SelectionDAGISel.cpp revision cf26d7ccac1ad052b750edec36b13bc9ea8f70d7
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61//===---------------------------------------------------------------------===//
62///
63/// RegisterScheduler class - Track the registration of instruction schedulers.
64///
65//===---------------------------------------------------------------------===//
66MachinePassRegistry RegisterScheduler::Registry;
67
68//===---------------------------------------------------------------------===//
69///
70/// ISHeuristic command line option for instruction schedulers.
71///
72//===---------------------------------------------------------------------===//
73namespace {
74  cl::opt<RegisterScheduler::FunctionPassCtor, false,
75          RegisterPassParser<RegisterScheduler> >
76  ISHeuristic("sched",
77              cl::init(&createDefaultScheduler),
78              cl::desc("Instruction schedulers available:"));
79
80  static RegisterScheduler
81  defaultListDAGScheduler("default", "  Best scheduler for the target",
82                          createDefaultScheduler);
83} // namespace
84
85namespace { struct AsmOperandInfo; }
86
87namespace {
88  /// RegsForValue - This struct represents the physical registers that a
89  /// particular value is assigned and the type information about the value.
90  /// This is needed because values can be promoted into larger registers and
91  /// expanded into multiple smaller registers than the value.
92  struct VISIBILITY_HIDDEN RegsForValue {
93    /// Regs - This list holds the register (for legal and promoted values)
94    /// or register set (for expanded values) that the value should be assigned
95    /// to.
96    std::vector<unsigned> Regs;
97
98    /// RegVT - The value type of each register.
99    ///
100    MVT::ValueType RegVT;
101
102    /// ValueVT - The value type of the LLVM value, which may be promoted from
103    /// RegVT or made from merging the two expanded parts.
104    MVT::ValueType ValueVT;
105
106    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
107
108    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
109      : RegVT(regvt), ValueVT(valuevt) {
110        Regs.push_back(Reg);
111    }
112    RegsForValue(const std::vector<unsigned> &regs,
113                 MVT::ValueType regvt, MVT::ValueType valuevt)
114      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
115    }
116
117    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
118    /// this value and returns the result as a ValueVT value.  This uses
119    /// Chain/Flag as the input and updates them for the output Chain/Flag.
120    /// If the Flag pointer is NULL, no flag is used.
121    SDOperand getCopyFromRegs(SelectionDAG &DAG,
122                              SDOperand &Chain, SDOperand *Flag) const;
123
124    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
125    /// specified value into the registers specified by this object.  This uses
126    /// Chain/Flag as the input and updates them for the output Chain/Flag.
127    /// If the Flag pointer is NULL, no flag is used.
128    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
129                       SDOperand &Chain, SDOperand *Flag) const;
130
131    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
132    /// operand list.  This adds the code marker and includes the number of
133    /// values added into it.
134    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
135                              std::vector<SDOperand> &Ops) const;
136  };
137}
138
139namespace llvm {
140  //===--------------------------------------------------------------------===//
141  /// createDefaultScheduler - This creates an instruction scheduler appropriate
142  /// for the target.
143  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
144                                      SelectionDAG *DAG,
145                                      MachineBasicBlock *BB) {
146    TargetLowering &TLI = IS->getTargetLowering();
147
148    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
149      return createTDListDAGScheduler(IS, DAG, BB);
150    } else {
151      assert(TLI.getSchedulingPreference() ==
152           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
153      return createBURRListDAGScheduler(IS, DAG, BB);
154    }
155  }
156
157
158  //===--------------------------------------------------------------------===//
159  /// FunctionLoweringInfo - This contains information that is global to a
160  /// function that is used when lowering a region of the function.
161  class FunctionLoweringInfo {
162  public:
163    TargetLowering &TLI;
164    Function &Fn;
165    MachineFunction &MF;
166    SSARegMap *RegMap;
167
168    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
169
170    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
171    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
172
173    /// ValueMap - Since we emit code for the function a basic block at a time,
174    /// we must remember which virtual registers hold the values for
175    /// cross-basic-block values.
176    DenseMap<const Value*, unsigned> ValueMap;
177
178    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
179    /// the entry block.  This allows the allocas to be efficiently referenced
180    /// anywhere in the function.
181    std::map<const AllocaInst*, int> StaticAllocaMap;
182
183#ifndef NDEBUG
184    SmallSet<Instruction*, 8> CatchInfoLost;
185    SmallSet<Instruction*, 8> CatchInfoFound;
186#endif
187
188    unsigned MakeReg(MVT::ValueType VT) {
189      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
190    }
191
192    /// isExportedInst - Return true if the specified value is an instruction
193    /// exported from its block.
194    bool isExportedInst(const Value *V) {
195      return ValueMap.count(V);
196    }
197
198    unsigned CreateRegForValue(const Value *V);
199
200    unsigned InitializeRegForValue(const Value *V) {
201      unsigned &R = ValueMap[V];
202      assert(R == 0 && "Already initialized this value register!");
203      return R = CreateRegForValue(V);
204    }
205  };
206}
207
208/// isSelector - Return true if this instruction is a call to the
209/// eh.selector intrinsic.
210static bool isSelector(Instruction *I) {
211  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
212    return II->getIntrinsicID() == Intrinsic::eh_selector;
213  return false;
214}
215
216/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
217/// PHI nodes or outside of the basic block that defines it, or used by a
218/// switch instruction, which may expand to multiple basic blocks.
219static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
220  if (isa<PHINode>(I)) return true;
221  BasicBlock *BB = I->getParent();
222  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
223    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
224        // FIXME: Remove switchinst special case.
225        isa<SwitchInst>(*UI))
226      return true;
227  return false;
228}
229
230/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
231/// entry block, return true.  This includes arguments used by switches, since
232/// the switch may expand into multiple basic blocks.
233static bool isOnlyUsedInEntryBlock(Argument *A) {
234  BasicBlock *Entry = A->getParent()->begin();
235  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
236    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
237      return false;  // Use not in entry block.
238  return true;
239}
240
241FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
242                                           Function &fn, MachineFunction &mf)
243    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
244
245  // Create a vreg for each argument register that is not dead and is used
246  // outside of the entry block for the function.
247  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
248       AI != E; ++AI)
249    if (!isOnlyUsedInEntryBlock(AI))
250      InitializeRegForValue(AI);
251
252  // Initialize the mapping of values to registers.  This is only set up for
253  // instruction values that are used outside of the block that defines
254  // them.
255  Function::iterator BB = Fn.begin(), EB = Fn.end();
256  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
257    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
258      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
259        const Type *Ty = AI->getAllocatedType();
260        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
261        unsigned Align =
262          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
263                   AI->getAlignment());
264
265        TySize *= CUI->getZExtValue();   // Get total allocated size.
266        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
267        StaticAllocaMap[AI] =
268          MF.getFrameInfo()->CreateStackObject(TySize, Align);
269      }
270
271  for (; BB != EB; ++BB)
272    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
273      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
274        if (!isa<AllocaInst>(I) ||
275            !StaticAllocaMap.count(cast<AllocaInst>(I)))
276          InitializeRegForValue(I);
277
278  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
279  // also creates the initial PHI MachineInstrs, though none of the input
280  // operands are populated.
281  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
282    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
283    MBBMap[BB] = MBB;
284    MF.getBasicBlockList().push_back(MBB);
285
286    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
287    // appropriate.
288    PHINode *PN;
289    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
290      if (PN->use_empty()) continue;
291
292      MVT::ValueType VT = TLI.getValueType(PN->getType());
293      unsigned NumRegisters = TLI.getNumRegisters(VT);
294      unsigned PHIReg = ValueMap[PN];
295      assert(PHIReg && "PHI node does not have an assigned virtual register!");
296      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
297      for (unsigned i = 0; i != NumRegisters; ++i)
298        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
299    }
300  }
301}
302
303/// CreateRegForValue - Allocate the appropriate number of virtual registers of
304/// the correctly promoted or expanded types.  Assign these registers
305/// consecutive vreg numbers and return the first assigned number.
306unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
307  MVT::ValueType VT = TLI.getValueType(V->getType());
308
309  unsigned NumRegisters = TLI.getNumRegisters(VT);
310  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
311
312  unsigned R = MakeReg(RegisterVT);
313  for (unsigned i = 1; i != NumRegisters; ++i)
314    MakeReg(RegisterVT);
315
316  return R;
317}
318
319//===----------------------------------------------------------------------===//
320/// SelectionDAGLowering - This is the common target-independent lowering
321/// implementation that is parameterized by a TargetLowering object.
322/// Also, targets can overload any lowering method.
323///
324namespace llvm {
325class SelectionDAGLowering {
326  MachineBasicBlock *CurMBB;
327
328  DenseMap<const Value*, SDOperand> NodeMap;
329
330  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
331  /// them up and then emit token factor nodes when possible.  This allows us to
332  /// get simple disambiguation between loads without worrying about alias
333  /// analysis.
334  std::vector<SDOperand> PendingLoads;
335
336  /// Case - A struct to record the Value for a switch case, and the
337  /// case's target basic block.
338  struct Case {
339    Constant* Low;
340    Constant* High;
341    MachineBasicBlock* BB;
342
343    Case() : Low(0), High(0), BB(0) { }
344    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
345      Low(low), High(high), BB(bb) { }
346    uint64_t size() const {
347      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
348      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
349      return (rHigh - rLow + 1ULL);
350    }
351  };
352
353  struct CaseBits {
354    uint64_t Mask;
355    MachineBasicBlock* BB;
356    unsigned Bits;
357
358    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
359      Mask(mask), BB(bb), Bits(bits) { }
360  };
361
362  typedef std::vector<Case>           CaseVector;
363  typedef std::vector<CaseBits>       CaseBitsVector;
364  typedef CaseVector::iterator        CaseItr;
365  typedef std::pair<CaseItr, CaseItr> CaseRange;
366
367  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
368  /// of conditional branches.
369  struct CaseRec {
370    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
371    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
372
373    /// CaseBB - The MBB in which to emit the compare and branch
374    MachineBasicBlock *CaseBB;
375    /// LT, GE - If nonzero, we know the current case value must be less-than or
376    /// greater-than-or-equal-to these Constants.
377    Constant *LT;
378    Constant *GE;
379    /// Range - A pair of iterators representing the range of case values to be
380    /// processed at this point in the binary search tree.
381    CaseRange Range;
382  };
383
384  typedef std::vector<CaseRec> CaseRecVector;
385
386  /// The comparison function for sorting the switch case values in the vector.
387  /// WARNING: Case ranges should be disjoint!
388  struct CaseCmp {
389    bool operator () (const Case& C1, const Case& C2) {
390      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
391      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
392      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
393      return CI1->getValue().slt(CI2->getValue());
394    }
395  };
396
397  struct CaseBitsCmp {
398    bool operator () (const CaseBits& C1, const CaseBits& C2) {
399      return C1.Bits > C2.Bits;
400    }
401  };
402
403  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
404
405public:
406  // TLI - This is information that describes the available target features we
407  // need for lowering.  This indicates when operations are unavailable,
408  // implemented with a libcall, etc.
409  TargetLowering &TLI;
410  SelectionDAG &DAG;
411  const TargetData *TD;
412
413  /// SwitchCases - Vector of CaseBlock structures used to communicate
414  /// SwitchInst code generation information.
415  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
416  /// JTCases - Vector of JumpTable structures used to communicate
417  /// SwitchInst code generation information.
418  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
419  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
420
421  /// FuncInfo - Information about the function as a whole.
422  ///
423  FunctionLoweringInfo &FuncInfo;
424
425  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
426                       FunctionLoweringInfo &funcinfo)
427    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
428      FuncInfo(funcinfo) {
429  }
430
431  /// getRoot - Return the current virtual root of the Selection DAG.
432  ///
433  SDOperand getRoot() {
434    if (PendingLoads.empty())
435      return DAG.getRoot();
436
437    if (PendingLoads.size() == 1) {
438      SDOperand Root = PendingLoads[0];
439      DAG.setRoot(Root);
440      PendingLoads.clear();
441      return Root;
442    }
443
444    // Otherwise, we have to make a token factor node.
445    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
446                                 &PendingLoads[0], PendingLoads.size());
447    PendingLoads.clear();
448    DAG.setRoot(Root);
449    return Root;
450  }
451
452  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
453
454  void visit(Instruction &I) { visit(I.getOpcode(), I); }
455
456  void visit(unsigned Opcode, User &I) {
457    // Note: this doesn't use InstVisitor, because it has to work with
458    // ConstantExpr's in addition to instructions.
459    switch (Opcode) {
460    default: assert(0 && "Unknown instruction type encountered!");
461             abort();
462      // Build the switch statement using the Instruction.def file.
463#define HANDLE_INST(NUM, OPCODE, CLASS) \
464    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
465#include "llvm/Instruction.def"
466    }
467  }
468
469  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
470
471  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
472                        const Value *SV, SDOperand Root,
473                        bool isVolatile, unsigned Alignment);
474
475  SDOperand getIntPtrConstant(uint64_t Val) {
476    return DAG.getConstant(Val, TLI.getPointerTy());
477  }
478
479  SDOperand getValue(const Value *V);
480
481  void setValue(const Value *V, SDOperand NewN) {
482    SDOperand &N = NodeMap[V];
483    assert(N.Val == 0 && "Already set a value for this node!");
484    N = NewN;
485  }
486
487  void GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
488                            std::set<unsigned> &OutputRegs,
489                            std::set<unsigned> &InputRegs);
490
491  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
492                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
493                            unsigned Opc);
494  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
495  void ExportFromCurrentBlock(Value *V);
496  void LowerCallTo(Instruction &I,
497                   const Type *CalledValueTy, unsigned CallingConv,
498                   bool IsTailCall, SDOperand Callee, unsigned OpIdx,
499                   MachineBasicBlock *LandingPad = NULL);
500
501  // Terminator instructions.
502  void visitRet(ReturnInst &I);
503  void visitBr(BranchInst &I);
504  void visitSwitch(SwitchInst &I);
505  void visitUnreachable(UnreachableInst &I) { /* noop */ }
506
507  // Helpers for visitSwitch
508  bool handleSmallSwitchRange(CaseRec& CR,
509                              CaseRecVector& WorkList,
510                              Value* SV,
511                              MachineBasicBlock* Default);
512  bool handleJTSwitchCase(CaseRec& CR,
513                          CaseRecVector& WorkList,
514                          Value* SV,
515                          MachineBasicBlock* Default);
516  bool handleBTSplitSwitchCase(CaseRec& CR,
517                               CaseRecVector& WorkList,
518                               Value* SV,
519                               MachineBasicBlock* Default);
520  bool handleBitTestsSwitchCase(CaseRec& CR,
521                                CaseRecVector& WorkList,
522                                Value* SV,
523                                MachineBasicBlock* Default);
524  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
525  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
526  void visitBitTestCase(MachineBasicBlock* NextMBB,
527                        unsigned Reg,
528                        SelectionDAGISel::BitTestCase &B);
529  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
530  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
531                            SelectionDAGISel::JumpTableHeader &JTH);
532
533  // These all get lowered before this pass.
534  void visitInvoke(InvokeInst &I);
535  void visitUnwind(UnwindInst &I);
536
537  void visitBinary(User &I, unsigned OpCode);
538  void visitShift(User &I, unsigned Opcode);
539  void visitAdd(User &I) {
540    if (I.getType()->isFPOrFPVector())
541      visitBinary(I, ISD::FADD);
542    else
543      visitBinary(I, ISD::ADD);
544  }
545  void visitSub(User &I);
546  void visitMul(User &I) {
547    if (I.getType()->isFPOrFPVector())
548      visitBinary(I, ISD::FMUL);
549    else
550      visitBinary(I, ISD::MUL);
551  }
552  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
553  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
554  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
555  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
556  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
557  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
558  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
559  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
560  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
561  void visitShl (User &I) { visitShift(I, ISD::SHL); }
562  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
563  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
564  void visitICmp(User &I);
565  void visitFCmp(User &I);
566  // Visit the conversion instructions
567  void visitTrunc(User &I);
568  void visitZExt(User &I);
569  void visitSExt(User &I);
570  void visitFPTrunc(User &I);
571  void visitFPExt(User &I);
572  void visitFPToUI(User &I);
573  void visitFPToSI(User &I);
574  void visitUIToFP(User &I);
575  void visitSIToFP(User &I);
576  void visitPtrToInt(User &I);
577  void visitIntToPtr(User &I);
578  void visitBitCast(User &I);
579
580  void visitExtractElement(User &I);
581  void visitInsertElement(User &I);
582  void visitShuffleVector(User &I);
583
584  void visitGetElementPtr(User &I);
585  void visitSelect(User &I);
586
587  void visitMalloc(MallocInst &I);
588  void visitFree(FreeInst &I);
589  void visitAlloca(AllocaInst &I);
590  void visitLoad(LoadInst &I);
591  void visitStore(StoreInst &I);
592  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
593  void visitCall(CallInst &I);
594  void visitInlineAsm(CallInst &I);
595  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
596  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
597
598  void visitVAStart(CallInst &I);
599  void visitVAArg(VAArgInst &I);
600  void visitVAEnd(CallInst &I);
601  void visitVACopy(CallInst &I);
602
603  void visitMemIntrinsic(CallInst &I, unsigned Op);
604
605  void visitUserOp1(Instruction &I) {
606    assert(0 && "UserOp1 should not exist at instruction selection time!");
607    abort();
608  }
609  void visitUserOp2(Instruction &I) {
610    assert(0 && "UserOp2 should not exist at instruction selection time!");
611    abort();
612  }
613};
614} // end namespace llvm
615
616SDOperand SelectionDAGLowering::getValue(const Value *V) {
617  SDOperand &N = NodeMap[V];
618  if (N.Val) return N;
619
620  const Type *VTy = V->getType();
621  MVT::ValueType VT = TLI.getValueType(VTy);
622  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
623    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
624      visit(CE->getOpcode(), *CE);
625      SDOperand N1 = NodeMap[V];
626      assert(N1.Val && "visit didn't populate the ValueMap!");
627      return N1;
628    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
629      return N = DAG.getGlobalAddress(GV, VT);
630    } else if (isa<ConstantPointerNull>(C)) {
631      return N = DAG.getConstant(0, TLI.getPointerTy());
632    } else if (isa<UndefValue>(C)) {
633      if (!isa<VectorType>(VTy))
634        return N = DAG.getNode(ISD::UNDEF, VT);
635
636      // Create a BUILD_VECTOR of undef nodes.
637      const VectorType *PTy = cast<VectorType>(VTy);
638      unsigned NumElements = PTy->getNumElements();
639      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
640
641      SmallVector<SDOperand, 8> Ops;
642      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
643
644      // Create a VConstant node with generic Vector type.
645      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
646      return N = DAG.getNode(ISD::BUILD_VECTOR, VT,
647                             &Ops[0], Ops.size());
648    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
649      return N = DAG.getConstantFP(CFP->getValue(), VT);
650    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
651      unsigned NumElements = PTy->getNumElements();
652      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
653
654      // Now that we know the number and type of the elements, push a
655      // Constant or ConstantFP node onto the ops list for each element of
656      // the packed constant.
657      SmallVector<SDOperand, 8> Ops;
658      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
659        for (unsigned i = 0; i != NumElements; ++i)
660          Ops.push_back(getValue(CP->getOperand(i)));
661      } else {
662        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
663        SDOperand Op;
664        if (MVT::isFloatingPoint(PVT))
665          Op = DAG.getConstantFP(0, PVT);
666        else
667          Op = DAG.getConstant(0, PVT);
668        Ops.assign(NumElements, Op);
669      }
670
671      // Create a BUILD_VECTOR node.
672      MVT::ValueType VT = MVT::getVectorType(PVT, NumElements);
673      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0],
674                                      Ops.size());
675    } else {
676      // Canonicalize all constant ints to be unsigned.
677      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
678    }
679  }
680
681  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
682    std::map<const AllocaInst*, int>::iterator SI =
683    FuncInfo.StaticAllocaMap.find(AI);
684    if (SI != FuncInfo.StaticAllocaMap.end())
685      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
686  }
687
688  unsigned InReg = FuncInfo.ValueMap[V];
689  assert(InReg && "Value not in map!");
690
691  MVT::ValueType RegisterVT = TLI.getRegisterType(VT);
692  unsigned NumRegs = TLI.getNumRegisters(VT);
693
694  std::vector<unsigned> Regs(NumRegs);
695  for (unsigned i = 0; i != NumRegs; ++i)
696    Regs[i] = InReg + i;
697
698  RegsForValue RFV(Regs, RegisterVT, VT);
699  SDOperand Chain = DAG.getEntryNode();
700
701  return RFV.getCopyFromRegs(DAG, Chain, NULL);
702}
703
704
705void SelectionDAGLowering::visitRet(ReturnInst &I) {
706  if (I.getNumOperands() == 0) {
707    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
708    return;
709  }
710  SmallVector<SDOperand, 8> NewValues;
711  NewValues.push_back(getRoot());
712  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
713    SDOperand RetOp = getValue(I.getOperand(i));
714
715    // If this is an integer return value, we need to promote it ourselves to
716    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
717    // than sign/zero.
718    // FIXME: C calling convention requires the return type to be promoted to
719    // at least 32-bit. But this is not necessary for non-C calling conventions.
720    if (MVT::isInteger(RetOp.getValueType()) &&
721        RetOp.getValueType() < MVT::i64) {
722      MVT::ValueType TmpVT;
723      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
724        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
725      else
726        TmpVT = MVT::i32;
727      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
728      const ParamAttrsList *Attrs = FTy->getParamAttrs();
729      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
730      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt))
731        ExtendKind = ISD::SIGN_EXTEND;
732      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt))
733        ExtendKind = ISD::ZERO_EXTEND;
734      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
735    }
736    NewValues.push_back(RetOp);
737    NewValues.push_back(DAG.getConstant(false, MVT::i32));
738  }
739  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
740                          &NewValues[0], NewValues.size()));
741}
742
743/// ExportFromCurrentBlock - If this condition isn't known to be exported from
744/// the current basic block, add it to ValueMap now so that we'll get a
745/// CopyTo/FromReg.
746void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
747  // No need to export constants.
748  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
749
750  // Already exported?
751  if (FuncInfo.isExportedInst(V)) return;
752
753  unsigned Reg = FuncInfo.InitializeRegForValue(V);
754  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
755}
756
757bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
758                                                    const BasicBlock *FromBB) {
759  // The operands of the setcc have to be in this block.  We don't know
760  // how to export them from some other block.
761  if (Instruction *VI = dyn_cast<Instruction>(V)) {
762    // Can export from current BB.
763    if (VI->getParent() == FromBB)
764      return true;
765
766    // Is already exported, noop.
767    return FuncInfo.isExportedInst(V);
768  }
769
770  // If this is an argument, we can export it if the BB is the entry block or
771  // if it is already exported.
772  if (isa<Argument>(V)) {
773    if (FromBB == &FromBB->getParent()->getEntryBlock())
774      return true;
775
776    // Otherwise, can only export this if it is already exported.
777    return FuncInfo.isExportedInst(V);
778  }
779
780  // Otherwise, constants can always be exported.
781  return true;
782}
783
784static bool InBlock(const Value *V, const BasicBlock *BB) {
785  if (const Instruction *I = dyn_cast<Instruction>(V))
786    return I->getParent() == BB;
787  return true;
788}
789
790/// FindMergedConditions - If Cond is an expression like
791void SelectionDAGLowering::FindMergedConditions(Value *Cond,
792                                                MachineBasicBlock *TBB,
793                                                MachineBasicBlock *FBB,
794                                                MachineBasicBlock *CurBB,
795                                                unsigned Opc) {
796  // If this node is not part of the or/and tree, emit it as a branch.
797  Instruction *BOp = dyn_cast<Instruction>(Cond);
798
799  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
800      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
801      BOp->getParent() != CurBB->getBasicBlock() ||
802      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
803      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
804    const BasicBlock *BB = CurBB->getBasicBlock();
805
806    // If the leaf of the tree is a comparison, merge the condition into
807    // the caseblock.
808    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
809        // The operands of the cmp have to be in this block.  We don't know
810        // how to export them from some other block.  If this is the first block
811        // of the sequence, no exporting is needed.
812        (CurBB == CurMBB ||
813         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
814          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
815      BOp = cast<Instruction>(Cond);
816      ISD::CondCode Condition;
817      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
818        switch (IC->getPredicate()) {
819        default: assert(0 && "Unknown icmp predicate opcode!");
820        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
821        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
822        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
823        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
824        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
825        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
826        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
827        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
828        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
829        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
830        }
831      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
832        ISD::CondCode FPC, FOC;
833        switch (FC->getPredicate()) {
834        default: assert(0 && "Unknown fcmp predicate opcode!");
835        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
836        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
837        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
838        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
839        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
840        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
841        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
842        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
843        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
844        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
845        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
846        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
847        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
848        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
849        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
850        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
851        }
852        if (FiniteOnlyFPMath())
853          Condition = FOC;
854        else
855          Condition = FPC;
856      } else {
857        Condition = ISD::SETEQ; // silence warning.
858        assert(0 && "Unknown compare instruction");
859      }
860
861      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
862                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
863      SwitchCases.push_back(CB);
864      return;
865    }
866
867    // Create a CaseBlock record representing this branch.
868    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
869                                   NULL, TBB, FBB, CurBB);
870    SwitchCases.push_back(CB);
871    return;
872  }
873
874
875  //  Create TmpBB after CurBB.
876  MachineFunction::iterator BBI = CurBB;
877  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
878  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
879
880  if (Opc == Instruction::Or) {
881    // Codegen X | Y as:
882    //   jmp_if_X TBB
883    //   jmp TmpBB
884    // TmpBB:
885    //   jmp_if_Y TBB
886    //   jmp FBB
887    //
888
889    // Emit the LHS condition.
890    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
891
892    // Emit the RHS condition into TmpBB.
893    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
894  } else {
895    assert(Opc == Instruction::And && "Unknown merge op!");
896    // Codegen X & Y as:
897    //   jmp_if_X TmpBB
898    //   jmp FBB
899    // TmpBB:
900    //   jmp_if_Y TBB
901    //   jmp FBB
902    //
903    //  This requires creation of TmpBB after CurBB.
904
905    // Emit the LHS condition.
906    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
907
908    // Emit the RHS condition into TmpBB.
909    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
910  }
911}
912
913/// If the set of cases should be emitted as a series of branches, return true.
914/// If we should emit this as a bunch of and/or'd together conditions, return
915/// false.
916static bool
917ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
918  if (Cases.size() != 2) return true;
919
920  // If this is two comparisons of the same values or'd or and'd together, they
921  // will get folded into a single comparison, so don't emit two blocks.
922  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
923       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
924      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
925       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
926    return false;
927  }
928
929  return true;
930}
931
932void SelectionDAGLowering::visitBr(BranchInst &I) {
933  // Update machine-CFG edges.
934  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
935
936  // Figure out which block is immediately after the current one.
937  MachineBasicBlock *NextBlock = 0;
938  MachineFunction::iterator BBI = CurMBB;
939  if (++BBI != CurMBB->getParent()->end())
940    NextBlock = BBI;
941
942  if (I.isUnconditional()) {
943    // If this is not a fall-through branch, emit the branch.
944    if (Succ0MBB != NextBlock)
945      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
946                              DAG.getBasicBlock(Succ0MBB)));
947
948    // Update machine-CFG edges.
949    CurMBB->addSuccessor(Succ0MBB);
950
951    return;
952  }
953
954  // If this condition is one of the special cases we handle, do special stuff
955  // now.
956  Value *CondVal = I.getCondition();
957  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
958
959  // If this is a series of conditions that are or'd or and'd together, emit
960  // this as a sequence of branches instead of setcc's with and/or operations.
961  // For example, instead of something like:
962  //     cmp A, B
963  //     C = seteq
964  //     cmp D, E
965  //     F = setle
966  //     or C, F
967  //     jnz foo
968  // Emit:
969  //     cmp A, B
970  //     je foo
971  //     cmp D, E
972  //     jle foo
973  //
974  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
975    if (BOp->hasOneUse() &&
976        (BOp->getOpcode() == Instruction::And ||
977         BOp->getOpcode() == Instruction::Or)) {
978      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
979      // If the compares in later blocks need to use values not currently
980      // exported from this block, export them now.  This block should always
981      // be the first entry.
982      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
983
984      // Allow some cases to be rejected.
985      if (ShouldEmitAsBranches(SwitchCases)) {
986        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
987          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
988          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
989        }
990
991        // Emit the branch for this block.
992        visitSwitchCase(SwitchCases[0]);
993        SwitchCases.erase(SwitchCases.begin());
994        return;
995      }
996
997      // Okay, we decided not to do this, remove any inserted MBB's and clear
998      // SwitchCases.
999      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1000        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1001
1002      SwitchCases.clear();
1003    }
1004  }
1005
1006  // Create a CaseBlock record representing this branch.
1007  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1008                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1009  // Use visitSwitchCase to actually insert the fast branch sequence for this
1010  // cond branch.
1011  visitSwitchCase(CB);
1012}
1013
1014/// visitSwitchCase - Emits the necessary code to represent a single node in
1015/// the binary search tree resulting from lowering a switch instruction.
1016void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1017  SDOperand Cond;
1018  SDOperand CondLHS = getValue(CB.CmpLHS);
1019
1020  // Build the setcc now.
1021  if (CB.CmpMHS == NULL) {
1022    // Fold "(X == true)" to X and "(X == false)" to !X to
1023    // handle common cases produced by branch lowering.
1024    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1025      Cond = CondLHS;
1026    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1027      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1028      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1029    } else
1030      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1031  } else {
1032    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1033
1034    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1035    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1036
1037    SDOperand CmpOp = getValue(CB.CmpMHS);
1038    MVT::ValueType VT = CmpOp.getValueType();
1039
1040    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1041      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1042    } else {
1043      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1044      Cond = DAG.getSetCC(MVT::i1, SUB,
1045                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1046    }
1047
1048  }
1049
1050  // Set NextBlock to be the MBB immediately after the current one, if any.
1051  // This is used to avoid emitting unnecessary branches to the next block.
1052  MachineBasicBlock *NextBlock = 0;
1053  MachineFunction::iterator BBI = CurMBB;
1054  if (++BBI != CurMBB->getParent()->end())
1055    NextBlock = BBI;
1056
1057  // If the lhs block is the next block, invert the condition so that we can
1058  // fall through to the lhs instead of the rhs block.
1059  if (CB.TrueBB == NextBlock) {
1060    std::swap(CB.TrueBB, CB.FalseBB);
1061    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1062    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1063  }
1064  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1065                                 DAG.getBasicBlock(CB.TrueBB));
1066  if (CB.FalseBB == NextBlock)
1067    DAG.setRoot(BrCond);
1068  else
1069    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1070                            DAG.getBasicBlock(CB.FalseBB)));
1071  // Update successor info
1072  CurMBB->addSuccessor(CB.TrueBB);
1073  CurMBB->addSuccessor(CB.FalseBB);
1074}
1075
1076/// visitJumpTable - Emit JumpTable node in the current MBB
1077void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1078  // Emit the code for the jump table
1079  assert(JT.Reg != -1U && "Should lower JT Header first!");
1080  MVT::ValueType PTy = TLI.getPointerTy();
1081  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1082  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1083  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1084                          Table, Index));
1085  return;
1086}
1087
1088/// visitJumpTableHeader - This function emits necessary code to produce index
1089/// in the JumpTable from switch case.
1090void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1091                                         SelectionDAGISel::JumpTableHeader &JTH) {
1092  // Subtract the lowest switch case value from the value being switched on
1093  // and conditional branch to default mbb if the result is greater than the
1094  // difference between smallest and largest cases.
1095  SDOperand SwitchOp = getValue(JTH.SValue);
1096  MVT::ValueType VT = SwitchOp.getValueType();
1097  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1098                              DAG.getConstant(JTH.First, VT));
1099
1100  // The SDNode we just created, which holds the value being switched on
1101  // minus the the smallest case value, needs to be copied to a virtual
1102  // register so it can be used as an index into the jump table in a
1103  // subsequent basic block.  This value may be smaller or larger than the
1104  // target's pointer type, and therefore require extension or truncating.
1105  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1106    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1107  else
1108    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1109
1110  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1111  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1112  JT.Reg = JumpTableReg;
1113
1114  // Emit the range check for the jump table, and branch to the default
1115  // block for the switch statement if the value being switched on exceeds
1116  // the largest case in the switch.
1117  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1118                               DAG.getConstant(JTH.Last-JTH.First,VT),
1119                               ISD::SETUGT);
1120
1121  // Set NextBlock to be the MBB immediately after the current one, if any.
1122  // This is used to avoid emitting unnecessary branches to the next block.
1123  MachineBasicBlock *NextBlock = 0;
1124  MachineFunction::iterator BBI = CurMBB;
1125  if (++BBI != CurMBB->getParent()->end())
1126    NextBlock = BBI;
1127
1128  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1129                                 DAG.getBasicBlock(JT.Default));
1130
1131  if (JT.MBB == NextBlock)
1132    DAG.setRoot(BrCond);
1133  else
1134    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1135                            DAG.getBasicBlock(JT.MBB)));
1136
1137  return;
1138}
1139
1140/// visitBitTestHeader - This function emits necessary code to produce value
1141/// suitable for "bit tests"
1142void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1143  // Subtract the minimum value
1144  SDOperand SwitchOp = getValue(B.SValue);
1145  MVT::ValueType VT = SwitchOp.getValueType();
1146  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1147                              DAG.getConstant(B.First, VT));
1148
1149  // Check range
1150  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1151                                    DAG.getConstant(B.Range, VT),
1152                                    ISD::SETUGT);
1153
1154  SDOperand ShiftOp;
1155  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1156    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1157  else
1158    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1159
1160  // Make desired shift
1161  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1162                                    DAG.getConstant(1, TLI.getPointerTy()),
1163                                    ShiftOp);
1164
1165  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1166  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1167  B.Reg = SwitchReg;
1168
1169  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1170                                  DAG.getBasicBlock(B.Default));
1171
1172  // Set NextBlock to be the MBB immediately after the current one, if any.
1173  // This is used to avoid emitting unnecessary branches to the next block.
1174  MachineBasicBlock *NextBlock = 0;
1175  MachineFunction::iterator BBI = CurMBB;
1176  if (++BBI != CurMBB->getParent()->end())
1177    NextBlock = BBI;
1178
1179  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1180  if (MBB == NextBlock)
1181    DAG.setRoot(BrRange);
1182  else
1183    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1184                            DAG.getBasicBlock(MBB)));
1185
1186  CurMBB->addSuccessor(B.Default);
1187  CurMBB->addSuccessor(MBB);
1188
1189  return;
1190}
1191
1192/// visitBitTestCase - this function produces one "bit test"
1193void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1194                                            unsigned Reg,
1195                                            SelectionDAGISel::BitTestCase &B) {
1196  // Emit bit tests and jumps
1197  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1198
1199  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1200                                SwitchVal,
1201                                DAG.getConstant(B.Mask,
1202                                                TLI.getPointerTy()));
1203  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1204                                  DAG.getConstant(0, TLI.getPointerTy()),
1205                                  ISD::SETNE);
1206  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1207                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1208
1209  // Set NextBlock to be the MBB immediately after the current one, if any.
1210  // This is used to avoid emitting unnecessary branches to the next block.
1211  MachineBasicBlock *NextBlock = 0;
1212  MachineFunction::iterator BBI = CurMBB;
1213  if (++BBI != CurMBB->getParent()->end())
1214    NextBlock = BBI;
1215
1216  if (NextMBB == NextBlock)
1217    DAG.setRoot(BrAnd);
1218  else
1219    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1220                            DAG.getBasicBlock(NextMBB)));
1221
1222  CurMBB->addSuccessor(B.TargetBB);
1223  CurMBB->addSuccessor(NextMBB);
1224
1225  return;
1226}
1227
1228void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1229  // Retrieve successors.
1230  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1231  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1232
1233  LowerCallTo(I, I.getCalledValue()->getType(),
1234              I.getCallingConv(),
1235              false,
1236              getValue(I.getOperand(0)),
1237              3, LandingPad);
1238
1239  // If the value of the invoke is used outside of its defining block, make it
1240  // available as a virtual register.
1241  if (!I.use_empty()) {
1242    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1243    if (VMI != FuncInfo.ValueMap.end())
1244      DAG.setRoot(CopyValueToVirtualRegister(&I, VMI->second));
1245  }
1246
1247  // Drop into normal successor.
1248  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1249                          DAG.getBasicBlock(Return)));
1250
1251  // Update successor info
1252  CurMBB->addSuccessor(Return);
1253  CurMBB->addSuccessor(LandingPad);
1254}
1255
1256void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1257}
1258
1259/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1260/// small case ranges).
1261bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1262                                                  CaseRecVector& WorkList,
1263                                                  Value* SV,
1264                                                  MachineBasicBlock* Default) {
1265  Case& BackCase  = *(CR.Range.second-1);
1266
1267  // Size is the number of Cases represented by this range.
1268  unsigned Size = CR.Range.second - CR.Range.first;
1269  if (Size > 3)
1270    return false;
1271
1272  // Get the MachineFunction which holds the current MBB.  This is used when
1273  // inserting any additional MBBs necessary to represent the switch.
1274  MachineFunction *CurMF = CurMBB->getParent();
1275
1276  // Figure out which block is immediately after the current one.
1277  MachineBasicBlock *NextBlock = 0;
1278  MachineFunction::iterator BBI = CR.CaseBB;
1279
1280  if (++BBI != CurMBB->getParent()->end())
1281    NextBlock = BBI;
1282
1283  // TODO: If any two of the cases has the same destination, and if one value
1284  // is the same as the other, but has one bit unset that the other has set,
1285  // use bit manipulation to do two compares at once.  For example:
1286  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1287
1288  // Rearrange the case blocks so that the last one falls through if possible.
1289  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1290    // The last case block won't fall through into 'NextBlock' if we emit the
1291    // branches in this order.  See if rearranging a case value would help.
1292    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1293      if (I->BB == NextBlock) {
1294        std::swap(*I, BackCase);
1295        break;
1296      }
1297    }
1298  }
1299
1300  // Create a CaseBlock record representing a conditional branch to
1301  // the Case's target mbb if the value being switched on SV is equal
1302  // to C.
1303  MachineBasicBlock *CurBlock = CR.CaseBB;
1304  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1305    MachineBasicBlock *FallThrough;
1306    if (I != E-1) {
1307      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1308      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1309    } else {
1310      // If the last case doesn't match, go to the default block.
1311      FallThrough = Default;
1312    }
1313
1314    Value *RHS, *LHS, *MHS;
1315    ISD::CondCode CC;
1316    if (I->High == I->Low) {
1317      // This is just small small case range :) containing exactly 1 case
1318      CC = ISD::SETEQ;
1319      LHS = SV; RHS = I->High; MHS = NULL;
1320    } else {
1321      CC = ISD::SETLE;
1322      LHS = I->Low; MHS = SV; RHS = I->High;
1323    }
1324    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1325                                   I->BB, FallThrough, CurBlock);
1326
1327    // If emitting the first comparison, just call visitSwitchCase to emit the
1328    // code into the current block.  Otherwise, push the CaseBlock onto the
1329    // vector to be later processed by SDISel, and insert the node's MBB
1330    // before the next MBB.
1331    if (CurBlock == CurMBB)
1332      visitSwitchCase(CB);
1333    else
1334      SwitchCases.push_back(CB);
1335
1336    CurBlock = FallThrough;
1337  }
1338
1339  return true;
1340}
1341
1342static inline bool areJTsAllowed(const TargetLowering &TLI) {
1343  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1344          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1345}
1346
1347/// handleJTSwitchCase - Emit jumptable for current switch case range
1348bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1349                                              CaseRecVector& WorkList,
1350                                              Value* SV,
1351                                              MachineBasicBlock* Default) {
1352  Case& FrontCase = *CR.Range.first;
1353  Case& BackCase  = *(CR.Range.second-1);
1354
1355  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1356  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1357
1358  uint64_t TSize = 0;
1359  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1360       I!=E; ++I)
1361    TSize += I->size();
1362
1363  if (!areJTsAllowed(TLI) || TSize <= 3)
1364    return false;
1365
1366  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1367  if (Density < 0.4)
1368    return false;
1369
1370  DOUT << "Lowering jump table\n"
1371       << "First entry: " << First << ". Last entry: " << Last << "\n"
1372       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1373
1374  // Get the MachineFunction which holds the current MBB.  This is used when
1375  // inserting any additional MBBs necessary to represent the switch.
1376  MachineFunction *CurMF = CurMBB->getParent();
1377
1378  // Figure out which block is immediately after the current one.
1379  MachineBasicBlock *NextBlock = 0;
1380  MachineFunction::iterator BBI = CR.CaseBB;
1381
1382  if (++BBI != CurMBB->getParent()->end())
1383    NextBlock = BBI;
1384
1385  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1386
1387  // Create a new basic block to hold the code for loading the address
1388  // of the jump table, and jumping to it.  Update successor information;
1389  // we will either branch to the default case for the switch, or the jump
1390  // table.
1391  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1392  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1393  CR.CaseBB->addSuccessor(Default);
1394  CR.CaseBB->addSuccessor(JumpTableBB);
1395
1396  // Build a vector of destination BBs, corresponding to each target
1397  // of the jump table. If the value of the jump table slot corresponds to
1398  // a case statement, push the case's BB onto the vector, otherwise, push
1399  // the default BB.
1400  std::vector<MachineBasicBlock*> DestBBs;
1401  int64_t TEI = First;
1402  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1403    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1404    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1405
1406    if ((Low <= TEI) && (TEI <= High)) {
1407      DestBBs.push_back(I->BB);
1408      if (TEI==High)
1409        ++I;
1410    } else {
1411      DestBBs.push_back(Default);
1412    }
1413  }
1414
1415  // Update successor info. Add one edge to each unique successor.
1416  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1417  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1418         E = DestBBs.end(); I != E; ++I) {
1419    if (!SuccsHandled[(*I)->getNumber()]) {
1420      SuccsHandled[(*I)->getNumber()] = true;
1421      JumpTableBB->addSuccessor(*I);
1422    }
1423  }
1424
1425  // Create a jump table index for this jump table, or return an existing
1426  // one.
1427  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1428
1429  // Set the jump table information so that we can codegen it as a second
1430  // MachineBasicBlock
1431  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1432  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1433                                        (CR.CaseBB == CurMBB));
1434  if (CR.CaseBB == CurMBB)
1435    visitJumpTableHeader(JT, JTH);
1436
1437  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1438
1439  return true;
1440}
1441
1442/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1443/// 2 subtrees.
1444bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1445                                                   CaseRecVector& WorkList,
1446                                                   Value* SV,
1447                                                   MachineBasicBlock* Default) {
1448  // Get the MachineFunction which holds the current MBB.  This is used when
1449  // inserting any additional MBBs necessary to represent the switch.
1450  MachineFunction *CurMF = CurMBB->getParent();
1451
1452  // Figure out which block is immediately after the current one.
1453  MachineBasicBlock *NextBlock = 0;
1454  MachineFunction::iterator BBI = CR.CaseBB;
1455
1456  if (++BBI != CurMBB->getParent()->end())
1457    NextBlock = BBI;
1458
1459  Case& FrontCase = *CR.Range.first;
1460  Case& BackCase  = *(CR.Range.second-1);
1461  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1462
1463  // Size is the number of Cases represented by this range.
1464  unsigned Size = CR.Range.second - CR.Range.first;
1465
1466  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1467  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1468  double FMetric = 0;
1469  CaseItr Pivot = CR.Range.first + Size/2;
1470
1471  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1472  // (heuristically) allow us to emit JumpTable's later.
1473  uint64_t TSize = 0;
1474  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1475       I!=E; ++I)
1476    TSize += I->size();
1477
1478  uint64_t LSize = FrontCase.size();
1479  uint64_t RSize = TSize-LSize;
1480  DOUT << "Selecting best pivot: \n"
1481       << "First: " << First << ", Last: " << Last <<"\n"
1482       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1483  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1484       J!=E; ++I, ++J) {
1485    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1486    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1487    assert((RBegin-LEnd>=1) && "Invalid case distance");
1488    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1489    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1490    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1491    // Should always split in some non-trivial place
1492    DOUT <<"=>Step\n"
1493         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1494         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1495         << "Metric: " << Metric << "\n";
1496    if (FMetric < Metric) {
1497      Pivot = J;
1498      FMetric = Metric;
1499      DOUT << "Current metric set to: " << FMetric << "\n";
1500    }
1501
1502    LSize += J->size();
1503    RSize -= J->size();
1504  }
1505  if (areJTsAllowed(TLI)) {
1506    // If our case is dense we *really* should handle it earlier!
1507    assert((FMetric > 0) && "Should handle dense range earlier!");
1508  } else {
1509    Pivot = CR.Range.first + Size/2;
1510  }
1511
1512  CaseRange LHSR(CR.Range.first, Pivot);
1513  CaseRange RHSR(Pivot, CR.Range.second);
1514  Constant *C = Pivot->Low;
1515  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1516
1517  // We know that we branch to the LHS if the Value being switched on is
1518  // less than the Pivot value, C.  We use this to optimize our binary
1519  // tree a bit, by recognizing that if SV is greater than or equal to the
1520  // LHS's Case Value, and that Case Value is exactly one less than the
1521  // Pivot's Value, then we can branch directly to the LHS's Target,
1522  // rather than creating a leaf node for it.
1523  if ((LHSR.second - LHSR.first) == 1 &&
1524      LHSR.first->High == CR.GE &&
1525      cast<ConstantInt>(C)->getSExtValue() ==
1526      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1527    TrueBB = LHSR.first->BB;
1528  } else {
1529    TrueBB = new MachineBasicBlock(LLVMBB);
1530    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1531    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1532  }
1533
1534  // Similar to the optimization above, if the Value being switched on is
1535  // known to be less than the Constant CR.LT, and the current Case Value
1536  // is CR.LT - 1, then we can branch directly to the target block for
1537  // the current Case Value, rather than emitting a RHS leaf node for it.
1538  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1539      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1540      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1541    FalseBB = RHSR.first->BB;
1542  } else {
1543    FalseBB = new MachineBasicBlock(LLVMBB);
1544    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1545    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1546  }
1547
1548  // Create a CaseBlock record representing a conditional branch to
1549  // the LHS node if the value being switched on SV is less than C.
1550  // Otherwise, branch to LHS.
1551  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1552                                 TrueBB, FalseBB, CR.CaseBB);
1553
1554  if (CR.CaseBB == CurMBB)
1555    visitSwitchCase(CB);
1556  else
1557    SwitchCases.push_back(CB);
1558
1559  return true;
1560}
1561
1562/// handleBitTestsSwitchCase - if current case range has few destination and
1563/// range span less, than machine word bitwidth, encode case range into series
1564/// of masks and emit bit tests with these masks.
1565bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1566                                                    CaseRecVector& WorkList,
1567                                                    Value* SV,
1568                                                    MachineBasicBlock* Default){
1569  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1570
1571  Case& FrontCase = *CR.Range.first;
1572  Case& BackCase  = *(CR.Range.second-1);
1573
1574  // Get the MachineFunction which holds the current MBB.  This is used when
1575  // inserting any additional MBBs necessary to represent the switch.
1576  MachineFunction *CurMF = CurMBB->getParent();
1577
1578  unsigned numCmps = 0;
1579  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1580       I!=E; ++I) {
1581    // Single case counts one, case range - two.
1582    if (I->Low == I->High)
1583      numCmps +=1;
1584    else
1585      numCmps +=2;
1586  }
1587
1588  // Count unique destinations
1589  SmallSet<MachineBasicBlock*, 4> Dests;
1590  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1591    Dests.insert(I->BB);
1592    if (Dests.size() > 3)
1593      // Don't bother the code below, if there are too much unique destinations
1594      return false;
1595  }
1596  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1597       << "Total number of comparisons: " << numCmps << "\n";
1598
1599  // Compute span of values.
1600  Constant* minValue = FrontCase.Low;
1601  Constant* maxValue = BackCase.High;
1602  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1603                   cast<ConstantInt>(minValue)->getSExtValue();
1604  DOUT << "Compare range: " << range << "\n"
1605       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1606       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1607
1608  if (range>=IntPtrBits ||
1609      (!(Dests.size() == 1 && numCmps >= 3) &&
1610       !(Dests.size() == 2 && numCmps >= 5) &&
1611       !(Dests.size() >= 3 && numCmps >= 6)))
1612    return false;
1613
1614  DOUT << "Emitting bit tests\n";
1615  int64_t lowBound = 0;
1616
1617  // Optimize the case where all the case values fit in a
1618  // word without having to subtract minValue. In this case,
1619  // we can optimize away the subtraction.
1620  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1621      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1622    range = cast<ConstantInt>(maxValue)->getSExtValue();
1623  } else {
1624    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1625  }
1626
1627  CaseBitsVector CasesBits;
1628  unsigned i, count = 0;
1629
1630  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1631    MachineBasicBlock* Dest = I->BB;
1632    for (i = 0; i < count; ++i)
1633      if (Dest == CasesBits[i].BB)
1634        break;
1635
1636    if (i == count) {
1637      assert((count < 3) && "Too much destinations to test!");
1638      CasesBits.push_back(CaseBits(0, Dest, 0));
1639      count++;
1640    }
1641
1642    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1643    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1644
1645    for (uint64_t j = lo; j <= hi; j++) {
1646      CasesBits[i].Mask |=  1ULL << j;
1647      CasesBits[i].Bits++;
1648    }
1649
1650  }
1651  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1652
1653  SelectionDAGISel::BitTestInfo BTC;
1654
1655  // Figure out which block is immediately after the current one.
1656  MachineFunction::iterator BBI = CR.CaseBB;
1657  ++BBI;
1658
1659  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1660
1661  DOUT << "Cases:\n";
1662  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1663    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1664         << ", BB: " << CasesBits[i].BB << "\n";
1665
1666    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1667    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1668    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1669                                                CaseBB,
1670                                                CasesBits[i].BB));
1671  }
1672
1673  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1674                                     -1U, (CR.CaseBB == CurMBB),
1675                                     CR.CaseBB, Default, BTC);
1676
1677  if (CR.CaseBB == CurMBB)
1678    visitBitTestHeader(BTB);
1679
1680  BitTestCases.push_back(BTB);
1681
1682  return true;
1683}
1684
1685
1686// Clusterify - Transform simple list of Cases into list of CaseRange's
1687unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1688                                          const SwitchInst& SI) {
1689  unsigned numCmps = 0;
1690
1691  // Start with "simple" cases
1692  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1693    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1694    Cases.push_back(Case(SI.getSuccessorValue(i),
1695                         SI.getSuccessorValue(i),
1696                         SMBB));
1697  }
1698  sort(Cases.begin(), Cases.end(), CaseCmp());
1699
1700  // Merge case into clusters
1701  if (Cases.size()>=2)
1702    // Must recompute end() each iteration because it may be
1703    // invalidated by erase if we hold on to it
1704    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
1705      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1706      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1707      MachineBasicBlock* nextBB = J->BB;
1708      MachineBasicBlock* currentBB = I->BB;
1709
1710      // If the two neighboring cases go to the same destination, merge them
1711      // into a single case.
1712      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1713        I->High = J->High;
1714        J = Cases.erase(J);
1715      } else {
1716        I = J++;
1717      }
1718    }
1719
1720  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1721    if (I->Low != I->High)
1722      // A range counts double, since it requires two compares.
1723      ++numCmps;
1724  }
1725
1726  return numCmps;
1727}
1728
1729void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1730  // Figure out which block is immediately after the current one.
1731  MachineBasicBlock *NextBlock = 0;
1732  MachineFunction::iterator BBI = CurMBB;
1733
1734  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1735
1736  // If there is only the default destination, branch to it if it is not the
1737  // next basic block.  Otherwise, just fall through.
1738  if (SI.getNumOperands() == 2) {
1739    // Update machine-CFG edges.
1740
1741    // If this is not a fall-through branch, emit the branch.
1742    if (Default != NextBlock)
1743      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1744                              DAG.getBasicBlock(Default)));
1745
1746    CurMBB->addSuccessor(Default);
1747    return;
1748  }
1749
1750  // If there are any non-default case statements, create a vector of Cases
1751  // representing each one, and sort the vector so that we can efficiently
1752  // create a binary search tree from them.
1753  CaseVector Cases;
1754  unsigned numCmps = Clusterify(Cases, SI);
1755  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1756       << ". Total compares: " << numCmps << "\n";
1757
1758  // Get the Value to be switched on and default basic blocks, which will be
1759  // inserted into CaseBlock records, representing basic blocks in the binary
1760  // search tree.
1761  Value *SV = SI.getOperand(0);
1762
1763  // Push the initial CaseRec onto the worklist
1764  CaseRecVector WorkList;
1765  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1766
1767  while (!WorkList.empty()) {
1768    // Grab a record representing a case range to process off the worklist
1769    CaseRec CR = WorkList.back();
1770    WorkList.pop_back();
1771
1772    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1773      continue;
1774
1775    // If the range has few cases (two or less) emit a series of specific
1776    // tests.
1777    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1778      continue;
1779
1780    // If the switch has more than 5 blocks, and at least 40% dense, and the
1781    // target supports indirect branches, then emit a jump table rather than
1782    // lowering the switch to a binary tree of conditional branches.
1783    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1784      continue;
1785
1786    // Emit binary tree. We need to pick a pivot, and push left and right ranges
1787    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
1788    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
1789  }
1790}
1791
1792
1793void SelectionDAGLowering::visitSub(User &I) {
1794  // -0.0 - X --> fneg
1795  const Type *Ty = I.getType();
1796  if (isa<VectorType>(Ty)) {
1797    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
1798      const VectorType *DestTy = cast<VectorType>(I.getType());
1799      const Type *ElTy = DestTy->getElementType();
1800      if (ElTy->isFloatingPoint()) {
1801        unsigned VL = DestTy->getNumElements();
1802        std::vector<Constant*> NZ(VL, ConstantFP::get(ElTy, -0.0));
1803        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
1804        if (CV == CNZ) {
1805          SDOperand Op2 = getValue(I.getOperand(1));
1806          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1807          return;
1808        }
1809      }
1810    }
1811  }
1812  if (Ty->isFloatingPoint()) {
1813    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1814      if (CFP->isExactlyValue(-0.0)) {
1815        SDOperand Op2 = getValue(I.getOperand(1));
1816        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1817        return;
1818      }
1819  }
1820
1821  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
1822}
1823
1824void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
1825  SDOperand Op1 = getValue(I.getOperand(0));
1826  SDOperand Op2 = getValue(I.getOperand(1));
1827
1828  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
1829}
1830
1831void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1832  SDOperand Op1 = getValue(I.getOperand(0));
1833  SDOperand Op2 = getValue(I.getOperand(1));
1834
1835  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
1836      MVT::getSizeInBits(Op2.getValueType()))
1837    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
1838  else if (TLI.getShiftAmountTy() > Op2.getValueType())
1839    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1840
1841  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1842}
1843
1844void SelectionDAGLowering::visitICmp(User &I) {
1845  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
1846  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
1847    predicate = IC->getPredicate();
1848  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
1849    predicate = ICmpInst::Predicate(IC->getPredicate());
1850  SDOperand Op1 = getValue(I.getOperand(0));
1851  SDOperand Op2 = getValue(I.getOperand(1));
1852  ISD::CondCode Opcode;
1853  switch (predicate) {
1854    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
1855    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
1856    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
1857    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
1858    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
1859    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
1860    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
1861    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
1862    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
1863    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
1864    default:
1865      assert(!"Invalid ICmp predicate value");
1866      Opcode = ISD::SETEQ;
1867      break;
1868  }
1869  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1870}
1871
1872void SelectionDAGLowering::visitFCmp(User &I) {
1873  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
1874  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
1875    predicate = FC->getPredicate();
1876  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
1877    predicate = FCmpInst::Predicate(FC->getPredicate());
1878  SDOperand Op1 = getValue(I.getOperand(0));
1879  SDOperand Op2 = getValue(I.getOperand(1));
1880  ISD::CondCode Condition, FOC, FPC;
1881  switch (predicate) {
1882    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1883    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1884    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1885    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1886    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1887    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1888    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1889    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1890    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1891    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1892    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1893    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1894    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1895    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1896    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1897    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1898    default:
1899      assert(!"Invalid FCmp predicate value");
1900      FOC = FPC = ISD::SETFALSE;
1901      break;
1902  }
1903  if (FiniteOnlyFPMath())
1904    Condition = FOC;
1905  else
1906    Condition = FPC;
1907  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
1908}
1909
1910void SelectionDAGLowering::visitSelect(User &I) {
1911  SDOperand Cond     = getValue(I.getOperand(0));
1912  SDOperand TrueVal  = getValue(I.getOperand(1));
1913  SDOperand FalseVal = getValue(I.getOperand(2));
1914  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1915                           TrueVal, FalseVal));
1916}
1917
1918
1919void SelectionDAGLowering::visitTrunc(User &I) {
1920  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
1921  SDOperand N = getValue(I.getOperand(0));
1922  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1923  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1924}
1925
1926void SelectionDAGLowering::visitZExt(User &I) {
1927  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1928  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
1929  SDOperand N = getValue(I.getOperand(0));
1930  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1931  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1932}
1933
1934void SelectionDAGLowering::visitSExt(User &I) {
1935  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1936  // SExt also can't be a cast to bool for same reason. So, nothing much to do
1937  SDOperand N = getValue(I.getOperand(0));
1938  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1939  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1940}
1941
1942void SelectionDAGLowering::visitFPTrunc(User &I) {
1943  // FPTrunc is never a no-op cast, no need to check
1944  SDOperand N = getValue(I.getOperand(0));
1945  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1946  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1947}
1948
1949void SelectionDAGLowering::visitFPExt(User &I){
1950  // FPTrunc is never a no-op cast, no need to check
1951  SDOperand N = getValue(I.getOperand(0));
1952  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1953  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1954}
1955
1956void SelectionDAGLowering::visitFPToUI(User &I) {
1957  // FPToUI is never a no-op cast, no need to check
1958  SDOperand N = getValue(I.getOperand(0));
1959  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1960  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1961}
1962
1963void SelectionDAGLowering::visitFPToSI(User &I) {
1964  // FPToSI is never a no-op cast, no need to check
1965  SDOperand N = getValue(I.getOperand(0));
1966  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1967  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1968}
1969
1970void SelectionDAGLowering::visitUIToFP(User &I) {
1971  // UIToFP is never a no-op cast, no need to check
1972  SDOperand N = getValue(I.getOperand(0));
1973  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1974  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1975}
1976
1977void SelectionDAGLowering::visitSIToFP(User &I){
1978  // UIToFP is never a no-op cast, no need to check
1979  SDOperand N = getValue(I.getOperand(0));
1980  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1981  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1982}
1983
1984void SelectionDAGLowering::visitPtrToInt(User &I) {
1985  // What to do depends on the size of the integer and the size of the pointer.
1986  // We can either truncate, zero extend, or no-op, accordingly.
1987  SDOperand N = getValue(I.getOperand(0));
1988  MVT::ValueType SrcVT = N.getValueType();
1989  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1990  SDOperand Result;
1991  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1992    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
1993  else
1994    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1995    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
1996  setValue(&I, Result);
1997}
1998
1999void SelectionDAGLowering::visitIntToPtr(User &I) {
2000  // What to do depends on the size of the integer and the size of the pointer.
2001  // We can either truncate, zero extend, or no-op, accordingly.
2002  SDOperand N = getValue(I.getOperand(0));
2003  MVT::ValueType SrcVT = N.getValueType();
2004  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2005  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2006    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2007  else
2008    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2009    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2010}
2011
2012void SelectionDAGLowering::visitBitCast(User &I) {
2013  SDOperand N = getValue(I.getOperand(0));
2014  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2015
2016  // BitCast assures us that source and destination are the same size so this
2017  // is either a BIT_CONVERT or a no-op.
2018  if (DestVT != N.getValueType())
2019    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2020  else
2021    setValue(&I, N); // noop cast.
2022}
2023
2024void SelectionDAGLowering::visitInsertElement(User &I) {
2025  SDOperand InVec = getValue(I.getOperand(0));
2026  SDOperand InVal = getValue(I.getOperand(1));
2027  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2028                                getValue(I.getOperand(2)));
2029
2030  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2031                           TLI.getValueType(I.getType()),
2032                           InVec, InVal, InIdx));
2033}
2034
2035void SelectionDAGLowering::visitExtractElement(User &I) {
2036  SDOperand InVec = getValue(I.getOperand(0));
2037  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2038                                getValue(I.getOperand(1)));
2039  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2040                           TLI.getValueType(I.getType()), InVec, InIdx));
2041}
2042
2043void SelectionDAGLowering::visitShuffleVector(User &I) {
2044  SDOperand V1   = getValue(I.getOperand(0));
2045  SDOperand V2   = getValue(I.getOperand(1));
2046  SDOperand Mask = getValue(I.getOperand(2));
2047
2048  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2049                           TLI.getValueType(I.getType()),
2050                           V1, V2, Mask));
2051}
2052
2053
2054void SelectionDAGLowering::visitGetElementPtr(User &I) {
2055  SDOperand N = getValue(I.getOperand(0));
2056  const Type *Ty = I.getOperand(0)->getType();
2057
2058  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2059       OI != E; ++OI) {
2060    Value *Idx = *OI;
2061    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2062      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2063      if (Field) {
2064        // N = N + Offset
2065        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2066        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2067                        getIntPtrConstant(Offset));
2068      }
2069      Ty = StTy->getElementType(Field);
2070    } else {
2071      Ty = cast<SequentialType>(Ty)->getElementType();
2072
2073      // If this is a constant subscript, handle it quickly.
2074      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2075        if (CI->getZExtValue() == 0) continue;
2076        uint64_t Offs =
2077            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2078        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2079        continue;
2080      }
2081
2082      // N = N + Idx * ElementSize;
2083      uint64_t ElementSize = TD->getTypeSize(Ty);
2084      SDOperand IdxN = getValue(Idx);
2085
2086      // If the index is smaller or larger than intptr_t, truncate or extend
2087      // it.
2088      if (IdxN.getValueType() < N.getValueType()) {
2089        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2090      } else if (IdxN.getValueType() > N.getValueType())
2091        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2092
2093      // If this is a multiply by a power of two, turn it into a shl
2094      // immediately.  This is a very common case.
2095      if (isPowerOf2_64(ElementSize)) {
2096        unsigned Amt = Log2_64(ElementSize);
2097        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2098                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2099        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2100        continue;
2101      }
2102
2103      SDOperand Scale = getIntPtrConstant(ElementSize);
2104      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2105      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2106    }
2107  }
2108  setValue(&I, N);
2109}
2110
2111void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2112  // If this is a fixed sized alloca in the entry block of the function,
2113  // allocate it statically on the stack.
2114  if (FuncInfo.StaticAllocaMap.count(&I))
2115    return;   // getValue will auto-populate this.
2116
2117  const Type *Ty = I.getAllocatedType();
2118  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
2119  unsigned Align =
2120    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2121             I.getAlignment());
2122
2123  SDOperand AllocSize = getValue(I.getArraySize());
2124  MVT::ValueType IntPtr = TLI.getPointerTy();
2125  if (IntPtr < AllocSize.getValueType())
2126    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2127  else if (IntPtr > AllocSize.getValueType())
2128    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2129
2130  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2131                          getIntPtrConstant(TySize));
2132
2133  // Handle alignment.  If the requested alignment is less than or equal to the
2134  // stack alignment, ignore it and round the size of the allocation up to the
2135  // stack alignment size.  If the size is greater than the stack alignment, we
2136  // note this in the DYNAMIC_STACKALLOC node.
2137  unsigned StackAlign =
2138    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2139  if (Align <= StackAlign) {
2140    Align = 0;
2141    // Add SA-1 to the size.
2142    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2143                            getIntPtrConstant(StackAlign-1));
2144    // Mask out the low bits for alignment purposes.
2145    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2146                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2147  }
2148
2149  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2150  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2151                                                    MVT::Other);
2152  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2153  setValue(&I, DSA);
2154  DAG.setRoot(DSA.getValue(1));
2155
2156  // Inform the Frame Information that we have just allocated a variable-sized
2157  // object.
2158  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2159}
2160
2161void SelectionDAGLowering::visitLoad(LoadInst &I) {
2162  SDOperand Ptr = getValue(I.getOperand(0));
2163
2164  SDOperand Root;
2165  if (I.isVolatile())
2166    Root = getRoot();
2167  else {
2168    // Do not serialize non-volatile loads against each other.
2169    Root = DAG.getRoot();
2170  }
2171
2172  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2173                           Root, I.isVolatile(), I.getAlignment()));
2174}
2175
2176SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2177                                            const Value *SV, SDOperand Root,
2178                                            bool isVolatile,
2179                                            unsigned Alignment) {
2180  SDOperand L =
2181    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2182                isVolatile, Alignment);
2183
2184  if (isVolatile)
2185    DAG.setRoot(L.getValue(1));
2186  else
2187    PendingLoads.push_back(L.getValue(1));
2188
2189  return L;
2190}
2191
2192
2193void SelectionDAGLowering::visitStore(StoreInst &I) {
2194  Value *SrcV = I.getOperand(0);
2195  SDOperand Src = getValue(SrcV);
2196  SDOperand Ptr = getValue(I.getOperand(1));
2197  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2198                           I.isVolatile(), I.getAlignment()));
2199}
2200
2201/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2202/// access memory and has no other side effects at all.
2203static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2204#define GET_NO_MEMORY_INTRINSICS
2205#include "llvm/Intrinsics.gen"
2206#undef GET_NO_MEMORY_INTRINSICS
2207  return false;
2208}
2209
2210// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2211// have any side-effects or if it only reads memory.
2212static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2213#define GET_SIDE_EFFECT_INFO
2214#include "llvm/Intrinsics.gen"
2215#undef GET_SIDE_EFFECT_INFO
2216  return false;
2217}
2218
2219/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2220/// node.
2221void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2222                                                unsigned Intrinsic) {
2223  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2224  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2225
2226  // Build the operand list.
2227  SmallVector<SDOperand, 8> Ops;
2228  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2229    if (OnlyLoad) {
2230      // We don't need to serialize loads against other loads.
2231      Ops.push_back(DAG.getRoot());
2232    } else {
2233      Ops.push_back(getRoot());
2234    }
2235  }
2236
2237  // Add the intrinsic ID as an integer operand.
2238  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2239
2240  // Add all operands of the call to the operand list.
2241  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2242    SDOperand Op = getValue(I.getOperand(i));
2243    assert(TLI.isTypeLegal(Op.getValueType()) &&
2244           "Intrinsic uses a non-legal type?");
2245    Ops.push_back(Op);
2246  }
2247
2248  std::vector<MVT::ValueType> VTs;
2249  if (I.getType() != Type::VoidTy) {
2250    MVT::ValueType VT = TLI.getValueType(I.getType());
2251    if (MVT::isVector(VT)) {
2252      const VectorType *DestTy = cast<VectorType>(I.getType());
2253      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2254
2255      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2256      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2257    }
2258
2259    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2260    VTs.push_back(VT);
2261  }
2262  if (HasChain)
2263    VTs.push_back(MVT::Other);
2264
2265  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2266
2267  // Create the node.
2268  SDOperand Result;
2269  if (!HasChain)
2270    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2271                         &Ops[0], Ops.size());
2272  else if (I.getType() != Type::VoidTy)
2273    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2274                         &Ops[0], Ops.size());
2275  else
2276    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2277                         &Ops[0], Ops.size());
2278
2279  if (HasChain) {
2280    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2281    if (OnlyLoad)
2282      PendingLoads.push_back(Chain);
2283    else
2284      DAG.setRoot(Chain);
2285  }
2286  if (I.getType() != Type::VoidTy) {
2287    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2288      MVT::ValueType VT = TLI.getValueType(PTy);
2289      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2290    }
2291    setValue(&I, Result);
2292  }
2293}
2294
2295/// ExtractGlobalVariable - If V is a global variable, or a bitcast of one
2296/// (possibly constant folded), return it.  Otherwise return NULL.
2297static GlobalVariable *ExtractGlobalVariable (Value *V) {
2298  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2299    return GV;
2300  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
2301    if (CE->getOpcode() == Instruction::BitCast)
2302      return dyn_cast<GlobalVariable>(CE->getOperand(0));
2303    else if (CE->getOpcode() == Instruction::GetElementPtr) {
2304      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
2305        if (!CE->getOperand(i)->isNullValue())
2306          return NULL;
2307      return dyn_cast<GlobalVariable>(CE->getOperand(0));
2308    }
2309  }
2310  return NULL;
2311}
2312
2313/// ExtractTypeInfo - Extracts the type info from a value.
2314static GlobalVariable *ExtractTypeInfo (Value *V) {
2315  GlobalVariable *GV = ExtractGlobalVariable(V);
2316  assert (GV || isa<ConstantPointerNull>(V) &&
2317          "TypeInfo must be a global variable or NULL");
2318  return GV;
2319}
2320
2321/// addCatchInfo - Extract the personality and type infos from an eh.selector
2322/// call, and add them to the specified machine basic block.
2323static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2324                         MachineBasicBlock *MBB) {
2325  // Inform the MachineModuleInfo of the personality for this landing pad.
2326  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2327  assert(CE->getOpcode() == Instruction::BitCast &&
2328         isa<Function>(CE->getOperand(0)) &&
2329         "Personality should be a function");
2330  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2331
2332  // Gather all the type infos for this landing pad and pass them along to
2333  // MachineModuleInfo.
2334  std::vector<GlobalVariable *> TyInfo;
2335  unsigned N = I.getNumOperands();
2336
2337  for (unsigned i = N - 1; i > 2; --i) {
2338    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2339      unsigned FilterLength = CI->getZExtValue();
2340      unsigned FirstCatch = i + FilterLength + 1;
2341      assert (FirstCatch <= N && "Invalid filter length");
2342
2343      if (FirstCatch < N) {
2344        TyInfo.reserve(N - FirstCatch);
2345        for (unsigned j = FirstCatch; j < N; ++j)
2346          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2347        MMI->addCatchTypeInfo(MBB, TyInfo);
2348        TyInfo.clear();
2349      }
2350
2351      TyInfo.reserve(FilterLength);
2352      for (unsigned j = i + 1; j < FirstCatch; ++j)
2353        TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2354      MMI->addFilterTypeInfo(MBB, TyInfo);
2355      TyInfo.clear();
2356
2357      N = i;
2358    }
2359  }
2360
2361  if (N > 3) {
2362    TyInfo.reserve(N - 3);
2363    for (unsigned j = 3; j < N; ++j)
2364      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2365    MMI->addCatchTypeInfo(MBB, TyInfo);
2366  }
2367}
2368
2369/// propagateEHRegister - The specified EH register is required in a successor
2370/// of the EH landing pad. Propagate it (by adding it to livein) to all the
2371/// blocks in the paths between the landing pad and the specified block.
2372static void propagateEHRegister(MachineBasicBlock *MBB, unsigned EHReg,
2373                                SmallPtrSet<MachineBasicBlock*, 8> Visited) {
2374  if (MBB->isLandingPad() || !Visited.insert(MBB))
2375    return;
2376
2377  MBB->addLiveIn(EHReg);
2378  for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
2379         E = MBB->pred_end(); PI != E; ++PI)
2380    propagateEHRegister(*PI, EHReg, Visited);
2381}
2382
2383static void propagateEHRegister(MachineBasicBlock *MBB, unsigned EHReg) {
2384  SmallPtrSet<MachineBasicBlock*, 8> Visited;
2385  propagateEHRegister(MBB, EHReg, Visited);
2386}
2387
2388/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2389/// we want to emit this as a call to a named external function, return the name
2390/// otherwise lower it and return null.
2391const char *
2392SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2393  switch (Intrinsic) {
2394  default:
2395    // By default, turn this into a target intrinsic node.
2396    visitTargetIntrinsic(I, Intrinsic);
2397    return 0;
2398  case Intrinsic::vastart:  visitVAStart(I); return 0;
2399  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2400  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2401  case Intrinsic::returnaddress:
2402    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2403                             getValue(I.getOperand(1))));
2404    return 0;
2405  case Intrinsic::frameaddress:
2406    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2407                             getValue(I.getOperand(1))));
2408    return 0;
2409  case Intrinsic::setjmp:
2410    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2411    break;
2412  case Intrinsic::longjmp:
2413    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2414    break;
2415  case Intrinsic::memcpy_i32:
2416  case Intrinsic::memcpy_i64:
2417    visitMemIntrinsic(I, ISD::MEMCPY);
2418    return 0;
2419  case Intrinsic::memset_i32:
2420  case Intrinsic::memset_i64:
2421    visitMemIntrinsic(I, ISD::MEMSET);
2422    return 0;
2423  case Intrinsic::memmove_i32:
2424  case Intrinsic::memmove_i64:
2425    visitMemIntrinsic(I, ISD::MEMMOVE);
2426    return 0;
2427
2428  case Intrinsic::dbg_stoppoint: {
2429    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2430    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2431    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2432      SDOperand Ops[5];
2433
2434      Ops[0] = getRoot();
2435      Ops[1] = getValue(SPI.getLineValue());
2436      Ops[2] = getValue(SPI.getColumnValue());
2437
2438      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2439      assert(DD && "Not a debug information descriptor");
2440      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2441
2442      Ops[3] = DAG.getString(CompileUnit->getFileName());
2443      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2444
2445      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2446    }
2447
2448    return 0;
2449  }
2450  case Intrinsic::dbg_region_start: {
2451    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2452    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2453    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2454      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2455      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2456                              DAG.getConstant(LabelID, MVT::i32)));
2457    }
2458
2459    return 0;
2460  }
2461  case Intrinsic::dbg_region_end: {
2462    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2463    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2464    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2465      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2466      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2467                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2468    }
2469
2470    return 0;
2471  }
2472  case Intrinsic::dbg_func_start: {
2473    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2474    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2475    if (MMI && FSI.getSubprogram() &&
2476        MMI->Verify(FSI.getSubprogram())) {
2477      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2478      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2479                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2480    }
2481
2482    return 0;
2483  }
2484  case Intrinsic::dbg_declare: {
2485    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2486    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2487    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2488      SDOperand AddressOp  = getValue(DI.getAddress());
2489      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2490        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2491    }
2492
2493    return 0;
2494  }
2495
2496  case Intrinsic::eh_exception: {
2497    if (ExceptionHandling) {
2498      if (!CurMBB->isLandingPad() && TLI.getExceptionAddressRegister())
2499          propagateEHRegister(CurMBB, TLI.getExceptionAddressRegister());
2500
2501      // Insert the EXCEPTIONADDR instruction.
2502      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2503      SDOperand Ops[1];
2504      Ops[0] = DAG.getRoot();
2505      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2506      setValue(&I, Op);
2507      DAG.setRoot(Op.getValue(1));
2508    } else {
2509      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2510    }
2511    return 0;
2512  }
2513
2514  case Intrinsic::eh_selector:{
2515    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2516
2517    if (ExceptionHandling && MMI) {
2518      if (CurMBB->isLandingPad())
2519        addCatchInfo(I, MMI, CurMBB);
2520      else {
2521#ifndef NDEBUG
2522        FuncInfo.CatchInfoLost.insert(&I);
2523#endif
2524        if (TLI.getExceptionSelectorRegister())
2525          propagateEHRegister(CurMBB, TLI.getExceptionSelectorRegister());
2526      }
2527
2528      // Insert the EHSELECTION instruction.
2529      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2530      SDOperand Ops[2];
2531      Ops[0] = getValue(I.getOperand(1));
2532      Ops[1] = getRoot();
2533      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2534      setValue(&I, Op);
2535      DAG.setRoot(Op.getValue(1));
2536    } else {
2537      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2538    }
2539
2540    return 0;
2541  }
2542
2543  case Intrinsic::eh_typeid_for: {
2544    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2545
2546    if (MMI) {
2547      // Find the type id for the given typeinfo.
2548      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2549
2550      unsigned TypeID = MMI->getTypeIDFor(GV);
2551      setValue(&I, DAG.getConstant(TypeID, MVT::i32));
2552    } else {
2553      setValue(&I, DAG.getConstant(0, MVT::i32));
2554    }
2555
2556    return 0;
2557  }
2558
2559  case Intrinsic::sqrt_f32:
2560  case Intrinsic::sqrt_f64:
2561    setValue(&I, DAG.getNode(ISD::FSQRT,
2562                             getValue(I.getOperand(1)).getValueType(),
2563                             getValue(I.getOperand(1))));
2564    return 0;
2565  case Intrinsic::powi_f32:
2566  case Intrinsic::powi_f64:
2567    setValue(&I, DAG.getNode(ISD::FPOWI,
2568                             getValue(I.getOperand(1)).getValueType(),
2569                             getValue(I.getOperand(1)),
2570                             getValue(I.getOperand(2))));
2571    return 0;
2572  case Intrinsic::pcmarker: {
2573    SDOperand Tmp = getValue(I.getOperand(1));
2574    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2575    return 0;
2576  }
2577  case Intrinsic::readcyclecounter: {
2578    SDOperand Op = getRoot();
2579    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2580                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2581                                &Op, 1);
2582    setValue(&I, Tmp);
2583    DAG.setRoot(Tmp.getValue(1));
2584    return 0;
2585  }
2586  case Intrinsic::part_select: {
2587    // Currently not implemented: just abort
2588    assert(0 && "part_select intrinsic not implemented");
2589    abort();
2590  }
2591  case Intrinsic::part_set: {
2592    // Currently not implemented: just abort
2593    assert(0 && "part_set intrinsic not implemented");
2594    abort();
2595  }
2596  case Intrinsic::bswap:
2597    setValue(&I, DAG.getNode(ISD::BSWAP,
2598                             getValue(I.getOperand(1)).getValueType(),
2599                             getValue(I.getOperand(1))));
2600    return 0;
2601  case Intrinsic::cttz: {
2602    SDOperand Arg = getValue(I.getOperand(1));
2603    MVT::ValueType Ty = Arg.getValueType();
2604    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2605    if (Ty < MVT::i32)
2606      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2607    else if (Ty > MVT::i32)
2608      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2609    setValue(&I, result);
2610    return 0;
2611  }
2612  case Intrinsic::ctlz: {
2613    SDOperand Arg = getValue(I.getOperand(1));
2614    MVT::ValueType Ty = Arg.getValueType();
2615    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2616    if (Ty < MVT::i32)
2617      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2618    else if (Ty > MVT::i32)
2619      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2620    setValue(&I, result);
2621    return 0;
2622  }
2623  case Intrinsic::ctpop: {
2624    SDOperand Arg = getValue(I.getOperand(1));
2625    MVT::ValueType Ty = Arg.getValueType();
2626    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2627    if (Ty < MVT::i32)
2628      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2629    else if (Ty > MVT::i32)
2630      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2631    setValue(&I, result);
2632    return 0;
2633  }
2634  case Intrinsic::stacksave: {
2635    SDOperand Op = getRoot();
2636    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2637              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2638    setValue(&I, Tmp);
2639    DAG.setRoot(Tmp.getValue(1));
2640    return 0;
2641  }
2642  case Intrinsic::stackrestore: {
2643    SDOperand Tmp = getValue(I.getOperand(1));
2644    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2645    return 0;
2646  }
2647  case Intrinsic::prefetch:
2648    // FIXME: Currently discarding prefetches.
2649    return 0;
2650
2651  case Intrinsic::var_annotation:
2652    // Discard annotate attributes
2653    return 0;
2654  }
2655}
2656
2657
2658void SelectionDAGLowering::LowerCallTo(Instruction &I,
2659                                       const Type *CalledValueTy,
2660                                       unsigned CallingConv,
2661                                       bool IsTailCall,
2662                                       SDOperand Callee, unsigned OpIdx,
2663                                       MachineBasicBlock *LandingPad) {
2664  const PointerType *PT = cast<PointerType>(CalledValueTy);
2665  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2666  const ParamAttrsList *Attrs = FTy->getParamAttrs();
2667  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2668  unsigned BeginLabel = 0, EndLabel = 0;
2669
2670  TargetLowering::ArgListTy Args;
2671  TargetLowering::ArgListEntry Entry;
2672  Args.reserve(I.getNumOperands());
2673  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2674    Value *Arg = I.getOperand(i);
2675    SDOperand ArgNode = getValue(Arg);
2676    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2677
2678    unsigned attrInd = i - OpIdx + 1;
2679    Entry.isSExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::SExt);
2680    Entry.isZExt  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::ZExt);
2681    Entry.isInReg = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::InReg);
2682    Entry.isSRet  = Attrs && Attrs->paramHasAttr(attrInd, ParamAttr::StructRet);
2683    Args.push_back(Entry);
2684  }
2685
2686  if (ExceptionHandling && MMI) {
2687    // Insert a label before the invoke call to mark the try range.  This can be
2688    // used to detect deletion of the invoke via the MachineModuleInfo.
2689    BeginLabel = MMI->NextLabelID();
2690    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2691                            DAG.getConstant(BeginLabel, MVT::i32)));
2692  }
2693
2694  std::pair<SDOperand,SDOperand> Result =
2695    TLI.LowerCallTo(getRoot(), I.getType(),
2696                    Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2697                    FTy->isVarArg(), CallingConv, IsTailCall,
2698                    Callee, Args, DAG);
2699  if (I.getType() != Type::VoidTy)
2700    setValue(&I, Result.first);
2701  DAG.setRoot(Result.second);
2702
2703  if (ExceptionHandling && MMI) {
2704    // Insert a label at the end of the invoke call to mark the try range.  This
2705    // can be used to detect deletion of the invoke via the MachineModuleInfo.
2706    EndLabel = MMI->NextLabelID();
2707    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2708                            DAG.getConstant(EndLabel, MVT::i32)));
2709
2710    // Inform MachineModuleInfo of range.
2711    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
2712  }
2713}
2714
2715
2716void SelectionDAGLowering::visitCall(CallInst &I) {
2717  const char *RenameFn = 0;
2718  if (Function *F = I.getCalledFunction()) {
2719    if (F->isDeclaration())
2720      if (unsigned IID = F->getIntrinsicID()) {
2721        RenameFn = visitIntrinsicCall(I, IID);
2722        if (!RenameFn)
2723          return;
2724      } else {    // Not an LLVM intrinsic.
2725        const std::string &Name = F->getName();
2726        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2727          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2728              I.getOperand(1)->getType()->isFloatingPoint() &&
2729              I.getType() == I.getOperand(1)->getType() &&
2730              I.getType() == I.getOperand(2)->getType()) {
2731            SDOperand LHS = getValue(I.getOperand(1));
2732            SDOperand RHS = getValue(I.getOperand(2));
2733            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2734                                     LHS, RHS));
2735            return;
2736          }
2737        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2738          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2739              I.getOperand(1)->getType()->isFloatingPoint() &&
2740              I.getType() == I.getOperand(1)->getType()) {
2741            SDOperand Tmp = getValue(I.getOperand(1));
2742            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2743            return;
2744          }
2745        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2746          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2747              I.getOperand(1)->getType()->isFloatingPoint() &&
2748              I.getType() == I.getOperand(1)->getType()) {
2749            SDOperand Tmp = getValue(I.getOperand(1));
2750            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2751            return;
2752          }
2753        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2754          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2755              I.getOperand(1)->getType()->isFloatingPoint() &&
2756              I.getType() == I.getOperand(1)->getType()) {
2757            SDOperand Tmp = getValue(I.getOperand(1));
2758            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2759            return;
2760          }
2761        }
2762      }
2763  } else if (isa<InlineAsm>(I.getOperand(0))) {
2764    visitInlineAsm(I);
2765    return;
2766  }
2767
2768  SDOperand Callee;
2769  if (!RenameFn)
2770    Callee = getValue(I.getOperand(0));
2771  else
2772    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2773
2774  LowerCallTo(I, I.getCalledValue()->getType(),
2775              I.getCallingConv(),
2776              I.isTailCall(),
2777              Callee,
2778              1);
2779}
2780
2781
2782/// getCopyFromParts - Create a value that contains the
2783/// specified legal parts combined into the value they represent.
2784static SDOperand getCopyFromParts(SelectionDAG &DAG,
2785                                  const SDOperand *Parts,
2786                                  unsigned NumParts,
2787                                  MVT::ValueType PartVT,
2788                                  MVT::ValueType ValueVT,
2789                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
2790  if (!MVT::isVector(ValueVT) || NumParts == 1) {
2791    SDOperand Val = Parts[0];
2792
2793    // If the value was expanded, copy from the top part.
2794    if (NumParts > 1) {
2795      assert(NumParts == 2 &&
2796             "Cannot expand to more than 2 elts yet!");
2797      SDOperand Hi = Parts[1];
2798      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
2799    }
2800
2801    // Otherwise, if the value was promoted or extended, truncate it to the
2802    // appropriate type.
2803    if (PartVT == ValueVT)
2804      return Val;
2805
2806    if (MVT::isVector(PartVT)) {
2807      assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
2808      return DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
2809    }
2810
2811    if (MVT::isInteger(PartVT) &&
2812        MVT::isInteger(ValueVT)) {
2813      if (ValueVT < PartVT) {
2814        // For a truncate, see if we have any information to
2815        // indicate whether the truncated bits will always be
2816        // zero or sign-extension.
2817        if (AssertOp != ISD::DELETED_NODE)
2818          Val = DAG.getNode(AssertOp, PartVT, Val,
2819                            DAG.getValueType(ValueVT));
2820        return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
2821      } else {
2822        return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
2823      }
2824    }
2825
2826    if (MVT::isFloatingPoint(PartVT) &&
2827        MVT::isFloatingPoint(ValueVT))
2828      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
2829
2830    if (MVT::getSizeInBits(PartVT) ==
2831        MVT::getSizeInBits(ValueVT))
2832      return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
2833
2834    assert(0 && "Unknown mismatch!");
2835  }
2836
2837  // Handle a multi-element vector.
2838  MVT::ValueType IntermediateVT, RegisterVT;
2839  unsigned NumIntermediates;
2840  unsigned NumRegs =
2841    DAG.getTargetLoweringInfo()
2842      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
2843                              RegisterVT);
2844
2845  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
2846  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
2847  assert(RegisterVT == Parts[0].getValueType() &&
2848         "Part type doesn't match part!");
2849
2850  // Assemble the parts into intermediate operands.
2851  SmallVector<SDOperand, 8> Ops(NumIntermediates);
2852  if (NumIntermediates == NumParts) {
2853    // If the register was not expanded, truncate or copy the value,
2854    // as appropriate.
2855    for (unsigned i = 0; i != NumParts; ++i)
2856      Ops[i] = getCopyFromParts(DAG, &Parts[i], 1, PartVT, IntermediateVT);
2857  } else if (NumParts > 0) {
2858    // If the intermediate type was expanded, build the intermediate operands
2859    // from the parts.
2860    assert(NumIntermediates % NumParts == 0 &&
2861           "Must expand into a divisible number of parts!");
2862    unsigned Factor = NumIntermediates / NumParts;
2863    for (unsigned i = 0; i != NumIntermediates; ++i)
2864      Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
2865                                PartVT, IntermediateVT);
2866  }
2867
2868  // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
2869  // operands.
2870  return DAG.getNode(MVT::isVector(IntermediateVT) ?
2871                       ISD::CONCAT_VECTORS :
2872                       ISD::BUILD_VECTOR,
2873                     ValueVT, &Ops[0], NumParts);
2874}
2875
2876/// getCopyToParts - Create a series of nodes that contain the
2877/// specified value split into legal parts.
2878static void getCopyToParts(SelectionDAG &DAG,
2879                           SDOperand Val,
2880                           SDOperand *Parts,
2881                           unsigned NumParts,
2882                           MVT::ValueType PartVT) {
2883  MVT::ValueType ValueVT = Val.getValueType();
2884
2885  if (!MVT::isVector(ValueVT) || NumParts == 1) {
2886    // If the value was expanded, copy from the parts.
2887    if (NumParts > 1) {
2888      for (unsigned i = 0; i != NumParts; ++i)
2889        Parts[i] = DAG.getNode(ISD::EXTRACT_ELEMENT, PartVT, Val,
2890                               DAG.getConstant(i, MVT::i32));
2891      return;
2892    }
2893
2894    // If there is a single part and the types differ, this must be
2895    // a promotion.
2896    if (PartVT != ValueVT) {
2897      if (MVT::isVector(PartVT)) {
2898        assert(MVT::isVector(ValueVT) &&
2899               "Not a vector-vector cast?");
2900        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
2901      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
2902        if (PartVT < ValueVT)
2903          Val = DAG.getNode(ISD::TRUNCATE, PartVT, Val);
2904        else
2905          Val = DAG.getNode(ISD::ANY_EXTEND, PartVT, Val);
2906      } else if (MVT::isFloatingPoint(PartVT) &&
2907                 MVT::isFloatingPoint(ValueVT)) {
2908        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
2909      } else if (MVT::getSizeInBits(PartVT) ==
2910                 MVT::getSizeInBits(ValueVT)) {
2911        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
2912      } else {
2913        assert(0 && "Unknown mismatch!");
2914      }
2915    }
2916    Parts[0] = Val;
2917    return;
2918  }
2919
2920  // Handle a multi-element vector.
2921  MVT::ValueType IntermediateVT, RegisterVT;
2922  unsigned NumIntermediates;
2923  unsigned NumRegs =
2924    DAG.getTargetLoweringInfo()
2925      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
2926                              RegisterVT);
2927  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
2928
2929  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
2930  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
2931
2932  // Split the vector into intermediate operands.
2933  SmallVector<SDOperand, 8> Ops(NumIntermediates);
2934  for (unsigned i = 0; i != NumIntermediates; ++i)
2935    if (MVT::isVector(IntermediateVT))
2936      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
2937                           IntermediateVT, Val,
2938                           DAG.getConstant(i * (NumElements / NumIntermediates),
2939                                           MVT::i32));
2940    else
2941      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2942                           IntermediateVT, Val,
2943                           DAG.getConstant(i, MVT::i32));
2944
2945  // Split the intermediate operands into legal parts.
2946  if (NumParts == NumIntermediates) {
2947    // If the register was not expanded, promote or copy the value,
2948    // as appropriate.
2949    for (unsigned i = 0; i != NumParts; ++i)
2950      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
2951  } else if (NumParts > 0) {
2952    // If the intermediate type was expanded, split each the value into
2953    // legal parts.
2954    assert(NumParts % NumIntermediates == 0 &&
2955           "Must expand into a divisible number of parts!");
2956    unsigned Factor = NumParts / NumIntermediates;
2957    for (unsigned i = 0; i != NumIntermediates; ++i)
2958      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
2959  }
2960}
2961
2962
2963/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
2964/// this value and returns the result as a ValueVT value.  This uses
2965/// Chain/Flag as the input and updates them for the output Chain/Flag.
2966/// If the Flag pointer is NULL, no flag is used.
2967SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2968                                        SDOperand &Chain, SDOperand *Flag)const{
2969  // Get the list of registers, in the appropriate order.
2970  std::vector<unsigned> R(Regs);
2971  if (!DAG.getTargetLoweringInfo().isLittleEndian())
2972    std::reverse(R.begin(), R.end());
2973
2974  // Copy the legal parts from the registers.
2975  unsigned NumParts = Regs.size();
2976  SmallVector<SDOperand, 8> Parts(NumParts);
2977  for (unsigned i = 0; i != NumParts; ++i) {
2978    SDOperand Part = Flag ?
2979                     DAG.getCopyFromReg(Chain, Regs[i], RegVT, *Flag) :
2980                     DAG.getCopyFromReg(Chain, Regs[i], RegVT);
2981    Chain = Part.getValue(1);
2982    if (Flag)
2983      *Flag = Part.getValue(2);
2984    Parts[i] = Part;
2985  }
2986
2987  // Assemble the legal parts into the final value.
2988  return getCopyFromParts(DAG, &Parts[0], NumParts, RegVT, ValueVT);
2989}
2990
2991/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2992/// specified value into the registers specified by this object.  This uses
2993/// Chain/Flag as the input and updates them for the output Chain/Flag.
2994/// If the Flag pointer is NULL, no flag is used.
2995void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2996                                 SDOperand &Chain, SDOperand *Flag) const {
2997  // Get the list of registers, in the appropriate order.
2998  std::vector<unsigned> R(Regs);
2999  if (!DAG.getTargetLoweringInfo().isLittleEndian())
3000    std::reverse(R.begin(), R.end());
3001
3002  // Get the list of the values's legal parts.
3003  unsigned NumParts = Regs.size();
3004  SmallVector<SDOperand, 8> Parts(NumParts);
3005  getCopyToParts(DAG, Val, &Parts[0], NumParts, RegVT);
3006
3007  // Copy the parts into the registers.
3008  for (unsigned i = 0; i != NumParts; ++i) {
3009    SDOperand Part = Flag ?
3010                     DAG.getCopyToReg(Chain, R[i], Parts[i], *Flag) :
3011                     DAG.getCopyToReg(Chain, R[i], Parts[i]);
3012    Chain = Part.getValue(0);
3013    if (Flag)
3014      *Flag = Part.getValue(1);
3015  }
3016}
3017
3018/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3019/// operand list.  This adds the code marker and includes the number of
3020/// values added into it.
3021void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3022                                        std::vector<SDOperand> &Ops) const {
3023  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3024  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3025  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
3026    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
3027}
3028
3029/// isAllocatableRegister - If the specified register is safe to allocate,
3030/// i.e. it isn't a stack pointer or some other special register, return the
3031/// register class for the register.  Otherwise, return null.
3032static const TargetRegisterClass *
3033isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3034                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
3035  MVT::ValueType FoundVT = MVT::Other;
3036  const TargetRegisterClass *FoundRC = 0;
3037  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
3038       E = MRI->regclass_end(); RCI != E; ++RCI) {
3039    MVT::ValueType ThisVT = MVT::Other;
3040
3041    const TargetRegisterClass *RC = *RCI;
3042    // If none of the the value types for this register class are valid, we
3043    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3044    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3045         I != E; ++I) {
3046      if (TLI.isTypeLegal(*I)) {
3047        // If we have already found this register in a different register class,
3048        // choose the one with the largest VT specified.  For example, on
3049        // PowerPC, we favor f64 register classes over f32.
3050        if (FoundVT == MVT::Other ||
3051            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3052          ThisVT = *I;
3053          break;
3054        }
3055      }
3056    }
3057
3058    if (ThisVT == MVT::Other) continue;
3059
3060    // NOTE: This isn't ideal.  In particular, this might allocate the
3061    // frame pointer in functions that need it (due to them not being taken
3062    // out of allocation, because a variable sized allocation hasn't been seen
3063    // yet).  This is a slight code pessimization, but should still work.
3064    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3065         E = RC->allocation_order_end(MF); I != E; ++I)
3066      if (*I == Reg) {
3067        // We found a matching register class.  Keep looking at others in case
3068        // we find one with larger registers that this physreg is also in.
3069        FoundRC = RC;
3070        FoundVT = ThisVT;
3071        break;
3072      }
3073  }
3074  return FoundRC;
3075}
3076
3077
3078namespace {
3079/// AsmOperandInfo - This contains information for each constraint that we are
3080/// lowering.
3081struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
3082  /// ConstraintCode - This contains the actual string for the code, like "m".
3083  std::string ConstraintCode;
3084
3085  /// ConstraintType - Information about the constraint code, e.g. Register,
3086  /// RegisterClass, Memory, Other, Unknown.
3087  TargetLowering::ConstraintType ConstraintType;
3088
3089  /// CallOperand/CallOperandval - If this is the result output operand or a
3090  /// clobber, this is null, otherwise it is the incoming operand to the
3091  /// CallInst.  This gets modified as the asm is processed.
3092  SDOperand CallOperand;
3093  Value *CallOperandVal;
3094
3095  /// ConstraintVT - The ValueType for the operand value.
3096  MVT::ValueType ConstraintVT;
3097
3098  /// AssignedRegs - If this is a register or register class operand, this
3099  /// contains the set of register corresponding to the operand.
3100  RegsForValue AssignedRegs;
3101
3102  AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3103    : InlineAsm::ConstraintInfo(info),
3104      ConstraintType(TargetLowering::C_Unknown),
3105      CallOperand(0,0), CallOperandVal(0), ConstraintVT(MVT::Other) {
3106  }
3107
3108  void ComputeConstraintToUse(const TargetLowering &TLI);
3109
3110  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3111  /// busy in OutputRegs/InputRegs.
3112  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3113                         std::set<unsigned> &OutputRegs,
3114                         std::set<unsigned> &InputRegs) const {
3115     if (isOutReg)
3116       OutputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3117     if (isInReg)
3118       InputRegs.insert(AssignedRegs.Regs.begin(), AssignedRegs.Regs.end());
3119   }
3120};
3121} // end anon namespace.
3122
3123/// getConstraintGenerality - Return an integer indicating how general CT is.
3124static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3125  switch (CT) {
3126    default: assert(0 && "Unknown constraint type!");
3127    case TargetLowering::C_Other:
3128    case TargetLowering::C_Unknown:
3129      return 0;
3130    case TargetLowering::C_Register:
3131      return 1;
3132    case TargetLowering::C_RegisterClass:
3133      return 2;
3134    case TargetLowering::C_Memory:
3135      return 3;
3136  }
3137}
3138
3139void AsmOperandInfo::ComputeConstraintToUse(const TargetLowering &TLI) {
3140  assert(!Codes.empty() && "Must have at least one constraint");
3141
3142  std::string *Current = &Codes[0];
3143  TargetLowering::ConstraintType CurType = TLI.getConstraintType(*Current);
3144  if (Codes.size() == 1) {   // Single-letter constraints ('r') are very common.
3145    ConstraintCode = *Current;
3146    ConstraintType = CurType;
3147    return;
3148  }
3149
3150  unsigned CurGenerality = getConstraintGenerality(CurType);
3151
3152  // If we have multiple constraints, try to pick the most general one ahead
3153  // of time.  This isn't a wonderful solution, but handles common cases.
3154  for (unsigned j = 1, e = Codes.size(); j != e; ++j) {
3155    TargetLowering::ConstraintType ThisType = TLI.getConstraintType(Codes[j]);
3156    unsigned ThisGenerality = getConstraintGenerality(ThisType);
3157    if (ThisGenerality > CurGenerality) {
3158      // This constraint letter is more general than the previous one,
3159      // use it.
3160      CurType = ThisType;
3161      Current = &Codes[j];
3162      CurGenerality = ThisGenerality;
3163    }
3164  }
3165
3166  ConstraintCode = *Current;
3167  ConstraintType = CurType;
3168}
3169
3170
3171void SelectionDAGLowering::
3172GetRegistersForValue(AsmOperandInfo &OpInfo, bool HasEarlyClobber,
3173                     std::set<unsigned> &OutputRegs,
3174                     std::set<unsigned> &InputRegs) {
3175  // Compute whether this value requires an input register, an output register,
3176  // or both.
3177  bool isOutReg = false;
3178  bool isInReg = false;
3179  switch (OpInfo.Type) {
3180  case InlineAsm::isOutput:
3181    isOutReg = true;
3182
3183    // If this is an early-clobber output, or if there is an input
3184    // constraint that matches this, we need to reserve the input register
3185    // so no other inputs allocate to it.
3186    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3187    break;
3188  case InlineAsm::isInput:
3189    isInReg = true;
3190    isOutReg = false;
3191    break;
3192  case InlineAsm::isClobber:
3193    isOutReg = true;
3194    isInReg = true;
3195    break;
3196  }
3197
3198
3199  MachineFunction &MF = DAG.getMachineFunction();
3200  std::vector<unsigned> Regs;
3201
3202  // If this is a constraint for a single physreg, or a constraint for a
3203  // register class, find it.
3204  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3205    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3206                                     OpInfo.ConstraintVT);
3207
3208  unsigned NumRegs = 1;
3209  if (OpInfo.ConstraintVT != MVT::Other)
3210    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3211  MVT::ValueType RegVT;
3212  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3213
3214
3215  // If this is a constraint for a specific physical register, like {r17},
3216  // assign it now.
3217  if (PhysReg.first) {
3218    if (OpInfo.ConstraintVT == MVT::Other)
3219      ValueVT = *PhysReg.second->vt_begin();
3220
3221    // Get the actual register value type.  This is important, because the user
3222    // may have asked for (e.g.) the AX register in i32 type.  We need to
3223    // remember that AX is actually i16 to get the right extension.
3224    RegVT = *PhysReg.second->vt_begin();
3225
3226    // This is a explicit reference to a physical register.
3227    Regs.push_back(PhysReg.first);
3228
3229    // If this is an expanded reference, add the rest of the regs to Regs.
3230    if (NumRegs != 1) {
3231      TargetRegisterClass::iterator I = PhysReg.second->begin();
3232      TargetRegisterClass::iterator E = PhysReg.second->end();
3233      for (; *I != PhysReg.first; ++I)
3234        assert(I != E && "Didn't find reg!");
3235
3236      // Already added the first reg.
3237      --NumRegs; ++I;
3238      for (; NumRegs; --NumRegs, ++I) {
3239        assert(I != E && "Ran out of registers to allocate!");
3240        Regs.push_back(*I);
3241      }
3242    }
3243    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3244    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3245    return;
3246  }
3247
3248  // Otherwise, if this was a reference to an LLVM register class, create vregs
3249  // for this reference.
3250  std::vector<unsigned> RegClassRegs;
3251  const TargetRegisterClass *RC = PhysReg.second;
3252  if (RC) {
3253    // If this is an early clobber or tied register, our regalloc doesn't know
3254    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3255    // and let the regalloc do the right thing.
3256    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3257        // If there is some other early clobber and this is an input register,
3258        // then we are forced to pre-allocate the input reg so it doesn't
3259        // conflict with the earlyclobber.
3260        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3261      RegVT = *PhysReg.second->vt_begin();
3262
3263      if (OpInfo.ConstraintVT == MVT::Other)
3264        ValueVT = RegVT;
3265
3266      // Create the appropriate number of virtual registers.
3267      SSARegMap *RegMap = MF.getSSARegMap();
3268      for (; NumRegs; --NumRegs)
3269        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3270
3271      OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
3272      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3273      return;
3274    }
3275
3276    // Otherwise, we can't allocate it.  Let the code below figure out how to
3277    // maintain these constraints.
3278    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3279
3280  } else {
3281    // This is a reference to a register class that doesn't directly correspond
3282    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3283    // registers from the class.
3284    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3285                                                         OpInfo.ConstraintVT);
3286  }
3287
3288  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3289  unsigned NumAllocated = 0;
3290  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3291    unsigned Reg = RegClassRegs[i];
3292    // See if this register is available.
3293    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3294        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3295      // Make sure we find consecutive registers.
3296      NumAllocated = 0;
3297      continue;
3298    }
3299
3300    // Check to see if this register is allocatable (i.e. don't give out the
3301    // stack pointer).
3302    if (RC == 0) {
3303      RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3304      if (!RC) {        // Couldn't allocate this register.
3305        // Reset NumAllocated to make sure we return consecutive registers.
3306        NumAllocated = 0;
3307        continue;
3308      }
3309    }
3310
3311    // Okay, this register is good, we can use it.
3312    ++NumAllocated;
3313
3314    // If we allocated enough consecutive registers, succeed.
3315    if (NumAllocated == NumRegs) {
3316      unsigned RegStart = (i-NumAllocated)+1;
3317      unsigned RegEnd   = i+1;
3318      // Mark all of the allocated registers used.
3319      for (unsigned i = RegStart; i != RegEnd; ++i)
3320        Regs.push_back(RegClassRegs[i]);
3321
3322      OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(),
3323                                         OpInfo.ConstraintVT);
3324      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs);
3325      return;
3326    }
3327  }
3328
3329  // Otherwise, we couldn't allocate enough registers for this.
3330  return;
3331}
3332
3333
3334/// visitInlineAsm - Handle a call to an InlineAsm object.
3335///
3336void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
3337  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
3338
3339  /// ConstraintOperands - Information about all of the constraints.
3340  std::vector<AsmOperandInfo> ConstraintOperands;
3341
3342  SDOperand Chain = getRoot();
3343  SDOperand Flag;
3344
3345  std::set<unsigned> OutputRegs, InputRegs;
3346
3347  // Do a prepass over the constraints, canonicalizing them, and building up the
3348  // ConstraintOperands list.
3349  std::vector<InlineAsm::ConstraintInfo>
3350    ConstraintInfos = IA->ParseConstraints();
3351
3352  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3353  // constraint.  If so, we can't let the register allocator allocate any input
3354  // registers, because it will not know to avoid the earlyclobbered output reg.
3355  bool SawEarlyClobber = false;
3356
3357  unsigned OpNo = 1;   // OpNo - The operand of the CallInst.
3358  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3359    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
3360    AsmOperandInfo &OpInfo = ConstraintOperands.back();
3361
3362    MVT::ValueType OpVT = MVT::Other;
3363
3364    // Compute the value type for each operand.
3365    switch (OpInfo.Type) {
3366    case InlineAsm::isOutput:
3367      if (!OpInfo.isIndirect) {
3368        // The return value of the call is this value.  As such, there is no
3369        // corresponding argument.
3370        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3371        OpVT = TLI.getValueType(I.getType());
3372      } else {
3373        OpInfo.CallOperandVal = I.getOperand(OpNo++);
3374      }
3375      break;
3376    case InlineAsm::isInput:
3377      OpInfo.CallOperandVal = I.getOperand(OpNo++);
3378      break;
3379    case InlineAsm::isClobber:
3380      // Nothing to do.
3381      break;
3382    }
3383
3384    // If this is an input or an indirect output, process the call argument.
3385    if (OpInfo.CallOperandVal) {
3386      OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3387      const Type *OpTy = OpInfo.CallOperandVal->getType();
3388      // If this is an indirect operand, the operand is a pointer to the
3389      // accessed type.
3390      if (OpInfo.isIndirect)
3391        OpTy = cast<PointerType>(OpTy)->getElementType();
3392
3393      // If OpTy is not a first-class value, it may be a struct/union that we
3394      // can tile with integers.
3395      if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3396        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3397        switch (BitSize) {
3398        default: break;
3399        case 1:
3400        case 8:
3401        case 16:
3402        case 32:
3403        case 64:
3404          OpTy = IntegerType::get(BitSize);
3405          break;
3406        }
3407      }
3408
3409      OpVT = TLI.getValueType(OpTy, true);
3410    }
3411
3412    OpInfo.ConstraintVT = OpVT;
3413
3414    // Compute the constraint code and ConstraintType to use.
3415    OpInfo.ComputeConstraintToUse(TLI);
3416
3417    // Keep track of whether we see an earlyclobber.
3418    SawEarlyClobber |= OpInfo.isEarlyClobber;
3419
3420    // If this is a memory input, and if the operand is not indirect, do what we
3421    // need to to provide an address for the memory input.
3422    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3423        !OpInfo.isIndirect) {
3424      assert(OpInfo.Type == InlineAsm::isInput &&
3425             "Can only indirectify direct input operands!");
3426
3427      // Memory operands really want the address of the value.  If we don't have
3428      // an indirect input, put it in the constpool if we can, otherwise spill
3429      // it to a stack slot.
3430
3431      // If the operand is a float, integer, or vector constant, spill to a
3432      // constant pool entry to get its address.
3433      Value *OpVal = OpInfo.CallOperandVal;
3434      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3435          isa<ConstantVector>(OpVal)) {
3436        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3437                                                 TLI.getPointerTy());
3438      } else {
3439        // Otherwise, create a stack slot and emit a store to it before the
3440        // asm.
3441        const Type *Ty = OpVal->getType();
3442        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
3443        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3444        MachineFunction &MF = DAG.getMachineFunction();
3445        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3446        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3447        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3448        OpInfo.CallOperand = StackSlot;
3449      }
3450
3451      // There is no longer a Value* corresponding to this operand.
3452      OpInfo.CallOperandVal = 0;
3453      // It is now an indirect operand.
3454      OpInfo.isIndirect = true;
3455    }
3456
3457    // If this constraint is for a specific register, allocate it before
3458    // anything else.
3459    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3460      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3461  }
3462  ConstraintInfos.clear();
3463
3464
3465  // Second pass - Loop over all of the operands, assigning virtual or physregs
3466  // to registerclass operands.
3467  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3468    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3469
3470    // C_Register operands have already been allocated, Other/Memory don't need
3471    // to be.
3472    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3473      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3474  }
3475
3476  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3477  std::vector<SDOperand> AsmNodeOperands;
3478  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3479  AsmNodeOperands.push_back(
3480          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3481
3482
3483  // Loop over all of the inputs, copying the operand values into the
3484  // appropriate registers and processing the output regs.
3485  RegsForValue RetValRegs;
3486
3487  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3488  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3489
3490  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3491    AsmOperandInfo &OpInfo = ConstraintOperands[i];
3492
3493    switch (OpInfo.Type) {
3494    case InlineAsm::isOutput: {
3495      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3496          OpInfo.ConstraintType != TargetLowering::C_Register) {
3497        // Memory output, or 'other' output (e.g. 'X' constraint).
3498        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3499
3500        // Add information to the INLINEASM node to know about this output.
3501        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3502        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3503                                                        TLI.getPointerTy()));
3504        AsmNodeOperands.push_back(OpInfo.CallOperand);
3505        break;
3506      }
3507
3508      // Otherwise, this is a register or register class output.
3509
3510      // Copy the output from the appropriate register.  Find a register that
3511      // we can use.
3512      if (OpInfo.AssignedRegs.Regs.empty()) {
3513        cerr << "Couldn't allocate output reg for contraint '"
3514             << OpInfo.ConstraintCode << "'!\n";
3515        exit(1);
3516      }
3517
3518      if (!OpInfo.isIndirect) {
3519        // This is the result value of the call.
3520        assert(RetValRegs.Regs.empty() &&
3521               "Cannot have multiple output constraints yet!");
3522        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3523        RetValRegs = OpInfo.AssignedRegs;
3524      } else {
3525        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3526                                                      OpInfo.CallOperandVal));
3527      }
3528
3529      // Add information to the INLINEASM node to know that this register is
3530      // set.
3531      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3532                                               AsmNodeOperands);
3533      break;
3534    }
3535    case InlineAsm::isInput: {
3536      SDOperand InOperandVal = OpInfo.CallOperand;
3537
3538      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3539        // If this is required to match an output register we have already set,
3540        // just use its register.
3541        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3542
3543        // Scan until we find the definition we already emitted of this operand.
3544        // When we find it, create a RegsForValue operand.
3545        unsigned CurOp = 2;  // The first operand.
3546        for (; OperandNo; --OperandNo) {
3547          // Advance to the next operand.
3548          unsigned NumOps =
3549            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3550          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3551                  (NumOps & 7) == 4 /*MEM*/) &&
3552                 "Skipped past definitions?");
3553          CurOp += (NumOps>>3)+1;
3554        }
3555
3556        unsigned NumOps =
3557          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3558        if ((NumOps & 7) == 2 /*REGDEF*/) {
3559          // Add NumOps>>3 registers to MatchedRegs.
3560          RegsForValue MatchedRegs;
3561          MatchedRegs.ValueVT = InOperandVal.getValueType();
3562          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3563          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3564            unsigned Reg =
3565              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3566            MatchedRegs.Regs.push_back(Reg);
3567          }
3568
3569          // Use the produced MatchedRegs object to
3570          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3571          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3572          break;
3573        } else {
3574          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3575          assert(0 && "matching constraints for memory operands unimp");
3576        }
3577      }
3578
3579      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
3580        assert(!OpInfo.isIndirect &&
3581               "Don't know how to handle indirect other inputs yet!");
3582
3583        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
3584                                                       OpInfo.ConstraintCode[0],
3585                                                       DAG);
3586        if (!InOperandVal.Val) {
3587          cerr << "Invalid operand for inline asm constraint '"
3588               << OpInfo.ConstraintCode << "'!\n";
3589          exit(1);
3590        }
3591
3592        // Add information to the INLINEASM node to know about this input.
3593        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
3594        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3595                                                        TLI.getPointerTy()));
3596        AsmNodeOperands.push_back(InOperandVal);
3597        break;
3598      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
3599        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
3600        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
3601               "Memory operands expect pointer values");
3602
3603        // Add information to the INLINEASM node to know about this input.
3604        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3605        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3606                                                        TLI.getPointerTy()));
3607        AsmNodeOperands.push_back(InOperandVal);
3608        break;
3609      }
3610
3611      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
3612              OpInfo.ConstraintType == TargetLowering::C_Register) &&
3613             "Unknown constraint type!");
3614      assert(!OpInfo.isIndirect &&
3615             "Don't know how to handle indirect register inputs yet!");
3616
3617      // Copy the input into the appropriate registers.
3618      assert(!OpInfo.AssignedRegs.Regs.empty() &&
3619             "Couldn't allocate input reg!");
3620
3621      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
3622
3623      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
3624                                               AsmNodeOperands);
3625      break;
3626    }
3627    case InlineAsm::isClobber: {
3628      // Add the clobbered value to the operand list, so that the register
3629      // allocator is aware that the physreg got clobbered.
3630      if (!OpInfo.AssignedRegs.Regs.empty())
3631        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
3632                                                 AsmNodeOperands);
3633      break;
3634    }
3635    }
3636  }
3637
3638  // Finish up input operands.
3639  AsmNodeOperands[0] = Chain;
3640  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3641
3642  Chain = DAG.getNode(ISD::INLINEASM,
3643                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3644                      &AsmNodeOperands[0], AsmNodeOperands.size());
3645  Flag = Chain.getValue(1);
3646
3647  // If this asm returns a register value, copy the result from that register
3648  // and set it as the value of the call.
3649  if (!RetValRegs.Regs.empty()) {
3650    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
3651
3652    // If the result of the inline asm is a vector, it may have the wrong
3653    // width/num elts.  Make sure to convert it to the right type with
3654    // bit_convert.
3655    if (MVT::isVector(Val.getValueType())) {
3656      const VectorType *VTy = cast<VectorType>(I.getType());
3657      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
3658
3659      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
3660    }
3661
3662    setValue(&I, Val);
3663  }
3664
3665  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3666
3667  // Process indirect outputs, first output all of the flagged copies out of
3668  // physregs.
3669  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3670    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3671    Value *Ptr = IndirectStoresToEmit[i].second;
3672    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
3673    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3674  }
3675
3676  // Emit the non-flagged stores from the physregs.
3677  SmallVector<SDOperand, 8> OutChains;
3678  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3679    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
3680                                    getValue(StoresToEmit[i].second),
3681                                    StoresToEmit[i].second, 0));
3682  if (!OutChains.empty())
3683    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3684                        &OutChains[0], OutChains.size());
3685  DAG.setRoot(Chain);
3686}
3687
3688
3689void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3690  SDOperand Src = getValue(I.getOperand(0));
3691
3692  MVT::ValueType IntPtr = TLI.getPointerTy();
3693
3694  if (IntPtr < Src.getValueType())
3695    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3696  else if (IntPtr > Src.getValueType())
3697    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3698
3699  // Scale the source by the type size.
3700  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
3701  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3702                    Src, getIntPtrConstant(ElementSize));
3703
3704  TargetLowering::ArgListTy Args;
3705  TargetLowering::ArgListEntry Entry;
3706  Entry.Node = Src;
3707  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3708  Args.push_back(Entry);
3709
3710  std::pair<SDOperand,SDOperand> Result =
3711    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3712                    DAG.getExternalSymbol("malloc", IntPtr),
3713                    Args, DAG);
3714  setValue(&I, Result.first);  // Pointers always fit in registers
3715  DAG.setRoot(Result.second);
3716}
3717
3718void SelectionDAGLowering::visitFree(FreeInst &I) {
3719  TargetLowering::ArgListTy Args;
3720  TargetLowering::ArgListEntry Entry;
3721  Entry.Node = getValue(I.getOperand(0));
3722  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3723  Args.push_back(Entry);
3724  MVT::ValueType IntPtr = TLI.getPointerTy();
3725  std::pair<SDOperand,SDOperand> Result =
3726    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3727                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3728  DAG.setRoot(Result.second);
3729}
3730
3731// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3732// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3733// instructions are special in various ways, which require special support to
3734// insert.  The specified MachineInstr is created but not inserted into any
3735// basic blocks, and the scheduler passes ownership of it to this method.
3736MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3737                                                       MachineBasicBlock *MBB) {
3738  cerr << "If a target marks an instruction with "
3739       << "'usesCustomDAGSchedInserter', it must implement "
3740       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3741  abort();
3742  return 0;
3743}
3744
3745void SelectionDAGLowering::visitVAStart(CallInst &I) {
3746  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3747                          getValue(I.getOperand(1)),
3748                          DAG.getSrcValue(I.getOperand(1))));
3749}
3750
3751void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3752  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3753                             getValue(I.getOperand(0)),
3754                             DAG.getSrcValue(I.getOperand(0)));
3755  setValue(&I, V);
3756  DAG.setRoot(V.getValue(1));
3757}
3758
3759void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3760  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3761                          getValue(I.getOperand(1)),
3762                          DAG.getSrcValue(I.getOperand(1))));
3763}
3764
3765void SelectionDAGLowering::visitVACopy(CallInst &I) {
3766  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3767                          getValue(I.getOperand(1)),
3768                          getValue(I.getOperand(2)),
3769                          DAG.getSrcValue(I.getOperand(1)),
3770                          DAG.getSrcValue(I.getOperand(2))));
3771}
3772
3773/// TargetLowering::LowerArguments - This is the default LowerArguments
3774/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3775/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3776/// integrated into SDISel.
3777std::vector<SDOperand>
3778TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3779  const FunctionType *FTy = F.getFunctionType();
3780  const ParamAttrsList *Attrs = FTy->getParamAttrs();
3781  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3782  std::vector<SDOperand> Ops;
3783  Ops.push_back(DAG.getRoot());
3784  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3785  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3786
3787  // Add one result value for each formal argument.
3788  std::vector<MVT::ValueType> RetVals;
3789  unsigned j = 1;
3790  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3791       I != E; ++I, ++j) {
3792    MVT::ValueType VT = getValueType(I->getType());
3793    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3794    unsigned OriginalAlignment =
3795      getTargetData()->getABITypeAlignment(I->getType());
3796
3797    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3798    // that is zero extended!
3799    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt))
3800      Flags &= ~(ISD::ParamFlags::SExt);
3801    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt))
3802      Flags |= ISD::ParamFlags::SExt;
3803    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg))
3804      Flags |= ISD::ParamFlags::InReg;
3805    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet))
3806      Flags |= ISD::ParamFlags::StructReturn;
3807    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3808
3809    switch (getTypeAction(VT)) {
3810    default: assert(0 && "Unknown type action!");
3811    case Legal:
3812      RetVals.push_back(VT);
3813      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3814      break;
3815    case Promote:
3816      RetVals.push_back(getTypeToTransformTo(VT));
3817      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3818      break;
3819    case Expand: {
3820      // If this is an illegal type, it needs to be broken up to fit into
3821      // registers.
3822      MVT::ValueType RegisterVT = getRegisterType(VT);
3823      unsigned NumRegs = getNumRegisters(VT);
3824      for (unsigned i = 0; i != NumRegs; ++i) {
3825        RetVals.push_back(RegisterVT);
3826        // if it isn't first piece, alignment must be 1
3827        if (i > 0)
3828          Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3829            (1 << ISD::ParamFlags::OrigAlignmentOffs);
3830        Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3831      }
3832      break;
3833    }
3834    }
3835  }
3836
3837  RetVals.push_back(MVT::Other);
3838
3839  // Create the node.
3840  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3841                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3842                               &Ops[0], Ops.size()).Val;
3843  unsigned NumArgRegs = Result->getNumValues() - 1;
3844  DAG.setRoot(SDOperand(Result, NumArgRegs));
3845
3846  // Set up the return result vector.
3847  Ops.clear();
3848  unsigned i = 0;
3849  unsigned Idx = 1;
3850  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3851      ++I, ++Idx) {
3852    MVT::ValueType VT = getValueType(I->getType());
3853
3854    switch (getTypeAction(VT)) {
3855    default: assert(0 && "Unknown type action!");
3856    case Legal:
3857      Ops.push_back(SDOperand(Result, i++));
3858      break;
3859    case Promote: {
3860      SDOperand Op(Result, i++);
3861      if (MVT::isInteger(VT)) {
3862        if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt))
3863          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3864                           DAG.getValueType(VT));
3865        else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt))
3866          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3867                           DAG.getValueType(VT));
3868        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3869      } else {
3870        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3871        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3872      }
3873      Ops.push_back(Op);
3874      break;
3875    }
3876    case Expand: {
3877      MVT::ValueType PartVT = getRegisterType(VT);
3878      unsigned NumParts = getNumRegisters(VT);
3879      SmallVector<SDOperand, 4> Parts(NumParts);
3880      for (unsigned j = 0; j != NumParts; ++j)
3881        Parts[j] = SDOperand(Result, i++);
3882      Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT));
3883      break;
3884    }
3885    }
3886  }
3887  assert(i == NumArgRegs && "Argument register count mismatch!");
3888  return Ops;
3889}
3890
3891
3892/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3893/// implementation, which just inserts an ISD::CALL node, which is later custom
3894/// lowered by the target to something concrete.  FIXME: When all targets are
3895/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3896std::pair<SDOperand, SDOperand>
3897TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3898                            bool RetTyIsSigned, bool isVarArg,
3899                            unsigned CallingConv, bool isTailCall,
3900                            SDOperand Callee,
3901                            ArgListTy &Args, SelectionDAG &DAG) {
3902  SmallVector<SDOperand, 32> Ops;
3903  Ops.push_back(Chain);   // Op#0 - Chain
3904  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3905  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3906  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3907  Ops.push_back(Callee);
3908
3909  // Handle all of the outgoing arguments.
3910  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3911    MVT::ValueType VT = getValueType(Args[i].Ty);
3912    SDOperand Op = Args[i].Node;
3913    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3914    unsigned OriginalAlignment =
3915      getTargetData()->getABITypeAlignment(Args[i].Ty);
3916
3917    if (Args[i].isSExt)
3918      Flags |= ISD::ParamFlags::SExt;
3919    if (Args[i].isZExt)
3920      Flags |= ISD::ParamFlags::ZExt;
3921    if (Args[i].isInReg)
3922      Flags |= ISD::ParamFlags::InReg;
3923    if (Args[i].isSRet)
3924      Flags |= ISD::ParamFlags::StructReturn;
3925    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
3926
3927    switch (getTypeAction(VT)) {
3928    default: assert(0 && "Unknown type action!");
3929    case Legal:
3930      Ops.push_back(Op);
3931      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3932      break;
3933    case Promote:
3934      if (MVT::isInteger(VT)) {
3935        unsigned ExtOp;
3936        if (Args[i].isSExt)
3937          ExtOp = ISD::SIGN_EXTEND;
3938        else if (Args[i].isZExt)
3939          ExtOp = ISD::ZERO_EXTEND;
3940        else
3941          ExtOp = ISD::ANY_EXTEND;
3942        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3943      } else {
3944        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3945        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
3946      }
3947      Ops.push_back(Op);
3948      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3949      break;
3950    case Expand: {
3951      MVT::ValueType PartVT = getRegisterType(VT);
3952      unsigned NumParts = getNumRegisters(VT);
3953      SmallVector<SDOperand, 4> Parts(NumParts);
3954      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT);
3955      for (unsigned i = 0; i != NumParts; ++i) {
3956        // if it isn't first piece, alignment must be 1
3957        unsigned MyFlags = Flags;
3958        if (i != 0)
3959          MyFlags = (MyFlags & (~ISD::ParamFlags::OrigAlignment)) |
3960            (1 << ISD::ParamFlags::OrigAlignmentOffs);
3961
3962        Ops.push_back(Parts[i]);
3963        Ops.push_back(DAG.getConstant(MyFlags, MVT::i32));
3964      }
3965      break;
3966    }
3967    }
3968  }
3969
3970  // Figure out the result value types.
3971  MVT::ValueType VT = getValueType(RetTy);
3972  MVT::ValueType RegisterVT = getRegisterType(VT);
3973  unsigned NumRegs = getNumRegisters(VT);
3974  SmallVector<MVT::ValueType, 4> RetTys(NumRegs);
3975  for (unsigned i = 0; i != NumRegs; ++i)
3976    RetTys[i] = RegisterVT;
3977
3978  RetTys.push_back(MVT::Other);  // Always has a chain.
3979
3980  // Create the CALL node.
3981  SDOperand Res = DAG.getNode(ISD::CALL,
3982                              DAG.getVTList(&RetTys[0], NumRegs + 1),
3983                              &Ops[0], Ops.size());
3984  SDOperand Chain = Res.getValue(NumRegs);
3985
3986  // Gather up the call result into a single value.
3987  if (RetTy != Type::VoidTy) {
3988    ISD::NodeType AssertOp = ISD::AssertSext;
3989    if (!RetTyIsSigned)
3990      AssertOp = ISD::AssertZext;
3991    SmallVector<SDOperand, 4> Results(NumRegs);
3992    for (unsigned i = 0; i != NumRegs; ++i)
3993      Results[i] = Res.getValue(i);
3994    Res = getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT, AssertOp);
3995  }
3996
3997  return std::make_pair(Res, Chain);
3998}
3999
4000SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4001  assert(0 && "LowerOperation not implemented for this target!");
4002  abort();
4003  return SDOperand();
4004}
4005
4006SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4007                                                 SelectionDAG &DAG) {
4008  assert(0 && "CustomPromoteOperation not implemented for this target!");
4009  abort();
4010  return SDOperand();
4011}
4012
4013/// getMemsetValue - Vectorized representation of the memset value
4014/// operand.
4015static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4016                                SelectionDAG &DAG) {
4017  MVT::ValueType CurVT = VT;
4018  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4019    uint64_t Val   = C->getValue() & 255;
4020    unsigned Shift = 8;
4021    while (CurVT != MVT::i8) {
4022      Val = (Val << Shift) | Val;
4023      Shift <<= 1;
4024      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4025    }
4026    return DAG.getConstant(Val, VT);
4027  } else {
4028    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4029    unsigned Shift = 8;
4030    while (CurVT != MVT::i8) {
4031      Value =
4032        DAG.getNode(ISD::OR, VT,
4033                    DAG.getNode(ISD::SHL, VT, Value,
4034                                DAG.getConstant(Shift, MVT::i8)), Value);
4035      Shift <<= 1;
4036      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4037    }
4038
4039    return Value;
4040  }
4041}
4042
4043/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4044/// used when a memcpy is turned into a memset when the source is a constant
4045/// string ptr.
4046static SDOperand getMemsetStringVal(MVT::ValueType VT,
4047                                    SelectionDAG &DAG, TargetLowering &TLI,
4048                                    std::string &Str, unsigned Offset) {
4049  uint64_t Val = 0;
4050  unsigned MSB = MVT::getSizeInBits(VT) / 8;
4051  if (TLI.isLittleEndian())
4052    Offset = Offset + MSB - 1;
4053  for (unsigned i = 0; i != MSB; ++i) {
4054    Val = (Val << 8) | (unsigned char)Str[Offset];
4055    Offset += TLI.isLittleEndian() ? -1 : 1;
4056  }
4057  return DAG.getConstant(Val, VT);
4058}
4059
4060/// getMemBasePlusOffset - Returns base and offset node for the
4061static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4062                                      SelectionDAG &DAG, TargetLowering &TLI) {
4063  MVT::ValueType VT = Base.getValueType();
4064  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4065}
4066
4067/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4068/// to replace the memset / memcpy is below the threshold. It also returns the
4069/// types of the sequence of  memory ops to perform memset / memcpy.
4070static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4071                                     unsigned Limit, uint64_t Size,
4072                                     unsigned Align, TargetLowering &TLI) {
4073  MVT::ValueType VT;
4074
4075  if (TLI.allowsUnalignedMemoryAccesses()) {
4076    VT = MVT::i64;
4077  } else {
4078    switch (Align & 7) {
4079    case 0:
4080      VT = MVT::i64;
4081      break;
4082    case 4:
4083      VT = MVT::i32;
4084      break;
4085    case 2:
4086      VT = MVT::i16;
4087      break;
4088    default:
4089      VT = MVT::i8;
4090      break;
4091    }
4092  }
4093
4094  MVT::ValueType LVT = MVT::i64;
4095  while (!TLI.isTypeLegal(LVT))
4096    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4097  assert(MVT::isInteger(LVT));
4098
4099  if (VT > LVT)
4100    VT = LVT;
4101
4102  unsigned NumMemOps = 0;
4103  while (Size != 0) {
4104    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4105    while (VTSize > Size) {
4106      VT = (MVT::ValueType)((unsigned)VT - 1);
4107      VTSize >>= 1;
4108    }
4109    assert(MVT::isInteger(VT));
4110
4111    if (++NumMemOps > Limit)
4112      return false;
4113    MemOps.push_back(VT);
4114    Size -= VTSize;
4115  }
4116
4117  return true;
4118}
4119
4120void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4121  SDOperand Op1 = getValue(I.getOperand(1));
4122  SDOperand Op2 = getValue(I.getOperand(2));
4123  SDOperand Op3 = getValue(I.getOperand(3));
4124  SDOperand Op4 = getValue(I.getOperand(4));
4125  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4126  if (Align == 0) Align = 1;
4127
4128  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4129    std::vector<MVT::ValueType> MemOps;
4130
4131    // Expand memset / memcpy to a series of load / store ops
4132    // if the size operand falls below a certain threshold.
4133    SmallVector<SDOperand, 8> OutChains;
4134    switch (Op) {
4135    default: break;  // Do nothing for now.
4136    case ISD::MEMSET: {
4137      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4138                                   Size->getValue(), Align, TLI)) {
4139        unsigned NumMemOps = MemOps.size();
4140        unsigned Offset = 0;
4141        for (unsigned i = 0; i < NumMemOps; i++) {
4142          MVT::ValueType VT = MemOps[i];
4143          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4144          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4145          SDOperand Store = DAG.getStore(getRoot(), Value,
4146                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4147                                         I.getOperand(1), Offset);
4148          OutChains.push_back(Store);
4149          Offset += VTSize;
4150        }
4151      }
4152      break;
4153    }
4154    case ISD::MEMCPY: {
4155      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4156                                   Size->getValue(), Align, TLI)) {
4157        unsigned NumMemOps = MemOps.size();
4158        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4159        GlobalAddressSDNode *G = NULL;
4160        std::string Str;
4161        bool CopyFromStr = false;
4162
4163        if (Op2.getOpcode() == ISD::GlobalAddress)
4164          G = cast<GlobalAddressSDNode>(Op2);
4165        else if (Op2.getOpcode() == ISD::ADD &&
4166                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4167                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4168          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4169          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4170        }
4171        if (G) {
4172          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4173          if (GV && GV->isConstant()) {
4174            Str = GV->getStringValue(false);
4175            if (!Str.empty()) {
4176              CopyFromStr = true;
4177              SrcOff += SrcDelta;
4178            }
4179          }
4180        }
4181
4182        for (unsigned i = 0; i < NumMemOps; i++) {
4183          MVT::ValueType VT = MemOps[i];
4184          unsigned VTSize = MVT::getSizeInBits(VT) / 8;
4185          SDOperand Value, Chain, Store;
4186
4187          if (CopyFromStr) {
4188            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4189            Chain = getRoot();
4190            Store =
4191              DAG.getStore(Chain, Value,
4192                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4193                           I.getOperand(1), DstOff);
4194          } else {
4195            Value = DAG.getLoad(VT, getRoot(),
4196                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4197                        I.getOperand(2), SrcOff);
4198            Chain = Value.getValue(1);
4199            Store =
4200              DAG.getStore(Chain, Value,
4201                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4202                           I.getOperand(1), DstOff);
4203          }
4204          OutChains.push_back(Store);
4205          SrcOff += VTSize;
4206          DstOff += VTSize;
4207        }
4208      }
4209      break;
4210    }
4211    }
4212
4213    if (!OutChains.empty()) {
4214      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4215                  &OutChains[0], OutChains.size()));
4216      return;
4217    }
4218  }
4219
4220  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
4221}
4222
4223//===----------------------------------------------------------------------===//
4224// SelectionDAGISel code
4225//===----------------------------------------------------------------------===//
4226
4227unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4228  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4229}
4230
4231void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4232  AU.addRequired<AliasAnalysis>();
4233  AU.setPreservesAll();
4234}
4235
4236
4237
4238bool SelectionDAGISel::runOnFunction(Function &Fn) {
4239  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4240  RegMap = MF.getSSARegMap();
4241  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4242
4243  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4244
4245  if (ExceptionHandling)
4246    for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4247      if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4248        // Mark landing pad.
4249        FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4250
4251  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4252    SelectBasicBlock(I, MF, FuncInfo);
4253
4254  // Add function live-ins to entry block live-in set.
4255  BasicBlock *EntryBB = &Fn.getEntryBlock();
4256  BB = FuncInfo.MBBMap[EntryBB];
4257  if (!MF.livein_empty())
4258    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4259           E = MF.livein_end(); I != E; ++I)
4260      BB->addLiveIn(I->first);
4261
4262#ifndef NDEBUG
4263  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4264         "Not all catch info was assigned to a landing pad!");
4265#endif
4266
4267  return true;
4268}
4269
4270SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4271                                                           unsigned Reg) {
4272  SDOperand Op = getValue(V);
4273  assert((Op.getOpcode() != ISD::CopyFromReg ||
4274          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4275         "Copy from a reg to the same reg!");
4276
4277  MVT::ValueType SrcVT = Op.getValueType();
4278  MVT::ValueType RegisterVT = TLI.getRegisterType(SrcVT);
4279  unsigned NumRegs = TLI.getNumRegisters(SrcVT);
4280  SmallVector<SDOperand, 8> Regs(NumRegs);
4281  SmallVector<SDOperand, 8> Chains(NumRegs);
4282
4283  // Copy the value by legal parts into sequential virtual registers.
4284  getCopyToParts(DAG, Op, &Regs[0], NumRegs, RegisterVT);
4285  for (unsigned i = 0; i != NumRegs; ++i)
4286    Chains[i] = DAG.getCopyToReg(getRoot(), Reg + i, Regs[i]);
4287  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4288}
4289
4290void SelectionDAGISel::
4291LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4292               std::vector<SDOperand> &UnorderedChains) {
4293  // If this is the entry block, emit arguments.
4294  Function &F = *LLVMBB->getParent();
4295  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4296  SDOperand OldRoot = SDL.DAG.getRoot();
4297  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4298
4299  unsigned a = 0;
4300  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4301       AI != E; ++AI, ++a)
4302    if (!AI->use_empty()) {
4303      SDL.setValue(AI, Args[a]);
4304
4305      // If this argument is live outside of the entry block, insert a copy from
4306      // whereever we got it to the vreg that other BB's will reference it as.
4307      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4308      if (VMI != FuncInfo.ValueMap.end()) {
4309        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4310        UnorderedChains.push_back(Copy);
4311      }
4312    }
4313
4314  // Finally, if the target has anything special to do, allow it to do so.
4315  // FIXME: this should insert code into the DAG!
4316  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4317}
4318
4319static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4320                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4321  assert(!FLI.MBBMap[SrcBB]->isLandingPad() &&
4322         "Copying catch info out of a landing pad!");
4323  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4324    if (isSelector(I)) {
4325      // Apply the catch info to DestBB.
4326      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4327#ifndef NDEBUG
4328      FLI.CatchInfoFound.insert(I);
4329#endif
4330    }
4331}
4332
4333void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4334       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4335                                         FunctionLoweringInfo &FuncInfo) {
4336  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
4337
4338  std::vector<SDOperand> UnorderedChains;
4339
4340  // Lower any arguments needed in this block if this is the entry block.
4341  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4342    LowerArguments(LLVMBB, SDL, UnorderedChains);
4343
4344  BB = FuncInfo.MBBMap[LLVMBB];
4345  SDL.setCurrentBasicBlock(BB);
4346
4347  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4348
4349  if (ExceptionHandling && MMI && BB->isLandingPad()) {
4350    // Add a label to mark the beginning of the landing pad.  Deletion of the
4351    // landing pad can thus be detected via the MachineModuleInfo.
4352    unsigned LabelID = MMI->addLandingPad(BB);
4353    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4354                            DAG.getConstant(LabelID, MVT::i32)));
4355
4356    // Mark exception register as live in.
4357    unsigned Reg = TLI.getExceptionAddressRegister();
4358    if (Reg) BB->addLiveIn(Reg);
4359
4360    // Mark exception selector register as live in.
4361    Reg = TLI.getExceptionSelectorRegister();
4362    if (Reg) BB->addLiveIn(Reg);
4363
4364    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4365    // function and list of typeids logically belong to the invoke (or, if you
4366    // like, the basic block containing the invoke), and need to be associated
4367    // with it in the dwarf exception handling tables.  Currently however the
4368    // information is provided by an intrinsic (eh.selector) that can be moved
4369    // to unexpected places by the optimizers: if the unwind edge is critical,
4370    // then breaking it can result in the intrinsics being in the successor of
4371    // the landing pad, not the landing pad itself.  This results in exceptions
4372    // not being caught because no typeids are associated with the invoke.
4373    // This may not be the only way things can go wrong, but it is the only way
4374    // we try to work around for the moment.
4375    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4376
4377    if (Br && Br->isUnconditional()) { // Critical edge?
4378      BasicBlock::iterator I, E;
4379      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4380        if (isSelector(I))
4381          break;
4382
4383      if (I == E)
4384        // No catch info found - try to extract some from the successor.
4385        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4386    }
4387  }
4388
4389  // Lower all of the non-terminator instructions.
4390  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4391       I != E; ++I)
4392    SDL.visit(*I);
4393
4394  // Ensure that all instructions which are used outside of their defining
4395  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4396  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4397    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4398      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4399      if (VMI != FuncInfo.ValueMap.end())
4400        UnorderedChains.push_back(
4401                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4402    }
4403
4404  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4405  // ensure constants are generated when needed.  Remember the virtual registers
4406  // that need to be added to the Machine PHI nodes as input.  We cannot just
4407  // directly add them, because expansion might result in multiple MBB's for one
4408  // BB.  As such, the start of the BB might correspond to a different MBB than
4409  // the end.
4410  //
4411  TerminatorInst *TI = LLVMBB->getTerminator();
4412
4413  // Emit constants only once even if used by multiple PHI nodes.
4414  std::map<Constant*, unsigned> ConstantsOut;
4415
4416  // Vector bool would be better, but vector<bool> is really slow.
4417  std::vector<unsigned char> SuccsHandled;
4418  if (TI->getNumSuccessors())
4419    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4420
4421  // Check successor nodes PHI nodes that expect a constant to be available from
4422  // this block.
4423  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4424    BasicBlock *SuccBB = TI->getSuccessor(succ);
4425    if (!isa<PHINode>(SuccBB->begin())) continue;
4426    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4427
4428    // If this terminator has multiple identical successors (common for
4429    // switches), only handle each succ once.
4430    unsigned SuccMBBNo = SuccMBB->getNumber();
4431    if (SuccsHandled[SuccMBBNo]) continue;
4432    SuccsHandled[SuccMBBNo] = true;
4433
4434    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4435    PHINode *PN;
4436
4437    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4438    // nodes and Machine PHI nodes, but the incoming operands have not been
4439    // emitted yet.
4440    for (BasicBlock::iterator I = SuccBB->begin();
4441         (PN = dyn_cast<PHINode>(I)); ++I) {
4442      // Ignore dead phi's.
4443      if (PN->use_empty()) continue;
4444
4445      unsigned Reg;
4446      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4447
4448      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4449        unsigned &RegOut = ConstantsOut[C];
4450        if (RegOut == 0) {
4451          RegOut = FuncInfo.CreateRegForValue(C);
4452          UnorderedChains.push_back(
4453                           SDL.CopyValueToVirtualRegister(C, RegOut));
4454        }
4455        Reg = RegOut;
4456      } else {
4457        Reg = FuncInfo.ValueMap[PHIOp];
4458        if (Reg == 0) {
4459          assert(isa<AllocaInst>(PHIOp) &&
4460                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4461                 "Didn't codegen value into a register!??");
4462          Reg = FuncInfo.CreateRegForValue(PHIOp);
4463          UnorderedChains.push_back(
4464                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4465        }
4466      }
4467
4468      // Remember that this register needs to added to the machine PHI node as
4469      // the input for this MBB.
4470      MVT::ValueType VT = TLI.getValueType(PN->getType());
4471      unsigned NumRegisters = TLI.getNumRegisters(VT);
4472      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4473        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4474    }
4475  }
4476  ConstantsOut.clear();
4477
4478  // Turn all of the unordered chains into one factored node.
4479  if (!UnorderedChains.empty()) {
4480    SDOperand Root = SDL.getRoot();
4481    if (Root.getOpcode() != ISD::EntryToken) {
4482      unsigned i = 0, e = UnorderedChains.size();
4483      for (; i != e; ++i) {
4484        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4485        if (UnorderedChains[i].Val->getOperand(0) == Root)
4486          break;  // Don't add the root if we already indirectly depend on it.
4487      }
4488
4489      if (i == e)
4490        UnorderedChains.push_back(Root);
4491    }
4492    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4493                            &UnorderedChains[0], UnorderedChains.size()));
4494  }
4495
4496  // Lower the terminator after the copies are emitted.
4497  SDL.visit(*LLVMBB->getTerminator());
4498
4499  // Copy over any CaseBlock records that may now exist due to SwitchInst
4500  // lowering, as well as any jump table information.
4501  SwitchCases.clear();
4502  SwitchCases = SDL.SwitchCases;
4503  JTCases.clear();
4504  JTCases = SDL.JTCases;
4505  BitTestCases.clear();
4506  BitTestCases = SDL.BitTestCases;
4507
4508  // Make sure the root of the DAG is up-to-date.
4509  DAG.setRoot(SDL.getRoot());
4510}
4511
4512void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4513  // Get alias analysis for load/store combining.
4514  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4515
4516  // Run the DAG combiner in pre-legalize mode.
4517  DAG.Combine(false, AA);
4518
4519  DOUT << "Lowered selection DAG:\n";
4520  DEBUG(DAG.dump());
4521
4522  // Second step, hack on the DAG until it only uses operations and types that
4523  // the target supports.
4524  DAG.Legalize();
4525
4526  DOUT << "Legalized selection DAG:\n";
4527  DEBUG(DAG.dump());
4528
4529  // Run the DAG combiner in post-legalize mode.
4530  DAG.Combine(true, AA);
4531
4532  if (ViewISelDAGs) DAG.viewGraph();
4533
4534  // Third, instruction select all of the operations to machine code, adding the
4535  // code to the MachineBasicBlock.
4536  InstructionSelectBasicBlock(DAG);
4537
4538  DOUT << "Selected machine code:\n";
4539  DEBUG(BB->dump());
4540}
4541
4542void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4543                                        FunctionLoweringInfo &FuncInfo) {
4544  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4545  {
4546    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4547    CurDAG = &DAG;
4548
4549    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4550    // types that are not supported by the target.
4551    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4552
4553    // Second step, emit the lowered DAG as machine code.
4554    CodeGenAndEmitDAG(DAG);
4555  }
4556
4557  DOUT << "Total amount of phi nodes to update: "
4558       << PHINodesToUpdate.size() << "\n";
4559  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4560          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4561               << ", " << PHINodesToUpdate[i].second << ")\n";);
4562
4563  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4564  // PHI nodes in successors.
4565  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4566    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4567      MachineInstr *PHI = PHINodesToUpdate[i].first;
4568      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4569             "This is not a machine PHI node that we are updating!");
4570      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4571      PHI->addMachineBasicBlockOperand(BB);
4572    }
4573    return;
4574  }
4575
4576  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4577    // Lower header first, if it wasn't already lowered
4578    if (!BitTestCases[i].Emitted) {
4579      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4580      CurDAG = &HSDAG;
4581      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4582      // Set the current basic block to the mbb we wish to insert the code into
4583      BB = BitTestCases[i].Parent;
4584      HSDL.setCurrentBasicBlock(BB);
4585      // Emit the code
4586      HSDL.visitBitTestHeader(BitTestCases[i]);
4587      HSDAG.setRoot(HSDL.getRoot());
4588      CodeGenAndEmitDAG(HSDAG);
4589    }
4590
4591    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4592      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4593      CurDAG = &BSDAG;
4594      SelectionDAGLowering BSDL(BSDAG, TLI, FuncInfo);
4595      // Set the current basic block to the mbb we wish to insert the code into
4596      BB = BitTestCases[i].Cases[j].ThisBB;
4597      BSDL.setCurrentBasicBlock(BB);
4598      // Emit the code
4599      if (j+1 != ej)
4600        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4601                              BitTestCases[i].Reg,
4602                              BitTestCases[i].Cases[j]);
4603      else
4604        BSDL.visitBitTestCase(BitTestCases[i].Default,
4605                              BitTestCases[i].Reg,
4606                              BitTestCases[i].Cases[j]);
4607
4608
4609      BSDAG.setRoot(BSDL.getRoot());
4610      CodeGenAndEmitDAG(BSDAG);
4611    }
4612
4613    // Update PHI Nodes
4614    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4615      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4616      MachineBasicBlock *PHIBB = PHI->getParent();
4617      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4618             "This is not a machine PHI node that we are updating!");
4619      // This is "default" BB. We have two jumps to it. From "header" BB and
4620      // from last "case" BB.
4621      if (PHIBB == BitTestCases[i].Default) {
4622        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4623        PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4624        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4625        PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4626      }
4627      // One of "cases" BB.
4628      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4629        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4630        if (cBB->succ_end() !=
4631            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4632          PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4633          PHI->addMachineBasicBlockOperand(cBB);
4634        }
4635      }
4636    }
4637  }
4638
4639  // If the JumpTable record is filled in, then we need to emit a jump table.
4640  // Updating the PHI nodes is tricky in this case, since we need to determine
4641  // whether the PHI is a successor of the range check MBB or the jump table MBB
4642  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4643    // Lower header first, if it wasn't already lowered
4644    if (!JTCases[i].first.Emitted) {
4645      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4646      CurDAG = &HSDAG;
4647      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4648      // Set the current basic block to the mbb we wish to insert the code into
4649      BB = JTCases[i].first.HeaderBB;
4650      HSDL.setCurrentBasicBlock(BB);
4651      // Emit the code
4652      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4653      HSDAG.setRoot(HSDL.getRoot());
4654      CodeGenAndEmitDAG(HSDAG);
4655    }
4656
4657    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4658    CurDAG = &JSDAG;
4659    SelectionDAGLowering JSDL(JSDAG, TLI, FuncInfo);
4660    // Set the current basic block to the mbb we wish to insert the code into
4661    BB = JTCases[i].second.MBB;
4662    JSDL.setCurrentBasicBlock(BB);
4663    // Emit the code
4664    JSDL.visitJumpTable(JTCases[i].second);
4665    JSDAG.setRoot(JSDL.getRoot());
4666    CodeGenAndEmitDAG(JSDAG);
4667
4668    // Update PHI Nodes
4669    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4670      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4671      MachineBasicBlock *PHIBB = PHI->getParent();
4672      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4673             "This is not a machine PHI node that we are updating!");
4674      // "default" BB. We can go there only from header BB.
4675      if (PHIBB == JTCases[i].second.Default) {
4676        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4677        PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4678      }
4679      // JT BB. Just iterate over successors here
4680      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4681        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4682        PHI->addMachineBasicBlockOperand(BB);
4683      }
4684    }
4685  }
4686
4687  // If the switch block involved a branch to one of the actual successors, we
4688  // need to update PHI nodes in that block.
4689  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4690    MachineInstr *PHI = PHINodesToUpdate[i].first;
4691    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4692           "This is not a machine PHI node that we are updating!");
4693    if (BB->isSuccessor(PHI->getParent())) {
4694      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4695      PHI->addMachineBasicBlockOperand(BB);
4696    }
4697  }
4698
4699  // If we generated any switch lowering information, build and codegen any
4700  // additional DAGs necessary.
4701  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4702    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4703    CurDAG = &SDAG;
4704    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4705
4706    // Set the current basic block to the mbb we wish to insert the code into
4707    BB = SwitchCases[i].ThisBB;
4708    SDL.setCurrentBasicBlock(BB);
4709
4710    // Emit the code
4711    SDL.visitSwitchCase(SwitchCases[i]);
4712    SDAG.setRoot(SDL.getRoot());
4713    CodeGenAndEmitDAG(SDAG);
4714
4715    // Handle any PHI nodes in successors of this chunk, as if we were coming
4716    // from the original BB before switch expansion.  Note that PHI nodes can
4717    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4718    // handle them the right number of times.
4719    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4720      for (MachineBasicBlock::iterator Phi = BB->begin();
4721           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4722        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4723        for (unsigned pn = 0; ; ++pn) {
4724          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4725          if (PHINodesToUpdate[pn].first == Phi) {
4726            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4727            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4728            break;
4729          }
4730        }
4731      }
4732
4733      // Don't process RHS if same block as LHS.
4734      if (BB == SwitchCases[i].FalseBB)
4735        SwitchCases[i].FalseBB = 0;
4736
4737      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4738      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4739      SwitchCases[i].FalseBB = 0;
4740    }
4741    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4742  }
4743}
4744
4745
4746//===----------------------------------------------------------------------===//
4747/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4748/// target node in the graph.
4749void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4750  if (ViewSchedDAGs) DAG.viewGraph();
4751
4752  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4753
4754  if (!Ctor) {
4755    Ctor = ISHeuristic;
4756    RegisterScheduler::setDefault(Ctor);
4757  }
4758
4759  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4760  BB = SL->Run();
4761  delete SL;
4762}
4763
4764
4765HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4766  return new HazardRecognizer();
4767}
4768
4769//===----------------------------------------------------------------------===//
4770// Helper functions used by the generated instruction selector.
4771//===----------------------------------------------------------------------===//
4772// Calls to these methods are generated by tblgen.
4773
4774/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4775/// the dag combiner simplified the 255, we still want to match.  RHS is the
4776/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4777/// specified in the .td file (e.g. 255).
4778bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4779                                    int64_t DesiredMaskS) {
4780  uint64_t ActualMask = RHS->getValue();
4781  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4782
4783  // If the actual mask exactly matches, success!
4784  if (ActualMask == DesiredMask)
4785    return true;
4786
4787  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4788  if (ActualMask & ~DesiredMask)
4789    return false;
4790
4791  // Otherwise, the DAG Combiner may have proven that the value coming in is
4792  // either already zero or is not demanded.  Check for known zero input bits.
4793  uint64_t NeededMask = DesiredMask & ~ActualMask;
4794  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
4795    return true;
4796
4797  // TODO: check to see if missing bits are just not demanded.
4798
4799  // Otherwise, this pattern doesn't match.
4800  return false;
4801}
4802
4803/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4804/// the dag combiner simplified the 255, we still want to match.  RHS is the
4805/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4806/// specified in the .td file (e.g. 255).
4807bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4808                                    int64_t DesiredMaskS) {
4809  uint64_t ActualMask = RHS->getValue();
4810  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4811
4812  // If the actual mask exactly matches, success!
4813  if (ActualMask == DesiredMask)
4814    return true;
4815
4816  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4817  if (ActualMask & ~DesiredMask)
4818    return false;
4819
4820  // Otherwise, the DAG Combiner may have proven that the value coming in is
4821  // either already zero or is not demanded.  Check for known zero input bits.
4822  uint64_t NeededMask = DesiredMask & ~ActualMask;
4823
4824  uint64_t KnownZero, KnownOne;
4825  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4826
4827  // If all the missing bits in the or are already known to be set, match!
4828  if ((NeededMask & KnownOne) == NeededMask)
4829    return true;
4830
4831  // TODO: check to see if missing bits are just not demanded.
4832
4833  // Otherwise, this pattern doesn't match.
4834  return false;
4835}
4836
4837
4838/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4839/// by tblgen.  Others should not call it.
4840void SelectionDAGISel::
4841SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4842  std::vector<SDOperand> InOps;
4843  std::swap(InOps, Ops);
4844
4845  Ops.push_back(InOps[0]);  // input chain.
4846  Ops.push_back(InOps[1]);  // input asm string.
4847
4848  unsigned i = 2, e = InOps.size();
4849  if (InOps[e-1].getValueType() == MVT::Flag)
4850    --e;  // Don't process a flag operand if it is here.
4851
4852  while (i != e) {
4853    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4854    if ((Flags & 7) != 4 /*MEM*/) {
4855      // Just skip over this operand, copying the operands verbatim.
4856      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4857      i += (Flags >> 3) + 1;
4858    } else {
4859      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4860      // Otherwise, this is a memory operand.  Ask the target to select it.
4861      std::vector<SDOperand> SelOps;
4862      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4863        cerr << "Could not match memory address.  Inline asm failure!\n";
4864        exit(1);
4865      }
4866
4867      // Add this to the output node.
4868      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4869      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4870                                          IntPtrTy));
4871      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4872      i += 2;
4873    }
4874  }
4875
4876  // Add the flag input back if present.
4877  if (e != InOps.size())
4878    Ops.push_back(InOps.back());
4879}
4880
4881char SelectionDAGISel::ID = 0;
4882