SelectionDAGISel.cpp revision ccd63ce576e408a08d9afb66a87109e2685daeb0
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/ADT/BitVector.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/Constants.h"
19#include "llvm/CallingConv.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/ParameterAttributes.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleDAG.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Target/TargetFrameInfo.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLowering.h"
45#include "llvm/Target/TargetMachine.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/Timer.h"
51#include <algorithm>
52using namespace llvm;
53
54static cl::opt<bool>
55EnableValueProp("enable-value-prop", cl::Hidden);
56static cl::opt<bool>
57EnableLegalizeTypes("enable-legalize-types", cl::Hidden);
58static cl::opt<bool>
59EnableFastISel("fast-isel", cl::Hidden,
60          cl::desc("Enable the experimental \"fast\" instruction selector"));
61static cl::opt<bool>
62DisableFastISelAbort("fast-isel-no-abort", cl::Hidden,
63          cl::desc("Use the SelectionDAGISel when \"fast\" instruction "
64                   "selection fails"));
65
66#ifndef NDEBUG
67static cl::opt<bool>
68ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
69          cl::desc("Pop up a window to show dags before the first "
70                   "dag combine pass"));
71static cl::opt<bool>
72ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
73          cl::desc("Pop up a window to show dags before legalize types"));
74static cl::opt<bool>
75ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
76          cl::desc("Pop up a window to show dags before legalize"));
77static cl::opt<bool>
78ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the second "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewISelDAGs("view-isel-dags", cl::Hidden,
83          cl::desc("Pop up a window to show isel dags as they are selected"));
84static cl::opt<bool>
85ViewSchedDAGs("view-sched-dags", cl::Hidden,
86          cl::desc("Pop up a window to show sched dags as they are processed"));
87static cl::opt<bool>
88ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
89      cl::desc("Pop up a window to show SUnit dags after they are processed"));
90#else
91static const bool ViewDAGCombine1 = false,
92                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
93                  ViewDAGCombine2 = false,
94                  ViewISelDAGs = false, ViewSchedDAGs = false,
95                  ViewSUnitDAGs = false;
96#endif
97
98//===---------------------------------------------------------------------===//
99///
100/// RegisterScheduler class - Track the registration of instruction schedulers.
101///
102//===---------------------------------------------------------------------===//
103MachinePassRegistry RegisterScheduler::Registry;
104
105//===---------------------------------------------------------------------===//
106///
107/// ISHeuristic command line option for instruction schedulers.
108///
109//===---------------------------------------------------------------------===//
110static cl::opt<RegisterScheduler::FunctionPassCtor, false,
111               RegisterPassParser<RegisterScheduler> >
112ISHeuristic("pre-RA-sched",
113            cl::init(&createDefaultScheduler),
114            cl::desc("Instruction schedulers available (before register"
115                     " allocation):"));
116
117static RegisterScheduler
118defaultListDAGScheduler("default", "  Best scheduler for the target",
119                        createDefaultScheduler);
120
121namespace { struct SDISelAsmOperandInfo; }
122
123/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
124/// insertvalue or extractvalue indices that identify a member, return
125/// the linearized index of the start of the member.
126///
127static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
128                                   const unsigned *Indices,
129                                   const unsigned *IndicesEnd,
130                                   unsigned CurIndex = 0) {
131  // Base case: We're done.
132  if (Indices && Indices == IndicesEnd)
133    return CurIndex;
134
135  // Given a struct type, recursively traverse the elements.
136  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
137    for (StructType::element_iterator EB = STy->element_begin(),
138                                      EI = EB,
139                                      EE = STy->element_end();
140        EI != EE; ++EI) {
141      if (Indices && *Indices == unsigned(EI - EB))
142        return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
143      CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
144    }
145  }
146  // Given an array type, recursively traverse the elements.
147  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
148    const Type *EltTy = ATy->getElementType();
149    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
150      if (Indices && *Indices == i)
151        return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
152      CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
153    }
154  }
155  // We haven't found the type we're looking for, so keep searching.
156  return CurIndex + 1;
157}
158
159/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
160/// MVTs that represent all the individual underlying
161/// non-aggregate types that comprise it.
162///
163/// If Offsets is non-null, it points to a vector to be filled in
164/// with the in-memory offsets of each of the individual values.
165///
166static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
167                            SmallVectorImpl<MVT> &ValueVTs,
168                            SmallVectorImpl<uint64_t> *Offsets = 0,
169                            uint64_t StartingOffset = 0) {
170  // Given a struct type, recursively traverse the elements.
171  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
172    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
173    for (StructType::element_iterator EB = STy->element_begin(),
174                                      EI = EB,
175                                      EE = STy->element_end();
176         EI != EE; ++EI)
177      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
178                      StartingOffset + SL->getElementOffset(EI - EB));
179    return;
180  }
181  // Given an array type, recursively traverse the elements.
182  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
183    const Type *EltTy = ATy->getElementType();
184    uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
185    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
186      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
187                      StartingOffset + i * EltSize);
188    return;
189  }
190  // Base case: we can get an MVT for this LLVM IR type.
191  ValueVTs.push_back(TLI.getValueType(Ty));
192  if (Offsets)
193    Offsets->push_back(StartingOffset);
194}
195
196namespace {
197  /// RegsForValue - This struct represents the registers (physical or virtual)
198  /// that a particular set of values is assigned, and the type information about
199  /// the value. The most common situation is to represent one value at a time,
200  /// but struct or array values are handled element-wise as multiple values.
201  /// The splitting of aggregates is performed recursively, so that we never
202  /// have aggregate-typed registers. The values at this point do not necessarily
203  /// have legal types, so each value may require one or more registers of some
204  /// legal type.
205  ///
206  struct VISIBILITY_HIDDEN RegsForValue {
207    /// TLI - The TargetLowering object.
208    ///
209    const TargetLowering *TLI;
210
211    /// ValueVTs - The value types of the values, which may not be legal, and
212    /// may need be promoted or synthesized from one or more registers.
213    ///
214    SmallVector<MVT, 4> ValueVTs;
215
216    /// RegVTs - The value types of the registers. This is the same size as
217    /// ValueVTs and it records, for each value, what the type of the assigned
218    /// register or registers are. (Individual values are never synthesized
219    /// from more than one type of register.)
220    ///
221    /// With virtual registers, the contents of RegVTs is redundant with TLI's
222    /// getRegisterType member function, however when with physical registers
223    /// it is necessary to have a separate record of the types.
224    ///
225    SmallVector<MVT, 4> RegVTs;
226
227    /// Regs - This list holds the registers assigned to the values.
228    /// Each legal or promoted value requires one register, and each
229    /// expanded value requires multiple registers.
230    ///
231    SmallVector<unsigned, 4> Regs;
232
233    RegsForValue() : TLI(0) {}
234
235    RegsForValue(const TargetLowering &tli,
236                 const SmallVector<unsigned, 4> &regs,
237                 MVT regvt, MVT valuevt)
238      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
239    RegsForValue(const TargetLowering &tli,
240                 const SmallVector<unsigned, 4> &regs,
241                 const SmallVector<MVT, 4> &regvts,
242                 const SmallVector<MVT, 4> &valuevts)
243      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
244    RegsForValue(const TargetLowering &tli,
245                 unsigned Reg, const Type *Ty) : TLI(&tli) {
246      ComputeValueVTs(tli, Ty, ValueVTs);
247
248      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
249        MVT ValueVT = ValueVTs[Value];
250        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
251        MVT RegisterVT = TLI->getRegisterType(ValueVT);
252        for (unsigned i = 0; i != NumRegs; ++i)
253          Regs.push_back(Reg + i);
254        RegVTs.push_back(RegisterVT);
255        Reg += NumRegs;
256      }
257    }
258
259    /// append - Add the specified values to this one.
260    void append(const RegsForValue &RHS) {
261      TLI = RHS.TLI;
262      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
263      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
264      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
265    }
266
267
268    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
269    /// this value and returns the result as a ValueVTs value.  This uses
270    /// Chain/Flag as the input and updates them for the output Chain/Flag.
271    /// If the Flag pointer is NULL, no flag is used.
272    SDValue getCopyFromRegs(SelectionDAG &DAG,
273                              SDValue &Chain, SDValue *Flag) const;
274
275    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
276    /// specified value into the registers specified by this object.  This uses
277    /// Chain/Flag as the input and updates them for the output Chain/Flag.
278    /// If the Flag pointer is NULL, no flag is used.
279    void getCopyToRegs(SDValue Val, SelectionDAG &DAG,
280                       SDValue &Chain, SDValue *Flag) const;
281
282    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
283    /// operand list.  This adds the code marker and includes the number of
284    /// values added into it.
285    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
286                              std::vector<SDValue> &Ops) const;
287  };
288}
289
290namespace llvm {
291  //===--------------------------------------------------------------------===//
292  /// createDefaultScheduler - This creates an instruction scheduler appropriate
293  /// for the target.
294  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
295                                      SelectionDAG *DAG,
296                                      MachineBasicBlock *BB,
297                                      bool Fast) {
298    TargetLowering &TLI = IS->getTargetLowering();
299
300    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
301      return createTDListDAGScheduler(IS, DAG, BB, Fast);
302    } else {
303      assert(TLI.getSchedulingPreference() ==
304           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
305      return createBURRListDAGScheduler(IS, DAG, BB, Fast);
306    }
307  }
308
309
310  //===--------------------------------------------------------------------===//
311  /// FunctionLoweringInfo - This contains information that is global to a
312  /// function that is used when lowering a region of the function.
313  class FunctionLoweringInfo {
314  public:
315    TargetLowering &TLI;
316    Function *Fn;
317    MachineFunction *MF;
318    MachineRegisterInfo *RegInfo;
319
320    explicit FunctionLoweringInfo(TargetLowering &TLI);
321
322    /// set - Initialize this FunctionLoweringInfo with the given Function
323    /// and its associated MachineFunction.
324    ///
325    void set(Function &Fn, MachineFunction &MF);
326
327    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
328    DenseMap<const BasicBlock*, MachineBasicBlock *> MBBMap;
329
330    /// ValueMap - Since we emit code for the function a basic block at a time,
331    /// we must remember which virtual registers hold the values for
332    /// cross-basic-block values.
333    DenseMap<const Value*, unsigned> ValueMap;
334
335    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
336    /// the entry block.  This allows the allocas to be efficiently referenced
337    /// anywhere in the function.
338    DenseMap<const AllocaInst*, int> StaticAllocaMap;
339
340#ifndef NDEBUG
341    SmallSet<Instruction*, 8> CatchInfoLost;
342    SmallSet<Instruction*, 8> CatchInfoFound;
343#endif
344
345    unsigned MakeReg(MVT VT) {
346      return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
347    }
348
349    /// isExportedInst - Return true if the specified value is an instruction
350    /// exported from its block.
351    bool isExportedInst(const Value *V) {
352      return ValueMap.count(V);
353    }
354
355    unsigned CreateRegForValue(const Value *V);
356
357    unsigned InitializeRegForValue(const Value *V) {
358      unsigned &R = ValueMap[V];
359      assert(R == 0 && "Already initialized this value register!");
360      return R = CreateRegForValue(V);
361    }
362
363    struct LiveOutInfo {
364      unsigned NumSignBits;
365      APInt KnownOne, KnownZero;
366      LiveOutInfo() : NumSignBits(0) {}
367    };
368
369    /// LiveOutRegInfo - Information about live out vregs, indexed by their
370    /// register number offset by 'FirstVirtualRegister'.
371    std::vector<LiveOutInfo> LiveOutRegInfo;
372
373    /// clear - Clear out all the function-specific state. This returns this
374    /// FunctionLoweringInfo to an empty state, ready to be used for a
375    /// different function.
376    void clear() {
377      MBBMap.clear();
378      ValueMap.clear();
379      StaticAllocaMap.clear();
380#ifndef NDEBUG
381      CatchInfoLost.clear();
382      CatchInfoFound.clear();
383#endif
384      LiveOutRegInfo.clear();
385    }
386  };
387}
388
389/// isSelector - Return true if this instruction is a call to the
390/// eh.selector intrinsic.
391static bool isSelector(Instruction *I) {
392  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
393    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
394            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
395  return false;
396}
397
398/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
399/// PHI nodes or outside of the basic block that defines it, or used by a
400/// switch or atomic instruction, which may expand to multiple basic blocks.
401static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
402  if (isa<PHINode>(I)) return true;
403  BasicBlock *BB = I->getParent();
404  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
405    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
406        // FIXME: Remove switchinst special case.
407        isa<SwitchInst>(*UI))
408      return true;
409  return false;
410}
411
412/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
413/// entry block, return true.  This includes arguments used by switches, since
414/// the switch may expand into multiple basic blocks.
415static bool isOnlyUsedInEntryBlock(Argument *A) {
416  // With FastISel active, we may be splitting blocks, so force creation
417  // of virtual registers for all non-dead arguments.
418  if (EnableFastISel)
419    return A->use_empty();
420
421  BasicBlock *Entry = A->getParent()->begin();
422  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
423    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
424      return false;  // Use not in entry block.
425  return true;
426}
427
428FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
429  : TLI(tli) {
430}
431
432void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf) {
433   Fn = &fn;
434   MF = &mf;
435   RegInfo = &MF->getRegInfo();
436
437  // Create a vreg for each argument register that is not dead and is used
438  // outside of the entry block for the function.
439  for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
440       AI != E; ++AI)
441    if (!isOnlyUsedInEntryBlock(AI))
442      InitializeRegForValue(AI);
443
444  // Initialize the mapping of values to registers.  This is only set up for
445  // instruction values that are used outside of the block that defines
446  // them.
447  Function::iterator BB = Fn->begin(), EB = Fn->end();
448  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
449    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
450      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
451        const Type *Ty = AI->getAllocatedType();
452        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
453        unsigned Align =
454          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
455                   AI->getAlignment());
456
457        TySize *= CUI->getZExtValue();   // Get total allocated size.
458        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
459        StaticAllocaMap[AI] =
460          MF->getFrameInfo()->CreateStackObject(TySize, Align);
461      }
462
463  for (; BB != EB; ++BB)
464    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
465      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
466        if (!isa<AllocaInst>(I) ||
467            !StaticAllocaMap.count(cast<AllocaInst>(I)))
468          InitializeRegForValue(I);
469
470  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
471  // also creates the initial PHI MachineInstrs, though none of the input
472  // operands are populated.
473  for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
474    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
475    MBBMap[BB] = MBB;
476    MF->push_back(MBB);
477
478    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
479    // appropriate.
480    PHINode *PN;
481    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
482      if (PN->use_empty()) continue;
483
484      unsigned PHIReg = ValueMap[PN];
485      assert(PHIReg && "PHI node does not have an assigned virtual register!");
486
487      SmallVector<MVT, 4> ValueVTs;
488      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
489      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
490        MVT VT = ValueVTs[vti];
491        unsigned NumRegisters = TLI.getNumRegisters(VT);
492        const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
493        for (unsigned i = 0; i != NumRegisters; ++i)
494          BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
495        PHIReg += NumRegisters;
496      }
497    }
498  }
499}
500
501/// CreateRegForValue - Allocate the appropriate number of virtual registers of
502/// the correctly promoted or expanded types.  Assign these registers
503/// consecutive vreg numbers and return the first assigned number.
504///
505/// In the case that the given value has struct or array type, this function
506/// will assign registers for each member or element.
507///
508unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
509  SmallVector<MVT, 4> ValueVTs;
510  ComputeValueVTs(TLI, V->getType(), ValueVTs);
511
512  unsigned FirstReg = 0;
513  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
514    MVT ValueVT = ValueVTs[Value];
515    MVT RegisterVT = TLI.getRegisterType(ValueVT);
516
517    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
518    for (unsigned i = 0; i != NumRegs; ++i) {
519      unsigned R = MakeReg(RegisterVT);
520      if (!FirstReg) FirstReg = R;
521    }
522  }
523  return FirstReg;
524}
525
526namespace {
527
528/// CaseBlock - This structure is used to communicate between SDLowering and
529/// SDISel for the code generation of additional basic blocks needed by multi-
530/// case switch statements.
531struct CaseBlock {
532  CaseBlock(ISD::CondCode cc, Value *cmplhs, Value *cmprhs, Value *cmpmiddle,
533            MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
534            MachineBasicBlock *me)
535    : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
536      TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {}
537  // CC - the condition code to use for the case block's setcc node
538  ISD::CondCode CC;
539  // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
540  // Emit by default LHS op RHS. MHS is used for range comparisons:
541  // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
542  Value *CmpLHS, *CmpMHS, *CmpRHS;
543  // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
544  MachineBasicBlock *TrueBB, *FalseBB;
545  // ThisBB - the block into which to emit the code for the setcc and branches
546  MachineBasicBlock *ThisBB;
547};
548struct JumpTable {
549  JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
550            MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
551
552  /// Reg - the virtual register containing the index of the jump table entry
553  //. to jump to.
554  unsigned Reg;
555  /// JTI - the JumpTableIndex for this jump table in the function.
556  unsigned JTI;
557  /// MBB - the MBB into which to emit the code for the indirect jump.
558  MachineBasicBlock *MBB;
559  /// Default - the MBB of the default bb, which is a successor of the range
560  /// check MBB.  This is when updating PHI nodes in successors.
561  MachineBasicBlock *Default;
562};
563struct JumpTableHeader {
564  JumpTableHeader(uint64_t F, uint64_t L, Value* SV, MachineBasicBlock* H,
565                  bool E = false):
566    First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
567  uint64_t First;
568  uint64_t Last;
569  Value *SValue;
570  MachineBasicBlock *HeaderBB;
571  bool Emitted;
572};
573typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
574
575struct BitTestCase {
576  BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
577    Mask(M), ThisBB(T), TargetBB(Tr) { }
578  uint64_t Mask;
579  MachineBasicBlock* ThisBB;
580  MachineBasicBlock* TargetBB;
581};
582
583typedef SmallVector<BitTestCase, 3> BitTestInfo;
584
585struct BitTestBlock {
586  BitTestBlock(uint64_t F, uint64_t R, Value* SV,
587               unsigned Rg, bool E,
588               MachineBasicBlock* P, MachineBasicBlock* D,
589               const BitTestInfo& C):
590    First(F), Range(R), SValue(SV), Reg(Rg), Emitted(E),
591    Parent(P), Default(D), Cases(C) { }
592  uint64_t First;
593  uint64_t Range;
594  Value  *SValue;
595  unsigned Reg;
596  bool Emitted;
597  MachineBasicBlock *Parent;
598  MachineBasicBlock *Default;
599  BitTestInfo Cases;
600};
601
602} // end anonymous namespace
603
604//===----------------------------------------------------------------------===//
605/// SelectionDAGLowering - This is the common target-independent lowering
606/// implementation that is parameterized by a TargetLowering object.
607/// Also, targets can overload any lowering method.
608///
609namespace llvm {
610class SelectionDAGLowering {
611  MachineBasicBlock *CurMBB;
612
613  DenseMap<const Value*, SDValue> NodeMap;
614
615  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
616  /// them up and then emit token factor nodes when possible.  This allows us to
617  /// get simple disambiguation between loads without worrying about alias
618  /// analysis.
619  SmallVector<SDValue, 8> PendingLoads;
620
621  /// PendingExports - CopyToReg nodes that copy values to virtual registers
622  /// for export to other blocks need to be emitted before any terminator
623  /// instruction, but they have no other ordering requirements. We bunch them
624  /// up and the emit a single tokenfactor for them just before terminator
625  /// instructions.
626  SmallVector<SDValue, 8> PendingExports;
627
628  /// Case - A struct to record the Value for a switch case, and the
629  /// case's target basic block.
630  struct Case {
631    Constant* Low;
632    Constant* High;
633    MachineBasicBlock* BB;
634
635    Case() : Low(0), High(0), BB(0) { }
636    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
637      Low(low), High(high), BB(bb) { }
638    uint64_t size() const {
639      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
640      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
641      return (rHigh - rLow + 1ULL);
642    }
643  };
644
645  struct CaseBits {
646    uint64_t Mask;
647    MachineBasicBlock* BB;
648    unsigned Bits;
649
650    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
651      Mask(mask), BB(bb), Bits(bits) { }
652  };
653
654  typedef std::vector<Case>           CaseVector;
655  typedef std::vector<CaseBits>       CaseBitsVector;
656  typedef CaseVector::iterator        CaseItr;
657  typedef std::pair<CaseItr, CaseItr> CaseRange;
658
659  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
660  /// of conditional branches.
661  struct CaseRec {
662    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
663    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
664
665    /// CaseBB - The MBB in which to emit the compare and branch
666    MachineBasicBlock *CaseBB;
667    /// LT, GE - If nonzero, we know the current case value must be less-than or
668    /// greater-than-or-equal-to these Constants.
669    Constant *LT;
670    Constant *GE;
671    /// Range - A pair of iterators representing the range of case values to be
672    /// processed at this point in the binary search tree.
673    CaseRange Range;
674  };
675
676  typedef std::vector<CaseRec> CaseRecVector;
677
678  /// The comparison function for sorting the switch case values in the vector.
679  /// WARNING: Case ranges should be disjoint!
680  struct CaseCmp {
681    bool operator () (const Case& C1, const Case& C2) {
682      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
683      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
684      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
685      return CI1->getValue().slt(CI2->getValue());
686    }
687  };
688
689  struct CaseBitsCmp {
690    bool operator () (const CaseBits& C1, const CaseBits& C2) {
691      return C1.Bits > C2.Bits;
692    }
693  };
694
695  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
696
697public:
698  // TLI - This is information that describes the available target features we
699  // need for lowering.  This indicates when operations are unavailable,
700  // implemented with a libcall, etc.
701  TargetLowering &TLI;
702  SelectionDAG &DAG;
703  const TargetData *TD;
704  AliasAnalysis *AA;
705
706  /// SwitchCases - Vector of CaseBlock structures used to communicate
707  /// SwitchInst code generation information.
708  std::vector<CaseBlock> SwitchCases;
709  /// JTCases - Vector of JumpTable structures used to communicate
710  /// SwitchInst code generation information.
711  std::vector<JumpTableBlock> JTCases;
712  /// BitTestCases - Vector of BitTestBlock structures used to communicate
713  /// SwitchInst code generation information.
714  std::vector<BitTestBlock> BitTestCases;
715
716  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
717
718  // Emit PHI-node-operand constants only once even if used by multiple
719  // PHI nodes.
720  DenseMap<Constant*, unsigned> ConstantsOut;
721
722  /// FuncInfo - Information about the function as a whole.
723  ///
724  FunctionLoweringInfo &FuncInfo;
725
726  /// GFI - Garbage collection metadata for the function.
727  GCFunctionInfo *GFI;
728
729  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
730                       FunctionLoweringInfo &funcinfo)
731    : TLI(tli), DAG(dag), FuncInfo(funcinfo) {
732  }
733
734  void init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
735    AA = &aa;
736    GFI = gfi;
737    TD = DAG.getTarget().getTargetData();
738  }
739
740  /// clear - Clear out the curret SelectionDAG and the associated
741  /// state and prepare this SelectionDAGLowering object to be used
742  /// for a new block. This doesn't clear out information about
743  /// additional blocks that are needed to complete switch lowering
744  /// or PHI node updating; that information is cleared out as it is
745  /// consumed.
746  void clear() {
747    NodeMap.clear();
748    PendingLoads.clear();
749    PendingExports.clear();
750    DAG.clear();
751  }
752
753  /// getRoot - Return the current virtual root of the Selection DAG,
754  /// flushing any PendingLoad items. This must be done before emitting
755  /// a store or any other node that may need to be ordered after any
756  /// prior load instructions.
757  ///
758  SDValue getRoot() {
759    if (PendingLoads.empty())
760      return DAG.getRoot();
761
762    if (PendingLoads.size() == 1) {
763      SDValue Root = PendingLoads[0];
764      DAG.setRoot(Root);
765      PendingLoads.clear();
766      return Root;
767    }
768
769    // Otherwise, we have to make a token factor node.
770    SDValue Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
771                                 &PendingLoads[0], PendingLoads.size());
772    PendingLoads.clear();
773    DAG.setRoot(Root);
774    return Root;
775  }
776
777  /// getControlRoot - Similar to getRoot, but instead of flushing all the
778  /// PendingLoad items, flush all the PendingExports items. It is necessary
779  /// to do this before emitting a terminator instruction.
780  ///
781  SDValue getControlRoot() {
782    SDValue Root = DAG.getRoot();
783
784    if (PendingExports.empty())
785      return Root;
786
787    // Turn all of the CopyToReg chains into one factored node.
788    if (Root.getOpcode() != ISD::EntryToken) {
789      unsigned i = 0, e = PendingExports.size();
790      for (; i != e; ++i) {
791        assert(PendingExports[i].Val->getNumOperands() > 1);
792        if (PendingExports[i].Val->getOperand(0) == Root)
793          break;  // Don't add the root if we already indirectly depend on it.
794      }
795
796      if (i == e)
797        PendingExports.push_back(Root);
798    }
799
800    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
801                       &PendingExports[0],
802                       PendingExports.size());
803    PendingExports.clear();
804    DAG.setRoot(Root);
805    return Root;
806  }
807
808  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
809
810  void visit(Instruction &I) { visit(I.getOpcode(), I); }
811
812  void visit(unsigned Opcode, User &I) {
813    // Note: this doesn't use InstVisitor, because it has to work with
814    // ConstantExpr's in addition to instructions.
815    switch (Opcode) {
816    default: assert(0 && "Unknown instruction type encountered!");
817             abort();
818      // Build the switch statement using the Instruction.def file.
819#define HANDLE_INST(NUM, OPCODE, CLASS) \
820    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
821#include "llvm/Instruction.def"
822    }
823  }
824
825  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
826
827  SDValue getValue(const Value *V);
828
829  void setValue(const Value *V, SDValue NewN) {
830    SDValue &N = NodeMap[V];
831    assert(N.Val == 0 && "Already set a value for this node!");
832    N = NewN;
833  }
834
835  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
836                            std::set<unsigned> &OutputRegs,
837                            std::set<unsigned> &InputRegs);
838
839  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
840                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
841                            unsigned Opc);
842  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
843  void ExportFromCurrentBlock(Value *V);
844  void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall,
845                   MachineBasicBlock *LandingPad = NULL);
846
847  // Terminator instructions.
848  void visitRet(ReturnInst &I);
849  void visitBr(BranchInst &I);
850  void visitSwitch(SwitchInst &I);
851  void visitUnreachable(UnreachableInst &I) { /* noop */ }
852
853  // Helpers for visitSwitch
854  bool handleSmallSwitchRange(CaseRec& CR,
855                              CaseRecVector& WorkList,
856                              Value* SV,
857                              MachineBasicBlock* Default);
858  bool handleJTSwitchCase(CaseRec& CR,
859                          CaseRecVector& WorkList,
860                          Value* SV,
861                          MachineBasicBlock* Default);
862  bool handleBTSplitSwitchCase(CaseRec& CR,
863                               CaseRecVector& WorkList,
864                               Value* SV,
865                               MachineBasicBlock* Default);
866  bool handleBitTestsSwitchCase(CaseRec& CR,
867                                CaseRecVector& WorkList,
868                                Value* SV,
869                                MachineBasicBlock* Default);
870  void visitSwitchCase(CaseBlock &CB);
871  void visitBitTestHeader(BitTestBlock &B);
872  void visitBitTestCase(MachineBasicBlock* NextMBB,
873                        unsigned Reg,
874                        BitTestCase &B);
875  void visitJumpTable(JumpTable &JT);
876  void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH);
877
878  // These all get lowered before this pass.
879  void visitInvoke(InvokeInst &I);
880  void visitUnwind(UnwindInst &I);
881
882  void visitBinary(User &I, unsigned OpCode);
883  void visitShift(User &I, unsigned Opcode);
884  void visitAdd(User &I) {
885    if (I.getType()->isFPOrFPVector())
886      visitBinary(I, ISD::FADD);
887    else
888      visitBinary(I, ISD::ADD);
889  }
890  void visitSub(User &I);
891  void visitMul(User &I) {
892    if (I.getType()->isFPOrFPVector())
893      visitBinary(I, ISD::FMUL);
894    else
895      visitBinary(I, ISD::MUL);
896  }
897  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
898  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
899  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
900  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
901  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
902  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
903  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
904  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
905  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
906  void visitShl (User &I) { visitShift(I, ISD::SHL); }
907  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
908  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
909  void visitICmp(User &I);
910  void visitFCmp(User &I);
911  void visitVICmp(User &I);
912  void visitVFCmp(User &I);
913  // Visit the conversion instructions
914  void visitTrunc(User &I);
915  void visitZExt(User &I);
916  void visitSExt(User &I);
917  void visitFPTrunc(User &I);
918  void visitFPExt(User &I);
919  void visitFPToUI(User &I);
920  void visitFPToSI(User &I);
921  void visitUIToFP(User &I);
922  void visitSIToFP(User &I);
923  void visitPtrToInt(User &I);
924  void visitIntToPtr(User &I);
925  void visitBitCast(User &I);
926
927  void visitExtractElement(User &I);
928  void visitInsertElement(User &I);
929  void visitShuffleVector(User &I);
930
931  void visitExtractValue(ExtractValueInst &I);
932  void visitInsertValue(InsertValueInst &I);
933
934  void visitGetElementPtr(User &I);
935  void visitSelect(User &I);
936
937  void visitMalloc(MallocInst &I);
938  void visitFree(FreeInst &I);
939  void visitAlloca(AllocaInst &I);
940  void visitLoad(LoadInst &I);
941  void visitStore(StoreInst &I);
942  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
943  void visitCall(CallInst &I);
944  void visitInlineAsm(CallSite CS);
945  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
946  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
947
948  void visitVAStart(CallInst &I);
949  void visitVAArg(VAArgInst &I);
950  void visitVAEnd(CallInst &I);
951  void visitVACopy(CallInst &I);
952
953  void visitUserOp1(Instruction &I) {
954    assert(0 && "UserOp1 should not exist at instruction selection time!");
955    abort();
956  }
957  void visitUserOp2(Instruction &I) {
958    assert(0 && "UserOp2 should not exist at instruction selection time!");
959    abort();
960  }
961
962private:
963  inline const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
964
965};
966} // end namespace llvm
967
968
969/// getCopyFromParts - Create a value that contains the specified legal parts
970/// combined into the value they represent.  If the parts combine to a type
971/// larger then ValueVT then AssertOp can be used to specify whether the extra
972/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
973/// (ISD::AssertSext).
974static SDValue getCopyFromParts(SelectionDAG &DAG,
975                                  const SDValue *Parts,
976                                  unsigned NumParts,
977                                  MVT PartVT,
978                                  MVT ValueVT,
979                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
980  assert(NumParts > 0 && "No parts to assemble!");
981  TargetLowering &TLI = DAG.getTargetLoweringInfo();
982  SDValue Val = Parts[0];
983
984  if (NumParts > 1) {
985    // Assemble the value from multiple parts.
986    if (!ValueVT.isVector()) {
987      unsigned PartBits = PartVT.getSizeInBits();
988      unsigned ValueBits = ValueVT.getSizeInBits();
989
990      // Assemble the power of 2 part.
991      unsigned RoundParts = NumParts & (NumParts - 1) ?
992        1 << Log2_32(NumParts) : NumParts;
993      unsigned RoundBits = PartBits * RoundParts;
994      MVT RoundVT = RoundBits == ValueBits ?
995        ValueVT : MVT::getIntegerVT(RoundBits);
996      SDValue Lo, Hi;
997
998      if (RoundParts > 2) {
999        MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
1000        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
1001        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
1002                              PartVT, HalfVT);
1003      } else {
1004        Lo = Parts[0];
1005        Hi = Parts[1];
1006      }
1007      if (TLI.isBigEndian())
1008        std::swap(Lo, Hi);
1009      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
1010
1011      if (RoundParts < NumParts) {
1012        // Assemble the trailing non-power-of-2 part.
1013        unsigned OddParts = NumParts - RoundParts;
1014        MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
1015        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
1016
1017        // Combine the round and odd parts.
1018        Lo = Val;
1019        if (TLI.isBigEndian())
1020          std::swap(Lo, Hi);
1021        MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
1022        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
1023        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
1024                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
1025                                         TLI.getShiftAmountTy()));
1026        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
1027        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
1028      }
1029    } else {
1030      // Handle a multi-element vector.
1031      MVT IntermediateVT, RegisterVT;
1032      unsigned NumIntermediates;
1033      unsigned NumRegs =
1034        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1035                                   RegisterVT);
1036      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1037      NumParts = NumRegs; // Silence a compiler warning.
1038      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1039      assert(RegisterVT == Parts[0].getValueType() &&
1040             "Part type doesn't match part!");
1041
1042      // Assemble the parts into intermediate operands.
1043      SmallVector<SDValue, 8> Ops(NumIntermediates);
1044      if (NumIntermediates == NumParts) {
1045        // If the register was not expanded, truncate or copy the value,
1046        // as appropriate.
1047        for (unsigned i = 0; i != NumParts; ++i)
1048          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
1049                                    PartVT, IntermediateVT);
1050      } else if (NumParts > 0) {
1051        // If the intermediate type was expanded, build the intermediate operands
1052        // from the parts.
1053        assert(NumParts % NumIntermediates == 0 &&
1054               "Must expand into a divisible number of parts!");
1055        unsigned Factor = NumParts / NumIntermediates;
1056        for (unsigned i = 0; i != NumIntermediates; ++i)
1057          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
1058                                    PartVT, IntermediateVT);
1059      }
1060
1061      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
1062      // operands.
1063      Val = DAG.getNode(IntermediateVT.isVector() ?
1064                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
1065                        ValueVT, &Ops[0], NumIntermediates);
1066    }
1067  }
1068
1069  // There is now one part, held in Val.  Correct it to match ValueVT.
1070  PartVT = Val.getValueType();
1071
1072  if (PartVT == ValueVT)
1073    return Val;
1074
1075  if (PartVT.isVector()) {
1076    assert(ValueVT.isVector() && "Unknown vector conversion!");
1077    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
1078  }
1079
1080  if (ValueVT.isVector()) {
1081    assert(ValueVT.getVectorElementType() == PartVT &&
1082           ValueVT.getVectorNumElements() == 1 &&
1083           "Only trivial scalar-to-vector conversions should get here!");
1084    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
1085  }
1086
1087  if (PartVT.isInteger() &&
1088      ValueVT.isInteger()) {
1089    if (ValueVT.bitsLT(PartVT)) {
1090      // For a truncate, see if we have any information to
1091      // indicate whether the truncated bits will always be
1092      // zero or sign-extension.
1093      if (AssertOp != ISD::DELETED_NODE)
1094        Val = DAG.getNode(AssertOp, PartVT, Val,
1095                          DAG.getValueType(ValueVT));
1096      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1097    } else {
1098      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
1099    }
1100  }
1101
1102  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
1103    if (ValueVT.bitsLT(Val.getValueType()))
1104      // FP_ROUND's are always exact here.
1105      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
1106                         DAG.getIntPtrConstant(1));
1107    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
1108  }
1109
1110  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
1111    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
1112
1113  assert(0 && "Unknown mismatch!");
1114  return SDValue();
1115}
1116
1117/// getCopyToParts - Create a series of nodes that contain the specified value
1118/// split into legal parts.  If the parts contain more bits than Val, then, for
1119/// integers, ExtendKind can be used to specify how to generate the extra bits.
1120static void getCopyToParts(SelectionDAG &DAG,
1121                           SDValue Val,
1122                           SDValue *Parts,
1123                           unsigned NumParts,
1124                           MVT PartVT,
1125                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
1126  TargetLowering &TLI = DAG.getTargetLoweringInfo();
1127  MVT PtrVT = TLI.getPointerTy();
1128  MVT ValueVT = Val.getValueType();
1129  unsigned PartBits = PartVT.getSizeInBits();
1130  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
1131
1132  if (!NumParts)
1133    return;
1134
1135  if (!ValueVT.isVector()) {
1136    if (PartVT == ValueVT) {
1137      assert(NumParts == 1 && "No-op copy with multiple parts!");
1138      Parts[0] = Val;
1139      return;
1140    }
1141
1142    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
1143      // If the parts cover more bits than the value has, promote the value.
1144      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
1145        assert(NumParts == 1 && "Do not know what to promote to!");
1146        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
1147      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
1148        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1149        Val = DAG.getNode(ExtendKind, ValueVT, Val);
1150      } else {
1151        assert(0 && "Unknown mismatch!");
1152      }
1153    } else if (PartBits == ValueVT.getSizeInBits()) {
1154      // Different types of the same size.
1155      assert(NumParts == 1 && PartVT != ValueVT);
1156      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1157    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
1158      // If the parts cover less bits than value has, truncate the value.
1159      if (PartVT.isInteger() && ValueVT.isInteger()) {
1160        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1161        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1162      } else {
1163        assert(0 && "Unknown mismatch!");
1164      }
1165    }
1166
1167    // The value may have changed - recompute ValueVT.
1168    ValueVT = Val.getValueType();
1169    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
1170           "Failed to tile the value with PartVT!");
1171
1172    if (NumParts == 1) {
1173      assert(PartVT == ValueVT && "Type conversion failed!");
1174      Parts[0] = Val;
1175      return;
1176    }
1177
1178    // Expand the value into multiple parts.
1179    if (NumParts & (NumParts - 1)) {
1180      // The number of parts is not a power of 2.  Split off and copy the tail.
1181      assert(PartVT.isInteger() && ValueVT.isInteger() &&
1182             "Do not know what to expand to!");
1183      unsigned RoundParts = 1 << Log2_32(NumParts);
1184      unsigned RoundBits = RoundParts * PartBits;
1185      unsigned OddParts = NumParts - RoundParts;
1186      SDValue OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
1187                                     DAG.getConstant(RoundBits,
1188                                                     TLI.getShiftAmountTy()));
1189      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
1190      if (TLI.isBigEndian())
1191        // The odd parts were reversed by getCopyToParts - unreverse them.
1192        std::reverse(Parts + RoundParts, Parts + NumParts);
1193      NumParts = RoundParts;
1194      ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1195      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1196    }
1197
1198    // The number of parts is a power of 2.  Repeatedly bisect the value using
1199    // EXTRACT_ELEMENT.
1200    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
1201                           MVT::getIntegerVT(ValueVT.getSizeInBits()),
1202                           Val);
1203    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
1204      for (unsigned i = 0; i < NumParts; i += StepSize) {
1205        unsigned ThisBits = StepSize * PartBits / 2;
1206        MVT ThisVT = MVT::getIntegerVT (ThisBits);
1207        SDValue &Part0 = Parts[i];
1208        SDValue &Part1 = Parts[i+StepSize/2];
1209
1210        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1211                            DAG.getConstant(1, PtrVT));
1212        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1213                            DAG.getConstant(0, PtrVT));
1214
1215        if (ThisBits == PartBits && ThisVT != PartVT) {
1216          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
1217          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
1218        }
1219      }
1220    }
1221
1222    if (TLI.isBigEndian())
1223      std::reverse(Parts, Parts + NumParts);
1224
1225    return;
1226  }
1227
1228  // Vector ValueVT.
1229  if (NumParts == 1) {
1230    if (PartVT != ValueVT) {
1231      if (PartVT.isVector()) {
1232        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1233      } else {
1234        assert(ValueVT.getVectorElementType() == PartVT &&
1235               ValueVT.getVectorNumElements() == 1 &&
1236               "Only trivial vector-to-scalar conversions should get here!");
1237        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
1238                          DAG.getConstant(0, PtrVT));
1239      }
1240    }
1241
1242    Parts[0] = Val;
1243    return;
1244  }
1245
1246  // Handle a multi-element vector.
1247  MVT IntermediateVT, RegisterVT;
1248  unsigned NumIntermediates;
1249  unsigned NumRegs =
1250    DAG.getTargetLoweringInfo()
1251      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1252                              RegisterVT);
1253  unsigned NumElements = ValueVT.getVectorNumElements();
1254
1255  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1256  NumParts = NumRegs; // Silence a compiler warning.
1257  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1258
1259  // Split the vector into intermediate operands.
1260  SmallVector<SDValue, 8> Ops(NumIntermediates);
1261  for (unsigned i = 0; i != NumIntermediates; ++i)
1262    if (IntermediateVT.isVector())
1263      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
1264                           IntermediateVT, Val,
1265                           DAG.getConstant(i * (NumElements / NumIntermediates),
1266                                           PtrVT));
1267    else
1268      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
1269                           IntermediateVT, Val,
1270                           DAG.getConstant(i, PtrVT));
1271
1272  // Split the intermediate operands into legal parts.
1273  if (NumParts == NumIntermediates) {
1274    // If the register was not expanded, promote or copy the value,
1275    // as appropriate.
1276    for (unsigned i = 0; i != NumParts; ++i)
1277      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
1278  } else if (NumParts > 0) {
1279    // If the intermediate type was expanded, split each the value into
1280    // legal parts.
1281    assert(NumParts % NumIntermediates == 0 &&
1282           "Must expand into a divisible number of parts!");
1283    unsigned Factor = NumParts / NumIntermediates;
1284    for (unsigned i = 0; i != NumIntermediates; ++i)
1285      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
1286  }
1287}
1288
1289
1290SDValue SelectionDAGLowering::getValue(const Value *V) {
1291  SDValue &N = NodeMap[V];
1292  if (N.Val) return N;
1293
1294  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
1295    MVT VT = TLI.getValueType(V->getType(), true);
1296
1297    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1298      return N = DAG.getConstant(CI->getValue(), VT);
1299
1300    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
1301      return N = DAG.getGlobalAddress(GV, VT);
1302
1303    if (isa<ConstantPointerNull>(C))
1304      return N = DAG.getConstant(0, TLI.getPointerTy());
1305
1306    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1307      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
1308
1309    if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
1310        !V->getType()->isAggregateType())
1311      return N = DAG.getNode(ISD::UNDEF, VT);
1312
1313    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1314      visit(CE->getOpcode(), *CE);
1315      SDValue N1 = NodeMap[V];
1316      assert(N1.Val && "visit didn't populate the ValueMap!");
1317      return N1;
1318    }
1319
1320    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1321      SmallVector<SDValue, 4> Constants;
1322      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1323           OI != OE; ++OI) {
1324        SDNode *Val = getValue(*OI).Val;
1325        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1326          Constants.push_back(SDValue(Val, i));
1327      }
1328      return DAG.getMergeValues(&Constants[0], Constants.size());
1329    }
1330
1331    if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
1332      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1333             "Unknown struct or array constant!");
1334
1335      SmallVector<MVT, 4> ValueVTs;
1336      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1337      unsigned NumElts = ValueVTs.size();
1338      if (NumElts == 0)
1339        return SDValue(); // empty struct
1340      SmallVector<SDValue, 4> Constants(NumElts);
1341      for (unsigned i = 0; i != NumElts; ++i) {
1342        MVT EltVT = ValueVTs[i];
1343        if (isa<UndefValue>(C))
1344          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1345        else if (EltVT.isFloatingPoint())
1346          Constants[i] = DAG.getConstantFP(0, EltVT);
1347        else
1348          Constants[i] = DAG.getConstant(0, EltVT);
1349      }
1350      return DAG.getMergeValues(&Constants[0], NumElts);
1351    }
1352
1353    const VectorType *VecTy = cast<VectorType>(V->getType());
1354    unsigned NumElements = VecTy->getNumElements();
1355
1356    // Now that we know the number and type of the elements, get that number of
1357    // elements into the Ops array based on what kind of constant it is.
1358    SmallVector<SDValue, 16> Ops;
1359    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1360      for (unsigned i = 0; i != NumElements; ++i)
1361        Ops.push_back(getValue(CP->getOperand(i)));
1362    } else {
1363      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1364             "Unknown vector constant!");
1365      MVT EltVT = TLI.getValueType(VecTy->getElementType());
1366
1367      SDValue Op;
1368      if (isa<UndefValue>(C))
1369        Op = DAG.getNode(ISD::UNDEF, EltVT);
1370      else if (EltVT.isFloatingPoint())
1371        Op = DAG.getConstantFP(0, EltVT);
1372      else
1373        Op = DAG.getConstant(0, EltVT);
1374      Ops.assign(NumElements, Op);
1375    }
1376
1377    // Create a BUILD_VECTOR node.
1378    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1379  }
1380
1381  // If this is a static alloca, generate it as the frameindex instead of
1382  // computation.
1383  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1384    DenseMap<const AllocaInst*, int>::iterator SI =
1385      FuncInfo.StaticAllocaMap.find(AI);
1386    if (SI != FuncInfo.StaticAllocaMap.end())
1387      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1388  }
1389
1390  unsigned InReg = FuncInfo.ValueMap[V];
1391  assert(InReg && "Value not in map!");
1392
1393  RegsForValue RFV(TLI, InReg, V->getType());
1394  SDValue Chain = DAG.getEntryNode();
1395  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1396}
1397
1398
1399void SelectionDAGLowering::visitRet(ReturnInst &I) {
1400  if (I.getNumOperands() == 0) {
1401    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
1402    return;
1403  }
1404
1405  SmallVector<SDValue, 8> NewValues;
1406  NewValues.push_back(getControlRoot());
1407  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1408    SDValue RetOp = getValue(I.getOperand(i));
1409
1410    SmallVector<MVT, 4> ValueVTs;
1411    ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
1412    for (unsigned j = 0, f = ValueVTs.size(); j != f; ++j) {
1413      MVT VT = ValueVTs[j];
1414
1415      // FIXME: C calling convention requires the return type to be promoted to
1416      // at least 32-bit. But this is not necessary for non-C calling conventions.
1417      if (VT.isInteger()) {
1418        MVT MinVT = TLI.getRegisterType(MVT::i32);
1419        if (VT.bitsLT(MinVT))
1420          VT = MinVT;
1421      }
1422
1423      unsigned NumParts = TLI.getNumRegisters(VT);
1424      MVT PartVT = TLI.getRegisterType(VT);
1425      SmallVector<SDValue, 4> Parts(NumParts);
1426      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1427
1428      const Function *F = I.getParent()->getParent();
1429      if (F->paramHasAttr(0, ParamAttr::SExt))
1430        ExtendKind = ISD::SIGN_EXTEND;
1431      else if (F->paramHasAttr(0, ParamAttr::ZExt))
1432        ExtendKind = ISD::ZERO_EXTEND;
1433
1434      getCopyToParts(DAG, SDValue(RetOp.Val, RetOp.getResNo() + j),
1435                     &Parts[0], NumParts, PartVT, ExtendKind);
1436
1437      for (unsigned i = 0; i < NumParts; ++i) {
1438        NewValues.push_back(Parts[i]);
1439        NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
1440      }
1441    }
1442  }
1443  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1444                          &NewValues[0], NewValues.size()));
1445}
1446
1447/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1448/// the current basic block, add it to ValueMap now so that we'll get a
1449/// CopyTo/FromReg.
1450void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1451  // No need to export constants.
1452  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1453
1454  // Already exported?
1455  if (FuncInfo.isExportedInst(V)) return;
1456
1457  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1458  CopyValueToVirtualRegister(V, Reg);
1459}
1460
1461bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1462                                                    const BasicBlock *FromBB) {
1463  // The operands of the setcc have to be in this block.  We don't know
1464  // how to export them from some other block.
1465  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1466    // Can export from current BB.
1467    if (VI->getParent() == FromBB)
1468      return true;
1469
1470    // Is already exported, noop.
1471    return FuncInfo.isExportedInst(V);
1472  }
1473
1474  // If this is an argument, we can export it if the BB is the entry block or
1475  // if it is already exported.
1476  if (isa<Argument>(V)) {
1477    if (FromBB == &FromBB->getParent()->getEntryBlock())
1478      return true;
1479
1480    // Otherwise, can only export this if it is already exported.
1481    return FuncInfo.isExportedInst(V);
1482  }
1483
1484  // Otherwise, constants can always be exported.
1485  return true;
1486}
1487
1488static bool InBlock(const Value *V, const BasicBlock *BB) {
1489  if (const Instruction *I = dyn_cast<Instruction>(V))
1490    return I->getParent() == BB;
1491  return true;
1492}
1493
1494/// FindMergedConditions - If Cond is an expression like
1495void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1496                                                MachineBasicBlock *TBB,
1497                                                MachineBasicBlock *FBB,
1498                                                MachineBasicBlock *CurBB,
1499                                                unsigned Opc) {
1500  // If this node is not part of the or/and tree, emit it as a branch.
1501  Instruction *BOp = dyn_cast<Instruction>(Cond);
1502
1503  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1504      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1505      BOp->getParent() != CurBB->getBasicBlock() ||
1506      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1507      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1508    const BasicBlock *BB = CurBB->getBasicBlock();
1509
1510    // If the leaf of the tree is a comparison, merge the condition into
1511    // the caseblock.
1512    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1513        // The operands of the cmp have to be in this block.  We don't know
1514        // how to export them from some other block.  If this is the first block
1515        // of the sequence, no exporting is needed.
1516        (CurBB == CurMBB ||
1517         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1518          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1519      BOp = cast<Instruction>(Cond);
1520      ISD::CondCode Condition;
1521      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1522        switch (IC->getPredicate()) {
1523        default: assert(0 && "Unknown icmp predicate opcode!");
1524        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1525        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1526        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1527        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1528        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1529        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1530        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1531        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1532        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1533        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1534        }
1535      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1536        ISD::CondCode FPC, FOC;
1537        switch (FC->getPredicate()) {
1538        default: assert(0 && "Unknown fcmp predicate opcode!");
1539        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1540        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1541        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1542        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1543        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1544        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1545        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1546        case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
1547        case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
1548        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1549        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1550        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1551        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1552        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1553        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1554        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1555        }
1556        if (FiniteOnlyFPMath())
1557          Condition = FOC;
1558        else
1559          Condition = FPC;
1560      } else {
1561        Condition = ISD::SETEQ; // silence warning.
1562        assert(0 && "Unknown compare instruction");
1563      }
1564
1565      CaseBlock CB(Condition, BOp->getOperand(0),
1566                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1567      SwitchCases.push_back(CB);
1568      return;
1569    }
1570
1571    // Create a CaseBlock record representing this branch.
1572    CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1573                 NULL, TBB, FBB, CurBB);
1574    SwitchCases.push_back(CB);
1575    return;
1576  }
1577
1578
1579  //  Create TmpBB after CurBB.
1580  MachineFunction::iterator BBI = CurBB;
1581  MachineFunction &MF = DAG.getMachineFunction();
1582  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1583  CurBB->getParent()->insert(++BBI, TmpBB);
1584
1585  if (Opc == Instruction::Or) {
1586    // Codegen X | Y as:
1587    //   jmp_if_X TBB
1588    //   jmp TmpBB
1589    // TmpBB:
1590    //   jmp_if_Y TBB
1591    //   jmp FBB
1592    //
1593
1594    // Emit the LHS condition.
1595    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1596
1597    // Emit the RHS condition into TmpBB.
1598    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1599  } else {
1600    assert(Opc == Instruction::And && "Unknown merge op!");
1601    // Codegen X & Y as:
1602    //   jmp_if_X TmpBB
1603    //   jmp FBB
1604    // TmpBB:
1605    //   jmp_if_Y TBB
1606    //   jmp FBB
1607    //
1608    //  This requires creation of TmpBB after CurBB.
1609
1610    // Emit the LHS condition.
1611    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1612
1613    // Emit the RHS condition into TmpBB.
1614    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1615  }
1616}
1617
1618/// If the set of cases should be emitted as a series of branches, return true.
1619/// If we should emit this as a bunch of and/or'd together conditions, return
1620/// false.
1621static bool
1622ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1623  if (Cases.size() != 2) return true;
1624
1625  // If this is two comparisons of the same values or'd or and'd together, they
1626  // will get folded into a single comparison, so don't emit two blocks.
1627  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1628       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1629      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1630       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1631    return false;
1632  }
1633
1634  return true;
1635}
1636
1637void SelectionDAGLowering::visitBr(BranchInst &I) {
1638  // Update machine-CFG edges.
1639  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1640
1641  // Figure out which block is immediately after the current one.
1642  MachineBasicBlock *NextBlock = 0;
1643  MachineFunction::iterator BBI = CurMBB;
1644  if (++BBI != CurMBB->getParent()->end())
1645    NextBlock = BBI;
1646
1647  if (I.isUnconditional()) {
1648    // Update machine-CFG edges.
1649    CurMBB->addSuccessor(Succ0MBB);
1650
1651    // If this is not a fall-through branch, emit the branch.
1652    if (Succ0MBB != NextBlock)
1653      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1654                              DAG.getBasicBlock(Succ0MBB)));
1655    return;
1656  }
1657
1658  // If this condition is one of the special cases we handle, do special stuff
1659  // now.
1660  Value *CondVal = I.getCondition();
1661  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1662
1663  // If this is a series of conditions that are or'd or and'd together, emit
1664  // this as a sequence of branches instead of setcc's with and/or operations.
1665  // For example, instead of something like:
1666  //     cmp A, B
1667  //     C = seteq
1668  //     cmp D, E
1669  //     F = setle
1670  //     or C, F
1671  //     jnz foo
1672  // Emit:
1673  //     cmp A, B
1674  //     je foo
1675  //     cmp D, E
1676  //     jle foo
1677  //
1678  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1679    if (BOp->hasOneUse() &&
1680        (BOp->getOpcode() == Instruction::And ||
1681         BOp->getOpcode() == Instruction::Or)) {
1682      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1683      // If the compares in later blocks need to use values not currently
1684      // exported from this block, export them now.  This block should always
1685      // be the first entry.
1686      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1687
1688      // Allow some cases to be rejected.
1689      if (ShouldEmitAsBranches(SwitchCases)) {
1690        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1691          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1692          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1693        }
1694
1695        // Emit the branch for this block.
1696        visitSwitchCase(SwitchCases[0]);
1697        SwitchCases.erase(SwitchCases.begin());
1698        return;
1699      }
1700
1701      // Okay, we decided not to do this, remove any inserted MBB's and clear
1702      // SwitchCases.
1703      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1704        CurMBB->getParent()->erase(SwitchCases[i].ThisBB);
1705
1706      SwitchCases.clear();
1707    }
1708  }
1709
1710  // Create a CaseBlock record representing this branch.
1711  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1712               NULL, Succ0MBB, Succ1MBB, CurMBB);
1713  // Use visitSwitchCase to actually insert the fast branch sequence for this
1714  // cond branch.
1715  visitSwitchCase(CB);
1716}
1717
1718/// visitSwitchCase - Emits the necessary code to represent a single node in
1719/// the binary search tree resulting from lowering a switch instruction.
1720void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) {
1721  SDValue Cond;
1722  SDValue CondLHS = getValue(CB.CmpLHS);
1723
1724  // Build the setcc now.
1725  if (CB.CmpMHS == NULL) {
1726    // Fold "(X == true)" to X and "(X == false)" to !X to
1727    // handle common cases produced by branch lowering.
1728    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1729      Cond = CondLHS;
1730    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1731      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1732      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1733    } else
1734      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1735  } else {
1736    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1737
1738    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1739    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1740
1741    SDValue CmpOp = getValue(CB.CmpMHS);
1742    MVT VT = CmpOp.getValueType();
1743
1744    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1745      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1746    } else {
1747      SDValue SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1748      Cond = DAG.getSetCC(MVT::i1, SUB,
1749                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1750    }
1751  }
1752
1753  // Update successor info
1754  CurMBB->addSuccessor(CB.TrueBB);
1755  CurMBB->addSuccessor(CB.FalseBB);
1756
1757  // Set NextBlock to be the MBB immediately after the current one, if any.
1758  // This is used to avoid emitting unnecessary branches to the next block.
1759  MachineBasicBlock *NextBlock = 0;
1760  MachineFunction::iterator BBI = CurMBB;
1761  if (++BBI != CurMBB->getParent()->end())
1762    NextBlock = BBI;
1763
1764  // If the lhs block is the next block, invert the condition so that we can
1765  // fall through to the lhs instead of the rhs block.
1766  if (CB.TrueBB == NextBlock) {
1767    std::swap(CB.TrueBB, CB.FalseBB);
1768    SDValue True = DAG.getConstant(1, Cond.getValueType());
1769    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1770  }
1771  SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1772                                 DAG.getBasicBlock(CB.TrueBB));
1773
1774  // If the branch was constant folded, fix up the CFG.
1775  if (BrCond.getOpcode() == ISD::BR) {
1776    CurMBB->removeSuccessor(CB.FalseBB);
1777    DAG.setRoot(BrCond);
1778  } else {
1779    // Otherwise, go ahead and insert the false branch.
1780    if (BrCond == getControlRoot())
1781      CurMBB->removeSuccessor(CB.TrueBB);
1782
1783    if (CB.FalseBB == NextBlock)
1784      DAG.setRoot(BrCond);
1785    else
1786      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1787                              DAG.getBasicBlock(CB.FalseBB)));
1788  }
1789}
1790
1791/// visitJumpTable - Emit JumpTable node in the current MBB
1792void SelectionDAGLowering::visitJumpTable(JumpTable &JT) {
1793  // Emit the code for the jump table
1794  assert(JT.Reg != -1U && "Should lower JT Header first!");
1795  MVT PTy = TLI.getPointerTy();
1796  SDValue Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1797  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1798  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1799                          Table, Index));
1800  return;
1801}
1802
1803/// visitJumpTableHeader - This function emits necessary code to produce index
1804/// in the JumpTable from switch case.
1805void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT,
1806                                                JumpTableHeader &JTH) {
1807  // Subtract the lowest switch case value from the value being switched on
1808  // and conditional branch to default mbb if the result is greater than the
1809  // difference between smallest and largest cases.
1810  SDValue SwitchOp = getValue(JTH.SValue);
1811  MVT VT = SwitchOp.getValueType();
1812  SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1813                              DAG.getConstant(JTH.First, VT));
1814
1815  // The SDNode we just created, which holds the value being switched on
1816  // minus the the smallest case value, needs to be copied to a virtual
1817  // register so it can be used as an index into the jump table in a
1818  // subsequent basic block.  This value may be smaller or larger than the
1819  // target's pointer type, and therefore require extension or truncating.
1820  if (VT.bitsGT(TLI.getPointerTy()))
1821    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1822  else
1823    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1824
1825  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1826  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1827  JT.Reg = JumpTableReg;
1828
1829  // Emit the range check for the jump table, and branch to the default
1830  // block for the switch statement if the value being switched on exceeds
1831  // the largest case in the switch.
1832  SDValue CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1833                               DAG.getConstant(JTH.Last-JTH.First,VT),
1834                               ISD::SETUGT);
1835
1836  // Set NextBlock to be the MBB immediately after the current one, if any.
1837  // This is used to avoid emitting unnecessary branches to the next block.
1838  MachineBasicBlock *NextBlock = 0;
1839  MachineFunction::iterator BBI = CurMBB;
1840  if (++BBI != CurMBB->getParent()->end())
1841    NextBlock = BBI;
1842
1843  SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1844                                 DAG.getBasicBlock(JT.Default));
1845
1846  if (JT.MBB == NextBlock)
1847    DAG.setRoot(BrCond);
1848  else
1849    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1850                            DAG.getBasicBlock(JT.MBB)));
1851
1852  return;
1853}
1854
1855/// visitBitTestHeader - This function emits necessary code to produce value
1856/// suitable for "bit tests"
1857void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) {
1858  // Subtract the minimum value
1859  SDValue SwitchOp = getValue(B.SValue);
1860  MVT VT = SwitchOp.getValueType();
1861  SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1862                              DAG.getConstant(B.First, VT));
1863
1864  // Check range
1865  SDValue RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1866                                    DAG.getConstant(B.Range, VT),
1867                                    ISD::SETUGT);
1868
1869  SDValue ShiftOp;
1870  if (VT.bitsGT(TLI.getShiftAmountTy()))
1871    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1872  else
1873    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1874
1875  // Make desired shift
1876  SDValue SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1877                                    DAG.getConstant(1, TLI.getPointerTy()),
1878                                    ShiftOp);
1879
1880  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1881  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1882  B.Reg = SwitchReg;
1883
1884  // Set NextBlock to be the MBB immediately after the current one, if any.
1885  // This is used to avoid emitting unnecessary branches to the next block.
1886  MachineBasicBlock *NextBlock = 0;
1887  MachineFunction::iterator BBI = CurMBB;
1888  if (++BBI != CurMBB->getParent()->end())
1889    NextBlock = BBI;
1890
1891  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1892
1893  CurMBB->addSuccessor(B.Default);
1894  CurMBB->addSuccessor(MBB);
1895
1896  SDValue BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1897                                  DAG.getBasicBlock(B.Default));
1898
1899  if (MBB == NextBlock)
1900    DAG.setRoot(BrRange);
1901  else
1902    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1903                            DAG.getBasicBlock(MBB)));
1904
1905  return;
1906}
1907
1908/// visitBitTestCase - this function produces one "bit test"
1909void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1910                                            unsigned Reg,
1911                                            BitTestCase &B) {
1912  // Emit bit tests and jumps
1913  SDValue SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
1914                                           TLI.getPointerTy());
1915
1916  SDValue AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
1917                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1918  SDValue AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1919                                  DAG.getConstant(0, TLI.getPointerTy()),
1920                                  ISD::SETNE);
1921
1922  CurMBB->addSuccessor(B.TargetBB);
1923  CurMBB->addSuccessor(NextMBB);
1924
1925  SDValue BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1926                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1927
1928  // Set NextBlock to be the MBB immediately after the current one, if any.
1929  // This is used to avoid emitting unnecessary branches to the next block.
1930  MachineBasicBlock *NextBlock = 0;
1931  MachineFunction::iterator BBI = CurMBB;
1932  if (++BBI != CurMBB->getParent()->end())
1933    NextBlock = BBI;
1934
1935  if (NextMBB == NextBlock)
1936    DAG.setRoot(BrAnd);
1937  else
1938    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1939                            DAG.getBasicBlock(NextMBB)));
1940
1941  return;
1942}
1943
1944void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1945  // Retrieve successors.
1946  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1947  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1948
1949  if (isa<InlineAsm>(I.getCalledValue()))
1950    visitInlineAsm(&I);
1951  else
1952    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1953
1954  // If the value of the invoke is used outside of its defining block, make it
1955  // available as a virtual register.
1956  if (!I.use_empty()) {
1957    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1958    if (VMI != FuncInfo.ValueMap.end())
1959      CopyValueToVirtualRegister(&I, VMI->second);
1960  }
1961
1962  // Update successor info
1963  CurMBB->addSuccessor(Return);
1964  CurMBB->addSuccessor(LandingPad);
1965
1966  // Drop into normal successor.
1967  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1968                          DAG.getBasicBlock(Return)));
1969}
1970
1971void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1972}
1973
1974/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1975/// small case ranges).
1976bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1977                                                  CaseRecVector& WorkList,
1978                                                  Value* SV,
1979                                                  MachineBasicBlock* Default) {
1980  Case& BackCase  = *(CR.Range.second-1);
1981
1982  // Size is the number of Cases represented by this range.
1983  unsigned Size = CR.Range.second - CR.Range.first;
1984  if (Size > 3)
1985    return false;
1986
1987  // Get the MachineFunction which holds the current MBB.  This is used when
1988  // inserting any additional MBBs necessary to represent the switch.
1989  MachineFunction *CurMF = CurMBB->getParent();
1990
1991  // Figure out which block is immediately after the current one.
1992  MachineBasicBlock *NextBlock = 0;
1993  MachineFunction::iterator BBI = CR.CaseBB;
1994
1995  if (++BBI != CurMBB->getParent()->end())
1996    NextBlock = BBI;
1997
1998  // TODO: If any two of the cases has the same destination, and if one value
1999  // is the same as the other, but has one bit unset that the other has set,
2000  // use bit manipulation to do two compares at once.  For example:
2001  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2002
2003  // Rearrange the case blocks so that the last one falls through if possible.
2004  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2005    // The last case block won't fall through into 'NextBlock' if we emit the
2006    // branches in this order.  See if rearranging a case value would help.
2007    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
2008      if (I->BB == NextBlock) {
2009        std::swap(*I, BackCase);
2010        break;
2011      }
2012    }
2013  }
2014
2015  // Create a CaseBlock record representing a conditional branch to
2016  // the Case's target mbb if the value being switched on SV is equal
2017  // to C.
2018  MachineBasicBlock *CurBlock = CR.CaseBB;
2019  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2020    MachineBasicBlock *FallThrough;
2021    if (I != E-1) {
2022      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2023      CurMF->insert(BBI, FallThrough);
2024    } else {
2025      // If the last case doesn't match, go to the default block.
2026      FallThrough = Default;
2027    }
2028
2029    Value *RHS, *LHS, *MHS;
2030    ISD::CondCode CC;
2031    if (I->High == I->Low) {
2032      // This is just small small case range :) containing exactly 1 case
2033      CC = ISD::SETEQ;
2034      LHS = SV; RHS = I->High; MHS = NULL;
2035    } else {
2036      CC = ISD::SETLE;
2037      LHS = I->Low; MHS = SV; RHS = I->High;
2038    }
2039    CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
2040
2041    // If emitting the first comparison, just call visitSwitchCase to emit the
2042    // code into the current block.  Otherwise, push the CaseBlock onto the
2043    // vector to be later processed by SDISel, and insert the node's MBB
2044    // before the next MBB.
2045    if (CurBlock == CurMBB)
2046      visitSwitchCase(CB);
2047    else
2048      SwitchCases.push_back(CB);
2049
2050    CurBlock = FallThrough;
2051  }
2052
2053  return true;
2054}
2055
2056static inline bool areJTsAllowed(const TargetLowering &TLI) {
2057  return !DisableJumpTables &&
2058          (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
2059           TLI.isOperationLegal(ISD::BRIND, MVT::Other));
2060}
2061
2062/// handleJTSwitchCase - Emit jumptable for current switch case range
2063bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
2064                                              CaseRecVector& WorkList,
2065                                              Value* SV,
2066                                              MachineBasicBlock* Default) {
2067  Case& FrontCase = *CR.Range.first;
2068  Case& BackCase  = *(CR.Range.second-1);
2069
2070  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
2071  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
2072
2073  uint64_t TSize = 0;
2074  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2075       I!=E; ++I)
2076    TSize += I->size();
2077
2078  if (!areJTsAllowed(TLI) || TSize <= 3)
2079    return false;
2080
2081  double Density = (double)TSize / (double)((Last - First) + 1ULL);
2082  if (Density < 0.4)
2083    return false;
2084
2085  DOUT << "Lowering jump table\n"
2086       << "First entry: " << First << ". Last entry: " << Last << "\n"
2087       << "Size: " << TSize << ". Density: " << Density << "\n\n";
2088
2089  // Get the MachineFunction which holds the current MBB.  This is used when
2090  // inserting any additional MBBs necessary to represent the switch.
2091  MachineFunction *CurMF = CurMBB->getParent();
2092
2093  // Figure out which block is immediately after the current one.
2094  MachineBasicBlock *NextBlock = 0;
2095  MachineFunction::iterator BBI = CR.CaseBB;
2096
2097  if (++BBI != CurMBB->getParent()->end())
2098    NextBlock = BBI;
2099
2100  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2101
2102  // Create a new basic block to hold the code for loading the address
2103  // of the jump table, and jumping to it.  Update successor information;
2104  // we will either branch to the default case for the switch, or the jump
2105  // table.
2106  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2107  CurMF->insert(BBI, JumpTableBB);
2108  CR.CaseBB->addSuccessor(Default);
2109  CR.CaseBB->addSuccessor(JumpTableBB);
2110
2111  // Build a vector of destination BBs, corresponding to each target
2112  // of the jump table. If the value of the jump table slot corresponds to
2113  // a case statement, push the case's BB onto the vector, otherwise, push
2114  // the default BB.
2115  std::vector<MachineBasicBlock*> DestBBs;
2116  int64_t TEI = First;
2117  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2118    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
2119    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
2120
2121    if ((Low <= TEI) && (TEI <= High)) {
2122      DestBBs.push_back(I->BB);
2123      if (TEI==High)
2124        ++I;
2125    } else {
2126      DestBBs.push_back(Default);
2127    }
2128  }
2129
2130  // Update successor info. Add one edge to each unique successor.
2131  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2132  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2133         E = DestBBs.end(); I != E; ++I) {
2134    if (!SuccsHandled[(*I)->getNumber()]) {
2135      SuccsHandled[(*I)->getNumber()] = true;
2136      JumpTableBB->addSuccessor(*I);
2137    }
2138  }
2139
2140  // Create a jump table index for this jump table, or return an existing
2141  // one.
2142  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
2143
2144  // Set the jump table information so that we can codegen it as a second
2145  // MachineBasicBlock
2146  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2147  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
2148  if (CR.CaseBB == CurMBB)
2149    visitJumpTableHeader(JT, JTH);
2150
2151  JTCases.push_back(JumpTableBlock(JTH, JT));
2152
2153  return true;
2154}
2155
2156/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2157/// 2 subtrees.
2158bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
2159                                                   CaseRecVector& WorkList,
2160                                                   Value* SV,
2161                                                   MachineBasicBlock* Default) {
2162  // Get the MachineFunction which holds the current MBB.  This is used when
2163  // inserting any additional MBBs necessary to represent the switch.
2164  MachineFunction *CurMF = CurMBB->getParent();
2165
2166  // Figure out which block is immediately after the current one.
2167  MachineBasicBlock *NextBlock = 0;
2168  MachineFunction::iterator BBI = CR.CaseBB;
2169
2170  if (++BBI != CurMBB->getParent()->end())
2171    NextBlock = BBI;
2172
2173  Case& FrontCase = *CR.Range.first;
2174  Case& BackCase  = *(CR.Range.second-1);
2175  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2176
2177  // Size is the number of Cases represented by this range.
2178  unsigned Size = CR.Range.second - CR.Range.first;
2179
2180  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
2181  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
2182  double FMetric = 0;
2183  CaseItr Pivot = CR.Range.first + Size/2;
2184
2185  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2186  // (heuristically) allow us to emit JumpTable's later.
2187  uint64_t TSize = 0;
2188  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2189       I!=E; ++I)
2190    TSize += I->size();
2191
2192  uint64_t LSize = FrontCase.size();
2193  uint64_t RSize = TSize-LSize;
2194  DOUT << "Selecting best pivot: \n"
2195       << "First: " << First << ", Last: " << Last <<"\n"
2196       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
2197  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2198       J!=E; ++I, ++J) {
2199    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
2200    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
2201    assert((RBegin-LEnd>=1) && "Invalid case distance");
2202    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
2203    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
2204    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
2205    // Should always split in some non-trivial place
2206    DOUT <<"=>Step\n"
2207         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
2208         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
2209         << "Metric: " << Metric << "\n";
2210    if (FMetric < Metric) {
2211      Pivot = J;
2212      FMetric = Metric;
2213      DOUT << "Current metric set to: " << FMetric << "\n";
2214    }
2215
2216    LSize += J->size();
2217    RSize -= J->size();
2218  }
2219  if (areJTsAllowed(TLI)) {
2220    // If our case is dense we *really* should handle it earlier!
2221    assert((FMetric > 0) && "Should handle dense range earlier!");
2222  } else {
2223    Pivot = CR.Range.first + Size/2;
2224  }
2225
2226  CaseRange LHSR(CR.Range.first, Pivot);
2227  CaseRange RHSR(Pivot, CR.Range.second);
2228  Constant *C = Pivot->Low;
2229  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2230
2231  // We know that we branch to the LHS if the Value being switched on is
2232  // less than the Pivot value, C.  We use this to optimize our binary
2233  // tree a bit, by recognizing that if SV is greater than or equal to the
2234  // LHS's Case Value, and that Case Value is exactly one less than the
2235  // Pivot's Value, then we can branch directly to the LHS's Target,
2236  // rather than creating a leaf node for it.
2237  if ((LHSR.second - LHSR.first) == 1 &&
2238      LHSR.first->High == CR.GE &&
2239      cast<ConstantInt>(C)->getSExtValue() ==
2240      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
2241    TrueBB = LHSR.first->BB;
2242  } else {
2243    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2244    CurMF->insert(BBI, TrueBB);
2245    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2246  }
2247
2248  // Similar to the optimization above, if the Value being switched on is
2249  // known to be less than the Constant CR.LT, and the current Case Value
2250  // is CR.LT - 1, then we can branch directly to the target block for
2251  // the current Case Value, rather than emitting a RHS leaf node for it.
2252  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2253      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
2254      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
2255    FalseBB = RHSR.first->BB;
2256  } else {
2257    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2258    CurMF->insert(BBI, FalseBB);
2259    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2260  }
2261
2262  // Create a CaseBlock record representing a conditional branch to
2263  // the LHS node if the value being switched on SV is less than C.
2264  // Otherwise, branch to LHS.
2265  CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2266
2267  if (CR.CaseBB == CurMBB)
2268    visitSwitchCase(CB);
2269  else
2270    SwitchCases.push_back(CB);
2271
2272  return true;
2273}
2274
2275/// handleBitTestsSwitchCase - if current case range has few destination and
2276/// range span less, than machine word bitwidth, encode case range into series
2277/// of masks and emit bit tests with these masks.
2278bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
2279                                                    CaseRecVector& WorkList,
2280                                                    Value* SV,
2281                                                    MachineBasicBlock* Default){
2282  unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
2283
2284  Case& FrontCase = *CR.Range.first;
2285  Case& BackCase  = *(CR.Range.second-1);
2286
2287  // Get the MachineFunction which holds the current MBB.  This is used when
2288  // inserting any additional MBBs necessary to represent the switch.
2289  MachineFunction *CurMF = CurMBB->getParent();
2290
2291  unsigned numCmps = 0;
2292  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2293       I!=E; ++I) {
2294    // Single case counts one, case range - two.
2295    if (I->Low == I->High)
2296      numCmps +=1;
2297    else
2298      numCmps +=2;
2299  }
2300
2301  // Count unique destinations
2302  SmallSet<MachineBasicBlock*, 4> Dests;
2303  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2304    Dests.insert(I->BB);
2305    if (Dests.size() > 3)
2306      // Don't bother the code below, if there are too much unique destinations
2307      return false;
2308  }
2309  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
2310       << "Total number of comparisons: " << numCmps << "\n";
2311
2312  // Compute span of values.
2313  Constant* minValue = FrontCase.Low;
2314  Constant* maxValue = BackCase.High;
2315  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
2316                   cast<ConstantInt>(minValue)->getSExtValue();
2317  DOUT << "Compare range: " << range << "\n"
2318       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
2319       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
2320
2321  if (range>=IntPtrBits ||
2322      (!(Dests.size() == 1 && numCmps >= 3) &&
2323       !(Dests.size() == 2 && numCmps >= 5) &&
2324       !(Dests.size() >= 3 && numCmps >= 6)))
2325    return false;
2326
2327  DOUT << "Emitting bit tests\n";
2328  int64_t lowBound = 0;
2329
2330  // Optimize the case where all the case values fit in a
2331  // word without having to subtract minValue. In this case,
2332  // we can optimize away the subtraction.
2333  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
2334      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
2335    range = cast<ConstantInt>(maxValue)->getSExtValue();
2336  } else {
2337    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
2338  }
2339
2340  CaseBitsVector CasesBits;
2341  unsigned i, count = 0;
2342
2343  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2344    MachineBasicBlock* Dest = I->BB;
2345    for (i = 0; i < count; ++i)
2346      if (Dest == CasesBits[i].BB)
2347        break;
2348
2349    if (i == count) {
2350      assert((count < 3) && "Too much destinations to test!");
2351      CasesBits.push_back(CaseBits(0, Dest, 0));
2352      count++;
2353    }
2354
2355    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2356    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2357
2358    for (uint64_t j = lo; j <= hi; j++) {
2359      CasesBits[i].Mask |=  1ULL << j;
2360      CasesBits[i].Bits++;
2361    }
2362
2363  }
2364  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2365
2366  BitTestInfo BTC;
2367
2368  // Figure out which block is immediately after the current one.
2369  MachineFunction::iterator BBI = CR.CaseBB;
2370  ++BBI;
2371
2372  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2373
2374  DOUT << "Cases:\n";
2375  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2376    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2377         << ", BB: " << CasesBits[i].BB << "\n";
2378
2379    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2380    CurMF->insert(BBI, CaseBB);
2381    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2382                              CaseBB,
2383                              CasesBits[i].BB));
2384  }
2385
2386  BitTestBlock BTB(lowBound, range, SV,
2387                   -1U, (CR.CaseBB == CurMBB),
2388                   CR.CaseBB, Default, BTC);
2389
2390  if (CR.CaseBB == CurMBB)
2391    visitBitTestHeader(BTB);
2392
2393  BitTestCases.push_back(BTB);
2394
2395  return true;
2396}
2397
2398
2399/// Clusterify - Transform simple list of Cases into list of CaseRange's
2400unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2401                                          const SwitchInst& SI) {
2402  unsigned numCmps = 0;
2403
2404  // Start with "simple" cases
2405  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2406    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2407    Cases.push_back(Case(SI.getSuccessorValue(i),
2408                         SI.getSuccessorValue(i),
2409                         SMBB));
2410  }
2411  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2412
2413  // Merge case into clusters
2414  if (Cases.size()>=2)
2415    // Must recompute end() each iteration because it may be
2416    // invalidated by erase if we hold on to it
2417    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2418      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2419      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2420      MachineBasicBlock* nextBB = J->BB;
2421      MachineBasicBlock* currentBB = I->BB;
2422
2423      // If the two neighboring cases go to the same destination, merge them
2424      // into a single case.
2425      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2426        I->High = J->High;
2427        J = Cases.erase(J);
2428      } else {
2429        I = J++;
2430      }
2431    }
2432
2433  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2434    if (I->Low != I->High)
2435      // A range counts double, since it requires two compares.
2436      ++numCmps;
2437  }
2438
2439  return numCmps;
2440}
2441
2442void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2443  // Figure out which block is immediately after the current one.
2444  MachineBasicBlock *NextBlock = 0;
2445  MachineFunction::iterator BBI = CurMBB;
2446
2447  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2448
2449  // If there is only the default destination, branch to it if it is not the
2450  // next basic block.  Otherwise, just fall through.
2451  if (SI.getNumOperands() == 2) {
2452    // Update machine-CFG edges.
2453
2454    // If this is not a fall-through branch, emit the branch.
2455    CurMBB->addSuccessor(Default);
2456    if (Default != NextBlock)
2457      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2458                              DAG.getBasicBlock(Default)));
2459
2460    return;
2461  }
2462
2463  // If there are any non-default case statements, create a vector of Cases
2464  // representing each one, and sort the vector so that we can efficiently
2465  // create a binary search tree from them.
2466  CaseVector Cases;
2467  unsigned numCmps = Clusterify(Cases, SI);
2468  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2469       << ". Total compares: " << numCmps << "\n";
2470
2471  // Get the Value to be switched on and default basic blocks, which will be
2472  // inserted into CaseBlock records, representing basic blocks in the binary
2473  // search tree.
2474  Value *SV = SI.getOperand(0);
2475
2476  // Push the initial CaseRec onto the worklist
2477  CaseRecVector WorkList;
2478  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2479
2480  while (!WorkList.empty()) {
2481    // Grab a record representing a case range to process off the worklist
2482    CaseRec CR = WorkList.back();
2483    WorkList.pop_back();
2484
2485    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2486      continue;
2487
2488    // If the range has few cases (two or less) emit a series of specific
2489    // tests.
2490    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2491      continue;
2492
2493    // If the switch has more than 5 blocks, and at least 40% dense, and the
2494    // target supports indirect branches, then emit a jump table rather than
2495    // lowering the switch to a binary tree of conditional branches.
2496    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2497      continue;
2498
2499    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2500    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2501    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2502  }
2503}
2504
2505
2506void SelectionDAGLowering::visitSub(User &I) {
2507  // -0.0 - X --> fneg
2508  const Type *Ty = I.getType();
2509  if (isa<VectorType>(Ty)) {
2510    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2511      const VectorType *DestTy = cast<VectorType>(I.getType());
2512      const Type *ElTy = DestTy->getElementType();
2513      if (ElTy->isFloatingPoint()) {
2514        unsigned VL = DestTy->getNumElements();
2515        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2516        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2517        if (CV == CNZ) {
2518          SDValue Op2 = getValue(I.getOperand(1));
2519          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2520          return;
2521        }
2522      }
2523    }
2524  }
2525  if (Ty->isFloatingPoint()) {
2526    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2527      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2528        SDValue Op2 = getValue(I.getOperand(1));
2529        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2530        return;
2531      }
2532  }
2533
2534  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2535}
2536
2537void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2538  SDValue Op1 = getValue(I.getOperand(0));
2539  SDValue Op2 = getValue(I.getOperand(1));
2540
2541  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2542}
2543
2544void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2545  SDValue Op1 = getValue(I.getOperand(0));
2546  SDValue Op2 = getValue(I.getOperand(1));
2547  if (!isa<VectorType>(I.getType())) {
2548    if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
2549      Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2550    else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
2551      Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2552  }
2553
2554  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2555}
2556
2557void SelectionDAGLowering::visitICmp(User &I) {
2558  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2559  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2560    predicate = IC->getPredicate();
2561  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2562    predicate = ICmpInst::Predicate(IC->getPredicate());
2563  SDValue Op1 = getValue(I.getOperand(0));
2564  SDValue Op2 = getValue(I.getOperand(1));
2565  ISD::CondCode Opcode;
2566  switch (predicate) {
2567    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2568    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2569    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2570    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2571    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2572    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2573    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2574    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2575    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2576    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2577    default:
2578      assert(!"Invalid ICmp predicate value");
2579      Opcode = ISD::SETEQ;
2580      break;
2581  }
2582  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2583}
2584
2585void SelectionDAGLowering::visitFCmp(User &I) {
2586  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2587  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2588    predicate = FC->getPredicate();
2589  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2590    predicate = FCmpInst::Predicate(FC->getPredicate());
2591  SDValue Op1 = getValue(I.getOperand(0));
2592  SDValue Op2 = getValue(I.getOperand(1));
2593  ISD::CondCode Condition, FOC, FPC;
2594  switch (predicate) {
2595    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2596    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2597    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2598    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2599    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2600    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2601    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2602    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2603    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2604    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2605    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2606    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2607    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2608    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2609    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2610    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2611    default:
2612      assert(!"Invalid FCmp predicate value");
2613      FOC = FPC = ISD::SETFALSE;
2614      break;
2615  }
2616  if (FiniteOnlyFPMath())
2617    Condition = FOC;
2618  else
2619    Condition = FPC;
2620  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2621}
2622
2623void SelectionDAGLowering::visitVICmp(User &I) {
2624  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2625  if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2626    predicate = IC->getPredicate();
2627  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2628    predicate = ICmpInst::Predicate(IC->getPredicate());
2629  SDValue Op1 = getValue(I.getOperand(0));
2630  SDValue Op2 = getValue(I.getOperand(1));
2631  ISD::CondCode Opcode;
2632  switch (predicate) {
2633    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2634    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2635    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2636    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2637    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2638    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2639    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2640    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2641    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2642    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2643    default:
2644      assert(!"Invalid ICmp predicate value");
2645      Opcode = ISD::SETEQ;
2646      break;
2647  }
2648  setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2649}
2650
2651void SelectionDAGLowering::visitVFCmp(User &I) {
2652  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2653  if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2654    predicate = FC->getPredicate();
2655  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2656    predicate = FCmpInst::Predicate(FC->getPredicate());
2657  SDValue Op1 = getValue(I.getOperand(0));
2658  SDValue Op2 = getValue(I.getOperand(1));
2659  ISD::CondCode Condition, FOC, FPC;
2660  switch (predicate) {
2661    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2662    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2663    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2664    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2665    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2666    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2667    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2668    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2669    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2670    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2671    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2672    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2673    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2674    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2675    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2676    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2677    default:
2678      assert(!"Invalid VFCmp predicate value");
2679      FOC = FPC = ISD::SETFALSE;
2680      break;
2681  }
2682  if (FiniteOnlyFPMath())
2683    Condition = FOC;
2684  else
2685    Condition = FPC;
2686
2687  MVT DestVT = TLI.getValueType(I.getType());
2688
2689  setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2690}
2691
2692void SelectionDAGLowering::visitSelect(User &I) {
2693  SDValue Cond     = getValue(I.getOperand(0));
2694  SDValue TrueVal  = getValue(I.getOperand(1));
2695  SDValue FalseVal = getValue(I.getOperand(2));
2696  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2697                           TrueVal, FalseVal));
2698}
2699
2700
2701void SelectionDAGLowering::visitTrunc(User &I) {
2702  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2703  SDValue N = getValue(I.getOperand(0));
2704  MVT DestVT = TLI.getValueType(I.getType());
2705  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2706}
2707
2708void SelectionDAGLowering::visitZExt(User &I) {
2709  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2710  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2711  SDValue N = getValue(I.getOperand(0));
2712  MVT DestVT = TLI.getValueType(I.getType());
2713  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2714}
2715
2716void SelectionDAGLowering::visitSExt(User &I) {
2717  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2718  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2719  SDValue N = getValue(I.getOperand(0));
2720  MVT DestVT = TLI.getValueType(I.getType());
2721  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2722}
2723
2724void SelectionDAGLowering::visitFPTrunc(User &I) {
2725  // FPTrunc is never a no-op cast, no need to check
2726  SDValue N = getValue(I.getOperand(0));
2727  MVT DestVT = TLI.getValueType(I.getType());
2728  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2729}
2730
2731void SelectionDAGLowering::visitFPExt(User &I){
2732  // FPTrunc is never a no-op cast, no need to check
2733  SDValue N = getValue(I.getOperand(0));
2734  MVT DestVT = TLI.getValueType(I.getType());
2735  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2736}
2737
2738void SelectionDAGLowering::visitFPToUI(User &I) {
2739  // FPToUI is never a no-op cast, no need to check
2740  SDValue N = getValue(I.getOperand(0));
2741  MVT DestVT = TLI.getValueType(I.getType());
2742  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2743}
2744
2745void SelectionDAGLowering::visitFPToSI(User &I) {
2746  // FPToSI is never a no-op cast, no need to check
2747  SDValue N = getValue(I.getOperand(0));
2748  MVT DestVT = TLI.getValueType(I.getType());
2749  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2750}
2751
2752void SelectionDAGLowering::visitUIToFP(User &I) {
2753  // UIToFP is never a no-op cast, no need to check
2754  SDValue N = getValue(I.getOperand(0));
2755  MVT DestVT = TLI.getValueType(I.getType());
2756  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2757}
2758
2759void SelectionDAGLowering::visitSIToFP(User &I){
2760  // UIToFP is never a no-op cast, no need to check
2761  SDValue N = getValue(I.getOperand(0));
2762  MVT DestVT = TLI.getValueType(I.getType());
2763  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2764}
2765
2766void SelectionDAGLowering::visitPtrToInt(User &I) {
2767  // What to do depends on the size of the integer and the size of the pointer.
2768  // We can either truncate, zero extend, or no-op, accordingly.
2769  SDValue N = getValue(I.getOperand(0));
2770  MVT SrcVT = N.getValueType();
2771  MVT DestVT = TLI.getValueType(I.getType());
2772  SDValue Result;
2773  if (DestVT.bitsLT(SrcVT))
2774    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2775  else
2776    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2777    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2778  setValue(&I, Result);
2779}
2780
2781void SelectionDAGLowering::visitIntToPtr(User &I) {
2782  // What to do depends on the size of the integer and the size of the pointer.
2783  // We can either truncate, zero extend, or no-op, accordingly.
2784  SDValue N = getValue(I.getOperand(0));
2785  MVT SrcVT = N.getValueType();
2786  MVT DestVT = TLI.getValueType(I.getType());
2787  if (DestVT.bitsLT(SrcVT))
2788    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2789  else
2790    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2791    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2792}
2793
2794void SelectionDAGLowering::visitBitCast(User &I) {
2795  SDValue N = getValue(I.getOperand(0));
2796  MVT DestVT = TLI.getValueType(I.getType());
2797
2798  // BitCast assures us that source and destination are the same size so this
2799  // is either a BIT_CONVERT or a no-op.
2800  if (DestVT != N.getValueType())
2801    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2802  else
2803    setValue(&I, N); // noop cast.
2804}
2805
2806void SelectionDAGLowering::visitInsertElement(User &I) {
2807  SDValue InVec = getValue(I.getOperand(0));
2808  SDValue InVal = getValue(I.getOperand(1));
2809  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2810                                getValue(I.getOperand(2)));
2811
2812  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2813                           TLI.getValueType(I.getType()),
2814                           InVec, InVal, InIdx));
2815}
2816
2817void SelectionDAGLowering::visitExtractElement(User &I) {
2818  SDValue InVec = getValue(I.getOperand(0));
2819  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2820                                getValue(I.getOperand(1)));
2821  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2822                           TLI.getValueType(I.getType()), InVec, InIdx));
2823}
2824
2825void SelectionDAGLowering::visitShuffleVector(User &I) {
2826  SDValue V1   = getValue(I.getOperand(0));
2827  SDValue V2   = getValue(I.getOperand(1));
2828  SDValue Mask = getValue(I.getOperand(2));
2829
2830  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2831                           TLI.getValueType(I.getType()),
2832                           V1, V2, Mask));
2833}
2834
2835void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
2836  const Value *Op0 = I.getOperand(0);
2837  const Value *Op1 = I.getOperand(1);
2838  const Type *AggTy = I.getType();
2839  const Type *ValTy = Op1->getType();
2840  bool IntoUndef = isa<UndefValue>(Op0);
2841  bool FromUndef = isa<UndefValue>(Op1);
2842
2843  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2844                                            I.idx_begin(), I.idx_end());
2845
2846  SmallVector<MVT, 4> AggValueVTs;
2847  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2848  SmallVector<MVT, 4> ValValueVTs;
2849  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2850
2851  unsigned NumAggValues = AggValueVTs.size();
2852  unsigned NumValValues = ValValueVTs.size();
2853  SmallVector<SDValue, 4> Values(NumAggValues);
2854
2855  SDValue Agg = getValue(Op0);
2856  SDValue Val = getValue(Op1);
2857  unsigned i = 0;
2858  // Copy the beginning value(s) from the original aggregate.
2859  for (; i != LinearIndex; ++i)
2860    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2861                SDValue(Agg.Val, Agg.getResNo() + i);
2862  // Copy values from the inserted value(s).
2863  for (; i != LinearIndex + NumValValues; ++i)
2864    Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2865                SDValue(Val.Val, Val.getResNo() + i - LinearIndex);
2866  // Copy remaining value(s) from the original aggregate.
2867  for (; i != NumAggValues; ++i)
2868    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2869                SDValue(Agg.Val, Agg.getResNo() + i);
2870
2871  setValue(&I, DAG.getMergeValues(DAG.getVTList(&AggValueVTs[0], NumAggValues),
2872                                  &Values[0], NumAggValues));
2873}
2874
2875void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
2876  const Value *Op0 = I.getOperand(0);
2877  const Type *AggTy = Op0->getType();
2878  const Type *ValTy = I.getType();
2879  bool OutOfUndef = isa<UndefValue>(Op0);
2880
2881  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2882                                            I.idx_begin(), I.idx_end());
2883
2884  SmallVector<MVT, 4> ValValueVTs;
2885  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2886
2887  unsigned NumValValues = ValValueVTs.size();
2888  SmallVector<SDValue, 4> Values(NumValValues);
2889
2890  SDValue Agg = getValue(Op0);
2891  // Copy out the selected value(s).
2892  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2893    Values[i - LinearIndex] =
2894      OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.Val->getValueType(Agg.getResNo() + i)) :
2895                   SDValue(Agg.Val, Agg.getResNo() + i);
2896
2897  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValValueVTs[0], NumValValues),
2898                                  &Values[0], NumValValues));
2899}
2900
2901
2902void SelectionDAGLowering::visitGetElementPtr(User &I) {
2903  SDValue N = getValue(I.getOperand(0));
2904  const Type *Ty = I.getOperand(0)->getType();
2905
2906  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2907       OI != E; ++OI) {
2908    Value *Idx = *OI;
2909    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2910      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2911      if (Field) {
2912        // N = N + Offset
2913        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2914        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2915                        DAG.getIntPtrConstant(Offset));
2916      }
2917      Ty = StTy->getElementType(Field);
2918    } else {
2919      Ty = cast<SequentialType>(Ty)->getElementType();
2920
2921      // If this is a constant subscript, handle it quickly.
2922      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2923        if (CI->getZExtValue() == 0) continue;
2924        uint64_t Offs =
2925            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2926        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2927                        DAG.getIntPtrConstant(Offs));
2928        continue;
2929      }
2930
2931      // N = N + Idx * ElementSize;
2932      uint64_t ElementSize = TD->getABITypeSize(Ty);
2933      SDValue IdxN = getValue(Idx);
2934
2935      // If the index is smaller or larger than intptr_t, truncate or extend
2936      // it.
2937      if (IdxN.getValueType().bitsLT(N.getValueType()))
2938        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2939      else if (IdxN.getValueType().bitsGT(N.getValueType()))
2940        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2941
2942      // If this is a multiply by a power of two, turn it into a shl
2943      // immediately.  This is a very common case.
2944      if (ElementSize != 1) {
2945        if (isPowerOf2_64(ElementSize)) {
2946          unsigned Amt = Log2_64(ElementSize);
2947          IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2948                             DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2949        } else {
2950          SDValue Scale = DAG.getIntPtrConstant(ElementSize);
2951          IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2952        }
2953      }
2954
2955      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2956    }
2957  }
2958  setValue(&I, N);
2959}
2960
2961void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2962  // If this is a fixed sized alloca in the entry block of the function,
2963  // allocate it statically on the stack.
2964  if (FuncInfo.StaticAllocaMap.count(&I))
2965    return;   // getValue will auto-populate this.
2966
2967  const Type *Ty = I.getAllocatedType();
2968  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2969  unsigned Align =
2970    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2971             I.getAlignment());
2972
2973  SDValue AllocSize = getValue(I.getArraySize());
2974  MVT IntPtr = TLI.getPointerTy();
2975  if (IntPtr.bitsLT(AllocSize.getValueType()))
2976    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2977  else if (IntPtr.bitsGT(AllocSize.getValueType()))
2978    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2979
2980  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2981                          DAG.getIntPtrConstant(TySize));
2982
2983  // Handle alignment.  If the requested alignment is less than or equal to
2984  // the stack alignment, ignore it.  If the size is greater than or equal to
2985  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2986  unsigned StackAlign =
2987    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2988  if (Align <= StackAlign)
2989    Align = 0;
2990
2991  // Round the size of the allocation up to the stack alignment size
2992  // by add SA-1 to the size.
2993  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2994                          DAG.getIntPtrConstant(StackAlign-1));
2995  // Mask out the low bits for alignment purposes.
2996  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2997                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2998
2999  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3000  const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
3001                                                    MVT::Other);
3002  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
3003  setValue(&I, DSA);
3004  DAG.setRoot(DSA.getValue(1));
3005
3006  // Inform the Frame Information that we have just allocated a variable-sized
3007  // object.
3008  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
3009}
3010
3011void SelectionDAGLowering::visitLoad(LoadInst &I) {
3012  const Value *SV = I.getOperand(0);
3013  SDValue Ptr = getValue(SV);
3014
3015  const Type *Ty = I.getType();
3016  bool isVolatile = I.isVolatile();
3017  unsigned Alignment = I.getAlignment();
3018
3019  SmallVector<MVT, 4> ValueVTs;
3020  SmallVector<uint64_t, 4> Offsets;
3021  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3022  unsigned NumValues = ValueVTs.size();
3023  if (NumValues == 0)
3024    return;
3025
3026  SDValue Root;
3027  bool ConstantMemory = false;
3028  if (I.isVolatile())
3029    // Serialize volatile loads with other side effects.
3030    Root = getRoot();
3031  else if (AA->pointsToConstantMemory(SV)) {
3032    // Do not serialize (non-volatile) loads of constant memory with anything.
3033    Root = DAG.getEntryNode();
3034    ConstantMemory = true;
3035  } else {
3036    // Do not serialize non-volatile loads against each other.
3037    Root = DAG.getRoot();
3038  }
3039
3040  SmallVector<SDValue, 4> Values(NumValues);
3041  SmallVector<SDValue, 4> Chains(NumValues);
3042  MVT PtrVT = Ptr.getValueType();
3043  for (unsigned i = 0; i != NumValues; ++i) {
3044    SDValue L = DAG.getLoad(ValueVTs[i], Root,
3045                              DAG.getNode(ISD::ADD, PtrVT, Ptr,
3046                                          DAG.getConstant(Offsets[i], PtrVT)),
3047                              SV, Offsets[i],
3048                              isVolatile, Alignment);
3049    Values[i] = L;
3050    Chains[i] = L.getValue(1);
3051  }
3052
3053  if (!ConstantMemory) {
3054    SDValue Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3055                                  &Chains[0], NumValues);
3056    if (isVolatile)
3057      DAG.setRoot(Chain);
3058    else
3059      PendingLoads.push_back(Chain);
3060  }
3061
3062  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues),
3063                                  &Values[0], NumValues));
3064}
3065
3066
3067void SelectionDAGLowering::visitStore(StoreInst &I) {
3068  Value *SrcV = I.getOperand(0);
3069  Value *PtrV = I.getOperand(1);
3070
3071  SmallVector<MVT, 4> ValueVTs;
3072  SmallVector<uint64_t, 4> Offsets;
3073  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3074  unsigned NumValues = ValueVTs.size();
3075  if (NumValues == 0)
3076    return;
3077
3078  // Get the lowered operands. Note that we do this after
3079  // checking if NumResults is zero, because with zero results
3080  // the operands won't have values in the map.
3081  SDValue Src = getValue(SrcV);
3082  SDValue Ptr = getValue(PtrV);
3083
3084  SDValue Root = getRoot();
3085  SmallVector<SDValue, 4> Chains(NumValues);
3086  MVT PtrVT = Ptr.getValueType();
3087  bool isVolatile = I.isVolatile();
3088  unsigned Alignment = I.getAlignment();
3089  for (unsigned i = 0; i != NumValues; ++i)
3090    Chains[i] = DAG.getStore(Root, SDValue(Src.Val, Src.getResNo() + i),
3091                             DAG.getNode(ISD::ADD, PtrVT, Ptr,
3092                                         DAG.getConstant(Offsets[i], PtrVT)),
3093                             PtrV, Offsets[i],
3094                             isVolatile, Alignment);
3095
3096  DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
3097}
3098
3099/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3100/// node.
3101void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
3102                                                unsigned Intrinsic) {
3103  bool HasChain = !I.doesNotAccessMemory();
3104  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3105
3106  // Build the operand list.
3107  SmallVector<SDValue, 8> Ops;
3108  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3109    if (OnlyLoad) {
3110      // We don't need to serialize loads against other loads.
3111      Ops.push_back(DAG.getRoot());
3112    } else {
3113      Ops.push_back(getRoot());
3114    }
3115  }
3116
3117  // Add the intrinsic ID as an integer operand.
3118  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
3119
3120  // Add all operands of the call to the operand list.
3121  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
3122    SDValue Op = getValue(I.getOperand(i));
3123    assert(TLI.isTypeLegal(Op.getValueType()) &&
3124           "Intrinsic uses a non-legal type?");
3125    Ops.push_back(Op);
3126  }
3127
3128  std::vector<MVT> VTs;
3129  if (I.getType() != Type::VoidTy) {
3130    MVT VT = TLI.getValueType(I.getType());
3131    if (VT.isVector()) {
3132      const VectorType *DestTy = cast<VectorType>(I.getType());
3133      MVT EltVT = TLI.getValueType(DestTy->getElementType());
3134
3135      VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
3136      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
3137    }
3138
3139    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
3140    VTs.push_back(VT);
3141  }
3142  if (HasChain)
3143    VTs.push_back(MVT::Other);
3144
3145  const MVT *VTList = DAG.getNodeValueTypes(VTs);
3146
3147  // Create the node.
3148  SDValue Result;
3149  if (!HasChain)
3150    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
3151                         &Ops[0], Ops.size());
3152  else if (I.getType() != Type::VoidTy)
3153    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
3154                         &Ops[0], Ops.size());
3155  else
3156    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
3157                         &Ops[0], Ops.size());
3158
3159  if (HasChain) {
3160    SDValue Chain = Result.getValue(Result.Val->getNumValues()-1);
3161    if (OnlyLoad)
3162      PendingLoads.push_back(Chain);
3163    else
3164      DAG.setRoot(Chain);
3165  }
3166  if (I.getType() != Type::VoidTy) {
3167    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3168      MVT VT = TLI.getValueType(PTy);
3169      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
3170    }
3171    setValue(&I, Result);
3172  }
3173}
3174
3175/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
3176static GlobalVariable *ExtractTypeInfo (Value *V) {
3177  V = V->stripPointerCasts();
3178  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3179  assert ((GV || isa<ConstantPointerNull>(V)) &&
3180          "TypeInfo must be a global variable or NULL");
3181  return GV;
3182}
3183
3184/// addCatchInfo - Extract the personality and type infos from an eh.selector
3185/// call, and add them to the specified machine basic block.
3186static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
3187                         MachineBasicBlock *MBB) {
3188  // Inform the MachineModuleInfo of the personality for this landing pad.
3189  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
3190  assert(CE->getOpcode() == Instruction::BitCast &&
3191         isa<Function>(CE->getOperand(0)) &&
3192         "Personality should be a function");
3193  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
3194
3195  // Gather all the type infos for this landing pad and pass them along to
3196  // MachineModuleInfo.
3197  std::vector<GlobalVariable *> TyInfo;
3198  unsigned N = I.getNumOperands();
3199
3200  for (unsigned i = N - 1; i > 2; --i) {
3201    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
3202      unsigned FilterLength = CI->getZExtValue();
3203      unsigned FirstCatch = i + FilterLength + !FilterLength;
3204      assert (FirstCatch <= N && "Invalid filter length");
3205
3206      if (FirstCatch < N) {
3207        TyInfo.reserve(N - FirstCatch);
3208        for (unsigned j = FirstCatch; j < N; ++j)
3209          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3210        MMI->addCatchTypeInfo(MBB, TyInfo);
3211        TyInfo.clear();
3212      }
3213
3214      if (!FilterLength) {
3215        // Cleanup.
3216        MMI->addCleanup(MBB);
3217      } else {
3218        // Filter.
3219        TyInfo.reserve(FilterLength - 1);
3220        for (unsigned j = i + 1; j < FirstCatch; ++j)
3221          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3222        MMI->addFilterTypeInfo(MBB, TyInfo);
3223        TyInfo.clear();
3224      }
3225
3226      N = i;
3227    }
3228  }
3229
3230  if (N > 3) {
3231    TyInfo.reserve(N - 3);
3232    for (unsigned j = 3; j < N; ++j)
3233      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3234    MMI->addCatchTypeInfo(MBB, TyInfo);
3235  }
3236}
3237
3238
3239/// Inlined utility function to implement binary input atomic intrinsics for
3240// visitIntrinsicCall: I is a call instruction
3241//                     Op is the associated NodeType for I
3242const char *
3243SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3244  SDValue Root = getRoot();
3245  SDValue L = DAG.getAtomic(Op, Root,
3246                              getValue(I.getOperand(1)),
3247                              getValue(I.getOperand(2)),
3248                              I.getOperand(1));
3249  setValue(&I, L);
3250  DAG.setRoot(L.getValue(1));
3251  return 0;
3252}
3253
3254/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3255/// we want to emit this as a call to a named external function, return the name
3256/// otherwise lower it and return null.
3257const char *
3258SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3259  switch (Intrinsic) {
3260  default:
3261    // By default, turn this into a target intrinsic node.
3262    visitTargetIntrinsic(I, Intrinsic);
3263    return 0;
3264  case Intrinsic::vastart:  visitVAStart(I); return 0;
3265  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3266  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3267  case Intrinsic::returnaddress:
3268    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
3269                             getValue(I.getOperand(1))));
3270    return 0;
3271  case Intrinsic::frameaddress:
3272    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
3273                             getValue(I.getOperand(1))));
3274    return 0;
3275  case Intrinsic::setjmp:
3276    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3277    break;
3278  case Intrinsic::longjmp:
3279    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3280    break;
3281  case Intrinsic::memcpy_i32:
3282  case Intrinsic::memcpy_i64: {
3283    SDValue Op1 = getValue(I.getOperand(1));
3284    SDValue Op2 = getValue(I.getOperand(2));
3285    SDValue Op3 = getValue(I.getOperand(3));
3286    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3287    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3288                              I.getOperand(1), 0, I.getOperand(2), 0));
3289    return 0;
3290  }
3291  case Intrinsic::memset_i32:
3292  case Intrinsic::memset_i64: {
3293    SDValue Op1 = getValue(I.getOperand(1));
3294    SDValue Op2 = getValue(I.getOperand(2));
3295    SDValue Op3 = getValue(I.getOperand(3));
3296    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3297    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
3298                              I.getOperand(1), 0));
3299    return 0;
3300  }
3301  case Intrinsic::memmove_i32:
3302  case Intrinsic::memmove_i64: {
3303    SDValue Op1 = getValue(I.getOperand(1));
3304    SDValue Op2 = getValue(I.getOperand(2));
3305    SDValue Op3 = getValue(I.getOperand(3));
3306    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3307
3308    // If the source and destination are known to not be aliases, we can
3309    // lower memmove as memcpy.
3310    uint64_t Size = -1ULL;
3311    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3312      Size = C->getValue();
3313    if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3314        AliasAnalysis::NoAlias) {
3315      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3316                                I.getOperand(1), 0, I.getOperand(2), 0));
3317      return 0;
3318    }
3319
3320    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
3321                               I.getOperand(1), 0, I.getOperand(2), 0));
3322    return 0;
3323  }
3324  case Intrinsic::dbg_stoppoint: {
3325    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3326    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3327    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
3328      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
3329      assert(DD && "Not a debug information descriptor");
3330      DAG.setRoot(DAG.getDbgStopPoint(getRoot(),
3331                                      SPI.getLine(),
3332                                      SPI.getColumn(),
3333                                      cast<CompileUnitDesc>(DD)));
3334    }
3335
3336    return 0;
3337  }
3338  case Intrinsic::dbg_region_start: {
3339    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3340    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
3341    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
3342      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
3343      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3344    }
3345
3346    return 0;
3347  }
3348  case Intrinsic::dbg_region_end: {
3349    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3350    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
3351    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
3352      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
3353      DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3354    }
3355
3356    return 0;
3357  }
3358  case Intrinsic::dbg_func_start: {
3359    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3360    if (!MMI) return 0;
3361    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
3362    Value *SP = FSI.getSubprogram();
3363    if (SP && MMI->Verify(SP)) {
3364      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3365      // what (most?) gdb expects.
3366      DebugInfoDesc *DD = MMI->getDescFor(SP);
3367      assert(DD && "Not a debug information descriptor");
3368      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
3369      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
3370      unsigned SrcFile = MMI->RecordSource(CompileUnit);
3371      // Record the source line but does create a label. It will be emitted
3372      // at asm emission time.
3373      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
3374    }
3375
3376    return 0;
3377  }
3378  case Intrinsic::dbg_declare: {
3379    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3380    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3381    Value *Variable = DI.getVariable();
3382    if (MMI && Variable && MMI->Verify(Variable))
3383      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3384                              getValue(DI.getAddress()), getValue(Variable)));
3385    return 0;
3386  }
3387
3388  case Intrinsic::eh_exception: {
3389    if (!CurMBB->isLandingPad()) {
3390      // FIXME: Mark exception register as live in.  Hack for PR1508.
3391      unsigned Reg = TLI.getExceptionAddressRegister();
3392      if (Reg) CurMBB->addLiveIn(Reg);
3393    }
3394    // Insert the EXCEPTIONADDR instruction.
3395    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3396    SDValue Ops[1];
3397    Ops[0] = DAG.getRoot();
3398    SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3399    setValue(&I, Op);
3400    DAG.setRoot(Op.getValue(1));
3401    return 0;
3402  }
3403
3404  case Intrinsic::eh_selector_i32:
3405  case Intrinsic::eh_selector_i64: {
3406    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3407    MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3408                         MVT::i32 : MVT::i64);
3409
3410    if (MMI) {
3411      if (CurMBB->isLandingPad())
3412        addCatchInfo(I, MMI, CurMBB);
3413      else {
3414#ifndef NDEBUG
3415        FuncInfo.CatchInfoLost.insert(&I);
3416#endif
3417        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3418        unsigned Reg = TLI.getExceptionSelectorRegister();
3419        if (Reg) CurMBB->addLiveIn(Reg);
3420      }
3421
3422      // Insert the EHSELECTION instruction.
3423      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3424      SDValue Ops[2];
3425      Ops[0] = getValue(I.getOperand(1));
3426      Ops[1] = getRoot();
3427      SDValue Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3428      setValue(&I, Op);
3429      DAG.setRoot(Op.getValue(1));
3430    } else {
3431      setValue(&I, DAG.getConstant(0, VT));
3432    }
3433
3434    return 0;
3435  }
3436
3437  case Intrinsic::eh_typeid_for_i32:
3438  case Intrinsic::eh_typeid_for_i64: {
3439    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3440    MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3441                         MVT::i32 : MVT::i64);
3442
3443    if (MMI) {
3444      // Find the type id for the given typeinfo.
3445      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3446
3447      unsigned TypeID = MMI->getTypeIDFor(GV);
3448      setValue(&I, DAG.getConstant(TypeID, VT));
3449    } else {
3450      // Return something different to eh_selector.
3451      setValue(&I, DAG.getConstant(1, VT));
3452    }
3453
3454    return 0;
3455  }
3456
3457  case Intrinsic::eh_return: {
3458    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3459
3460    if (MMI) {
3461      MMI->setCallsEHReturn(true);
3462      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3463                              MVT::Other,
3464                              getControlRoot(),
3465                              getValue(I.getOperand(1)),
3466                              getValue(I.getOperand(2))));
3467    } else {
3468      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3469    }
3470
3471    return 0;
3472  }
3473
3474   case Intrinsic::eh_unwind_init: {
3475     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3476       MMI->setCallsUnwindInit(true);
3477     }
3478
3479     return 0;
3480   }
3481
3482   case Intrinsic::eh_dwarf_cfa: {
3483     MVT VT = getValue(I.getOperand(1)).getValueType();
3484     SDValue CfaArg;
3485     if (VT.bitsGT(TLI.getPointerTy()))
3486       CfaArg = DAG.getNode(ISD::TRUNCATE,
3487                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3488     else
3489       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3490                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3491
3492     SDValue Offset = DAG.getNode(ISD::ADD,
3493                                    TLI.getPointerTy(),
3494                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3495                                                TLI.getPointerTy()),
3496                                    CfaArg);
3497     setValue(&I, DAG.getNode(ISD::ADD,
3498                              TLI.getPointerTy(),
3499                              DAG.getNode(ISD::FRAMEADDR,
3500                                          TLI.getPointerTy(),
3501                                          DAG.getConstant(0,
3502                                                          TLI.getPointerTy())),
3503                              Offset));
3504     return 0;
3505  }
3506
3507  case Intrinsic::sqrt:
3508    setValue(&I, DAG.getNode(ISD::FSQRT,
3509                             getValue(I.getOperand(1)).getValueType(),
3510                             getValue(I.getOperand(1))));
3511    return 0;
3512  case Intrinsic::powi:
3513    setValue(&I, DAG.getNode(ISD::FPOWI,
3514                             getValue(I.getOperand(1)).getValueType(),
3515                             getValue(I.getOperand(1)),
3516                             getValue(I.getOperand(2))));
3517    return 0;
3518  case Intrinsic::sin:
3519    setValue(&I, DAG.getNode(ISD::FSIN,
3520                             getValue(I.getOperand(1)).getValueType(),
3521                             getValue(I.getOperand(1))));
3522    return 0;
3523  case Intrinsic::cos:
3524    setValue(&I, DAG.getNode(ISD::FCOS,
3525                             getValue(I.getOperand(1)).getValueType(),
3526                             getValue(I.getOperand(1))));
3527    return 0;
3528  case Intrinsic::pow:
3529    setValue(&I, DAG.getNode(ISD::FPOW,
3530                             getValue(I.getOperand(1)).getValueType(),
3531                             getValue(I.getOperand(1)),
3532                             getValue(I.getOperand(2))));
3533    return 0;
3534  case Intrinsic::pcmarker: {
3535    SDValue Tmp = getValue(I.getOperand(1));
3536    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3537    return 0;
3538  }
3539  case Intrinsic::readcyclecounter: {
3540    SDValue Op = getRoot();
3541    SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3542                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3543                                &Op, 1);
3544    setValue(&I, Tmp);
3545    DAG.setRoot(Tmp.getValue(1));
3546    return 0;
3547  }
3548  case Intrinsic::part_select: {
3549    // Currently not implemented: just abort
3550    assert(0 && "part_select intrinsic not implemented");
3551    abort();
3552  }
3553  case Intrinsic::part_set: {
3554    // Currently not implemented: just abort
3555    assert(0 && "part_set intrinsic not implemented");
3556    abort();
3557  }
3558  case Intrinsic::bswap:
3559    setValue(&I, DAG.getNode(ISD::BSWAP,
3560                             getValue(I.getOperand(1)).getValueType(),
3561                             getValue(I.getOperand(1))));
3562    return 0;
3563  case Intrinsic::cttz: {
3564    SDValue Arg = getValue(I.getOperand(1));
3565    MVT Ty = Arg.getValueType();
3566    SDValue result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3567    setValue(&I, result);
3568    return 0;
3569  }
3570  case Intrinsic::ctlz: {
3571    SDValue Arg = getValue(I.getOperand(1));
3572    MVT Ty = Arg.getValueType();
3573    SDValue result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3574    setValue(&I, result);
3575    return 0;
3576  }
3577  case Intrinsic::ctpop: {
3578    SDValue Arg = getValue(I.getOperand(1));
3579    MVT Ty = Arg.getValueType();
3580    SDValue result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3581    setValue(&I, result);
3582    return 0;
3583  }
3584  case Intrinsic::stacksave: {
3585    SDValue Op = getRoot();
3586    SDValue Tmp = DAG.getNode(ISD::STACKSAVE,
3587              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3588    setValue(&I, Tmp);
3589    DAG.setRoot(Tmp.getValue(1));
3590    return 0;
3591  }
3592  case Intrinsic::stackrestore: {
3593    SDValue Tmp = getValue(I.getOperand(1));
3594    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3595    return 0;
3596  }
3597  case Intrinsic::var_annotation:
3598    // Discard annotate attributes
3599    return 0;
3600
3601  case Intrinsic::init_trampoline: {
3602    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
3603
3604    SDValue Ops[6];
3605    Ops[0] = getRoot();
3606    Ops[1] = getValue(I.getOperand(1));
3607    Ops[2] = getValue(I.getOperand(2));
3608    Ops[3] = getValue(I.getOperand(3));
3609    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3610    Ops[5] = DAG.getSrcValue(F);
3611
3612    SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE,
3613                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3614                                                      MVT::Other), 2,
3615                                Ops, 6);
3616
3617    setValue(&I, Tmp);
3618    DAG.setRoot(Tmp.getValue(1));
3619    return 0;
3620  }
3621
3622  case Intrinsic::gcroot:
3623    if (GFI) {
3624      Value *Alloca = I.getOperand(1);
3625      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3626
3627      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3628      GFI->addStackRoot(FI->getIndex(), TypeMap);
3629    }
3630    return 0;
3631
3632  case Intrinsic::gcread:
3633  case Intrinsic::gcwrite:
3634    assert(0 && "GC failed to lower gcread/gcwrite intrinsics!");
3635    return 0;
3636
3637  case Intrinsic::flt_rounds: {
3638    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3639    return 0;
3640  }
3641
3642  case Intrinsic::trap: {
3643    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3644    return 0;
3645  }
3646  case Intrinsic::prefetch: {
3647    SDValue Ops[4];
3648    Ops[0] = getRoot();
3649    Ops[1] = getValue(I.getOperand(1));
3650    Ops[2] = getValue(I.getOperand(2));
3651    Ops[3] = getValue(I.getOperand(3));
3652    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3653    return 0;
3654  }
3655
3656  case Intrinsic::memory_barrier: {
3657    SDValue Ops[6];
3658    Ops[0] = getRoot();
3659    for (int x = 1; x < 6; ++x)
3660      Ops[x] = getValue(I.getOperand(x));
3661
3662    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3663    return 0;
3664  }
3665  case Intrinsic::atomic_cmp_swap: {
3666    SDValue Root = getRoot();
3667    SDValue L;
3668    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3669      case MVT::i8:
3670        L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_8, Root,
3671                          getValue(I.getOperand(1)),
3672                          getValue(I.getOperand(2)),
3673                          getValue(I.getOperand(3)),
3674                          I.getOperand(1));
3675        break;
3676      case MVT::i16:
3677        L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_16, Root,
3678                          getValue(I.getOperand(1)),
3679                          getValue(I.getOperand(2)),
3680                          getValue(I.getOperand(3)),
3681                          I.getOperand(1));
3682        break;
3683      case MVT::i32:
3684        L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_32, Root,
3685                          getValue(I.getOperand(1)),
3686                          getValue(I.getOperand(2)),
3687                          getValue(I.getOperand(3)),
3688                          I.getOperand(1));
3689        break;
3690      case MVT::i64:
3691        L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_64, Root,
3692                          getValue(I.getOperand(1)),
3693                          getValue(I.getOperand(2)),
3694                          getValue(I.getOperand(3)),
3695                          I.getOperand(1));
3696        break;
3697      default:
3698       assert(0 && "Invalid atomic type");
3699       abort();
3700    }
3701    setValue(&I, L);
3702    DAG.setRoot(L.getValue(1));
3703    return 0;
3704  }
3705  case Intrinsic::atomic_load_add:
3706    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3707      case MVT::i8:
3708        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_8);
3709      case MVT::i16:
3710        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_16);
3711      case MVT::i32:
3712        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_32);
3713      case MVT::i64:
3714        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_64);
3715      default:
3716       assert(0 && "Invalid atomic type");
3717       abort();
3718    }
3719  case Intrinsic::atomic_load_sub:
3720    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3721      case MVT::i8:
3722        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_8);
3723      case MVT::i16:
3724        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_16);
3725      case MVT::i32:
3726        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_32);
3727      case MVT::i64:
3728        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_64);
3729      default:
3730       assert(0 && "Invalid atomic type");
3731       abort();
3732    }
3733  case Intrinsic::atomic_load_or:
3734    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3735      case MVT::i8:
3736        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_8);
3737      case MVT::i16:
3738        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_16);
3739      case MVT::i32:
3740        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_32);
3741      case MVT::i64:
3742        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_64);
3743      default:
3744       assert(0 && "Invalid atomic type");
3745       abort();
3746    }
3747  case Intrinsic::atomic_load_xor:
3748    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3749      case MVT::i8:
3750        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_8);
3751      case MVT::i16:
3752        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_16);
3753      case MVT::i32:
3754        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_32);
3755      case MVT::i64:
3756        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_64);
3757      default:
3758       assert(0 && "Invalid atomic type");
3759       abort();
3760    }
3761  case Intrinsic::atomic_load_and:
3762    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3763      case MVT::i8:
3764        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_8);
3765      case MVT::i16:
3766        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_16);
3767      case MVT::i32:
3768        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_32);
3769      case MVT::i64:
3770        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_64);
3771      default:
3772       assert(0 && "Invalid atomic type");
3773       abort();
3774    }
3775  case Intrinsic::atomic_load_nand:
3776    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3777      case MVT::i8:
3778        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_8);
3779      case MVT::i16:
3780        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_16);
3781      case MVT::i32:
3782        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_32);
3783      case MVT::i64:
3784        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_64);
3785      default:
3786       assert(0 && "Invalid atomic type");
3787       abort();
3788    }
3789  case Intrinsic::atomic_load_max:
3790    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3791      case MVT::i8:
3792        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_8);
3793      case MVT::i16:
3794        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_16);
3795      case MVT::i32:
3796        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_32);
3797      case MVT::i64:
3798        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_64);
3799      default:
3800       assert(0 && "Invalid atomic type");
3801       abort();
3802    }
3803  case Intrinsic::atomic_load_min:
3804    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3805      case MVT::i8:
3806        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_8);
3807      case MVT::i16:
3808        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_16);
3809      case MVT::i32:
3810        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_32);
3811      case MVT::i64:
3812        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_64);
3813      default:
3814       assert(0 && "Invalid atomic type");
3815       abort();
3816    }
3817  case Intrinsic::atomic_load_umin:
3818    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3819      case MVT::i8:
3820        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_8);
3821      case MVT::i16:
3822        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_16);
3823      case MVT::i32:
3824        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_32);
3825      case MVT::i64:
3826        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_64);
3827      default:
3828       assert(0 && "Invalid atomic type");
3829       abort();
3830    }
3831  case Intrinsic::atomic_load_umax:
3832    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3833      case MVT::i8:
3834        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_8);
3835      case MVT::i16:
3836        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_16);
3837      case MVT::i32:
3838        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_32);
3839      case MVT::i64:
3840        return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_64);
3841      default:
3842       assert(0 && "Invalid atomic type");
3843       abort();
3844    }
3845  case Intrinsic::atomic_swap:
3846    switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
3847      case MVT::i8:
3848        return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_8);
3849      case MVT::i16:
3850        return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_16);
3851      case MVT::i32:
3852        return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_32);
3853      case MVT::i64:
3854        return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_64);
3855      default:
3856       assert(0 && "Invalid atomic type");
3857       abort();
3858    }
3859  }
3860}
3861
3862
3863void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
3864                                       bool IsTailCall,
3865                                       MachineBasicBlock *LandingPad) {
3866  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3867  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3868  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3869  unsigned BeginLabel = 0, EndLabel = 0;
3870
3871  TargetLowering::ArgListTy Args;
3872  TargetLowering::ArgListEntry Entry;
3873  Args.reserve(CS.arg_size());
3874  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3875       i != e; ++i) {
3876    SDValue ArgNode = getValue(*i);
3877    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3878
3879    unsigned attrInd = i - CS.arg_begin() + 1;
3880    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3881    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3882    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3883    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3884    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3885    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3886    Entry.Alignment = CS.getParamAlignment(attrInd);
3887    Args.push_back(Entry);
3888  }
3889
3890  if (LandingPad && MMI) {
3891    // Insert a label before the invoke call to mark the try range.  This can be
3892    // used to detect deletion of the invoke via the MachineModuleInfo.
3893    BeginLabel = MMI->NextLabelID();
3894    // Both PendingLoads and PendingExports must be flushed here;
3895    // this call might not return.
3896    (void)getRoot();
3897    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel));
3898  }
3899
3900  std::pair<SDValue,SDValue> Result =
3901    TLI.LowerCallTo(getRoot(), CS.getType(),
3902                    CS.paramHasAttr(0, ParamAttr::SExt),
3903                    CS.paramHasAttr(0, ParamAttr::ZExt),
3904                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3905                    Callee, Args, DAG);
3906  if (CS.getType() != Type::VoidTy)
3907    setValue(CS.getInstruction(), Result.first);
3908  DAG.setRoot(Result.second);
3909
3910  if (LandingPad && MMI) {
3911    // Insert a label at the end of the invoke call to mark the try range.  This
3912    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3913    EndLabel = MMI->NextLabelID();
3914    DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel));
3915
3916    // Inform MachineModuleInfo of range.
3917    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3918  }
3919}
3920
3921
3922void SelectionDAGLowering::visitCall(CallInst &I) {
3923  const char *RenameFn = 0;
3924  if (Function *F = I.getCalledFunction()) {
3925    if (F->isDeclaration()) {
3926      if (unsigned IID = F->getIntrinsicID()) {
3927        RenameFn = visitIntrinsicCall(I, IID);
3928        if (!RenameFn)
3929          return;
3930      }
3931    }
3932
3933    // Check for well-known libc/libm calls.  If the function is internal, it
3934    // can't be a library call.
3935    unsigned NameLen = F->getNameLen();
3936    if (!F->hasInternalLinkage() && NameLen) {
3937      const char *NameStr = F->getNameStart();
3938      if (NameStr[0] == 'c' &&
3939          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3940           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3941        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3942            I.getOperand(1)->getType()->isFloatingPoint() &&
3943            I.getType() == I.getOperand(1)->getType() &&
3944            I.getType() == I.getOperand(2)->getType()) {
3945          SDValue LHS = getValue(I.getOperand(1));
3946          SDValue RHS = getValue(I.getOperand(2));
3947          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3948                                   LHS, RHS));
3949          return;
3950        }
3951      } else if (NameStr[0] == 'f' &&
3952                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3953                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3954                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3955        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3956            I.getOperand(1)->getType()->isFloatingPoint() &&
3957            I.getType() == I.getOperand(1)->getType()) {
3958          SDValue Tmp = getValue(I.getOperand(1));
3959          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3960          return;
3961        }
3962      } else if (NameStr[0] == 's' &&
3963                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3964                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3965                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3966        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3967            I.getOperand(1)->getType()->isFloatingPoint() &&
3968            I.getType() == I.getOperand(1)->getType()) {
3969          SDValue Tmp = getValue(I.getOperand(1));
3970          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3971          return;
3972        }
3973      } else if (NameStr[0] == 'c' &&
3974                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3975                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3976                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3977        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3978            I.getOperand(1)->getType()->isFloatingPoint() &&
3979            I.getType() == I.getOperand(1)->getType()) {
3980          SDValue Tmp = getValue(I.getOperand(1));
3981          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3982          return;
3983        }
3984      }
3985    }
3986  } else if (isa<InlineAsm>(I.getOperand(0))) {
3987    visitInlineAsm(&I);
3988    return;
3989  }
3990
3991  SDValue Callee;
3992  if (!RenameFn)
3993    Callee = getValue(I.getOperand(0));
3994  else
3995    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3996
3997  LowerCallTo(&I, Callee, I.isTailCall());
3998}
3999
4000
4001/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4002/// this value and returns the result as a ValueVT value.  This uses
4003/// Chain/Flag as the input and updates them for the output Chain/Flag.
4004/// If the Flag pointer is NULL, no flag is used.
4005SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
4006                                      SDValue &Chain,
4007                                      SDValue *Flag) const {
4008  // Assemble the legal parts into the final values.
4009  SmallVector<SDValue, 4> Values(ValueVTs.size());
4010  SmallVector<SDValue, 8> Parts;
4011  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4012    // Copy the legal parts from the registers.
4013    MVT ValueVT = ValueVTs[Value];
4014    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
4015    MVT RegisterVT = RegVTs[Value];
4016
4017    Parts.resize(NumRegs);
4018    for (unsigned i = 0; i != NumRegs; ++i) {
4019      SDValue P;
4020      if (Flag == 0)
4021        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
4022      else {
4023        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
4024        *Flag = P.getValue(2);
4025      }
4026      Chain = P.getValue(1);
4027
4028      // If the source register was virtual and if we know something about it,
4029      // add an assert node.
4030      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4031          RegisterVT.isInteger() && !RegisterVT.isVector()) {
4032        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4033        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4034        if (FLI.LiveOutRegInfo.size() > SlotNo) {
4035          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4036
4037          unsigned RegSize = RegisterVT.getSizeInBits();
4038          unsigned NumSignBits = LOI.NumSignBits;
4039          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4040
4041          // FIXME: We capture more information than the dag can represent.  For
4042          // now, just use the tightest assertzext/assertsext possible.
4043          bool isSExt = true;
4044          MVT FromVT(MVT::Other);
4045          if (NumSignBits == RegSize)
4046            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
4047          else if (NumZeroBits >= RegSize-1)
4048            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
4049          else if (NumSignBits > RegSize-8)
4050            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
4051          else if (NumZeroBits >= RegSize-9)
4052            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
4053          else if (NumSignBits > RegSize-16)
4054            isSExt = true, FromVT = MVT::i16;   // ASSERT SEXT 16
4055          else if (NumZeroBits >= RegSize-17)
4056            isSExt = false, FromVT = MVT::i16;  // ASSERT ZEXT 16
4057          else if (NumSignBits > RegSize-32)
4058            isSExt = true, FromVT = MVT::i32;   // ASSERT SEXT 32
4059          else if (NumZeroBits >= RegSize-33)
4060            isSExt = false, FromVT = MVT::i32;  // ASSERT ZEXT 32
4061
4062          if (FromVT != MVT::Other) {
4063            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
4064                            RegisterVT, P, DAG.getValueType(FromVT));
4065
4066          }
4067        }
4068      }
4069
4070      Parts[i] = P;
4071    }
4072
4073    Values[Value] = getCopyFromParts(DAG, Parts.begin(), NumRegs, RegisterVT,
4074                                     ValueVT);
4075    Part += NumRegs;
4076    Parts.clear();
4077  }
4078
4079  return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4080                            &Values[0], ValueVTs.size());
4081}
4082
4083/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4084/// specified value into the registers specified by this object.  This uses
4085/// Chain/Flag as the input and updates them for the output Chain/Flag.
4086/// If the Flag pointer is NULL, no flag is used.
4087void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
4088                                 SDValue &Chain, SDValue *Flag) const {
4089  // Get the list of the values's legal parts.
4090  unsigned NumRegs = Regs.size();
4091  SmallVector<SDValue, 8> Parts(NumRegs);
4092  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4093    MVT ValueVT = ValueVTs[Value];
4094    unsigned NumParts = TLI->getNumRegisters(ValueVT);
4095    MVT RegisterVT = RegVTs[Value];
4096
4097    getCopyToParts(DAG, Val.getValue(Val.getResNo() + Value),
4098                   &Parts[Part], NumParts, RegisterVT);
4099    Part += NumParts;
4100  }
4101
4102  // Copy the parts into the registers.
4103  SmallVector<SDValue, 8> Chains(NumRegs);
4104  for (unsigned i = 0; i != NumRegs; ++i) {
4105    SDValue Part;
4106    if (Flag == 0)
4107      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
4108    else {
4109      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
4110      *Flag = Part.getValue(1);
4111    }
4112    Chains[i] = Part.getValue(0);
4113  }
4114
4115  if (NumRegs == 1 || Flag)
4116    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4117    // flagged to it. That is the CopyToReg nodes and the user are considered
4118    // a single scheduling unit. If we create a TokenFactor and return it as
4119    // chain, then the TokenFactor is both a predecessor (operand) of the
4120    // user as well as a successor (the TF operands are flagged to the user).
4121    // c1, f1 = CopyToReg
4122    // c2, f2 = CopyToReg
4123    // c3     = TokenFactor c1, c2
4124    // ...
4125    //        = op c3, ..., f2
4126    Chain = Chains[NumRegs-1];
4127  else
4128    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4129}
4130
4131/// AddInlineAsmOperands - Add this value to the specified inlineasm node
4132/// operand list.  This adds the code marker and includes the number of
4133/// values added into it.
4134void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
4135                                        std::vector<SDValue> &Ops) const {
4136  MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4137  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
4138  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4139    unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
4140    MVT RegisterVT = RegVTs[Value];
4141    for (unsigned i = 0; i != NumRegs; ++i)
4142      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
4143  }
4144}
4145
4146/// isAllocatableRegister - If the specified register is safe to allocate,
4147/// i.e. it isn't a stack pointer or some other special register, return the
4148/// register class for the register.  Otherwise, return null.
4149static const TargetRegisterClass *
4150isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4151                      const TargetLowering &TLI,
4152                      const TargetRegisterInfo *TRI) {
4153  MVT FoundVT = MVT::Other;
4154  const TargetRegisterClass *FoundRC = 0;
4155  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4156       E = TRI->regclass_end(); RCI != E; ++RCI) {
4157    MVT ThisVT = MVT::Other;
4158
4159    const TargetRegisterClass *RC = *RCI;
4160    // If none of the the value types for this register class are valid, we
4161    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4162    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4163         I != E; ++I) {
4164      if (TLI.isTypeLegal(*I)) {
4165        // If we have already found this register in a different register class,
4166        // choose the one with the largest VT specified.  For example, on
4167        // PowerPC, we favor f64 register classes over f32.
4168        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4169          ThisVT = *I;
4170          break;
4171        }
4172      }
4173    }
4174
4175    if (ThisVT == MVT::Other) continue;
4176
4177    // NOTE: This isn't ideal.  In particular, this might allocate the
4178    // frame pointer in functions that need it (due to them not being taken
4179    // out of allocation, because a variable sized allocation hasn't been seen
4180    // yet).  This is a slight code pessimization, but should still work.
4181    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4182         E = RC->allocation_order_end(MF); I != E; ++I)
4183      if (*I == Reg) {
4184        // We found a matching register class.  Keep looking at others in case
4185        // we find one with larger registers that this physreg is also in.
4186        FoundRC = RC;
4187        FoundVT = ThisVT;
4188        break;
4189      }
4190  }
4191  return FoundRC;
4192}
4193
4194
4195namespace {
4196/// AsmOperandInfo - This contains information for each constraint that we are
4197/// lowering.
4198struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
4199  /// CallOperand - If this is the result output operand or a clobber
4200  /// this is null, otherwise it is the incoming operand to the CallInst.
4201  /// This gets modified as the asm is processed.
4202  SDValue CallOperand;
4203
4204  /// AssignedRegs - If this is a register or register class operand, this
4205  /// contains the set of register corresponding to the operand.
4206  RegsForValue AssignedRegs;
4207
4208  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4209    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4210  }
4211
4212  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4213  /// busy in OutputRegs/InputRegs.
4214  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4215                         std::set<unsigned> &OutputRegs,
4216                         std::set<unsigned> &InputRegs,
4217                         const TargetRegisterInfo &TRI) const {
4218    if (isOutReg) {
4219      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4220        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4221    }
4222    if (isInReg) {
4223      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4224        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4225    }
4226  }
4227
4228private:
4229  /// MarkRegAndAliases - Mark the specified register and all aliases in the
4230  /// specified set.
4231  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4232                                const TargetRegisterInfo &TRI) {
4233    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4234    Regs.insert(Reg);
4235    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4236      for (; *Aliases; ++Aliases)
4237        Regs.insert(*Aliases);
4238  }
4239};
4240} // end anon namespace.
4241
4242
4243/// GetRegistersForValue - Assign registers (virtual or physical) for the
4244/// specified operand.  We prefer to assign virtual registers, to allow the
4245/// register allocator handle the assignment process.  However, if the asm uses
4246/// features that we can't model on machineinstrs, we have SDISel do the
4247/// allocation.  This produces generally horrible, but correct, code.
4248///
4249///   OpInfo describes the operand.
4250///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
4251///     or any explicitly clobbered registers.
4252///   Input and OutputRegs are the set of already allocated physical registers.
4253///
4254void SelectionDAGLowering::
4255GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
4256                     std::set<unsigned> &OutputRegs,
4257                     std::set<unsigned> &InputRegs) {
4258  // Compute whether this value requires an input register, an output register,
4259  // or both.
4260  bool isOutReg = false;
4261  bool isInReg = false;
4262  switch (OpInfo.Type) {
4263  case InlineAsm::isOutput:
4264    isOutReg = true;
4265
4266    // If this is an early-clobber output, or if there is an input
4267    // constraint that matches this, we need to reserve the input register
4268    // so no other inputs allocate to it.
4269    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
4270    break;
4271  case InlineAsm::isInput:
4272    isInReg = true;
4273    isOutReg = false;
4274    break;
4275  case InlineAsm::isClobber:
4276    isOutReg = true;
4277    isInReg = true;
4278    break;
4279  }
4280
4281
4282  MachineFunction &MF = DAG.getMachineFunction();
4283  SmallVector<unsigned, 4> Regs;
4284
4285  // If this is a constraint for a single physreg, or a constraint for a
4286  // register class, find it.
4287  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4288    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4289                                     OpInfo.ConstraintVT);
4290
4291  unsigned NumRegs = 1;
4292  if (OpInfo.ConstraintVT != MVT::Other)
4293    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
4294  MVT RegVT;
4295  MVT ValueVT = OpInfo.ConstraintVT;
4296
4297
4298  // If this is a constraint for a specific physical register, like {r17},
4299  // assign it now.
4300  if (PhysReg.first) {
4301    if (OpInfo.ConstraintVT == MVT::Other)
4302      ValueVT = *PhysReg.second->vt_begin();
4303
4304    // Get the actual register value type.  This is important, because the user
4305    // may have asked for (e.g.) the AX register in i32 type.  We need to
4306    // remember that AX is actually i16 to get the right extension.
4307    RegVT = *PhysReg.second->vt_begin();
4308
4309    // This is a explicit reference to a physical register.
4310    Regs.push_back(PhysReg.first);
4311
4312    // If this is an expanded reference, add the rest of the regs to Regs.
4313    if (NumRegs != 1) {
4314      TargetRegisterClass::iterator I = PhysReg.second->begin();
4315      for (; *I != PhysReg.first; ++I)
4316        assert(I != PhysReg.second->end() && "Didn't find reg!");
4317
4318      // Already added the first reg.
4319      --NumRegs; ++I;
4320      for (; NumRegs; --NumRegs, ++I) {
4321        assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
4322        Regs.push_back(*I);
4323      }
4324    }
4325    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4326    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4327    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4328    return;
4329  }
4330
4331  // Otherwise, if this was a reference to an LLVM register class, create vregs
4332  // for this reference.
4333  std::vector<unsigned> RegClassRegs;
4334  const TargetRegisterClass *RC = PhysReg.second;
4335  if (RC) {
4336    // If this is an early clobber or tied register, our regalloc doesn't know
4337    // how to maintain the constraint.  If it isn't, go ahead and create vreg
4338    // and let the regalloc do the right thing.
4339    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
4340        // If there is some other early clobber and this is an input register,
4341        // then we are forced to pre-allocate the input reg so it doesn't
4342        // conflict with the earlyclobber.
4343        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
4344      RegVT = *PhysReg.second->vt_begin();
4345
4346      if (OpInfo.ConstraintVT == MVT::Other)
4347        ValueVT = RegVT;
4348
4349      // Create the appropriate number of virtual registers.
4350      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4351      for (; NumRegs; --NumRegs)
4352        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
4353
4354      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4355      return;
4356    }
4357
4358    // Otherwise, we can't allocate it.  Let the code below figure out how to
4359    // maintain these constraints.
4360    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
4361
4362  } else {
4363    // This is a reference to a register class that doesn't directly correspond
4364    // to an LLVM register class.  Allocate NumRegs consecutive, available,
4365    // registers from the class.
4366    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
4367                                                         OpInfo.ConstraintVT);
4368  }
4369
4370  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4371  unsigned NumAllocated = 0;
4372  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
4373    unsigned Reg = RegClassRegs[i];
4374    // See if this register is available.
4375    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
4376        (isInReg  && InputRegs.count(Reg))) {    // Already used.
4377      // Make sure we find consecutive registers.
4378      NumAllocated = 0;
4379      continue;
4380    }
4381
4382    // Check to see if this register is allocatable (i.e. don't give out the
4383    // stack pointer).
4384    if (RC == 0) {
4385      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
4386      if (!RC) {        // Couldn't allocate this register.
4387        // Reset NumAllocated to make sure we return consecutive registers.
4388        NumAllocated = 0;
4389        continue;
4390      }
4391    }
4392
4393    // Okay, this register is good, we can use it.
4394    ++NumAllocated;
4395
4396    // If we allocated enough consecutive registers, succeed.
4397    if (NumAllocated == NumRegs) {
4398      unsigned RegStart = (i-NumAllocated)+1;
4399      unsigned RegEnd   = i+1;
4400      // Mark all of the allocated registers used.
4401      for (unsigned i = RegStart; i != RegEnd; ++i)
4402        Regs.push_back(RegClassRegs[i]);
4403
4404      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
4405                                         OpInfo.ConstraintVT);
4406      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4407      return;
4408    }
4409  }
4410
4411  // Otherwise, we couldn't allocate enough registers for this.
4412}
4413
4414
4415/// visitInlineAsm - Handle a call to an InlineAsm object.
4416///
4417void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
4418  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4419
4420  /// ConstraintOperands - Information about all of the constraints.
4421  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
4422
4423  SDValue Chain = getRoot();
4424  SDValue Flag;
4425
4426  std::set<unsigned> OutputRegs, InputRegs;
4427
4428  // Do a prepass over the constraints, canonicalizing them, and building up the
4429  // ConstraintOperands list.
4430  std::vector<InlineAsm::ConstraintInfo>
4431    ConstraintInfos = IA->ParseConstraints();
4432
4433  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
4434  // constraint.  If so, we can't let the register allocator allocate any input
4435  // registers, because it will not know to avoid the earlyclobbered output reg.
4436  bool SawEarlyClobber = false;
4437
4438  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
4439  unsigned ResNo = 0;   // ResNo - The result number of the next output.
4440  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4441    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
4442    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
4443
4444    MVT OpVT = MVT::Other;
4445
4446    // Compute the value type for each operand.
4447    switch (OpInfo.Type) {
4448    case InlineAsm::isOutput:
4449      // Indirect outputs just consume an argument.
4450      if (OpInfo.isIndirect) {
4451        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4452        break;
4453      }
4454      // The return value of the call is this value.  As such, there is no
4455      // corresponding argument.
4456      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4457      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
4458        OpVT = TLI.getValueType(STy->getElementType(ResNo));
4459      } else {
4460        assert(ResNo == 0 && "Asm only has one result!");
4461        OpVT = TLI.getValueType(CS.getType());
4462      }
4463      ++ResNo;
4464      break;
4465    case InlineAsm::isInput:
4466      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4467      break;
4468    case InlineAsm::isClobber:
4469      // Nothing to do.
4470      break;
4471    }
4472
4473    // If this is an input or an indirect output, process the call argument.
4474    // BasicBlocks are labels, currently appearing only in asm's.
4475    if (OpInfo.CallOperandVal) {
4476      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
4477        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
4478      else {
4479        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
4480        const Type *OpTy = OpInfo.CallOperandVal->getType();
4481        // If this is an indirect operand, the operand is a pointer to the
4482        // accessed type.
4483        if (OpInfo.isIndirect)
4484          OpTy = cast<PointerType>(OpTy)->getElementType();
4485
4486        // If OpTy is not a single value, it may be a struct/union that we
4487        // can tile with integers.
4488        if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4489          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4490          switch (BitSize) {
4491          default: break;
4492          case 1:
4493          case 8:
4494          case 16:
4495          case 32:
4496          case 64:
4497            OpTy = IntegerType::get(BitSize);
4498            break;
4499          }
4500        }
4501
4502        OpVT = TLI.getValueType(OpTy, true);
4503      }
4504    }
4505
4506    OpInfo.ConstraintVT = OpVT;
4507
4508    // Compute the constraint code and ConstraintType to use.
4509    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
4510
4511    // Keep track of whether we see an earlyclobber.
4512    SawEarlyClobber |= OpInfo.isEarlyClobber;
4513
4514    // If we see a clobber of a register, it is an early clobber.
4515    if (!SawEarlyClobber &&
4516        OpInfo.Type == InlineAsm::isClobber &&
4517        OpInfo.ConstraintType == TargetLowering::C_Register) {
4518      // Note that we want to ignore things that we don't track here, like
4519      // dirflag, fpsr, flags, etc.
4520      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4521        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4522                                         OpInfo.ConstraintVT);
4523      if (PhysReg.first || PhysReg.second) {
4524        // This is a register we know of.
4525        SawEarlyClobber = true;
4526      }
4527    }
4528
4529    // If this is a memory input, and if the operand is not indirect, do what we
4530    // need to to provide an address for the memory input.
4531    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4532        !OpInfo.isIndirect) {
4533      assert(OpInfo.Type == InlineAsm::isInput &&
4534             "Can only indirectify direct input operands!");
4535
4536      // Memory operands really want the address of the value.  If we don't have
4537      // an indirect input, put it in the constpool if we can, otherwise spill
4538      // it to a stack slot.
4539
4540      // If the operand is a float, integer, or vector constant, spill to a
4541      // constant pool entry to get its address.
4542      Value *OpVal = OpInfo.CallOperandVal;
4543      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
4544          isa<ConstantVector>(OpVal)) {
4545        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
4546                                                 TLI.getPointerTy());
4547      } else {
4548        // Otherwise, create a stack slot and emit a store to it before the
4549        // asm.
4550        const Type *Ty = OpVal->getType();
4551        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
4552        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
4553        MachineFunction &MF = DAG.getMachineFunction();
4554        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
4555        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4556        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
4557        OpInfo.CallOperand = StackSlot;
4558      }
4559
4560      // There is no longer a Value* corresponding to this operand.
4561      OpInfo.CallOperandVal = 0;
4562      // It is now an indirect operand.
4563      OpInfo.isIndirect = true;
4564    }
4565
4566    // If this constraint is for a specific register, allocate it before
4567    // anything else.
4568    if (OpInfo.ConstraintType == TargetLowering::C_Register)
4569      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4570  }
4571  ConstraintInfos.clear();
4572
4573
4574  // Second pass - Loop over all of the operands, assigning virtual or physregs
4575  // to registerclass operands.
4576  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4577    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4578
4579    // C_Register operands have already been allocated, Other/Memory don't need
4580    // to be.
4581    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
4582      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4583  }
4584
4585  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
4586  std::vector<SDValue> AsmNodeOperands;
4587  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
4588  AsmNodeOperands.push_back(
4589          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
4590
4591
4592  // Loop over all of the inputs, copying the operand values into the
4593  // appropriate registers and processing the output regs.
4594  RegsForValue RetValRegs;
4595
4596  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
4597  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
4598
4599  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4600    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4601
4602    switch (OpInfo.Type) {
4603    case InlineAsm::isOutput: {
4604      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
4605          OpInfo.ConstraintType != TargetLowering::C_Register) {
4606        // Memory output, or 'other' output (e.g. 'X' constraint).
4607        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
4608
4609        // Add information to the INLINEASM node to know about this output.
4610        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4611        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4612                                                        TLI.getPointerTy()));
4613        AsmNodeOperands.push_back(OpInfo.CallOperand);
4614        break;
4615      }
4616
4617      // Otherwise, this is a register or register class output.
4618
4619      // Copy the output from the appropriate register.  Find a register that
4620      // we can use.
4621      if (OpInfo.AssignedRegs.Regs.empty()) {
4622        cerr << "Couldn't allocate output reg for constraint '"
4623             << OpInfo.ConstraintCode << "'!\n";
4624        exit(1);
4625      }
4626
4627      // If this is an indirect operand, store through the pointer after the
4628      // asm.
4629      if (OpInfo.isIndirect) {
4630        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
4631                                                      OpInfo.CallOperandVal));
4632      } else {
4633        // This is the result value of the call.
4634        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4635        // Concatenate this output onto the outputs list.
4636        RetValRegs.append(OpInfo.AssignedRegs);
4637      }
4638
4639      // Add information to the INLINEASM node to know that this register is
4640      // set.
4641      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
4642                                               AsmNodeOperands);
4643      break;
4644    }
4645    case InlineAsm::isInput: {
4646      SDValue InOperandVal = OpInfo.CallOperand;
4647
4648      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
4649        // If this is required to match an output register we have already set,
4650        // just use its register.
4651        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
4652
4653        // Scan until we find the definition we already emitted of this operand.
4654        // When we find it, create a RegsForValue operand.
4655        unsigned CurOp = 2;  // The first operand.
4656        for (; OperandNo; --OperandNo) {
4657          // Advance to the next operand.
4658          unsigned NumOps =
4659            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4660          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
4661                  (NumOps & 7) == 4 /*MEM*/) &&
4662                 "Skipped past definitions?");
4663          CurOp += (NumOps>>3)+1;
4664        }
4665
4666        unsigned NumOps =
4667          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4668        if ((NumOps & 7) == 2 /*REGDEF*/) {
4669          // Add NumOps>>3 registers to MatchedRegs.
4670          RegsForValue MatchedRegs;
4671          MatchedRegs.TLI = &TLI;
4672          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
4673          MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
4674          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
4675            unsigned Reg =
4676              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4677            MatchedRegs.Regs.push_back(Reg);
4678          }
4679
4680          // Use the produced MatchedRegs object to
4681          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4682          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
4683          break;
4684        } else {
4685          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
4686          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4687          // Add information to the INLINEASM node to know about this input.
4688          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4689          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4690                                                          TLI.getPointerTy()));
4691          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4692          break;
4693        }
4694      }
4695
4696      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4697        assert(!OpInfo.isIndirect &&
4698               "Don't know how to handle indirect other inputs yet!");
4699
4700        std::vector<SDValue> Ops;
4701        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
4702                                         Ops, DAG);
4703        if (Ops.empty()) {
4704          cerr << "Invalid operand for inline asm constraint '"
4705               << OpInfo.ConstraintCode << "'!\n";
4706          exit(1);
4707        }
4708
4709        // Add information to the INLINEASM node to know about this input.
4710        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4711        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4712                                                        TLI.getPointerTy()));
4713        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4714        break;
4715      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4716        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4717        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4718               "Memory operands expect pointer values");
4719
4720        // Add information to the INLINEASM node to know about this input.
4721        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4722        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4723                                                        TLI.getPointerTy()));
4724        AsmNodeOperands.push_back(InOperandVal);
4725        break;
4726      }
4727
4728      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4729              OpInfo.ConstraintType == TargetLowering::C_Register) &&
4730             "Unknown constraint type!");
4731      assert(!OpInfo.isIndirect &&
4732             "Don't know how to handle indirect register inputs yet!");
4733
4734      // Copy the input into the appropriate registers.
4735      assert(!OpInfo.AssignedRegs.Regs.empty() &&
4736             "Couldn't allocate input reg!");
4737
4738      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4739
4740      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
4741                                               AsmNodeOperands);
4742      break;
4743    }
4744    case InlineAsm::isClobber: {
4745      // Add the clobbered value to the operand list, so that the register
4746      // allocator is aware that the physreg got clobbered.
4747      if (!OpInfo.AssignedRegs.Regs.empty())
4748        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
4749                                                 AsmNodeOperands);
4750      break;
4751    }
4752    }
4753  }
4754
4755  // Finish up input operands.
4756  AsmNodeOperands[0] = Chain;
4757  if (Flag.Val) AsmNodeOperands.push_back(Flag);
4758
4759  Chain = DAG.getNode(ISD::INLINEASM,
4760                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4761                      &AsmNodeOperands[0], AsmNodeOperands.size());
4762  Flag = Chain.getValue(1);
4763
4764  // If this asm returns a register value, copy the result from that register
4765  // and set it as the value of the call.
4766  if (!RetValRegs.Regs.empty()) {
4767    SDValue Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4768
4769    // If any of the results of the inline asm is a vector, it may have the
4770    // wrong width/num elts.  This can happen for register classes that can
4771    // contain multiple different value types.  The preg or vreg allocated may
4772    // not have the same VT as was expected.  Convert it to the right type with
4773    // bit_convert.
4774    if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
4775      for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
4776        if (Val.Val->getValueType(i).isVector())
4777          Val = DAG.getNode(ISD::BIT_CONVERT,
4778                            TLI.getValueType(ResSTy->getElementType(i)), Val);
4779      }
4780    } else {
4781      if (Val.getValueType().isVector())
4782        Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
4783                          Val);
4784    }
4785
4786    setValue(CS.getInstruction(), Val);
4787  }
4788
4789  std::vector<std::pair<SDValue, Value*> > StoresToEmit;
4790
4791  // Process indirect outputs, first output all of the flagged copies out of
4792  // physregs.
4793  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4794    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4795    Value *Ptr = IndirectStoresToEmit[i].second;
4796    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4797    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4798  }
4799
4800  // Emit the non-flagged stores from the physregs.
4801  SmallVector<SDValue, 8> OutChains;
4802  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4803    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4804                                    getValue(StoresToEmit[i].second),
4805                                    StoresToEmit[i].second, 0));
4806  if (!OutChains.empty())
4807    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4808                        &OutChains[0], OutChains.size());
4809  DAG.setRoot(Chain);
4810}
4811
4812
4813void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4814  SDValue Src = getValue(I.getOperand(0));
4815
4816  MVT IntPtr = TLI.getPointerTy();
4817
4818  if (IntPtr.bitsLT(Src.getValueType()))
4819    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4820  else if (IntPtr.bitsGT(Src.getValueType()))
4821    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4822
4823  // Scale the source by the type size.
4824  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4825  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4826                    Src, DAG.getIntPtrConstant(ElementSize));
4827
4828  TargetLowering::ArgListTy Args;
4829  TargetLowering::ArgListEntry Entry;
4830  Entry.Node = Src;
4831  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4832  Args.push_back(Entry);
4833
4834  std::pair<SDValue,SDValue> Result =
4835    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4836                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4837  setValue(&I, Result.first);  // Pointers always fit in registers
4838  DAG.setRoot(Result.second);
4839}
4840
4841void SelectionDAGLowering::visitFree(FreeInst &I) {
4842  TargetLowering::ArgListTy Args;
4843  TargetLowering::ArgListEntry Entry;
4844  Entry.Node = getValue(I.getOperand(0));
4845  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4846  Args.push_back(Entry);
4847  MVT IntPtr = TLI.getPointerTy();
4848  std::pair<SDValue,SDValue> Result =
4849    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4850                    CallingConv::C, true,
4851                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4852  DAG.setRoot(Result.second);
4853}
4854
4855// EmitInstrWithCustomInserter - This method should be implemented by targets
4856// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4857// instructions are special in various ways, which require special support to
4858// insert.  The specified MachineInstr is created but not inserted into any
4859// basic blocks, and the scheduler passes ownership of it to this method.
4860MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4861                                                       MachineBasicBlock *MBB) {
4862  cerr << "If a target marks an instruction with "
4863       << "'usesCustomDAGSchedInserter', it must implement "
4864       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4865  abort();
4866  return 0;
4867}
4868
4869void SelectionDAGLowering::visitVAStart(CallInst &I) {
4870  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4871                          getValue(I.getOperand(1)),
4872                          DAG.getSrcValue(I.getOperand(1))));
4873}
4874
4875void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4876  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4877                             getValue(I.getOperand(0)),
4878                             DAG.getSrcValue(I.getOperand(0)));
4879  setValue(&I, V);
4880  DAG.setRoot(V.getValue(1));
4881}
4882
4883void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4884  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4885                          getValue(I.getOperand(1)),
4886                          DAG.getSrcValue(I.getOperand(1))));
4887}
4888
4889void SelectionDAGLowering::visitVACopy(CallInst &I) {
4890  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4891                          getValue(I.getOperand(1)),
4892                          getValue(I.getOperand(2)),
4893                          DAG.getSrcValue(I.getOperand(1)),
4894                          DAG.getSrcValue(I.getOperand(2))));
4895}
4896
4897/// TargetLowering::LowerArguments - This is the default LowerArguments
4898/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4899/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4900/// integrated into SDISel.
4901void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
4902                                    SmallVectorImpl<SDValue> &ArgValues) {
4903  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4904  SmallVector<SDValue, 3+16> Ops;
4905  Ops.push_back(DAG.getRoot());
4906  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4907  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4908
4909  // Add one result value for each formal argument.
4910  SmallVector<MVT, 16> RetVals;
4911  unsigned j = 1;
4912  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4913       I != E; ++I, ++j) {
4914    SmallVector<MVT, 4> ValueVTs;
4915    ComputeValueVTs(*this, I->getType(), ValueVTs);
4916    for (unsigned Value = 0, NumValues = ValueVTs.size();
4917         Value != NumValues; ++Value) {
4918      MVT VT = ValueVTs[Value];
4919      const Type *ArgTy = VT.getTypeForMVT();
4920      ISD::ArgFlagsTy Flags;
4921      unsigned OriginalAlignment =
4922        getTargetData()->getABITypeAlignment(ArgTy);
4923
4924      if (F.paramHasAttr(j, ParamAttr::ZExt))
4925        Flags.setZExt();
4926      if (F.paramHasAttr(j, ParamAttr::SExt))
4927        Flags.setSExt();
4928      if (F.paramHasAttr(j, ParamAttr::InReg))
4929        Flags.setInReg();
4930      if (F.paramHasAttr(j, ParamAttr::StructRet))
4931        Flags.setSRet();
4932      if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4933        Flags.setByVal();
4934        const PointerType *Ty = cast<PointerType>(I->getType());
4935        const Type *ElementTy = Ty->getElementType();
4936        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4937        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4938        // For ByVal, alignment should be passed from FE.  BE will guess if
4939        // this info is not there but there are cases it cannot get right.
4940        if (F.getParamAlignment(j))
4941          FrameAlign = F.getParamAlignment(j);
4942        Flags.setByValAlign(FrameAlign);
4943        Flags.setByValSize(FrameSize);
4944      }
4945      if (F.paramHasAttr(j, ParamAttr::Nest))
4946        Flags.setNest();
4947      Flags.setOrigAlign(OriginalAlignment);
4948
4949      MVT RegisterVT = getRegisterType(VT);
4950      unsigned NumRegs = getNumRegisters(VT);
4951      for (unsigned i = 0; i != NumRegs; ++i) {
4952        RetVals.push_back(RegisterVT);
4953        ISD::ArgFlagsTy MyFlags = Flags;
4954        if (NumRegs > 1 && i == 0)
4955          MyFlags.setSplit();
4956        // if it isn't first piece, alignment must be 1
4957        else if (i > 0)
4958          MyFlags.setOrigAlign(1);
4959        Ops.push_back(DAG.getArgFlags(MyFlags));
4960      }
4961    }
4962  }
4963
4964  RetVals.push_back(MVT::Other);
4965
4966  // Create the node.
4967  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4968                               DAG.getVTList(&RetVals[0], RetVals.size()),
4969                               &Ops[0], Ops.size()).Val;
4970
4971  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4972  // allows exposing the loads that may be part of the argument access to the
4973  // first DAGCombiner pass.
4974  SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG);
4975
4976  // The number of results should match up, except that the lowered one may have
4977  // an extra flag result.
4978  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4979          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4980           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4981         && "Lowering produced unexpected number of results!");
4982
4983  // The FORMAL_ARGUMENTS node itself is likely no longer needed.
4984  if (Result != TmpRes.Val && Result->use_empty()) {
4985    HandleSDNode Dummy(DAG.getRoot());
4986    DAG.RemoveDeadNode(Result);
4987  }
4988
4989  Result = TmpRes.Val;
4990
4991  unsigned NumArgRegs = Result->getNumValues() - 1;
4992  DAG.setRoot(SDValue(Result, NumArgRegs));
4993
4994  // Set up the return result vector.
4995  unsigned i = 0;
4996  unsigned Idx = 1;
4997  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4998      ++I, ++Idx) {
4999    SmallVector<MVT, 4> ValueVTs;
5000    ComputeValueVTs(*this, I->getType(), ValueVTs);
5001    for (unsigned Value = 0, NumValues = ValueVTs.size();
5002         Value != NumValues; ++Value) {
5003      MVT VT = ValueVTs[Value];
5004      MVT PartVT = getRegisterType(VT);
5005
5006      unsigned NumParts = getNumRegisters(VT);
5007      SmallVector<SDValue, 4> Parts(NumParts);
5008      for (unsigned j = 0; j != NumParts; ++j)
5009        Parts[j] = SDValue(Result, i++);
5010
5011      ISD::NodeType AssertOp = ISD::DELETED_NODE;
5012      if (F.paramHasAttr(Idx, ParamAttr::SExt))
5013        AssertOp = ISD::AssertSext;
5014      else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
5015        AssertOp = ISD::AssertZext;
5016
5017      ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
5018                                           AssertOp));
5019    }
5020  }
5021  assert(i == NumArgRegs && "Argument register count mismatch!");
5022}
5023
5024
5025/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5026/// implementation, which just inserts an ISD::CALL node, which is later custom
5027/// lowered by the target to something concrete.  FIXME: When all targets are
5028/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
5029std::pair<SDValue, SDValue>
5030TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5031                            bool RetSExt, bool RetZExt, bool isVarArg,
5032                            unsigned CallingConv, bool isTailCall,
5033                            SDValue Callee,
5034                            ArgListTy &Args, SelectionDAG &DAG) {
5035  SmallVector<SDValue, 32> Ops;
5036  Ops.push_back(Chain);   // Op#0 - Chain
5037  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
5038  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
5039  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
5040  Ops.push_back(Callee);
5041
5042  // Handle all of the outgoing arguments.
5043  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5044    SmallVector<MVT, 4> ValueVTs;
5045    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5046    for (unsigned Value = 0, NumValues = ValueVTs.size();
5047         Value != NumValues; ++Value) {
5048      MVT VT = ValueVTs[Value];
5049      const Type *ArgTy = VT.getTypeForMVT();
5050      SDValue Op = SDValue(Args[i].Node.Val, Args[i].Node.getResNo() + Value);
5051      ISD::ArgFlagsTy Flags;
5052      unsigned OriginalAlignment =
5053        getTargetData()->getABITypeAlignment(ArgTy);
5054
5055      if (Args[i].isZExt)
5056        Flags.setZExt();
5057      if (Args[i].isSExt)
5058        Flags.setSExt();
5059      if (Args[i].isInReg)
5060        Flags.setInReg();
5061      if (Args[i].isSRet)
5062        Flags.setSRet();
5063      if (Args[i].isByVal) {
5064        Flags.setByVal();
5065        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5066        const Type *ElementTy = Ty->getElementType();
5067        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5068        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
5069        // For ByVal, alignment should come from FE.  BE will guess if this
5070        // info is not there but there are cases it cannot get right.
5071        if (Args[i].Alignment)
5072          FrameAlign = Args[i].Alignment;
5073        Flags.setByValAlign(FrameAlign);
5074        Flags.setByValSize(FrameSize);
5075      }
5076      if (Args[i].isNest)
5077        Flags.setNest();
5078      Flags.setOrigAlign(OriginalAlignment);
5079
5080      MVT PartVT = getRegisterType(VT);
5081      unsigned NumParts = getNumRegisters(VT);
5082      SmallVector<SDValue, 4> Parts(NumParts);
5083      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5084
5085      if (Args[i].isSExt)
5086        ExtendKind = ISD::SIGN_EXTEND;
5087      else if (Args[i].isZExt)
5088        ExtendKind = ISD::ZERO_EXTEND;
5089
5090      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
5091
5092      for (unsigned i = 0; i != NumParts; ++i) {
5093        // if it isn't first piece, alignment must be 1
5094        ISD::ArgFlagsTy MyFlags = Flags;
5095        if (NumParts > 1 && i == 0)
5096          MyFlags.setSplit();
5097        else if (i != 0)
5098          MyFlags.setOrigAlign(1);
5099
5100        Ops.push_back(Parts[i]);
5101        Ops.push_back(DAG.getArgFlags(MyFlags));
5102      }
5103    }
5104  }
5105
5106  // Figure out the result value types. We start by making a list of
5107  // the potentially illegal return value types.
5108  SmallVector<MVT, 4> LoweredRetTys;
5109  SmallVector<MVT, 4> RetTys;
5110  ComputeValueVTs(*this, RetTy, RetTys);
5111
5112  // Then we translate that to a list of legal types.
5113  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5114    MVT VT = RetTys[I];
5115    MVT RegisterVT = getRegisterType(VT);
5116    unsigned NumRegs = getNumRegisters(VT);
5117    for (unsigned i = 0; i != NumRegs; ++i)
5118      LoweredRetTys.push_back(RegisterVT);
5119  }
5120
5121  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
5122
5123  // Create the CALL node.
5124  SDValue Res = DAG.getNode(ISD::CALL,
5125                              DAG.getVTList(&LoweredRetTys[0],
5126                                            LoweredRetTys.size()),
5127                              &Ops[0], Ops.size());
5128  Chain = Res.getValue(LoweredRetTys.size() - 1);
5129
5130  // Gather up the call result into a single value.
5131  if (RetTy != Type::VoidTy) {
5132    ISD::NodeType AssertOp = ISD::DELETED_NODE;
5133
5134    if (RetSExt)
5135      AssertOp = ISD::AssertSext;
5136    else if (RetZExt)
5137      AssertOp = ISD::AssertZext;
5138
5139    SmallVector<SDValue, 4> ReturnValues;
5140    unsigned RegNo = 0;
5141    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5142      MVT VT = RetTys[I];
5143      MVT RegisterVT = getRegisterType(VT);
5144      unsigned NumRegs = getNumRegisters(VT);
5145      unsigned RegNoEnd = NumRegs + RegNo;
5146      SmallVector<SDValue, 4> Results;
5147      for (; RegNo != RegNoEnd; ++RegNo)
5148        Results.push_back(Res.getValue(RegNo));
5149      SDValue ReturnValue =
5150        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
5151                         AssertOp);
5152      ReturnValues.push_back(ReturnValue);
5153    }
5154    Res = DAG.getMergeValues(DAG.getVTList(&RetTys[0], RetTys.size()),
5155                             &ReturnValues[0], ReturnValues.size());
5156  }
5157
5158  return std::make_pair(Res, Chain);
5159}
5160
5161SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5162  assert(0 && "LowerOperation not implemented for this target!");
5163  abort();
5164  return SDValue();
5165}
5166
5167
5168//===----------------------------------------------------------------------===//
5169// SelectionDAGISel code
5170//===----------------------------------------------------------------------===//
5171
5172SelectionDAGISel::SelectionDAGISel(TargetLowering &tli, bool fast) :
5173  FunctionPass((intptr_t)&ID), TLI(tli),
5174  FuncInfo(new FunctionLoweringInfo(TLI)),
5175  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
5176  SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo)),
5177  GFI(),
5178  Fast(fast),
5179  DAGSize(0)
5180{}
5181
5182SelectionDAGISel::~SelectionDAGISel() {
5183  delete SDL;
5184  delete CurDAG;
5185  delete FuncInfo;
5186}
5187
5188unsigned SelectionDAGISel::MakeReg(MVT VT) {
5189  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
5190}
5191
5192void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
5193  AU.addRequired<AliasAnalysis>();
5194  AU.addRequired<GCModuleInfo>();
5195  AU.setPreservesAll();
5196}
5197
5198bool SelectionDAGISel::runOnFunction(Function &Fn) {
5199  // Get alias analysis for load/store combining.
5200  AA = &getAnalysis<AliasAnalysis>();
5201
5202  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
5203  if (MF.getFunction()->hasGC())
5204    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(*MF.getFunction());
5205  else
5206    GFI = 0;
5207  RegInfo = &MF.getRegInfo();
5208  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
5209
5210  FuncInfo->set(Fn, MF);
5211  CurDAG->init(MF, getAnalysisToUpdate<MachineModuleInfo>());
5212  SDL->init(GFI, *AA);
5213
5214  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
5215    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
5216      // Mark landing pad.
5217      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
5218
5219  SelectAllBasicBlocks(Fn, MF);
5220
5221  // Add function live-ins to entry block live-in set.
5222  BasicBlock *EntryBB = &Fn.getEntryBlock();
5223  BB = FuncInfo->MBBMap[EntryBB];
5224  if (!RegInfo->livein_empty())
5225    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
5226           E = RegInfo->livein_end(); I != E; ++I)
5227      BB->addLiveIn(I->first);
5228
5229#ifndef NDEBUG
5230  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
5231         "Not all catch info was assigned to a landing pad!");
5232#endif
5233
5234  FuncInfo->clear();
5235
5236  return true;
5237}
5238
5239void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
5240  SDValue Op = getValue(V);
5241  assert((Op.getOpcode() != ISD::CopyFromReg ||
5242          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5243         "Copy from a reg to the same reg!");
5244  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5245
5246  RegsForValue RFV(TLI, Reg, V->getType());
5247  SDValue Chain = DAG.getEntryNode();
5248  RFV.getCopyToRegs(Op, DAG, Chain, 0);
5249  PendingExports.push_back(Chain);
5250}
5251
5252void SelectionDAGISel::
5253LowerArguments(BasicBlock *LLVMBB) {
5254  // If this is the entry block, emit arguments.
5255  Function &F = *LLVMBB->getParent();
5256  SDValue OldRoot = SDL->DAG.getRoot();
5257  SmallVector<SDValue, 16> Args;
5258  TLI.LowerArguments(F, SDL->DAG, Args);
5259
5260  unsigned a = 0;
5261  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
5262       AI != E; ++AI) {
5263    SmallVector<MVT, 4> ValueVTs;
5264    ComputeValueVTs(TLI, AI->getType(), ValueVTs);
5265    unsigned NumValues = ValueVTs.size();
5266    if (!AI->use_empty()) {
5267      SDL->setValue(AI, SDL->DAG.getMergeValues(&Args[a], NumValues));
5268      // If this argument is live outside of the entry block, insert a copy from
5269      // whereever we got it to the vreg that other BB's will reference it as.
5270      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo->ValueMap.find(AI);
5271      if (VMI != FuncInfo->ValueMap.end()) {
5272        SDL->CopyValueToVirtualRegister(AI, VMI->second);
5273      }
5274    }
5275    a += NumValues;
5276  }
5277
5278  // Finally, if the target has anything special to do, allow it to do so.
5279  // FIXME: this should insert code into the DAG!
5280  EmitFunctionEntryCode(F, SDL->DAG.getMachineFunction());
5281}
5282
5283static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
5284                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
5285  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
5286    if (isSelector(I)) {
5287      // Apply the catch info to DestBB.
5288      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
5289#ifndef NDEBUG
5290      if (!FLI.MBBMap[SrcBB]->isLandingPad())
5291        FLI.CatchInfoFound.insert(I);
5292#endif
5293    }
5294}
5295
5296/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
5297/// whether object offset >= 0.
5298static bool
5299IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDValue Op) {
5300  if (!isa<FrameIndexSDNode>(Op)) return false;
5301
5302  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
5303  int FrameIdx =  FrameIdxNode->getIndex();
5304  return MFI->isFixedObjectIndex(FrameIdx) &&
5305    MFI->getObjectOffset(FrameIdx) >= 0;
5306}
5307
5308/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
5309/// possibly be overwritten when lowering the outgoing arguments in a tail
5310/// call. Currently the implementation of this call is very conservative and
5311/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
5312/// virtual registers would be overwritten by direct lowering.
5313static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
5314                                                    MachineFrameInfo * MFI) {
5315  RegisterSDNode * OpReg = NULL;
5316  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
5317      (Op.getOpcode()== ISD::CopyFromReg &&
5318       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
5319       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
5320      (Op.getOpcode() == ISD::LOAD &&
5321       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
5322      (Op.getOpcode() == ISD::MERGE_VALUES &&
5323       Op.getOperand(Op.getResNo()).getOpcode() == ISD::LOAD &&
5324       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.getResNo()).
5325                                       getOperand(1))))
5326    return true;
5327  return false;
5328}
5329
5330/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
5331/// DAG and fixes their tailcall attribute operand.
5332static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
5333                                           TargetLowering& TLI) {
5334  SDNode * Ret = NULL;
5335  SDValue Terminator = DAG.getRoot();
5336
5337  // Find RET node.
5338  if (Terminator.getOpcode() == ISD::RET) {
5339    Ret = Terminator.Val;
5340  }
5341
5342  // Fix tail call attribute of CALL nodes.
5343  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
5344         BI = DAG.allnodes_end(); BI != BE; ) {
5345    --BI;
5346    if (BI->getOpcode() == ISD::CALL) {
5347      SDValue OpRet(Ret, 0);
5348      SDValue OpCall(BI, 0);
5349      bool isMarkedTailCall =
5350        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
5351      // If CALL node has tail call attribute set to true and the call is not
5352      // eligible (no RET or the target rejects) the attribute is fixed to
5353      // false. The TargetLowering::IsEligibleForTailCallOptimization function
5354      // must correctly identify tail call optimizable calls.
5355      if (!isMarkedTailCall) continue;
5356      if (Ret==NULL ||
5357          !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
5358        // Not eligible. Mark CALL node as non tail call.
5359        SmallVector<SDValue, 32> Ops;
5360        unsigned idx=0;
5361        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
5362              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5363          if (idx!=3)
5364            Ops.push_back(*I);
5365          else
5366            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
5367        }
5368        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5369      } else {
5370        // Look for tail call clobbered arguments. Emit a series of
5371        // copyto/copyfrom virtual register nodes to protect them.
5372        SmallVector<SDValue, 32> Ops;
5373        SDValue Chain = OpCall.getOperand(0), InFlag;
5374        unsigned idx=0;
5375        for(SDNode::op_iterator I = OpCall.Val->op_begin(),
5376              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5377          SDValue Arg = *I;
5378          if (idx > 4 && (idx % 2)) {
5379            bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
5380              getArgFlags().isByVal();
5381            MachineFunction &MF = DAG.getMachineFunction();
5382            MachineFrameInfo *MFI = MF.getFrameInfo();
5383            if (!isByVal &&
5384                IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
5385              MVT VT = Arg.getValueType();
5386              unsigned VReg = MF.getRegInfo().
5387                createVirtualRegister(TLI.getRegClassFor(VT));
5388              Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
5389              InFlag = Chain.getValue(1);
5390              Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
5391              Chain = Arg.getValue(1);
5392              InFlag = Arg.getValue(2);
5393            }
5394          }
5395          Ops.push_back(Arg);
5396        }
5397        // Link in chain of CopyTo/CopyFromReg.
5398        Ops[0] = Chain;
5399        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5400      }
5401    }
5402  }
5403}
5404
5405/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
5406/// ensure constants are generated when needed.  Remember the virtual registers
5407/// that need to be added to the Machine PHI nodes as input.  We cannot just
5408/// directly add them, because expansion might result in multiple MBB's for one
5409/// BB.  As such, the start of the BB might correspond to a different MBB than
5410/// the end.
5411///
5412void
5413SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
5414  TerminatorInst *TI = LLVMBB->getTerminator();
5415
5416  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
5417
5418  // Check successor nodes' PHI nodes that expect a constant to be available
5419  // from this block.
5420  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5421    BasicBlock *SuccBB = TI->getSuccessor(succ);
5422    if (!isa<PHINode>(SuccBB->begin())) continue;
5423    MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
5424
5425    // If this terminator has multiple identical successors (common for
5426    // switches), only handle each succ once.
5427    if (!SuccsHandled.insert(SuccMBB)) continue;
5428
5429    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5430    PHINode *PN;
5431
5432    // At this point we know that there is a 1-1 correspondence between LLVM PHI
5433    // nodes and Machine PHI nodes, but the incoming operands have not been
5434    // emitted yet.
5435    for (BasicBlock::iterator I = SuccBB->begin();
5436         (PN = dyn_cast<PHINode>(I)); ++I) {
5437      // Ignore dead phi's.
5438      if (PN->use_empty()) continue;
5439
5440      unsigned Reg;
5441      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5442
5443      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5444        unsigned &RegOut = SDL->ConstantsOut[C];
5445        if (RegOut == 0) {
5446          RegOut = FuncInfo->CreateRegForValue(C);
5447          SDL->CopyValueToVirtualRegister(C, RegOut);
5448        }
5449        Reg = RegOut;
5450      } else {
5451        Reg = FuncInfo->ValueMap[PHIOp];
5452        if (Reg == 0) {
5453          assert(isa<AllocaInst>(PHIOp) &&
5454                 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5455                 "Didn't codegen value into a register!??");
5456          Reg = FuncInfo->CreateRegForValue(PHIOp);
5457          SDL->CopyValueToVirtualRegister(PHIOp, Reg);
5458        }
5459      }
5460
5461      // Remember that this register needs to added to the machine PHI node as
5462      // the input for this MBB.
5463      SmallVector<MVT, 4> ValueVTs;
5464      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
5465      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
5466        MVT VT = ValueVTs[vti];
5467        unsigned NumRegisters = TLI.getNumRegisters(VT);
5468        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5469          SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5470        Reg += NumRegisters;
5471      }
5472    }
5473  }
5474  SDL->ConstantsOut.clear();
5475
5476  // Lower the terminator after the copies are emitted.
5477  SDL->visit(*LLVMBB->getTerminator());
5478}
5479
5480void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
5481                                        BasicBlock::iterator Begin,
5482                                        BasicBlock::iterator End,
5483                                        bool DoArgs) {
5484  // Lower any arguments needed in this block if this is the entry block.
5485  if (DoArgs)
5486    LowerArguments(LLVMBB);
5487
5488  SDL->setCurrentBasicBlock(BB);
5489
5490  MachineModuleInfo *MMI = CurDAG->getMachineModuleInfo();
5491
5492  if (MMI && BB->isLandingPad()) {
5493    // Add a label to mark the beginning of the landing pad.  Deletion of the
5494    // landing pad can thus be detected via the MachineModuleInfo.
5495    unsigned LabelID = MMI->addLandingPad(BB);
5496    CurDAG->setRoot(CurDAG->getLabel(ISD::EH_LABEL,
5497                                     CurDAG->getEntryNode(), LabelID));
5498
5499    // Mark exception register as live in.
5500    unsigned Reg = TLI.getExceptionAddressRegister();
5501    if (Reg) BB->addLiveIn(Reg);
5502
5503    // Mark exception selector register as live in.
5504    Reg = TLI.getExceptionSelectorRegister();
5505    if (Reg) BB->addLiveIn(Reg);
5506
5507    // FIXME: Hack around an exception handling flaw (PR1508): the personality
5508    // function and list of typeids logically belong to the invoke (or, if you
5509    // like, the basic block containing the invoke), and need to be associated
5510    // with it in the dwarf exception handling tables.  Currently however the
5511    // information is provided by an intrinsic (eh.selector) that can be moved
5512    // to unexpected places by the optimizers: if the unwind edge is critical,
5513    // then breaking it can result in the intrinsics being in the successor of
5514    // the landing pad, not the landing pad itself.  This results in exceptions
5515    // not being caught because no typeids are associated with the invoke.
5516    // This may not be the only way things can go wrong, but it is the only way
5517    // we try to work around for the moment.
5518    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
5519
5520    if (Br && Br->isUnconditional()) { // Critical edge?
5521      BasicBlock::iterator I, E;
5522      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
5523        if (isSelector(I))
5524          break;
5525
5526      if (I == E)
5527        // No catch info found - try to extract some from the successor.
5528        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
5529    }
5530  }
5531
5532  // Lower all of the non-terminator instructions.
5533  for (BasicBlock::iterator I = Begin; I != End; ++I)
5534    if (!isa<TerminatorInst>(I))
5535      SDL->visit(*I);
5536
5537  // Ensure that all instructions which are used outside of their defining
5538  // blocks are available as virtual registers.  Invoke is handled elsewhere.
5539  for (BasicBlock::iterator I = Begin; I != End; ++I)
5540    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
5541      DenseMap<const Value*,unsigned>::iterator VMI =FuncInfo->ValueMap.find(I);
5542      if (VMI != FuncInfo->ValueMap.end())
5543        SDL->CopyValueToVirtualRegister(I, VMI->second);
5544    }
5545
5546  // Handle PHI nodes in successor blocks.
5547  if (Begin != End && End == LLVMBB->end())
5548    HandlePHINodesInSuccessorBlocks(LLVMBB);
5549
5550  // Make sure the root of the DAG is up-to-date.
5551  CurDAG->setRoot(SDL->getControlRoot());
5552
5553  // Check whether calls in this block are real tail calls. Fix up CALL nodes
5554  // with correct tailcall attribute so that the target can rely on the tailcall
5555  // attribute indicating whether the call is really eligible for tail call
5556  // optimization.
5557  CheckDAGForTailCallsAndFixThem(*CurDAG, TLI);
5558
5559  // Final step, emit the lowered DAG as machine code.
5560  CodeGenAndEmitDAG();
5561  SDL->clear();
5562}
5563
5564void SelectionDAGISel::ComputeLiveOutVRegInfo() {
5565  SmallPtrSet<SDNode*, 128> VisitedNodes;
5566  SmallVector<SDNode*, 128> Worklist;
5567
5568  Worklist.push_back(CurDAG->getRoot().Val);
5569
5570  APInt Mask;
5571  APInt KnownZero;
5572  APInt KnownOne;
5573
5574  while (!Worklist.empty()) {
5575    SDNode *N = Worklist.back();
5576    Worklist.pop_back();
5577
5578    // If we've already seen this node, ignore it.
5579    if (!VisitedNodes.insert(N))
5580      continue;
5581
5582    // Otherwise, add all chain operands to the worklist.
5583    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5584      if (N->getOperand(i).getValueType() == MVT::Other)
5585        Worklist.push_back(N->getOperand(i).Val);
5586
5587    // If this is a CopyToReg with a vreg dest, process it.
5588    if (N->getOpcode() != ISD::CopyToReg)
5589      continue;
5590
5591    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
5592    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
5593      continue;
5594
5595    // Ignore non-scalar or non-integer values.
5596    SDValue Src = N->getOperand(2);
5597    MVT SrcVT = Src.getValueType();
5598    if (!SrcVT.isInteger() || SrcVT.isVector())
5599      continue;
5600
5601    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
5602    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
5603    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
5604
5605    // Only install this information if it tells us something.
5606    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
5607      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
5608      FunctionLoweringInfo &FLI = CurDAG->getFunctionLoweringInfo();
5609      if (DestReg >= FLI.LiveOutRegInfo.size())
5610        FLI.LiveOutRegInfo.resize(DestReg+1);
5611      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
5612      LOI.NumSignBits = NumSignBits;
5613      LOI.KnownOne = NumSignBits;
5614      LOI.KnownZero = NumSignBits;
5615    }
5616  }
5617}
5618
5619void SelectionDAGISel::CodeGenAndEmitDAG() {
5620  std::string GroupName;
5621  if (TimePassesIsEnabled)
5622    GroupName = "Instruction Selection and Scheduling";
5623  std::string BlockName;
5624  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
5625      ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs)
5626    BlockName = CurDAG->getMachineFunction().getFunction()->getName() + ':' +
5627                BB->getBasicBlock()->getName();
5628
5629  DOUT << "Initial selection DAG:\n";
5630  DEBUG(CurDAG->dump());
5631
5632  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
5633
5634  // Run the DAG combiner in pre-legalize mode.
5635  if (TimePassesIsEnabled) {
5636    NamedRegionTimer T("DAG Combining 1", GroupName);
5637    CurDAG->Combine(false, *AA, Fast);
5638  } else {
5639    CurDAG->Combine(false, *AA, Fast);
5640  }
5641
5642  DOUT << "Optimized lowered selection DAG:\n";
5643  DEBUG(CurDAG->dump());
5644
5645  // Second step, hack on the DAG until it only uses operations and types that
5646  // the target supports.
5647  if (EnableLegalizeTypes) {// Enable this some day.
5648    if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
5649                                                 BlockName);
5650
5651    if (TimePassesIsEnabled) {
5652      NamedRegionTimer T("Type Legalization", GroupName);
5653      CurDAG->LegalizeTypes();
5654    } else {
5655      CurDAG->LegalizeTypes();
5656    }
5657
5658    DOUT << "Type-legalized selection DAG:\n";
5659    DEBUG(CurDAG->dump());
5660
5661    // TODO: enable a dag combine pass here.
5662  }
5663
5664  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
5665
5666  if (TimePassesIsEnabled) {
5667    NamedRegionTimer T("DAG Legalization", GroupName);
5668    CurDAG->Legalize();
5669  } else {
5670    CurDAG->Legalize();
5671  }
5672
5673  DOUT << "Legalized selection DAG:\n";
5674  DEBUG(CurDAG->dump());
5675
5676  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
5677
5678  // Run the DAG combiner in post-legalize mode.
5679  if (TimePassesIsEnabled) {
5680    NamedRegionTimer T("DAG Combining 2", GroupName);
5681    CurDAG->Combine(true, *AA, Fast);
5682  } else {
5683    CurDAG->Combine(true, *AA, Fast);
5684  }
5685
5686  DOUT << "Optimized legalized selection DAG:\n";
5687  DEBUG(CurDAG->dump());
5688
5689  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
5690
5691  if (!Fast && EnableValueProp)
5692    ComputeLiveOutVRegInfo();
5693
5694  // Third, instruction select all of the operations to machine code, adding the
5695  // code to the MachineBasicBlock.
5696  if (TimePassesIsEnabled) {
5697    NamedRegionTimer T("Instruction Selection", GroupName);
5698    InstructionSelect();
5699  } else {
5700    InstructionSelect();
5701  }
5702
5703  DOUT << "Selected selection DAG:\n";
5704  DEBUG(CurDAG->dump());
5705
5706  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
5707
5708  // Schedule machine code.
5709  ScheduleDAG *Scheduler;
5710  if (TimePassesIsEnabled) {
5711    NamedRegionTimer T("Instruction Scheduling", GroupName);
5712    Scheduler = Schedule();
5713  } else {
5714    Scheduler = Schedule();
5715  }
5716
5717  if (ViewSUnitDAGs) Scheduler->viewGraph();
5718
5719  // Emit machine code to BB.  This can change 'BB' to the last block being
5720  // inserted into.
5721  if (TimePassesIsEnabled) {
5722    NamedRegionTimer T("Instruction Creation", GroupName);
5723    BB = Scheduler->EmitSchedule();
5724  } else {
5725    BB = Scheduler->EmitSchedule();
5726  }
5727
5728  // Free the scheduler state.
5729  if (TimePassesIsEnabled) {
5730    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
5731    delete Scheduler;
5732  } else {
5733    delete Scheduler;
5734  }
5735
5736  DOUT << "Selected machine code:\n";
5737  DEBUG(BB->dump());
5738}
5739
5740void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF) {
5741  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
5742    BasicBlock *LLVMBB = &*I;
5743    BB = FuncInfo->MBBMap[LLVMBB];
5744
5745    BasicBlock::iterator Begin = LLVMBB->begin();
5746    BasicBlock::iterator End = LLVMBB->end();
5747    bool DoArgs = LLVMBB == &Fn.getEntryBlock();
5748
5749    // Before doing SelectionDAG ISel, see if FastISel has been requested.
5750    // FastISel doesn't support EH landing pads, which require special handling.
5751    if (EnableFastISel && !BB->isLandingPad()) {
5752      if (FastISel *F = TLI.createFastISel(*FuncInfo->MF)) {
5753        while (Begin != End) {
5754          Begin = F->SelectInstructions(Begin, End, FuncInfo->ValueMap,
5755                                        FuncInfo->MBBMap, BB);
5756
5757          if (Begin == End)
5758            // The "fast" selector selected the entire block, so we're done.
5759            break;
5760
5761          // Handle certain instructions as single-LLVM-Instruction blocks.
5762          if (isa<CallInst>(Begin) || isa<LoadInst>(Begin) ||
5763              isa<StoreInst>(Begin)) {
5764            if (Begin->getType() != Type::VoidTy) {
5765              unsigned &R = FuncInfo->ValueMap[Begin];
5766              if (!R)
5767                R = FuncInfo->CreateRegForValue(Begin);
5768            }
5769
5770            SelectBasicBlock(LLVMBB, Begin, next(Begin), DoArgs);
5771
5772            ++Begin;
5773            DoArgs = false;
5774            continue;
5775          }
5776
5777          if (!DisableFastISelAbort &&
5778              // For now, don't abort on non-conditional-branch terminators.
5779              (!isa<TerminatorInst>(Begin) ||
5780               (isa<BranchInst>(Begin) &&
5781                cast<BranchInst>(Begin)->isUnconditional()))) {
5782            // The "fast" selector couldn't handle something and bailed.
5783            // For the purpose of debugging, just abort.
5784#ifndef NDEBUG
5785              Begin->dump();
5786#endif
5787            assert(0 && "FastISel didn't select the entire block");
5788          }
5789          break;
5790        }
5791        delete F;
5792      }
5793    }
5794
5795    if (Begin != End || DoArgs)
5796      SelectBasicBlock(LLVMBB, Begin, End, DoArgs);
5797
5798    FinishBasicBlock();
5799  }
5800}
5801
5802void
5803SelectionDAGISel::FinishBasicBlock() {
5804
5805  // Perform target specific isel post processing.
5806  InstructionSelectPostProcessing();
5807
5808  DOUT << "Target-post-processed machine code:\n";
5809  DEBUG(BB->dump());
5810
5811  DOUT << "Total amount of phi nodes to update: "
5812       << SDL->PHINodesToUpdate.size() << "\n";
5813  DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
5814          DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
5815               << ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
5816
5817  // Next, now that we know what the last MBB the LLVM BB expanded is, update
5818  // PHI nodes in successors.
5819  if (SDL->SwitchCases.empty() &&
5820      SDL->JTCases.empty() &&
5821      SDL->BitTestCases.empty()) {
5822    for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
5823      MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
5824      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5825             "This is not a machine PHI node that we are updating!");
5826      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
5827                                                false));
5828      PHI->addOperand(MachineOperand::CreateMBB(BB));
5829    }
5830    SDL->PHINodesToUpdate.clear();
5831    return;
5832  }
5833
5834  for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) {
5835    // Lower header first, if it wasn't already lowered
5836    if (!SDL->BitTestCases[i].Emitted) {
5837      // Set the current basic block to the mbb we wish to insert the code into
5838      BB = SDL->BitTestCases[i].Parent;
5839      SDL->setCurrentBasicBlock(BB);
5840      // Emit the code
5841      SDL->visitBitTestHeader(SDL->BitTestCases[i]);
5842      CurDAG->setRoot(SDL->getRoot());
5843      CodeGenAndEmitDAG();
5844      SDL->clear();
5845    }
5846
5847    for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
5848      // Set the current basic block to the mbb we wish to insert the code into
5849      BB = SDL->BitTestCases[i].Cases[j].ThisBB;
5850      SDL->setCurrentBasicBlock(BB);
5851      // Emit the code
5852      if (j+1 != ej)
5853        SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB,
5854                              SDL->BitTestCases[i].Reg,
5855                              SDL->BitTestCases[i].Cases[j]);
5856      else
5857        SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
5858                              SDL->BitTestCases[i].Reg,
5859                              SDL->BitTestCases[i].Cases[j]);
5860
5861
5862      CurDAG->setRoot(SDL->getRoot());
5863      CodeGenAndEmitDAG();
5864      SDL->clear();
5865    }
5866
5867    // Update PHI Nodes
5868    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
5869      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
5870      MachineBasicBlock *PHIBB = PHI->getParent();
5871      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5872             "This is not a machine PHI node that we are updating!");
5873      // This is "default" BB. We have two jumps to it. From "header" BB and
5874      // from last "case" BB.
5875      if (PHIBB == SDL->BitTestCases[i].Default) {
5876        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
5877                                                  false));
5878        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent));
5879        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
5880                                                  false));
5881        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases.
5882                                                  back().ThisBB));
5883      }
5884      // One of "cases" BB.
5885      for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size();
5886           j != ej; ++j) {
5887        MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB;
5888        if (cBB->succ_end() !=
5889            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
5890          PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
5891                                                    false));
5892          PHI->addOperand(MachineOperand::CreateMBB(cBB));
5893        }
5894      }
5895    }
5896  }
5897  SDL->BitTestCases.clear();
5898
5899  // If the JumpTable record is filled in, then we need to emit a jump table.
5900  // Updating the PHI nodes is tricky in this case, since we need to determine
5901  // whether the PHI is a successor of the range check MBB or the jump table MBB
5902  for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) {
5903    // Lower header first, if it wasn't already lowered
5904    if (!SDL->JTCases[i].first.Emitted) {
5905      // Set the current basic block to the mbb we wish to insert the code into
5906      BB = SDL->JTCases[i].first.HeaderBB;
5907      SDL->setCurrentBasicBlock(BB);
5908      // Emit the code
5909      SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first);
5910      CurDAG->setRoot(SDL->getRoot());
5911      CodeGenAndEmitDAG();
5912      SDL->clear();
5913    }
5914
5915    // Set the current basic block to the mbb we wish to insert the code into
5916    BB = SDL->JTCases[i].second.MBB;
5917    SDL->setCurrentBasicBlock(BB);
5918    // Emit the code
5919    SDL->visitJumpTable(SDL->JTCases[i].second);
5920    CurDAG->setRoot(SDL->getRoot());
5921    CodeGenAndEmitDAG();
5922    SDL->clear();
5923
5924    // Update PHI Nodes
5925    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
5926      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
5927      MachineBasicBlock *PHIBB = PHI->getParent();
5928      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5929             "This is not a machine PHI node that we are updating!");
5930      // "default" BB. We can go there only from header BB.
5931      if (PHIBB == SDL->JTCases[i].second.Default) {
5932        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
5933                                                  false));
5934        PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
5935      }
5936      // JT BB. Just iterate over successors here
5937      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
5938        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
5939                                                  false));
5940        PHI->addOperand(MachineOperand::CreateMBB(BB));
5941      }
5942    }
5943  }
5944  SDL->JTCases.clear();
5945
5946  // If the switch block involved a branch to one of the actual successors, we
5947  // need to update PHI nodes in that block.
5948  for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
5949    MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
5950    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5951           "This is not a machine PHI node that we are updating!");
5952    if (BB->isSuccessor(PHI->getParent())) {
5953      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
5954                                                false));
5955      PHI->addOperand(MachineOperand::CreateMBB(BB));
5956    }
5957  }
5958
5959  // If we generated any switch lowering information, build and codegen any
5960  // additional DAGs necessary.
5961  for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
5962    // Set the current basic block to the mbb we wish to insert the code into
5963    BB = SDL->SwitchCases[i].ThisBB;
5964    SDL->setCurrentBasicBlock(BB);
5965
5966    // Emit the code
5967    SDL->visitSwitchCase(SDL->SwitchCases[i]);
5968    CurDAG->setRoot(SDL->getRoot());
5969    CodeGenAndEmitDAG();
5970    SDL->clear();
5971
5972    // Handle any PHI nodes in successors of this chunk, as if we were coming
5973    // from the original BB before switch expansion.  Note that PHI nodes can
5974    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5975    // handle them the right number of times.
5976    while ((BB = SDL->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5977      for (MachineBasicBlock::iterator Phi = BB->begin();
5978           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5979        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5980        for (unsigned pn = 0; ; ++pn) {
5981          assert(pn != SDL->PHINodesToUpdate.size() &&
5982                 "Didn't find PHI entry!");
5983          if (SDL->PHINodesToUpdate[pn].first == Phi) {
5984            Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
5985                                                      second, false));
5986            Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
5987            break;
5988          }
5989        }
5990      }
5991
5992      // Don't process RHS if same block as LHS.
5993      if (BB == SDL->SwitchCases[i].FalseBB)
5994        SDL->SwitchCases[i].FalseBB = 0;
5995
5996      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5997      SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
5998      SDL->SwitchCases[i].FalseBB = 0;
5999    }
6000    assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
6001  }
6002  SDL->SwitchCases.clear();
6003
6004  SDL->PHINodesToUpdate.clear();
6005}
6006
6007
6008/// Schedule - Pick a safe ordering for instructions for each
6009/// target node in the graph.
6010///
6011ScheduleDAG *SelectionDAGISel::Schedule() {
6012  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
6013
6014  if (!Ctor) {
6015    Ctor = ISHeuristic;
6016    RegisterScheduler::setDefault(Ctor);
6017  }
6018
6019  ScheduleDAG *Scheduler = Ctor(this, CurDAG, BB, Fast);
6020  Scheduler->Run();
6021
6022  return Scheduler;
6023}
6024
6025
6026HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
6027  return new HazardRecognizer();
6028}
6029
6030//===----------------------------------------------------------------------===//
6031// Helper functions used by the generated instruction selector.
6032//===----------------------------------------------------------------------===//
6033// Calls to these methods are generated by tblgen.
6034
6035/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
6036/// the dag combiner simplified the 255, we still want to match.  RHS is the
6037/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
6038/// specified in the .td file (e.g. 255).
6039bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
6040                                    int64_t DesiredMaskS) const {
6041  const APInt &ActualMask = RHS->getAPIntValue();
6042  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
6043
6044  // If the actual mask exactly matches, success!
6045  if (ActualMask == DesiredMask)
6046    return true;
6047
6048  // If the actual AND mask is allowing unallowed bits, this doesn't match.
6049  if (ActualMask.intersects(~DesiredMask))
6050    return false;
6051
6052  // Otherwise, the DAG Combiner may have proven that the value coming in is
6053  // either already zero or is not demanded.  Check for known zero input bits.
6054  APInt NeededMask = DesiredMask & ~ActualMask;
6055  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
6056    return true;
6057
6058  // TODO: check to see if missing bits are just not demanded.
6059
6060  // Otherwise, this pattern doesn't match.
6061  return false;
6062}
6063
6064/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
6065/// the dag combiner simplified the 255, we still want to match.  RHS is the
6066/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
6067/// specified in the .td file (e.g. 255).
6068bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
6069                                   int64_t DesiredMaskS) const {
6070  const APInt &ActualMask = RHS->getAPIntValue();
6071  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
6072
6073  // If the actual mask exactly matches, success!
6074  if (ActualMask == DesiredMask)
6075    return true;
6076
6077  // If the actual AND mask is allowing unallowed bits, this doesn't match.
6078  if (ActualMask.intersects(~DesiredMask))
6079    return false;
6080
6081  // Otherwise, the DAG Combiner may have proven that the value coming in is
6082  // either already zero or is not demanded.  Check for known zero input bits.
6083  APInt NeededMask = DesiredMask & ~ActualMask;
6084
6085  APInt KnownZero, KnownOne;
6086  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
6087
6088  // If all the missing bits in the or are already known to be set, match!
6089  if ((NeededMask & KnownOne) == NeededMask)
6090    return true;
6091
6092  // TODO: check to see if missing bits are just not demanded.
6093
6094  // Otherwise, this pattern doesn't match.
6095  return false;
6096}
6097
6098
6099/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
6100/// by tblgen.  Others should not call it.
6101void SelectionDAGISel::
6102SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
6103  std::vector<SDValue> InOps;
6104  std::swap(InOps, Ops);
6105
6106  Ops.push_back(InOps[0]);  // input chain.
6107  Ops.push_back(InOps[1]);  // input asm string.
6108
6109  unsigned i = 2, e = InOps.size();
6110  if (InOps[e-1].getValueType() == MVT::Flag)
6111    --e;  // Don't process a flag operand if it is here.
6112
6113  while (i != e) {
6114    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
6115    if ((Flags & 7) != 4 /*MEM*/) {
6116      // Just skip over this operand, copying the operands verbatim.
6117      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
6118      i += (Flags >> 3) + 1;
6119    } else {
6120      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
6121      // Otherwise, this is a memory operand.  Ask the target to select it.
6122      std::vector<SDValue> SelOps;
6123      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
6124        cerr << "Could not match memory address.  Inline asm failure!\n";
6125        exit(1);
6126      }
6127
6128      // Add this to the output node.
6129      MVT IntPtrTy = CurDAG->getTargetLoweringInfo().getPointerTy();
6130      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
6131                                              IntPtrTy));
6132      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
6133      i += 2;
6134    }
6135  }
6136
6137  // Add the flag input back if present.
6138  if (e != InOps.size())
6139    Ops.push_back(InOps.back());
6140}
6141
6142char SelectionDAGISel::ID = 0;
6143