value from the value being switched on
1294  // and conditional branch to default mbb if the result is greater than the
1295  // difference between smallest and largest cases.
1296  SDOperand SwitchOp = getValue(JTH.SValue);
1297  MVT::ValueType VT = SwitchOp.getValueType();
1298  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1299                              DAG.getConstant(JTH.First, VT));
1300
1301  // The SDNode we just created, which holds the value being switched on
1302  // minus the the smallest case value, needs to be copied to a virtual
1303  // register so it can be used as an index into the jump table in a
1304  // subsequent basic block.  This value may be smaller or larger than the
1305  // target's pointer type, and therefore require extension or truncating.
1306  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1307    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1308  else
1309    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1310
1311  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1312  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1313  JT.Reg = JumpTableReg;
1314
1315  // Emit the range check for the jump table, and branch to the default
1316  // block for the switch statement if the value being switched on exceeds
1317  // the largest case in the switch.
1318  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1319                               DAG.getConstant(JTH.Last-JTH.First,VT),
1320                               ISD::SETUGT);
1321
1322  // Set NextBlock to be the MBB immediately after the current one, if any.
1323  // This is used to avoid emitting unnecessary branches to the next block.
1324  MachineBasicBlock *NextBlock = 0;
1325  MachineFunction::iterator BBI = CurMBB;
1326  if (++BBI != CurMBB->getParent()->end())
1327    NextBlock = BBI;
1328
1329  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1330                                 DAG.getBasicBlock(JT.Default));
1331
1332  if (JT.MBB == NextBlock)
1333    DAG.setRoot(BrCond);
1334  else
1335    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1336                            DAG.getBasicBlock(JT.MBB)));
1337
1338  return;
1339}
1340
1341/// visitBitTestHeader - This function emits necessary code to produce value
1342/// suitable for "bit tests"
1343void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1344  // Subtract the minimum value
1345  SDOperand SwitchOp = getValue(B.SValue);
1346  MVT::ValueType VT = SwitchOp.getValueType();
1347  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1348                              DAG.getConstant(B.First, VT));
1349
1350  // Check range
1351  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1352                                    DAG.getConstant(B.Range, VT),
1353                                    ISD::SETUGT);
1354
1355  SDOperand ShiftOp;
1356  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1357    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1358  else
1359    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1360
1361  // Make desired shift
1362  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1363                                    DAG.getConstant(1, TLI.getPointerTy()),
1364                                    ShiftOp);
1365
1366  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1367  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1368  B.Reg = SwitchReg;
1369
1370  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1371                                  DAG.getBasicBlock(B.Default));
1372
1373  // Set NextBlock to be the MBB immediately after the current one, if any.
1374  // This is used to avoid emitting unnecessary branches to the next block.
1375  MachineBasicBlock *NextBlock = 0;
1376  MachineFunction::iterator BBI = CurMBB;
1377  if (++BBI != CurMBB->getParent()->end())
1378    NextBlock = BBI;
1379
1380  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1381  if (MBB == NextBlock)
1382    DAG.setRoot(BrRange);
1383  else
1384    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1385                            DAG.getBasicBlock(MBB)));
1386
1387  CurMBB->addSuccessor(B.Default);
1388  CurMBB->addSuccessor(MBB);
1389
1390  return;
1391}
1392
1393/// visitBitTestCase - this function produces one "bit test"
1394void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1395                                            unsigned Reg,
1396                                            SelectionDAGISel::BitTestCase &B) {
1397  // Emit bit tests and jumps
1398  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1399
1400  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1401                                SwitchVal,
1402                                DAG.getConstant(B.Mask,
1403                                                TLI.getPointerTy()));
1404  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1405                                  DAG.getConstant(0, TLI.getPointerTy()),
1406                                  ISD::SETNE);
1407  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1408                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1409
1410  // Set NextBlock to be the MBB immediately after the current one, if any.
1411  // This is used to avoid emitting unnecessary branches to the next block.
1412  MachineBasicBlock *NextBlock = 0;
1413  MachineFunction::iterator BBI = CurMBB;
1414  if (++BBI != CurMBB->getParent()->end())
1415    NextBlock = BBI;
1416
1417  if (NextMBB == NextBlock)
1418    DAG.setRoot(BrAnd);
1419  else
1420    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1421                            DAG.getBasicBlock(NextMBB)));
1422
1423  CurMBB->addSuccessor(B.TargetBB);
1424  CurMBB->addSuccessor(NextMBB);
1425
1426  return;
1427}
1428
1429void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1430  // Retrieve successors.
1431  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1432  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1433
1434  LowerCallTo(I, I.getCalledValue()->getType(),
1435              I.getCallingConv(),
1436              false,
1437              getValue(I.getOperand(0)),
1438              3, LandingPad);
1439
1440  // If the value of the invoke is used outside of its defining block, make it
1441  // available as a virtual register.
1442  if (!I.use_empty()) {
1443    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1444    if (VMI != FuncInfo.ValueMap.end())
1445      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1446  }
1447
1448  // Drop into normal successor.
1449  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1450                          DAG.getBasicBlock(Return)));
1451
1452  // Update successor info
1453  CurMBB->addSuccessor(Return);
1454  CurMBB->addSuccessor(LandingPad);
1455}
1456
1457void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1458}
1459
1460/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1461/// small case ranges).
1462bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1463                                                  CaseRecVector& WorkList,
1464                                                  Value* SV,
1465                                                  MachineBasicBlock* Default) {
1466  Case& BackCase  = *(CR.Range.second-1);
1467
1468  // Size is the number of Cases represented by this range.
1469  unsigned Size = CR.Range.second - CR.Range.first;
1470  if (Size > 3)
1471    return false;
1472
1473  // Get the MachineFunction which holds the current MBB.  This is used when
1474  // inserting any additional MBBs necessary to represent the switch.
1475  MachineFunction *CurMF = CurMBB->getParent();
1476
1477  // Figure out which block is immediately after the current one.
1478  MachineBasicBlock *NextBlock = 0;
1479  MachineFunction::iterator BBI = CR.CaseBB;
1480
1481  if (++BBI != CurMBB->getParent()->end())
1482    NextBlock = BBI;
1483
1484  // TODO: If any two of the cases has the same destination, and if one value
1485  // is the same as the other, but has one bit unset that the other has set,
1486  // use bit manipulation to do two compares at once.  For example:
1487  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1488
1489  // Rearrange the case blocks so that the last one falls through if possible.
1490  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1491    // The last case block won't fall through into 'NextBlock' if we emit the
1492    // branches in this order.  See if rearranging a case value would help.
1493    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1494      if (I->BB == NextBlock) {
1495        std::swap(*I, BackCase);
1496        break;
1497      }
1498    }
1499  }
1500
1501  // Create a CaseBlock record representing a conditional branch to
1502  // the Case's target mbb if the value being switched on SV is equal
1503  // to C.
1504  MachineBasicBlock *CurBlock = CR.CaseBB;
1505  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1506    MachineBasicBlock *FallThrough;
1507    if (I != E-1) {
1508      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1509      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1510    } else {
1511      // If the last case doesn't match, go to the default block.
1512      FallThrough = Default;
1513    }
1514
1515    Value *RHS, *LHS, *MHS;
1516    ISD::CondCode CC;
1517    if (I->High == I->Low) {
1518      // This is just small small case range :) containing exactly 1 case
1519      CC = ISD::SETEQ;
1520      LHS = SV; RHS = I->High; MHS = NULL;
1521    } else {
1522      CC = ISD::SETLE;
1523      LHS = I->Low; MHS = SV; RHS = I->High;
1524    }
1525    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1526                                   I->BB, FallThrough, CurBlock);
1527
1528    // If emitting the first comparison, just call visitSwitchCase to emit the
1529    // code into the current block.  Otherwise, push the CaseBlock onto the
1530    // vector to be later processed by SDISel, and insert the node's MBB
1531    // before the next MBB.
1532    if (CurBlock == CurMBB)
1533      visitSwitchCase(CB);
1534    else
1535      SwitchCases.push_back(CB);
1536
1537    CurBlock = FallThrough;
1538  }
1539
1540  return true;
1541}
1542
1543static inline bool areJTsAllowed(const TargetLowering &TLI) {
1544  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1545          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1546}
1547
1548/// handleJTSwitchCase - Emit jumptable for current switch case range
1549bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1550                                              CaseRecVector& WorkList,
1551                                              Value* SV,
1552                                              MachineBasicBlock* Default) {
1553  Case& FrontCase = *CR.Range.first;
1554  Case& BackCase  = *(CR.Range.second-1);
1555
1556  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1557  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1558
1559  uint64_t TSize = 0;
1560  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1561       I!=E; ++I)
1562    TSize += I->size();
1563
1564  if (!areJTsAllowed(TLI) || TSize <= 3)
1565    return false;
1566
1567  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1568  if (Density < 0.4)
1569    return false;
1570
1571  DOUT << "Lowering jump table\n"
1572       << "First entry: " << First << ". Last entry: " << Last << "\n"
1573       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1574
1575  // Get the MachineFunction which holds the current MBB.  This is used when
1576  // inserting any additional MBBs necessary to represent the switch.
1577  MachineFunction *CurMF = CurMBB->getParent();
1578
1579  // Figure out which block is immediately after the current one.
1580  MachineBasicBlock *NextBlock = 0;
1581  MachineFunction::iterator BBI = CR.CaseBB;
1582
1583  if (++BBI != CurMBB->getParent()->end())
1584    NextBlock = BBI;
1585
1586  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1587
1588  // Create a new basic block to hold the code for loading the address
1589  // of the jump table, and jumping to it.  Update successor information;
1590  // we will either branch to the default case for the switch, or the jump
1591  // table.
1592  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1593  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1594  CR.CaseBB->addSuccessor(Default);
1595  CR.CaseBB->addSuccessor(JumpTableBB);
1596
1597  // Build a vector of destination BBs, corresponding to each target
1598  // of the jump table. If the value of the jump table slot corresponds to
1599  // a case statement, push the case's BB onto the vector, otherwise, push
1600  // the default BB.
1601  std::vector<MachineBasicBlock*> DestBBs;
1602  int64_t TEI = First;
1603  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1604    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1605    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1606
1607    if ((Low <= TEI) && (TEI <= High)) {
1608      DestBBs.push_back(I->BB);
1609      if (TEI==High)
1610        ++I;
1611    } else {
1612      DestBBs.push_back(Default);
1613    }
1614  }
1615
1616  // Update successor info. Add one edge to each unique successor.
1617  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1618  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1619         E = DestBBs.end(); I != E; ++I) {
1620    if (!SuccsHandled[(*I)->getNumber()]) {
1621      SuccsHandled[(*I)->getNumber()] = true;
1622      JumpTableBB->addSuccessor(*I);
1623    }
1624  }
1625
1626  // Create a jump table index for this jump table, or return an existing
1627  // one.
1628  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1629
1630  // Set the jump table information so that we can codegen it as a second
1631  // MachineBasicBlock
1632  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1633  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1634                                        (CR.CaseBB == CurMBB));
1635  if (CR.CaseBB == CurMBB)
1636    visitJumpTableHeader(JT, JTH);
1637
1638  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1639
1640  return true;
1641}
1642
1643/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1644/// 2 subtrees.
1645bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1646                                                   CaseRecVector& WorkList,
1647                                                   Value* SV,
1648                                                   MachineBasicBlock* Default) {
1649  // Get the MachineFunction which holds the current MBB.  This is used when
1650  // inserting any additional MBBs necessary to represent the switch.
1651  MachineFunction *CurMF = CurMBB->getParent();
1652
1653  // Figure out which block is immediately after the current one.
1654  MachineBasicBlock *NextBlock = 0;
1655  MachineFunction::iterator BBI = CR.CaseBB;
1656
1657  if (++BBI != CurMBB->getParent()->end())
1658    NextBlock = BBI;
1659
1660  Case& FrontCase = *CR.Range.first;
1661  Case& BackCase  = *(CR.Range.second-1);
1662  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1663
1664  // Size is the number of Cases represented by this range.
1665  unsigned Size = CR.Range.second - CR.Range.first;
1666
1667  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1668  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1669  double FMetric = 0;
1670  CaseItr Pivot = CR.Range.first + Size/2;
1671
1672  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1673  // (heuristically) allow us to emit JumpTable's later.
1674  uint64_t TSize = 0;
1675  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1676       I!=E; ++I)
1677    TSize += I->size();
1678
1679  uint64_t LSize = FrontCase.size();
1680  uint64_t RSize = TSize-LSize;
1681  DOUT << "Selecting best pivot: \n"
1682       << "First: " << First << ", Last: " << Last <<"\n"
1683       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1684  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1685       J!=E; ++I, ++J) {
1686    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1687    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1688    assert((RBegin-LEnd>=1) && "Invalid case distance");
1689    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1690    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1691    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1692    // Should always split in some non-trivial place
1693    DOUT <<"=>Step\n"
1694         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1695         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1696         << "Metric: " << Metric << "\n";
1697    if (FMetric < Metric) {
1698      Pivot = J;
1699      FMetric = Metric;
1700      DOUT << "Current metric set to: " << FMetric << "\n";
1701    }
1702
1703    LSize += J->size();
1704    RSize -= J->size();
1705  }
1706  if (areJTsAllowed(TLI)) {
1707    // If our case is dense we *really* should handle it earlier!
1708    assert((FMetric > 0) && "Should handle dense range earlier!");
1709  } else {
1710    Pivot = CR.Range.first + Size/2;
1711  }
1712
1713  CaseRange LHSR(CR.Range.first, Pivot);
1714  CaseRange RHSR(Pivot, CR.Range.second);
1715  Constant *C = Pivot->Low;
1716  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1717
1718  // We know that we branch to the LHS if the Value being switched on is
1719  // less than the Pivot value, C.  We use this to optimize our binary
1720  // tree a bit, by recognizing that if SV is greater than or equal to the
1721  // LHS's Case Value, and that Case Value is exactly one less than the
1722  // Pivot's Value, then we can branch directly to the LHS's Target,
1723  // rather than creating a leaf node for it.
1724  if ((LHSR.second - LHSR.first) == 1 &&
1725      LHSR.first->High == CR.GE &&
1726      cast<ConstantInt>(C)->getSExtValue() ==
1727      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1728    TrueBB = LHSR.first->BB;
1729  } else {
1730    TrueBB = new MachineBasicBlock(LLVMBB);
1731    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1732    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1733  }
1734
1735  // Similar to the optimization above, if the Value being switched on is
1736  // known to be less than the Constant CR.LT, and the current Case Value
1737  // is CR.LT - 1, then we can branch directly to the target block for
1738  // the current Case Value, rather than emitting a RHS leaf node for it.
1739  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1740      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1741      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1742    FalseBB = RHSR.first->BB;
1743  } else {
1744    FalseBB = new MachineBasicBlock(LLVMBB);
1745    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1746    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1747  }
1748
1749  // Create a CaseBlock record representing a conditional branch to
1750  // the LHS node if the value being switched on SV is less than C.
1751  // Otherwise, branch to LHS.
1752  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1753                                 TrueBB, FalseBB, CR.CaseBB);
1754
1755  if (CR.CaseBB == CurMBB)
1756    visitSwitchCase(CB);
1757  else
1758    SwitchCases.push_back(CB);
1759
1760  return true;
1761}
1762
1763/// handleBitTestsSwitchCase - if current case range has few destination and
1764/// range span less, than machine word bitwidth, encode case range into series
1765/// of masks and emit bit tests with these masks.
1766bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1767                                                    CaseRecVector& WorkList,
1768                                                    Value* SV,
1769                                                    MachineBasicBlock* Default){
1770  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1771
1772  Case& FrontCase = *CR.Range.first;
1773  Case& BackCase  = *(CR.Range.second-1);
1774
1775  // Get the MachineFunction which holds the current MBB.  This is used when
1776  // inserting any additional MBBs necessary to represent the switch.
1777  MachineFunction *CurMF = CurMBB->getParent();
1778
1779  unsigned numCmps = 0;
1780  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1781       I!=E; ++I) {
1782    // Single case counts one, case range - two.
1783    if (I->Low == I->High)
1784      numCmps +=1;
1785    else
1786      numCmps +=2;
1787  }
1788
1789  // Count unique destinations
1790  SmallSet<MachineBasicBlock*, 4> Dests;
1791  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1792    Dests.insert(I->BB);
1793    if (Dests.size() > 3)
1794      // Don't bother the code below, if there are too much unique destinations
1795      return false;
1796  }
1797  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1798       << "Total number of comparisons: " << numCmps << "\n";
1799
1800  // Compute span of values.
1801  Constant* minValue = FrontCase.Low;
1802  Constant* maxValue = BackCase.High;
1803  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1804                   cast<ConstantInt>(minValue)->getSExtValue();
1805  DOUT << "Compare range: " << range << "\n"
1806       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1807       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1808
1809  if (range>=IntPtrBits ||
1810      (!(Dests.size() == 1 && numCmps >= 3) &&
1811       !(Dests.size() == 2 && numCmps >= 5) &&
1812       !(Dests.size() >= 3 && numCmps >= 6)))
1813    return false;
1814
1815  DOUT << "Emitting bit tests\n";
1816  int64_t lowBound = 0;
1817
1818  // Optimize the case where all the case values fit in a
1819  // word without having to subtract minValue. In this case,
1820  // we can optimize away the subtraction.
1821  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1822      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1823    range = cast<ConstantInt>(maxValue)->getSExtValue();
1824  } else {
1825    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1826  }
1827
1828  CaseBitsVector CasesBits;
1829  unsigned i, count = 0;
1830
1831  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1832    MachineBasicBlock* Dest = I->BB;
1833    for (i = 0; i < count; ++i)
1834      if (Dest == CasesBits[i].BB)
1835        break;
1836
1837    if (i == count) {
1838      assert((count < 3) && "Too much destinations to test!");
1839      CasesBits.push_back(CaseBits(0, Dest, 0));
1840      count++;
1841    }
1842
1843    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1844    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1845
1846    for (uint64_t j = lo; j <= hi; j++) {
1847      CasesBits[i].Mask |=  1ULL << j;
1848      CasesBits[i].Bits++;
1849    }
1850
1851  }
1852  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1853
1854  SelectionDAGISel::BitTestInfo BTC;
1855
1856  // Figure out which block is immediately after the current one.
1857  MachineFunction::iterator BBI = CR.CaseBB;
1858  ++BBI;
1859
1860  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1861
1862  DOUT << "Cases:\n";
1863  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1864    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1865         << ", BB: " << CasesBits[i].BB << "\n";
1866
1867    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1868    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1869    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1870                                                CaseBB,
1871                                                CasesBits[i].BB));
1872  }
1873
1874  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1875                                     -1U, (CR.CaseBB == CurMBB),
1876                                     CR.CaseBB, Default, BTC);
1877
1878  if (CR.CaseBB == CurMBB)
1879    visitBitTestHeader(BTB);
1880
1881  BitTestCases.push_back(BTB);
1882
1883  return true;
1884}
1885
1886
1887// Clusterify - Transform simple list of Cases into list of CaseRange's
1888unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1889                                          const SwitchInst& SI) {
1890  unsigned numCmps = 0;
1891
1892  // Start with "simple" cases
1893  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1894    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1895    Cases.push_back(Case(SI.getSuccessorValue(i),
1896                         SI.getSuccessorValue(i),
1897                         SMBB));
1898  }
1899  sort(Cases.begin(), Cases.end(), CaseCmp());
1900
1901  // Merge case into clusters
1902  if (Cases.size()>=2)
1903    // Must recompute end() each iteration because it may be
1904    // invalidated by erase if we hold on to it
1905    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
1906      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1907      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1908      MachineBasicBlock* nextBB = J->BB;
1909      MachineBasicBlock* currentBB = I->BB;
1910
1911      // If the two neighboring cases go to the same destination, merge them
1912      // into a single case.
1913      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1914        I->High = J->High;
1915        J = Cases.erase(J);
1916      } else {
1917        I = J++;
1918      }
1919    }
1920
1921  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1922    if (I->Low != I->High)
1923      // A range counts double, since it requires two compares.
1924      ++numCmps;
1925  }
1926
1927  return numCmps;
1928}
1929
1930void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1931  // Figure out which block is immediately after the current one.
1932  MachineBasicBlock *NextBlock = 0;
1933  MachineFunction::iterator BBI = CurMBB;
1934
1935  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1936
1937  // If there is only the default destination, branch to it if it is not the
1938  // next basic block.  Otherwise, just fall through.
1939  if (SI.getNumOperands() == 2) {
1940    // Update machine-CFG edges.
1941
1942    // If this is not a fall-through branch, emit the branch.
1943    if (Default != NextBlock)
1944      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1945                              DAG.getBasicBlock(Default)));
1946
1947    CurMBB->addSuccessor(Default);
1948    return;
1949  }
1950
1951  // If there are any non-default case statements, create a vector of Cases
1952  // representing each one, and sort the vector so that we can efficiently
1953  // create a binary search tree from them.
1954  CaseVector Cases;
1955  unsigned numCmps = Clusterify(Cases, SI);
1956  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1957       << ". Total compares: " << numCmps << "\n";
1958
1959  // Get the Value to be switched on and default basic blocks, which will be
1960  // inserted into CaseBlock records, representing basic blocks in the binary
1961  // search tree.
1962  Value *SV = SI.getOperand(0);
1963
1964  // Push the initial CaseRec onto the worklist
1965  CaseRecVector WorkList;
1966  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1967
1968  while (!WorkList.empty()) {
1969    // Grab a record representing a case range to process off the worklist
1970    CaseRec CR = WorkList.back();
1971    WorkList.pop_back();
1972
1973    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1974      continue;
1975
1976    // If the range has few cases (two or less) emit a series of specific
1977    // tests.
1978    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1979      continue;
1980
1981    // If the switch has more than 5 blocks, and at least 40% dense, and the
1982    // target supports indirect branches, then emit a jump table rather than
1983    // lowering the switch to a binary tree of conditional branches.
1984    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1985      continue;
1986
1987    // Emit binary tree. We need to pick a pivot, and push left and right ranges
1988    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
1989    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
1990  }
1991}
1992
1993
1994void SelectionDAGLowering::visitSub(User &I) {
1995  // -0.0 - X --> fneg
1996  const Type *Ty = I.getType();
1997  if (isa<VectorType>(Ty)) {
1998    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
1999      const VectorType *DestTy = cast<VectorType>(I.getType());
2000      const Type *ElTy = DestTy->getElementType();
2001      if (ElTy->isFloatingPoint()) {
2002        unsigned VL = DestTy->getNumElements();
2003        std::vector<Constant*> NZ(VL, ConstantFP::get(ElTy, -0.0));
2004        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2005        if (CV == CNZ) {
2006          SDOperand Op2 = getValue(I.getOperand(1));
2007          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2008          return;
2009        }
2010      }
2011    }
2012  }
2013  if (Ty->isFloatingPoint()) {
2014    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2015      if (CFP->isExactlyValue(-0.0)) {
2016        SDOperand Op2 = getValue(I.getOperand(1));
2017        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2018        return;
2019      }
2020  }
2021
2022  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2023}
2024
2025void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2026  SDOperand Op1 = getValue(I.getOperand(0));
2027  SDOperand Op2 = getValue(I.getOperand(1));
2028
2029  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2030}
2031
2032void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2033  SDOperand Op1 = getValue(I.getOperand(0));
2034  SDOperand Op2 = getValue(I.getOperand(1));
2035
2036  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2037      MVT::getSizeInBits(Op2.getValueType()))
2038    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2039  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2040    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2041
2042  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2043}
2044
2045void SelectionDAGLowering::visitICmp(User &I) {
2046  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2047  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2048    predicate = IC->getPredicate();
2049  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2050    predicate = ICmpInst::Predicate(IC->getPredicate());
2051  SDOperand Op1 = getValue(I.getOperand(0));
2052  SDOperand Op2 = getValue(I.getOperand(1));
2053  ISD::CondCode Opcode;
2054  switch (predicate) {
2055    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2056    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2057    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2058    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2059    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2060    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2061    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2062    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2063    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2064    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2065    default:
2066      assert(!"Invalid ICmp predicate value");
2067      Opcode = ISD::SETEQ;
2068      break;
2069  }
2070  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2071}
2072
2073void SelectionDAGLowering::visitFCmp(User &I) {
2074  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2075  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2076    predicate = FC->getPredicate();
2077  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2078    predicate = FCmpInst::Predicate(FC->getPredicate());
2079  SDOperand Op1 = getValue(I.getOperand(0));
2080  SDOperand Op2 = getValue(I.getOperand(1));
2081  ISD::CondCode Condition, FOC, FPC;
2082  switch (predicate) {
2083    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2084    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2085    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2086    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2087    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2088    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2089    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2090    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2091    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2092    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2093    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2094    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2095    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2096    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2097    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2098    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2099    default:
2100      assert(!"Invalid FCmp predicate value");
2101      FOC = FPC = ISD::SETFALSE;
2102      break;
2103  }
2104  if (FiniteOnlyFPMath())
2105    Condition = FOC;
2106  else
2107    Condition = FPC;
2108  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2109}
2110
2111void SelectionDAGLowering::visitSelect(User &I) {
2112  SDOperand Cond     = getValue(I.getOperand(0));
2113  SDOperand TrueVal  = getValue(I.getOperand(1));
2114  SDOperand FalseVal = getValue(I.getOperand(2));
2115  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2116                           TrueVal, FalseVal));
2117}
2118
2119
2120void SelectionDAGLowering::visitTrunc(User &I) {
2121  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2122  SDOperand N = getValue(I.getOperand(0));
2123  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2124  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2125}
2126
2127void SelectionDAGLowering::visitZExt(User &I) {
2128  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2129  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2130  SDOperand N = getValue(I.getOperand(0));
2131  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2132  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2133}
2134
2135void SelectionDAGLowering::visitSExt(User &I) {
2136  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2137  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2138  SDOperand N = getValue(I.getOperand(0));
2139  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2140  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2141}
2142
2143void SelectionDAGLowering::visitFPTrunc(User &I) {
2144  // FPTrunc is never a no-op cast, no need to check
2145  SDOperand N = getValue(I.getOperand(0));
2146  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2147  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2148}
2149
2150void SelectionDAGLowering::visitFPExt(User &I){
2151  // FPTrunc is never a no-op cast, no need to check
2152  SDOperand N = getValue(I.getOperand(0));
2153  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2154  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2155}
2156
2157void SelectionDAGLowering::visitFPToUI(User &I) {
2158  // FPToUI is never a no-op cast, no need to check
2159  SDOperand N = getValue(I.getOperand(0));
2160  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2161  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2162}
2163
2164void SelectionDAGLowering::visitFPToSI(User &I) {
2165  // FPToSI is never a no-op cast, no need to check
2166  SDOperand N = getValue(I.getOperand(0));
2167  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2168  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2169}
2170
2171void SelectionDAGLowering::visitUIToFP(User &I) {
2172  // UIToFP is never a no-op cast, no need to check
2173  SDOperand N = getValue(I.getOperand(0));
2174  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2175  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2176}
2177
2178void SelectionDAGLowering::visitSIToFP(User &I){
2179  // UIToFP is never a no-op cast, no need to check
2180  SDOperand N = getValue(I.getOperand(0));
2181  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2182  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2183}
2184
2185void SelectionDAGLowering::visitPtrToInt(User &I) {
2186  // What to do depends on the size of the integer and the size of the pointer.
2187  // We can either truncate, zero extend, or no-op, accordingly.
2188  SDOperand N = getValue(I.getOperand(0));
2189  MVT::ValueType SrcVT = N.getValueType();
2190  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2191  SDOperand Result;
2192  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2193    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2194  else
2195    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2196    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2197  setValue(&I, Result);
2198}
2199
2200void SelectionDAGLowering::visitIntToPtr(User &I) {
2201  // What to do depends on the size of the integer and the size of the pointer.
2202  // We can either truncate, zero extend, or no-op, accordingly.
2203  SDOperand N = getValue(I.getOperand(0));
2204  MVT::ValueType SrcVT = N.getValueType();
2205  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2206  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2207    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2208  else
2209    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2210    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2211}
2212
2213void SelectionDAGLowering::visitBitCast(User &I) {
2214  SDOperand N = getValue(I.getOperand(0));
2215  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2216
2217  // BitCast assures us that source and destination are the same size so this
2218  // is either a BIT_CONVERT or a no-op.
2219  if (DestVT != N.getValueType())
2220    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2221  else
2222    setValue(&I, N); // noop cast.
2223}
2224
2225void SelectionDAGLowering::visitInsertElement(User &I) {
2226  SDOperand InVec = getValue(I.getOperand(0));
2227  SDOperand InVal = getValue(I.getOperand(1));
2228  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2229                                getValue(I.getOperand(2)));
2230
2231  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2232                           TLI.getValueType(I.getType()),
2233                           InVec, InVal, InIdx));
2234}
2235
2236void SelectionDAGLowering::visitExtractElement(User &I) {
2237  SDOperand InVec = getValue(I.getOperand(0));
2238  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2239                                getValue(I.getOperand(1)));
2240  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2241                           TLI.getValueType(I.getType()), InVec, InIdx));
2242}
2243
2244void SelectionDAGLowering::visitShuffleVector(User &I) {
2245  SDOperand V1   = getValue(I.getOperand(0));
2246  SDOperand V2   = getValue(I.getOperand(1));
2247  SDOperand Mask = getValue(I.getOperand(2));
2248
2249  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2250                           TLI.getValueType(I.getType()),
2251                           V1, V2, Mask));
2252}
2253
2254
2255void SelectionDAGLowering::visitGetElementPtr(User &I) {
2256  SDOperand N = getValue(I.getOperand(0));
2257  const Type *Ty = I.getOperand(0)->getType();
2258
2259  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2260       OI != E; ++OI) {
2261    Value *Idx = *OI;
2262    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2263      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2264      if (Field) {
2265        // N = N + Offset
2266        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2267        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2268                        getIntPtrConstant(Offset));
2269      }
2270      Ty = StTy->getElementType(Field);
2271    } else {
2272      Ty = cast<SequentialType>(Ty)->getElementType();
2273
2274      // If this is a constant subscript, handle it quickly.
2275      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2276        if (CI->getZExtValue() == 0) continue;
2277        uint64_t Offs =
2278            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2279        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2280        continue;
2281      }
2282
2283      // N = N + Idx * ElementSize;
2284      uint64_t ElementSize = TD->getTypeSize(Ty);
2285      SDOperand IdxN = getValue(Idx);
2286
2287      // If the index is smaller or larger than intptr_t, truncate or extend
2288      // it.
2289      if (IdxN.getValueType() < N.getValueType()) {
2290        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2291      } else if (IdxN.getValueType() > N.getValueType())
2292        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2293
2294      // If this is a multiply by a power of two, turn it into a shl
2295      // immediately.  This is a very common case.
2296      if (isPowerOf2_64(ElementSize)) {
2297        unsigned Amt = Log2_64(ElementSize);
2298        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2299                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2300        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2301        continue;
2302      }
2303
2304      SDOperand Scale = getIntPtrConstant(ElementSize);
2305      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2306      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2307    }
2308  }
2309  setValue(&I, N);
2310}
2311
2312void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2313  // If this is a fixed sized alloca in the entry block of the function,
2314  // allocate it statically on the stack.
2315  if (FuncInfo.StaticAllocaMap.count(&I))
2316    return;   // getValue will auto-populate this.
2317
2318  const Type *Ty = I.getAllocatedType();
2319  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
2320  unsigned Align =
2321    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2322             I.getAlignment());
2323
2324  SDOperand AllocSize = getValue(I.getArraySize());
2325  MVT::ValueType IntPtr = TLI.getPointerTy();
2326  if (IntPtr < AllocSize.getValueType())
2327    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2328  else if (IntPtr > AllocSize.getValueType())
2329    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2330
2331  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2332                          getIntPtrConstant(TySize));
2333
2334  // Handle alignment.  If the requested alignment is less than or equal to
2335  // the stack alignment, ignore it.  If the size is greater than or equal to
2336  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2337  unsigned StackAlign =
2338    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2339  if (Align <= StackAlign)
2340    Align = 0;
2341
2342  // Round the size of the allocation up to the stack alignment size
2343  // by add SA-1 to the size.
2344  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2345                          getIntPtrConstant(StackAlign-1));
2346  // Mask out the low bits for alignment purposes.
2347  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2348                          getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2349
2350  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2351  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2352                                                    MVT::Other);
2353  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2354  setValue(&I, DSA);
2355  DAG.setRoot(DSA.getValue(1));
2356
2357  // Inform the Frame Information that we have just allocated a variable-sized
2358  // object.
2359  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2360}
2361
2362void SelectionDAGLowering::visitLoad(LoadInst &I) {
2363  SDOperand Ptr = getValue(I.getOperand(0));
2364
2365  SDOperand Root;
2366  if (I.isVolatile())
2367    Root = getRoot();
2368  else {
2369    // Do not serialize non-volatile loads against each other.
2370    Root = DAG.getRoot();
2371  }
2372
2373  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2374                           Root, I.isVolatile(), I.getAlignment()));
2375}
2376
2377SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2378                                            const Value *SV, SDOperand Root,
2379                                            bool isVolatile,
2380                                            unsigned Alignment) {
2381  SDOperand L =
2382    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2383                isVolatile, Alignment);
2384
2385  if (isVolatile)
2386    DAG.setRoot(L.getValue(1));
2387  else
2388    PendingLoads.push_back(L.getValue(1));
2389
2390  return L;
2391}
2392
2393
2394void SelectionDAGLowering::visitStore(StoreInst &I) {
2395  Value *SrcV = I.getOperand(0);
2396  SDOperand Src = getValue(SrcV);
2397  SDOperand Ptr = getValue(I.getOperand(1));
2398  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2399                           I.isVolatile(), I.getAlignment()));
2400}
2401
2402/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2403/// access memory and has no other side effects at all.
2404static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2405#define GET_NO_MEMORY_INTRINSICS
2406#include "llvm/Intrinsics.gen"
2407#undef GET_NO_MEMORY_INTRINSICS
2408  return false;
2409}
2410
2411// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2412// have any side-effects or if it only reads memory.
2413static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2414#define GET_SIDE_EFFECT_INFO
2415#include "llvm/Intrinsics.gen"
2416#undef GET_SIDE_EFFECT_INFO
2417  return false;
2418}
2419
2420/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2421/// node.
2422void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2423                                                unsigned Intrinsic) {
2424  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2425  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2426
2427  // Build the operand list.
2428  SmallVector<SDOperand, 8> Ops;
2429  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2430    if (OnlyLoad) {
2431      // We don't need to serialize loads against other loads.
2432      Ops.push_back(DAG.getRoot());
2433    } else {
2434      Ops.push_back(getRoot());
2435    }
2436  }
2437
2438  // Add the intrinsic ID as an integer operand.
2439  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2440
2441  // Add all operands of the call to the operand list.
2442  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2443    SDOperand Op = getValue(I.getOperand(i));
2444    assert(TLI.isTypeLegal(Op.getValueType()) &&
2445           "Intrinsic uses a non-legal type?");
2446    Ops.push_back(Op);
2447  }
2448
2449  std::vector<MVT::ValueType> VTs;
2450  if (I.getType() != Type::VoidTy) {
2451    MVT::ValueType VT = TLI.getValueType(I.getType());
2452    if (MVT::isVector(VT)) {
2453      const VectorType *DestTy = cast<VectorType>(I.getType());
2454      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2455
2456      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2457      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2458    }
2459
2460    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2461    VTs.push_back(VT);
2462  }
2463  if (HasChain)
2464    VTs.push_back(MVT::Other);
2465
2466  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2467
2468  // Create the node.
2469  SDOperand Result;
2470  if (!HasChain)
2471    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2472                         &Ops[0], Ops.size());
2473  else if (I.getType() != Type::VoidTy)
2474    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2475                         &Ops[0], Ops.size());
2476  else
2477    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2478                         &Ops[0], Ops.size());
2479
2480  if (HasChain) {
2481    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2482    if (OnlyLoad)
2483      PendingLoads.push_back(Chain);
2484    else
2485      DAG.setRoot(Chain);
2486  }
2487  if (I.getType() != Type::VoidTy) {
2488    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2489      MVT::ValueType VT = TLI.getValueType(PTy);
2490      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2491    }
2492    setValue(&I, Result);
2493  }
2494}
2495
2496/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2497static GlobalVariable *ExtractTypeInfo (Value *V) {
2498  V = IntrinsicInst::StripPointerCasts(V);
2499  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2500  assert (GV || isa<ConstantPointerNull>(V) &&
2501          "TypeInfo must be a global variable or NULL");
2502  return GV;
2503}
2504
2505/// addCatchInfo - Extract the personality and type infos from an eh.selector
2506/// call, and add them to the specified machine basic block.
2507static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2508                         MachineBasicBlock *MBB) {
2509  // Inform the MachineModuleInfo of the personality for this landing pad.
2510  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2511  assert(CE->getOpcode() == Instruction::BitCast &&
2512         isa<Function>(CE->getOperand(0)) &&
2513         "Personality should be a function");
2514  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2515
2516  // Gather all the type infos for this landing pad and pass them along to
2517  // MachineModuleInfo.
2518  std::vector<GlobalVariable *> TyInfo;
2519  unsigned N = I.getNumOperands();
2520
2521  for (unsigned i = N - 1; i > 2; --i) {
2522    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2523      unsigned FilterLength = CI->getZExtValue();
2524      unsigned FirstCatch = i + FilterLength + !FilterLength;
2525      assert (FirstCatch <= N && "Invalid filter length");
2526
2527      if (FirstCatch < N) {
2528        TyInfo.reserve(N - FirstCatch);
2529        for (unsigned j = FirstCatch; j < N; ++j)
2530          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2531        MMI->addCatchTypeInfo(MBB, TyInfo);
2532        TyInfo.clear();
2533      }
2534
2535      if (!FilterLength) {
2536        // Cleanup.
2537        MMI->addCleanup(MBB);
2538      } else {
2539        // Filter.
2540        TyInfo.reserve(FilterLength - 1);
2541        for (unsigned j = i + 1; j < FirstCatch; ++j)
2542          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2543        MMI->addFilterTypeInfo(MBB, TyInfo);
2544        TyInfo.clear();
2545      }
2546
2547      N = i;
2548    }
2549  }
2550
2551  if (N > 3) {
2552    TyInfo.reserve(N - 3);
2553    for (unsigned j = 3; j < N; ++j)
2554      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2555    MMI->addCatchTypeInfo(MBB, TyInfo);
2556  }
2557}
2558
2559/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2560/// we want to emit this as a call to a named external function, return the name
2561/// otherwise lower it and return null.
2562const char *
2563SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2564  switch (Intrinsic) {
2565  default:
2566    // By default, turn this into a target intrinsic node.
2567    visitTargetIntrinsic(I, Intrinsic);
2568    return 0;
2569  case Intrinsic::vastart:  visitVAStart(I); return 0;
2570  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2571  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2572  case Intrinsic::returnaddress:
2573    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2574                             getValue(I.getOperand(1))));
2575    return 0;
2576  case Intrinsic::frameaddress:
2577    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2578                             getValue(I.getOperand(1))));
2579    return 0;
2580  case Intrinsic::setjmp:
2581    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2582    break;
2583  case Intrinsic::longjmp:
2584    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2585    break;
2586  case Intrinsic::memcpy_i32:
2587  case Intrinsic::memcpy_i64:
2588    visitMemIntrinsic(I, ISD::MEMCPY);
2589    return 0;
2590  case Intrinsic::memset_i32:
2591  case Intrinsic::memset_i64:
2592    visitMemIntrinsic(I, ISD::MEMSET);
2593    return 0;
2594  case Intrinsic::memmove_i32:
2595  case Intrinsic::memmove_i64:
2596    visitMemIntrinsic(I, ISD::MEMMOVE);
2597    return 0;
2598
2599  case Intrinsic::dbg_stoppoint: {
2600    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2601    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2602    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2603      SDOperand Ops[5];
2604
2605      Ops[0] = getRoot();
2606      Ops[1] = getValue(SPI.getLineValue());
2607      Ops[2] = getValue(SPI.getColumnValue());
2608
2609      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2610      assert(DD && "Not a debug information descriptor");
2611      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2612
2613      Ops[3] = DAG.getString(CompileUnit->getFileName());
2614      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2615
2616      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2617    }
2618
2619    return 0;
2620  }
2621  case Intrinsic::dbg_region_start: {
2622    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2623    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2624    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2625      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2626      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2627                              DAG.getConstant(LabelID, MVT::i32)));
2628    }
2629
2630    return 0;
2631  }
2632  case Intrinsic::dbg_region_end: {
2633    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2634    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2635    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2636      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2637      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2638                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2639    }
2640
2641    return 0;
2642  }
2643  case Intrinsic::dbg_func_start: {
2644    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2645    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2646    if (MMI && FSI.getSubprogram() &&
2647        MMI->Verify(FSI.getSubprogram())) {
2648      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2649      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2650                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2651    }
2652
2653    return 0;
2654  }
2655  case Intrinsic::dbg_declare: {
2656    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2657    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2658    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2659      SDOperand AddressOp  = getValue(DI.getAddress());
2660      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2661        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2662    }
2663
2664    return 0;
2665  }
2666
2667  case Intrinsic::eh_exception: {
2668    if (ExceptionHandling) {
2669      if (!CurMBB->isLandingPad()) {
2670        // FIXME: Mark exception register as live in.  Hack for PR1508.
2671        unsigned Reg = TLI.getExceptionAddressRegister();
2672        if (Reg) CurMBB->addLiveIn(Reg);
2673      }
2674      // Insert the EXCEPTIONADDR instruction.
2675      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2676      SDOperand Ops[1];
2677      Ops[0] = DAG.getRoot();
2678      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2679      setValue(&I, Op);
2680      DAG.setRoot(Op.getValue(1));
2681    } else {
2682      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2683    }
2684    return 0;
2685  }
2686
2687  case Intrinsic::eh_selector:{
2688    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2689
2690    if (ExceptionHandling && MMI) {
2691      if (CurMBB->isLandingPad())
2692        addCatchInfo(I, MMI, CurMBB);
2693      else {
2694#ifndef NDEBUG
2695        FuncInfo.CatchInfoLost.insert(&I);
2696#endif
2697        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
2698        unsigned Reg = TLI.getExceptionSelectorRegister();
2699        if (Reg) CurMBB->addLiveIn(Reg);
2700      }
2701
2702      // Insert the EHSELECTION instruction.
2703      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2704      SDOperand Ops[2];
2705      Ops[0] = getValue(I.getOperand(1));
2706      Ops[1] = getRoot();
2707      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2708      setValue(&I, Op);
2709      DAG.setRoot(Op.getValue(1));
2710    } else {
2711      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2712    }
2713
2714    return 0;
2715  }
2716
2717  case Intrinsic::eh_typeid_for: {
2718    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2719
2720    if (MMI) {
2721      // Find the type id for the given typeinfo.
2722      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2723
2724      unsigned TypeID = MMI->getTypeIDFor(GV);
2725      setValue(&I, DAG.getConstant(TypeID, MVT::i32));
2726    } else {
2727      // Return something different to eh_selector.
2728      setValue(&I, DAG.getConstant(1, MVT::i32));
2729    }
2730
2731    return 0;
2732  }
2733
2734  case Intrinsic::eh_return: {
2735    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2736
2737    if (MMI && ExceptionHandling) {
2738      MMI->setCallsEHReturn(true);
2739      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2740                              MVT::Other,
2741                              getRoot(),
2742                              getValue(I.getOperand(1)),
2743                              getValue(I.getOperand(2))));
2744    } else {
2745      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2746    }
2747
2748    return 0;
2749  }
2750
2751   case Intrinsic::eh_unwind_init: {
2752     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2753       MMI->setCallsUnwindInit(true);
2754     }
2755
2756     return 0;
2757   }
2758
2759   case Intrinsic::eh_dwarf_cfa: {
2760     if (ExceptionHandling) {
2761       MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
2762       SDOperand CfaArg;
2763       if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
2764         CfaArg = DAG.getNode(ISD::TRUNCATE,
2765                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2766       else
2767         CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
2768                              TLI.getPointerTy(), getValue(I.getOperand(1)));
2769
2770       SDOperand Offset = DAG.getNode(ISD::ADD,
2771                                      TLI.getPointerTy(),
2772                                      DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
2773                                                  TLI.getPointerTy()),
2774                                      CfaArg);
2775       setValue(&I, DAG.getNode(ISD::ADD,
2776                                TLI.getPointerTy(),
2777                                DAG.getNode(ISD::FRAMEADDR,
2778                                            TLI.getPointerTy(),
2779                                            DAG.getConstant(0,
2780                                                            TLI.getPointerTy())),
2781                                Offset));
2782     } else {
2783       setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2784     }
2785
2786     return 0;
2787  }
2788
2789  case Intrinsic::sqrt_f32:
2790  case Intrinsic::sqrt_f64:
2791    setValue(&I, DAG.getNode(ISD::FSQRT,
2792                             getValue(I.getOperand(1)).getValueType(),
2793                             getValue(I.getOperand(1))));
2794    return 0;
2795  case Intrinsic::powi_f32:
2796  case Intrinsic::powi_f64:
2797    setValue(&I, DAG.getNode(ISD::FPOWI,
2798                             getValue(I.getOperand(1)).getValueType(),
2799                             getValue(I.getOperand(1)),
2800                             getValue(I.getOperand(2))));
2801    return 0;
2802  case Intrinsic::pcmarker: {
2803    SDOperand Tmp = getValue(I.getOperand(1));
2804    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2805    return 0;
2806  }
2807  case Intrinsic::readcyclecounter: {
2808    SDOperand Op = getRoot();
2809    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2810                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2811                                &Op, 1);
2812    setValue(&I, Tmp);
2813    DAG.setRoot(Tmp.getValue(1));
2814    return 0;
2815  }
2816  case Intrinsic::part_select: {
2817    // Currently not implemented: just abort
2818    assert(0 && "part_select intrinsic not implemented");
2819    abort();
2820  }
2821  case Intrinsic::part_set: {
2822    // Currently not implemented: just abort
2823    assert(0 && "part_set intrinsic not implemented");
2824    abort();
2825  }
2826  case Intrinsic::bswap:
2827    setValue(&I, DAG.getNode(ISD::BSWAP,
2828                             getValue(I.getOperand(1)).getValueType(),
2829                             getValue(I.getOperand(1))));
2830    return 0;
2831  case Intrinsic::cttz: {
2832    SDOperand Arg = getValue(I.getOperand(1));
2833    MVT::ValueType Ty = Arg.getValueType();
2834    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2835    setValue(&I, result);
2836    return 0;
2837  }
2838  case Intrinsic::ctlz: {
2839    SDOperand Arg = getValue(I.getOperand(1));
2840    MVT::ValueType Ty = Arg.getValueType();
2841    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2842    setValue(&I, result);
2843    return 0;
2844  }
2845  case Intrinsic::ctpop: {
2846    SDOperand Arg = getValue(I.getOperand(1));
2847    MVT::ValueType Ty = Arg.getValueType();
2848    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2849    setValue(&I, result);
2850    return 0;
2851  }
2852  case Intrinsic::stacksave: {
2853    SDOperand Op = getRoot();
2854    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2855              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2856    setValue(&I, Tmp);
2857    DAG.setRoot(Tmp.getValue(1));
2858    return 0;
2859  }
2860  case Intrinsic::stackrestore: {
2861    SDOperand Tmp = getValue(I.getOperand(1));
2862    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2863    return 0;
2864  }
2865  case Intrinsic::prefetch:
2866    // FIXME: Currently discarding prefetches.
2867    return 0;
2868
2869  case Intrinsic::var_annotation:
2870    // Discard annotate attributes
2871    return 0;
2872
2873  case Intrinsic::adjust_trampoline: {
2874    SDOperand Arg = getValue(I.getOperand(1));
2875    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMP, TLI.getPointerTy(), Arg));
2876    return 0;
2877  }
2878
2879  case Intrinsic::init_trampoline: {
2880    const Function *F =
2881      cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
2882
2883    SDOperand Ops[6];
2884    Ops[0] = getRoot();
2885    Ops[1] = getValue(I.getOperand(1));
2886    Ops[2] = getValue(I.getOperand(2));
2887    Ops[3] = getValue(I.getOperand(3));
2888    Ops[4] = DAG.getSrcValue(I.getOperand(1));
2889    Ops[5] = DAG.getSrcValue(F);
2890
2891    DAG.setRoot(DAG.getNode(ISD::TRAMPOLINE, MVT::Other, Ops, 6));
2892    return 0;
2893  }
2894  }
2895}
2896
2897
2898void SelectionDAGLowering::LowerCallTo(Instruction &I,
2899                                       const Type *CalledValueTy,
2900                                       unsigned CallingConv,
2901                                       bool IsTailCall,
2902                                       SDOperand Callee, unsigned OpIdx,
2903                                       MachineBasicBlock *LandingPad) {
2904  const PointerType *PT = cast<PointerType>(CalledValueTy);
2905  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2906  const ParamAttrsList *Attrs = FTy->getParamAttrs();
2907  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2908  unsigned BeginLabel = 0, EndLabel = 0;
2909
2910  TargetLowering::ArgListTy Args;
2911  TargetLowering::ArgListEntry Entry;
2912  Args.reserve(I.getNumOperands());
2913  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2914    Value *Arg = I.getOperand(i);
2915    SDOperand ArgNode = getValue(Arg);
2916    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2917
2918    unsigned attrInd = i - OpIdx + 1;
2919    Entry.isSExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
2920    Entry.isZExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
2921    Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
2922    Entry.isSRet  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
2923    Entry.isNest  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::Nest);
2924    Entry.isByVal = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ByVal);
2925    Args.push_back(Entry);
2926  }
2927
2928  if (ExceptionHandling && MMI) {
2929    // Insert a label before the invoke call to mark the try range.  This can be
2930    // used to detect deletion of the invoke via the MachineModuleInfo.
2931    BeginLabel = MMI->NextLabelID();
2932    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2933                            DAG.getConstant(BeginLabel, MVT::i32)));
2934  }
2935
2936  std::pair<SDOperand,SDOperand> Result =
2937    TLI.LowerCallTo(getRoot(), I.getType(),
2938                    Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2939                    FTy->isVarArg(), CallingConv, IsTailCall,
2940                    Callee, Args, DAG);
2941  if (I.getType() != Type::VoidTy)
2942    setValue(&I, Result.first);
2943  DAG.setRoot(Result.second);
2944
2945  if (ExceptionHandling && MMI) {
2946    // Insert a label at the end of the invoke call to mark the try range.  This
2947    // can be used to detect deletion of the invoke via the MachineModuleInfo.
2948    EndLabel = MMI->NextLabelID();
2949    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2950                            DAG.getConstant(EndLabel, MVT::i32)));
2951
2952    // Inform MachineModuleInfo of range.
2953    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2954  }
2955}
2956
2957
2958void SelectionDAGLowering::visitCall(CallInst &I) {
2959  const char *RenameFn = 0;
2960  if (Function *F = I.getCalledFunction()) {
2961    if (F->isDeclaration())
2962      if (unsigned IID = F->getIntrinsicID()) {
2963        RenameFn = visitIntrinsicCall(I, IID);
2964        if (!RenameFn)
2965          return;
2966      } else {    // Not an LLVM intrinsic.
2967        const std::string &Name = F->getName();
2968        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2969          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2970              I.getOperand(1)->getType()->isFloatingPoint() &&
2971              I.getType() == I.getOperand(1)->getType() &&
2972              I.getType() == I.getOperand(2)->getType()) {
2973            SDOperand LHS = getValue(I.getOperand(1));
2974            SDOperand RHS = getValue(I.getOperand(2));
2975            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2976                                     LHS, RHS));
2977            return;
2978          }
2979        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2980          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2981              I.getOperand(1)->getType()->isFloatingPoint() &&
2982              I.getType() == I.getOperand(1)->getType()) {
2983            SDOperand Tmp = getValue(I.getOperand(1));
2984            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2985            return;
2986          }
2987        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2988          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2989              I.getOperand(1)->getType()->isFloatingPoint() &&
2990              I.getType() == I.getOperand(1)->getType()) {
2991            SDOperand Tmp = getValue(I.getOperand(1));
2992            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2993            return;
2994          }
2995        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2996          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2997              I.getOperand(1)->getType()->isFloatingPoint() &&
2998              I.getType() == I.getOperand(1)->getType()) {
2999            SDOperand Tmp = getValue(I.getOperand(1));
3000            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3001            return;
3002          }
3003        }
3004      }
3005  } else if (isa<InlineAsm>(I.getOperand(0))) {
3006    visitInlineAsm(I);
3007    return;
3008  }
3009
3010  SDOperand Callee;
3011  if (!RenameFn)
3012    Callee = getValue(I.getOperand(0));
3013  else
3014    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3015
3016  LowerCallTo(I, I.getCalledValue()->getType(),
3017              I.getCallingConv(),
3018              I.isTailCall(),
3019              Callee,
3020              1);
3021}
3022
3023
3024/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3025/// this value and returns the result as a ValueVT value.  This uses
3026/// Chain/Flag as the input and updates them for the output Chain/Flag.
3027/// If the Flag pointer is NULL, no flag is used.
3028SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3029                                        SDOperand &Chain, SDOperand *Flag)const{
3030  // Copy the legal parts from the registers.
3031  unsigned NumParts = Regs.size();
3032  SmallVector<SDOperand, 8> Parts(NumParts);
3033  for (unsigned i = 0; i != NumParts; ++i) {
3034    SDOperand Part = Flag ?
3035                     DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
3036                     DAG.getCopyFromReg(Chain, Regs[i], RegVT);
3037    Chain = Part.getValue(1);
3038    if (Flag)
3039      *Flag = Part.getValue(2);
3040    Parts[i] = Part;
3041  }
3042
3043  // Assemble the legal parts into the final value.
3044  return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
3045}
3046
3047/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3048/// specified value into the registers specified by this object.  This uses
3049/// Chain/Flag as the input and updates them for the output Chain/Flag.
3050/// If the Flag pointer is NULL, no flag is used.
3051void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3052                                 SDOperand &Chain, SDOperand *Flag) const {
3053  // Get the list of the values's legal parts.
3054  unsigned NumParts = Regs.size();
3055  SmallVector<SDOperand, 8> Parts(NumParts);
3056  getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3057
3058  // Copy the parts into the registers.
3059  for (unsigned i = 0; i != NumParts; ++i) {
3060    SDOperand Part = Flag ?
3061                     DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag) :
3062                     DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3063    Chain = Part.getValue(0);
3064    if (Flag)
3065      *Flag = Part.getValue(1);
3066  }
3067}
3068
3069/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3070/// operand list.  This adds the code marker and includes the number of
3071/// values added into it.
3072void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3073                                        std::vector<SDOperand> &Ops) const {
3074  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3075  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3076  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3077    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3078}
3079
3080/// isAllocatableRegister - If the specified register is safe to allocate,
3081/// i.e. it isn't a stack pointer or some other special register, return the
3082/// register class for the register.  Otherwise, return null.
3083static const TargetRegisterClass *
3084isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3085                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
3086  MVT::ValueType FoundVT = MVT::Other;
3087  const TargetRegisterClass *FoundRC = 0;
3088  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3089       E = MRI->regclass_end(); RCI != E; ++RCI) {
3090    MVT::ValueType ThisVT = MVT::Other;
3091
3092    const TargetRegisterClass *RC = *RCI;
3093    // If none of the the value types for this register class are valid, we
3094    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3095    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3096         I != E; ++I) {
3097      if (TLI.isTypeLegal(*I)) {
3098        // If we have already found this register in a different register class,
3099        // choose the one with the largest VT specified.  For example, on
3100        // PowerPC, we favor f64 register classes over f32.
3101        if (FoundVT == MVT::Other ||
3102            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3103          ThisVT = *I;
3104          break;
3105        }
3106      }
3107    }
3108
3109    if (ThisVT == MVT::Other) continue;
3110
3111    // NOTE: This isn't ideal.  In particular, this might allocate the
3112    // frame pointer in functions that need it (due to them not being taken
3113    // out of allocation, because a variable sized allocation hasn't been seen
3114    // yet).  This is a slight code pessimization, but should still work.
3115    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3116         E = RC->allocation_order_end(MF); I != E; ++I)
3117      if (*I == Reg) {
3118        // We found a matching register class.  Keep looking at others in case
3119        // we find one with larger registers that this physreg is also in.
3120        FoundRC = RC;
3121        FoundVT = ThisVT;
3122        break;
3123      }
3124  }
3125  return FoundRC;
3126}
3127
3128
3129namespace {
3130/// AsmOperandInfo - This contains information for each constraint that we are
3131/// lowering.
3132struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3133  /// ConstraintCode - This contains the actual string for the code, like "m".
3134  std::string ConstraintCode;
3135
3136  /// ConstraintType - Information about the constraint code, e.g. Register,
3137  /// RegisterClass, Memory, Other, Unknown.
3138  TargetLowering::ConstraintType ConstraintType;
3139
3140  /// CallOperand/CallOperandval - If this is the result output operand or a
3141  /// clobber, this is null, otherwise it is the incoming operand to the
3142  /// CallInst.  This gets modified as the asm is processed.
3143  SDOperand CallOperand;
3144  Value *CallOperandVal;
3145
3146  /// ConstraintVT - The ValueType for the operand value.
3147  MVT::ValueType ConstraintVT;
3148
3149  /// AssignedRegs - If this is a register or register class operand, this
3150  /// contains the set of register corresponding to the operand.
3151  RegsForValue AssignedRegs;
3152
3153  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3154    : InlineAsm::ConstraintInfo(info),
3155      ConstraintType(TargetLowering::C_Unknown),
3156      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3157  }
3158
3159  void ComputeConstraintToUse(const TargetLowering &TLI);
3160
3161  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3162  /// busy in OutputRegs/InputRegs.
3163  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3164                         std::set<unsigned> &OutputRegs,
3165                         std::set<unsigned> &InputRegs) const {
3166     if (isOutReg)
3167       OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3168     if (isInReg)
3169       InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3170   }
3171};
3172} // end anon namespace.
3173
3174/// getConstraintGenerality - Return an integer indicating how general CT is.
3175static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3176  switch (CT) {
3177    default: assert(0 && "Unknown constraint type!");
3178    case TargetLowering::C_Other:
3179    case TargetLowering::C_Unknown:
3180      return 0;
3181    case TargetLowering::C_Register:
3182      return 1;
3183    case TargetLowering::C_RegisterClass:
3184      return 2;
3185    case TargetLowering::C_Memory:
3186      return 3;
3187  }
3188}
3189
3190void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3191  assert(!Codes.empty() && "Must have at least one constraint");
3192
3193  std::string *Current = &Codes[0];
3194  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3195  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3196    ConstraintCode = *Current;
3197    ConstraintType = CurType;
3198    return;
3199  }
3200
3201  unsigned CurGenerality = getConstraintGenerality(CurType);
3202
3203  // If we have multiple constraints, try to pick the most general one ahead
3204  // of time.  This isn't a wonderful solution, but handles common cases.
3205  for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3206    TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3207    unsigned ThisGenerality = getConstraintGenerality(ThisType);
3208    if (ThisGenerality > CurGenerality) {
3209      // This constraint letter is more general than the previous one,
3210      // use it.
3211      CurType = ThisType;
3212      Current = &Codes[j];
3213      CurGenerality = ThisGenerality;
3214    }
3215  }
3216
3217  ConstraintCode = *Current;
3218  ConstraintType = CurType;
3219}
3220
3221
3222void SelectionDAGLowering::
3223GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3224                     std::set<unsigned> &OutputRegs,
3225                     std::set<unsigned> &InputRegs) {
3226  // Compute whether this value requires an input register, an output register,
3227  // or both.
3228  bool isOutReg = false;
3229  bool isInReg = false;
3230  switch (OpInfo.Type) {
3231  case InlineAsm::isOutput:
3232    isOutReg = true;
3233
3234    // If this is an early-clobber output, or if there is an input
3235    // constraint that matches this, we need to reserve the input register
3236    // so no other inputs allocate to it.
3237    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3238    break;
3239  case InlineAsm::isInput:
3240    isInReg = true;
3241    isOutReg = false;
3242    break;
3243  case InlineAsm::isClobber:
3244    isOutReg = true;
3245    isInReg = true;
3246    break;
3247  }
3248
3249
3250  MachineFunction &MF = DAG.getMachineFunction();
3251  std::vector<unsigned> Regs;
3252
3253  // If this is a constraint for a single physreg, or a constraint for a
3254  // register class, find it.
3255  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3256    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3257                                     OpInfo.ConstraintVT);
3258
3259  unsigned NumRegs = 1;
3260  if (OpInfo.ConstraintVT != MVT::Other)
3261    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3262  MVT::ValueType RegVT;
3263  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3264
3265
3266  // If this is a constraint for a specific physical register, like {r17},
3267  // assign it now.
3268  if (PhysReg.first) {
3269    if (OpInfo.ConstraintVT == MVT::Other)
3270      ValueVT = *PhysReg.second->vt_begin();
3271
3272    // Get the actual register value type.  This is important, because the user
3273    // may have asked for (e.g.) the AX register in i32 type.  We need to
3274    // remember that AX is actually i16 to get the right extension.
3275    RegVT = *PhysReg.second->vt_begin();
3276
3277    // This is a explicit reference to a physical register.
3278    Regs.push_back(PhysReg.first);
3279
3280    // If this is an expanded reference, add the rest of the regs to Regs.
3281    if (NumRegs != 1) {
3282      TargetRegisterClass::iterator I = PhysReg.second->begin();
3283      TargetRegisterClass::iterator E = PhysReg.second->end();
3284      for (; *I != PhysReg.first; ++I)
3285        assert(I != E && "Didn't find reg!");
3286
3287      // Already added the first reg.
3288      --NumRegs; ++I;
3289      for (; NumRegs; --NumRegs, ++I) {
3290        assert(I != E && "Ran out of registers to allocate!");
3291        Regs.push_back(*I);
3292      }
3293    }
3294    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3295    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3296    return;
3297  }
3298
3299  // Otherwise, if this was a reference to an LLVM register class, create vregs
3300  // for this reference.
3301  std::vector<unsigned> RegClassRegs;
3302  const TargetRegisterClass *RC = PhysReg.second;
3303  if (RC) {
3304    // If this is an early clobber or tied register, our regalloc doesn't know
3305    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3306    // and let the regalloc do the right thing.
3307    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3308        // If there is some other early clobber and this is an input register,
3309        // then we are forced to pre-allocate the input reg so it doesn't
3310        // conflict with the earlyclobber.
3311        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3312      RegVT = *PhysReg.second->vt_begin();
3313
3314      if (OpInfo.ConstraintVT == MVT::Other)
3315        ValueVT = RegVT;
3316
3317      // Create the appropriate number of virtual registers.
3318      SSARegMap *RegMap = MF.getSSARegMap();
3319      for (; NumRegs; --NumRegs)
3320        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3321
3322      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3323      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3324      return;
3325    }
3326
3327    // Otherwise, we can't allocate it.  Let the code below figure out how to
3328    // maintain these constraints.
3329    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3330
3331  } else {
3332    // This is a reference to a register class that doesn't directly correspond
3333    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3334    // registers from the class.
3335    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3336                                                         OpInfo.ConstraintVT);
3337  }
3338
3339  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3340  unsigned NumAllocated = 0;
3341  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3342    unsigned Reg = RegClassRegs[i];
3343    // See if this register is available.
3344    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3345        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3346      // Make sure we find consecutive registers.
3347      NumAllocated = 0;
3348      continue;
3349    }
3350
3351    // Check to see if this register is allocatable (i.e. don't give out the
3352    // stack pointer).
3353    if (RC == 0) {
3354      RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3355      if (!RC) {        // Couldn't allocate this register.
3356        // Reset NumAllocated to make sure we return consecutive registers.
3357        NumAllocated = 0;
3358        continue;
3359      }
3360    }
3361
3362    // Okay, this register is good, we can use it.
3363    ++NumAllocated;
3364
3365    // If we allocated enough consecutive registers, succeed.
3366    if (NumAllocated == NumRegs) {
3367      unsigned RegStart = (i-NumAllocated)+1;
3368      unsigned RegEnd   = i+1;
3369      // Mark all of the allocated registers used.
3370      for (unsigned i = RegStart; i != RegEnd; ++i)
3371        Regs.push_back(RegClassRegs[i]);
3372
3373      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3374                                         OpInfo.ConstraintVT);
3375      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3376      return;
3377    }
3378  }
3379
3380  // Otherwise, we couldn't allocate enough registers for this.
3381  return;
3382}
3383
3384
3385/// visitInlineAsm - Handle a call to an InlineAsm object.
3386///
3387void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
3388  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
3389
3390  /// ConstraintOperands - Information about all of the constraints.
3391  std::vector<AsmOperandInfo> ConstraintOperands;
3392
3393  SDOperand Chain = getRoot();
3394  SDOperand Flag;
3395
3396  std::set<unsigned> OutputRegs, InputRegs;
3397
3398  // Do a prepass over the constraints, canonicalizing them, and building up the
3399  // ConstraintOperands list.
3400  std::vector<InlineAsm::ConstraintInfo>
3401    ConstraintInfos = IA->ParseConstraints();
3402
3403  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3404  // constraint.  If so, we can't let the register allocator allocate any input
3405  // registers, because it will not know to avoid the earlyclobbered output reg.
3406  bool SawEarlyClobber = false;
3407
3408  unsigned OpNo = 1;   // OpNo - The operand of the CallInst.
3409  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3410    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3411    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3412
3413    MVT::ValueType OpVT = MVT::Other;
3414
3415    // Compute the value type for each operand.
3416    switch (OpInfo.Type) {
3417    case InlineAsm::isOutput:
3418      if (!OpInfo.isIndirect) {
3419        // The return value of the call is this value.  As such, there is no
3420        // corresponding argument.
3421        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3422        OpVT = TLI.getValueType(I.getType());
3423      } else {
3424        OpInfo.CallOperandVal = I.getOperand(OpNo++);
3425      }
3426      break;
3427    case InlineAsm::isInput:
3428      OpInfo.CallOperandVal = I.getOperand(OpNo++);
3429      break;
3430    case InlineAsm::isClobber:
3431      // Nothing to do.
3432      break;
3433    }
3434
3435    // If this is an input or an indirect output, process the call argument.
3436    if (OpInfo.CallOperandVal) {
3437      OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3438      const Type *OpTy = OpInfo.CallOperandVal->getType();
3439      // If this is an indirect operand, the operand is a pointer to the
3440      // accessed type.
3441      if (OpInfo.isIndirect)
3442        OpTy = cast<PointerType>(OpTy)->getElementType();
3443
3444      // If OpTy is not a first-class value, it may be a struct/union that we
3445      // can tile with integers.
3446      if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3447        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3448        switch (BitSize) {
3449        default: break;
3450        case 1:
3451        case 8:
3452        case 16:
3453        case 32:
3454        case 64:
3455          OpTy = IntegerType::get(BitSize);
3456          break;
3457        }
3458      }
3459
3460      OpVT = TLI.getValueType(OpTy, true);
3461    }
3462
3463    OpInfo.ConstraintVT = OpVT;
3464
3465    // Compute the constraint code and ConstraintType to use.
3466    OpInfo.ComputeConstraintToUse(TLI);
3467
3468    // Keep track of whether we see an earlyclobber.
3469    SawEarlyClobber |= OpInfo.isEarlyClobber;
3470
3471    // If this is a memory input, and if the operand is not indirect, do what we
3472    // need to to provide an address for the memory input.
3473    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3474        !OpInfo.isIndirect) {
3475      assert(OpInfo.Type == InlineAsm::isInput &&
3476             "Can only indirectify direct input operands!");
3477
3478      // Memory operands really want the address of the value.  If we don't have
3479      // an indirect input, put it in the constpool if we can, otherwise spill
3480      // it to a stack slot.
3481
3482      // If the operand is a float, integer, or vector constant, spill to a
3483      // constant pool entry to get its address.
3484      Value *OpVal = OpInfo.CallOperandVal;
3485      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3486          isa<ConstantVector>(OpVal)) {
3487        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3488                                                 TLI.getPointerTy());
3489      } else {
3490        // Otherwise, create a stack slot and emit a store to it before the
3491        // asm.
3492        const Type *Ty = OpVal->getType();
3493        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
3494        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3495        MachineFunction &MF = DAG.getMachineFunction();
3496        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3497        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3498        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3499        OpInfo.CallOperand = StackSlot;
3500      }
3501
3502      // There is no longer a Value* corresponding to this operand.
3503      OpInfo.CallOperandVal = 0;
3504      // It is now an indirect operand.
3505      OpInfo.isIndirect = true;
3506    }
3507
3508    // If this constraint is for a specific register, allocate it before
3509    // anything else.
3510    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3511      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3512  }
3513  ConstraintInfos.clear();
3514
3515
3516  // Second pass - Loop over all of the operands, assigning virtual or physregs
3517  // to registerclass operands.
3518  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3519    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3520
3521    // C_Register operands have already been allocated, Other/Memory don't need
3522    // to be.
3523    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3524      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3525  }
3526
3527  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3528  std::vector<SDOperand> AsmNodeOperands;
3529  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3530  AsmNodeOperands.push_back(
3531          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3532
3533
3534  // Loop over all of the inputs, copying the operand values into the
3535  // appropriate registers and processing the output regs.
3536  RegsForValue RetValRegs;
3537
3538  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3539  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3540
3541  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3542    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3543
3544    switch (OpInfo.Type) {
3545    case InlineAsm::isOutput: {
3546      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3547          OpInfo.ConstraintType != TargetLowering::C_Register) {
3548        // Memory output, or 'other' output (e.g. 'X' constraint).
3549        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3550
3551        // Add information to the INLINEASM node to know about this output.
3552        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3553        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3554                                                        TLI.getPointerTy()));
3555        AsmNodeOperands.push_back(OpInfo.CallOperand);
3556        break;
3557      }
3558
3559      // Otherwise, this is a register or register class output.
3560
3561      // Copy the output from the appropriate register.  Find a register that
3562      // we can use.
3563      if (OpInfo.AssignedRegs.Regs.empty()) {
3564        cerr << "Couldn't allocate output reg for contraint '"
3565             << OpInfo.ConstraintCode << "'!\n";
3566        exit(1);
3567      }
3568
3569      if (!OpInfo.isIndirect) {
3570        // This is the result value of the call.
3571        assert(RetValRegs.Regs.empty() &&
3572               "Cannot have multiple output constraints yet!");
3573        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3574        RetValRegs = OpInfo.AssignedRegs;
3575      } else {
3576        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3577                                                      OpInfo.CallOperandVal));
3578      }
3579
3580      // Add information to the INLINEASM node to know that this register is
3581      // set.
3582      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3583                                               AsmNodeOperands);
3584      break;
3585    }
3586    case InlineAsm::isInput: {
3587      SDOperand InOperandVal = OpInfo.CallOperand;
3588
3589      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3590        // If this is required to match an output register we have already set,
3591        // just use its register.
3592        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3593
3594        // Scan until we find the definition we already emitted of this operand.
3595        // When we find it, create a RegsForValue operand.
3596        unsigned CurOp = 2;  // The first operand.
3597        for (; OperandNo; --OperandNo) {
3598          // Advance to the next operand.
3599          unsigned NumOps =
3600            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3601          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3602                  (NumOps & 7) == 4 /*MEM*/) &&
3603                 "Skipped past definitions?");
3604          CurOp += (NumOps>>3)+1;
3605        }
3606
3607        unsigned NumOps =
3608          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3609        if ((NumOps & 7) == 2 /*REGDEF*/) {
3610          // Add NumOps>>3 registers to MatchedRegs.
3611          RegsForValue MatchedRegs;
3612          MatchedRegs.ValueVT = InOperandVal.getValueType();
3613          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3614          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3615            unsigned Reg =
3616              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3617            MatchedRegs.Regs.push_back(Reg);
3618          }
3619
3620          // Use the produced MatchedRegs object to
3621          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3622          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3623          break;
3624        } else {
3625          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3626          assert(0 && "matching constraints for memory operands unimp");
3627        }
3628      }
3629
3630      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3631        assert(!OpInfo.isIndirect &&
3632               "Don't know how to handle indirect other inputs yet!");
3633
3634        std::vector<SDOperand> Ops;
3635        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
3636                                         Ops, DAG);
3637        if (Ops.empty()) {
3638          cerr << "Invalid operand for inline asm constraint '"
3639               << OpInfo.ConstraintCode << "'!\n";
3640          exit(1);
3641        }
3642
3643        // Add information to the INLINEASM node to know about this input.
3644        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
3645        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3646                                                        TLI.getPointerTy()));
3647        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
3648        break;
3649      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3650        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3651        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3652               "Memory operands expect pointer values");
3653
3654        // Add information to the INLINEASM node to know about this input.
3655        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3656        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3657                                                        TLI.getPointerTy()));
3658        AsmNodeOperands.push_back(InOperandVal);
3659        break;
3660      }
3661
3662      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3663              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3664             "Unknown constraint type!");
3665      assert(!OpInfo.isIndirect &&
3666             "Don't know how to handle indirect register inputs yet!");
3667
3668      // Copy the input into the appropriate registers.
3669      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3670             "Couldn't allocate input reg!");
3671
3672      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3673
3674      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3675                                               AsmNodeOperands);
3676      break;
3677    }
3678    case InlineAsm::isClobber: {
3679      // Add the clobbered value to the operand list, so that the register
3680      // allocator is aware that the physreg got clobbered.
3681      if (!OpInfo.AssignedRegs.Regs.empty())
3682        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3683                                                 AsmNodeOperands);
3684      break;
3685    }
3686    }
3687  }
3688
3689  // Finish up input operands.
3690  AsmNodeOperands[0] = Chain;
3691  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3692
3693  Chain = DAG.getNode(ISD::INLINEASM,
3694                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3695                      &AsmNodeOperands[0], AsmNodeOperands.size());
3696  Flag = Chain.getValue(1);
3697
3698  // If this asm returns a register value, copy the result from that register
3699  // and set it as the value of the call.
3700  if (!RetValRegs.Regs.empty()) {
3701    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3702
3703    // If the result of the inline asm is a vector, it may have the wrong
3704    // width/num elts.  Make sure to convert it to the right type with
3705    // bit_convert.
3706    if (MVT::isVector(Val.getValueType())) {
3707      const VectorType *VTy = cast<VectorType>(I.getType());
3708      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3709
3710      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3711    }
3712
3713    setValue(&I, Val);
3714  }
3715
3716  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3717
3718  // Process indirect outputs, first output all of the flagged copies out of
3719  // physregs.
3720  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3721    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3722    Value *Ptr = IndirectStoresToEmit[i].second;
3723    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3724    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3725  }
3726
3727  // Emit the non-flagged stores from the physregs.
3728  SmallVector<SDOperand, 8> OutChains;
3729  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3730    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3731                                    getValue(StoresToEmit[i].second),
3732                                    StoresToEmit[i].second, 0));
3733  if (!OutChains.empty())
3734    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3735                        &OutChains[0], OutChains.size());
3736  DAG.setRoot(Chain);
3737}
3738
3739
3740void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3741  SDOperand Src = getValue(I.getOperand(0));
3742
3743  MVT::ValueType IntPtr = TLI.getPointerTy();
3744
3745  if (IntPtr < Src.getValueType())
3746    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3747  else if (IntPtr > Src.getValueType())
3748    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3749
3750  // Scale the source by the type size.
3751  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
3752  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3753                    Src, getIntPtrConstant(ElementSize));
3754
3755  TargetLowering::ArgListTy Args;
3756  TargetLowering::ArgListEntry Entry;
3757  Entry.Node = Src;
3758  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3759  Args.push_back(Entry);
3760
3761  std::pair<SDOperand,SDOperand> Result =
3762    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3763                    DAG.getExternalSymbol("malloc", IntPtr),
3764                    Args, DAG);
3765  setValue(&I, Result.first);  // Pointers always fit in registers
3766  DAG.setRoot(Result.second);
3767}
3768
3769void SelectionDAGLowering::visitFree(FreeInst &I) {
3770  TargetLowering::ArgListTy Args;
3771  TargetLowering::ArgListEntry Entry;
3772  Entry.Node = getValue(I.getOperand(0));
3773  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3774  Args.push_back(Entry);
3775  MVT::ValueType IntPtr = TLI.getPointerTy();
3776  std::pair<SDOperand,SDOperand> Result =
3777    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3778                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3779  DAG.setRoot(Result.second);
3780}
3781
3782// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3783// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3784// instructions are special in various ways, which require special support to
3785// insert.  The specified MachineInstr is created but not inserted into any
3786// basic blocks, and the scheduler passes ownership of it to this method.
3787MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3788                                                       MachineBasicBlock *MBB) {
3789  cerr << "If a target marks an instruction with "
3790       << "'usesCustomDAGSchedInserter', it must implement "
3791       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3792  abort();
3793  return 0;
3794}
3795
3796void SelectionDAGLowering::visitVAStart(CallInst &I) {
3797  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3798                          getValue(I.getOperand(1)),
3799                          DAG.getSrcValue(I.getOperand(1))));
3800}
3801
3802void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3803  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3804                             getValue(I.getOperand(0)),
3805                             DAG.getSrcValue(I.getOperand(0)));
3806  setValue(&I, V);
3807  DAG.setRoot(V.getValue(1));
3808}
3809
3810void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3811  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3812                          getValue(I.getOperand(1)),
3813                          DAG.getSrcValue(I.getOperand(1))));
3814}
3815
3816void SelectionDAGLowering::visitVACopy(CallInst &I) {
3817  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3818                          getValue(I.getOperand(1)),
3819                          getValue(I.getOperand(2)),
3820                          DAG.getSrcValue(I.getOperand(1)),
3821                          DAG.getSrcValue(I.getOperand(2))));
3822}
3823
3824/// TargetLowering::LowerArguments - This is the default LowerArguments
3825/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3826/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3827/// integrated into SDISel.
3828std::vector<SDOperand>
3829TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3830  const FunctionType *FTy = F.getFunctionType();
3831  const ParamAttrsList *Attrs = FTy->getParamAttrs();
3832  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3833  std::vector<SDOperand> Ops;
3834  Ops.push_back(DAG.getRoot());
3835  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3836  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3837
3838  // Add one result value for each formal argument.
3839  std::vector<MVT::ValueType> RetVals;
3840  unsigned j = 1;
3841  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3842       I != E; ++I, ++j) {
3843    MVT::ValueType VT = getValueType(I->getType());
3844    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3845    unsigned OriginalAlignment =
3846      getTargetData()->getABITypeAlignment(I->getType());
3847
3848    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3849    // that is zero extended!
3850    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt))
3851      Flags &= ~(ISD::ParamFlags::SExt);
3852    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt))
3853      Flags |= ISD::ParamFlags::SExt;
3854    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg))
3855      Flags |= ISD::ParamFlags::InReg;
3856    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet))
3857      Flags |= ISD::ParamFlags::StructReturn;
3858    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ByVal)) {
3859      Flags |= ISD::ParamFlags::ByVal;
3860      const PointerType *Ty = cast<PointerType>(I->getType());
3861      const StructType *STy = cast<StructType>(Ty->getElementType());
3862      unsigned StructAlign = Log2_32(getTargetData()->getABITypeAlignment(STy));
3863      unsigned StructSize  = getTargetData()->getTypeSize(STy);
3864      Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
3865      Flags |= (StructSize  << ISD::ParamFlags::ByValSizeOffs);
3866    }
3867    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::Nest))
3868      Flags |= ISD::ParamFlags::Nest;
3869    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3870
3871    switch (getTypeAction(VT)) {
3872    default: assert(0 && "Unknown type action!");
3873    case Legal:
3874      RetVals.push_back(VT);
3875      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3876      break;
3877    case Promote:
3878      RetVals.push_back(getTypeToTransformTo(VT));
3879      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3880      break;
3881    case Expand: {
3882      // If this is an illegal type, it needs to be broken up to fit into
3883      // registers.
3884      MVT::ValueType RegisterVT = getRegisterType(VT);
3885      unsigned NumRegs = getNumRegisters(VT);
3886      for (unsigned i = 0; i != NumRegs; ++i) {
3887        RetVals.push_back(RegisterVT);
3888        // if it isn't first piece, alignment must be 1
3889        if (i > 0)
3890          Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3891            (1 << ISD::ParamFlags::OrigAlignmentOffs);
3892        Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3893      }
3894      break;
3895    }
3896    }
3897  }
3898
3899  RetVals.push_back(MVT::Other);
3900
3901  // Create the node.
3902  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3903                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3904                               &Ops[0], Ops.size()).Val;
3905  unsigned NumArgRegs = Result->getNumValues() - 1;
3906  DAG.setRoot(SDOperand(Result, NumArgRegs));
3907
3908  // Set up the return result vector.
3909  Ops.clear();
3910  unsigned i = 0;
3911  unsigned Idx = 1;
3912  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3913      ++I, ++Idx) {
3914    MVT::ValueType VT = getValueType(I->getType());
3915
3916    switch (getTypeAction(VT)) {
3917    default: assert(0 && "Unknown type action!");
3918    case Legal:
3919      Ops.push_back(SDOperand(Result, i++));
3920      break;
3921    case Promote: {
3922      SDOperand Op(Result, i++);
3923      if (MVT::isInteger(VT)) {
3924        if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt))
3925          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3926                           DAG.getValueType(VT));
3927        else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt))
3928          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3929                           DAG.getValueType(VT));
3930        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3931      } else {
3932        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3933        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3934      }
3935      Ops.push_back(Op);
3936      break;
3937    }
3938    case Expand: {
3939      MVT::ValueType PartVT = getRegisterType(VT);
3940      unsigned NumParts = getNumRegisters(VT);
3941      SmallVector<SDOperand, 4> Parts(NumParts);
3942      for (unsigned j = 0; j != NumParts; ++j)
3943        Parts[j] = SDOperand(Result, i++);
3944      Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
3945      break;
3946    }
3947    }
3948  }
3949  assert(i == NumArgRegs && "Argument register count mismatch!");
3950  return Ops;
3951}
3952
3953
3954/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3955/// implementation, which just inserts an ISD::CALL node, which is later custom
3956/// lowered by the target to something concrete.  FIXME: When all targets are
3957/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3958std::pair<SDOperand, SDOperand>
3959TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3960                            bool RetTyIsSigned, bool isVarArg,
3961                            unsigned CallingConv, bool isTailCall,
3962                            SDOperand Callee,
3963                            ArgListTy &Args, SelectionDAG &DAG) {
3964  SmallVector<SDOperand, 32> Ops;
3965  Ops.push_back(Chain);   // Op#0 - Chain
3966  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3967  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3968  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3969  Ops.push_back(Callee);
3970
3971  // Handle all of the outgoing arguments.
3972  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3973    MVT::ValueType VT = getValueType(Args[i].Ty);
3974    SDOperand Op = Args[i].Node;
3975    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3976    unsigned OriginalAlignment =
3977      getTargetData()->getABITypeAlignment(Args[i].Ty);
3978
3979    if (Args[i].isSExt)
3980      Flags |= ISD::ParamFlags::SExt;
3981    if (Args[i].isZExt)
3982      Flags |= ISD::ParamFlags::ZExt;
3983    if (Args[i].isInReg)
3984      Flags |= ISD::ParamFlags::InReg;
3985    if (Args[i].isSRet)
3986      Flags |= ISD::ParamFlags::StructReturn;
3987    if (Args[i].isByVal) {
3988      Flags |= ISD::ParamFlags::ByVal;
3989      const PointerType *Ty = cast<PointerType>(Args[i].Ty);
3990      const StructType *STy = cast<StructType>(Ty->getElementType());
3991      unsigned StructAlign = Log2_32(getTargetData()->getABITypeAlignment(STy));
3992      unsigned StructSize  = getTargetData()->getTypeSize(STy);
3993      Flags |= (StructAlign << ISD::ParamFlags::ByValAlignOffs);
3994      Flags |= (StructSize  << ISD::ParamFlags::ByValSizeOffs);
3995    }
3996    if (Args[i].isNest)
3997      Flags |= ISD::ParamFlags::Nest;
3998    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
3999
4000    switch (getTypeAction(VT)) {
4001    default: assert(0 && "Unknown type action!");
4002    case Legal:
4003      Ops.push_back(Op);
4004      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4005      break;
4006    case Promote:
4007      if (MVT::isInteger(VT)) {
4008        unsigned ExtOp;
4009        if (Args[i].isSExt)
4010          ExtOp = ISD::SIGN_EXTEND;
4011        else if (Args[i].isZExt)
4012          ExtOp = ISD::ZERO_EXTEND;
4013        else
4014          ExtOp = ISD::ANY_EXTEND;
4015        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
4016      } else {
4017        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
4018        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
4019      }
4020      Ops.push_back(Op);
4021      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
4022      break;
4023    case Expand: {
4024      MVT::ValueType PartVT = getRegisterType(VT);
4025      unsigned NumParts = getNumRegisters(VT);
4026      SmallVector<SDOperand, 4> Parts(NumParts);
4027      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
4028      for (unsigned i = 0; i != NumParts; ++i) {
4029        // if it isn't first piece, alignment must be 1
4030        unsigned MyFlags = Flags;
4031        if (i != 0)
4032          MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
4033            (1 << ISD::ParamFlags::OrigAlignmentOffs);
4034
4035        Ops.push_back(Parts[i]);
4036        Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
4037      }
4038      break;
4039    }
4040    }
4041  }
4042
4043  // Figure out the result value types.
4044  MVT::ValueType VT = getValueType(RetTy);
4045  MVT::ValueType RegisterVT = getRegisterType(VT);
4046  unsigned NumRegs = getNumRegisters(VT);
4047  SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
4048  for (unsigned i = 0; i != NumRegs; ++i)
4049    RetTys[i] = RegisterVT;
4050
4051  RetTys.push_back(MVT::Other);  // Always has a chain.
4052
4053  // Create the CALL node.
4054  SDOperand Res = DAG.getNode(ISD::CALL,
4055                              DAG.getVTList(&RetTys[0], NumRegs + 1),
4056                              &Ops[0], Ops.size());
4057  Chain = Res.getValue(NumRegs);
4058
4059  // Gather up the call result into a single value.
4060  if (RetTy != Type::VoidTy) {
4061    ISD::NodeType AssertOp = ISD::AssertSext;
4062    if (!RetTyIsSigned)
4063      AssertOp = ISD::AssertZext;
4064    SmallVector<SDOperand, 4> Results(NumRegs);
4065    for (unsigned i = 0; i != NumRegs; ++i)
4066      Results[i] = Res.getValue(i);
4067    Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
4068  }
4069
4070  return std::make_pair(Res, Chain);
4071}
4072
4073SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4074  assert(0 && "LowerOperation not implemented for this target!");
4075  abort();
4076  return SDOperand();
4077}
4078
4079SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4080                                                 SelectionDAG &DAG) {
4081  assert(0 && "CustomPromoteOperation not implemented for this target!");
4082  abort();
4083  return SDOperand();
4084}
4085
4086/// getMemsetValue - Vectorized representation of the memset value
4087/// operand.
4088static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4089                                SelectionDAG &DAG) {
4090  MVT::ValueType CurVT = VT;
4091  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4092    uint64_t Val   = C->getValue() & 255;
4093    unsigned Shift = 8;
4094    while (CurVT != MVT::i8) {
4095      Val = (Val << Shift) | Val;
4096      Shift <<= 1;
4097      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4098    }
4099    return DAG.getConstant(Val, VT);
4100  } else {
4101    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4102    unsigned Shift = 8;
4103    while (CurVT != MVT::i8) {
4104      Value =
4105        DAG.getNode(ISD::OR, VT,
4106                    DAG.getNode(ISD::SHL, VT, Value,
4107                                DAG.getConstant(Shift, MVT::i8)), Value);
4108      Shift <<= 1;
4109      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4110    }
4111
4112    return Value;
4113  }
4114}
4115
4116/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4117/// used when a memcpy is turned into a memset when the source is a constant
4118/// string ptr.
4119static SDOperand getMemsetStringVal(MVT::ValueType VT,
4120                                    SelectionDAG &DAG, TargetLowering &TLI,
4121                                    std::string &Str, unsigned Offset) {
4122  uint64_t Val = 0;
4123  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4124  if (TLI.isLittleEndian())
4125    Offset = Offset + MSB - 1;
4126  for (unsigned i = 0; i != MSB; ++i) {
4127    Val = (Val << 8) | (unsigned char)Str[Offset];
4128    Offset += TLI.isLittleEndian() ? -1 : 1;
4129  }
4130  return DAG.getConstant(Val, VT);
4131}
4132
4133/// getMemBasePlusOffset - Returns base and offset node for the
4134static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4135                                      SelectionDAG &DAG, TargetLowering &TLI) {
4136  MVT::ValueType VT = Base.getValueType();
4137  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4138}
4139
4140/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4141/// to replace the memset / memcpy is below the threshold. It also returns the
4142/// types of the sequence of  memory ops to perform memset / memcpy.
4143static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4144                                     unsigned Limit, uint64_t Size,
4145                                     unsigned Align, TargetLowering &TLI) {
4146  MVT::ValueType VT;
4147
4148  if (TLI.allowsUnalignedMemoryAccesses()) {
4149    VT = MVT::i64;
4150  } else {
4151    switch (Align & 7) {
4152    case 0:
4153      VT = MVT::i64;
4154      break;
4155    case 4:
4156      VT = MVT::i32;
4157      break;
4158    case 2:
4159      VT = MVT::i16;
4160      break;
4161    default:
4162      VT = MVT::i8;
4163      break;
4164    }
4165  }
4166
4167  MVT::ValueType LVT = MVT::i64;
4168  while (!TLI.isTypeLegal(LVT))
4169    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4170  assert(MVT::isInteger(LVT));
4171
4172  if (VT > LVT)
4173    VT = LVT;
4174
4175  unsigned NumMemOps = 0;
4176  while (Size != 0) {
4177    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4178    while (VTSize > Size) {
4179      VT = (MVT::ValueType)((unsigned)VT - 1);
4180      VTSize >>= 1;
4181    }
4182    assert(MVT::isInteger(VT));
4183
4184    if (++NumMemOps > Limit)
4185      return false;
4186    MemOps.push_back(VT);
4187    Size -= VTSize;
4188  }
4189
4190  return true;
4191}
4192
4193void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4194  SDOperand Op1 = getValue(I.getOperand(1));
4195  SDOperand Op2 = getValue(I.getOperand(2));
4196  SDOperand Op3 = getValue(I.getOperand(3));
4197  SDOperand Op4 = getValue(I.getOperand(4));
4198  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4199  if (Align == 0) Align = 1;
4200
4201  // If the source and destination are known to not be aliases, we can
4202  // lower memmove as memcpy.
4203  if (Op == ISD::MEMMOVE) {
4204    uint64_t Size = -1;
4205    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
4206      Size = C->getValue();
4207    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
4208        AliasAnalysis::NoAlias)
4209      Op = ISD::MEMCPY;
4210  }
4211
4212  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4213    std::vector<MVT::ValueType> MemOps;
4214
4215    // Expand memset / memcpy to a series of load / store ops
4216    // if the size operand falls below a certain threshold.
4217    SmallVector<SDOperand, 8> OutChains;
4218    switch (Op) {
4219    default: break;  // Do nothing for now.
4220    case ISD::MEMSET: {
4221      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4222                                   Size->getValue(), Align, TLI)) {
4223        unsigned NumMemOps = MemOps.size();
4224        unsigned Offset = 0;
4225        for (unsigned i = 0; i < NumMemOps; i++) {
4226          MVT::ValueType VT = MemOps[i];
4227          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4228          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4229          SDOperand Store = DAG.getStore(getRoot(), Value,
4230                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4231                                         I.getOperand(1), Offset);
4232          OutChains.push_back(Store);
4233          Offset += VTSize;
4234        }
4235      }
4236      break;
4237    }
4238    case ISD::MEMCPY: {
4239      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4240                                   Size->getValue(), Align, TLI)) {
4241        unsigned NumMemOps = MemOps.size();
4242        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4243        GlobalAddressSDNode *G = NULL;
4244        std::string Str;
4245        bool CopyFromStr = false;
4246
4247        if (Op2.getOpcode() == ISD::GlobalAddress)
4248          G = cast<GlobalAddressSDNode>(Op2);
4249        else if (Op2.getOpcode() == ISD::ADD &&
4250                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4251                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4252          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4253          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4254        }
4255        if (G) {
4256          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4257          if (GV && GV->isConstant()) {
4258            Str = GV->getStringValue(false);
4259            if (!Str.empty()) {
4260              CopyFromStr = true;
4261              SrcOff += SrcDelta;
4262            }
4263          }
4264        }
4265
4266        for (unsigned i = 0; i < NumMemOps; i++) {
4267          MVT::ValueType VT = MemOps[i];
4268          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4269          SDOperand Value, Chain, Store;
4270
4271          if (CopyFromStr) {
4272            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4273            Chain = getRoot();
4274            Store =
4275              DAG.getStore(Chain, Value,
4276                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4277                           I.getOperand(1), DstOff);
4278          } else {
4279            Value = DAG.getLoad(VT, getRoot(),
4280                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4281                        I.getOperand(2), SrcOff);
4282            Chain = Value.getValue(1);
4283            Store =
4284              DAG.getStore(Chain, Value,
4285                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4286                           I.getOperand(1), DstOff);
4287          }
4288          OutChains.push_back(Store);
4289          SrcOff += VTSize;
4290          DstOff += VTSize;
4291        }
4292      }
4293      break;
4294    }
4295    }
4296
4297    if (!OutChains.empty()) {
4298      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4299                  &OutChains[0], OutChains.size()));
4300      return;
4301    }
4302  }
4303
4304  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
4305}
4306
4307//===----------------------------------------------------------------------===//
4308// SelectionDAGISel code
4309//===----------------------------------------------------------------------===//
4310
4311unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4312  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4313}
4314
4315void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4316  AU.addRequired<AliasAnalysis>();
4317  AU.setPreservesAll();
4318}
4319
4320
4321
4322bool SelectionDAGISel::runOnFunction(Function &Fn) {
4323  // Get alias analysis for load/store combining.
4324  AA = &getAnalysis<AliasAnalysis>();
4325
4326  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4327  RegMap = MF.getSSARegMap();
4328  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4329
4330  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4331
4332  if (ExceptionHandling)
4333    for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4334      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4335        // Mark landing pad.
4336        FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4337
4338  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4339    SelectBasicBlock(I, MF, FuncInfo);
4340
4341  // Add function live-ins to entry block live-in set.
4342  BasicBlock *EntryBB = &Fn.getEntryBlock();
4343  BB = FuncInfo.MBBMap[EntryBB];
4344  if (!MF.livein_empty())
4345    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4346           E = MF.livein_end(); I != E; ++I)
4347      BB->addLiveIn(I->first);
4348
4349#ifndef NDEBUG
4350  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4351         "Not all catch info was assigned to a landing pad!");
4352#endif
4353
4354  return true;
4355}
4356
4357SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4358                                                           unsigned Reg) {
4359  SDOperand Op = getValue(V);
4360  assert((Op.getOpcode() != ISD::CopyFromReg ||
4361          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4362         "Copy from a reg to the same reg!");
4363
4364  MVT::ValueType SrcVT = Op.getValueType();
4365  MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4366  unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4367  SmallVector<SDOperand, 8> Regs(NumRegs);
4368  SmallVector<SDOperand, 8> Chains(NumRegs);
4369
4370  // Copy the value by legal parts into sequential virtual registers.
4371  getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4372  for (unsigned i = 0; i != NumRegs; ++i)
4373    Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4374  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4375}
4376
4377void SelectionDAGISel::
4378LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4379               std::vector<SDOperand> &UnorderedChains) {
4380  // If this is the entry block, emit arguments.
4381  Function &F = *LLVMBB->getParent();
4382  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4383  SDOperand OldRoot = SDL.DAG.getRoot();
4384  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4385
4386  unsigned a = 0;
4387  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4388       AI != E; ++AI, ++a)
4389    if (!AI->use_empty()) {
4390      SDL.setValue(AI, Args[a]);
4391
4392      // If this argument is live outside of the entry block, insert a copy from
4393      // whereever we got it to the vreg that other BB's will reference it as.
4394      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4395      if (VMI != FuncInfo.ValueMap.end()) {
4396        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4397        UnorderedChains.push_back(Copy);
4398      }
4399    }
4400
4401  // Finally, if the target has anything special to do, allow it to do so.
4402  // FIXME: this should insert code into the DAG!
4403  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4404}
4405
4406static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4407                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4408  assert(!FLI.MBBMap[SrcBB]->isLandingPad() &&
4409         "Copying catch info out of a landing pad!");
4410  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4411    if (isSelector(I)) {
4412      // Apply the catch info to DestBB.
4413      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4414#ifndef NDEBUG
4415      FLI.CatchInfoFound.insert(I);
4416#endif
4417    }
4418}
4419
4420void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4421       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4422                                         FunctionLoweringInfo &FuncInfo) {
4423  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo);
4424
4425  std::vector<SDOperand> UnorderedChains;
4426
4427  // Lower any arguments needed in this block if this is the entry block.
4428  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4429    LowerArguments(LLVMBB, SDL, UnorderedChains);
4430
4431  BB = FuncInfo.MBBMap[LLVMBB];
4432  SDL.setCurrentBasicBlock(BB);
4433
4434  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4435
4436  if (ExceptionHandling && MMI && BB->isLandingPad()) {
4437    // Add a label to mark the beginning of the landing pad.  Deletion of the
4438    // landing pad can thus be detected via the MachineModuleInfo.
4439    unsigned LabelID = MMI->addLandingPad(BB);
4440    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4441                            DAG.getConstant(LabelID, MVT::i32)));
4442
4443    // Mark exception register as live in.
4444    unsigned Reg = TLI.getExceptionAddressRegister();
4445    if (Reg) BB->addLiveIn(Reg);
4446
4447    // Mark exception selector register as live in.
4448    Reg = TLI.getExceptionSelectorRegister();
4449    if (Reg) BB->addLiveIn(Reg);
4450
4451    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4452    // function and list of typeids logically belong to the invoke (or, if you
4453    // like, the basic block containing the invoke), and need to be associated
4454    // with it in the dwarf exception handling tables.  Currently however the
4455    // information is provided by an intrinsic (eh.selector) that can be moved
4456    // to unexpected places by the optimizers: if the unwind edge is critical,
4457    // then breaking it can result in the intrinsics being in the successor of
4458    // the landing pad, not the landing pad itself.  This results in exceptions
4459    // not being caught because no typeids are associated with the invoke.
4460    // This may not be the only way things can go wrong, but it is the only way
4461    // we try to work around for the moment.
4462    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4463
4464    if (Br && Br->isUnconditional()) { // Critical edge?
4465      BasicBlock::iterator I, E;
4466      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4467        if (isSelector(I))
4468          break;
4469
4470      if (I == E)
4471        // No catch info found - try to extract some from the successor.
4472        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4473    }
4474  }
4475
4476  // Lower all of the non-terminator instructions.
4477  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4478       I != E; ++I)
4479    SDL.visit(*I);
4480
4481  // Ensure that all instructions which are used outside of their defining
4482  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4483  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4484    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4485      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4486      if (VMI != FuncInfo.ValueMap.end())
4487        UnorderedChains.push_back(
4488                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4489    }
4490
4491  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4492  // ensure constants are generated when needed.  Remember the virtual registers
4493  // that need to be added to the Machine PHI nodes as input.  We cannot just
4494  // directly add them, because expansion might result in multiple MBB's for one
4495  // BB.  As such, the start of the BB might correspond to a different MBB than
4496  // the end.
4497  //
4498  TerminatorInst *TI = LLVMBB->getTerminator();
4499
4500  // Emit constants only once even if used by multiple PHI nodes.
4501  std::map<Constant*, unsigned> ConstantsOut;
4502
4503  // Vector bool would be better, but vector<bool> is really slow.
4504  std::vector<unsigned char> SuccsHandled;
4505  if (TI->getNumSuccessors())
4506    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4507
4508  // Check successor nodes' PHI nodes that expect a constant to be available
4509  // from this block.
4510  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4511    BasicBlock *SuccBB = TI->getSuccessor(succ);
4512    if (!isa<PHINode>(SuccBB->begin())) continue;
4513    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4514
4515    // If this terminator has multiple identical successors (common for
4516    // switches), only handle each succ once.
4517    unsigned SuccMBBNo = SuccMBB->getNumber();
4518    if (SuccsHandled[SuccMBBNo]) continue;
4519    SuccsHandled[SuccMBBNo] = true;
4520
4521    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4522    PHINode *PN;
4523
4524    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4525    // nodes and Machine PHI nodes, but the incoming operands have not been
4526    // emitted yet.
4527    for (BasicBlock::iterator I = SuccBB->begin();
4528         (PN = dyn_cast<PHINode>(I)); ++I) {
4529      // Ignore dead phi's.
4530      if (PN->use_empty()) continue;
4531
4532      unsigned Reg;
4533      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4534
4535      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4536        unsigned &RegOut = ConstantsOut[C];
4537        if (RegOut == 0) {
4538          RegOut = FuncInfo.CreateRegForValue(C);
4539          UnorderedChains.push_back(
4540                           SDL.CopyValueToVirtualRegister(C, RegOut));
4541        }
4542        Reg = RegOut;
4543      } else {
4544        Reg = FuncInfo.ValueMap[PHIOp];
4545        if (Reg == 0) {
4546          assert(isa<AllocaInst>(PHIOp) &&
4547                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4548                 "Didn't codegen value into a register!??");
4549          Reg = FuncInfo.CreateRegForValue(PHIOp);
4550          UnorderedChains.push_back(
4551                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4552        }
4553      }
4554
4555      // Remember that this register needs to added to the machine PHI node as
4556      // the input for this MBB.
4557      MVT::ValueType VT = TLI.getValueType(PN->getType());
4558      unsigned NumRegisters = TLI.getNumRegisters(VT);
4559      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4560        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4561    }
4562  }
4563  ConstantsOut.clear();
4564
4565  // Turn all of the unordered chains into one factored node.
4566  if (!UnorderedChains.empty()) {
4567    SDOperand Root = SDL.getRoot();
4568    if (Root.getOpcode() != ISD::EntryToken) {
4569      unsigned i = 0, e = UnorderedChains.size();
4570      for (; i != e; ++i) {
4571        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4572        if (UnorderedChains[i].Val->getOperand(0) == Root)
4573          break;  // Don't add the root if we already indirectly depend on it.
4574      }
4575
4576      if (i == e)
4577        UnorderedChains.push_back(Root);
4578    }
4579    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4580                            &UnorderedChains[0], UnorderedChains.size()));
4581  }
4582
4583  // Lower the terminator after the copies are emitted.
4584  SDL.visit(*LLVMBB->getTerminator());
4585
4586  // Copy over any CaseBlock records that may now exist due to SwitchInst
4587  // lowering, as well as any jump table information.
4588  SwitchCases.clear();
4589  SwitchCases = SDL.SwitchCases;
4590  JTCases.clear();
4591  JTCases = SDL.JTCases;
4592  BitTestCases.clear();
4593  BitTestCases = SDL.BitTestCases;
4594
4595  // Make sure the root of the DAG is up-to-date.
4596  DAG.setRoot(SDL.getRoot());
4597}
4598
4599void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4600  // Run the DAG combiner in pre-legalize mode.
4601  DAG.Combine(false, *AA);
4602
4603  DOUT << "Lowered selection DAG:\n";
4604  DEBUG(DAG.dump());
4605
4606  // Second step, hack on the DAG until it only uses operations and types that
4607  // the target supports.
4608  DAG.Legalize();
4609
4610  DOUT << "Legalized selection DAG:\n";
4611  DEBUG(DAG.dump());
4612
4613  // Run the DAG combiner in post-legalize mode.
4614  DAG.Combine(true, *AA);
4615
4616  if (ViewISelDAGs) DAG.viewGraph();
4617
4618  // Third, instruction select all of the operations to machine code, adding the
4619  // code to the MachineBasicBlock.
4620  InstructionSelectBasicBlock(DAG);
4621
4622  DOUT << "Selected machine code:\n";
4623  DEBUG(BB->dump());
4624}
4625
4626void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4627                                        FunctionLoweringInfo &FuncInfo) {
4628  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4629  {
4630    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4631    CurDAG = &DAG;
4632
4633    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4634    // types that are not supported by the target.
4635    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4636
4637    // Second step, emit the lowered DAG as machine code.
4638    CodeGenAndEmitDAG(DAG);
4639  }
4640
4641  DOUT << "Total amount of phi nodes to update: "
4642       << PHINodesToUpdate.size() << "\n";
4643  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4644          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4645               << ", " << PHINodesToUpdate[i].second << ")\n";);
4646
4647  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4648  // PHI nodes in successors.
4649  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4650    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4651      MachineInstr *PHI = PHINodesToUpdate[i].first;
4652      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4653             "This is not a machine PHI node that we are updating!");
4654      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4655      PHI->addMachineBasicBlockOperand(BB);
4656    }
4657    return;
4658  }
4659
4660  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4661    // Lower header first, if it wasn't already lowered
4662    if (!BitTestCases[i].Emitted) {
4663      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4664      CurDAG = &HSDAG;
4665      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
4666      // Set the current basic block to the mbb we wish to insert the code into
4667      BB = BitTestCases[i].Parent;
4668      HSDL.setCurrentBasicBlock(BB);
4669      // Emit the code
4670      HSDL.visitBitTestHeader(BitTestCases[i]);
4671      HSDAG.setRoot(HSDL.getRoot());
4672      CodeGenAndEmitDAG(HSDAG);
4673    }
4674
4675    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4676      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4677      CurDAG = &BSDAG;
4678      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo);
4679      // Set the current basic block to the mbb we wish to insert the code into
4680      BB = BitTestCases[i].Cases[j].ThisBB;
4681      BSDL.setCurrentBasicBlock(BB);
4682      // Emit the code
4683      if (j+1 != ej)
4684        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4685                              BitTestCases[i].Reg,
4686                              BitTestCases[i].Cases[j]);
4687      else
4688        BSDL.visitBitTestCase(BitTestCases[i].Default,
4689                              BitTestCases[i].Reg,
4690                              BitTestCases[i].Cases[j]);
4691
4692
4693      BSDAG.setRoot(BSDL.getRoot());
4694      CodeGenAndEmitDAG(BSDAG);
4695    }
4696
4697    // Update PHI Nodes
4698    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4699      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4700      MachineBasicBlock *PHIBB = PHI->getParent();
4701      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4702             "This is not a machine PHI node that we are updating!");
4703      // This is "default" BB. We have two jumps to it. From "header" BB and
4704      // from last "case" BB.
4705      if (PHIBB == BitTestCases[i].Default) {
4706        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4707        PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4708        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4709        PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4710      }
4711      // One of "cases" BB.
4712      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4713        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4714        if (cBB->succ_end() !=
4715            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4716          PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4717          PHI->addMachineBasicBlockOperand(cBB);
4718        }
4719      }
4720    }
4721  }
4722
4723  // If the JumpTable record is filled in, then we need to emit a jump table.
4724  // Updating the PHI nodes is tricky in this case, since we need to determine
4725  // whether the PHI is a successor of the range check MBB or the jump table MBB
4726  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4727    // Lower header first, if it wasn't already lowered
4728    if (!JTCases[i].first.Emitted) {
4729      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4730      CurDAG = &HSDAG;
4731      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo);
4732      // Set the current basic block to the mbb we wish to insert the code into
4733      BB = JTCases[i].first.HeaderBB;
4734      HSDL.setCurrentBasicBlock(BB);
4735      // Emit the code
4736      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4737      HSDAG.setRoot(HSDL.getRoot());
4738      CodeGenAndEmitDAG(HSDAG);
4739    }
4740
4741    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4742    CurDAG = &JSDAG;
4743    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo);
4744    // Set the current basic block to the mbb we wish to insert the code into
4745    BB = JTCases[i].second.MBB;
4746    JSDL.setCurrentBasicBlock(BB);
4747    // Emit the code
4748    JSDL.visitJumpTable(JTCases[i].second);
4749    JSDAG.setRoot(JSDL.getRoot());
4750    CodeGenAndEmitDAG(JSDAG);
4751
4752    // Update PHI Nodes
4753    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4754      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4755      MachineBasicBlock *PHIBB = PHI->getParent();
4756      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4757             "This is not a machine PHI node that we are updating!");
4758      // "default" BB. We can go there only from header BB.
4759      if (PHIBB == JTCases[i].second.Default) {
4760        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4761        PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4762      }
4763      // JT BB. Just iterate over successors here
4764      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4765        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4766        PHI->addMachineBasicBlockOperand(BB);
4767      }
4768    }
4769  }
4770
4771  // If the switch block involved a branch to one of the actual successors, we
4772  // need to update PHI nodes in that block.
4773  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4774    MachineInstr *PHI = PHINodesToUpdate[i].first;
4775    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4776           "This is not a machine PHI node that we are updating!");
4777    if (BB->isSuccessor(PHI->getParent())) {
4778      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4779      PHI->addMachineBasicBlockOperand(BB);
4780    }
4781  }
4782
4783  // If we generated any switch lowering information, build and codegen any
4784  // additional DAGs necessary.
4785  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4786    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4787    CurDAG = &SDAG;
4788    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo);
4789
4790    // Set the current basic block to the mbb we wish to insert the code into
4791    BB = SwitchCases[i].ThisBB;
4792    SDL.setCurrentBasicBlock(BB);
4793
4794    // Emit the code
4795    SDL.visitSwitchCase(SwitchCases[i]);
4796    SDAG.setRoot(SDL.getRoot());
4797    CodeGenAndEmitDAG(SDAG);
4798
4799    // Handle any PHI nodes in successors of this chunk, as if we were coming
4800    // from the original BB before switch expansion.  Note that PHI nodes can
4801    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4802    // handle them the right number of times.
4803    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4804      for (MachineBasicBlock::iterator Phi = BB->begin();
4805           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4806        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4807        for (unsigned pn = 0; ; ++pn) {
4808          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4809          if (PHINodesToUpdate[pn].first == Phi) {
4810            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4811            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4812            break;
4813          }
4814        }
4815      }
4816
4817      // Don't process RHS if same block as LHS.
4818      if (BB == SwitchCases[i].FalseBB)
4819        SwitchCases[i].FalseBB = 0;
4820
4821      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4822      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4823      SwitchCases[i].FalseBB = 0;
4824    }
4825    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4826  }
4827}
4828
4829
4830//===----------------------------------------------------------------------===//
4831/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4832/// target node in the graph.
4833void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4834  if (ViewSchedDAGs) DAG.viewGraph();
4835
4836  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4837
4838  if (!Ctor) {
4839    Ctor = ISHeuristic;
4840    RegisterScheduler::setDefault(Ctor);
4841  }
4842
4843  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4844  BB = SL->Run();
4845  delete SL;
4846}
4847
4848
4849HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4850  return new HazardRecognizer();
4851}
4852
4853//===----------------------------------------------------------------------===//
4854// Helper functions used by the generated instruction selector.
4855//===----------------------------------------------------------------------===//
4856// Calls to these methods are generated by tblgen.
4857
4858/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4859/// the dag combiner simplified the 255, we still want to match.  RHS is the
4860/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4861/// specified in the .td file (e.g. 255).
4862bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4863                                    int64_t DesiredMaskS) const {
4864  uint64_t ActualMask = RHS->getValue();
4865  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4866
4867  // If the actual mask exactly matches, success!
4868  if (ActualMask == DesiredMask)
4869    return true;
4870
4871  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4872  if (ActualMask & ~DesiredMask)
4873    return false;
4874
4875  // Otherwise, the DAG Combiner may have proven that the value coming in is
4876  // either already zero or is not demanded.  Check for known zero input bits.
4877  uint64_t NeededMask = DesiredMask & ~ActualMask;
4878  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
4879    return true;
4880
4881  // TODO: check to see if missing bits are just not demanded.
4882
4883  // Otherwise, this pattern doesn't match.
4884  return false;
4885}
4886
4887/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4888/// the dag combiner simplified the 255, we still want to match.  RHS is the
4889/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4890/// specified in the .td file (e.g. 255).
4891bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4892                                    int64_t DesiredMaskS) const {
4893  uint64_t ActualMask = RHS->getValue();
4894  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4895
4896  // If the actual mask exactly matches, success!
4897  if (ActualMask == DesiredMask)
4898    return true;
4899
4900  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4901  if (ActualMask & ~DesiredMask)
4902    return false;
4903
4904  // Otherwise, the DAG Combiner may have proven that the value coming in is
4905  // either already zero or is not demanded.  Check for known zero input bits.
4906  uint64_t NeededMask = DesiredMask & ~ActualMask;
4907
4908  uint64_t KnownZero, KnownOne;
4909  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4910
4911  // If all the missing bits in the or are already known to be set, match!
4912  if ((NeededMask & KnownOne) == NeededMask)
4913    return true;
4914
4915  // TODO: check to see if missing bits are just not demanded.
4916
4917  // Otherwise, this pattern doesn't match.
4918  return false;
4919}
4920
4921
4922/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4923/// by tblgen.  Others should not call it.
4924void SelectionDAGISel::
4925SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4926  std::vector<SDOperand> InOps;
4927  std::swap(InOps, Ops);
4928
4929  Ops.push_back(InOps[0]);  // input chain.
4930  Ops.push_back(InOps[1]);  // input asm string.
4931
4932  unsigned i = 2, e = InOps.size();
4933  if (InOps[e-1].getValueType() == MVT::Flag)
4934    --e;  // Don't process a flag operand if it is here.
4935
4936  while (i != e) {
4937    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4938    if ((Flags & 7) != 4 /*MEM*/) {
4939      // Just skip over this operand, copying the operands verbatim.
4940      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4941      i += (Flags >> 3) + 1;
4942    } else {
4943      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4944      // Otherwise, this is a memory operand.  Ask the target to select it.
4945      std::vector<SDOperand> SelOps;
4946      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4947        cerr << "Could not match memory address.  Inline asm failure!\n";
4948        exit(1);
4949      }
4950
4951      // Add this to the output node.
4952      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4953      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4954                                          IntPtrTy));
4955      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4956      i += 2;
4957    }
4958  }
4959
4960  // Add the flag input back if present.
4961  if (e != InOps.size())
4962    Ops.push_back(InOps.back());
4963}
4964
4965char SelectionDAGISel::ID = 0;
4966