SelectionDAGISel.cpp revision cf01f7a78c18224866595b4b493d03a3de305e1f
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "SelectionDAGBuild.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/ScheduleDAG.h"
39#include "llvm/CodeGen/SchedulerRegistry.h"
40#include "llvm/CodeGen/SelectionDAG.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetData.h"
43#include "llvm/Target/TargetFrameInfo.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/Timer.h"
52#include <algorithm>
53using namespace llvm;
54
55static cl::opt<bool>
56EnableValueProp("enable-value-prop", cl::Hidden);
57static cl::opt<bool>
58EnableLegalizeTypes("enable-legalize-types", cl::Hidden);
59static cl::opt<bool>
60EnableFastISel("fast-isel", cl::Hidden,
61          cl::desc("Enable the experimental \"fast\" instruction selector"));
62static cl::opt<bool>
63DisableFastISelAbort("fast-isel-no-abort", cl::Hidden,
64          cl::desc("Use the SelectionDAGISel when \"fast\" instruction "
65                   "selection fails"));
66static cl::opt<bool>
67SchedLiveInCopies("schedule-livein-copies",
68                  cl::desc("Schedule copies of livein registers"),
69                  cl::init(false));
70
71#ifndef NDEBUG
72static cl::opt<bool>
73ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
74          cl::desc("Pop up a window to show dags before the first "
75                   "dag combine pass"));
76static cl::opt<bool>
77ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
78          cl::desc("Pop up a window to show dags before legalize types"));
79static cl::opt<bool>
80ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before legalize"));
82static cl::opt<bool>
83ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before the second "
85                   "dag combine pass"));
86static cl::opt<bool>
87ViewISelDAGs("view-isel-dags", cl::Hidden,
88          cl::desc("Pop up a window to show isel dags as they are selected"));
89static cl::opt<bool>
90ViewSchedDAGs("view-sched-dags", cl::Hidden,
91          cl::desc("Pop up a window to show sched dags as they are processed"));
92static cl::opt<bool>
93ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
94      cl::desc("Pop up a window to show SUnit dags after they are processed"));
95#else
96static const bool ViewDAGCombine1 = false,
97                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
98                  ViewDAGCombine2 = false,
99                  ViewISelDAGs = false, ViewSchedDAGs = false,
100                  ViewSUnitDAGs = false;
101#endif
102
103//===---------------------------------------------------------------------===//
104///
105/// RegisterScheduler class - Track the registration of instruction schedulers.
106///
107//===---------------------------------------------------------------------===//
108MachinePassRegistry RegisterScheduler::Registry;
109
110//===---------------------------------------------------------------------===//
111///
112/// ISHeuristic command line option for instruction schedulers.
113///
114//===---------------------------------------------------------------------===//
115static cl::opt<RegisterScheduler::FunctionPassCtor, false,
116               RegisterPassParser<RegisterScheduler> >
117ISHeuristic("pre-RA-sched",
118            cl::init(&createDefaultScheduler),
119            cl::desc("Instruction schedulers available (before register"
120                     " allocation):"));
121
122static RegisterScheduler
123defaultListDAGScheduler("default", "  Best scheduler for the target",
124                        createDefaultScheduler);
125
126namespace llvm {
127  //===--------------------------------------------------------------------===//
128  /// createDefaultScheduler - This creates an instruction scheduler appropriate
129  /// for the target.
130  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
131                                      SelectionDAG *DAG,
132                                      MachineBasicBlock *BB,
133                                      bool Fast) {
134    TargetLowering &TLI = IS->getTargetLowering();
135
136    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
137      return createTDListDAGScheduler(IS, DAG, BB, Fast);
138    } else {
139      assert(TLI.getSchedulingPreference() ==
140           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
141      return createBURRListDAGScheduler(IS, DAG, BB, Fast);
142    }
143  }
144}
145
146// EmitInstrWithCustomInserter - This method should be implemented by targets
147// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
148// instructions are special in various ways, which require special support to
149// insert.  The specified MachineInstr is created but not inserted into any
150// basic blocks, and the scheduler passes ownership of it to this method.
151MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
152                                                       MachineBasicBlock *MBB) {
153  cerr << "If a target marks an instruction with "
154       << "'usesCustomDAGSchedInserter', it must implement "
155       << "TargetLowering::EmitInstrWithCustomInserter!\n";
156  abort();
157  return 0;
158}
159
160/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
161/// physical register has only a single copy use, then coalesced the copy
162/// if possible.
163static void EmitLiveInCopy(MachineBasicBlock *MBB,
164                           MachineBasicBlock::iterator &InsertPos,
165                           unsigned VirtReg, unsigned PhysReg,
166                           const TargetRegisterClass *RC,
167                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
168                           const MachineRegisterInfo &MRI,
169                           const TargetRegisterInfo &TRI,
170                           const TargetInstrInfo &TII) {
171  unsigned NumUses = 0;
172  MachineInstr *UseMI = NULL;
173  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
174         UE = MRI.use_end(); UI != UE; ++UI) {
175    UseMI = &*UI;
176    if (++NumUses > 1)
177      break;
178  }
179
180  // If the number of uses is not one, or the use is not a move instruction,
181  // don't coalesce. Also, only coalesce away a virtual register to virtual
182  // register copy.
183  bool Coalesced = false;
184  unsigned SrcReg, DstReg;
185  if (NumUses == 1 &&
186      TII.isMoveInstr(*UseMI, SrcReg, DstReg) &&
187      TargetRegisterInfo::isVirtualRegister(DstReg)) {
188    VirtReg = DstReg;
189    Coalesced = true;
190  }
191
192  // Now find an ideal location to insert the copy.
193  MachineBasicBlock::iterator Pos = InsertPos;
194  while (Pos != MBB->begin()) {
195    MachineInstr *PrevMI = prior(Pos);
196    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
197    // copyRegToReg might emit multiple instructions to do a copy.
198    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
199    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
200      // This is what the BB looks like right now:
201      // r1024 = mov r0
202      // ...
203      // r1    = mov r1024
204      //
205      // We want to insert "r1025 = mov r1". Inserting this copy below the
206      // move to r1024 makes it impossible for that move to be coalesced.
207      //
208      // r1025 = mov r1
209      // r1024 = mov r0
210      // ...
211      // r1    = mov 1024
212      // r2    = mov 1025
213      break; // Woot! Found a good location.
214    --Pos;
215  }
216
217  TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
218  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
219  if (Coalesced) {
220    if (&*InsertPos == UseMI) ++InsertPos;
221    MBB->erase(UseMI);
222  }
223}
224
225/// EmitLiveInCopies - If this is the first basic block in the function,
226/// and if it has live ins that need to be copied into vregs, emit the
227/// copies into the block.
228static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
229                             const MachineRegisterInfo &MRI,
230                             const TargetRegisterInfo &TRI,
231                             const TargetInstrInfo &TII) {
232  if (SchedLiveInCopies) {
233    // Emit the copies at a heuristically-determined location in the block.
234    DenseMap<MachineInstr*, unsigned> CopyRegMap;
235    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
236    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
237           E = MRI.livein_end(); LI != E; ++LI)
238      if (LI->second) {
239        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
240        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
241                       RC, CopyRegMap, MRI, TRI, TII);
242      }
243  } else {
244    // Emit the copies into the top of the block.
245    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
246           E = MRI.livein_end(); LI != E; ++LI)
247      if (LI->second) {
248        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
249        TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
250                         LI->second, LI->first, RC, RC);
251      }
252  }
253}
254
255//===----------------------------------------------------------------------===//
256// SelectionDAGISel code
257//===----------------------------------------------------------------------===//
258
259SelectionDAGISel::SelectionDAGISel(TargetLowering &tli, bool fast) :
260  FunctionPass(&ID), TLI(tli),
261  FuncInfo(new FunctionLoweringInfo(TLI)),
262  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
263  SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo)),
264  GFI(),
265  Fast(fast),
266  DAGSize(0)
267{}
268
269SelectionDAGISel::~SelectionDAGISel() {
270  delete SDL;
271  delete CurDAG;
272  delete FuncInfo;
273}
274
275unsigned SelectionDAGISel::MakeReg(MVT VT) {
276  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
277}
278
279void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
280  AU.addRequired<AliasAnalysis>();
281  AU.addRequired<GCModuleInfo>();
282  AU.setPreservesAll();
283}
284
285bool SelectionDAGISel::runOnFunction(Function &Fn) {
286  // Get alias analysis for load/store combining.
287  AA = &getAnalysis<AliasAnalysis>();
288
289  TargetMachine &TM = TLI.getTargetMachine();
290  MachineFunction &MF = MachineFunction::construct(&Fn, TM);
291  const MachineRegisterInfo &MRI = MF.getRegInfo();
292  const TargetInstrInfo &TII = *TM.getInstrInfo();
293  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
294
295  if (MF.getFunction()->hasGC())
296    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(*MF.getFunction());
297  else
298    GFI = 0;
299  RegInfo = &MF.getRegInfo();
300  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
301
302  FuncInfo->set(Fn, MF, EnableFastISel);
303  CurDAG->init(MF, getAnalysisToUpdate<MachineModuleInfo>());
304  SDL->init(GFI, *AA);
305
306  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
307    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
308      // Mark landing pad.
309      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
310
311  SelectAllBasicBlocks(Fn, MF);
312
313  // If the first basic block in the function has live ins that need to be
314  // copied into vregs, emit the copies into the top of the block before
315  // emitting the code for the block.
316  EmitLiveInCopies(MF.begin(), MRI, TRI, TII);
317
318  // Add function live-ins to entry block live-in set.
319  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
320         E = RegInfo->livein_end(); I != E; ++I)
321    MF.begin()->addLiveIn(I->first);
322
323#ifndef NDEBUG
324  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
325         "Not all catch info was assigned to a landing pad!");
326#endif
327
328  FuncInfo->clear();
329
330  return true;
331}
332
333static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
334                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
335  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
336    if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
337      // Apply the catch info to DestBB.
338      AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
339#ifndef NDEBUG
340      if (!FLI.MBBMap[SrcBB]->isLandingPad())
341        FLI.CatchInfoFound.insert(EHSel);
342#endif
343    }
344}
345
346/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
347/// whether object offset >= 0.
348static bool
349IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDValue Op) {
350  if (!isa<FrameIndexSDNode>(Op)) return false;
351
352  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
353  int FrameIdx =  FrameIdxNode->getIndex();
354  return MFI->isFixedObjectIndex(FrameIdx) &&
355    MFI->getObjectOffset(FrameIdx) >= 0;
356}
357
358/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
359/// possibly be overwritten when lowering the outgoing arguments in a tail
360/// call. Currently the implementation of this call is very conservative and
361/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
362/// virtual registers would be overwritten by direct lowering.
363static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
364                                                    MachineFrameInfo * MFI) {
365  RegisterSDNode * OpReg = NULL;
366  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
367      (Op.getOpcode()== ISD::CopyFromReg &&
368       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
369       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
370      (Op.getOpcode() == ISD::LOAD &&
371       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
372      (Op.getOpcode() == ISD::MERGE_VALUES &&
373       Op.getOperand(Op.getResNo()).getOpcode() == ISD::LOAD &&
374       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.getResNo()).
375                                       getOperand(1))))
376    return true;
377  return false;
378}
379
380/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
381/// DAG and fixes their tailcall attribute operand.
382static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
383                                           TargetLowering& TLI) {
384  SDNode * Ret = NULL;
385  SDValue Terminator = DAG.getRoot();
386
387  // Find RET node.
388  if (Terminator.getOpcode() == ISD::RET) {
389    Ret = Terminator.getNode();
390  }
391
392  // Fix tail call attribute of CALL nodes.
393  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
394         BI = DAG.allnodes_end(); BI != BE; ) {
395    --BI;
396    if (BI->getOpcode() == ISD::CALL) {
397      SDValue OpRet(Ret, 0);
398      SDValue OpCall(BI, 0);
399      bool isMarkedTailCall =
400        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
401      // If CALL node has tail call attribute set to true and the call is not
402      // eligible (no RET or the target rejects) the attribute is fixed to
403      // false. The TargetLowering::IsEligibleForTailCallOptimization function
404      // must correctly identify tail call optimizable calls.
405      if (!isMarkedTailCall) continue;
406      if (Ret==NULL ||
407          !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
408        // Not eligible. Mark CALL node as non tail call.
409        SmallVector<SDValue, 32> Ops;
410        unsigned idx=0;
411        for(SDNode::op_iterator I =OpCall.getNode()->op_begin(),
412              E = OpCall.getNode()->op_end(); I != E; I++, idx++) {
413          if (idx!=3)
414            Ops.push_back(*I);
415          else
416            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
417        }
418        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
419      } else {
420        // Look for tail call clobbered arguments. Emit a series of
421        // copyto/copyfrom virtual register nodes to protect them.
422        SmallVector<SDValue, 32> Ops;
423        SDValue Chain = OpCall.getOperand(0), InFlag;
424        unsigned idx=0;
425        for(SDNode::op_iterator I = OpCall.getNode()->op_begin(),
426              E = OpCall.getNode()->op_end(); I != E; I++, idx++) {
427          SDValue Arg = *I;
428          if (idx > 4 && (idx % 2)) {
429            bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
430              getArgFlags().isByVal();
431            MachineFunction &MF = DAG.getMachineFunction();
432            MachineFrameInfo *MFI = MF.getFrameInfo();
433            if (!isByVal &&
434                IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
435              MVT VT = Arg.getValueType();
436              unsigned VReg = MF.getRegInfo().
437                createVirtualRegister(TLI.getRegClassFor(VT));
438              Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
439              InFlag = Chain.getValue(1);
440              Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
441              Chain = Arg.getValue(1);
442              InFlag = Arg.getValue(2);
443            }
444          }
445          Ops.push_back(Arg);
446        }
447        // Link in chain of CopyTo/CopyFromReg.
448        Ops[0] = Chain;
449        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
450      }
451    }
452  }
453}
454
455void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
456                                        BasicBlock::iterator Begin,
457                                        BasicBlock::iterator End) {
458  SDL->setCurrentBasicBlock(BB);
459
460  MachineModuleInfo *MMI = CurDAG->getMachineModuleInfo();
461
462  if (MMI && BB->isLandingPad()) {
463    // Add a label to mark the beginning of the landing pad.  Deletion of the
464    // landing pad can thus be detected via the MachineModuleInfo.
465    unsigned LabelID = MMI->addLandingPad(BB);
466    CurDAG->setRoot(CurDAG->getLabel(ISD::EH_LABEL,
467                                     CurDAG->getEntryNode(), LabelID));
468
469    // Mark exception register as live in.
470    unsigned Reg = TLI.getExceptionAddressRegister();
471    if (Reg) BB->addLiveIn(Reg);
472
473    // Mark exception selector register as live in.
474    Reg = TLI.getExceptionSelectorRegister();
475    if (Reg) BB->addLiveIn(Reg);
476
477    // FIXME: Hack around an exception handling flaw (PR1508): the personality
478    // function and list of typeids logically belong to the invoke (or, if you
479    // like, the basic block containing the invoke), and need to be associated
480    // with it in the dwarf exception handling tables.  Currently however the
481    // information is provided by an intrinsic (eh.selector) that can be moved
482    // to unexpected places by the optimizers: if the unwind edge is critical,
483    // then breaking it can result in the intrinsics being in the successor of
484    // the landing pad, not the landing pad itself.  This results in exceptions
485    // not being caught because no typeids are associated with the invoke.
486    // This may not be the only way things can go wrong, but it is the only way
487    // we try to work around for the moment.
488    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
489
490    if (Br && Br->isUnconditional()) { // Critical edge?
491      BasicBlock::iterator I, E;
492      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
493        if (isa<EHSelectorInst>(I))
494          break;
495
496      if (I == E)
497        // No catch info found - try to extract some from the successor.
498        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
499    }
500  }
501
502  // Lower all of the non-terminator instructions.
503  for (BasicBlock::iterator I = Begin; I != End; ++I)
504    if (!isa<TerminatorInst>(I))
505      SDL->visit(*I);
506
507  // Ensure that all instructions which are used outside of their defining
508  // blocks are available as virtual registers.  Invoke is handled elsewhere.
509  for (BasicBlock::iterator I = Begin; I != End; ++I)
510    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
511      DenseMap<const Value*,unsigned>::iterator VMI =FuncInfo->ValueMap.find(I);
512      if (VMI != FuncInfo->ValueMap.end())
513        SDL->CopyValueToVirtualRegister(I, VMI->second);
514    }
515
516  // Handle PHI nodes in successor blocks.
517  if (End == LLVMBB->end()) {
518    HandlePHINodesInSuccessorBlocks(LLVMBB);
519
520    // Lower the terminator after the copies are emitted.
521    SDL->visit(*LLVMBB->getTerminator());
522  }
523
524  // Make sure the root of the DAG is up-to-date.
525  CurDAG->setRoot(SDL->getControlRoot());
526
527  // Check whether calls in this block are real tail calls. Fix up CALL nodes
528  // with correct tailcall attribute so that the target can rely on the tailcall
529  // attribute indicating whether the call is really eligible for tail call
530  // optimization.
531  CheckDAGForTailCallsAndFixThem(*CurDAG, TLI);
532
533  // Final step, emit the lowered DAG as machine code.
534  CodeGenAndEmitDAG();
535  SDL->clear();
536}
537
538void SelectionDAGISel::ComputeLiveOutVRegInfo() {
539  SmallPtrSet<SDNode*, 128> VisitedNodes;
540  SmallVector<SDNode*, 128> Worklist;
541
542  Worklist.push_back(CurDAG->getRoot().getNode());
543
544  APInt Mask;
545  APInt KnownZero;
546  APInt KnownOne;
547
548  while (!Worklist.empty()) {
549    SDNode *N = Worklist.back();
550    Worklist.pop_back();
551
552    // If we've already seen this node, ignore it.
553    if (!VisitedNodes.insert(N))
554      continue;
555
556    // Otherwise, add all chain operands to the worklist.
557    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
558      if (N->getOperand(i).getValueType() == MVT::Other)
559        Worklist.push_back(N->getOperand(i).getNode());
560
561    // If this is a CopyToReg with a vreg dest, process it.
562    if (N->getOpcode() != ISD::CopyToReg)
563      continue;
564
565    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
566    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
567      continue;
568
569    // Ignore non-scalar or non-integer values.
570    SDValue Src = N->getOperand(2);
571    MVT SrcVT = Src.getValueType();
572    if (!SrcVT.isInteger() || SrcVT.isVector())
573      continue;
574
575    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
576    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
577    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
578
579    // Only install this information if it tells us something.
580    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
581      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
582      FunctionLoweringInfo &FLI = CurDAG->getFunctionLoweringInfo();
583      if (DestReg >= FLI.LiveOutRegInfo.size())
584        FLI.LiveOutRegInfo.resize(DestReg+1);
585      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
586      LOI.NumSignBits = NumSignBits;
587      LOI.KnownOne = NumSignBits;
588      LOI.KnownZero = NumSignBits;
589    }
590  }
591}
592
593void SelectionDAGISel::CodeGenAndEmitDAG() {
594  std::string GroupName;
595  if (TimePassesIsEnabled)
596    GroupName = "Instruction Selection and Scheduling";
597  std::string BlockName;
598  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
599      ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs)
600    BlockName = CurDAG->getMachineFunction().getFunction()->getName() + ':' +
601                BB->getBasicBlock()->getName();
602
603  DOUT << "Initial selection DAG:\n";
604  DEBUG(CurDAG->dump());
605
606  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
607
608  // Run the DAG combiner in pre-legalize mode.
609  if (TimePassesIsEnabled) {
610    NamedRegionTimer T("DAG Combining 1", GroupName);
611    CurDAG->Combine(false, *AA, Fast);
612  } else {
613    CurDAG->Combine(false, *AA, Fast);
614  }
615
616  DOUT << "Optimized lowered selection DAG:\n";
617  DEBUG(CurDAG->dump());
618
619  // Second step, hack on the DAG until it only uses operations and types that
620  // the target supports.
621  if (EnableLegalizeTypes) {// Enable this some day.
622    if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
623                                                 BlockName);
624
625    if (TimePassesIsEnabled) {
626      NamedRegionTimer T("Type Legalization", GroupName);
627      CurDAG->LegalizeTypes();
628    } else {
629      CurDAG->LegalizeTypes();
630    }
631
632    DOUT << "Type-legalized selection DAG:\n";
633    DEBUG(CurDAG->dump());
634
635    // TODO: enable a dag combine pass here.
636  }
637
638  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
639
640  if (TimePassesIsEnabled) {
641    NamedRegionTimer T("DAG Legalization", GroupName);
642    CurDAG->Legalize();
643  } else {
644    CurDAG->Legalize();
645  }
646
647  DOUT << "Legalized selection DAG:\n";
648  DEBUG(CurDAG->dump());
649
650  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
651
652  // Run the DAG combiner in post-legalize mode.
653  if (TimePassesIsEnabled) {
654    NamedRegionTimer T("DAG Combining 2", GroupName);
655    CurDAG->Combine(true, *AA, Fast);
656  } else {
657    CurDAG->Combine(true, *AA, Fast);
658  }
659
660  DOUT << "Optimized legalized selection DAG:\n";
661  DEBUG(CurDAG->dump());
662
663  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
664
665  if (!Fast && EnableValueProp)
666    ComputeLiveOutVRegInfo();
667
668  // Third, instruction select all of the operations to machine code, adding the
669  // code to the MachineBasicBlock.
670  if (TimePassesIsEnabled) {
671    NamedRegionTimer T("Instruction Selection", GroupName);
672    InstructionSelect();
673  } else {
674    InstructionSelect();
675  }
676
677  DOUT << "Selected selection DAG:\n";
678  DEBUG(CurDAG->dump());
679
680  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
681
682  // Schedule machine code.
683  ScheduleDAG *Scheduler;
684  if (TimePassesIsEnabled) {
685    NamedRegionTimer T("Instruction Scheduling", GroupName);
686    Scheduler = Schedule();
687  } else {
688    Scheduler = Schedule();
689  }
690
691  if (ViewSUnitDAGs) Scheduler->viewGraph();
692
693  // Emit machine code to BB.  This can change 'BB' to the last block being
694  // inserted into.
695  if (TimePassesIsEnabled) {
696    NamedRegionTimer T("Instruction Creation", GroupName);
697    BB = Scheduler->EmitSchedule();
698  } else {
699    BB = Scheduler->EmitSchedule();
700  }
701
702  // Free the scheduler state.
703  if (TimePassesIsEnabled) {
704    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
705    delete Scheduler;
706  } else {
707    delete Scheduler;
708  }
709
710  DOUT << "Selected machine code:\n";
711  DEBUG(BB->dump());
712}
713
714void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, MachineFunction &MF) {
715  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
716    BasicBlock *LLVMBB = &*I;
717    BB = FuncInfo->MBBMap[LLVMBB];
718
719    BasicBlock::iterator const Begin = LLVMBB->begin();
720    BasicBlock::iterator const End = LLVMBB->end();
721    BasicBlock::iterator BI = Begin;
722
723    // Lower any arguments needed in this block if this is the entry block.
724    if (LLVMBB == &Fn.getEntryBlock())
725      LowerArguments(LLVMBB);
726
727    // Before doing SelectionDAG ISel, see if FastISel has been requested.
728    // FastISel doesn't support EH landing pads, which require special handling.
729    if (EnableFastISel && !BB->isLandingPad()) {
730      if (FastISel *F = TLI.createFastISel(*FuncInfo->MF, FuncInfo->ValueMap,
731                                           FuncInfo->MBBMap)) {
732        // Emit code for any incoming arguments. This must happen before
733        // beginning FastISel on the entry block.
734        if (LLVMBB == &Fn.getEntryBlock()) {
735          CurDAG->setRoot(SDL->getControlRoot());
736          CodeGenAndEmitDAG();
737          SDL->clear();
738        }
739        F->setCurrentBlock(BB);
740        // Do FastISel on as many instructions as possible.
741        for (; BI != End; ++BI) {
742          // Just before the terminator instruction, insert instructions to
743          // feed PHI nodes in successor blocks.
744          if (isa<TerminatorInst>(BI))
745            if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, F)) {
746              if (DisableFastISelAbort)
747                break;
748#ifndef NDEBUG
749              BI->dump();
750#endif
751              assert(0 && "FastISel didn't handle a PHI in a successor");
752            }
753
754          // First try normal tablegen-generated "fast" selection.
755          if (F->SelectInstruction(BI))
756            continue;
757
758          // Next, try calling the target to attempt to handle the instruction.
759          if (F->TargetSelectInstruction(BI))
760            continue;
761
762          // Then handle certain instructions as single-LLVM-Instruction blocks.
763          if (isa<CallInst>(BI)) {
764            if (BI->getType() != Type::VoidTy) {
765              unsigned &R = FuncInfo->ValueMap[BI];
766              if (!R)
767                R = FuncInfo->CreateRegForValue(BI);
768            }
769
770            SelectBasicBlock(LLVMBB, BI, next(BI));
771            continue;
772          }
773
774          if (!DisableFastISelAbort &&
775              // For now, don't abort on non-conditional-branch terminators.
776              (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI))) {
777            // The "fast" selector couldn't handle something and bailed.
778            // For the purpose of debugging, just abort.
779#ifndef NDEBUG
780            BI->dump();
781#endif
782            assert(0 && "FastISel didn't select the entire block");
783          }
784          break;
785        }
786        delete F;
787      }
788    }
789
790    // Run SelectionDAG instruction selection on the remainder of the block
791    // not handled by FastISel. If FastISel is not run, this is the entire
792    // block.
793    if (BI != End)
794      SelectBasicBlock(LLVMBB, BI, End);
795
796    FinishBasicBlock();
797  }
798}
799
800void
801SelectionDAGISel::FinishBasicBlock() {
802
803  // Perform target specific isel post processing.
804  InstructionSelectPostProcessing();
805
806  DOUT << "Target-post-processed machine code:\n";
807  DEBUG(BB->dump());
808
809  DOUT << "Total amount of phi nodes to update: "
810       << SDL->PHINodesToUpdate.size() << "\n";
811  DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
812          DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
813               << ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
814
815  // Next, now that we know what the last MBB the LLVM BB expanded is, update
816  // PHI nodes in successors.
817  if (SDL->SwitchCases.empty() &&
818      SDL->JTCases.empty() &&
819      SDL->BitTestCases.empty()) {
820    for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
821      MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
822      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
823             "This is not a machine PHI node that we are updating!");
824      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
825                                                false));
826      PHI->addOperand(MachineOperand::CreateMBB(BB));
827    }
828    SDL->PHINodesToUpdate.clear();
829    return;
830  }
831
832  for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) {
833    // Lower header first, if it wasn't already lowered
834    if (!SDL->BitTestCases[i].Emitted) {
835      // Set the current basic block to the mbb we wish to insert the code into
836      BB = SDL->BitTestCases[i].Parent;
837      SDL->setCurrentBasicBlock(BB);
838      // Emit the code
839      SDL->visitBitTestHeader(SDL->BitTestCases[i]);
840      CurDAG->setRoot(SDL->getRoot());
841      CodeGenAndEmitDAG();
842      SDL->clear();
843    }
844
845    for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
846      // Set the current basic block to the mbb we wish to insert the code into
847      BB = SDL->BitTestCases[i].Cases[j].ThisBB;
848      SDL->setCurrentBasicBlock(BB);
849      // Emit the code
850      if (j+1 != ej)
851        SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB,
852                              SDL->BitTestCases[i].Reg,
853                              SDL->BitTestCases[i].Cases[j]);
854      else
855        SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
856                              SDL->BitTestCases[i].Reg,
857                              SDL->BitTestCases[i].Cases[j]);
858
859
860      CurDAG->setRoot(SDL->getRoot());
861      CodeGenAndEmitDAG();
862      SDL->clear();
863    }
864
865    // Update PHI Nodes
866    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
867      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
868      MachineBasicBlock *PHIBB = PHI->getParent();
869      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
870             "This is not a machine PHI node that we are updating!");
871      // This is "default" BB. We have two jumps to it. From "header" BB and
872      // from last "case" BB.
873      if (PHIBB == SDL->BitTestCases[i].Default) {
874        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
875                                                  false));
876        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent));
877        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
878                                                  false));
879        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases.
880                                                  back().ThisBB));
881      }
882      // One of "cases" BB.
883      for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size();
884           j != ej; ++j) {
885        MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB;
886        if (cBB->succ_end() !=
887            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
888          PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
889                                                    false));
890          PHI->addOperand(MachineOperand::CreateMBB(cBB));
891        }
892      }
893    }
894  }
895  SDL->BitTestCases.clear();
896
897  // If the JumpTable record is filled in, then we need to emit a jump table.
898  // Updating the PHI nodes is tricky in this case, since we need to determine
899  // whether the PHI is a successor of the range check MBB or the jump table MBB
900  for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) {
901    // Lower header first, if it wasn't already lowered
902    if (!SDL->JTCases[i].first.Emitted) {
903      // Set the current basic block to the mbb we wish to insert the code into
904      BB = SDL->JTCases[i].first.HeaderBB;
905      SDL->setCurrentBasicBlock(BB);
906      // Emit the code
907      SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first);
908      CurDAG->setRoot(SDL->getRoot());
909      CodeGenAndEmitDAG();
910      SDL->clear();
911    }
912
913    // Set the current basic block to the mbb we wish to insert the code into
914    BB = SDL->JTCases[i].second.MBB;
915    SDL->setCurrentBasicBlock(BB);
916    // Emit the code
917    SDL->visitJumpTable(SDL->JTCases[i].second);
918    CurDAG->setRoot(SDL->getRoot());
919    CodeGenAndEmitDAG();
920    SDL->clear();
921
922    // Update PHI Nodes
923    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
924      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
925      MachineBasicBlock *PHIBB = PHI->getParent();
926      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
927             "This is not a machine PHI node that we are updating!");
928      // "default" BB. We can go there only from header BB.
929      if (PHIBB == SDL->JTCases[i].second.Default) {
930        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
931                                                  false));
932        PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
933      }
934      // JT BB. Just iterate over successors here
935      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
936        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
937                                                  false));
938        PHI->addOperand(MachineOperand::CreateMBB(BB));
939      }
940    }
941  }
942  SDL->JTCases.clear();
943
944  // If the switch block involved a branch to one of the actual successors, we
945  // need to update PHI nodes in that block.
946  for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
947    MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
948    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
949           "This is not a machine PHI node that we are updating!");
950    if (BB->isSuccessor(PHI->getParent())) {
951      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
952                                                false));
953      PHI->addOperand(MachineOperand::CreateMBB(BB));
954    }
955  }
956
957  // If we generated any switch lowering information, build and codegen any
958  // additional DAGs necessary.
959  for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
960    // Set the current basic block to the mbb we wish to insert the code into
961    BB = SDL->SwitchCases[i].ThisBB;
962    SDL->setCurrentBasicBlock(BB);
963
964    // Emit the code
965    SDL->visitSwitchCase(SDL->SwitchCases[i]);
966    CurDAG->setRoot(SDL->getRoot());
967    CodeGenAndEmitDAG();
968    SDL->clear();
969
970    // Handle any PHI nodes in successors of this chunk, as if we were coming
971    // from the original BB before switch expansion.  Note that PHI nodes can
972    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
973    // handle them the right number of times.
974    while ((BB = SDL->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
975      for (MachineBasicBlock::iterator Phi = BB->begin();
976           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
977        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
978        for (unsigned pn = 0; ; ++pn) {
979          assert(pn != SDL->PHINodesToUpdate.size() &&
980                 "Didn't find PHI entry!");
981          if (SDL->PHINodesToUpdate[pn].first == Phi) {
982            Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
983                                                      second, false));
984            Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
985            break;
986          }
987        }
988      }
989
990      // Don't process RHS if same block as LHS.
991      if (BB == SDL->SwitchCases[i].FalseBB)
992        SDL->SwitchCases[i].FalseBB = 0;
993
994      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
995      SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
996      SDL->SwitchCases[i].FalseBB = 0;
997    }
998    assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
999  }
1000  SDL->SwitchCases.clear();
1001
1002  SDL->PHINodesToUpdate.clear();
1003}
1004
1005
1006/// Schedule - Pick a safe ordering for instructions for each
1007/// target node in the graph.
1008///
1009ScheduleDAG *SelectionDAGISel::Schedule() {
1010  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1011
1012  if (!Ctor) {
1013    Ctor = ISHeuristic;
1014    RegisterScheduler::setDefault(Ctor);
1015  }
1016
1017  ScheduleDAG *Scheduler = Ctor(this, CurDAG, BB, Fast);
1018  Scheduler->Run();
1019
1020  return Scheduler;
1021}
1022
1023
1024HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1025  return new HazardRecognizer();
1026}
1027
1028//===----------------------------------------------------------------------===//
1029// Helper functions used by the generated instruction selector.
1030//===----------------------------------------------------------------------===//
1031// Calls to these methods are generated by tblgen.
1032
1033/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1034/// the dag combiner simplified the 255, we still want to match.  RHS is the
1035/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1036/// specified in the .td file (e.g. 255).
1037bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1038                                    int64_t DesiredMaskS) const {
1039  const APInt &ActualMask = RHS->getAPIntValue();
1040  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1041
1042  // If the actual mask exactly matches, success!
1043  if (ActualMask == DesiredMask)
1044    return true;
1045
1046  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1047  if (ActualMask.intersects(~DesiredMask))
1048    return false;
1049
1050  // Otherwise, the DAG Combiner may have proven that the value coming in is
1051  // either already zero or is not demanded.  Check for known zero input bits.
1052  APInt NeededMask = DesiredMask & ~ActualMask;
1053  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1054    return true;
1055
1056  // TODO: check to see if missing bits are just not demanded.
1057
1058  // Otherwise, this pattern doesn't match.
1059  return false;
1060}
1061
1062/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1063/// the dag combiner simplified the 255, we still want to match.  RHS is the
1064/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1065/// specified in the .td file (e.g. 255).
1066bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1067                                   int64_t DesiredMaskS) const {
1068  const APInt &ActualMask = RHS->getAPIntValue();
1069  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1070
1071  // If the actual mask exactly matches, success!
1072  if (ActualMask == DesiredMask)
1073    return true;
1074
1075  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1076  if (ActualMask.intersects(~DesiredMask))
1077    return false;
1078
1079  // Otherwise, the DAG Combiner may have proven that the value coming in is
1080  // either already zero or is not demanded.  Check for known zero input bits.
1081  APInt NeededMask = DesiredMask & ~ActualMask;
1082
1083  APInt KnownZero, KnownOne;
1084  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1085
1086  // If all the missing bits in the or are already known to be set, match!
1087  if ((NeededMask & KnownOne) == NeededMask)
1088    return true;
1089
1090  // TODO: check to see if missing bits are just not demanded.
1091
1092  // Otherwise, this pattern doesn't match.
1093  return false;
1094}
1095
1096
1097/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1098/// by tblgen.  Others should not call it.
1099void SelectionDAGISel::
1100SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1101  std::vector<SDValue> InOps;
1102  std::swap(InOps, Ops);
1103
1104  Ops.push_back(InOps[0]);  // input chain.
1105  Ops.push_back(InOps[1]);  // input asm string.
1106
1107  unsigned i = 2, e = InOps.size();
1108  if (InOps[e-1].getValueType() == MVT::Flag)
1109    --e;  // Don't process a flag operand if it is here.
1110
1111  while (i != e) {
1112    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
1113    if ((Flags & 7) != 4 /*MEM*/) {
1114      // Just skip over this operand, copying the operands verbatim.
1115      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
1116      i += (Flags >> 3) + 1;
1117    } else {
1118      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
1119      // Otherwise, this is a memory operand.  Ask the target to select it.
1120      std::vector<SDValue> SelOps;
1121      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1122        cerr << "Could not match memory address.  Inline asm failure!\n";
1123        exit(1);
1124      }
1125
1126      // Add this to the output node.
1127      MVT IntPtrTy = CurDAG->getTargetLoweringInfo().getPointerTy();
1128      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
1129                                              IntPtrTy));
1130      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1131      i += 2;
1132    }
1133  }
1134
1135  // Add the flag input back if present.
1136  if (e != InOps.size())
1137    Ops.push_back(InOps.back());
1138}
1139
1140char SelectionDAGISel::ID = 0;
1141