SelectionDAGISel.cpp revision cf8270a9941e697243bb9c91d5d8b2e1fc01a35c
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/CodeGen/ScheduleDAG.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SchedulerRegistry.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/CodeGen/SSARegMap.h"
35#include "llvm/Target/MRegisterInfo.h"
36#include "llvm/Target/TargetAsmInfo.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Target/TargetFrameInfo.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61
62//===---------------------------------------------------------------------===//
63///
64/// RegisterScheduler class - Track the registration of instruction schedulers.
65///
66//===---------------------------------------------------------------------===//
67MachinePassRegistry RegisterScheduler::Registry;
68
69//===---------------------------------------------------------------------===//
70///
71/// ISHeuristic command line option for instruction schedulers.
72///
73//===---------------------------------------------------------------------===//
74namespace {
75  cl::opt<RegisterScheduler::FunctionPassCtor, false,
76          RegisterPassParser<RegisterScheduler> >
77  ISHeuristic("sched",
78              cl::init(&createDefaultScheduler),
79              cl::desc("Instruction schedulers available:"));
80
81  static RegisterScheduler
82  defaultListDAGScheduler("default", "  Best scheduler for the target",
83                          createDefaultScheduler);
84} // namespace
85
86namespace {
87  /// RegsForValue - This struct represents the physical registers that a
88  /// particular value is assigned and the type information about the value.
89  /// This is needed because values can be promoted into larger registers and
90  /// expanded into multiple smaller registers than the value.
91  struct VISIBILITY_HIDDEN RegsForValue {
92    /// Regs - This list hold the register (for legal and promoted values)
93    /// or register set (for expanded values) that the value should be assigned
94    /// to.
95    std::vector<unsigned> Regs;
96
97    /// RegVT - The value type of each register.
98    ///
99    MVT::ValueType RegVT;
100
101    /// ValueVT - The value type of the LLVM value, which may be promoted from
102    /// RegVT or made from merging the two expanded parts.
103    MVT::ValueType ValueVT;
104
105    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
106
107    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
108      : RegVT(regvt), ValueVT(valuevt) {
109        Regs.push_back(Reg);
110    }
111    RegsForValue(const std::vector<unsigned> &regs,
112                 MVT::ValueType regvt, MVT::ValueType valuevt)
113      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
114    }
115
116    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
117    /// this value and returns the result as a ValueVT value.  This uses
118    /// Chain/Flag as the input and updates them for the output Chain/Flag.
119    SDOperand getCopyFromRegs(SelectionDAG &DAG,
120                              SDOperand &Chain, SDOperand &Flag) const;
121
122    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
123    /// specified value into the registers specified by this object.  This uses
124    /// Chain/Flag as the input and updates them for the output Chain/Flag.
125    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
126                       SDOperand &Chain, SDOperand &Flag,
127                       MVT::ValueType PtrVT) const;
128
129    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
130    /// operand list.  This adds the code marker and includes the number of
131    /// values added into it.
132    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
133                              std::vector<SDOperand> &Ops) const;
134  };
135}
136
137namespace llvm {
138  //===--------------------------------------------------------------------===//
139  /// createDefaultScheduler - This creates an instruction scheduler appropriate
140  /// for the target.
141  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
142                                      SelectionDAG *DAG,
143                                      MachineBasicBlock *BB) {
144    TargetLowering &TLI = IS->getTargetLowering();
145
146    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
147      return createTDListDAGScheduler(IS, DAG, BB);
148    } else {
149      assert(TLI.getSchedulingPreference() ==
150           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
151      return createBURRListDAGScheduler(IS, DAG, BB);
152    }
153  }
154
155
156  //===--------------------------------------------------------------------===//
157  /// FunctionLoweringInfo - This contains information that is global to a
158  /// function that is used when lowering a region of the function.
159  class FunctionLoweringInfo {
160  public:
161    TargetLowering &TLI;
162    Function &Fn;
163    MachineFunction &MF;
164    SSARegMap *RegMap;
165
166    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
167
168    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
169    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
170
171    /// ValueMap - Since we emit code for the function a basic block at a time,
172    /// we must remember which virtual registers hold the values for
173    /// cross-basic-block values.
174    DenseMap<const Value*, unsigned> ValueMap;
175
176    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
177    /// the entry block.  This allows the allocas to be efficiently referenced
178    /// anywhere in the function.
179    std::map<const AllocaInst*, int> StaticAllocaMap;
180
181    unsigned MakeReg(MVT::ValueType VT) {
182      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
183    }
184
185    /// isExportedInst - Return true if the specified value is an instruction
186    /// exported from its block.
187    bool isExportedInst(const Value *V) {
188      return ValueMap.count(V);
189    }
190
191    unsigned CreateRegForValue(const Value *V);
192
193    unsigned InitializeRegForValue(const Value *V) {
194      unsigned &R = ValueMap[V];
195      assert(R == 0 && "Already initialized this value register!");
196      return R = CreateRegForValue(V);
197    }
198  };
199}
200
201/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
202/// PHI nodes or outside of the basic block that defines it, or used by a
203/// switch instruction, which may expand to multiple basic blocks.
204static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
205  if (isa<PHINode>(I)) return true;
206  BasicBlock *BB = I->getParent();
207  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
208    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
209        // FIXME: Remove switchinst special case.
210        isa<SwitchInst>(*UI))
211      return true;
212  return false;
213}
214
215/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
216/// entry block, return true.  This includes arguments used by switches, since
217/// the switch may expand into multiple basic blocks.
218static bool isOnlyUsedInEntryBlock(Argument *A) {
219  BasicBlock *Entry = A->getParent()->begin();
220  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
221    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
222      return false;  // Use not in entry block.
223  return true;
224}
225
226FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
227                                           Function &fn, MachineFunction &mf)
228    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
229
230  // Create a vreg for each argument register that is not dead and is used
231  // outside of the entry block for the function.
232  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
233       AI != E; ++AI)
234    if (!isOnlyUsedInEntryBlock(AI))
235      InitializeRegForValue(AI);
236
237  // Initialize the mapping of values to registers.  This is only set up for
238  // instruction values that are used outside of the block that defines
239  // them.
240  Function::iterator BB = Fn.begin(), EB = Fn.end();
241  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
242    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
243      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
244        const Type *Ty = AI->getAllocatedType();
245        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
246        unsigned Align =
247          std::max((unsigned)TLI.getTargetData()->getTypeAlignmentPref(Ty),
248                   AI->getAlignment());
249
250        TySize *= CUI->getZExtValue();   // Get total allocated size.
251        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
252        StaticAllocaMap[AI] =
253          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
254      }
255
256  for (; BB != EB; ++BB)
257    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
258      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
259        if (!isa<AllocaInst>(I) ||
260            !StaticAllocaMap.count(cast<AllocaInst>(I)))
261          InitializeRegForValue(I);
262
263  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
264  // also creates the initial PHI MachineInstrs, though none of the input
265  // operands are populated.
266  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
267    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
268    MBBMap[BB] = MBB;
269    MF.getBasicBlockList().push_back(MBB);
270
271    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
272    // appropriate.
273    PHINode *PN;
274    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
275      if (PN->use_empty()) continue;
276
277      MVT::ValueType VT = TLI.getValueType(PN->getType());
278      unsigned NumElements;
279      if (VT != MVT::Vector)
280        NumElements = TLI.getNumElements(VT);
281      else {
282        MVT::ValueType VT1,VT2;
283        NumElements =
284          TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
285                                     VT1, VT2);
286      }
287      unsigned PHIReg = ValueMap[PN];
288      assert(PHIReg && "PHI node does not have an assigned virtual register!");
289      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
290      for (unsigned i = 0; i != NumElements; ++i)
291        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
292    }
293  }
294}
295
296/// CreateRegForValue - Allocate the appropriate number of virtual registers of
297/// the correctly promoted or expanded types.  Assign these registers
298/// consecutive vreg numbers and return the first assigned number.
299unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
300  MVT::ValueType VT = TLI.getValueType(V->getType());
301
302  // The number of multiples of registers that we need, to, e.g., split up
303  // a <2 x int64> -> 4 x i32 registers.
304  unsigned NumVectorRegs = 1;
305
306  // If this is a packed type, figure out what type it will decompose into
307  // and how many of the elements it will use.
308  if (VT == MVT::Vector) {
309    const PackedType *PTy = cast<PackedType>(V->getType());
310    unsigned NumElts = PTy->getNumElements();
311    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
312
313    // Divide the input until we get to a supported size.  This will always
314    // end with a scalar if the target doesn't support vectors.
315    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
316      NumElts >>= 1;
317      NumVectorRegs <<= 1;
318    }
319    if (NumElts == 1)
320      VT = EltTy;
321    else
322      VT = getVectorType(EltTy, NumElts);
323  }
324
325  // The common case is that we will only create one register for this
326  // value.  If we have that case, create and return the virtual register.
327  unsigned NV = TLI.getNumElements(VT);
328  if (NV == 1) {
329    // If we are promoting this value, pick the next largest supported type.
330    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
331    unsigned Reg = MakeReg(PromotedType);
332    // If this is a vector of supported or promoted types (e.g. 4 x i16),
333    // create all of the registers.
334    for (unsigned i = 1; i != NumVectorRegs; ++i)
335      MakeReg(PromotedType);
336    return Reg;
337  }
338
339  // If this value is represented with multiple target registers, make sure
340  // to create enough consecutive registers of the right (smaller) type.
341  VT = TLI.getTypeToExpandTo(VT);
342  unsigned R = MakeReg(VT);
343  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
344    MakeReg(VT);
345  return R;
346}
347
348//===----------------------------------------------------------------------===//
349/// SelectionDAGLowering - This is the common target-independent lowering
350/// implementation that is parameterized by a TargetLowering object.
351/// Also, targets can overload any lowering method.
352///
353namespace llvm {
354class SelectionDAGLowering {
355  MachineBasicBlock *CurMBB;
356
357  DenseMap<const Value*, SDOperand> NodeMap;
358
359  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
360  /// them up and then emit token factor nodes when possible.  This allows us to
361  /// get simple disambiguation between loads without worrying about alias
362  /// analysis.
363  std::vector<SDOperand> PendingLoads;
364
365  /// Case - A pair of values to record the Value for a switch case, and the
366  /// case's target basic block.
367  typedef std::pair<Constant*, MachineBasicBlock*> Case;
368  typedef std::vector<Case>::iterator              CaseItr;
369  typedef std::pair<CaseItr, CaseItr>              CaseRange;
370
371  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
372  /// of conditional branches.
373  struct CaseRec {
374    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
375    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
376
377    /// CaseBB - The MBB in which to emit the compare and branch
378    MachineBasicBlock *CaseBB;
379    /// LT, GE - If nonzero, we know the current case value must be less-than or
380    /// greater-than-or-equal-to these Constants.
381    Constant *LT;
382    Constant *GE;
383    /// Range - A pair of iterators representing the range of case values to be
384    /// processed at this point in the binary search tree.
385    CaseRange Range;
386  };
387
388  /// The comparison function for sorting Case values.
389  struct CaseCmp {
390    bool operator () (const Case& C1, const Case& C2) {
391      assert(isa<ConstantInt>(C1.first) && isa<ConstantInt>(C2.first));
392      return cast<const ConstantInt>(C1.first)->getZExtValue() <
393        cast<const ConstantInt>(C2.first)->getZExtValue();
394    }
395  };
396
397public:
398  // TLI - This is information that describes the available target features we
399  // need for lowering.  This indicates when operations are unavailable,
400  // implemented with a libcall, etc.
401  TargetLowering &TLI;
402  SelectionDAG &DAG;
403  const TargetData *TD;
404
405  /// SwitchCases - Vector of CaseBlock structures used to communicate
406  /// SwitchInst code generation information.
407  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
408  SelectionDAGISel::JumpTable JT;
409
410  /// FuncInfo - Information about the function as a whole.
411  ///
412  FunctionLoweringInfo &FuncInfo;
413
414  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
415                       FunctionLoweringInfo &funcinfo)
416    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
417      JT(0,0,0,0), FuncInfo(funcinfo) {
418  }
419
420  /// getRoot - Return the current virtual root of the Selection DAG.
421  ///
422  SDOperand getRoot() {
423    if (PendingLoads.empty())
424      return DAG.getRoot();
425
426    if (PendingLoads.size() == 1) {
427      SDOperand Root = PendingLoads[0];
428      DAG.setRoot(Root);
429      PendingLoads.clear();
430      return Root;
431    }
432
433    // Otherwise, we have to make a token factor node.
434    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
435                                 &PendingLoads[0], PendingLoads.size());
436    PendingLoads.clear();
437    DAG.setRoot(Root);
438    return Root;
439  }
440
441  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
442
443  void visit(Instruction &I) { visit(I.getOpcode(), I); }
444
445  void visit(unsigned Opcode, User &I) {
446    // Note: this doesn't use InstVisitor, because it has to work with
447    // ConstantExpr's in addition to instructions.
448    switch (Opcode) {
449    default: assert(0 && "Unknown instruction type encountered!");
450             abort();
451      // Build the switch statement using the Instruction.def file.
452#define HANDLE_INST(NUM, OPCODE, CLASS) \
453    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
454#include "llvm/Instruction.def"
455    }
456  }
457
458  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
459
460  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
461                        const Value *SV, SDOperand Root,
462                        bool isVolatile);
463
464  SDOperand getIntPtrConstant(uint64_t Val) {
465    return DAG.getConstant(Val, TLI.getPointerTy());
466  }
467
468  SDOperand getValue(const Value *V);
469
470  void setValue(const Value *V, SDOperand NewN) {
471    SDOperand &N = NodeMap[V];
472    assert(N.Val == 0 && "Already set a value for this node!");
473    N = NewN;
474  }
475
476  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
477                                    MVT::ValueType VT,
478                                    bool OutReg, bool InReg,
479                                    std::set<unsigned> &OutputRegs,
480                                    std::set<unsigned> &InputRegs);
481
482  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
483                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
484                            unsigned Opc);
485  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
486  void ExportFromCurrentBlock(Value *V);
487
488  // Terminator instructions.
489  void visitRet(ReturnInst &I);
490  void visitBr(BranchInst &I);
491  void visitSwitch(SwitchInst &I);
492  void visitUnreachable(UnreachableInst &I) { /* noop */ }
493
494  // Helper for visitSwitch
495  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
496  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
497
498  // These all get lowered before this pass.
499  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
500  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
501
502  void visitScalarBinary(User &I, unsigned OpCode);
503  void visitVectorBinary(User &I, unsigned OpCode);
504  void visitEitherBinary(User &I, unsigned ScalarOp, unsigned VectorOp);
505  void visitShift(User &I, unsigned Opcode);
506  void visitAdd(User &I) {
507    if (isa<PackedType>(I.getType()))
508      visitVectorBinary(I, ISD::VADD);
509    else if (I.getType()->isFloatingPoint())
510      visitScalarBinary(I, ISD::FADD);
511    else
512      visitScalarBinary(I, ISD::ADD);
513  }
514  void visitSub(User &I);
515  void visitMul(User &I) {
516    if (isa<PackedType>(I.getType()))
517      visitVectorBinary(I, ISD::VMUL);
518    else if (I.getType()->isFloatingPoint())
519      visitScalarBinary(I, ISD::FMUL);
520    else
521      visitScalarBinary(I, ISD::MUL);
522  }
523  void visitURem(User &I) { visitScalarBinary(I, ISD::UREM); }
524  void visitSRem(User &I) { visitScalarBinary(I, ISD::SREM); }
525  void visitFRem(User &I) { visitScalarBinary(I, ISD::FREM); }
526  void visitUDiv(User &I) { visitEitherBinary(I, ISD::UDIV, ISD::VUDIV); }
527  void visitSDiv(User &I) { visitEitherBinary(I, ISD::SDIV, ISD::VSDIV); }
528  void visitFDiv(User &I) { visitEitherBinary(I, ISD::FDIV, ISD::VSDIV); }
529  void visitAnd (User &I) { visitEitherBinary(I, ISD::AND,  ISD::VAND ); }
530  void visitOr  (User &I) { visitEitherBinary(I, ISD::OR,   ISD::VOR  ); }
531  void visitXor (User &I) { visitEitherBinary(I, ISD::XOR,  ISD::VXOR ); }
532  void visitShl (User &I) { visitShift(I, ISD::SHL); }
533  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
534  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
535  void visitICmp(User &I);
536  void visitFCmp(User &I);
537  // Visit the conversion instructions
538  void visitTrunc(User &I);
539  void visitZExt(User &I);
540  void visitSExt(User &I);
541  void visitFPTrunc(User &I);
542  void visitFPExt(User &I);
543  void visitFPToUI(User &I);
544  void visitFPToSI(User &I);
545  void visitUIToFP(User &I);
546  void visitSIToFP(User &I);
547  void visitPtrToInt(User &I);
548  void visitIntToPtr(User &I);
549  void visitBitCast(User &I);
550
551  void visitExtractElement(User &I);
552  void visitInsertElement(User &I);
553  void visitShuffleVector(User &I);
554
555  void visitGetElementPtr(User &I);
556  void visitSelect(User &I);
557
558  void visitMalloc(MallocInst &I);
559  void visitFree(FreeInst &I);
560  void visitAlloca(AllocaInst &I);
561  void visitLoad(LoadInst &I);
562  void visitStore(StoreInst &I);
563  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
564  void visitCall(CallInst &I);
565  void visitInlineAsm(CallInst &I);
566  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
567  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
568
569  void visitVAStart(CallInst &I);
570  void visitVAArg(VAArgInst &I);
571  void visitVAEnd(CallInst &I);
572  void visitVACopy(CallInst &I);
573
574  void visitMemIntrinsic(CallInst &I, unsigned Op);
575
576  void visitUserOp1(Instruction &I) {
577    assert(0 && "UserOp1 should not exist at instruction selection time!");
578    abort();
579  }
580  void visitUserOp2(Instruction &I) {
581    assert(0 && "UserOp2 should not exist at instruction selection time!");
582    abort();
583  }
584};
585} // end namespace llvm
586
587SDOperand SelectionDAGLowering::getValue(const Value *V) {
588  SDOperand &N = NodeMap[V];
589  if (N.Val) return N;
590
591  const Type *VTy = V->getType();
592  MVT::ValueType VT = TLI.getValueType(VTy);
593  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
594    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
595      visit(CE->getOpcode(), *CE);
596      SDOperand N1 = NodeMap[V];
597      assert(N1.Val && "visit didn't populate the ValueMap!");
598      return N1;
599    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
600      return N = DAG.getGlobalAddress(GV, VT);
601    } else if (isa<ConstantPointerNull>(C)) {
602      return N = DAG.getConstant(0, TLI.getPointerTy());
603    } else if (isa<UndefValue>(C)) {
604      if (!isa<PackedType>(VTy))
605        return N = DAG.getNode(ISD::UNDEF, VT);
606
607      // Create a VBUILD_VECTOR of undef nodes.
608      const PackedType *PTy = cast<PackedType>(VTy);
609      unsigned NumElements = PTy->getNumElements();
610      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
611
612      SmallVector<SDOperand, 8> Ops;
613      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
614
615      // Create a VConstant node with generic Vector type.
616      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
617      Ops.push_back(DAG.getValueType(PVT));
618      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
619                             &Ops[0], Ops.size());
620    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
621      return N = DAG.getConstantFP(CFP->getValue(), VT);
622    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
623      unsigned NumElements = PTy->getNumElements();
624      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
625
626      // Now that we know the number and type of the elements, push a
627      // Constant or ConstantFP node onto the ops list for each element of
628      // the packed constant.
629      SmallVector<SDOperand, 8> Ops;
630      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
631        for (unsigned i = 0; i != NumElements; ++i)
632          Ops.push_back(getValue(CP->getOperand(i)));
633      } else {
634        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
635        SDOperand Op;
636        if (MVT::isFloatingPoint(PVT))
637          Op = DAG.getConstantFP(0, PVT);
638        else
639          Op = DAG.getConstant(0, PVT);
640        Ops.assign(NumElements, Op);
641      }
642
643      // Create a VBUILD_VECTOR node with generic Vector type.
644      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
645      Ops.push_back(DAG.getValueType(PVT));
646      return NodeMap[V] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0],
647                                      Ops.size());
648    } else {
649      // Canonicalize all constant ints to be unsigned.
650      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
651    }
652  }
653
654  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
655    std::map<const AllocaInst*, int>::iterator SI =
656    FuncInfo.StaticAllocaMap.find(AI);
657    if (SI != FuncInfo.StaticAllocaMap.end())
658      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
659  }
660
661  DenseMap<const Value*, unsigned>::iterator VMI =
662      FuncInfo.ValueMap.find(V);
663  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
664
665  unsigned InReg = VMI->second;
666
667  // If this type is not legal, make it so now.
668  if (VT != MVT::Vector) {
669    if (TLI.getTypeAction(VT) == TargetLowering::Expand) {
670      // Source must be expanded.  This input value is actually coming from the
671      // register pair VMI->second and VMI->second+1.
672      MVT::ValueType DestVT = TLI.getTypeToExpandTo(VT);
673      unsigned NumVals = TLI.getNumElements(VT);
674      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
675      if (NumVals == 1)
676        N = DAG.getNode(ISD::BIT_CONVERT, VT, N);
677      else {
678        assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
679        N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
680                       DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
681      }
682    } else {
683      MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
684      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
685      if (TLI.getTypeAction(VT) == TargetLowering::Promote) // Promotion case
686        N = MVT::isFloatingPoint(VT)
687          ? DAG.getNode(ISD::FP_ROUND, VT, N)
688          : DAG.getNode(ISD::TRUNCATE, VT, N);
689    }
690  } else {
691    // Otherwise, if this is a vector, make it available as a generic vector
692    // here.
693    MVT::ValueType PTyElementVT, PTyLegalElementVT;
694    const PackedType *PTy = cast<PackedType>(VTy);
695    unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT,
696                                             PTyLegalElementVT);
697
698    // Build a VBUILD_VECTOR with the input registers.
699    SmallVector<SDOperand, 8> Ops;
700    if (PTyElementVT == PTyLegalElementVT) {
701      // If the value types are legal, just VBUILD the CopyFromReg nodes.
702      for (unsigned i = 0; i != NE; ++i)
703        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
704                                         PTyElementVT));
705    } else if (PTyElementVT < PTyLegalElementVT) {
706      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
707      for (unsigned i = 0; i != NE; ++i) {
708        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
709                                          PTyElementVT);
710        if (MVT::isFloatingPoint(PTyElementVT))
711          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
712        else
713          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
714        Ops.push_back(Op);
715      }
716    } else {
717      // If the register was expanded, use BUILD_PAIR.
718      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
719      for (unsigned i = 0; i != NE/2; ++i) {
720        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
721                                           PTyElementVT);
722        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
723                                           PTyElementVT);
724        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
725      }
726    }
727
728    Ops.push_back(DAG.getConstant(NE, MVT::i32));
729    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
730    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
731
732    // Finally, use a VBIT_CONVERT to make this available as the appropriate
733    // vector type.
734    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
735                    DAG.getConstant(PTy->getNumElements(),
736                                    MVT::i32),
737                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
738  }
739
740  return N;
741}
742
743
744void SelectionDAGLowering::visitRet(ReturnInst &I) {
745  if (I.getNumOperands() == 0) {
746    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
747    return;
748  }
749  SmallVector<SDOperand, 8> NewValues;
750  NewValues.push_back(getRoot());
751  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
752    SDOperand RetOp = getValue(I.getOperand(i));
753
754    // If this is an integer return value, we need to promote it ourselves to
755    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
756    // than sign/zero.
757    // FIXME: C calling convention requires the return type to be promoted to
758    // at least 32-bit. But this is not necessary for non-C calling conventions.
759    if (MVT::isInteger(RetOp.getValueType()) &&
760        RetOp.getValueType() < MVT::i64) {
761      MVT::ValueType TmpVT;
762      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
763        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
764      else
765        TmpVT = MVT::i32;
766      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
767      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
768      if (FTy->paramHasAttr(0, FunctionType::SExtAttribute))
769        ExtendKind = ISD::SIGN_EXTEND;
770      if (FTy->paramHasAttr(0, FunctionType::ZExtAttribute))
771        ExtendKind = ISD::ZERO_EXTEND;
772      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
773    }
774    NewValues.push_back(RetOp);
775    NewValues.push_back(DAG.getConstant(false, MVT::i32));
776  }
777  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
778                          &NewValues[0], NewValues.size()));
779}
780
781/// ExportFromCurrentBlock - If this condition isn't known to be exported from
782/// the current basic block, add it to ValueMap now so that we'll get a
783/// CopyTo/FromReg.
784void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
785  // No need to export constants.
786  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
787
788  // Already exported?
789  if (FuncInfo.isExportedInst(V)) return;
790
791  unsigned Reg = FuncInfo.InitializeRegForValue(V);
792  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
793}
794
795bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
796                                                    const BasicBlock *FromBB) {
797  // The operands of the setcc have to be in this block.  We don't know
798  // how to export them from some other block.
799  if (Instruction *VI = dyn_cast<Instruction>(V)) {
800    // Can export from current BB.
801    if (VI->getParent() == FromBB)
802      return true;
803
804    // Is already exported, noop.
805    return FuncInfo.isExportedInst(V);
806  }
807
808  // If this is an argument, we can export it if the BB is the entry block or
809  // if it is already exported.
810  if (isa<Argument>(V)) {
811    if (FromBB == &FromBB->getParent()->getEntryBlock())
812      return true;
813
814    // Otherwise, can only export this if it is already exported.
815    return FuncInfo.isExportedInst(V);
816  }
817
818  // Otherwise, constants can always be exported.
819  return true;
820}
821
822static bool InBlock(const Value *V, const BasicBlock *BB) {
823  if (const Instruction *I = dyn_cast<Instruction>(V))
824    return I->getParent() == BB;
825  return true;
826}
827
828/// FindMergedConditions - If Cond is an expression like
829void SelectionDAGLowering::FindMergedConditions(Value *Cond,
830                                                MachineBasicBlock *TBB,
831                                                MachineBasicBlock *FBB,
832                                                MachineBasicBlock *CurBB,
833                                                unsigned Opc) {
834  // If this node is not part of the or/and tree, emit it as a branch.
835  Instruction *BOp = dyn_cast<Instruction>(Cond);
836
837  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
838      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
839      BOp->getParent() != CurBB->getBasicBlock() ||
840      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
841      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
842    const BasicBlock *BB = CurBB->getBasicBlock();
843
844    // If the leaf of the tree is a comparison, merge the condition into
845    // the caseblock.
846    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
847        // The operands of the cmp have to be in this block.  We don't know
848        // how to export them from some other block.  If this is the first block
849        // of the sequence, no exporting is needed.
850        (CurBB == CurMBB ||
851         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
852          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
853      BOp = cast<Instruction>(Cond);
854      ISD::CondCode Condition;
855      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
856        switch (IC->getPredicate()) {
857        default: assert(0 && "Unknown icmp predicate opcode!");
858        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
859        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
860        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
861        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
862        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
863        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
864        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
865        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
866        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
867        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
868        }
869      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
870        ISD::CondCode FPC, FOC;
871        switch (FC->getPredicate()) {
872        default: assert(0 && "Unknown fcmp predicate opcode!");
873        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
874        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
875        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
876        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
877        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
878        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
879        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
880        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
881        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
882        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
883        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
884        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
885        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
886        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
887        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
888        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
889        }
890        if (FiniteOnlyFPMath())
891          Condition = FOC;
892        else
893          Condition = FPC;
894      } else {
895        Condition = ISD::SETEQ; // silence warning.
896        assert(0 && "Unknown compare instruction");
897      }
898
899      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
900                                     BOp->getOperand(1), TBB, FBB, CurBB);
901      SwitchCases.push_back(CB);
902      return;
903    }
904
905    // Create a CaseBlock record representing this branch.
906    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
907                                   TBB, FBB, CurBB);
908    SwitchCases.push_back(CB);
909    return;
910  }
911
912
913  //  Create TmpBB after CurBB.
914  MachineFunction::iterator BBI = CurBB;
915  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
916  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
917
918  if (Opc == Instruction::Or) {
919    // Codegen X | Y as:
920    //   jmp_if_X TBB
921    //   jmp TmpBB
922    // TmpBB:
923    //   jmp_if_Y TBB
924    //   jmp FBB
925    //
926
927    // Emit the LHS condition.
928    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
929
930    // Emit the RHS condition into TmpBB.
931    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
932  } else {
933    assert(Opc == Instruction::And && "Unknown merge op!");
934    // Codegen X & Y as:
935    //   jmp_if_X TmpBB
936    //   jmp FBB
937    // TmpBB:
938    //   jmp_if_Y TBB
939    //   jmp FBB
940    //
941    //  This requires creation of TmpBB after CurBB.
942
943    // Emit the LHS condition.
944    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
945
946    // Emit the RHS condition into TmpBB.
947    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
948  }
949}
950
951/// If the set of cases should be emitted as a series of branches, return true.
952/// If we should emit this as a bunch of and/or'd together conditions, return
953/// false.
954static bool
955ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
956  if (Cases.size() != 2) return true;
957
958  // If this is two comparisons of the same values or'd or and'd together, they
959  // will get folded into a single comparison, so don't emit two blocks.
960  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
961       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
962      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
963       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
964    return false;
965  }
966
967  return true;
968}
969
970void SelectionDAGLowering::visitBr(BranchInst &I) {
971  // Update machine-CFG edges.
972  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
973
974  // Figure out which block is immediately after the current one.
975  MachineBasicBlock *NextBlock = 0;
976  MachineFunction::iterator BBI = CurMBB;
977  if (++BBI != CurMBB->getParent()->end())
978    NextBlock = BBI;
979
980  if (I.isUnconditional()) {
981    // If this is not a fall-through branch, emit the branch.
982    if (Succ0MBB != NextBlock)
983      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
984                              DAG.getBasicBlock(Succ0MBB)));
985
986    // Update machine-CFG edges.
987    CurMBB->addSuccessor(Succ0MBB);
988
989    return;
990  }
991
992  // If this condition is one of the special cases we handle, do special stuff
993  // now.
994  Value *CondVal = I.getCondition();
995  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
996
997  // If this is a series of conditions that are or'd or and'd together, emit
998  // this as a sequence of branches instead of setcc's with and/or operations.
999  // For example, instead of something like:
1000  //     cmp A, B
1001  //     C = seteq
1002  //     cmp D, E
1003  //     F = setle
1004  //     or C, F
1005  //     jnz foo
1006  // Emit:
1007  //     cmp A, B
1008  //     je foo
1009  //     cmp D, E
1010  //     jle foo
1011  //
1012  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1013    if (BOp->hasOneUse() &&
1014        (BOp->getOpcode() == Instruction::And ||
1015         BOp->getOpcode() == Instruction::Or)) {
1016      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1017      // If the compares in later blocks need to use values not currently
1018      // exported from this block, export them now.  This block should always
1019      // be the first entry.
1020      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1021
1022      // Allow some cases to be rejected.
1023      if (ShouldEmitAsBranches(SwitchCases)) {
1024        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1025          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1026          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1027        }
1028
1029        // Emit the branch for this block.
1030        visitSwitchCase(SwitchCases[0]);
1031        SwitchCases.erase(SwitchCases.begin());
1032        return;
1033      }
1034
1035      // Okay, we decided not to do this, remove any inserted MBB's and clear
1036      // SwitchCases.
1037      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1038        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1039
1040      SwitchCases.clear();
1041    }
1042  }
1043
1044  // Create a CaseBlock record representing this branch.
1045  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1046                                 Succ0MBB, Succ1MBB, CurMBB);
1047  // Use visitSwitchCase to actually insert the fast branch sequence for this
1048  // cond branch.
1049  visitSwitchCase(CB);
1050}
1051
1052/// visitSwitchCase - Emits the necessary code to represent a single node in
1053/// the binary search tree resulting from lowering a switch instruction.
1054void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1055  SDOperand Cond;
1056  SDOperand CondLHS = getValue(CB.CmpLHS);
1057
1058  // Build the setcc now, fold "(X == true)" to X and "(X == false)" to !X to
1059  // handle common cases produced by branch lowering.
1060  if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1061    Cond = CondLHS;
1062  else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1063    SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1064    Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1065  } else
1066    Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1067
1068  // Set NextBlock to be the MBB immediately after the current one, if any.
1069  // This is used to avoid emitting unnecessary branches to the next block.
1070  MachineBasicBlock *NextBlock = 0;
1071  MachineFunction::iterator BBI = CurMBB;
1072  if (++BBI != CurMBB->getParent()->end())
1073    NextBlock = BBI;
1074
1075  // If the lhs block is the next block, invert the condition so that we can
1076  // fall through to the lhs instead of the rhs block.
1077  if (CB.TrueBB == NextBlock) {
1078    std::swap(CB.TrueBB, CB.FalseBB);
1079    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1080    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1081  }
1082  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1083                                 DAG.getBasicBlock(CB.TrueBB));
1084  if (CB.FalseBB == NextBlock)
1085    DAG.setRoot(BrCond);
1086  else
1087    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1088                            DAG.getBasicBlock(CB.FalseBB)));
1089  // Update successor info
1090  CurMBB->addSuccessor(CB.TrueBB);
1091  CurMBB->addSuccessor(CB.FalseBB);
1092}
1093
1094void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1095  // Emit the code for the jump table
1096  MVT::ValueType PTy = TLI.getPointerTy();
1097  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1098  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1099  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1100                          Table, Index));
1101  return;
1102}
1103
1104void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
1105  // Figure out which block is immediately after the current one.
1106  MachineBasicBlock *NextBlock = 0;
1107  MachineFunction::iterator BBI = CurMBB;
1108
1109  if (++BBI != CurMBB->getParent()->end())
1110    NextBlock = BBI;
1111
1112  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
1113
1114  // If there is only the default destination, branch to it if it is not the
1115  // next basic block.  Otherwise, just fall through.
1116  if (I.getNumOperands() == 2) {
1117    // Update machine-CFG edges.
1118
1119    // If this is not a fall-through branch, emit the branch.
1120    if (Default != NextBlock)
1121      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1122                              DAG.getBasicBlock(Default)));
1123
1124    CurMBB->addSuccessor(Default);
1125    return;
1126  }
1127
1128  // If there are any non-default case statements, create a vector of Cases
1129  // representing each one, and sort the vector so that we can efficiently
1130  // create a binary search tree from them.
1131  std::vector<Case> Cases;
1132
1133  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
1134    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
1135    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
1136  }
1137
1138  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1139
1140  // Get the Value to be switched on and default basic blocks, which will be
1141  // inserted into CaseBlock records, representing basic blocks in the binary
1142  // search tree.
1143  Value *SV = I.getOperand(0);
1144
1145  // Get the MachineFunction which holds the current MBB.  This is used during
1146  // emission of jump tables, and when inserting any additional MBBs necessary
1147  // to represent the switch.
1148  MachineFunction *CurMF = CurMBB->getParent();
1149  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
1150
1151  // If the switch has few cases (two or less) emit a series of specific
1152  // tests.
1153  if (Cases.size() < 3) {
1154    // TODO: If any two of the cases has the same destination, and if one value
1155    // is the same as the other, but has one bit unset that the other has set,
1156    // use bit manipulation to do two compares at once.  For example:
1157    // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1158
1159    // Rearrange the case blocks so that the last one falls through if possible.
1160    if (NextBlock && Default != NextBlock && Cases.back().second != NextBlock) {
1161      // The last case block won't fall through into 'NextBlock' if we emit the
1162      // branches in this order.  See if rearranging a case value would help.
1163      for (unsigned i = 0, e = Cases.size()-1; i != e; ++i) {
1164        if (Cases[i].second == NextBlock) {
1165          std::swap(Cases[i], Cases.back());
1166          break;
1167        }
1168      }
1169    }
1170
1171    // Create a CaseBlock record representing a conditional branch to
1172    // the Case's target mbb if the value being switched on SV is equal
1173    // to C.
1174    MachineBasicBlock *CurBlock = CurMBB;
1175    for (unsigned i = 0, e = Cases.size(); i != e; ++i) {
1176      MachineBasicBlock *FallThrough;
1177      if (i != e-1) {
1178        FallThrough = new MachineBasicBlock(CurMBB->getBasicBlock());
1179        CurMF->getBasicBlockList().insert(BBI, FallThrough);
1180      } else {
1181        // If the last case doesn't match, go to the default block.
1182        FallThrough = Default;
1183      }
1184
1185      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, Cases[i].first,
1186                                     Cases[i].second, FallThrough, CurBlock);
1187
1188      // If emitting the first comparison, just call visitSwitchCase to emit the
1189      // code into the current block.  Otherwise, push the CaseBlock onto the
1190      // vector to be later processed by SDISel, and insert the node's MBB
1191      // before the next MBB.
1192      if (CurBlock == CurMBB)
1193        visitSwitchCase(CB);
1194      else
1195        SwitchCases.push_back(CB);
1196
1197      CurBlock = FallThrough;
1198    }
1199    return;
1200  }
1201
1202  // If the switch has more than 5 blocks, and at least 31.25% dense, and the
1203  // target supports indirect branches, then emit a jump table rather than
1204  // lowering the switch to a binary tree of conditional branches.
1205  if ((TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1206       TLI.isOperationLegal(ISD::BRIND, MVT::Other)) &&
1207      Cases.size() > 5) {
1208    uint64_t First =cast<ConstantInt>(Cases.front().first)->getZExtValue();
1209    uint64_t Last  = cast<ConstantInt>(Cases.back().first)->getZExtValue();
1210    double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
1211
1212    if (Density >= 0.3125) {
1213      // Create a new basic block to hold the code for loading the address
1214      // of the jump table, and jumping to it.  Update successor information;
1215      // we will either branch to the default case for the switch, or the jump
1216      // table.
1217      MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1218      CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1219      CurMBB->addSuccessor(Default);
1220      CurMBB->addSuccessor(JumpTableBB);
1221
1222      // Subtract the lowest switch case value from the value being switched on
1223      // and conditional branch to default mbb if the result is greater than the
1224      // difference between smallest and largest cases.
1225      SDOperand SwitchOp = getValue(SV);
1226      MVT::ValueType VT = SwitchOp.getValueType();
1227      SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1228                                  DAG.getConstant(First, VT));
1229
1230      // The SDNode we just created, which holds the value being switched on
1231      // minus the the smallest case value, needs to be copied to a virtual
1232      // register so it can be used as an index into the jump table in a
1233      // subsequent basic block.  This value may be smaller or larger than the
1234      // target's pointer type, and therefore require extension or truncating.
1235      if (VT > TLI.getPointerTy())
1236        SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1237      else
1238        SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1239
1240      unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1241      SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1242
1243      // Emit the range check for the jump table, and branch to the default
1244      // block for the switch statement if the value being switched on exceeds
1245      // the largest case in the switch.
1246      SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1247                                   DAG.getConstant(Last-First,VT), ISD::SETUGT);
1248      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1249                              DAG.getBasicBlock(Default)));
1250
1251      // Build a vector of destination BBs, corresponding to each target
1252      // of the jump table.  If the value of the jump table slot corresponds to
1253      // a case statement, push the case's BB onto the vector, otherwise, push
1254      // the default BB.
1255      std::vector<MachineBasicBlock*> DestBBs;
1256      uint64_t TEI = First;
1257      for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI)
1258        if (cast<ConstantInt>(ii->first)->getZExtValue() == TEI) {
1259          DestBBs.push_back(ii->second);
1260          ++ii;
1261        } else {
1262          DestBBs.push_back(Default);
1263        }
1264
1265      // Update successor info.  Add one edge to each unique successor.
1266      // Vector bool would be better, but vector<bool> is really slow.
1267      std::vector<unsigned char> SuccsHandled;
1268      SuccsHandled.resize(CurMBB->getParent()->getNumBlockIDs());
1269
1270      for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1271           E = DestBBs.end(); I != E; ++I) {
1272        if (!SuccsHandled[(*I)->getNumber()]) {
1273          SuccsHandled[(*I)->getNumber()] = true;
1274          JumpTableBB->addSuccessor(*I);
1275        }
1276      }
1277
1278      // Create a jump table index for this jump table, or return an existing
1279      // one.
1280      unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1281
1282      // Set the jump table information so that we can codegen it as a second
1283      // MachineBasicBlock
1284      JT.Reg = JumpTableReg;
1285      JT.JTI = JTI;
1286      JT.MBB = JumpTableBB;
1287      JT.Default = Default;
1288      return;
1289    }
1290  }
1291
1292  // Push the initial CaseRec onto the worklist
1293  std::vector<CaseRec> CaseVec;
1294  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1295
1296  while (!CaseVec.empty()) {
1297    // Grab a record representing a case range to process off the worklist
1298    CaseRec CR = CaseVec.back();
1299    CaseVec.pop_back();
1300
1301    // Size is the number of Cases represented by this range.  If Size is 1,
1302    // then we are processing a leaf of the binary search tree.  Otherwise,
1303    // we need to pick a pivot, and push left and right ranges onto the
1304    // worklist.
1305    unsigned Size = CR.Range.second - CR.Range.first;
1306
1307    if (Size == 1) {
1308      // Create a CaseBlock record representing a conditional branch to
1309      // the Case's target mbb if the value being switched on SV is equal
1310      // to C.  Otherwise, branch to default.
1311      Constant *C = CR.Range.first->first;
1312      MachineBasicBlock *Target = CR.Range.first->second;
1313      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
1314                                     CR.CaseBB);
1315
1316      // If the MBB representing the leaf node is the current MBB, then just
1317      // call visitSwitchCase to emit the code into the current block.
1318      // Otherwise, push the CaseBlock onto the vector to be later processed
1319      // by SDISel, and insert the node's MBB before the next MBB.
1320      if (CR.CaseBB == CurMBB)
1321        visitSwitchCase(CB);
1322      else
1323        SwitchCases.push_back(CB);
1324    } else {
1325      // split case range at pivot
1326      CaseItr Pivot = CR.Range.first + (Size / 2);
1327      CaseRange LHSR(CR.Range.first, Pivot);
1328      CaseRange RHSR(Pivot, CR.Range.second);
1329      Constant *C = Pivot->first;
1330      MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1331
1332      // We know that we branch to the LHS if the Value being switched on is
1333      // less than the Pivot value, C.  We use this to optimize our binary
1334      // tree a bit, by recognizing that if SV is greater than or equal to the
1335      // LHS's Case Value, and that Case Value is exactly one less than the
1336      // Pivot's Value, then we can branch directly to the LHS's Target,
1337      // rather than creating a leaf node for it.
1338      if ((LHSR.second - LHSR.first) == 1 &&
1339          LHSR.first->first == CR.GE &&
1340          cast<ConstantInt>(C)->getZExtValue() ==
1341          (cast<ConstantInt>(CR.GE)->getZExtValue() + 1ULL)) {
1342        TrueBB = LHSR.first->second;
1343      } else {
1344        TrueBB = new MachineBasicBlock(LLVMBB);
1345        CurMF->getBasicBlockList().insert(BBI, TrueBB);
1346        CaseVec.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1347      }
1348
1349      // Similar to the optimization above, if the Value being switched on is
1350      // known to be less than the Constant CR.LT, and the current Case Value
1351      // is CR.LT - 1, then we can branch directly to the target block for
1352      // the current Case Value, rather than emitting a RHS leaf node for it.
1353      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1354          cast<ConstantInt>(RHSR.first->first)->getZExtValue() ==
1355          (cast<ConstantInt>(CR.LT)->getZExtValue() - 1ULL)) {
1356        FalseBB = RHSR.first->second;
1357      } else {
1358        FalseBB = new MachineBasicBlock(LLVMBB);
1359        CurMF->getBasicBlockList().insert(BBI, FalseBB);
1360        CaseVec.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1361      }
1362
1363      // Create a CaseBlock record representing a conditional branch to
1364      // the LHS node if the value being switched on SV is less than C.
1365      // Otherwise, branch to LHS.
1366      ISD::CondCode CC =  ISD::SETLT;
1367      SelectionDAGISel::CaseBlock CB(CC, SV, C, TrueBB, FalseBB, CR.CaseBB);
1368
1369      if (CR.CaseBB == CurMBB)
1370        visitSwitchCase(CB);
1371      else
1372        SwitchCases.push_back(CB);
1373    }
1374  }
1375}
1376
1377void SelectionDAGLowering::visitSub(User &I) {
1378  // -0.0 - X --> fneg
1379  const Type *Ty = I.getType();
1380  if (isa<PackedType>(Ty)) {
1381    visitVectorBinary(I, ISD::VSUB);
1382  } else if (Ty->isFloatingPoint()) {
1383    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1384      if (CFP->isExactlyValue(-0.0)) {
1385        SDOperand Op2 = getValue(I.getOperand(1));
1386        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1387        return;
1388      }
1389    visitScalarBinary(I, ISD::FSUB);
1390  } else
1391    visitScalarBinary(I, ISD::SUB);
1392}
1393
1394void SelectionDAGLowering::visitScalarBinary(User &I, unsigned OpCode) {
1395  SDOperand Op1 = getValue(I.getOperand(0));
1396  SDOperand Op2 = getValue(I.getOperand(1));
1397
1398  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
1399}
1400
1401void
1402SelectionDAGLowering::visitVectorBinary(User &I, unsigned OpCode) {
1403  assert(isa<PackedType>(I.getType()));
1404  const PackedType *Ty = cast<PackedType>(I.getType());
1405  SDOperand Typ = DAG.getValueType(TLI.getValueType(Ty->getElementType()));
1406
1407  setValue(&I, DAG.getNode(OpCode, MVT::Vector,
1408                           getValue(I.getOperand(0)),
1409                           getValue(I.getOperand(1)),
1410                           DAG.getConstant(Ty->getNumElements(), MVT::i32),
1411                           Typ));
1412}
1413
1414void SelectionDAGLowering::visitEitherBinary(User &I, unsigned ScalarOp,
1415                                             unsigned VectorOp) {
1416  if (isa<PackedType>(I.getType()))
1417    visitVectorBinary(I, VectorOp);
1418  else
1419    visitScalarBinary(I, ScalarOp);
1420}
1421
1422void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1423  SDOperand Op1 = getValue(I.getOperand(0));
1424  SDOperand Op2 = getValue(I.getOperand(1));
1425
1426  if (TLI.getShiftAmountTy() < Op2.getValueType())
1427    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
1428  else if (TLI.getShiftAmountTy() > Op2.getValueType())
1429    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1430
1431  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1432}
1433
1434void SelectionDAGLowering::visitICmp(User &I) {
1435  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
1436  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
1437    predicate = IC->getPredicate();
1438  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
1439    predicate = ICmpInst::Predicate(IC->getPredicate());
1440  SDOperand Op1 = getValue(I.getOperand(0));
1441  SDOperand Op2 = getValue(I.getOperand(1));
1442  ISD::CondCode Opcode;
1443  switch (predicate) {
1444    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
1445    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
1446    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
1447    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
1448    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
1449    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
1450    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
1451    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
1452    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
1453    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
1454    default:
1455      assert(!"Invalid ICmp predicate value");
1456      Opcode = ISD::SETEQ;
1457      break;
1458  }
1459  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1460}
1461
1462void SelectionDAGLowering::visitFCmp(User &I) {
1463  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
1464  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
1465    predicate = FC->getPredicate();
1466  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
1467    predicate = FCmpInst::Predicate(FC->getPredicate());
1468  SDOperand Op1 = getValue(I.getOperand(0));
1469  SDOperand Op2 = getValue(I.getOperand(1));
1470  ISD::CondCode Condition, FOC, FPC;
1471  switch (predicate) {
1472    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1473    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1474    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1475    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1476    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1477    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1478    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1479    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1480    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1481    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1482    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1483    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1484    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1485    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1486    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1487    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1488    default:
1489      assert(!"Invalid FCmp predicate value");
1490      FOC = FPC = ISD::SETFALSE;
1491      break;
1492  }
1493  if (FiniteOnlyFPMath())
1494    Condition = FOC;
1495  else
1496    Condition = FPC;
1497  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
1498}
1499
1500void SelectionDAGLowering::visitSelect(User &I) {
1501  SDOperand Cond     = getValue(I.getOperand(0));
1502  SDOperand TrueVal  = getValue(I.getOperand(1));
1503  SDOperand FalseVal = getValue(I.getOperand(2));
1504  if (!isa<PackedType>(I.getType())) {
1505    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1506                             TrueVal, FalseVal));
1507  } else {
1508    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1509                             *(TrueVal.Val->op_end()-2),
1510                             *(TrueVal.Val->op_end()-1)));
1511  }
1512}
1513
1514
1515void SelectionDAGLowering::visitTrunc(User &I) {
1516  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
1517  SDOperand N = getValue(I.getOperand(0));
1518  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1519  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1520}
1521
1522void SelectionDAGLowering::visitZExt(User &I) {
1523  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1524  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
1525  SDOperand N = getValue(I.getOperand(0));
1526  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1527  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1528}
1529
1530void SelectionDAGLowering::visitSExt(User &I) {
1531  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1532  // SExt also can't be a cast to bool for same reason. So, nothing much to do
1533  SDOperand N = getValue(I.getOperand(0));
1534  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1535  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1536}
1537
1538void SelectionDAGLowering::visitFPTrunc(User &I) {
1539  // FPTrunc is never a no-op cast, no need to check
1540  SDOperand N = getValue(I.getOperand(0));
1541  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1542  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1543}
1544
1545void SelectionDAGLowering::visitFPExt(User &I){
1546  // FPTrunc is never a no-op cast, no need to check
1547  SDOperand N = getValue(I.getOperand(0));
1548  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1549  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1550}
1551
1552void SelectionDAGLowering::visitFPToUI(User &I) {
1553  // FPToUI is never a no-op cast, no need to check
1554  SDOperand N = getValue(I.getOperand(0));
1555  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1556  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1557}
1558
1559void SelectionDAGLowering::visitFPToSI(User &I) {
1560  // FPToSI is never a no-op cast, no need to check
1561  SDOperand N = getValue(I.getOperand(0));
1562  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1563  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1564}
1565
1566void SelectionDAGLowering::visitUIToFP(User &I) {
1567  // UIToFP is never a no-op cast, no need to check
1568  SDOperand N = getValue(I.getOperand(0));
1569  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1570  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1571}
1572
1573void SelectionDAGLowering::visitSIToFP(User &I){
1574  // UIToFP is never a no-op cast, no need to check
1575  SDOperand N = getValue(I.getOperand(0));
1576  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1577  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1578}
1579
1580void SelectionDAGLowering::visitPtrToInt(User &I) {
1581  // What to do depends on the size of the integer and the size of the pointer.
1582  // We can either truncate, zero extend, or no-op, accordingly.
1583  SDOperand N = getValue(I.getOperand(0));
1584  MVT::ValueType SrcVT = N.getValueType();
1585  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1586  SDOperand Result;
1587  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1588    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
1589  else
1590    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1591    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
1592  setValue(&I, Result);
1593}
1594
1595void SelectionDAGLowering::visitIntToPtr(User &I) {
1596  // What to do depends on the size of the integer and the size of the pointer.
1597  // We can either truncate, zero extend, or no-op, accordingly.
1598  SDOperand N = getValue(I.getOperand(0));
1599  MVT::ValueType SrcVT = N.getValueType();
1600  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1601  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1602    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1603  else
1604    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1605    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1606}
1607
1608void SelectionDAGLowering::visitBitCast(User &I) {
1609  SDOperand N = getValue(I.getOperand(0));
1610  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1611  if (DestVT == MVT::Vector) {
1612    // This is a cast to a vector from something else.
1613    // Get information about the output vector.
1614    const PackedType *DestTy = cast<PackedType>(I.getType());
1615    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1616    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1617                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1618                             DAG.getValueType(EltVT)));
1619    return;
1620  }
1621  MVT::ValueType SrcVT = N.getValueType();
1622  if (SrcVT == MVT::Vector) {
1623    // This is a cast from a vctor to something else.
1624    // Get information about the input vector.
1625    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1626    return;
1627  }
1628
1629  // BitCast assures us that source and destination are the same size so this
1630  // is either a BIT_CONVERT or a no-op.
1631  if (DestVT != N.getValueType())
1632    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
1633  else
1634    setValue(&I, N); // noop cast.
1635}
1636
1637void SelectionDAGLowering::visitInsertElement(User &I) {
1638  SDOperand InVec = getValue(I.getOperand(0));
1639  SDOperand InVal = getValue(I.getOperand(1));
1640  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1641                                getValue(I.getOperand(2)));
1642
1643  SDOperand Num = *(InVec.Val->op_end()-2);
1644  SDOperand Typ = *(InVec.Val->op_end()-1);
1645  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1646                           InVec, InVal, InIdx, Num, Typ));
1647}
1648
1649void SelectionDAGLowering::visitExtractElement(User &I) {
1650  SDOperand InVec = getValue(I.getOperand(0));
1651  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1652                                getValue(I.getOperand(1)));
1653  SDOperand Typ = *(InVec.Val->op_end()-1);
1654  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1655                           TLI.getValueType(I.getType()), InVec, InIdx));
1656}
1657
1658void SelectionDAGLowering::visitShuffleVector(User &I) {
1659  SDOperand V1   = getValue(I.getOperand(0));
1660  SDOperand V2   = getValue(I.getOperand(1));
1661  SDOperand Mask = getValue(I.getOperand(2));
1662
1663  SDOperand Num = *(V1.Val->op_end()-2);
1664  SDOperand Typ = *(V2.Val->op_end()-1);
1665  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1666                           V1, V2, Mask, Num, Typ));
1667}
1668
1669
1670void SelectionDAGLowering::visitGetElementPtr(User &I) {
1671  SDOperand N = getValue(I.getOperand(0));
1672  const Type *Ty = I.getOperand(0)->getType();
1673
1674  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1675       OI != E; ++OI) {
1676    Value *Idx = *OI;
1677    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1678      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
1679      if (Field) {
1680        // N = N + Offset
1681        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
1682        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1683                        getIntPtrConstant(Offset));
1684      }
1685      Ty = StTy->getElementType(Field);
1686    } else {
1687      Ty = cast<SequentialType>(Ty)->getElementType();
1688
1689      // If this is a constant subscript, handle it quickly.
1690      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1691        if (CI->getZExtValue() == 0) continue;
1692        uint64_t Offs =
1693            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
1694        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1695        continue;
1696      }
1697
1698      // N = N + Idx * ElementSize;
1699      uint64_t ElementSize = TD->getTypeSize(Ty);
1700      SDOperand IdxN = getValue(Idx);
1701
1702      // If the index is smaller or larger than intptr_t, truncate or extend
1703      // it.
1704      if (IdxN.getValueType() < N.getValueType()) {
1705        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1706      } else if (IdxN.getValueType() > N.getValueType())
1707        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1708
1709      // If this is a multiply by a power of two, turn it into a shl
1710      // immediately.  This is a very common case.
1711      if (isPowerOf2_64(ElementSize)) {
1712        unsigned Amt = Log2_64(ElementSize);
1713        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1714                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1715        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1716        continue;
1717      }
1718
1719      SDOperand Scale = getIntPtrConstant(ElementSize);
1720      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1721      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1722    }
1723  }
1724  setValue(&I, N);
1725}
1726
1727void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1728  // If this is a fixed sized alloca in the entry block of the function,
1729  // allocate it statically on the stack.
1730  if (FuncInfo.StaticAllocaMap.count(&I))
1731    return;   // getValue will auto-populate this.
1732
1733  const Type *Ty = I.getAllocatedType();
1734  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
1735  unsigned Align =
1736    std::max((unsigned)TLI.getTargetData()->getTypeAlignmentPref(Ty),
1737             I.getAlignment());
1738
1739  SDOperand AllocSize = getValue(I.getArraySize());
1740  MVT::ValueType IntPtr = TLI.getPointerTy();
1741  if (IntPtr < AllocSize.getValueType())
1742    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1743  else if (IntPtr > AllocSize.getValueType())
1744    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1745
1746  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1747                          getIntPtrConstant(TySize));
1748
1749  // Handle alignment.  If the requested alignment is less than or equal to the
1750  // stack alignment, ignore it and round the size of the allocation up to the
1751  // stack alignment size.  If the size is greater than the stack alignment, we
1752  // note this in the DYNAMIC_STACKALLOC node.
1753  unsigned StackAlign =
1754    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1755  if (Align <= StackAlign) {
1756    Align = 0;
1757    // Add SA-1 to the size.
1758    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1759                            getIntPtrConstant(StackAlign-1));
1760    // Mask out the low bits for alignment purposes.
1761    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1762                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1763  }
1764
1765  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
1766  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
1767                                                    MVT::Other);
1768  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
1769  setValue(&I, DSA);
1770  DAG.setRoot(DSA.getValue(1));
1771
1772  // Inform the Frame Information that we have just allocated a variable-sized
1773  // object.
1774  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1775}
1776
1777void SelectionDAGLowering::visitLoad(LoadInst &I) {
1778  SDOperand Ptr = getValue(I.getOperand(0));
1779
1780  SDOperand Root;
1781  if (I.isVolatile())
1782    Root = getRoot();
1783  else {
1784    // Do not serialize non-volatile loads against each other.
1785    Root = DAG.getRoot();
1786  }
1787
1788  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
1789                           Root, I.isVolatile()));
1790}
1791
1792SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1793                                            const Value *SV, SDOperand Root,
1794                                            bool isVolatile) {
1795  SDOperand L;
1796  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1797    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1798    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
1799                       DAG.getSrcValue(SV));
1800  } else {
1801    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0, isVolatile);
1802  }
1803
1804  if (isVolatile)
1805    DAG.setRoot(L.getValue(1));
1806  else
1807    PendingLoads.push_back(L.getValue(1));
1808
1809  return L;
1810}
1811
1812
1813void SelectionDAGLowering::visitStore(StoreInst &I) {
1814  Value *SrcV = I.getOperand(0);
1815  SDOperand Src = getValue(SrcV);
1816  SDOperand Ptr = getValue(I.getOperand(1));
1817  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
1818                           I.isVolatile()));
1819}
1820
1821/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1822/// access memory and has no other side effects at all.
1823static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1824#define GET_NO_MEMORY_INTRINSICS
1825#include "llvm/Intrinsics.gen"
1826#undef GET_NO_MEMORY_INTRINSICS
1827  return false;
1828}
1829
1830// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
1831// have any side-effects or if it only reads memory.
1832static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
1833#define GET_SIDE_EFFECT_INFO
1834#include "llvm/Intrinsics.gen"
1835#undef GET_SIDE_EFFECT_INFO
1836  return false;
1837}
1838
1839/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1840/// node.
1841void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1842                                                unsigned Intrinsic) {
1843  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1844  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
1845
1846  // Build the operand list.
1847  SmallVector<SDOperand, 8> Ops;
1848  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
1849    if (OnlyLoad) {
1850      // We don't need to serialize loads against other loads.
1851      Ops.push_back(DAG.getRoot());
1852    } else {
1853      Ops.push_back(getRoot());
1854    }
1855  }
1856
1857  // Add the intrinsic ID as an integer operand.
1858  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1859
1860  // Add all operands of the call to the operand list.
1861  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1862    SDOperand Op = getValue(I.getOperand(i));
1863
1864    // If this is a vector type, force it to the right packed type.
1865    if (Op.getValueType() == MVT::Vector) {
1866      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1867      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1868
1869      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1870      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1871      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1872    }
1873
1874    assert(TLI.isTypeLegal(Op.getValueType()) &&
1875           "Intrinsic uses a non-legal type?");
1876    Ops.push_back(Op);
1877  }
1878
1879  std::vector<MVT::ValueType> VTs;
1880  if (I.getType() != Type::VoidTy) {
1881    MVT::ValueType VT = TLI.getValueType(I.getType());
1882    if (VT == MVT::Vector) {
1883      const PackedType *DestTy = cast<PackedType>(I.getType());
1884      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1885
1886      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1887      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1888    }
1889
1890    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1891    VTs.push_back(VT);
1892  }
1893  if (HasChain)
1894    VTs.push_back(MVT::Other);
1895
1896  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
1897
1898  // Create the node.
1899  SDOperand Result;
1900  if (!HasChain)
1901    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
1902                         &Ops[0], Ops.size());
1903  else if (I.getType() != Type::VoidTy)
1904    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
1905                         &Ops[0], Ops.size());
1906  else
1907    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
1908                         &Ops[0], Ops.size());
1909
1910  if (HasChain) {
1911    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
1912    if (OnlyLoad)
1913      PendingLoads.push_back(Chain);
1914    else
1915      DAG.setRoot(Chain);
1916  }
1917  if (I.getType() != Type::VoidTy) {
1918    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1919      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1920      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1921                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1922                           DAG.getValueType(EVT));
1923    }
1924    setValue(&I, Result);
1925  }
1926}
1927
1928/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1929/// we want to emit this as a call to a named external function, return the name
1930/// otherwise lower it and return null.
1931const char *
1932SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1933  switch (Intrinsic) {
1934  default:
1935    // By default, turn this into a target intrinsic node.
1936    visitTargetIntrinsic(I, Intrinsic);
1937    return 0;
1938  case Intrinsic::vastart:  visitVAStart(I); return 0;
1939  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1940  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1941  case Intrinsic::returnaddress:
1942    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
1943                             getValue(I.getOperand(1))));
1944    return 0;
1945  case Intrinsic::frameaddress:
1946    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
1947                             getValue(I.getOperand(1))));
1948    return 0;
1949  case Intrinsic::setjmp:
1950    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
1951    break;
1952  case Intrinsic::longjmp:
1953    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
1954    break;
1955  case Intrinsic::memcpy_i32:
1956  case Intrinsic::memcpy_i64:
1957    visitMemIntrinsic(I, ISD::MEMCPY);
1958    return 0;
1959  case Intrinsic::memset_i32:
1960  case Intrinsic::memset_i64:
1961    visitMemIntrinsic(I, ISD::MEMSET);
1962    return 0;
1963  case Intrinsic::memmove_i32:
1964  case Intrinsic::memmove_i64:
1965    visitMemIntrinsic(I, ISD::MEMMOVE);
1966    return 0;
1967
1968  case Intrinsic::dbg_stoppoint: {
1969    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
1970    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1971    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
1972      SDOperand Ops[5];
1973
1974      Ops[0] = getRoot();
1975      Ops[1] = getValue(SPI.getLineValue());
1976      Ops[2] = getValue(SPI.getColumnValue());
1977
1978      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
1979      assert(DD && "Not a debug information descriptor");
1980      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1981
1982      Ops[3] = DAG.getString(CompileUnit->getFileName());
1983      Ops[4] = DAG.getString(CompileUnit->getDirectory());
1984
1985      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
1986    }
1987
1988    return 0;
1989  }
1990  case Intrinsic::dbg_region_start: {
1991    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
1992    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1993    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
1994      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
1995      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
1996                              DAG.getConstant(LabelID, MVT::i32)));
1997    }
1998
1999    return 0;
2000  }
2001  case Intrinsic::dbg_region_end: {
2002    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2003    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2004    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2005      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2006      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2007                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2008    }
2009
2010    return 0;
2011  }
2012  case Intrinsic::dbg_func_start: {
2013    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2014    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2015    if (MMI && FSI.getSubprogram() &&
2016        MMI->Verify(FSI.getSubprogram())) {
2017      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2018      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2019                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2020    }
2021
2022    return 0;
2023  }
2024  case Intrinsic::dbg_declare: {
2025    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2026    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2027    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2028      SDOperand AddressOp  = getValue(DI.getAddress());
2029      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2030        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2031    }
2032
2033    return 0;
2034  }
2035
2036  case Intrinsic::sqrt_f32:
2037  case Intrinsic::sqrt_f64:
2038    setValue(&I, DAG.getNode(ISD::FSQRT,
2039                             getValue(I.getOperand(1)).getValueType(),
2040                             getValue(I.getOperand(1))));
2041    return 0;
2042  case Intrinsic::powi_f32:
2043  case Intrinsic::powi_f64:
2044    setValue(&I, DAG.getNode(ISD::FPOWI,
2045                             getValue(I.getOperand(1)).getValueType(),
2046                             getValue(I.getOperand(1)),
2047                             getValue(I.getOperand(2))));
2048    return 0;
2049  case Intrinsic::pcmarker: {
2050    SDOperand Tmp = getValue(I.getOperand(1));
2051    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2052    return 0;
2053  }
2054  case Intrinsic::readcyclecounter: {
2055    SDOperand Op = getRoot();
2056    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2057                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2058                                &Op, 1);
2059    setValue(&I, Tmp);
2060    DAG.setRoot(Tmp.getValue(1));
2061    return 0;
2062  }
2063  case Intrinsic::bswap_i16:
2064  case Intrinsic::bswap_i32:
2065  case Intrinsic::bswap_i64:
2066    setValue(&I, DAG.getNode(ISD::BSWAP,
2067                             getValue(I.getOperand(1)).getValueType(),
2068                             getValue(I.getOperand(1))));
2069    return 0;
2070  case Intrinsic::cttz_i8:
2071  case Intrinsic::cttz_i16:
2072  case Intrinsic::cttz_i32:
2073  case Intrinsic::cttz_i64:
2074    setValue(&I, DAG.getNode(ISD::CTTZ,
2075                             getValue(I.getOperand(1)).getValueType(),
2076                             getValue(I.getOperand(1))));
2077    return 0;
2078  case Intrinsic::ctlz_i8:
2079  case Intrinsic::ctlz_i16:
2080  case Intrinsic::ctlz_i32:
2081  case Intrinsic::ctlz_i64:
2082    setValue(&I, DAG.getNode(ISD::CTLZ,
2083                             getValue(I.getOperand(1)).getValueType(),
2084                             getValue(I.getOperand(1))));
2085    return 0;
2086  case Intrinsic::ctpop_i8:
2087  case Intrinsic::ctpop_i16:
2088  case Intrinsic::ctpop_i32:
2089  case Intrinsic::ctpop_i64:
2090    setValue(&I, DAG.getNode(ISD::CTPOP,
2091                             getValue(I.getOperand(1)).getValueType(),
2092                             getValue(I.getOperand(1))));
2093    return 0;
2094  case Intrinsic::stacksave: {
2095    SDOperand Op = getRoot();
2096    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2097              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2098    setValue(&I, Tmp);
2099    DAG.setRoot(Tmp.getValue(1));
2100    return 0;
2101  }
2102  case Intrinsic::stackrestore: {
2103    SDOperand Tmp = getValue(I.getOperand(1));
2104    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2105    return 0;
2106  }
2107  case Intrinsic::prefetch:
2108    // FIXME: Currently discarding prefetches.
2109    return 0;
2110  }
2111}
2112
2113
2114void SelectionDAGLowering::visitCall(CallInst &I) {
2115  const char *RenameFn = 0;
2116  if (Function *F = I.getCalledFunction()) {
2117    if (F->isDeclaration())
2118      if (unsigned IID = F->getIntrinsicID()) {
2119        RenameFn = visitIntrinsicCall(I, IID);
2120        if (!RenameFn)
2121          return;
2122      } else {    // Not an LLVM intrinsic.
2123        const std::string &Name = F->getName();
2124        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2125          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2126              I.getOperand(1)->getType()->isFloatingPoint() &&
2127              I.getType() == I.getOperand(1)->getType() &&
2128              I.getType() == I.getOperand(2)->getType()) {
2129            SDOperand LHS = getValue(I.getOperand(1));
2130            SDOperand RHS = getValue(I.getOperand(2));
2131            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2132                                     LHS, RHS));
2133            return;
2134          }
2135        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2136          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2137              I.getOperand(1)->getType()->isFloatingPoint() &&
2138              I.getType() == I.getOperand(1)->getType()) {
2139            SDOperand Tmp = getValue(I.getOperand(1));
2140            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2141            return;
2142          }
2143        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2144          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2145              I.getOperand(1)->getType()->isFloatingPoint() &&
2146              I.getType() == I.getOperand(1)->getType()) {
2147            SDOperand Tmp = getValue(I.getOperand(1));
2148            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2149            return;
2150          }
2151        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2152          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2153              I.getOperand(1)->getType()->isFloatingPoint() &&
2154              I.getType() == I.getOperand(1)->getType()) {
2155            SDOperand Tmp = getValue(I.getOperand(1));
2156            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2157            return;
2158          }
2159        }
2160      }
2161  } else if (isa<InlineAsm>(I.getOperand(0))) {
2162    visitInlineAsm(I);
2163    return;
2164  }
2165
2166  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
2167  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2168
2169  SDOperand Callee;
2170  if (!RenameFn)
2171    Callee = getValue(I.getOperand(0));
2172  else
2173    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2174  TargetLowering::ArgListTy Args;
2175  TargetLowering::ArgListEntry Entry;
2176  Args.reserve(I.getNumOperands());
2177  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2178    Value *Arg = I.getOperand(i);
2179    SDOperand ArgNode = getValue(Arg);
2180    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2181    Entry.isSigned = FTy->paramHasAttr(i, FunctionType::SExtAttribute);
2182    Entry.isInReg  = FTy->paramHasAttr(i, FunctionType::InRegAttribute);
2183    Entry.isSRet   = FTy->paramHasAttr(i, FunctionType::StructRetAttribute);
2184    Args.push_back(Entry);
2185  }
2186
2187  std::pair<SDOperand,SDOperand> Result =
2188    TLI.LowerCallTo(getRoot(), I.getType(),
2189                    FTy->paramHasAttr(0,FunctionType::SExtAttribute),
2190                    FTy->isVarArg(), I.getCallingConv(), I.isTailCall(),
2191                    Callee, Args, DAG);
2192  if (I.getType() != Type::VoidTy)
2193    setValue(&I, Result.first);
2194  DAG.setRoot(Result.second);
2195}
2196
2197SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2198                                        SDOperand &Chain, SDOperand &Flag)const{
2199  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
2200  Chain = Val.getValue(1);
2201  Flag  = Val.getValue(2);
2202
2203  // If the result was expanded, copy from the top part.
2204  if (Regs.size() > 1) {
2205    assert(Regs.size() == 2 &&
2206           "Cannot expand to more than 2 elts yet!");
2207    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
2208    Chain = Hi.getValue(1);
2209    Flag  = Hi.getValue(2);
2210    if (DAG.getTargetLoweringInfo().isLittleEndian())
2211      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
2212    else
2213      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
2214  }
2215
2216  // Otherwise, if the return value was promoted or extended, truncate it to the
2217  // appropriate type.
2218  if (RegVT == ValueVT)
2219    return Val;
2220
2221  if (MVT::isInteger(RegVT)) {
2222    if (ValueVT < RegVT)
2223      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
2224    else
2225      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
2226  } else {
2227    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
2228  }
2229}
2230
2231/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2232/// specified value into the registers specified by this object.  This uses
2233/// Chain/Flag as the input and updates them for the output Chain/Flag.
2234void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2235                                 SDOperand &Chain, SDOperand &Flag,
2236                                 MVT::ValueType PtrVT) const {
2237  if (Regs.size() == 1) {
2238    // If there is a single register and the types differ, this must be
2239    // a promotion.
2240    if (RegVT != ValueVT) {
2241      if (MVT::isInteger(RegVT)) {
2242        if (RegVT < ValueVT)
2243          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
2244        else
2245          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
2246      } else
2247        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
2248    }
2249    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
2250    Flag = Chain.getValue(1);
2251  } else {
2252    std::vector<unsigned> R(Regs);
2253    if (!DAG.getTargetLoweringInfo().isLittleEndian())
2254      std::reverse(R.begin(), R.end());
2255
2256    for (unsigned i = 0, e = R.size(); i != e; ++i) {
2257      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
2258                                   DAG.getConstant(i, PtrVT));
2259      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
2260      Flag = Chain.getValue(1);
2261    }
2262  }
2263}
2264
2265/// AddInlineAsmOperands - Add this value to the specified inlineasm node
2266/// operand list.  This adds the code marker and includes the number of
2267/// values added into it.
2268void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
2269                                        std::vector<SDOperand> &Ops) const {
2270  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
2271  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
2272    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
2273}
2274
2275/// isAllocatableRegister - If the specified register is safe to allocate,
2276/// i.e. it isn't a stack pointer or some other special register, return the
2277/// register class for the register.  Otherwise, return null.
2278static const TargetRegisterClass *
2279isAllocatableRegister(unsigned Reg, MachineFunction &MF,
2280                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
2281  MVT::ValueType FoundVT = MVT::Other;
2282  const TargetRegisterClass *FoundRC = 0;
2283  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
2284       E = MRI->regclass_end(); RCI != E; ++RCI) {
2285    MVT::ValueType ThisVT = MVT::Other;
2286
2287    const TargetRegisterClass *RC = *RCI;
2288    // If none of the the value types for this register class are valid, we
2289    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2290    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2291         I != E; ++I) {
2292      if (TLI.isTypeLegal(*I)) {
2293        // If we have already found this register in a different register class,
2294        // choose the one with the largest VT specified.  For example, on
2295        // PowerPC, we favor f64 register classes over f32.
2296        if (FoundVT == MVT::Other ||
2297            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
2298          ThisVT = *I;
2299          break;
2300        }
2301      }
2302    }
2303
2304    if (ThisVT == MVT::Other) continue;
2305
2306    // NOTE: This isn't ideal.  In particular, this might allocate the
2307    // frame pointer in functions that need it (due to them not being taken
2308    // out of allocation, because a variable sized allocation hasn't been seen
2309    // yet).  This is a slight code pessimization, but should still work.
2310    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
2311         E = RC->allocation_order_end(MF); I != E; ++I)
2312      if (*I == Reg) {
2313        // We found a matching register class.  Keep looking at others in case
2314        // we find one with larger registers that this physreg is also in.
2315        FoundRC = RC;
2316        FoundVT = ThisVT;
2317        break;
2318      }
2319  }
2320  return FoundRC;
2321}
2322
2323RegsForValue SelectionDAGLowering::
2324GetRegistersForValue(const std::string &ConstrCode,
2325                     MVT::ValueType VT, bool isOutReg, bool isInReg,
2326                     std::set<unsigned> &OutputRegs,
2327                     std::set<unsigned> &InputRegs) {
2328  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
2329    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
2330  std::vector<unsigned> Regs;
2331
2332  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
2333  MVT::ValueType RegVT;
2334  MVT::ValueType ValueVT = VT;
2335
2336  // If this is a constraint for a specific physical register, like {r17},
2337  // assign it now.
2338  if (PhysReg.first) {
2339    if (VT == MVT::Other)
2340      ValueVT = *PhysReg.second->vt_begin();
2341
2342    // Get the actual register value type.  This is important, because the user
2343    // may have asked for (e.g.) the AX register in i32 type.  We need to
2344    // remember that AX is actually i16 to get the right extension.
2345    RegVT = *PhysReg.second->vt_begin();
2346
2347    // This is a explicit reference to a physical register.
2348    Regs.push_back(PhysReg.first);
2349
2350    // If this is an expanded reference, add the rest of the regs to Regs.
2351    if (NumRegs != 1) {
2352      TargetRegisterClass::iterator I = PhysReg.second->begin();
2353      TargetRegisterClass::iterator E = PhysReg.second->end();
2354      for (; *I != PhysReg.first; ++I)
2355        assert(I != E && "Didn't find reg!");
2356
2357      // Already added the first reg.
2358      --NumRegs; ++I;
2359      for (; NumRegs; --NumRegs, ++I) {
2360        assert(I != E && "Ran out of registers to allocate!");
2361        Regs.push_back(*I);
2362      }
2363    }
2364    return RegsForValue(Regs, RegVT, ValueVT);
2365  }
2366
2367  // Otherwise, if this was a reference to an LLVM register class, create vregs
2368  // for this reference.
2369  std::vector<unsigned> RegClassRegs;
2370  if (PhysReg.second) {
2371    // If this is an early clobber or tied register, our regalloc doesn't know
2372    // how to maintain the constraint.  If it isn't, go ahead and create vreg
2373    // and let the regalloc do the right thing.
2374    if (!isOutReg || !isInReg) {
2375      if (VT == MVT::Other)
2376        ValueVT = *PhysReg.second->vt_begin();
2377      RegVT = *PhysReg.second->vt_begin();
2378
2379      // Create the appropriate number of virtual registers.
2380      SSARegMap *RegMap = DAG.getMachineFunction().getSSARegMap();
2381      for (; NumRegs; --NumRegs)
2382        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
2383
2384      return RegsForValue(Regs, RegVT, ValueVT);
2385    }
2386
2387    // Otherwise, we can't allocate it.  Let the code below figure out how to
2388    // maintain these constraints.
2389    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
2390
2391  } else {
2392    // This is a reference to a register class that doesn't directly correspond
2393    // to an LLVM register class.  Allocate NumRegs consecutive, available,
2394    // registers from the class.
2395    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
2396  }
2397
2398  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
2399  MachineFunction &MF = *CurMBB->getParent();
2400  unsigned NumAllocated = 0;
2401  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
2402    unsigned Reg = RegClassRegs[i];
2403    // See if this register is available.
2404    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
2405        (isInReg  && InputRegs.count(Reg))) {    // Already used.
2406      // Make sure we find consecutive registers.
2407      NumAllocated = 0;
2408      continue;
2409    }
2410
2411    // Check to see if this register is allocatable (i.e. don't give out the
2412    // stack pointer).
2413    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
2414    if (!RC) {
2415      // Make sure we find consecutive registers.
2416      NumAllocated = 0;
2417      continue;
2418    }
2419
2420    // Okay, this register is good, we can use it.
2421    ++NumAllocated;
2422
2423    // If we allocated enough consecutive
2424    if (NumAllocated == NumRegs) {
2425      unsigned RegStart = (i-NumAllocated)+1;
2426      unsigned RegEnd   = i+1;
2427      // Mark all of the allocated registers used.
2428      for (unsigned i = RegStart; i != RegEnd; ++i) {
2429        unsigned Reg = RegClassRegs[i];
2430        Regs.push_back(Reg);
2431        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
2432        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
2433      }
2434
2435      return RegsForValue(Regs, *RC->vt_begin(), VT);
2436    }
2437  }
2438
2439  // Otherwise, we couldn't allocate enough registers for this.
2440  return RegsForValue();
2441}
2442
2443/// getConstraintGenerality - Return an integer indicating how general CT is.
2444static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2445  switch (CT) {
2446  default: assert(0 && "Unknown constraint type!");
2447  case TargetLowering::C_Other:
2448  case TargetLowering::C_Unknown:
2449    return 0;
2450  case TargetLowering::C_Register:
2451    return 1;
2452  case TargetLowering::C_RegisterClass:
2453    return 2;
2454  case TargetLowering::C_Memory:
2455    return 3;
2456  }
2457}
2458
2459static std::string GetMostGeneralConstraint(std::vector<std::string> &C,
2460                                            const TargetLowering &TLI) {
2461  assert(!C.empty() && "Must have at least one constraint");
2462  if (C.size() == 1) return C[0];
2463
2464  std::string *Current = &C[0];
2465  // If we have multiple constraints, try to pick the most general one ahead
2466  // of time.  This isn't a wonderful solution, but handles common cases.
2467  TargetLowering::ConstraintType Flavor = TLI.getConstraintType(Current[0][0]);
2468  for (unsigned j = 1, e = C.size(); j != e; ++j) {
2469    TargetLowering::ConstraintType ThisFlavor = TLI.getConstraintType(C[j][0]);
2470    if (getConstraintGenerality(ThisFlavor) >
2471        getConstraintGenerality(Flavor)) {
2472      // This constraint letter is more general than the previous one,
2473      // use it.
2474      Flavor = ThisFlavor;
2475      Current = &C[j];
2476    }
2477  }
2478  return *Current;
2479}
2480
2481
2482/// visitInlineAsm - Handle a call to an InlineAsm object.
2483///
2484void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
2485  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
2486
2487  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
2488                                                 MVT::Other);
2489
2490  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
2491  std::vector<MVT::ValueType> ConstraintVTs;
2492
2493  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
2494  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
2495  /// if it is a def of that register.
2496  std::vector<SDOperand> AsmNodeOperands;
2497  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
2498  AsmNodeOperands.push_back(AsmStr);
2499
2500  SDOperand Chain = getRoot();
2501  SDOperand Flag;
2502
2503  // We fully assign registers here at isel time.  This is not optimal, but
2504  // should work.  For register classes that correspond to LLVM classes, we
2505  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
2506  // over the constraints, collecting fixed registers that we know we can't use.
2507  std::set<unsigned> OutputRegs, InputRegs;
2508  unsigned OpNum = 1;
2509  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2510    std::string ConstraintCode =
2511      GetMostGeneralConstraint(Constraints[i].Codes, TLI);
2512
2513    MVT::ValueType OpVT;
2514
2515    // Compute the value type for each operand and add it to ConstraintVTs.
2516    switch (Constraints[i].Type) {
2517    case InlineAsm::isOutput:
2518      if (!Constraints[i].isIndirectOutput) {
2519        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2520        OpVT = TLI.getValueType(I.getType());
2521      } else {
2522        const Type *OpTy = I.getOperand(OpNum)->getType();
2523        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2524        OpNum++;  // Consumes a call operand.
2525      }
2526      break;
2527    case InlineAsm::isInput:
2528      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2529      OpNum++;  // Consumes a call operand.
2530      break;
2531    case InlineAsm::isClobber:
2532      OpVT = MVT::Other;
2533      break;
2534    }
2535
2536    ConstraintVTs.push_back(OpVT);
2537
2538    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2539      continue;  // Not assigned a fixed reg.
2540
2541    // Build a list of regs that this operand uses.  This always has a single
2542    // element for promoted/expanded operands.
2543    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2544                                             false, false,
2545                                             OutputRegs, InputRegs);
2546
2547    switch (Constraints[i].Type) {
2548    case InlineAsm::isOutput:
2549      // We can't assign any other output to this register.
2550      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2551      // If this is an early-clobber output, it cannot be assigned to the same
2552      // value as the input reg.
2553      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2554        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2555      break;
2556    case InlineAsm::isInput:
2557      // We can't assign any other input to this register.
2558      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2559      break;
2560    case InlineAsm::isClobber:
2561      // Clobbered regs cannot be used as inputs or outputs.
2562      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2563      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2564      break;
2565    }
2566  }
2567
2568  // Loop over all of the inputs, copying the operand values into the
2569  // appropriate registers and processing the output regs.
2570  RegsForValue RetValRegs;
2571  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2572  OpNum = 1;
2573
2574  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2575    std::string ConstraintCode =
2576      GetMostGeneralConstraint(Constraints[i].Codes, TLI);
2577
2578    switch (Constraints[i].Type) {
2579    case InlineAsm::isOutput: {
2580      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2581      if (ConstraintCode.size() == 1)   // not a physreg name.
2582        CTy = TLI.getConstraintType(ConstraintCode[0]);
2583
2584      if (CTy == TargetLowering::C_Memory) {
2585        // Memory output.
2586        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2587
2588        // Check that the operand (the address to store to) isn't a float.
2589        if (!MVT::isInteger(InOperandVal.getValueType()))
2590          assert(0 && "MATCH FAIL!");
2591
2592        if (!Constraints[i].isIndirectOutput)
2593          assert(0 && "MATCH FAIL!");
2594
2595        OpNum++;  // Consumes a call operand.
2596
2597        // Extend/truncate to the right pointer type if needed.
2598        MVT::ValueType PtrType = TLI.getPointerTy();
2599        if (InOperandVal.getValueType() < PtrType)
2600          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2601        else if (InOperandVal.getValueType() > PtrType)
2602          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2603
2604        // Add information to the INLINEASM node to know about this output.
2605        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2606        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2607        AsmNodeOperands.push_back(InOperandVal);
2608        break;
2609      }
2610
2611      // Otherwise, this is a register output.
2612      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2613
2614      // If this is an early-clobber output, or if there is an input
2615      // constraint that matches this, we need to reserve the input register
2616      // so no other inputs allocate to it.
2617      bool UsesInputRegister = false;
2618      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2619        UsesInputRegister = true;
2620
2621      // Copy the output from the appropriate register.  Find a register that
2622      // we can use.
2623      RegsForValue Regs =
2624        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2625                             true, UsesInputRegister,
2626                             OutputRegs, InputRegs);
2627      if (Regs.Regs.empty()) {
2628        cerr << "Couldn't allocate output reg for contraint '"
2629             << ConstraintCode << "'!\n";
2630        exit(1);
2631      }
2632
2633      if (!Constraints[i].isIndirectOutput) {
2634        assert(RetValRegs.Regs.empty() &&
2635               "Cannot have multiple output constraints yet!");
2636        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2637        RetValRegs = Regs;
2638      } else {
2639        IndirectStoresToEmit.push_back(std::make_pair(Regs,
2640                                                      I.getOperand(OpNum)));
2641        OpNum++;  // Consumes a call operand.
2642      }
2643
2644      // Add information to the INLINEASM node to know that this register is
2645      // set.
2646      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
2647      break;
2648    }
2649    case InlineAsm::isInput: {
2650      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2651      OpNum++;  // Consumes a call operand.
2652
2653      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
2654        // If this is required to match an output register we have already set,
2655        // just use its register.
2656        unsigned OperandNo = atoi(ConstraintCode.c_str());
2657
2658        // Scan until we find the definition we already emitted of this operand.
2659        // When we find it, create a RegsForValue operand.
2660        unsigned CurOp = 2;  // The first operand.
2661        for (; OperandNo; --OperandNo) {
2662          // Advance to the next operand.
2663          unsigned NumOps =
2664            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2665          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
2666                  (NumOps & 7) == 4 /*MEM*/) &&
2667                 "Skipped past definitions?");
2668          CurOp += (NumOps>>3)+1;
2669        }
2670
2671        unsigned NumOps =
2672          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2673        if ((NumOps & 7) == 2 /*REGDEF*/) {
2674          // Add NumOps>>3 registers to MatchedRegs.
2675          RegsForValue MatchedRegs;
2676          MatchedRegs.ValueVT = InOperandVal.getValueType();
2677          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
2678          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
2679            unsigned Reg =
2680              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
2681            MatchedRegs.Regs.push_back(Reg);
2682          }
2683
2684          // Use the produced MatchedRegs object to
2685          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
2686                                    TLI.getPointerTy());
2687          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2688          break;
2689        } else {
2690          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
2691          assert(0 && "matching constraints for memory operands unimp");
2692        }
2693      }
2694
2695      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2696      if (ConstraintCode.size() == 1)   // not a physreg name.
2697        CTy = TLI.getConstraintType(ConstraintCode[0]);
2698
2699      if (CTy == TargetLowering::C_Other) {
2700        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
2701                                                       ConstraintCode[0], DAG);
2702        if (!InOperandVal.Val) {
2703          cerr << "Invalid operand for inline asm constraint '"
2704               << ConstraintCode << "'!\n";
2705          exit(1);
2706        }
2707
2708        // Add information to the INLINEASM node to know about this input.
2709        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2710        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2711        AsmNodeOperands.push_back(InOperandVal);
2712        break;
2713      } else if (CTy == TargetLowering::C_Memory) {
2714        // Memory input.
2715
2716        // Check that the operand isn't a float.
2717        if (!MVT::isInteger(InOperandVal.getValueType()))
2718          assert(0 && "MATCH FAIL!");
2719
2720        // Extend/truncate to the right pointer type if needed.
2721        MVT::ValueType PtrType = TLI.getPointerTy();
2722        if (InOperandVal.getValueType() < PtrType)
2723          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2724        else if (InOperandVal.getValueType() > PtrType)
2725          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2726
2727        // Add information to the INLINEASM node to know about this input.
2728        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2729        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2730        AsmNodeOperands.push_back(InOperandVal);
2731        break;
2732      }
2733
2734      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2735
2736      // Copy the input into the appropriate registers.
2737      RegsForValue InRegs =
2738        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2739                             false, true, OutputRegs, InputRegs);
2740      // FIXME: should be match fail.
2741      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2742
2743      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
2744
2745      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2746      break;
2747    }
2748    case InlineAsm::isClobber: {
2749      RegsForValue ClobberedRegs =
2750        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2751                             OutputRegs, InputRegs);
2752      // Add the clobbered value to the operand list, so that the register
2753      // allocator is aware that the physreg got clobbered.
2754      if (!ClobberedRegs.Regs.empty())
2755        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2756      break;
2757    }
2758    }
2759  }
2760
2761  // Finish up input operands.
2762  AsmNodeOperands[0] = Chain;
2763  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2764
2765  Chain = DAG.getNode(ISD::INLINEASM,
2766                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
2767                      &AsmNodeOperands[0], AsmNodeOperands.size());
2768  Flag = Chain.getValue(1);
2769
2770  // If this asm returns a register value, copy the result from that register
2771  // and set it as the value of the call.
2772  if (!RetValRegs.Regs.empty())
2773    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2774
2775  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2776
2777  // Process indirect outputs, first output all of the flagged copies out of
2778  // physregs.
2779  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2780    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2781    Value *Ptr = IndirectStoresToEmit[i].second;
2782    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2783    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2784  }
2785
2786  // Emit the non-flagged stores from the physregs.
2787  SmallVector<SDOperand, 8> OutChains;
2788  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2789    OutChains.push_back(DAG.getStore(Chain,  StoresToEmit[i].first,
2790                                    getValue(StoresToEmit[i].second),
2791                                    StoresToEmit[i].second, 0));
2792  if (!OutChains.empty())
2793    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2794                        &OutChains[0], OutChains.size());
2795  DAG.setRoot(Chain);
2796}
2797
2798
2799void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2800  SDOperand Src = getValue(I.getOperand(0));
2801
2802  MVT::ValueType IntPtr = TLI.getPointerTy();
2803
2804  if (IntPtr < Src.getValueType())
2805    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2806  else if (IntPtr > Src.getValueType())
2807    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2808
2809  // Scale the source by the type size.
2810  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
2811  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2812                    Src, getIntPtrConstant(ElementSize));
2813
2814  TargetLowering::ArgListTy Args;
2815  TargetLowering::ArgListEntry Entry;
2816  Entry.Node = Src;
2817  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2818  Entry.isSigned = false;
2819  Entry.isInReg = false;
2820  Entry.isSRet = false;
2821  Args.push_back(Entry);
2822
2823  std::pair<SDOperand,SDOperand> Result =
2824    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
2825                    DAG.getExternalSymbol("malloc", IntPtr),
2826                    Args, DAG);
2827  setValue(&I, Result.first);  // Pointers always fit in registers
2828  DAG.setRoot(Result.second);
2829}
2830
2831void SelectionDAGLowering::visitFree(FreeInst &I) {
2832  TargetLowering::ArgListTy Args;
2833  TargetLowering::ArgListEntry Entry;
2834  Entry.Node = getValue(I.getOperand(0));
2835  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2836  Entry.isSigned = false;
2837  Entry.isInReg = false;
2838  Entry.isSRet = false;
2839  Args.push_back(Entry);
2840  MVT::ValueType IntPtr = TLI.getPointerTy();
2841  std::pair<SDOperand,SDOperand> Result =
2842    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
2843                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2844  DAG.setRoot(Result.second);
2845}
2846
2847// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2848// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2849// instructions are special in various ways, which require special support to
2850// insert.  The specified MachineInstr is created but not inserted into any
2851// basic blocks, and the scheduler passes ownership of it to this method.
2852MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2853                                                       MachineBasicBlock *MBB) {
2854  cerr << "If a target marks an instruction with "
2855       << "'usesCustomDAGSchedInserter', it must implement "
2856       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
2857  abort();
2858  return 0;
2859}
2860
2861void SelectionDAGLowering::visitVAStart(CallInst &I) {
2862  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2863                          getValue(I.getOperand(1)),
2864                          DAG.getSrcValue(I.getOperand(1))));
2865}
2866
2867void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2868  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2869                             getValue(I.getOperand(0)),
2870                             DAG.getSrcValue(I.getOperand(0)));
2871  setValue(&I, V);
2872  DAG.setRoot(V.getValue(1));
2873}
2874
2875void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2876  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2877                          getValue(I.getOperand(1)),
2878                          DAG.getSrcValue(I.getOperand(1))));
2879}
2880
2881void SelectionDAGLowering::visitVACopy(CallInst &I) {
2882  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2883                          getValue(I.getOperand(1)),
2884                          getValue(I.getOperand(2)),
2885                          DAG.getSrcValue(I.getOperand(1)),
2886                          DAG.getSrcValue(I.getOperand(2))));
2887}
2888
2889/// ExpandScalarFormalArgs - Recursively expand the formal_argument node, either
2890/// bit_convert it or join a pair of them with a BUILD_PAIR when appropriate.
2891static SDOperand ExpandScalarFormalArgs(MVT::ValueType VT, SDNode *Arg,
2892                                        unsigned &i, SelectionDAG &DAG,
2893                                        TargetLowering &TLI) {
2894  if (TLI.getTypeAction(VT) != TargetLowering::Expand)
2895    return SDOperand(Arg, i++);
2896
2897  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
2898  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
2899  if (NumVals == 1) {
2900    return DAG.getNode(ISD::BIT_CONVERT, VT,
2901                       ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI));
2902  } else if (NumVals == 2) {
2903    SDOperand Lo = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
2904    SDOperand Hi = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
2905    if (!TLI.isLittleEndian())
2906      std::swap(Lo, Hi);
2907    return DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
2908  } else {
2909    // Value scalarized into many values.  Unimp for now.
2910    assert(0 && "Cannot expand i64 -> i16 yet!");
2911  }
2912  return SDOperand();
2913}
2914
2915/// TargetLowering::LowerArguments - This is the default LowerArguments
2916/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
2917/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
2918/// integrated into SDISel.
2919std::vector<SDOperand>
2920TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
2921  const FunctionType *FTy = F.getFunctionType();
2922  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
2923  std::vector<SDOperand> Ops;
2924  Ops.push_back(DAG.getRoot());
2925  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
2926  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
2927
2928  // Add one result value for each formal argument.
2929  std::vector<MVT::ValueType> RetVals;
2930  unsigned j = 1;
2931  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
2932       I != E; ++I, ++j) {
2933    MVT::ValueType VT = getValueType(I->getType());
2934    bool isInReg = FTy->paramHasAttr(j, FunctionType::InRegAttribute);
2935    bool isSRet  = FTy->paramHasAttr(j, FunctionType::StructRetAttribute);
2936    unsigned OriginalAlignment =
2937      getTargetData()->getTypeAlignmentABI(I->getType());
2938    // Flags[31:27] -> OriginalAlignment
2939    // Flags[2] -> isSRet
2940    // Flags[1] -> isInReg
2941    unsigned Flags = (isInReg << 1) | (isSRet << 2) | (OriginalAlignment << 27);
2942
2943    switch (getTypeAction(VT)) {
2944    default: assert(0 && "Unknown type action!");
2945    case Legal:
2946      RetVals.push_back(VT);
2947      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
2948      break;
2949    case Promote:
2950      RetVals.push_back(getTypeToTransformTo(VT));
2951      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
2952      break;
2953    case Expand:
2954      if (VT != MVT::Vector) {
2955        // If this is a large integer, it needs to be broken up into small
2956        // integers.  Figure out what the destination type is and how many small
2957        // integers it turns into.
2958        MVT::ValueType NVT = getTypeToExpandTo(VT);
2959        unsigned NumVals = getNumElements(VT);
2960        for (unsigned i = 0; i != NumVals; ++i) {
2961          RetVals.push_back(NVT);
2962          // if it isn't first piece, alignment must be 1
2963          if (i == 1) Flags = (Flags & 0x07ffffff) | (1 << 27);
2964          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
2965        }
2966      } else {
2967        // Otherwise, this is a vector type.  We only support legal vectors
2968        // right now.
2969        unsigned NumElems = cast<PackedType>(I->getType())->getNumElements();
2970        const Type *EltTy = cast<PackedType>(I->getType())->getElementType();
2971
2972        // Figure out if there is a Packed type corresponding to this Vector
2973        // type.  If so, convert to the packed type.
2974        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2975        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2976          RetVals.push_back(TVT);
2977          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
2978        } else {
2979          assert(0 && "Don't support illegal by-val vector arguments yet!");
2980        }
2981      }
2982      break;
2983    }
2984  }
2985
2986  RetVals.push_back(MVT::Other);
2987
2988  // Create the node.
2989  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
2990                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
2991                               &Ops[0], Ops.size()).Val;
2992
2993  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
2994
2995  // Set up the return result vector.
2996  Ops.clear();
2997  unsigned i = 0;
2998  unsigned Idx = 1;
2999  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3000      ++I, ++Idx) {
3001    MVT::ValueType VT = getValueType(I->getType());
3002
3003    switch (getTypeAction(VT)) {
3004    default: assert(0 && "Unknown type action!");
3005    case Legal:
3006      Ops.push_back(SDOperand(Result, i++));
3007      break;
3008    case Promote: {
3009      SDOperand Op(Result, i++);
3010      if (MVT::isInteger(VT)) {
3011        if (FTy->paramHasAttr(Idx, FunctionType::SExtAttribute))
3012          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3013                           DAG.getValueType(VT));
3014        else if (FTy->paramHasAttr(Idx, FunctionType::ZExtAttribute))
3015          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3016                           DAG.getValueType(VT));
3017        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3018      } else {
3019        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3020        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3021      }
3022      Ops.push_back(Op);
3023      break;
3024    }
3025    case Expand:
3026      if (VT != MVT::Vector) {
3027        // If this is a large integer or a floating point node that needs to be
3028        // expanded, it needs to be reassembled from small integers.  Figure out
3029        // what the source elt type is and how many small integers it is.
3030        Ops.push_back(ExpandScalarFormalArgs(VT, Result, i, DAG, *this));
3031      } else {
3032        // Otherwise, this is a vector type.  We only support legal vectors
3033        // right now.
3034        const PackedType *PTy = cast<PackedType>(I->getType());
3035        unsigned NumElems = PTy->getNumElements();
3036        const Type *EltTy = PTy->getElementType();
3037
3038        // Figure out if there is a Packed type corresponding to this Vector
3039        // type.  If so, convert to the packed type.
3040        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3041        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3042          SDOperand N = SDOperand(Result, i++);
3043          // Handle copies from generic vectors to registers.
3044          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
3045                          DAG.getConstant(NumElems, MVT::i32),
3046                          DAG.getValueType(getValueType(EltTy)));
3047          Ops.push_back(N);
3048        } else {
3049          assert(0 && "Don't support illegal by-val vector arguments yet!");
3050          abort();
3051        }
3052      }
3053      break;
3054    }
3055  }
3056  return Ops;
3057}
3058
3059
3060/// ExpandScalarCallArgs - Recursively expand call argument node by
3061/// bit_converting it or extract a pair of elements from the larger  node.
3062static void ExpandScalarCallArgs(MVT::ValueType VT, SDOperand Arg,
3063                                 unsigned Flags,
3064                                 SmallVector<SDOperand, 32> &Ops,
3065                                 SelectionDAG &DAG,
3066                                 TargetLowering &TLI,
3067                                 bool isFirst = true) {
3068
3069  if (TLI.getTypeAction(VT) != TargetLowering::Expand) {
3070    // if it isn't first piece, alignment must be 1
3071    if (!isFirst)
3072      Flags = (Flags & 0x07ffffff) | (1 << 27);
3073    Ops.push_back(Arg);
3074    Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3075    return;
3076  }
3077
3078  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3079  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3080  if (NumVals == 1) {
3081    Arg = DAG.getNode(ISD::BIT_CONVERT, EVT, Arg);
3082    ExpandScalarCallArgs(EVT, Arg, Flags, Ops, DAG, TLI, isFirst);
3083  } else if (NumVals == 2) {
3084    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3085                               DAG.getConstant(0, TLI.getPointerTy()));
3086    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3087                               DAG.getConstant(1, TLI.getPointerTy()));
3088    if (!TLI.isLittleEndian())
3089      std::swap(Lo, Hi);
3090    ExpandScalarCallArgs(EVT, Lo, Flags, Ops, DAG, TLI, isFirst);
3091    ExpandScalarCallArgs(EVT, Hi, Flags, Ops, DAG, TLI, false);
3092  } else {
3093    // Value scalarized into many values.  Unimp for now.
3094    assert(0 && "Cannot expand i64 -> i16 yet!");
3095  }
3096}
3097
3098/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3099/// implementation, which just inserts an ISD::CALL node, which is later custom
3100/// lowered by the target to something concrete.  FIXME: When all targets are
3101/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3102std::pair<SDOperand, SDOperand>
3103TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3104                            bool RetTyIsSigned, bool isVarArg,
3105                            unsigned CallingConv, bool isTailCall,
3106                            SDOperand Callee,
3107                            ArgListTy &Args, SelectionDAG &DAG) {
3108  SmallVector<SDOperand, 32> Ops;
3109  Ops.push_back(Chain);   // Op#0 - Chain
3110  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3111  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3112  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3113  Ops.push_back(Callee);
3114
3115  // Handle all of the outgoing arguments.
3116  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3117    MVT::ValueType VT = getValueType(Args[i].Ty);
3118    SDOperand Op = Args[i].Node;
3119    bool isSigned = Args[i].isSigned;
3120    bool isInReg = Args[i].isInReg;
3121    bool isSRet  = Args[i].isSRet;
3122    unsigned OriginalAlignment =
3123      getTargetData()->getTypeAlignmentABI(Args[i].Ty);
3124    // Flags[31:27] -> OriginalAlignment
3125    // Flags[2] -> isSRet
3126    // Flags[1] -> isInReg
3127    // Flags[0] -> isSigned
3128    unsigned Flags = (isSRet << 2) | (isInReg << 1) | isSigned |
3129      (OriginalAlignment << 27);
3130
3131    switch (getTypeAction(VT)) {
3132    default: assert(0 && "Unknown type action!");
3133    case Legal:
3134      Ops.push_back(Op);
3135      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3136      break;
3137    case Promote:
3138      if (MVT::isInteger(VT)) {
3139        unsigned ExtOp = isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3140        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3141      } else {
3142        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3143        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
3144      }
3145      Ops.push_back(Op);
3146      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3147      break;
3148    case Expand:
3149      if (VT != MVT::Vector) {
3150        // If this is a large integer, it needs to be broken down into small
3151        // integers.  Figure out what the source elt type is and how many small
3152        // integers it is.
3153        ExpandScalarCallArgs(VT, Op, Flags, Ops, DAG, *this);
3154      } else {
3155        // Otherwise, this is a vector type.  We only support legal vectors
3156        // right now.
3157        const PackedType *PTy = cast<PackedType>(Args[i].Ty);
3158        unsigned NumElems = PTy->getNumElements();
3159        const Type *EltTy = PTy->getElementType();
3160
3161        // Figure out if there is a Packed type corresponding to this Vector
3162        // type.  If so, convert to the packed type.
3163        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3164        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3165          // Insert a VBIT_CONVERT of the MVT::Vector type to the packed type.
3166          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
3167          Ops.push_back(Op);
3168          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3169        } else {
3170          assert(0 && "Don't support illegal by-val vector call args yet!");
3171          abort();
3172        }
3173      }
3174      break;
3175    }
3176  }
3177
3178  // Figure out the result value types.
3179  SmallVector<MVT::ValueType, 4> RetTys;
3180
3181  if (RetTy != Type::VoidTy) {
3182    MVT::ValueType VT = getValueType(RetTy);
3183    switch (getTypeAction(VT)) {
3184    default: assert(0 && "Unknown type action!");
3185    case Legal:
3186      RetTys.push_back(VT);
3187      break;
3188    case Promote:
3189      RetTys.push_back(getTypeToTransformTo(VT));
3190      break;
3191    case Expand:
3192      if (VT != MVT::Vector) {
3193        // If this is a large integer, it needs to be reassembled from small
3194        // integers.  Figure out what the source elt type is and how many small
3195        // integers it is.
3196        MVT::ValueType NVT = getTypeToExpandTo(VT);
3197        unsigned NumVals = getNumElements(VT);
3198        for (unsigned i = 0; i != NumVals; ++i)
3199          RetTys.push_back(NVT);
3200      } else {
3201        // Otherwise, this is a vector type.  We only support legal vectors
3202        // right now.
3203        const PackedType *PTy = cast<PackedType>(RetTy);
3204        unsigned NumElems = PTy->getNumElements();
3205        const Type *EltTy = PTy->getElementType();
3206
3207        // Figure out if there is a Packed type corresponding to this Vector
3208        // type.  If so, convert to the packed type.
3209        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3210        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3211          RetTys.push_back(TVT);
3212        } else {
3213          assert(0 && "Don't support illegal by-val vector call results yet!");
3214          abort();
3215        }
3216      }
3217    }
3218  }
3219
3220  RetTys.push_back(MVT::Other);  // Always has a chain.
3221
3222  // Finally, create the CALL node.
3223  SDOperand Res = DAG.getNode(ISD::CALL,
3224                              DAG.getVTList(&RetTys[0], RetTys.size()),
3225                              &Ops[0], Ops.size());
3226
3227  // This returns a pair of operands.  The first element is the
3228  // return value for the function (if RetTy is not VoidTy).  The second
3229  // element is the outgoing token chain.
3230  SDOperand ResVal;
3231  if (RetTys.size() != 1) {
3232    MVT::ValueType VT = getValueType(RetTy);
3233    if (RetTys.size() == 2) {
3234      ResVal = Res;
3235
3236      // If this value was promoted, truncate it down.
3237      if (ResVal.getValueType() != VT) {
3238        if (VT == MVT::Vector) {
3239          // Insert a VBITCONVERT to convert from the packed result type to the
3240          // MVT::Vector type.
3241          unsigned NumElems = cast<PackedType>(RetTy)->getNumElements();
3242          const Type *EltTy = cast<PackedType>(RetTy)->getElementType();
3243
3244          // Figure out if there is a Packed type corresponding to this Vector
3245          // type.  If so, convert to the packed type.
3246          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy),NumElems);
3247          if (TVT != MVT::Other && isTypeLegal(TVT)) {
3248            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
3249            // "N x PTyElementVT" MVT::Vector type.
3250            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
3251                                 DAG.getConstant(NumElems, MVT::i32),
3252                                 DAG.getValueType(getValueType(EltTy)));
3253          } else {
3254            abort();
3255          }
3256        } else if (MVT::isInteger(VT)) {
3257          unsigned AssertOp = ISD::AssertSext;
3258          if (!RetTyIsSigned)
3259            AssertOp = ISD::AssertZext;
3260          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
3261                               DAG.getValueType(VT));
3262          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
3263        } else {
3264          assert(MVT::isFloatingPoint(VT));
3265          if (getTypeAction(VT) == Expand)
3266            ResVal = DAG.getNode(ISD::BIT_CONVERT, VT, ResVal);
3267          else
3268            ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
3269        }
3270      }
3271    } else if (RetTys.size() == 3) {
3272      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
3273                           Res.getValue(0), Res.getValue(1));
3274
3275    } else {
3276      assert(0 && "Case not handled yet!");
3277    }
3278  }
3279
3280  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
3281}
3282
3283SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3284  assert(0 && "LowerOperation not implemented for this target!");
3285  abort();
3286  return SDOperand();
3287}
3288
3289SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
3290                                                 SelectionDAG &DAG) {
3291  assert(0 && "CustomPromoteOperation not implemented for this target!");
3292  abort();
3293  return SDOperand();
3294}
3295
3296/// getMemsetValue - Vectorized representation of the memset value
3297/// operand.
3298static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
3299                                SelectionDAG &DAG) {
3300  MVT::ValueType CurVT = VT;
3301  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3302    uint64_t Val   = C->getValue() & 255;
3303    unsigned Shift = 8;
3304    while (CurVT != MVT::i8) {
3305      Val = (Val << Shift) | Val;
3306      Shift <<= 1;
3307      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3308    }
3309    return DAG.getConstant(Val, VT);
3310  } else {
3311    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
3312    unsigned Shift = 8;
3313    while (CurVT != MVT::i8) {
3314      Value =
3315        DAG.getNode(ISD::OR, VT,
3316                    DAG.getNode(ISD::SHL, VT, Value,
3317                                DAG.getConstant(Shift, MVT::i8)), Value);
3318      Shift <<= 1;
3319      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3320    }
3321
3322    return Value;
3323  }
3324}
3325
3326/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3327/// used when a memcpy is turned into a memset when the source is a constant
3328/// string ptr.
3329static SDOperand getMemsetStringVal(MVT::ValueType VT,
3330                                    SelectionDAG &DAG, TargetLowering &TLI,
3331                                    std::string &Str, unsigned Offset) {
3332  uint64_t Val = 0;
3333  unsigned MSB = getSizeInBits(VT) / 8;
3334  if (TLI.isLittleEndian())
3335    Offset = Offset + MSB - 1;
3336  for (unsigned i = 0; i != MSB; ++i) {
3337    Val = (Val << 8) | (unsigned char)Str[Offset];
3338    Offset += TLI.isLittleEndian() ? -1 : 1;
3339  }
3340  return DAG.getConstant(Val, VT);
3341}
3342
3343/// getMemBasePlusOffset - Returns base and offset node for the
3344static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
3345                                      SelectionDAG &DAG, TargetLowering &TLI) {
3346  MVT::ValueType VT = Base.getValueType();
3347  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
3348}
3349
3350/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3351/// to replace the memset / memcpy is below the threshold. It also returns the
3352/// types of the sequence of  memory ops to perform memset / memcpy.
3353static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
3354                                     unsigned Limit, uint64_t Size,
3355                                     unsigned Align, TargetLowering &TLI) {
3356  MVT::ValueType VT;
3357
3358  if (TLI.allowsUnalignedMemoryAccesses()) {
3359    VT = MVT::i64;
3360  } else {
3361    switch (Align & 7) {
3362    case 0:
3363      VT = MVT::i64;
3364      break;
3365    case 4:
3366      VT = MVT::i32;
3367      break;
3368    case 2:
3369      VT = MVT::i16;
3370      break;
3371    default:
3372      VT = MVT::i8;
3373      break;
3374    }
3375  }
3376
3377  MVT::ValueType LVT = MVT::i64;
3378  while (!TLI.isTypeLegal(LVT))
3379    LVT = (MVT::ValueType)((unsigned)LVT - 1);
3380  assert(MVT::isInteger(LVT));
3381
3382  if (VT > LVT)
3383    VT = LVT;
3384
3385  unsigned NumMemOps = 0;
3386  while (Size != 0) {
3387    unsigned VTSize = getSizeInBits(VT) / 8;
3388    while (VTSize > Size) {
3389      VT = (MVT::ValueType)((unsigned)VT - 1);
3390      VTSize >>= 1;
3391    }
3392    assert(MVT::isInteger(VT));
3393
3394    if (++NumMemOps > Limit)
3395      return false;
3396    MemOps.push_back(VT);
3397    Size -= VTSize;
3398  }
3399
3400  return true;
3401}
3402
3403void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
3404  SDOperand Op1 = getValue(I.getOperand(1));
3405  SDOperand Op2 = getValue(I.getOperand(2));
3406  SDOperand Op3 = getValue(I.getOperand(3));
3407  SDOperand Op4 = getValue(I.getOperand(4));
3408  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
3409  if (Align == 0) Align = 1;
3410
3411  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
3412    std::vector<MVT::ValueType> MemOps;
3413
3414    // Expand memset / memcpy to a series of load / store ops
3415    // if the size operand falls below a certain threshold.
3416    SmallVector<SDOperand, 8> OutChains;
3417    switch (Op) {
3418    default: break;  // Do nothing for now.
3419    case ISD::MEMSET: {
3420      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
3421                                   Size->getValue(), Align, TLI)) {
3422        unsigned NumMemOps = MemOps.size();
3423        unsigned Offset = 0;
3424        for (unsigned i = 0; i < NumMemOps; i++) {
3425          MVT::ValueType VT = MemOps[i];
3426          unsigned VTSize = getSizeInBits(VT) / 8;
3427          SDOperand Value = getMemsetValue(Op2, VT, DAG);
3428          SDOperand Store = DAG.getStore(getRoot(), Value,
3429                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
3430                                         I.getOperand(1), Offset);
3431          OutChains.push_back(Store);
3432          Offset += VTSize;
3433        }
3434      }
3435      break;
3436    }
3437    case ISD::MEMCPY: {
3438      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
3439                                   Size->getValue(), Align, TLI)) {
3440        unsigned NumMemOps = MemOps.size();
3441        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
3442        GlobalAddressSDNode *G = NULL;
3443        std::string Str;
3444        bool CopyFromStr = false;
3445
3446        if (Op2.getOpcode() == ISD::GlobalAddress)
3447          G = cast<GlobalAddressSDNode>(Op2);
3448        else if (Op2.getOpcode() == ISD::ADD &&
3449                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3450                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
3451          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
3452          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
3453        }
3454        if (G) {
3455          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3456          if (GV && GV->isConstant()) {
3457            Str = GV->getStringValue(false);
3458            if (!Str.empty()) {
3459              CopyFromStr = true;
3460              SrcOff += SrcDelta;
3461            }
3462          }
3463        }
3464
3465        for (unsigned i = 0; i < NumMemOps; i++) {
3466          MVT::ValueType VT = MemOps[i];
3467          unsigned VTSize = getSizeInBits(VT) / 8;
3468          SDOperand Value, Chain, Store;
3469
3470          if (CopyFromStr) {
3471            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3472            Chain = getRoot();
3473            Store =
3474              DAG.getStore(Chain, Value,
3475                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3476                           I.getOperand(1), DstOff);
3477          } else {
3478            Value = DAG.getLoad(VT, getRoot(),
3479                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
3480                        I.getOperand(2), SrcOff);
3481            Chain = Value.getValue(1);
3482            Store =
3483              DAG.getStore(Chain, Value,
3484                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3485                           I.getOperand(1), DstOff);
3486          }
3487          OutChains.push_back(Store);
3488          SrcOff += VTSize;
3489          DstOff += VTSize;
3490        }
3491      }
3492      break;
3493    }
3494    }
3495
3496    if (!OutChains.empty()) {
3497      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3498                  &OutChains[0], OutChains.size()));
3499      return;
3500    }
3501  }
3502
3503  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
3504}
3505
3506//===----------------------------------------------------------------------===//
3507// SelectionDAGISel code
3508//===----------------------------------------------------------------------===//
3509
3510unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
3511  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
3512}
3513
3514void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
3515  // FIXME: we only modify the CFG to split critical edges.  This
3516  // updates dom and loop info.
3517  AU.addRequired<AliasAnalysis>();
3518}
3519
3520
3521/// OptimizeNoopCopyExpression - We have determined that the specified cast
3522/// instruction is a noop copy (e.g. it's casting from one pointer type to
3523/// another, int->uint, or int->sbyte on PPC.
3524///
3525/// Return true if any changes are made.
3526static bool OptimizeNoopCopyExpression(CastInst *CI) {
3527  BasicBlock *DefBB = CI->getParent();
3528
3529  /// InsertedCasts - Only insert a cast in each block once.
3530  std::map<BasicBlock*, CastInst*> InsertedCasts;
3531
3532  bool MadeChange = false;
3533  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
3534       UI != E; ) {
3535    Use &TheUse = UI.getUse();
3536    Instruction *User = cast<Instruction>(*UI);
3537
3538    // Figure out which BB this cast is used in.  For PHI's this is the
3539    // appropriate predecessor block.
3540    BasicBlock *UserBB = User->getParent();
3541    if (PHINode *PN = dyn_cast<PHINode>(User)) {
3542      unsigned OpVal = UI.getOperandNo()/2;
3543      UserBB = PN->getIncomingBlock(OpVal);
3544    }
3545
3546    // Preincrement use iterator so we don't invalidate it.
3547    ++UI;
3548
3549    // If this user is in the same block as the cast, don't change the cast.
3550    if (UserBB == DefBB) continue;
3551
3552    // If we have already inserted a cast into this block, use it.
3553    CastInst *&InsertedCast = InsertedCasts[UserBB];
3554
3555    if (!InsertedCast) {
3556      BasicBlock::iterator InsertPt = UserBB->begin();
3557      while (isa<PHINode>(InsertPt)) ++InsertPt;
3558
3559      InsertedCast =
3560        CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
3561                         InsertPt);
3562      MadeChange = true;
3563    }
3564
3565    // Replace a use of the cast with a use of the new casat.
3566    TheUse = InsertedCast;
3567  }
3568
3569  // If we removed all uses, nuke the cast.
3570  if (CI->use_empty())
3571    CI->eraseFromParent();
3572
3573  return MadeChange;
3574}
3575
3576/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
3577/// casting to the type of GEPI.
3578static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
3579                                         Instruction *GEPI, Value *Ptr,
3580                                         Value *PtrOffset) {
3581  if (V) return V;   // Already computed.
3582
3583  // Figure out the insertion point
3584  BasicBlock::iterator InsertPt;
3585  if (BB == GEPI->getParent()) {
3586    // If GEP is already inserted into BB, insert right after the GEP.
3587    InsertPt = GEPI;
3588    ++InsertPt;
3589  } else {
3590    // Otherwise, insert at the top of BB, after any PHI nodes
3591    InsertPt = BB->begin();
3592    while (isa<PHINode>(InsertPt)) ++InsertPt;
3593  }
3594
3595  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
3596  // BB so that there is only one value live across basic blocks (the cast
3597  // operand).
3598  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
3599    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
3600      Ptr = CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(),
3601                             "", InsertPt);
3602
3603  // Add the offset, cast it to the right type.
3604  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
3605  // Ptr is an integer type, GEPI is pointer type ==> IntToPtr
3606  return V = CastInst::create(Instruction::IntToPtr, Ptr, GEPI->getType(),
3607                              "", InsertPt);
3608}
3609
3610/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
3611/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
3612/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
3613/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
3614/// sink PtrOffset into user blocks where doing so will likely allow us to fold
3615/// the constant add into a load or store instruction.  Additionally, if a user
3616/// is a pointer-pointer cast, we look through it to find its users.
3617static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
3618                                 Constant *PtrOffset, BasicBlock *DefBB,
3619                                 GetElementPtrInst *GEPI,
3620                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
3621  while (!RepPtr->use_empty()) {
3622    Instruction *User = cast<Instruction>(RepPtr->use_back());
3623
3624    // If the user is a Pointer-Pointer cast, recurse. Only BitCast can be
3625    // used for a Pointer-Pointer cast.
3626    if (isa<BitCastInst>(User)) {
3627      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3628
3629      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
3630      // could invalidate an iterator.
3631      User->setOperand(0, UndefValue::get(RepPtr->getType()));
3632      continue;
3633    }
3634
3635    // If this is a load of the pointer, or a store through the pointer, emit
3636    // the increment into the load/store block.
3637    Instruction *NewVal;
3638    if (isa<LoadInst>(User) ||
3639        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
3640      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
3641                                    User->getParent(), GEPI,
3642                                    Ptr, PtrOffset);
3643    } else {
3644      // If this use is not foldable into the addressing mode, use a version
3645      // emitted in the GEP block.
3646      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
3647                                    Ptr, PtrOffset);
3648    }
3649
3650    if (GEPI->getType() != RepPtr->getType()) {
3651      BasicBlock::iterator IP = NewVal;
3652      ++IP;
3653      // NewVal must be a GEP which must be pointer type, so BitCast
3654      NewVal = new BitCastInst(NewVal, RepPtr->getType(), "", IP);
3655    }
3656    User->replaceUsesOfWith(RepPtr, NewVal);
3657  }
3658}
3659
3660
3661/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
3662/// selection, we want to be a bit careful about some things.  In particular, if
3663/// we have a GEP instruction that is used in a different block than it is
3664/// defined, the addressing expression of the GEP cannot be folded into loads or
3665/// stores that use it.  In this case, decompose the GEP and move constant
3666/// indices into blocks that use it.
3667static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
3668                                  const TargetData *TD) {
3669  // If this GEP is only used inside the block it is defined in, there is no
3670  // need to rewrite it.
3671  bool isUsedOutsideDefBB = false;
3672  BasicBlock *DefBB = GEPI->getParent();
3673  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
3674       UI != E; ++UI) {
3675    if (cast<Instruction>(*UI)->getParent() != DefBB) {
3676      isUsedOutsideDefBB = true;
3677      break;
3678    }
3679  }
3680  if (!isUsedOutsideDefBB) return false;
3681
3682  // If this GEP has no non-zero constant indices, there is nothing we can do,
3683  // ignore it.
3684  bool hasConstantIndex = false;
3685  bool hasVariableIndex = false;
3686  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3687       E = GEPI->op_end(); OI != E; ++OI) {
3688    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
3689      if (CI->getZExtValue()) {
3690        hasConstantIndex = true;
3691        break;
3692      }
3693    } else {
3694      hasVariableIndex = true;
3695    }
3696  }
3697
3698  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
3699  if (!hasConstantIndex && !hasVariableIndex) {
3700    /// The GEP operand must be a pointer, so must its result -> BitCast
3701    Value *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
3702                             GEPI->getName(), GEPI);
3703    GEPI->replaceAllUsesWith(NC);
3704    GEPI->eraseFromParent();
3705    return true;
3706  }
3707
3708  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
3709  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
3710    return false;
3711
3712  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
3713  // constant offset (which we now know is non-zero) and deal with it later.
3714  uint64_t ConstantOffset = 0;
3715  const Type *UIntPtrTy = TD->getIntPtrType();
3716  Value *Ptr = new PtrToIntInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
3717  const Type *Ty = GEPI->getOperand(0)->getType();
3718
3719  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3720       E = GEPI->op_end(); OI != E; ++OI) {
3721    Value *Idx = *OI;
3722    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
3723      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3724      if (Field)
3725        ConstantOffset += TD->getStructLayout(StTy)->getElementOffset(Field);
3726      Ty = StTy->getElementType(Field);
3727    } else {
3728      Ty = cast<SequentialType>(Ty)->getElementType();
3729
3730      // Handle constant subscripts.
3731      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3732        if (CI->getZExtValue() == 0) continue;
3733        ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CI->getSExtValue();
3734        continue;
3735      }
3736
3737      // Ptr = Ptr + Idx * ElementSize;
3738
3739      // Cast Idx to UIntPtrTy if needed.
3740      Idx = CastInst::createIntegerCast(Idx, UIntPtrTy, true/*SExt*/, "", GEPI);
3741
3742      uint64_t ElementSize = TD->getTypeSize(Ty);
3743      // Mask off bits that should not be set.
3744      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3745      Constant *SizeCst = ConstantInt::get(UIntPtrTy, ElementSize);
3746
3747      // Multiply by the element size and add to the base.
3748      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
3749      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
3750    }
3751  }
3752
3753  // Make sure that the offset fits in uintptr_t.
3754  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3755  Constant *PtrOffset = ConstantInt::get(UIntPtrTy, ConstantOffset);
3756
3757  // Okay, we have now emitted all of the variable index parts to the BB that
3758  // the GEP is defined in.  Loop over all of the using instructions, inserting
3759  // an "add Ptr, ConstantOffset" into each block that uses it and update the
3760  // instruction to use the newly computed value, making GEPI dead.  When the
3761  // user is a load or store instruction address, we emit the add into the user
3762  // block, otherwise we use a canonical version right next to the gep (these
3763  // won't be foldable as addresses, so we might as well share the computation).
3764
3765  std::map<BasicBlock*,Instruction*> InsertedExprs;
3766  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3767
3768  // Finally, the GEP is dead, remove it.
3769  GEPI->eraseFromParent();
3770
3771  return true;
3772}
3773
3774
3775/// SplitEdgeNicely - Split the critical edge from TI to it's specified
3776/// successor if it will improve codegen.  We only do this if the successor has
3777/// phi nodes (otherwise critical edges are ok).  If there is already another
3778/// predecessor of the succ that is empty (and thus has no phi nodes), use it
3779/// instead of introducing a new block.
3780static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
3781  BasicBlock *TIBB = TI->getParent();
3782  BasicBlock *Dest = TI->getSuccessor(SuccNum);
3783  assert(isa<PHINode>(Dest->begin()) &&
3784         "This should only be called if Dest has a PHI!");
3785
3786  /// TIPHIValues - This array is lazily computed to determine the values of
3787  /// PHIs in Dest that TI would provide.
3788  std::vector<Value*> TIPHIValues;
3789
3790  // Check to see if Dest has any blocks that can be used as a split edge for
3791  // this terminator.
3792  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
3793    BasicBlock *Pred = *PI;
3794    // To be usable, the pred has to end with an uncond branch to the dest.
3795    BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
3796    if (!PredBr || !PredBr->isUnconditional() ||
3797        // Must be empty other than the branch.
3798        &Pred->front() != PredBr)
3799      continue;
3800
3801    // Finally, since we know that Dest has phi nodes in it, we have to make
3802    // sure that jumping to Pred will have the same affect as going to Dest in
3803    // terms of PHI values.
3804    PHINode *PN;
3805    unsigned PHINo = 0;
3806    bool FoundMatch = true;
3807    for (BasicBlock::iterator I = Dest->begin();
3808         (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
3809      if (PHINo == TIPHIValues.size())
3810        TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
3811
3812      // If the PHI entry doesn't work, we can't use this pred.
3813      if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
3814        FoundMatch = false;
3815        break;
3816      }
3817    }
3818
3819    // If we found a workable predecessor, change TI to branch to Succ.
3820    if (FoundMatch) {
3821      Dest->removePredecessor(TIBB);
3822      TI->setSuccessor(SuccNum, Pred);
3823      return;
3824    }
3825  }
3826
3827  SplitCriticalEdge(TI, SuccNum, P, true);
3828}
3829
3830
3831bool SelectionDAGISel::runOnFunction(Function &Fn) {
3832  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
3833  RegMap = MF.getSSARegMap();
3834  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
3835
3836  // First, split all critical edges.
3837  //
3838  // In this pass we also look for GEP and cast instructions that are used
3839  // across basic blocks and rewrite them to improve basic-block-at-a-time
3840  // selection.
3841  //
3842  bool MadeChange = true;
3843  while (MadeChange) {
3844    MadeChange = false;
3845  for (Function::iterator FNI = Fn.begin(), E = Fn.end(); FNI != E; ++FNI) {
3846    // Split all critical edges where the dest block has a PHI.
3847    TerminatorInst *BBTI = FNI->getTerminator();
3848    if (BBTI->getNumSuccessors() > 1) {
3849      for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
3850        if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
3851            isCriticalEdge(BBTI, i, true))
3852          SplitEdgeNicely(BBTI, i, this);
3853    }
3854
3855
3856    for (BasicBlock::iterator BBI = FNI->begin(), E = FNI->end(); BBI != E; ) {
3857      Instruction *I = BBI++;
3858
3859      if (CallInst *CI = dyn_cast<CallInst>(I)) {
3860        // If we found an inline asm expession, and if the target knows how to
3861        // lower it to normal LLVM code, do so now.
3862        if (isa<InlineAsm>(CI->getCalledValue()))
3863          if (const TargetAsmInfo *TAI =
3864                TLI.getTargetMachine().getTargetAsmInfo()) {
3865            if (TAI->ExpandInlineAsm(CI))
3866              BBI = FNI->begin();
3867          }
3868      } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
3869        MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
3870      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
3871        // If the source of the cast is a constant, then this should have
3872        // already been constant folded.  The only reason NOT to constant fold
3873        // it is if something (e.g. LSR) was careful to place the constant
3874        // evaluation in a block other than then one that uses it (e.g. to hoist
3875        // the address of globals out of a loop).  If this is the case, we don't
3876        // want to forward-subst the cast.
3877        if (isa<Constant>(CI->getOperand(0)))
3878          continue;
3879
3880        // If this is a noop copy, sink it into user blocks to reduce the number
3881        // of virtual registers that must be created and coallesced.
3882        MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
3883        MVT::ValueType DstVT = TLI.getValueType(CI->getType());
3884
3885        // This is an fp<->int conversion?
3886        if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
3887          continue;
3888
3889        // If this is an extension, it will be a zero or sign extension, which
3890        // isn't a noop.
3891        if (SrcVT < DstVT) continue;
3892
3893        // If these values will be promoted, find out what they will be promoted
3894        // to.  This helps us consider truncates on PPC as noop copies when they
3895        // are.
3896        if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
3897          SrcVT = TLI.getTypeToTransformTo(SrcVT);
3898        if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
3899          DstVT = TLI.getTypeToTransformTo(DstVT);
3900
3901        // If, after promotion, these are the same types, this is a noop copy.
3902        if (SrcVT == DstVT)
3903          MadeChange |= OptimizeNoopCopyExpression(CI);
3904      }
3905    }
3906  }
3907  }
3908
3909  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
3910
3911  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
3912    SelectBasicBlock(I, MF, FuncInfo);
3913
3914  // Add function live-ins to entry block live-in set.
3915  BasicBlock *EntryBB = &Fn.getEntryBlock();
3916  BB = FuncInfo.MBBMap[EntryBB];
3917  if (!MF.livein_empty())
3918    for (MachineFunction::livein_iterator I = MF.livein_begin(),
3919           E = MF.livein_end(); I != E; ++I)
3920      BB->addLiveIn(I->first);
3921
3922  return true;
3923}
3924
3925SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
3926                                                           unsigned Reg) {
3927  SDOperand Op = getValue(V);
3928  assert((Op.getOpcode() != ISD::CopyFromReg ||
3929          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
3930         "Copy from a reg to the same reg!");
3931
3932  // If this type is not legal, we must make sure to not create an invalid
3933  // register use.
3934  MVT::ValueType SrcVT = Op.getValueType();
3935  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
3936  if (SrcVT == DestVT) {
3937    return DAG.getCopyToReg(getRoot(), Reg, Op);
3938  } else if (SrcVT == MVT::Vector) {
3939    // Handle copies from generic vectors to registers.
3940    MVT::ValueType PTyElementVT, PTyLegalElementVT;
3941    unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
3942                                             PTyElementVT, PTyLegalElementVT);
3943
3944    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
3945    // MVT::Vector type.
3946    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
3947                     DAG.getConstant(NE, MVT::i32),
3948                     DAG.getValueType(PTyElementVT));
3949
3950    // Loop over all of the elements of the resultant vector,
3951    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
3952    // copying them into output registers.
3953    SmallVector<SDOperand, 8> OutChains;
3954    SDOperand Root = getRoot();
3955    for (unsigned i = 0; i != NE; ++i) {
3956      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
3957                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
3958      if (PTyElementVT == PTyLegalElementVT) {
3959        // Elements are legal.
3960        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3961      } else if (PTyLegalElementVT > PTyElementVT) {
3962        // Elements are promoted.
3963        if (MVT::isFloatingPoint(PTyLegalElementVT))
3964          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
3965        else
3966          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
3967        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3968      } else {
3969        // Elements are expanded.
3970        // The src value is expanded into multiple registers.
3971        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3972                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
3973        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3974                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
3975        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
3976        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
3977      }
3978    }
3979    return DAG.getNode(ISD::TokenFactor, MVT::Other,
3980                       &OutChains[0], OutChains.size());
3981  } else if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) {
3982    // The src value is promoted to the register.
3983    if (MVT::isFloatingPoint(SrcVT))
3984      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
3985    else
3986      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
3987    return DAG.getCopyToReg(getRoot(), Reg, Op);
3988  } else  {
3989    DestVT = TLI.getTypeToExpandTo(SrcVT);
3990    unsigned NumVals = TLI.getNumElements(SrcVT);
3991    if (NumVals == 1)
3992      return DAG.getCopyToReg(getRoot(), Reg,
3993                              DAG.getNode(ISD::BIT_CONVERT, DestVT, Op));
3994    assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
3995    // The src value is expanded into multiple registers.
3996    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3997                               Op, DAG.getConstant(0, TLI.getPointerTy()));
3998    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3999                               Op, DAG.getConstant(1, TLI.getPointerTy()));
4000    Op = DAG.getCopyToReg(getRoot(), Reg, Lo);
4001    return DAG.getCopyToReg(Op, Reg+1, Hi);
4002  }
4003}
4004
4005void SelectionDAGISel::
4006LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4007               std::vector<SDOperand> &UnorderedChains) {
4008  // If this is the entry block, emit arguments.
4009  Function &F = *LLVMBB->getParent();
4010  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4011  SDOperand OldRoot = SDL.DAG.getRoot();
4012  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4013
4014  unsigned a = 0;
4015  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4016       AI != E; ++AI, ++a)
4017    if (!AI->use_empty()) {
4018      SDL.setValue(AI, Args[a]);
4019
4020      // If this argument is live outside of the entry block, insert a copy from
4021      // whereever we got it to the vreg that other BB's will reference it as.
4022      if (FuncInfo.ValueMap.count(AI)) {
4023        SDOperand Copy =
4024          SDL.CopyValueToVirtualRegister(AI, FuncInfo.ValueMap[AI]);
4025        UnorderedChains.push_back(Copy);
4026      }
4027    }
4028
4029  // Finally, if the target has anything special to do, allow it to do so.
4030  // FIXME: this should insert code into the DAG!
4031  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4032}
4033
4034void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4035       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4036                                         FunctionLoweringInfo &FuncInfo) {
4037  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
4038
4039  std::vector<SDOperand> UnorderedChains;
4040
4041  // Lower any arguments needed in this block if this is the entry block.
4042  if (LLVMBB == &LLVMBB->getParent()->front())
4043    LowerArguments(LLVMBB, SDL, UnorderedChains);
4044
4045  BB = FuncInfo.MBBMap[LLVMBB];
4046  SDL.setCurrentBasicBlock(BB);
4047
4048  // Lower all of the non-terminator instructions.
4049  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4050       I != E; ++I)
4051    SDL.visit(*I);
4052
4053  // Ensure that all instructions which are used outside of their defining
4054  // blocks are available as virtual registers.
4055  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4056    if (!I->use_empty() && !isa<PHINode>(I)) {
4057      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4058      if (VMI != FuncInfo.ValueMap.end())
4059        UnorderedChains.push_back(
4060                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4061    }
4062
4063  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4064  // ensure constants are generated when needed.  Remember the virtual registers
4065  // that need to be added to the Machine PHI nodes as input.  We cannot just
4066  // directly add them, because expansion might result in multiple MBB's for one
4067  // BB.  As such, the start of the BB might correspond to a different MBB than
4068  // the end.
4069  //
4070  TerminatorInst *TI = LLVMBB->getTerminator();
4071
4072  // Emit constants only once even if used by multiple PHI nodes.
4073  std::map<Constant*, unsigned> ConstantsOut;
4074
4075  // Vector bool would be better, but vector<bool> is really slow.
4076  std::vector<unsigned char> SuccsHandled;
4077  if (TI->getNumSuccessors())
4078    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4079
4080  // Check successor nodes PHI nodes that expect a constant to be available from
4081  // this block.
4082  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4083    BasicBlock *SuccBB = TI->getSuccessor(succ);
4084    if (!isa<PHINode>(SuccBB->begin())) continue;
4085    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4086
4087    // If this terminator has multiple identical successors (common for
4088    // switches), only handle each succ once.
4089    unsigned SuccMBBNo = SuccMBB->getNumber();
4090    if (SuccsHandled[SuccMBBNo]) continue;
4091    SuccsHandled[SuccMBBNo] = true;
4092
4093    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4094    PHINode *PN;
4095
4096    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4097    // nodes and Machine PHI nodes, but the incoming operands have not been
4098    // emitted yet.
4099    for (BasicBlock::iterator I = SuccBB->begin();
4100         (PN = dyn_cast<PHINode>(I)); ++I) {
4101      // Ignore dead phi's.
4102      if (PN->use_empty()) continue;
4103
4104      unsigned Reg;
4105      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4106
4107      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4108        unsigned &RegOut = ConstantsOut[C];
4109        if (RegOut == 0) {
4110          RegOut = FuncInfo.CreateRegForValue(C);
4111          UnorderedChains.push_back(
4112                           SDL.CopyValueToVirtualRegister(C, RegOut));
4113        }
4114        Reg = RegOut;
4115      } else {
4116        Reg = FuncInfo.ValueMap[PHIOp];
4117        if (Reg == 0) {
4118          assert(isa<AllocaInst>(PHIOp) &&
4119                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4120                 "Didn't codegen value into a register!??");
4121          Reg = FuncInfo.CreateRegForValue(PHIOp);
4122          UnorderedChains.push_back(
4123                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4124        }
4125      }
4126
4127      // Remember that this register needs to added to the machine PHI node as
4128      // the input for this MBB.
4129      MVT::ValueType VT = TLI.getValueType(PN->getType());
4130      unsigned NumElements;
4131      if (VT != MVT::Vector)
4132        NumElements = TLI.getNumElements(VT);
4133      else {
4134        MVT::ValueType VT1,VT2;
4135        NumElements =
4136          TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
4137                                     VT1, VT2);
4138      }
4139      for (unsigned i = 0, e = NumElements; i != e; ++i)
4140        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4141    }
4142  }
4143  ConstantsOut.clear();
4144
4145  // Turn all of the unordered chains into one factored node.
4146  if (!UnorderedChains.empty()) {
4147    SDOperand Root = SDL.getRoot();
4148    if (Root.getOpcode() != ISD::EntryToken) {
4149      unsigned i = 0, e = UnorderedChains.size();
4150      for (; i != e; ++i) {
4151        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4152        if (UnorderedChains[i].Val->getOperand(0) == Root)
4153          break;  // Don't add the root if we already indirectly depend on it.
4154      }
4155
4156      if (i == e)
4157        UnorderedChains.push_back(Root);
4158    }
4159    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4160                            &UnorderedChains[0], UnorderedChains.size()));
4161  }
4162
4163  // Lower the terminator after the copies are emitted.
4164  SDL.visit(*LLVMBB->getTerminator());
4165
4166  // Copy over any CaseBlock records that may now exist due to SwitchInst
4167  // lowering, as well as any jump table information.
4168  SwitchCases.clear();
4169  SwitchCases = SDL.SwitchCases;
4170  JT = SDL.JT;
4171
4172  // Make sure the root of the DAG is up-to-date.
4173  DAG.setRoot(SDL.getRoot());
4174}
4175
4176void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4177  // Get alias analysis for load/store combining.
4178  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4179
4180  // Run the DAG combiner in pre-legalize mode.
4181  DAG.Combine(false, AA);
4182
4183  DOUT << "Lowered selection DAG:\n";
4184  DEBUG(DAG.dump());
4185
4186  // Second step, hack on the DAG until it only uses operations and types that
4187  // the target supports.
4188  DAG.Legalize();
4189
4190  DOUT << "Legalized selection DAG:\n";
4191  DEBUG(DAG.dump());
4192
4193  // Run the DAG combiner in post-legalize mode.
4194  DAG.Combine(true, AA);
4195
4196  if (ViewISelDAGs) DAG.viewGraph();
4197
4198  // Third, instruction select all of the operations to machine code, adding the
4199  // code to the MachineBasicBlock.
4200  InstructionSelectBasicBlock(DAG);
4201
4202  DOUT << "Selected machine code:\n";
4203  DEBUG(BB->dump());
4204}
4205
4206void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4207                                        FunctionLoweringInfo &FuncInfo) {
4208  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4209  {
4210    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4211    CurDAG = &DAG;
4212
4213    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4214    // types that are not supported by the target.
4215    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4216
4217    // Second step, emit the lowered DAG as machine code.
4218    CodeGenAndEmitDAG(DAG);
4219  }
4220
4221  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4222  // PHI nodes in successors.
4223  if (SwitchCases.empty() && JT.Reg == 0) {
4224    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4225      MachineInstr *PHI = PHINodesToUpdate[i].first;
4226      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4227             "This is not a machine PHI node that we are updating!");
4228      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4229      PHI->addMachineBasicBlockOperand(BB);
4230    }
4231    return;
4232  }
4233
4234  // If the JumpTable record is filled in, then we need to emit a jump table.
4235  // Updating the PHI nodes is tricky in this case, since we need to determine
4236  // whether the PHI is a successor of the range check MBB or the jump table MBB
4237  if (JT.Reg) {
4238    assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
4239    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4240    CurDAG = &SDAG;
4241    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4242    MachineBasicBlock *RangeBB = BB;
4243    // Set the current basic block to the mbb we wish to insert the code into
4244    BB = JT.MBB;
4245    SDL.setCurrentBasicBlock(BB);
4246    // Emit the code
4247    SDL.visitJumpTable(JT);
4248    SDAG.setRoot(SDL.getRoot());
4249    CodeGenAndEmitDAG(SDAG);
4250    // Update PHI Nodes
4251    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4252      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4253      MachineBasicBlock *PHIBB = PHI->getParent();
4254      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4255             "This is not a machine PHI node that we are updating!");
4256      if (PHIBB == JT.Default) {
4257        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4258        PHI->addMachineBasicBlockOperand(RangeBB);
4259      }
4260      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4261        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4262        PHI->addMachineBasicBlockOperand(BB);
4263      }
4264    }
4265    return;
4266  }
4267
4268  // If the switch block involved a branch to one of the actual successors, we
4269  // need to update PHI nodes in that block.
4270  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4271    MachineInstr *PHI = PHINodesToUpdate[i].first;
4272    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4273           "This is not a machine PHI node that we are updating!");
4274    if (BB->isSuccessor(PHI->getParent())) {
4275      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4276      PHI->addMachineBasicBlockOperand(BB);
4277    }
4278  }
4279
4280  // If we generated any switch lowering information, build and codegen any
4281  // additional DAGs necessary.
4282  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4283    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4284    CurDAG = &SDAG;
4285    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4286
4287    // Set the current basic block to the mbb we wish to insert the code into
4288    BB = SwitchCases[i].ThisBB;
4289    SDL.setCurrentBasicBlock(BB);
4290
4291    // Emit the code
4292    SDL.visitSwitchCase(SwitchCases[i]);
4293    SDAG.setRoot(SDL.getRoot());
4294    CodeGenAndEmitDAG(SDAG);
4295
4296    // Handle any PHI nodes in successors of this chunk, as if we were coming
4297    // from the original BB before switch expansion.  Note that PHI nodes can
4298    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4299    // handle them the right number of times.
4300    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4301      for (MachineBasicBlock::iterator Phi = BB->begin();
4302           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4303        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4304        for (unsigned pn = 0; ; ++pn) {
4305          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4306          if (PHINodesToUpdate[pn].first == Phi) {
4307            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4308            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4309            break;
4310          }
4311        }
4312      }
4313
4314      // Don't process RHS if same block as LHS.
4315      if (BB == SwitchCases[i].FalseBB)
4316        SwitchCases[i].FalseBB = 0;
4317
4318      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4319      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4320      SwitchCases[i].FalseBB = 0;
4321    }
4322    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4323  }
4324}
4325
4326
4327//===----------------------------------------------------------------------===//
4328/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4329/// target node in the graph.
4330void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4331  if (ViewSchedDAGs) DAG.viewGraph();
4332
4333  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4334
4335  if (!Ctor) {
4336    Ctor = ISHeuristic;
4337    RegisterScheduler::setDefault(Ctor);
4338  }
4339
4340  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4341  BB = SL->Run();
4342  delete SL;
4343}
4344
4345
4346HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4347  return new HazardRecognizer();
4348}
4349
4350//===----------------------------------------------------------------------===//
4351// Helper functions used by the generated instruction selector.
4352//===----------------------------------------------------------------------===//
4353// Calls to these methods are generated by tblgen.
4354
4355/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4356/// the dag combiner simplified the 255, we still want to match.  RHS is the
4357/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4358/// specified in the .td file (e.g. 255).
4359bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4360                                    int64_t DesiredMaskS) {
4361  uint64_t ActualMask = RHS->getValue();
4362  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4363
4364  // If the actual mask exactly matches, success!
4365  if (ActualMask == DesiredMask)
4366    return true;
4367
4368  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4369  if (ActualMask & ~DesiredMask)
4370    return false;
4371
4372  // Otherwise, the DAG Combiner may have proven that the value coming in is
4373  // either already zero or is not demanded.  Check for known zero input bits.
4374  uint64_t NeededMask = DesiredMask & ~ActualMask;
4375  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
4376    return true;
4377
4378  // TODO: check to see if missing bits are just not demanded.
4379
4380  // Otherwise, this pattern doesn't match.
4381  return false;
4382}
4383
4384/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4385/// the dag combiner simplified the 255, we still want to match.  RHS is the
4386/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4387/// specified in the .td file (e.g. 255).
4388bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4389                                    int64_t DesiredMaskS) {
4390  uint64_t ActualMask = RHS->getValue();
4391  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4392
4393  // If the actual mask exactly matches, success!
4394  if (ActualMask == DesiredMask)
4395    return true;
4396
4397  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4398  if (ActualMask & ~DesiredMask)
4399    return false;
4400
4401  // Otherwise, the DAG Combiner may have proven that the value coming in is
4402  // either already zero or is not demanded.  Check for known zero input bits.
4403  uint64_t NeededMask = DesiredMask & ~ActualMask;
4404
4405  uint64_t KnownZero, KnownOne;
4406  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4407
4408  // If all the missing bits in the or are already known to be set, match!
4409  if ((NeededMask & KnownOne) == NeededMask)
4410    return true;
4411
4412  // TODO: check to see if missing bits are just not demanded.
4413
4414  // Otherwise, this pattern doesn't match.
4415  return false;
4416}
4417
4418
4419/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4420/// by tblgen.  Others should not call it.
4421void SelectionDAGISel::
4422SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4423  std::vector<SDOperand> InOps;
4424  std::swap(InOps, Ops);
4425
4426  Ops.push_back(InOps[0]);  // input chain.
4427  Ops.push_back(InOps[1]);  // input asm string.
4428
4429  unsigned i = 2, e = InOps.size();
4430  if (InOps[e-1].getValueType() == MVT::Flag)
4431    --e;  // Don't process a flag operand if it is here.
4432
4433  while (i != e) {
4434    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4435    if ((Flags & 7) != 4 /*MEM*/) {
4436      // Just skip over this operand, copying the operands verbatim.
4437      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4438      i += (Flags >> 3) + 1;
4439    } else {
4440      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4441      // Otherwise, this is a memory operand.  Ask the target to select it.
4442      std::vector<SDOperand> SelOps;
4443      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4444        cerr << "Could not match memory address.  Inline asm failure!\n";
4445        exit(1);
4446      }
4447
4448      // Add this to the output node.
4449      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4450                                          MVT::i32));
4451      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4452      i += 2;
4453    }
4454  }
4455
4456  // Add the flag input back if present.
4457  if (e != InOps.size())
4458    Ops.push_back(InOps.back());
4459}
4460