SelectionDAGISel.cpp revision d03f1581c8a854fdbe4f5a738e9322341c2bc77f
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/CodeGen/ScheduleDAG.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/IntrinsicLowering.h"
28#include "llvm/CodeGen/MachineDebugInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/SchedulerRegistry.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/CodeGen/SSARegMap.h"
36#include "llvm/Target/MRegisterInfo.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Target/TargetFrameInfo.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <iostream>
48#include <algorithm>
49using namespace llvm;
50
51#ifndef NDEBUG
52static cl::opt<bool>
53ViewISelDAGs("view-isel-dags", cl::Hidden,
54          cl::desc("Pop up a window to show isel dags as they are selected"));
55static cl::opt<bool>
56ViewSchedDAGs("view-sched-dags", cl::Hidden,
57          cl::desc("Pop up a window to show sched dags as they are processed"));
58#else
59static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
60#endif
61
62
63//===---------------------------------------------------------------------===//
64///
65/// RegisterScheduler class - Track the registration of instruction schedulers.
66///
67//===---------------------------------------------------------------------===//
68MachinePassRegistry RegisterScheduler::Registry;
69
70//===---------------------------------------------------------------------===//
71///
72/// ISHeuristic command line option for instruction schedulers.
73///
74//===---------------------------------------------------------------------===//
75namespace {
76  cl::opt<RegisterScheduler::FunctionPassCtor, false,
77          RegisterPassParser<RegisterScheduler> >
78  ISHeuristic("sched",
79              cl::init(&createDefaultScheduler),
80              cl::desc("Instruction schedulers available:"));
81
82  static RegisterScheduler
83  defaultListDAGScheduler("default", "  Best scheduler for the target",
84                          createDefaultScheduler);
85} // namespace
86
87namespace {
88  /// RegsForValue - This struct represents the physical registers that a
89  /// particular value is assigned and the type information about the value.
90  /// This is needed because values can be promoted into larger registers and
91  /// expanded into multiple smaller registers than the value.
92  struct VISIBILITY_HIDDEN RegsForValue {
93    /// Regs - This list hold the register (for legal and promoted values)
94    /// or register set (for expanded values) that the value should be assigned
95    /// to.
96    std::vector<unsigned> Regs;
97
98    /// RegVT - The value type of each register.
99    ///
100    MVT::ValueType RegVT;
101
102    /// ValueVT - The value type of the LLVM value, which may be promoted from
103    /// RegVT or made from merging the two expanded parts.
104    MVT::ValueType ValueVT;
105
106    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
107
108    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
109      : RegVT(regvt), ValueVT(valuevt) {
110        Regs.push_back(Reg);
111    }
112    RegsForValue(const std::vector<unsigned> &regs,
113                 MVT::ValueType regvt, MVT::ValueType valuevt)
114      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
115    }
116
117    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
118    /// this value and returns the result as a ValueVT value.  This uses
119    /// Chain/Flag as the input and updates them for the output Chain/Flag.
120    SDOperand getCopyFromRegs(SelectionDAG &DAG,
121                              SDOperand &Chain, SDOperand &Flag) const;
122
123    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
124    /// specified value into the registers specified by this object.  This uses
125    /// Chain/Flag as the input and updates them for the output Chain/Flag.
126    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
127                       SDOperand &Chain, SDOperand &Flag,
128                       MVT::ValueType PtrVT) const;
129
130    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
131    /// operand list.  This adds the code marker and includes the number of
132    /// values added into it.
133    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
134                              std::vector<SDOperand> &Ops) const;
135  };
136}
137
138namespace llvm {
139  //===--------------------------------------------------------------------===//
140  /// createDefaultScheduler - This creates an instruction scheduler appropriate
141  /// for the target.
142  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
143                                      SelectionDAG *DAG,
144                                      MachineBasicBlock *BB) {
145    TargetLowering &TLI = IS->getTargetLowering();
146
147    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
148      return createTDListDAGScheduler(IS, DAG, BB);
149    } else {
150      assert(TLI.getSchedulingPreference() ==
151           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
152      return createBURRListDAGScheduler(IS, DAG, BB);
153    }
154  }
155
156
157  //===--------------------------------------------------------------------===//
158  /// FunctionLoweringInfo - This contains information that is global to a
159  /// function that is used when lowering a region of the function.
160  class FunctionLoweringInfo {
161  public:
162    TargetLowering &TLI;
163    Function &Fn;
164    MachineFunction &MF;
165    SSARegMap *RegMap;
166
167    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
168
169    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
170    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
171
172    /// ValueMap - Since we emit code for the function a basic block at a time,
173    /// we must remember which virtual registers hold the values for
174    /// cross-basic-block values.
175    std::map<const Value*, unsigned> ValueMap;
176
177    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
178    /// the entry block.  This allows the allocas to be efficiently referenced
179    /// anywhere in the function.
180    std::map<const AllocaInst*, int> StaticAllocaMap;
181
182    unsigned MakeReg(MVT::ValueType VT) {
183      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
184    }
185
186    /// isExportedInst - Return true if the specified value is an instruction
187    /// exported from its block.
188    bool isExportedInst(const Value *V) {
189      return ValueMap.count(V);
190    }
191
192    unsigned CreateRegForValue(const Value *V);
193
194    unsigned InitializeRegForValue(const Value *V) {
195      unsigned &R = ValueMap[V];
196      assert(R == 0 && "Already initialized this value register!");
197      return R = CreateRegForValue(V);
198    }
199  };
200}
201
202/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
203/// PHI nodes or outside of the basic block that defines it, or used by a
204/// switch instruction, which may expand to multiple basic blocks.
205static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
206  if (isa<PHINode>(I)) return true;
207  BasicBlock *BB = I->getParent();
208  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
209    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
210        // FIXME: Remove switchinst special case.
211        isa<SwitchInst>(*UI))
212      return true;
213  return false;
214}
215
216/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
217/// entry block, return true.  This includes arguments used by switches, since
218/// the switch may expand into multiple basic blocks.
219static bool isOnlyUsedInEntryBlock(Argument *A) {
220  BasicBlock *Entry = A->getParent()->begin();
221  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
222    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
223      return false;  // Use not in entry block.
224  return true;
225}
226
227FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
228                                           Function &fn, MachineFunction &mf)
229    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
230
231  // Create a vreg for each argument register that is not dead and is used
232  // outside of the entry block for the function.
233  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
234       AI != E; ++AI)
235    if (!isOnlyUsedInEntryBlock(AI))
236      InitializeRegForValue(AI);
237
238  // Initialize the mapping of values to registers.  This is only set up for
239  // instruction values that are used outside of the block that defines
240  // them.
241  Function::iterator BB = Fn.begin(), EB = Fn.end();
242  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
243    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
244      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
245        const Type *Ty = AI->getAllocatedType();
246        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
247        unsigned Align =
248          std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
249                   AI->getAlignment());
250
251        // If the alignment of the value is smaller than the size of the
252        // value, and if the size of the value is particularly small
253        // (<= 8 bytes), round up to the size of the value for potentially
254        // better performance.
255        //
256        // FIXME: This could be made better with a preferred alignment hook in
257        // TargetData.  It serves primarily to 8-byte align doubles for X86.
258        if (Align < TySize && TySize <= 8) Align = TySize;
259        TySize *= CUI->getZExtValue();   // Get total allocated size.
260        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
261        StaticAllocaMap[AI] =
262          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
263      }
264
265  for (; BB != EB; ++BB)
266    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
267      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
268        if (!isa<AllocaInst>(I) ||
269            !StaticAllocaMap.count(cast<AllocaInst>(I)))
270          InitializeRegForValue(I);
271
272  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
273  // also creates the initial PHI MachineInstrs, though none of the input
274  // operands are populated.
275  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
276    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
277    MBBMap[BB] = MBB;
278    MF.getBasicBlockList().push_back(MBB);
279
280    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
281    // appropriate.
282    PHINode *PN;
283    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
284      if (PN->use_empty()) continue;
285
286      MVT::ValueType VT = TLI.getValueType(PN->getType());
287      unsigned NumElements;
288      if (VT != MVT::Vector)
289        NumElements = TLI.getNumElements(VT);
290      else {
291        MVT::ValueType VT1,VT2;
292        NumElements =
293          TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
294                                     VT1, VT2);
295      }
296      unsigned PHIReg = ValueMap[PN];
297      assert(PHIReg && "PHI node does not have an assigned virtual register!");
298      for (unsigned i = 0; i != NumElements; ++i)
299        BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
300    }
301  }
302}
303
304/// CreateRegForValue - Allocate the appropriate number of virtual registers of
305/// the correctly promoted or expanded types.  Assign these registers
306/// consecutive vreg numbers and return the first assigned number.
307unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
308  MVT::ValueType VT = TLI.getValueType(V->getType());
309
310  // The number of multiples of registers that we need, to, e.g., split up
311  // a <2 x int64> -> 4 x i32 registers.
312  unsigned NumVectorRegs = 1;
313
314  // If this is a packed type, figure out what type it will decompose into
315  // and how many of the elements it will use.
316  if (VT == MVT::Vector) {
317    const PackedType *PTy = cast<PackedType>(V->getType());
318    unsigned NumElts = PTy->getNumElements();
319    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
320
321    // Divide the input until we get to a supported size.  This will always
322    // end with a scalar if the target doesn't support vectors.
323    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
324      NumElts >>= 1;
325      NumVectorRegs <<= 1;
326    }
327    if (NumElts == 1)
328      VT = EltTy;
329    else
330      VT = getVectorType(EltTy, NumElts);
331  }
332
333  // The common case is that we will only create one register for this
334  // value.  If we have that case, create and return the virtual register.
335  unsigned NV = TLI.getNumElements(VT);
336  if (NV == 1) {
337    // If we are promoting this value, pick the next largest supported type.
338    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
339    unsigned Reg = MakeReg(PromotedType);
340    // If this is a vector of supported or promoted types (e.g. 4 x i16),
341    // create all of the registers.
342    for (unsigned i = 1; i != NumVectorRegs; ++i)
343      MakeReg(PromotedType);
344    return Reg;
345  }
346
347  // If this value is represented with multiple target registers, make sure
348  // to create enough consecutive registers of the right (smaller) type.
349  unsigned NT = VT-1;  // Find the type to use.
350  while (TLI.getNumElements((MVT::ValueType)NT) != 1)
351    --NT;
352
353  unsigned R = MakeReg((MVT::ValueType)NT);
354  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
355    MakeReg((MVT::ValueType)NT);
356  return R;
357}
358
359//===----------------------------------------------------------------------===//
360/// SelectionDAGLowering - This is the common target-independent lowering
361/// implementation that is parameterized by a TargetLowering object.
362/// Also, targets can overload any lowering method.
363///
364namespace llvm {
365class SelectionDAGLowering {
366  MachineBasicBlock *CurMBB;
367
368  std::map<const Value*, SDOperand> NodeMap;
369
370  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
371  /// them up and then emit token factor nodes when possible.  This allows us to
372  /// get simple disambiguation between loads without worrying about alias
373  /// analysis.
374  std::vector<SDOperand> PendingLoads;
375
376  /// Case - A pair of values to record the Value for a switch case, and the
377  /// case's target basic block.
378  typedef std::pair<Constant*, MachineBasicBlock*> Case;
379  typedef std::vector<Case>::iterator              CaseItr;
380  typedef std::pair<CaseItr, CaseItr>              CaseRange;
381
382  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
383  /// of conditional branches.
384  struct CaseRec {
385    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
386    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
387
388    /// CaseBB - The MBB in which to emit the compare and branch
389    MachineBasicBlock *CaseBB;
390    /// LT, GE - If nonzero, we know the current case value must be less-than or
391    /// greater-than-or-equal-to these Constants.
392    Constant *LT;
393    Constant *GE;
394    /// Range - A pair of iterators representing the range of case values to be
395    /// processed at this point in the binary search tree.
396    CaseRange Range;
397  };
398
399  /// The comparison function for sorting Case values.
400  struct CaseCmp {
401    bool operator () (const Case& C1, const Case& C2) {
402      if (const ConstantInt* I1 = dyn_cast<const ConstantInt>(C1.first))
403        if (I1->getType()->isUnsigned())
404          return I1->getZExtValue() <
405            cast<const ConstantInt>(C2.first)->getZExtValue();
406
407      return cast<const ConstantInt>(C1.first)->getSExtValue() <
408         cast<const ConstantInt>(C2.first)->getSExtValue();
409    }
410  };
411
412public:
413  // TLI - This is information that describes the available target features we
414  // need for lowering.  This indicates when operations are unavailable,
415  // implemented with a libcall, etc.
416  TargetLowering &TLI;
417  SelectionDAG &DAG;
418  const TargetData *TD;
419
420  /// SwitchCases - Vector of CaseBlock structures used to communicate
421  /// SwitchInst code generation information.
422  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
423  SelectionDAGISel::JumpTable JT;
424
425  /// FuncInfo - Information about the function as a whole.
426  ///
427  FunctionLoweringInfo &FuncInfo;
428
429  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
430                       FunctionLoweringInfo &funcinfo)
431    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
432      JT(0,0,0,0), FuncInfo(funcinfo) {
433  }
434
435  /// getRoot - Return the current virtual root of the Selection DAG.
436  ///
437  SDOperand getRoot() {
438    if (PendingLoads.empty())
439      return DAG.getRoot();
440
441    if (PendingLoads.size() == 1) {
442      SDOperand Root = PendingLoads[0];
443      DAG.setRoot(Root);
444      PendingLoads.clear();
445      return Root;
446    }
447
448    // Otherwise, we have to make a token factor node.
449    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
450                                 &PendingLoads[0], PendingLoads.size());
451    PendingLoads.clear();
452    DAG.setRoot(Root);
453    return Root;
454  }
455
456  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
457
458  void visit(Instruction &I) { visit(I.getOpcode(), I); }
459
460  void visit(unsigned Opcode, User &I) {
461    switch (Opcode) {
462    default: assert(0 && "Unknown instruction type encountered!");
463             abort();
464      // Build the switch statement using the Instruction.def file.
465#define HANDLE_INST(NUM, OPCODE, CLASS) \
466    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
467#include "llvm/Instruction.def"
468    }
469  }
470
471  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
472
473  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
474                        const Value *SV, SDOperand Root,
475                        bool isVolatile);
476
477  SDOperand getIntPtrConstant(uint64_t Val) {
478    return DAG.getConstant(Val, TLI.getPointerTy());
479  }
480
481  SDOperand getValue(const Value *V);
482
483  const SDOperand &setValue(const Value *V, SDOperand NewN) {
484    SDOperand &N = NodeMap[V];
485    assert(N.Val == 0 && "Already set a value for this node!");
486    return N = NewN;
487  }
488
489  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
490                                    MVT::ValueType VT,
491                                    bool OutReg, bool InReg,
492                                    std::set<unsigned> &OutputRegs,
493                                    std::set<unsigned> &InputRegs);
494
495  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
496                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
497                            unsigned Opc);
498  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
499  void ExportFromCurrentBlock(Value *V);
500
501  // Terminator instructions.
502  void visitRet(ReturnInst &I);
503  void visitBr(BranchInst &I);
504  void visitSwitch(SwitchInst &I);
505  void visitUnreachable(UnreachableInst &I) { /* noop */ }
506
507  // Helper for visitSwitch
508  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
509  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
510
511  // These all get lowered before this pass.
512  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
513  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
514
515  void visitIntBinary(User &I, unsigned IntOp, unsigned VecOp);
516  void visitFPBinary(User &I, unsigned FPOp, unsigned VecOp);
517  void visitShift(User &I, unsigned Opcode);
518  void visitAdd(User &I) {
519    if (I.getType()->isFloatingPoint())
520      visitFPBinary(I, ISD::FADD, ISD::VADD);
521    else
522      visitIntBinary(I, ISD::ADD, ISD::VADD);
523  }
524  void visitSub(User &I);
525  void visitMul(User &I) {
526    if (I.getType()->isFloatingPoint())
527      visitFPBinary(I, ISD::FMUL, ISD::VMUL);
528    else
529      visitIntBinary(I, ISD::MUL, ISD::VMUL);
530  }
531  void visitUDiv(User &I) { visitIntBinary(I, ISD::UDIV, ISD::VUDIV); }
532  void visitSDiv(User &I) { visitIntBinary(I, ISD::SDIV, ISD::VSDIV); }
533  void visitFDiv(User &I) { visitFPBinary(I, ISD::FDIV,  ISD::VSDIV); }
534  void visitRem(User &I) {
535    const Type *Ty = I.getType();
536    if (Ty->isFloatingPoint())
537      visitFPBinary(I, ISD::FREM, 0);
538    else
539      visitIntBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, 0);
540  }
541  void visitAnd(User &I) { visitIntBinary(I, ISD::AND, ISD::VAND); }
542  void visitOr (User &I) { visitIntBinary(I, ISD::OR,  ISD::VOR); }
543  void visitXor(User &I) { visitIntBinary(I, ISD::XOR, ISD::VXOR); }
544  void visitShl(User &I) { visitShift(I, ISD::SHL); }
545  void visitShr(User &I) {
546    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
547  }
548
549  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc,
550                  ISD::CondCode FPOpc);
551  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ,
552                                        ISD::SETOEQ); }
553  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE,
554                                        ISD::SETUNE); }
555  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE,
556                                        ISD::SETOLE); }
557  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE,
558                                        ISD::SETOGE); }
559  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT,
560                                        ISD::SETOLT); }
561  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT,
562                                        ISD::SETOGT); }
563
564  void visitExtractElement(User &I);
565  void visitInsertElement(User &I);
566  void visitShuffleVector(User &I);
567
568  void visitGetElementPtr(User &I);
569  void visitCast(User &I);
570  void visitSelect(User &I);
571
572  void visitMalloc(MallocInst &I);
573  void visitFree(FreeInst &I);
574  void visitAlloca(AllocaInst &I);
575  void visitLoad(LoadInst &I);
576  void visitStore(StoreInst &I);
577  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
578  void visitCall(CallInst &I);
579  void visitInlineAsm(CallInst &I);
580  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
581  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
582
583  void visitVAStart(CallInst &I);
584  void visitVAArg(VAArgInst &I);
585  void visitVAEnd(CallInst &I);
586  void visitVACopy(CallInst &I);
587  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
588
589  void visitMemIntrinsic(CallInst &I, unsigned Op);
590
591  void visitUserOp1(Instruction &I) {
592    assert(0 && "UserOp1 should not exist at instruction selection time!");
593    abort();
594  }
595  void visitUserOp2(Instruction &I) {
596    assert(0 && "UserOp2 should not exist at instruction selection time!");
597    abort();
598  }
599};
600} // end namespace llvm
601
602SDOperand SelectionDAGLowering::getValue(const Value *V) {
603  SDOperand &N = NodeMap[V];
604  if (N.Val) return N;
605
606  const Type *VTy = V->getType();
607  MVT::ValueType VT = TLI.getValueType(VTy);
608  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
609    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
610      visit(CE->getOpcode(), *CE);
611      assert(N.Val && "visit didn't populate the ValueMap!");
612      return N;
613    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
614      return N = DAG.getGlobalAddress(GV, VT);
615    } else if (isa<ConstantPointerNull>(C)) {
616      return N = DAG.getConstant(0, TLI.getPointerTy());
617    } else if (isa<UndefValue>(C)) {
618      if (!isa<PackedType>(VTy))
619        return N = DAG.getNode(ISD::UNDEF, VT);
620
621      // Create a VBUILD_VECTOR of undef nodes.
622      const PackedType *PTy = cast<PackedType>(VTy);
623      unsigned NumElements = PTy->getNumElements();
624      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
625
626      SmallVector<SDOperand, 8> Ops;
627      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
628
629      // Create a VConstant node with generic Vector type.
630      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
631      Ops.push_back(DAG.getValueType(PVT));
632      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
633                             &Ops[0], Ops.size());
634    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
635      return N = DAG.getConstantFP(CFP->getValue(), VT);
636    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
637      unsigned NumElements = PTy->getNumElements();
638      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
639
640      // Now that we know the number and type of the elements, push a
641      // Constant or ConstantFP node onto the ops list for each element of
642      // the packed constant.
643      SmallVector<SDOperand, 8> Ops;
644      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
645        for (unsigned i = 0; i != NumElements; ++i)
646          Ops.push_back(getValue(CP->getOperand(i)));
647      } else {
648        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
649        SDOperand Op;
650        if (MVT::isFloatingPoint(PVT))
651          Op = DAG.getConstantFP(0, PVT);
652        else
653          Op = DAG.getConstant(0, PVT);
654        Ops.assign(NumElements, Op);
655      }
656
657      // Create a VBUILD_VECTOR node with generic Vector type.
658      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
659      Ops.push_back(DAG.getValueType(PVT));
660      return N = DAG.getNode(ISD::VBUILD_VECTOR,MVT::Vector,&Ops[0],Ops.size());
661    } else {
662      // Canonicalize all constant ints to be unsigned.
663      return N = DAG.getConstant(cast<ConstantIntegral>(C)->getZExtValue(),VT);
664    }
665  }
666
667  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
668    std::map<const AllocaInst*, int>::iterator SI =
669    FuncInfo.StaticAllocaMap.find(AI);
670    if (SI != FuncInfo.StaticAllocaMap.end())
671      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
672  }
673
674  std::map<const Value*, unsigned>::const_iterator VMI =
675      FuncInfo.ValueMap.find(V);
676  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
677
678  unsigned InReg = VMI->second;
679
680  // If this type is not legal, make it so now.
681  if (VT != MVT::Vector) {
682    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
683
684    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
685    if (DestVT < VT) {
686      // Source must be expanded.  This input value is actually coming from the
687      // register pair VMI->second and VMI->second+1.
688      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
689                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
690    } else if (DestVT > VT) { // Promotion case
691      if (MVT::isFloatingPoint(VT))
692        N = DAG.getNode(ISD::FP_ROUND, VT, N);
693      else
694        N = DAG.getNode(ISD::TRUNCATE, VT, N);
695    }
696  } else {
697    // Otherwise, if this is a vector, make it available as a generic vector
698    // here.
699    MVT::ValueType PTyElementVT, PTyLegalElementVT;
700    const PackedType *PTy = cast<PackedType>(VTy);
701    unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT,
702                                             PTyLegalElementVT);
703
704    // Build a VBUILD_VECTOR with the input registers.
705    SmallVector<SDOperand, 8> Ops;
706    if (PTyElementVT == PTyLegalElementVT) {
707      // If the value types are legal, just VBUILD the CopyFromReg nodes.
708      for (unsigned i = 0; i != NE; ++i)
709        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
710                                         PTyElementVT));
711    } else if (PTyElementVT < PTyLegalElementVT) {
712      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
713      for (unsigned i = 0; i != NE; ++i) {
714        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
715                                          PTyElementVT);
716        if (MVT::isFloatingPoint(PTyElementVT))
717          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
718        else
719          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
720        Ops.push_back(Op);
721      }
722    } else {
723      // If the register was expanded, use BUILD_PAIR.
724      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
725      for (unsigned i = 0; i != NE/2; ++i) {
726        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
727                                           PTyElementVT);
728        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
729                                           PTyElementVT);
730        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
731      }
732    }
733
734    Ops.push_back(DAG.getConstant(NE, MVT::i32));
735    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
736    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
737
738    // Finally, use a VBIT_CONVERT to make this available as the appropriate
739    // vector type.
740    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
741                    DAG.getConstant(PTy->getNumElements(),
742                                    MVT::i32),
743                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
744  }
745
746  return N;
747}
748
749
750void SelectionDAGLowering::visitRet(ReturnInst &I) {
751  if (I.getNumOperands() == 0) {
752    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
753    return;
754  }
755  SmallVector<SDOperand, 8> NewValues;
756  NewValues.push_back(getRoot());
757  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
758    SDOperand RetOp = getValue(I.getOperand(i));
759    bool isSigned = I.getOperand(i)->getType()->isSigned();
760
761    // If this is an integer return value, we need to promote it ourselves to
762    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
763    // than sign/zero.
764    // FIXME: C calling convention requires the return type to be promoted to
765    // at least 32-bit. But this is not necessary for non-C calling conventions.
766    if (MVT::isInteger(RetOp.getValueType()) &&
767        RetOp.getValueType() < MVT::i64) {
768      MVT::ValueType TmpVT;
769      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
770        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
771      else
772        TmpVT = MVT::i32;
773
774      if (isSigned)
775        RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
776      else
777        RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
778    }
779    NewValues.push_back(RetOp);
780    NewValues.push_back(DAG.getConstant(isSigned, MVT::i32));
781  }
782  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
783                          &NewValues[0], NewValues.size()));
784}
785
786/// ExportFromCurrentBlock - If this condition isn't known to be exported from
787/// the current basic block, add it to ValueMap now so that we'll get a
788/// CopyTo/FromReg.
789void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
790  // No need to export constants.
791  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
792
793  // Already exported?
794  if (FuncInfo.isExportedInst(V)) return;
795
796  unsigned Reg = FuncInfo.InitializeRegForValue(V);
797  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
798}
799
800bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
801                                                    const BasicBlock *FromBB) {
802  // The operands of the setcc have to be in this block.  We don't know
803  // how to export them from some other block.
804  if (Instruction *VI = dyn_cast<Instruction>(V)) {
805    // Can export from current BB.
806    if (VI->getParent() == FromBB)
807      return true;
808
809    // Is already exported, noop.
810    return FuncInfo.isExportedInst(V);
811  }
812
813  // If this is an argument, we can export it if the BB is the entry block or
814  // if it is already exported.
815  if (isa<Argument>(V)) {
816    if (FromBB == &FromBB->getParent()->getEntryBlock())
817      return true;
818
819    // Otherwise, can only export this if it is already exported.
820    return FuncInfo.isExportedInst(V);
821  }
822
823  // Otherwise, constants can always be exported.
824  return true;
825}
826
827static bool InBlock(const Value *V, const BasicBlock *BB) {
828  if (const Instruction *I = dyn_cast<Instruction>(V))
829    return I->getParent() == BB;
830  return true;
831}
832
833/// FindMergedConditions - If Cond is an expression like
834void SelectionDAGLowering::FindMergedConditions(Value *Cond,
835                                                MachineBasicBlock *TBB,
836                                                MachineBasicBlock *FBB,
837                                                MachineBasicBlock *CurBB,
838                                                unsigned Opc) {
839  // If this node is not part of the or/and tree, emit it as a branch.
840  BinaryOperator *BOp = dyn_cast<BinaryOperator>(Cond);
841
842  if (!BOp || (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
843      BOp->getParent() != CurBB->getBasicBlock() ||
844      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
845      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
846    const BasicBlock *BB = CurBB->getBasicBlock();
847
848    // If the leaf of the tree is a setcond inst, merge the condition into the
849    // caseblock.
850    if (BOp && isa<SetCondInst>(BOp) &&
851        // The operands of the setcc have to be in this block.  We don't know
852        // how to export them from some other block.  If this is the first block
853        // of the sequence, no exporting is needed.
854        (CurBB == CurMBB ||
855         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
856          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
857      ISD::CondCode SignCond, UnsCond, FPCond, Condition;
858      switch (BOp->getOpcode()) {
859      default: assert(0 && "Unknown setcc opcode!");
860      case Instruction::SetEQ:
861        SignCond = ISD::SETEQ;
862        UnsCond  = ISD::SETEQ;
863        FPCond   = ISD::SETOEQ;
864        break;
865      case Instruction::SetNE:
866        SignCond = ISD::SETNE;
867        UnsCond  = ISD::SETNE;
868        FPCond   = ISD::SETUNE;
869        break;
870      case Instruction::SetLE:
871        SignCond = ISD::SETLE;
872        UnsCond  = ISD::SETULE;
873        FPCond   = ISD::SETOLE;
874        break;
875      case Instruction::SetGE:
876        SignCond = ISD::SETGE;
877        UnsCond  = ISD::SETUGE;
878        FPCond   = ISD::SETOGE;
879        break;
880      case Instruction::SetLT:
881        SignCond = ISD::SETLT;
882        UnsCond  = ISD::SETULT;
883        FPCond   = ISD::SETOLT;
884        break;
885      case Instruction::SetGT:
886        SignCond = ISD::SETGT;
887        UnsCond  = ISD::SETUGT;
888        FPCond   = ISD::SETOGT;
889        break;
890      }
891
892      const Type *OpType = BOp->getOperand(0)->getType();
893      if (const PackedType *PTy = dyn_cast<PackedType>(OpType))
894        OpType = PTy->getElementType();
895
896      if (!FiniteOnlyFPMath() && OpType->isFloatingPoint())
897        Condition = FPCond;
898      else if (OpType->isUnsigned())
899        Condition = UnsCond;
900      else
901        Condition = SignCond;
902
903      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
904                                     BOp->getOperand(1), TBB, FBB, CurBB);
905      SwitchCases.push_back(CB);
906      return;
907    }
908
909    // Create a CaseBlock record representing this branch.
910    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantBool::getTrue(),
911                                   TBB, FBB, CurBB);
912    SwitchCases.push_back(CB);
913    return;
914  }
915
916
917  //  Create TmpBB after CurBB.
918  MachineFunction::iterator BBI = CurBB;
919  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
920  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
921
922  if (Opc == Instruction::Or) {
923    // Codegen X | Y as:
924    //   jmp_if_X TBB
925    //   jmp TmpBB
926    // TmpBB:
927    //   jmp_if_Y TBB
928    //   jmp FBB
929    //
930
931    // Emit the LHS condition.
932    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
933
934    // Emit the RHS condition into TmpBB.
935    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
936  } else {
937    assert(Opc == Instruction::And && "Unknown merge op!");
938    // Codegen X & Y as:
939    //   jmp_if_X TmpBB
940    //   jmp FBB
941    // TmpBB:
942    //   jmp_if_Y TBB
943    //   jmp FBB
944    //
945    //  This requires creation of TmpBB after CurBB.
946
947    // Emit the LHS condition.
948    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
949
950    // Emit the RHS condition into TmpBB.
951    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
952  }
953}
954
955void SelectionDAGLowering::visitBr(BranchInst &I) {
956  // Update machine-CFG edges.
957  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
958
959  // Figure out which block is immediately after the current one.
960  MachineBasicBlock *NextBlock = 0;
961  MachineFunction::iterator BBI = CurMBB;
962  if (++BBI != CurMBB->getParent()->end())
963    NextBlock = BBI;
964
965  if (I.isUnconditional()) {
966    // If this is not a fall-through branch, emit the branch.
967    if (Succ0MBB != NextBlock)
968      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
969                              DAG.getBasicBlock(Succ0MBB)));
970
971    // Update machine-CFG edges.
972    CurMBB->addSuccessor(Succ0MBB);
973
974    return;
975  }
976
977  // If this condition is one of the special cases we handle, do special stuff
978  // now.
979  Value *CondVal = I.getCondition();
980  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
981
982  // If this is a series of conditions that are or'd or and'd together, emit
983  // this as a sequence of branches instead of setcc's with and/or operations.
984  // For example, instead of something like:
985  //     cmp A, B
986  //     C = seteq
987  //     cmp D, E
988  //     F = setle
989  //     or C, F
990  //     jnz foo
991  // Emit:
992  //     cmp A, B
993  //     je foo
994  //     cmp D, E
995  //     jle foo
996  //
997  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
998    if (BOp->hasOneUse() &&
999        (BOp->getOpcode() == Instruction::And ||
1000         BOp->getOpcode() == Instruction::Or)) {
1001      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1002
1003      // If the compares in later blocks need to use values not currently
1004      // exported from this block, export them now.  This block should always be
1005      // the first entry.
1006      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1007
1008      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1009        ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1010        ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1011      }
1012
1013      // Emit the branch for this block.
1014      visitSwitchCase(SwitchCases[0]);
1015      SwitchCases.erase(SwitchCases.begin());
1016      return;
1017    }
1018  }
1019
1020  // Create a CaseBlock record representing this branch.
1021  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantBool::getTrue(),
1022                                 Succ0MBB, Succ1MBB, CurMBB);
1023  // Use visitSwitchCase to actually insert the fast branch sequence for this
1024  // cond branch.
1025  visitSwitchCase(CB);
1026}
1027
1028/// visitSwitchCase - Emits the necessary code to represent a single node in
1029/// the binary search tree resulting from lowering a switch instruction.
1030void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1031  SDOperand Cond;
1032  SDOperand CondLHS = getValue(CB.CmpLHS);
1033
1034  // Build the setcc now, fold "(X == true)" to X and "(X == false)" to !X to
1035  // handle common cases produced by branch lowering.
1036  if (CB.CmpRHS == ConstantBool::getTrue() && CB.CC == ISD::SETEQ)
1037    Cond = CondLHS;
1038  else if (CB.CmpRHS == ConstantBool::getFalse() && CB.CC == ISD::SETEQ) {
1039    SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1040    Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1041  } else
1042    Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1043
1044  // Set NextBlock to be the MBB immediately after the current one, if any.
1045  // This is used to avoid emitting unnecessary branches to the next block.
1046  MachineBasicBlock *NextBlock = 0;
1047  MachineFunction::iterator BBI = CurMBB;
1048  if (++BBI != CurMBB->getParent()->end())
1049    NextBlock = BBI;
1050
1051  // If the lhs block is the next block, invert the condition so that we can
1052  // fall through to the lhs instead of the rhs block.
1053  if (CB.TrueBB == NextBlock) {
1054    std::swap(CB.TrueBB, CB.FalseBB);
1055    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1056    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1057  }
1058  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1059                                 DAG.getBasicBlock(CB.TrueBB));
1060  if (CB.FalseBB == NextBlock)
1061    DAG.setRoot(BrCond);
1062  else
1063    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1064                            DAG.getBasicBlock(CB.FalseBB)));
1065  // Update successor info
1066  CurMBB->addSuccessor(CB.TrueBB);
1067  CurMBB->addSuccessor(CB.FalseBB);
1068}
1069
1070void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1071  // Emit the code for the jump table
1072  MVT::ValueType PTy = TLI.getPointerTy();
1073  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1074  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1075  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1076                          Table, Index));
1077  return;
1078}
1079
1080void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
1081  // Figure out which block is immediately after the current one.
1082  MachineBasicBlock *NextBlock = 0;
1083  MachineFunction::iterator BBI = CurMBB;
1084
1085  if (++BBI != CurMBB->getParent()->end())
1086    NextBlock = BBI;
1087
1088  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
1089
1090  // If there is only the default destination, branch to it if it is not the
1091  // next basic block.  Otherwise, just fall through.
1092  if (I.getNumOperands() == 2) {
1093    // Update machine-CFG edges.
1094
1095    // If this is not a fall-through branch, emit the branch.
1096    if (Default != NextBlock)
1097      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1098                              DAG.getBasicBlock(Default)));
1099
1100    CurMBB->addSuccessor(Default);
1101    return;
1102  }
1103
1104  // If there are any non-default case statements, create a vector of Cases
1105  // representing each one, and sort the vector so that we can efficiently
1106  // create a binary search tree from them.
1107  std::vector<Case> Cases;
1108
1109  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
1110    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
1111    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
1112  }
1113
1114  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1115
1116  // Get the Value to be switched on and default basic blocks, which will be
1117  // inserted into CaseBlock records, representing basic blocks in the binary
1118  // search tree.
1119  Value *SV = I.getOperand(0);
1120
1121  // Get the MachineFunction which holds the current MBB.  This is used during
1122  // emission of jump tables, and when inserting any additional MBBs necessary
1123  // to represent the switch.
1124  MachineFunction *CurMF = CurMBB->getParent();
1125  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
1126
1127  // If the switch has few cases (two or less) emit a series of specific
1128  // tests.
1129  if (Cases.size() < 3) {
1130    // TODO: If any two of the cases has the same destination, and if one value
1131    // is the same as the other, but has one bit unset that the other has set,
1132    // use bit manipulation to do two compares at once.  For example:
1133    // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1134
1135    // Rearrange the case blocks so that the last one falls through if possible.
1136    if (NextBlock && Default != NextBlock && Cases.back().second != NextBlock) {
1137      // The last case block won't fall through into 'NextBlock' if we emit the
1138      // branches in this order.  See if rearranging a case value would help.
1139      for (unsigned i = 0, e = Cases.size()-1; i != e; ++i) {
1140        if (Cases[i].second == NextBlock) {
1141          std::swap(Cases[i], Cases.back());
1142          break;
1143        }
1144      }
1145    }
1146
1147    // Create a CaseBlock record representing a conditional branch to
1148    // the Case's target mbb if the value being switched on SV is equal
1149    // to C.
1150    MachineBasicBlock *CurBlock = CurMBB;
1151    for (unsigned i = 0, e = Cases.size(); i != e; ++i) {
1152      MachineBasicBlock *FallThrough;
1153      if (i != e-1) {
1154        FallThrough = new MachineBasicBlock(CurMBB->getBasicBlock());
1155        CurMF->getBasicBlockList().insert(BBI, FallThrough);
1156      } else {
1157        // If the last case doesn't match, go to the default block.
1158        FallThrough = Default;
1159      }
1160
1161      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, Cases[i].first,
1162                                     Cases[i].second, FallThrough, CurBlock);
1163
1164      // If emitting the first comparison, just call visitSwitchCase to emit the
1165      // code into the current block.  Otherwise, push the CaseBlock onto the
1166      // vector to be later processed by SDISel, and insert the node's MBB
1167      // before the next MBB.
1168      if (CurBlock == CurMBB)
1169        visitSwitchCase(CB);
1170      else
1171        SwitchCases.push_back(CB);
1172
1173      CurBlock = FallThrough;
1174    }
1175    return;
1176  }
1177
1178  // If the switch has more than 5 blocks, and at least 31.25% dense, and the
1179  // target supports indirect branches, then emit a jump table rather than
1180  // lowering the switch to a binary tree of conditional branches.
1181  if ((TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1182       TLI.isOperationLegal(ISD::BRIND, MVT::Other)) &&
1183      Cases.size() > 5) {
1184    uint64_t First =cast<ConstantIntegral>(Cases.front().first)->getZExtValue();
1185    uint64_t Last  = cast<ConstantIntegral>(Cases.back().first)->getZExtValue();
1186    double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
1187
1188    if (Density >= 0.3125) {
1189      // Create a new basic block to hold the code for loading the address
1190      // of the jump table, and jumping to it.  Update successor information;
1191      // we will either branch to the default case for the switch, or the jump
1192      // table.
1193      MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1194      CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1195      CurMBB->addSuccessor(Default);
1196      CurMBB->addSuccessor(JumpTableBB);
1197
1198      // Subtract the lowest switch case value from the value being switched on
1199      // and conditional branch to default mbb if the result is greater than the
1200      // difference between smallest and largest cases.
1201      SDOperand SwitchOp = getValue(SV);
1202      MVT::ValueType VT = SwitchOp.getValueType();
1203      SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1204                                  DAG.getConstant(First, VT));
1205
1206      // The SDNode we just created, which holds the value being switched on
1207      // minus the the smallest case value, needs to be copied to a virtual
1208      // register so it can be used as an index into the jump table in a
1209      // subsequent basic block.  This value may be smaller or larger than the
1210      // target's pointer type, and therefore require extension or truncating.
1211      if (VT > TLI.getPointerTy())
1212        SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1213      else
1214        SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1215
1216      unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1217      SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1218
1219      // Emit the range check for the jump table, and branch to the default
1220      // block for the switch statement if the value being switched on exceeds
1221      // the largest case in the switch.
1222      SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1223                                   DAG.getConstant(Last-First,VT), ISD::SETUGT);
1224      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1225                              DAG.getBasicBlock(Default)));
1226
1227      // Build a vector of destination BBs, corresponding to each target
1228      // of the jump table.  If the value of the jump table slot corresponds to
1229      // a case statement, push the case's BB onto the vector, otherwise, push
1230      // the default BB.
1231      std::vector<MachineBasicBlock*> DestBBs;
1232      uint64_t TEI = First;
1233      for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI)
1234        if (cast<ConstantIntegral>(ii->first)->getZExtValue() == TEI) {
1235          DestBBs.push_back(ii->second);
1236          ++ii;
1237        } else {
1238          DestBBs.push_back(Default);
1239        }
1240
1241      // Update successor info.  Add one edge to each unique successor.
1242      // Vector bool would be better, but vector<bool> is really slow.
1243      std::vector<unsigned char> SuccsHandled;
1244      SuccsHandled.resize(CurMBB->getParent()->getNumBlockIDs());
1245
1246      for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1247           E = DestBBs.end(); I != E; ++I) {
1248        if (!SuccsHandled[(*I)->getNumber()]) {
1249          SuccsHandled[(*I)->getNumber()] = true;
1250          JumpTableBB->addSuccessor(*I);
1251        }
1252      }
1253
1254      // Create a jump table index for this jump table, or return an existing
1255      // one.
1256      unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1257
1258      // Set the jump table information so that we can codegen it as a second
1259      // MachineBasicBlock
1260      JT.Reg = JumpTableReg;
1261      JT.JTI = JTI;
1262      JT.MBB = JumpTableBB;
1263      JT.Default = Default;
1264      return;
1265    }
1266  }
1267
1268  // Push the initial CaseRec onto the worklist
1269  std::vector<CaseRec> CaseVec;
1270  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1271
1272  while (!CaseVec.empty()) {
1273    // Grab a record representing a case range to process off the worklist
1274    CaseRec CR = CaseVec.back();
1275    CaseVec.pop_back();
1276
1277    // Size is the number of Cases represented by this range.  If Size is 1,
1278    // then we are processing a leaf of the binary search tree.  Otherwise,
1279    // we need to pick a pivot, and push left and right ranges onto the
1280    // worklist.
1281    unsigned Size = CR.Range.second - CR.Range.first;
1282
1283    if (Size == 1) {
1284      // Create a CaseBlock record representing a conditional branch to
1285      // the Case's target mbb if the value being switched on SV is equal
1286      // to C.  Otherwise, branch to default.
1287      Constant *C = CR.Range.first->first;
1288      MachineBasicBlock *Target = CR.Range.first->second;
1289      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
1290                                     CR.CaseBB);
1291
1292      // If the MBB representing the leaf node is the current MBB, then just
1293      // call visitSwitchCase to emit the code into the current block.
1294      // Otherwise, push the CaseBlock onto the vector to be later processed
1295      // by SDISel, and insert the node's MBB before the next MBB.
1296      if (CR.CaseBB == CurMBB)
1297        visitSwitchCase(CB);
1298      else
1299        SwitchCases.push_back(CB);
1300    } else {
1301      // split case range at pivot
1302      CaseItr Pivot = CR.Range.first + (Size / 2);
1303      CaseRange LHSR(CR.Range.first, Pivot);
1304      CaseRange RHSR(Pivot, CR.Range.second);
1305      Constant *C = Pivot->first;
1306      MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1307
1308      // We know that we branch to the LHS if the Value being switched on is
1309      // less than the Pivot value, C.  We use this to optimize our binary
1310      // tree a bit, by recognizing that if SV is greater than or equal to the
1311      // LHS's Case Value, and that Case Value is exactly one less than the
1312      // Pivot's Value, then we can branch directly to the LHS's Target,
1313      // rather than creating a leaf node for it.
1314      if ((LHSR.second - LHSR.first) == 1 &&
1315          LHSR.first->first == CR.GE &&
1316          cast<ConstantIntegral>(C)->getZExtValue() ==
1317          (cast<ConstantIntegral>(CR.GE)->getZExtValue() + 1ULL)) {
1318        TrueBB = LHSR.first->second;
1319      } else {
1320        TrueBB = new MachineBasicBlock(LLVMBB);
1321        CurMF->getBasicBlockList().insert(BBI, TrueBB);
1322        CaseVec.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1323      }
1324
1325      // Similar to the optimization above, if the Value being switched on is
1326      // known to be less than the Constant CR.LT, and the current Case Value
1327      // is CR.LT - 1, then we can branch directly to the target block for
1328      // the current Case Value, rather than emitting a RHS leaf node for it.
1329      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1330          cast<ConstantIntegral>(RHSR.first->first)->getZExtValue() ==
1331          (cast<ConstantIntegral>(CR.LT)->getZExtValue() - 1ULL)) {
1332        FalseBB = RHSR.first->second;
1333      } else {
1334        FalseBB = new MachineBasicBlock(LLVMBB);
1335        CurMF->getBasicBlockList().insert(BBI, FalseBB);
1336        CaseVec.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1337      }
1338
1339      // Create a CaseBlock record representing a conditional branch to
1340      // the LHS node if the value being switched on SV is less than C.
1341      // Otherwise, branch to LHS.
1342      ISD::CondCode CC = C->getType()->isSigned() ? ISD::SETLT : ISD::SETULT;
1343      SelectionDAGISel::CaseBlock CB(CC, SV, C, TrueBB, FalseBB, CR.CaseBB);
1344
1345      if (CR.CaseBB == CurMBB)
1346        visitSwitchCase(CB);
1347      else
1348        SwitchCases.push_back(CB);
1349    }
1350  }
1351}
1352
1353void SelectionDAGLowering::visitSub(User &I) {
1354  // -0.0 - X --> fneg
1355  if (I.getType()->isFloatingPoint()) {
1356    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1357      if (CFP->isExactlyValue(-0.0)) {
1358        SDOperand Op2 = getValue(I.getOperand(1));
1359        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1360        return;
1361      }
1362    visitFPBinary(I, ISD::FSUB, ISD::VSUB);
1363  } else
1364    visitIntBinary(I, ISD::SUB, ISD::VSUB);
1365}
1366
1367void
1368SelectionDAGLowering::visitIntBinary(User &I, unsigned IntOp, unsigned VecOp) {
1369  const Type *Ty = I.getType();
1370  SDOperand Op1 = getValue(I.getOperand(0));
1371  SDOperand Op2 = getValue(I.getOperand(1));
1372
1373  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1374    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
1375    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
1376    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
1377  } else {
1378    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
1379  }
1380}
1381
1382void
1383SelectionDAGLowering::visitFPBinary(User &I, unsigned FPOp, unsigned VecOp) {
1384  const Type *Ty = I.getType();
1385  SDOperand Op1 = getValue(I.getOperand(0));
1386  SDOperand Op2 = getValue(I.getOperand(1));
1387
1388  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1389    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
1390    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
1391    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
1392  } else {
1393    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
1394  }
1395}
1396
1397void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1398  SDOperand Op1 = getValue(I.getOperand(0));
1399  SDOperand Op2 = getValue(I.getOperand(1));
1400
1401  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1402
1403  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1404}
1405
1406void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
1407                                      ISD::CondCode UnsignedOpcode,
1408                                      ISD::CondCode FPOpcode) {
1409  SDOperand Op1 = getValue(I.getOperand(0));
1410  SDOperand Op2 = getValue(I.getOperand(1));
1411  ISD::CondCode Opcode = SignedOpcode;
1412  if (!FiniteOnlyFPMath() && I.getOperand(0)->getType()->isFloatingPoint())
1413    Opcode = FPOpcode;
1414  else if (I.getOperand(0)->getType()->isUnsigned())
1415    Opcode = UnsignedOpcode;
1416  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1417}
1418
1419void SelectionDAGLowering::visitSelect(User &I) {
1420  SDOperand Cond     = getValue(I.getOperand(0));
1421  SDOperand TrueVal  = getValue(I.getOperand(1));
1422  SDOperand FalseVal = getValue(I.getOperand(2));
1423  if (!isa<PackedType>(I.getType())) {
1424    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1425                             TrueVal, FalseVal));
1426  } else {
1427    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1428                             *(TrueVal.Val->op_end()-2),
1429                             *(TrueVal.Val->op_end()-1)));
1430  }
1431}
1432
1433void SelectionDAGLowering::visitCast(User &I) {
1434  SDOperand N = getValue(I.getOperand(0));
1435  MVT::ValueType SrcVT = N.getValueType();
1436  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1437
1438  if (DestVT == MVT::Vector) {
1439    // This is a cast to a vector from something else.  This is always a bit
1440    // convert.  Get information about the input vector.
1441    const PackedType *DestTy = cast<PackedType>(I.getType());
1442    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1443    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1444                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1445                             DAG.getValueType(EltVT)));
1446  } else if (SrcVT == DestVT) {
1447    setValue(&I, N);  // noop cast.
1448  } else if (DestVT == MVT::i1) {
1449    // Cast to bool is a comparison against zero, not truncation to zero.
1450    SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) :
1451                                       DAG.getConstantFP(0.0, N.getValueType());
1452    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
1453  } else if (isInteger(SrcVT)) {
1454    if (isInteger(DestVT)) {        // Int -> Int cast
1455      if (DestVT < SrcVT)   // Truncating cast?
1456        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1457      else if (I.getOperand(0)->getType()->isSigned())
1458        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1459      else
1460        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1461    } else if (isFloatingPoint(DestVT)) {           // Int -> FP cast
1462      if (I.getOperand(0)->getType()->isSigned())
1463        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1464      else
1465        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1466    } else {
1467      assert(0 && "Unknown cast!");
1468    }
1469  } else if (isFloatingPoint(SrcVT)) {
1470    if (isFloatingPoint(DestVT)) {  // FP -> FP cast
1471      if (DestVT < SrcVT)   // Rounding cast?
1472        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1473      else
1474        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1475    } else if (isInteger(DestVT)) {        // FP -> Int cast.
1476      if (I.getType()->isSigned())
1477        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1478      else
1479        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1480    } else {
1481      assert(0 && "Unknown cast!");
1482    }
1483  } else {
1484    assert(SrcVT == MVT::Vector && "Unknown cast!");
1485    assert(DestVT != MVT::Vector && "Casts to vector already handled!");
1486    // This is a cast from a vector to something else.  This is always a bit
1487    // convert.  Get information about the input vector.
1488    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1489  }
1490}
1491
1492void SelectionDAGLowering::visitInsertElement(User &I) {
1493  SDOperand InVec = getValue(I.getOperand(0));
1494  SDOperand InVal = getValue(I.getOperand(1));
1495  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1496                                getValue(I.getOperand(2)));
1497
1498  SDOperand Num = *(InVec.Val->op_end()-2);
1499  SDOperand Typ = *(InVec.Val->op_end()-1);
1500  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1501                           InVec, InVal, InIdx, Num, Typ));
1502}
1503
1504void SelectionDAGLowering::visitExtractElement(User &I) {
1505  SDOperand InVec = getValue(I.getOperand(0));
1506  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1507                                getValue(I.getOperand(1)));
1508  SDOperand Typ = *(InVec.Val->op_end()-1);
1509  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1510                           TLI.getValueType(I.getType()), InVec, InIdx));
1511}
1512
1513void SelectionDAGLowering::visitShuffleVector(User &I) {
1514  SDOperand V1   = getValue(I.getOperand(0));
1515  SDOperand V2   = getValue(I.getOperand(1));
1516  SDOperand Mask = getValue(I.getOperand(2));
1517
1518  SDOperand Num = *(V1.Val->op_end()-2);
1519  SDOperand Typ = *(V2.Val->op_end()-1);
1520  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1521                           V1, V2, Mask, Num, Typ));
1522}
1523
1524
1525void SelectionDAGLowering::visitGetElementPtr(User &I) {
1526  SDOperand N = getValue(I.getOperand(0));
1527  const Type *Ty = I.getOperand(0)->getType();
1528
1529  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1530       OI != E; ++OI) {
1531    Value *Idx = *OI;
1532    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1533      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
1534      if (Field) {
1535        // N = N + Offset
1536        uint64_t Offset = TD->getStructLayout(StTy)->MemberOffsets[Field];
1537        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1538                        getIntPtrConstant(Offset));
1539      }
1540      Ty = StTy->getElementType(Field);
1541    } else {
1542      Ty = cast<SequentialType>(Ty)->getElementType();
1543
1544      // If this is a constant subscript, handle it quickly.
1545      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1546        if (CI->getZExtValue() == 0) continue;
1547        uint64_t Offs;
1548        if (CI->getType()->isSigned())
1549          Offs = (int64_t)
1550            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
1551        else
1552          Offs =
1553            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getZExtValue();
1554        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1555        continue;
1556      }
1557
1558      // N = N + Idx * ElementSize;
1559      uint64_t ElementSize = TD->getTypeSize(Ty);
1560      SDOperand IdxN = getValue(Idx);
1561
1562      // If the index is smaller or larger than intptr_t, truncate or extend
1563      // it.
1564      if (IdxN.getValueType() < N.getValueType()) {
1565        if (Idx->getType()->isSigned())
1566          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1567        else
1568          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
1569      } else if (IdxN.getValueType() > N.getValueType())
1570        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1571
1572      // If this is a multiply by a power of two, turn it into a shl
1573      // immediately.  This is a very common case.
1574      if (isPowerOf2_64(ElementSize)) {
1575        unsigned Amt = Log2_64(ElementSize);
1576        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1577                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1578        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1579        continue;
1580      }
1581
1582      SDOperand Scale = getIntPtrConstant(ElementSize);
1583      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1584      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1585    }
1586  }
1587  setValue(&I, N);
1588}
1589
1590void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1591  // If this is a fixed sized alloca in the entry block of the function,
1592  // allocate it statically on the stack.
1593  if (FuncInfo.StaticAllocaMap.count(&I))
1594    return;   // getValue will auto-populate this.
1595
1596  const Type *Ty = I.getAllocatedType();
1597  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
1598  unsigned Align = std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
1599                            I.getAlignment());
1600
1601  SDOperand AllocSize = getValue(I.getArraySize());
1602  MVT::ValueType IntPtr = TLI.getPointerTy();
1603  if (IntPtr < AllocSize.getValueType())
1604    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1605  else if (IntPtr > AllocSize.getValueType())
1606    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1607
1608  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1609                          getIntPtrConstant(TySize));
1610
1611  // Handle alignment.  If the requested alignment is less than or equal to the
1612  // stack alignment, ignore it and round the size of the allocation up to the
1613  // stack alignment size.  If the size is greater than the stack alignment, we
1614  // note this in the DYNAMIC_STACKALLOC node.
1615  unsigned StackAlign =
1616    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1617  if (Align <= StackAlign) {
1618    Align = 0;
1619    // Add SA-1 to the size.
1620    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1621                            getIntPtrConstant(StackAlign-1));
1622    // Mask out the low bits for alignment purposes.
1623    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1624                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1625  }
1626
1627  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
1628  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
1629                                                    MVT::Other);
1630  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
1631  DAG.setRoot(setValue(&I, DSA).getValue(1));
1632
1633  // Inform the Frame Information that we have just allocated a variable-sized
1634  // object.
1635  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1636}
1637
1638void SelectionDAGLowering::visitLoad(LoadInst &I) {
1639  SDOperand Ptr = getValue(I.getOperand(0));
1640
1641  SDOperand Root;
1642  if (I.isVolatile())
1643    Root = getRoot();
1644  else {
1645    // Do not serialize non-volatile loads against each other.
1646    Root = DAG.getRoot();
1647  }
1648
1649  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
1650                           Root, I.isVolatile()));
1651}
1652
1653SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1654                                            const Value *SV, SDOperand Root,
1655                                            bool isVolatile) {
1656  SDOperand L;
1657  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1658    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1659    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
1660                       DAG.getSrcValue(SV));
1661  } else {
1662    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, isVolatile);
1663  }
1664
1665  if (isVolatile)
1666    DAG.setRoot(L.getValue(1));
1667  else
1668    PendingLoads.push_back(L.getValue(1));
1669
1670  return L;
1671}
1672
1673
1674void SelectionDAGLowering::visitStore(StoreInst &I) {
1675  Value *SrcV = I.getOperand(0);
1676  SDOperand Src = getValue(SrcV);
1677  SDOperand Ptr = getValue(I.getOperand(1));
1678  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1),
1679                           I.isVolatile()));
1680}
1681
1682/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1683/// access memory and has no other side effects at all.
1684static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1685#define GET_NO_MEMORY_INTRINSICS
1686#include "llvm/Intrinsics.gen"
1687#undef GET_NO_MEMORY_INTRINSICS
1688  return false;
1689}
1690
1691// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
1692// have any side-effects or if it only reads memory.
1693static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
1694#define GET_SIDE_EFFECT_INFO
1695#include "llvm/Intrinsics.gen"
1696#undef GET_SIDE_EFFECT_INFO
1697  return false;
1698}
1699
1700/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1701/// node.
1702void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1703                                                unsigned Intrinsic) {
1704  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1705  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
1706
1707  // Build the operand list.
1708  SmallVector<SDOperand, 8> Ops;
1709  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
1710    if (OnlyLoad) {
1711      // We don't need to serialize loads against other loads.
1712      Ops.push_back(DAG.getRoot());
1713    } else {
1714      Ops.push_back(getRoot());
1715    }
1716  }
1717
1718  // Add the intrinsic ID as an integer operand.
1719  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1720
1721  // Add all operands of the call to the operand list.
1722  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1723    SDOperand Op = getValue(I.getOperand(i));
1724
1725    // If this is a vector type, force it to the right packed type.
1726    if (Op.getValueType() == MVT::Vector) {
1727      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1728      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1729
1730      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1731      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1732      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1733    }
1734
1735    assert(TLI.isTypeLegal(Op.getValueType()) &&
1736           "Intrinsic uses a non-legal type?");
1737    Ops.push_back(Op);
1738  }
1739
1740  std::vector<MVT::ValueType> VTs;
1741  if (I.getType() != Type::VoidTy) {
1742    MVT::ValueType VT = TLI.getValueType(I.getType());
1743    if (VT == MVT::Vector) {
1744      const PackedType *DestTy = cast<PackedType>(I.getType());
1745      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1746
1747      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1748      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1749    }
1750
1751    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1752    VTs.push_back(VT);
1753  }
1754  if (HasChain)
1755    VTs.push_back(MVT::Other);
1756
1757  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
1758
1759  // Create the node.
1760  SDOperand Result;
1761  if (!HasChain)
1762    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
1763                         &Ops[0], Ops.size());
1764  else if (I.getType() != Type::VoidTy)
1765    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
1766                         &Ops[0], Ops.size());
1767  else
1768    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
1769                         &Ops[0], Ops.size());
1770
1771  if (HasChain) {
1772    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
1773    if (OnlyLoad)
1774      PendingLoads.push_back(Chain);
1775    else
1776      DAG.setRoot(Chain);
1777  }
1778  if (I.getType() != Type::VoidTy) {
1779    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1780      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1781      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1782                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1783                           DAG.getValueType(EVT));
1784    }
1785    setValue(&I, Result);
1786  }
1787}
1788
1789/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1790/// we want to emit this as a call to a named external function, return the name
1791/// otherwise lower it and return null.
1792const char *
1793SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1794  switch (Intrinsic) {
1795  default:
1796    // By default, turn this into a target intrinsic node.
1797    visitTargetIntrinsic(I, Intrinsic);
1798    return 0;
1799  case Intrinsic::vastart:  visitVAStart(I); return 0;
1800  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1801  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1802  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1803  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1804  case Intrinsic::setjmp:
1805    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1806    break;
1807  case Intrinsic::longjmp:
1808    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1809    break;
1810  case Intrinsic::memcpy_i32:
1811  case Intrinsic::memcpy_i64:
1812    visitMemIntrinsic(I, ISD::MEMCPY);
1813    return 0;
1814  case Intrinsic::memset_i32:
1815  case Intrinsic::memset_i64:
1816    visitMemIntrinsic(I, ISD::MEMSET);
1817    return 0;
1818  case Intrinsic::memmove_i32:
1819  case Intrinsic::memmove_i64:
1820    visitMemIntrinsic(I, ISD::MEMMOVE);
1821    return 0;
1822
1823  case Intrinsic::dbg_stoppoint: {
1824    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1825    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1826    if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
1827      SDOperand Ops[5];
1828
1829      Ops[0] = getRoot();
1830      Ops[1] = getValue(SPI.getLineValue());
1831      Ops[2] = getValue(SPI.getColumnValue());
1832
1833      DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
1834      assert(DD && "Not a debug information descriptor");
1835      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1836
1837      Ops[3] = DAG.getString(CompileUnit->getFileName());
1838      Ops[4] = DAG.getString(CompileUnit->getDirectory());
1839
1840      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
1841    }
1842
1843    return 0;
1844  }
1845  case Intrinsic::dbg_region_start: {
1846    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1847    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1848    if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
1849      unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
1850      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, getRoot(),
1851                              DAG.getConstant(LabelID, MVT::i32)));
1852    }
1853
1854    return 0;
1855  }
1856  case Intrinsic::dbg_region_end: {
1857    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1858    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
1859    if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
1860      unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
1861      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
1862                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
1863    }
1864
1865    return 0;
1866  }
1867  case Intrinsic::dbg_func_start: {
1868    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1869    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
1870    if (DebugInfo && FSI.getSubprogram() &&
1871        DebugInfo->Verify(FSI.getSubprogram())) {
1872      unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
1873      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other,
1874                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
1875    }
1876
1877    return 0;
1878  }
1879  case Intrinsic::dbg_declare: {
1880    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1881    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
1882    if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) {
1883      SDOperand AddressOp  = getValue(DI.getAddress());
1884      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
1885        DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
1886    }
1887
1888    return 0;
1889  }
1890
1891  case Intrinsic::isunordered_f32:
1892  case Intrinsic::isunordered_f64:
1893    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
1894                              getValue(I.getOperand(2)), ISD::SETUO));
1895    return 0;
1896
1897  case Intrinsic::sqrt_f32:
1898  case Intrinsic::sqrt_f64:
1899    setValue(&I, DAG.getNode(ISD::FSQRT,
1900                             getValue(I.getOperand(1)).getValueType(),
1901                             getValue(I.getOperand(1))));
1902    return 0;
1903  case Intrinsic::powi_f32:
1904  case Intrinsic::powi_f64:
1905    setValue(&I, DAG.getNode(ISD::FPOWI,
1906                             getValue(I.getOperand(1)).getValueType(),
1907                             getValue(I.getOperand(1)),
1908                             getValue(I.getOperand(2))));
1909    return 0;
1910  case Intrinsic::pcmarker: {
1911    SDOperand Tmp = getValue(I.getOperand(1));
1912    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
1913    return 0;
1914  }
1915  case Intrinsic::readcyclecounter: {
1916    SDOperand Op = getRoot();
1917    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
1918                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
1919                                &Op, 1);
1920    setValue(&I, Tmp);
1921    DAG.setRoot(Tmp.getValue(1));
1922    return 0;
1923  }
1924  case Intrinsic::bswap_i16:
1925  case Intrinsic::bswap_i32:
1926  case Intrinsic::bswap_i64:
1927    setValue(&I, DAG.getNode(ISD::BSWAP,
1928                             getValue(I.getOperand(1)).getValueType(),
1929                             getValue(I.getOperand(1))));
1930    return 0;
1931  case Intrinsic::cttz_i8:
1932  case Intrinsic::cttz_i16:
1933  case Intrinsic::cttz_i32:
1934  case Intrinsic::cttz_i64:
1935    setValue(&I, DAG.getNode(ISD::CTTZ,
1936                             getValue(I.getOperand(1)).getValueType(),
1937                             getValue(I.getOperand(1))));
1938    return 0;
1939  case Intrinsic::ctlz_i8:
1940  case Intrinsic::ctlz_i16:
1941  case Intrinsic::ctlz_i32:
1942  case Intrinsic::ctlz_i64:
1943    setValue(&I, DAG.getNode(ISD::CTLZ,
1944                             getValue(I.getOperand(1)).getValueType(),
1945                             getValue(I.getOperand(1))));
1946    return 0;
1947  case Intrinsic::ctpop_i8:
1948  case Intrinsic::ctpop_i16:
1949  case Intrinsic::ctpop_i32:
1950  case Intrinsic::ctpop_i64:
1951    setValue(&I, DAG.getNode(ISD::CTPOP,
1952                             getValue(I.getOperand(1)).getValueType(),
1953                             getValue(I.getOperand(1))));
1954    return 0;
1955  case Intrinsic::stacksave: {
1956    SDOperand Op = getRoot();
1957    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
1958              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
1959    setValue(&I, Tmp);
1960    DAG.setRoot(Tmp.getValue(1));
1961    return 0;
1962  }
1963  case Intrinsic::stackrestore: {
1964    SDOperand Tmp = getValue(I.getOperand(1));
1965    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
1966    return 0;
1967  }
1968  case Intrinsic::prefetch:
1969    // FIXME: Currently discarding prefetches.
1970    return 0;
1971  }
1972}
1973
1974
1975void SelectionDAGLowering::visitCall(CallInst &I) {
1976  const char *RenameFn = 0;
1977  if (Function *F = I.getCalledFunction()) {
1978    if (F->isExternal())
1979      if (unsigned IID = F->getIntrinsicID()) {
1980        RenameFn = visitIntrinsicCall(I, IID);
1981        if (!RenameFn)
1982          return;
1983      } else {    // Not an LLVM intrinsic.
1984        const std::string &Name = F->getName();
1985        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
1986          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
1987              I.getOperand(1)->getType()->isFloatingPoint() &&
1988              I.getType() == I.getOperand(1)->getType() &&
1989              I.getType() == I.getOperand(2)->getType()) {
1990            SDOperand LHS = getValue(I.getOperand(1));
1991            SDOperand RHS = getValue(I.getOperand(2));
1992            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
1993                                     LHS, RHS));
1994            return;
1995          }
1996        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
1997          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1998              I.getOperand(1)->getType()->isFloatingPoint() &&
1999              I.getType() == I.getOperand(1)->getType()) {
2000            SDOperand Tmp = getValue(I.getOperand(1));
2001            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2002            return;
2003          }
2004        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2005          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2006              I.getOperand(1)->getType()->isFloatingPoint() &&
2007              I.getType() == I.getOperand(1)->getType()) {
2008            SDOperand Tmp = getValue(I.getOperand(1));
2009            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2010            return;
2011          }
2012        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2013          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2014              I.getOperand(1)->getType()->isFloatingPoint() &&
2015              I.getType() == I.getOperand(1)->getType()) {
2016            SDOperand Tmp = getValue(I.getOperand(1));
2017            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2018            return;
2019          }
2020        }
2021      }
2022  } else if (isa<InlineAsm>(I.getOperand(0))) {
2023    visitInlineAsm(I);
2024    return;
2025  }
2026
2027  SDOperand Callee;
2028  if (!RenameFn)
2029    Callee = getValue(I.getOperand(0));
2030  else
2031    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2032  std::vector<std::pair<SDOperand, const Type*> > Args;
2033  Args.reserve(I.getNumOperands());
2034  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2035    Value *Arg = I.getOperand(i);
2036    SDOperand ArgNode = getValue(Arg);
2037    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
2038  }
2039
2040  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
2041  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2042
2043  std::pair<SDOperand,SDOperand> Result =
2044    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
2045                    I.isTailCall(), Callee, Args, DAG);
2046  if (I.getType() != Type::VoidTy)
2047    setValue(&I, Result.first);
2048  DAG.setRoot(Result.second);
2049}
2050
2051SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2052                                        SDOperand &Chain, SDOperand &Flag)const{
2053  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
2054  Chain = Val.getValue(1);
2055  Flag  = Val.getValue(2);
2056
2057  // If the result was expanded, copy from the top part.
2058  if (Regs.size() > 1) {
2059    assert(Regs.size() == 2 &&
2060           "Cannot expand to more than 2 elts yet!");
2061    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
2062    Chain = Hi.getValue(1);
2063    Flag  = Hi.getValue(2);
2064    if (DAG.getTargetLoweringInfo().isLittleEndian())
2065      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
2066    else
2067      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
2068  }
2069
2070  // Otherwise, if the return value was promoted or extended, truncate it to the
2071  // appropriate type.
2072  if (RegVT == ValueVT)
2073    return Val;
2074
2075  if (MVT::isInteger(RegVT)) {
2076    if (ValueVT < RegVT)
2077      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
2078    else
2079      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
2080  } else {
2081    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
2082  }
2083}
2084
2085/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2086/// specified value into the registers specified by this object.  This uses
2087/// Chain/Flag as the input and updates them for the output Chain/Flag.
2088void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2089                                 SDOperand &Chain, SDOperand &Flag,
2090                                 MVT::ValueType PtrVT) const {
2091  if (Regs.size() == 1) {
2092    // If there is a single register and the types differ, this must be
2093    // a promotion.
2094    if (RegVT != ValueVT) {
2095      if (MVT::isInteger(RegVT)) {
2096        if (RegVT < ValueVT)
2097          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
2098        else
2099          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
2100      } else
2101        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
2102    }
2103    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
2104    Flag = Chain.getValue(1);
2105  } else {
2106    std::vector<unsigned> R(Regs);
2107    if (!DAG.getTargetLoweringInfo().isLittleEndian())
2108      std::reverse(R.begin(), R.end());
2109
2110    for (unsigned i = 0, e = R.size(); i != e; ++i) {
2111      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
2112                                   DAG.getConstant(i, PtrVT));
2113      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
2114      Flag = Chain.getValue(1);
2115    }
2116  }
2117}
2118
2119/// AddInlineAsmOperands - Add this value to the specified inlineasm node
2120/// operand list.  This adds the code marker and includes the number of
2121/// values added into it.
2122void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
2123                                        std::vector<SDOperand> &Ops) const {
2124  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
2125  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
2126    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
2127}
2128
2129/// isAllocatableRegister - If the specified register is safe to allocate,
2130/// i.e. it isn't a stack pointer or some other special register, return the
2131/// register class for the register.  Otherwise, return null.
2132static const TargetRegisterClass *
2133isAllocatableRegister(unsigned Reg, MachineFunction &MF,
2134                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
2135  MVT::ValueType FoundVT = MVT::Other;
2136  const TargetRegisterClass *FoundRC = 0;
2137  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
2138       E = MRI->regclass_end(); RCI != E; ++RCI) {
2139    MVT::ValueType ThisVT = MVT::Other;
2140
2141    const TargetRegisterClass *RC = *RCI;
2142    // If none of the the value types for this register class are valid, we
2143    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2144    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2145         I != E; ++I) {
2146      if (TLI.isTypeLegal(*I)) {
2147        // If we have already found this register in a different register class,
2148        // choose the one with the largest VT specified.  For example, on
2149        // PowerPC, we favor f64 register classes over f32.
2150        if (FoundVT == MVT::Other ||
2151            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
2152          ThisVT = *I;
2153          break;
2154        }
2155      }
2156    }
2157
2158    if (ThisVT == MVT::Other) continue;
2159
2160    // NOTE: This isn't ideal.  In particular, this might allocate the
2161    // frame pointer in functions that need it (due to them not being taken
2162    // out of allocation, because a variable sized allocation hasn't been seen
2163    // yet).  This is a slight code pessimization, but should still work.
2164    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
2165         E = RC->allocation_order_end(MF); I != E; ++I)
2166      if (*I == Reg) {
2167        // We found a matching register class.  Keep looking at others in case
2168        // we find one with larger registers that this physreg is also in.
2169        FoundRC = RC;
2170        FoundVT = ThisVT;
2171        break;
2172      }
2173  }
2174  return FoundRC;
2175}
2176
2177RegsForValue SelectionDAGLowering::
2178GetRegistersForValue(const std::string &ConstrCode,
2179                     MVT::ValueType VT, bool isOutReg, bool isInReg,
2180                     std::set<unsigned> &OutputRegs,
2181                     std::set<unsigned> &InputRegs) {
2182  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
2183    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
2184  std::vector<unsigned> Regs;
2185
2186  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
2187  MVT::ValueType RegVT;
2188  MVT::ValueType ValueVT = VT;
2189
2190  if (PhysReg.first) {
2191    if (VT == MVT::Other)
2192      ValueVT = *PhysReg.second->vt_begin();
2193
2194    // Get the actual register value type.  This is important, because the user
2195    // may have asked for (e.g.) the AX register in i32 type.  We need to
2196    // remember that AX is actually i16 to get the right extension.
2197    RegVT = *PhysReg.second->vt_begin();
2198
2199    // This is a explicit reference to a physical register.
2200    Regs.push_back(PhysReg.first);
2201
2202    // If this is an expanded reference, add the rest of the regs to Regs.
2203    if (NumRegs != 1) {
2204      TargetRegisterClass::iterator I = PhysReg.second->begin();
2205      TargetRegisterClass::iterator E = PhysReg.second->end();
2206      for (; *I != PhysReg.first; ++I)
2207        assert(I != E && "Didn't find reg!");
2208
2209      // Already added the first reg.
2210      --NumRegs; ++I;
2211      for (; NumRegs; --NumRegs, ++I) {
2212        assert(I != E && "Ran out of registers to allocate!");
2213        Regs.push_back(*I);
2214      }
2215    }
2216    return RegsForValue(Regs, RegVT, ValueVT);
2217  }
2218
2219  // This is a reference to a register class.  Allocate NumRegs consecutive,
2220  // available, registers from the class.
2221  std::vector<unsigned> RegClassRegs =
2222    TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
2223
2224  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
2225  MachineFunction &MF = *CurMBB->getParent();
2226  unsigned NumAllocated = 0;
2227  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
2228    unsigned Reg = RegClassRegs[i];
2229    // See if this register is available.
2230    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
2231        (isInReg  && InputRegs.count(Reg))) {    // Already used.
2232      // Make sure we find consecutive registers.
2233      NumAllocated = 0;
2234      continue;
2235    }
2236
2237    // Check to see if this register is allocatable (i.e. don't give out the
2238    // stack pointer).
2239    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
2240    if (!RC) {
2241      // Make sure we find consecutive registers.
2242      NumAllocated = 0;
2243      continue;
2244    }
2245
2246    // Okay, this register is good, we can use it.
2247    ++NumAllocated;
2248
2249    // If we allocated enough consecutive
2250    if (NumAllocated == NumRegs) {
2251      unsigned RegStart = (i-NumAllocated)+1;
2252      unsigned RegEnd   = i+1;
2253      // Mark all of the allocated registers used.
2254      for (unsigned i = RegStart; i != RegEnd; ++i) {
2255        unsigned Reg = RegClassRegs[i];
2256        Regs.push_back(Reg);
2257        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
2258        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
2259      }
2260
2261      return RegsForValue(Regs, *RC->vt_begin(), VT);
2262    }
2263  }
2264
2265  // Otherwise, we couldn't allocate enough registers for this.
2266  return RegsForValue();
2267}
2268
2269
2270/// visitInlineAsm - Handle a call to an InlineAsm object.
2271///
2272void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
2273  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
2274
2275  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
2276                                                 MVT::Other);
2277
2278  // Note, we treat inline asms both with and without side-effects as the same.
2279  // If an inline asm doesn't have side effects and doesn't access memory, we
2280  // could not choose to not chain it.
2281  bool hasSideEffects = IA->hasSideEffects();
2282
2283  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
2284  std::vector<MVT::ValueType> ConstraintVTs;
2285
2286  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
2287  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
2288  /// if it is a def of that register.
2289  std::vector<SDOperand> AsmNodeOperands;
2290  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
2291  AsmNodeOperands.push_back(AsmStr);
2292
2293  SDOperand Chain = getRoot();
2294  SDOperand Flag;
2295
2296  // We fully assign registers here at isel time.  This is not optimal, but
2297  // should work.  For register classes that correspond to LLVM classes, we
2298  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
2299  // over the constraints, collecting fixed registers that we know we can't use.
2300  std::set<unsigned> OutputRegs, InputRegs;
2301  unsigned OpNum = 1;
2302  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2303    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2304    std::string &ConstraintCode = Constraints[i].Codes[0];
2305
2306    MVT::ValueType OpVT;
2307
2308    // Compute the value type for each operand and add it to ConstraintVTs.
2309    switch (Constraints[i].Type) {
2310    case InlineAsm::isOutput:
2311      if (!Constraints[i].isIndirectOutput) {
2312        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2313        OpVT = TLI.getValueType(I.getType());
2314      } else {
2315        const Type *OpTy = I.getOperand(OpNum)->getType();
2316        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2317        OpNum++;  // Consumes a call operand.
2318      }
2319      break;
2320    case InlineAsm::isInput:
2321      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2322      OpNum++;  // Consumes a call operand.
2323      break;
2324    case InlineAsm::isClobber:
2325      OpVT = MVT::Other;
2326      break;
2327    }
2328
2329    ConstraintVTs.push_back(OpVT);
2330
2331    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2332      continue;  // Not assigned a fixed reg.
2333
2334    // Build a list of regs that this operand uses.  This always has a single
2335    // element for promoted/expanded operands.
2336    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2337                                             false, false,
2338                                             OutputRegs, InputRegs);
2339
2340    switch (Constraints[i].Type) {
2341    case InlineAsm::isOutput:
2342      // We can't assign any other output to this register.
2343      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2344      // If this is an early-clobber output, it cannot be assigned to the same
2345      // value as the input reg.
2346      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2347        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2348      break;
2349    case InlineAsm::isInput:
2350      // We can't assign any other input to this register.
2351      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2352      break;
2353    case InlineAsm::isClobber:
2354      // Clobbered regs cannot be used as inputs or outputs.
2355      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2356      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2357      break;
2358    }
2359  }
2360
2361  // Loop over all of the inputs, copying the operand values into the
2362  // appropriate registers and processing the output regs.
2363  RegsForValue RetValRegs;
2364  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2365  OpNum = 1;
2366
2367  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2368    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2369    std::string &ConstraintCode = Constraints[i].Codes[0];
2370
2371    switch (Constraints[i].Type) {
2372    case InlineAsm::isOutput: {
2373      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2374      if (ConstraintCode.size() == 1)   // not a physreg name.
2375        CTy = TLI.getConstraintType(ConstraintCode[0]);
2376
2377      if (CTy == TargetLowering::C_Memory) {
2378        // Memory output.
2379        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2380
2381        // Check that the operand (the address to store to) isn't a float.
2382        if (!MVT::isInteger(InOperandVal.getValueType()))
2383          assert(0 && "MATCH FAIL!");
2384
2385        if (!Constraints[i].isIndirectOutput)
2386          assert(0 && "MATCH FAIL!");
2387
2388        OpNum++;  // Consumes a call operand.
2389
2390        // Extend/truncate to the right pointer type if needed.
2391        MVT::ValueType PtrType = TLI.getPointerTy();
2392        if (InOperandVal.getValueType() < PtrType)
2393          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2394        else if (InOperandVal.getValueType() > PtrType)
2395          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2396
2397        // Add information to the INLINEASM node to know about this output.
2398        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2399        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2400        AsmNodeOperands.push_back(InOperandVal);
2401        break;
2402      }
2403
2404      // Otherwise, this is a register output.
2405      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2406
2407      // If this is an early-clobber output, or if there is an input
2408      // constraint that matches this, we need to reserve the input register
2409      // so no other inputs allocate to it.
2410      bool UsesInputRegister = false;
2411      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2412        UsesInputRegister = true;
2413
2414      // Copy the output from the appropriate register.  Find a register that
2415      // we can use.
2416      RegsForValue Regs =
2417        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2418                             true, UsesInputRegister,
2419                             OutputRegs, InputRegs);
2420      if (Regs.Regs.empty()) {
2421        std::cerr << "Couldn't allocate output reg for contraint '"
2422                  << ConstraintCode << "'!\n";
2423        exit(1);
2424      }
2425
2426      if (!Constraints[i].isIndirectOutput) {
2427        assert(RetValRegs.Regs.empty() &&
2428               "Cannot have multiple output constraints yet!");
2429        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2430        RetValRegs = Regs;
2431      } else {
2432        IndirectStoresToEmit.push_back(std::make_pair(Regs,
2433                                                      I.getOperand(OpNum)));
2434        OpNum++;  // Consumes a call operand.
2435      }
2436
2437      // Add information to the INLINEASM node to know that this register is
2438      // set.
2439      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
2440      break;
2441    }
2442    case InlineAsm::isInput: {
2443      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2444      OpNum++;  // Consumes a call operand.
2445
2446      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
2447        // If this is required to match an output register we have already set,
2448        // just use its register.
2449        unsigned OperandNo = atoi(ConstraintCode.c_str());
2450
2451        // Scan until we find the definition we already emitted of this operand.
2452        // When we find it, create a RegsForValue operand.
2453        unsigned CurOp = 2;  // The first operand.
2454        for (; OperandNo; --OperandNo) {
2455          // Advance to the next operand.
2456          unsigned NumOps =
2457            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2458          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
2459                  (NumOps & 7) == 4 /*MEM*/) &&
2460                 "Skipped past definitions?");
2461          CurOp += (NumOps>>3)+1;
2462        }
2463
2464        unsigned NumOps =
2465          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2466        assert((NumOps & 7) == 2 /*REGDEF*/ &&
2467               "Skipped past definitions?");
2468
2469        // Add NumOps>>3 registers to MatchedRegs.
2470        RegsForValue MatchedRegs;
2471        MatchedRegs.ValueVT = InOperandVal.getValueType();
2472        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
2473        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
2474          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
2475          MatchedRegs.Regs.push_back(Reg);
2476        }
2477
2478        // Use the produced MatchedRegs object to
2479        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
2480                                  TLI.getPointerTy());
2481        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2482        break;
2483      }
2484
2485      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2486      if (ConstraintCode.size() == 1)   // not a physreg name.
2487        CTy = TLI.getConstraintType(ConstraintCode[0]);
2488
2489      if (CTy == TargetLowering::C_Other) {
2490        if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
2491          assert(0 && "MATCH FAIL!");
2492
2493        // Add information to the INLINEASM node to know about this input.
2494        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2495        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2496        AsmNodeOperands.push_back(InOperandVal);
2497        break;
2498      } else if (CTy == TargetLowering::C_Memory) {
2499        // Memory input.
2500
2501        // Check that the operand isn't a float.
2502        if (!MVT::isInteger(InOperandVal.getValueType()))
2503          assert(0 && "MATCH FAIL!");
2504
2505        // Extend/truncate to the right pointer type if needed.
2506        MVT::ValueType PtrType = TLI.getPointerTy();
2507        if (InOperandVal.getValueType() < PtrType)
2508          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2509        else if (InOperandVal.getValueType() > PtrType)
2510          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2511
2512        // Add information to the INLINEASM node to know about this input.
2513        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2514        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2515        AsmNodeOperands.push_back(InOperandVal);
2516        break;
2517      }
2518
2519      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2520
2521      // Copy the input into the appropriate registers.
2522      RegsForValue InRegs =
2523        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2524                             false, true, OutputRegs, InputRegs);
2525      // FIXME: should be match fail.
2526      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2527
2528      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
2529
2530      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2531      break;
2532    }
2533    case InlineAsm::isClobber: {
2534      RegsForValue ClobberedRegs =
2535        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2536                             OutputRegs, InputRegs);
2537      // Add the clobbered value to the operand list, so that the register
2538      // allocator is aware that the physreg got clobbered.
2539      if (!ClobberedRegs.Regs.empty())
2540        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2541      break;
2542    }
2543    }
2544  }
2545
2546  // Finish up input operands.
2547  AsmNodeOperands[0] = Chain;
2548  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2549
2550  Chain = DAG.getNode(ISD::INLINEASM,
2551                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
2552                      &AsmNodeOperands[0], AsmNodeOperands.size());
2553  Flag = Chain.getValue(1);
2554
2555  // If this asm returns a register value, copy the result from that register
2556  // and set it as the value of the call.
2557  if (!RetValRegs.Regs.empty())
2558    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2559
2560  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2561
2562  // Process indirect outputs, first output all of the flagged copies out of
2563  // physregs.
2564  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2565    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2566    Value *Ptr = IndirectStoresToEmit[i].second;
2567    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2568    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2569  }
2570
2571  // Emit the non-flagged stores from the physregs.
2572  SmallVector<SDOperand, 8> OutChains;
2573  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2574    OutChains.push_back(DAG.getStore(Chain,  StoresToEmit[i].first,
2575                                    getValue(StoresToEmit[i].second),
2576                                    StoresToEmit[i].second, 0));
2577  if (!OutChains.empty())
2578    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2579                        &OutChains[0], OutChains.size());
2580  DAG.setRoot(Chain);
2581}
2582
2583
2584void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2585  SDOperand Src = getValue(I.getOperand(0));
2586
2587  MVT::ValueType IntPtr = TLI.getPointerTy();
2588
2589  if (IntPtr < Src.getValueType())
2590    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2591  else if (IntPtr > Src.getValueType())
2592    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2593
2594  // Scale the source by the type size.
2595  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
2596  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2597                    Src, getIntPtrConstant(ElementSize));
2598
2599  std::vector<std::pair<SDOperand, const Type*> > Args;
2600  Args.push_back(std::make_pair(Src, TLI.getTargetData()->getIntPtrType()));
2601
2602  std::pair<SDOperand,SDOperand> Result =
2603    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
2604                    DAG.getExternalSymbol("malloc", IntPtr),
2605                    Args, DAG);
2606  setValue(&I, Result.first);  // Pointers always fit in registers
2607  DAG.setRoot(Result.second);
2608}
2609
2610void SelectionDAGLowering::visitFree(FreeInst &I) {
2611  std::vector<std::pair<SDOperand, const Type*> > Args;
2612  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
2613                                TLI.getTargetData()->getIntPtrType()));
2614  MVT::ValueType IntPtr = TLI.getPointerTy();
2615  std::pair<SDOperand,SDOperand> Result =
2616    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
2617                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2618  DAG.setRoot(Result.second);
2619}
2620
2621// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2622// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2623// instructions are special in various ways, which require special support to
2624// insert.  The specified MachineInstr is created but not inserted into any
2625// basic blocks, and the scheduler passes ownership of it to this method.
2626MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2627                                                       MachineBasicBlock *MBB) {
2628  std::cerr << "If a target marks an instruction with "
2629               "'usesCustomDAGSchedInserter', it must implement "
2630               "TargetLowering::InsertAtEndOfBasicBlock!\n";
2631  abort();
2632  return 0;
2633}
2634
2635void SelectionDAGLowering::visitVAStart(CallInst &I) {
2636  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2637                          getValue(I.getOperand(1)),
2638                          DAG.getSrcValue(I.getOperand(1))));
2639}
2640
2641void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2642  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2643                             getValue(I.getOperand(0)),
2644                             DAG.getSrcValue(I.getOperand(0)));
2645  setValue(&I, V);
2646  DAG.setRoot(V.getValue(1));
2647}
2648
2649void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2650  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2651                          getValue(I.getOperand(1)),
2652                          DAG.getSrcValue(I.getOperand(1))));
2653}
2654
2655void SelectionDAGLowering::visitVACopy(CallInst &I) {
2656  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2657                          getValue(I.getOperand(1)),
2658                          getValue(I.getOperand(2)),
2659                          DAG.getSrcValue(I.getOperand(1)),
2660                          DAG.getSrcValue(I.getOperand(2))));
2661}
2662
2663/// TargetLowering::LowerArguments - This is the default LowerArguments
2664/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
2665/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
2666/// integrated into SDISel.
2667std::vector<SDOperand>
2668TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
2669  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
2670  std::vector<SDOperand> Ops;
2671  Ops.push_back(DAG.getRoot());
2672  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
2673  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
2674
2675  // Add one result value for each formal argument.
2676  std::vector<MVT::ValueType> RetVals;
2677  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2678    MVT::ValueType VT = getValueType(I->getType());
2679
2680    switch (getTypeAction(VT)) {
2681    default: assert(0 && "Unknown type action!");
2682    case Legal:
2683      RetVals.push_back(VT);
2684      break;
2685    case Promote:
2686      RetVals.push_back(getTypeToTransformTo(VT));
2687      break;
2688    case Expand:
2689      if (VT != MVT::Vector) {
2690        // If this is a large integer, it needs to be broken up into small
2691        // integers.  Figure out what the destination type is and how many small
2692        // integers it turns into.
2693        MVT::ValueType NVT = getTypeToTransformTo(VT);
2694        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2695        for (unsigned i = 0; i != NumVals; ++i)
2696          RetVals.push_back(NVT);
2697      } else {
2698        // Otherwise, this is a vector type.  We only support legal vectors
2699        // right now.
2700        unsigned NumElems = cast<PackedType>(I->getType())->getNumElements();
2701        const Type *EltTy = cast<PackedType>(I->getType())->getElementType();
2702
2703        // Figure out if there is a Packed type corresponding to this Vector
2704        // type.  If so, convert to the packed type.
2705        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2706        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2707          RetVals.push_back(TVT);
2708        } else {
2709          assert(0 && "Don't support illegal by-val vector arguments yet!");
2710        }
2711      }
2712      break;
2713    }
2714  }
2715
2716  RetVals.push_back(MVT::Other);
2717
2718  // Create the node.
2719  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
2720                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
2721                               &Ops[0], Ops.size()).Val;
2722
2723  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
2724
2725  // Set up the return result vector.
2726  Ops.clear();
2727  unsigned i = 0;
2728  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2729    MVT::ValueType VT = getValueType(I->getType());
2730
2731    switch (getTypeAction(VT)) {
2732    default: assert(0 && "Unknown type action!");
2733    case Legal:
2734      Ops.push_back(SDOperand(Result, i++));
2735      break;
2736    case Promote: {
2737      SDOperand Op(Result, i++);
2738      if (MVT::isInteger(VT)) {
2739        unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext
2740                                                     : ISD::AssertZext;
2741        Op = DAG.getNode(AssertOp, Op.getValueType(), Op, DAG.getValueType(VT));
2742        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2743      } else {
2744        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2745        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
2746      }
2747      Ops.push_back(Op);
2748      break;
2749    }
2750    case Expand:
2751      if (VT != MVT::Vector) {
2752        // If this is a large integer, it needs to be reassembled from small
2753        // integers.  Figure out what the source elt type is and how many small
2754        // integers it is.
2755        MVT::ValueType NVT = getTypeToTransformTo(VT);
2756        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2757        if (NumVals == 2) {
2758          SDOperand Lo = SDOperand(Result, i++);
2759          SDOperand Hi = SDOperand(Result, i++);
2760
2761          if (!isLittleEndian())
2762            std::swap(Lo, Hi);
2763
2764          Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi));
2765        } else {
2766          // Value scalarized into many values.  Unimp for now.
2767          assert(0 && "Cannot expand i64 -> i16 yet!");
2768        }
2769      } else {
2770        // Otherwise, this is a vector type.  We only support legal vectors
2771        // right now.
2772        const PackedType *PTy = cast<PackedType>(I->getType());
2773        unsigned NumElems = PTy->getNumElements();
2774        const Type *EltTy = PTy->getElementType();
2775
2776        // Figure out if there is a Packed type corresponding to this Vector
2777        // type.  If so, convert to the packed type.
2778        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2779        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2780          SDOperand N = SDOperand(Result, i++);
2781          // Handle copies from generic vectors to registers.
2782          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
2783                          DAG.getConstant(NumElems, MVT::i32),
2784                          DAG.getValueType(getValueType(EltTy)));
2785          Ops.push_back(N);
2786        } else {
2787          assert(0 && "Don't support illegal by-val vector arguments yet!");
2788          abort();
2789        }
2790      }
2791      break;
2792    }
2793  }
2794  return Ops;
2795}
2796
2797
2798/// TargetLowering::LowerCallTo - This is the default LowerCallTo
2799/// implementation, which just inserts an ISD::CALL node, which is later custom
2800/// lowered by the target to something concrete.  FIXME: When all targets are
2801/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
2802std::pair<SDOperand, SDOperand>
2803TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
2804                            unsigned CallingConv, bool isTailCall,
2805                            SDOperand Callee,
2806                            ArgListTy &Args, SelectionDAG &DAG) {
2807  SmallVector<SDOperand, 32> Ops;
2808  Ops.push_back(Chain);   // Op#0 - Chain
2809  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
2810  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
2811  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
2812  Ops.push_back(Callee);
2813
2814  // Handle all of the outgoing arguments.
2815  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
2816    MVT::ValueType VT = getValueType(Args[i].second);
2817    SDOperand Op = Args[i].first;
2818    bool isSigned = Args[i].second->isSigned();
2819    switch (getTypeAction(VT)) {
2820    default: assert(0 && "Unknown type action!");
2821    case Legal:
2822      Ops.push_back(Op);
2823      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2824      break;
2825    case Promote:
2826      if (MVT::isInteger(VT)) {
2827        unsigned ExtOp = isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2828        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
2829      } else {
2830        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2831        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
2832      }
2833      Ops.push_back(Op);
2834      Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2835      break;
2836    case Expand:
2837      if (VT != MVT::Vector) {
2838        // If this is a large integer, it needs to be broken down into small
2839        // integers.  Figure out what the source elt type is and how many small
2840        // integers it is.
2841        MVT::ValueType NVT = getTypeToTransformTo(VT);
2842        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2843        if (NumVals == 2) {
2844          SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
2845                                     DAG.getConstant(0, getPointerTy()));
2846          SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
2847                                     DAG.getConstant(1, getPointerTy()));
2848          if (!isLittleEndian())
2849            std::swap(Lo, Hi);
2850
2851          Ops.push_back(Lo);
2852          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2853          Ops.push_back(Hi);
2854          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2855        } else {
2856          // Value scalarized into many values.  Unimp for now.
2857          assert(0 && "Cannot expand i64 -> i16 yet!");
2858        }
2859      } else {
2860        // Otherwise, this is a vector type.  We only support legal vectors
2861        // right now.
2862        const PackedType *PTy = cast<PackedType>(Args[i].second);
2863        unsigned NumElems = PTy->getNumElements();
2864        const Type *EltTy = PTy->getElementType();
2865
2866        // Figure out if there is a Packed type corresponding to this Vector
2867        // type.  If so, convert to the packed type.
2868        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2869        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2870          // Insert a VBIT_CONVERT of the MVT::Vector type to the packed type.
2871          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
2872          Ops.push_back(Op);
2873          Ops.push_back(DAG.getConstant(isSigned, MVT::i32));
2874        } else {
2875          assert(0 && "Don't support illegal by-val vector call args yet!");
2876          abort();
2877        }
2878      }
2879      break;
2880    }
2881  }
2882
2883  // Figure out the result value types.
2884  SmallVector<MVT::ValueType, 4> RetTys;
2885
2886  if (RetTy != Type::VoidTy) {
2887    MVT::ValueType VT = getValueType(RetTy);
2888    switch (getTypeAction(VT)) {
2889    default: assert(0 && "Unknown type action!");
2890    case Legal:
2891      RetTys.push_back(VT);
2892      break;
2893    case Promote:
2894      RetTys.push_back(getTypeToTransformTo(VT));
2895      break;
2896    case Expand:
2897      if (VT != MVT::Vector) {
2898        // If this is a large integer, it needs to be reassembled from small
2899        // integers.  Figure out what the source elt type is and how many small
2900        // integers it is.
2901        MVT::ValueType NVT = getTypeToTransformTo(VT);
2902        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2903        for (unsigned i = 0; i != NumVals; ++i)
2904          RetTys.push_back(NVT);
2905      } else {
2906        // Otherwise, this is a vector type.  We only support legal vectors
2907        // right now.
2908        const PackedType *PTy = cast<PackedType>(RetTy);
2909        unsigned NumElems = PTy->getNumElements();
2910        const Type *EltTy = PTy->getElementType();
2911
2912        // Figure out if there is a Packed type corresponding to this Vector
2913        // type.  If so, convert to the packed type.
2914        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2915        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2916          RetTys.push_back(TVT);
2917        } else {
2918          assert(0 && "Don't support illegal by-val vector call results yet!");
2919          abort();
2920        }
2921      }
2922    }
2923  }
2924
2925  RetTys.push_back(MVT::Other);  // Always has a chain.
2926
2927  // Finally, create the CALL node.
2928  SDOperand Res = DAG.getNode(ISD::CALL,
2929                              DAG.getVTList(&RetTys[0], RetTys.size()),
2930                              &Ops[0], Ops.size());
2931
2932  // This returns a pair of operands.  The first element is the
2933  // return value for the function (if RetTy is not VoidTy).  The second
2934  // element is the outgoing token chain.
2935  SDOperand ResVal;
2936  if (RetTys.size() != 1) {
2937    MVT::ValueType VT = getValueType(RetTy);
2938    if (RetTys.size() == 2) {
2939      ResVal = Res;
2940
2941      // If this value was promoted, truncate it down.
2942      if (ResVal.getValueType() != VT) {
2943        if (VT == MVT::Vector) {
2944          // Insert a VBITCONVERT to convert from the packed result type to the
2945          // MVT::Vector type.
2946          unsigned NumElems = cast<PackedType>(RetTy)->getNumElements();
2947          const Type *EltTy = cast<PackedType>(RetTy)->getElementType();
2948
2949          // Figure out if there is a Packed type corresponding to this Vector
2950          // type.  If so, convert to the packed type.
2951          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2952          if (TVT != MVT::Other && isTypeLegal(TVT)) {
2953            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
2954            // "N x PTyElementVT" MVT::Vector type.
2955            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
2956                                 DAG.getConstant(NumElems, MVT::i32),
2957                                 DAG.getValueType(getValueType(EltTy)));
2958          } else {
2959            abort();
2960          }
2961        } else if (MVT::isInteger(VT)) {
2962          unsigned AssertOp = RetTy->isSigned() ?
2963                                  ISD::AssertSext : ISD::AssertZext;
2964          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
2965                               DAG.getValueType(VT));
2966          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
2967        } else {
2968          assert(MVT::isFloatingPoint(VT));
2969          ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
2970        }
2971      }
2972    } else if (RetTys.size() == 3) {
2973      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
2974                           Res.getValue(0), Res.getValue(1));
2975
2976    } else {
2977      assert(0 && "Case not handled yet!");
2978    }
2979  }
2980
2981  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
2982}
2983
2984
2985
2986// It is always conservatively correct for llvm.returnaddress and
2987// llvm.frameaddress to return 0.
2988//
2989// FIXME: Change this to insert a FRAMEADDR/RETURNADDR node, and have that be
2990// expanded to 0 if the target wants.
2991std::pair<SDOperand, SDOperand>
2992TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
2993                                        unsigned Depth, SelectionDAG &DAG) {
2994  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
2995}
2996
2997SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2998  assert(0 && "LowerOperation not implemented for this target!");
2999  abort();
3000  return SDOperand();
3001}
3002
3003SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
3004                                                 SelectionDAG &DAG) {
3005  assert(0 && "CustomPromoteOperation not implemented for this target!");
3006  abort();
3007  return SDOperand();
3008}
3009
3010void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
3011  unsigned Depth = (unsigned)cast<ConstantInt>(I.getOperand(1))->getZExtValue();
3012  std::pair<SDOperand,SDOperand> Result =
3013    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
3014  setValue(&I, Result.first);
3015  DAG.setRoot(Result.second);
3016}
3017
3018/// getMemsetValue - Vectorized representation of the memset value
3019/// operand.
3020static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
3021                                SelectionDAG &DAG) {
3022  MVT::ValueType CurVT = VT;
3023  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3024    uint64_t Val   = C->getValue() & 255;
3025    unsigned Shift = 8;
3026    while (CurVT != MVT::i8) {
3027      Val = (Val << Shift) | Val;
3028      Shift <<= 1;
3029      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3030    }
3031    return DAG.getConstant(Val, VT);
3032  } else {
3033    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
3034    unsigned Shift = 8;
3035    while (CurVT != MVT::i8) {
3036      Value =
3037        DAG.getNode(ISD::OR, VT,
3038                    DAG.getNode(ISD::SHL, VT, Value,
3039                                DAG.getConstant(Shift, MVT::i8)), Value);
3040      Shift <<= 1;
3041      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3042    }
3043
3044    return Value;
3045  }
3046}
3047
3048/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3049/// used when a memcpy is turned into a memset when the source is a constant
3050/// string ptr.
3051static SDOperand getMemsetStringVal(MVT::ValueType VT,
3052                                    SelectionDAG &DAG, TargetLowering &TLI,
3053                                    std::string &Str, unsigned Offset) {
3054  MVT::ValueType CurVT = VT;
3055  uint64_t Val = 0;
3056  unsigned MSB = getSizeInBits(VT) / 8;
3057  if (TLI.isLittleEndian())
3058    Offset = Offset + MSB - 1;
3059  for (unsigned i = 0; i != MSB; ++i) {
3060    Val = (Val << 8) | Str[Offset];
3061    Offset += TLI.isLittleEndian() ? -1 : 1;
3062  }
3063  return DAG.getConstant(Val, VT);
3064}
3065
3066/// getMemBasePlusOffset - Returns base and offset node for the
3067static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
3068                                      SelectionDAG &DAG, TargetLowering &TLI) {
3069  MVT::ValueType VT = Base.getValueType();
3070  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
3071}
3072
3073/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3074/// to replace the memset / memcpy is below the threshold. It also returns the
3075/// types of the sequence of  memory ops to perform memset / memcpy.
3076static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
3077                                     unsigned Limit, uint64_t Size,
3078                                     unsigned Align, TargetLowering &TLI) {
3079  MVT::ValueType VT;
3080
3081  if (TLI.allowsUnalignedMemoryAccesses()) {
3082    VT = MVT::i64;
3083  } else {
3084    switch (Align & 7) {
3085    case 0:
3086      VT = MVT::i64;
3087      break;
3088    case 4:
3089      VT = MVT::i32;
3090      break;
3091    case 2:
3092      VT = MVT::i16;
3093      break;
3094    default:
3095      VT = MVT::i8;
3096      break;
3097    }
3098  }
3099
3100  MVT::ValueType LVT = MVT::i64;
3101  while (!TLI.isTypeLegal(LVT))
3102    LVT = (MVT::ValueType)((unsigned)LVT - 1);
3103  assert(MVT::isInteger(LVT));
3104
3105  if (VT > LVT)
3106    VT = LVT;
3107
3108  unsigned NumMemOps = 0;
3109  while (Size != 0) {
3110    unsigned VTSize = getSizeInBits(VT) / 8;
3111    while (VTSize > Size) {
3112      VT = (MVT::ValueType)((unsigned)VT - 1);
3113      VTSize >>= 1;
3114    }
3115    assert(MVT::isInteger(VT));
3116
3117    if (++NumMemOps > Limit)
3118      return false;
3119    MemOps.push_back(VT);
3120    Size -= VTSize;
3121  }
3122
3123  return true;
3124}
3125
3126void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
3127  SDOperand Op1 = getValue(I.getOperand(1));
3128  SDOperand Op2 = getValue(I.getOperand(2));
3129  SDOperand Op3 = getValue(I.getOperand(3));
3130  SDOperand Op4 = getValue(I.getOperand(4));
3131  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
3132  if (Align == 0) Align = 1;
3133
3134  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
3135    std::vector<MVT::ValueType> MemOps;
3136
3137    // Expand memset / memcpy to a series of load / store ops
3138    // if the size operand falls below a certain threshold.
3139    SmallVector<SDOperand, 8> OutChains;
3140    switch (Op) {
3141    default: break;  // Do nothing for now.
3142    case ISD::MEMSET: {
3143      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
3144                                   Size->getValue(), Align, TLI)) {
3145        unsigned NumMemOps = MemOps.size();
3146        unsigned Offset = 0;
3147        for (unsigned i = 0; i < NumMemOps; i++) {
3148          MVT::ValueType VT = MemOps[i];
3149          unsigned VTSize = getSizeInBits(VT) / 8;
3150          SDOperand Value = getMemsetValue(Op2, VT, DAG);
3151          SDOperand Store = DAG.getStore(getRoot(), Value,
3152                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
3153                                         I.getOperand(1), Offset);
3154          OutChains.push_back(Store);
3155          Offset += VTSize;
3156        }
3157      }
3158      break;
3159    }
3160    case ISD::MEMCPY: {
3161      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
3162                                   Size->getValue(), Align, TLI)) {
3163        unsigned NumMemOps = MemOps.size();
3164        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
3165        GlobalAddressSDNode *G = NULL;
3166        std::string Str;
3167        bool CopyFromStr = false;
3168
3169        if (Op2.getOpcode() == ISD::GlobalAddress)
3170          G = cast<GlobalAddressSDNode>(Op2);
3171        else if (Op2.getOpcode() == ISD::ADD &&
3172                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3173                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
3174          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
3175          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
3176        }
3177        if (G) {
3178          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3179          if (GV) {
3180            Str = GV->getStringValue(false);
3181            if (!Str.empty()) {
3182              CopyFromStr = true;
3183              SrcOff += SrcDelta;
3184            }
3185          }
3186        }
3187
3188        for (unsigned i = 0; i < NumMemOps; i++) {
3189          MVT::ValueType VT = MemOps[i];
3190          unsigned VTSize = getSizeInBits(VT) / 8;
3191          SDOperand Value, Chain, Store;
3192
3193          if (CopyFromStr) {
3194            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3195            Chain = getRoot();
3196            Store =
3197              DAG.getStore(Chain, Value,
3198                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3199                           I.getOperand(1), DstOff);
3200          } else {
3201            Value = DAG.getLoad(VT, getRoot(),
3202                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
3203                        I.getOperand(2), SrcOff);
3204            Chain = Value.getValue(1);
3205            Store =
3206              DAG.getStore(Chain, Value,
3207                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3208                           I.getOperand(1), DstOff);
3209          }
3210          OutChains.push_back(Store);
3211          SrcOff += VTSize;
3212          DstOff += VTSize;
3213        }
3214      }
3215      break;
3216    }
3217    }
3218
3219    if (!OutChains.empty()) {
3220      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3221                  &OutChains[0], OutChains.size()));
3222      return;
3223    }
3224  }
3225
3226  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
3227}
3228
3229//===----------------------------------------------------------------------===//
3230// SelectionDAGISel code
3231//===----------------------------------------------------------------------===//
3232
3233unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
3234  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
3235}
3236
3237void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
3238  // FIXME: we only modify the CFG to split critical edges.  This
3239  // updates dom and loop info.
3240  AU.addRequired<AliasAnalysis>();
3241}
3242
3243
3244/// OptimizeNoopCopyExpression - We have determined that the specified cast
3245/// instruction is a noop copy (e.g. it's casting from one pointer type to
3246/// another, int->uint, or int->sbyte on PPC.
3247///
3248/// Return true if any changes are made.
3249static bool OptimizeNoopCopyExpression(CastInst *CI) {
3250  BasicBlock *DefBB = CI->getParent();
3251
3252  /// InsertedCasts - Only insert a cast in each block once.
3253  std::map<BasicBlock*, CastInst*> InsertedCasts;
3254
3255  bool MadeChange = false;
3256  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
3257       UI != E; ) {
3258    Use &TheUse = UI.getUse();
3259    Instruction *User = cast<Instruction>(*UI);
3260
3261    // Figure out which BB this cast is used in.  For PHI's this is the
3262    // appropriate predecessor block.
3263    BasicBlock *UserBB = User->getParent();
3264    if (PHINode *PN = dyn_cast<PHINode>(User)) {
3265      unsigned OpVal = UI.getOperandNo()/2;
3266      UserBB = PN->getIncomingBlock(OpVal);
3267    }
3268
3269    // Preincrement use iterator so we don't invalidate it.
3270    ++UI;
3271
3272    // If this user is in the same block as the cast, don't change the cast.
3273    if (UserBB == DefBB) continue;
3274
3275    // If we have already inserted a cast into this block, use it.
3276    CastInst *&InsertedCast = InsertedCasts[UserBB];
3277
3278    if (!InsertedCast) {
3279      BasicBlock::iterator InsertPt = UserBB->begin();
3280      while (isa<PHINode>(InsertPt)) ++InsertPt;
3281
3282      InsertedCast =
3283        new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
3284      MadeChange = true;
3285    }
3286
3287    // Replace a use of the cast with a use of the new casat.
3288    TheUse = InsertedCast;
3289  }
3290
3291  // If we removed all uses, nuke the cast.
3292  if (CI->use_empty())
3293    CI->eraseFromParent();
3294
3295  return MadeChange;
3296}
3297
3298/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
3299/// casting to the type of GEPI.
3300static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
3301                                         Instruction *GEPI, Value *Ptr,
3302                                         Value *PtrOffset) {
3303  if (V) return V;   // Already computed.
3304
3305  BasicBlock::iterator InsertPt;
3306  if (BB == GEPI->getParent()) {
3307    // If insert into the GEP's block, insert right after the GEP.
3308    InsertPt = GEPI;
3309    ++InsertPt;
3310  } else {
3311    // Otherwise, insert at the top of BB, after any PHI nodes
3312    InsertPt = BB->begin();
3313    while (isa<PHINode>(InsertPt)) ++InsertPt;
3314  }
3315
3316  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
3317  // BB so that there is only one value live across basic blocks (the cast
3318  // operand).
3319  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
3320    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
3321      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
3322
3323  // Add the offset, cast it to the right type.
3324  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
3325  return V = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
3326}
3327
3328/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
3329/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
3330/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
3331/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
3332/// sink PtrOffset into user blocks where doing so will likely allow us to fold
3333/// the constant add into a load or store instruction.  Additionally, if a user
3334/// is a pointer-pointer cast, we look through it to find its users.
3335static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
3336                                 Constant *PtrOffset, BasicBlock *DefBB,
3337                                 GetElementPtrInst *GEPI,
3338                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
3339  while (!RepPtr->use_empty()) {
3340    Instruction *User = cast<Instruction>(RepPtr->use_back());
3341
3342    // If the user is a Pointer-Pointer cast, recurse.
3343    if (isa<CastInst>(User) && isa<PointerType>(User->getType())) {
3344      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3345
3346      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
3347      // could invalidate an iterator.
3348      User->setOperand(0, UndefValue::get(RepPtr->getType()));
3349      continue;
3350    }
3351
3352    // If this is a load of the pointer, or a store through the pointer, emit
3353    // the increment into the load/store block.
3354    Instruction *NewVal;
3355    if (isa<LoadInst>(User) ||
3356        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
3357      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
3358                                    User->getParent(), GEPI,
3359                                    Ptr, PtrOffset);
3360    } else {
3361      // If this use is not foldable into the addressing mode, use a version
3362      // emitted in the GEP block.
3363      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
3364                                    Ptr, PtrOffset);
3365    }
3366
3367    if (GEPI->getType() != RepPtr->getType()) {
3368      BasicBlock::iterator IP = NewVal;
3369      ++IP;
3370      NewVal = new CastInst(NewVal, RepPtr->getType(), "", IP);
3371    }
3372    User->replaceUsesOfWith(RepPtr, NewVal);
3373  }
3374}
3375
3376
3377/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
3378/// selection, we want to be a bit careful about some things.  In particular, if
3379/// we have a GEP instruction that is used in a different block than it is
3380/// defined, the addressing expression of the GEP cannot be folded into loads or
3381/// stores that use it.  In this case, decompose the GEP and move constant
3382/// indices into blocks that use it.
3383static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
3384                                  const TargetData *TD) {
3385  // If this GEP is only used inside the block it is defined in, there is no
3386  // need to rewrite it.
3387  bool isUsedOutsideDefBB = false;
3388  BasicBlock *DefBB = GEPI->getParent();
3389  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
3390       UI != E; ++UI) {
3391    if (cast<Instruction>(*UI)->getParent() != DefBB) {
3392      isUsedOutsideDefBB = true;
3393      break;
3394    }
3395  }
3396  if (!isUsedOutsideDefBB) return false;
3397
3398  // If this GEP has no non-zero constant indices, there is nothing we can do,
3399  // ignore it.
3400  bool hasConstantIndex = false;
3401  bool hasVariableIndex = false;
3402  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3403       E = GEPI->op_end(); OI != E; ++OI) {
3404    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
3405      if (CI->getZExtValue()) {
3406        hasConstantIndex = true;
3407        break;
3408      }
3409    } else {
3410      hasVariableIndex = true;
3411    }
3412  }
3413
3414  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
3415  if (!hasConstantIndex && !hasVariableIndex) {
3416    Value *NC = new CastInst(GEPI->getOperand(0), GEPI->getType(),
3417                             GEPI->getName(), GEPI);
3418    GEPI->replaceAllUsesWith(NC);
3419    GEPI->eraseFromParent();
3420    return true;
3421  }
3422
3423  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
3424  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
3425    return false;
3426
3427  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
3428  // constant offset (which we now know is non-zero) and deal with it later.
3429  uint64_t ConstantOffset = 0;
3430  const Type *UIntPtrTy = TD->getIntPtrType();
3431  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
3432  const Type *Ty = GEPI->getOperand(0)->getType();
3433
3434  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3435       E = GEPI->op_end(); OI != E; ++OI) {
3436    Value *Idx = *OI;
3437    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
3438      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3439      if (Field)
3440        ConstantOffset += TD->getStructLayout(StTy)->MemberOffsets[Field];
3441      Ty = StTy->getElementType(Field);
3442    } else {
3443      Ty = cast<SequentialType>(Ty)->getElementType();
3444
3445      // Handle constant subscripts.
3446      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3447        if (CI->getZExtValue() == 0) continue;
3448        if (CI->getType()->isSigned())
3449          ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CI->getSExtValue();
3450        else
3451          ConstantOffset += TD->getTypeSize(Ty)*CI->getZExtValue();
3452        continue;
3453      }
3454
3455      // Ptr = Ptr + Idx * ElementSize;
3456
3457      // Cast Idx to UIntPtrTy if needed.
3458      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
3459
3460      uint64_t ElementSize = TD->getTypeSize(Ty);
3461      // Mask off bits that should not be set.
3462      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3463      Constant *SizeCst = ConstantInt::get(UIntPtrTy, ElementSize);
3464
3465      // Multiply by the element size and add to the base.
3466      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
3467      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
3468    }
3469  }
3470
3471  // Make sure that the offset fits in uintptr_t.
3472  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3473  Constant *PtrOffset = ConstantInt::get(UIntPtrTy, ConstantOffset);
3474
3475  // Okay, we have now emitted all of the variable index parts to the BB that
3476  // the GEP is defined in.  Loop over all of the using instructions, inserting
3477  // an "add Ptr, ConstantOffset" into each block that uses it and update the
3478  // instruction to use the newly computed value, making GEPI dead.  When the
3479  // user is a load or store instruction address, we emit the add into the user
3480  // block, otherwise we use a canonical version right next to the gep (these
3481  // won't be foldable as addresses, so we might as well share the computation).
3482
3483  std::map<BasicBlock*,Instruction*> InsertedExprs;
3484  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3485
3486  // Finally, the GEP is dead, remove it.
3487  GEPI->eraseFromParent();
3488
3489  return true;
3490}
3491
3492
3493/// SplitEdgeNicely - Split the critical edge from TI to it's specified
3494/// successor if it will improve codegen.  We only do this if the successor has
3495/// phi nodes (otherwise critical edges are ok).  If there is already another
3496/// predecessor of the succ that is empty (and thus has no phi nodes), use it
3497/// instead of introducing a new block.
3498static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
3499  BasicBlock *TIBB = TI->getParent();
3500  BasicBlock *Dest = TI->getSuccessor(SuccNum);
3501  assert(isa<PHINode>(Dest->begin()) &&
3502         "This should only be called if Dest has a PHI!");
3503
3504  /// TIPHIValues - This array is lazily computed to determine the values of
3505  /// PHIs in Dest that TI would provide.
3506  std::vector<Value*> TIPHIValues;
3507
3508  // Check to see if Dest has any blocks that can be used as a split edge for
3509  // this terminator.
3510  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
3511    BasicBlock *Pred = *PI;
3512    // To be usable, the pred has to end with an uncond branch to the dest.
3513    BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
3514    if (!PredBr || !PredBr->isUnconditional() ||
3515        // Must be empty other than the branch.
3516        &Pred->front() != PredBr)
3517      continue;
3518
3519    // Finally, since we know that Dest has phi nodes in it, we have to make
3520    // sure that jumping to Pred will have the same affect as going to Dest in
3521    // terms of PHI values.
3522    PHINode *PN;
3523    unsigned PHINo = 0;
3524    bool FoundMatch = true;
3525    for (BasicBlock::iterator I = Dest->begin();
3526         (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
3527      if (PHINo == TIPHIValues.size())
3528        TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
3529
3530      // If the PHI entry doesn't work, we can't use this pred.
3531      if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
3532        FoundMatch = false;
3533        break;
3534      }
3535    }
3536
3537    // If we found a workable predecessor, change TI to branch to Succ.
3538    if (FoundMatch) {
3539      Dest->removePredecessor(TIBB);
3540      TI->setSuccessor(SuccNum, Pred);
3541      return;
3542    }
3543  }
3544
3545  SplitCriticalEdge(TI, SuccNum, P, true);
3546}
3547
3548
3549bool SelectionDAGISel::runOnFunction(Function &Fn) {
3550  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
3551  RegMap = MF.getSSARegMap();
3552  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
3553
3554  // First, split all critical edges.
3555  //
3556  // In this pass we also look for GEP and cast instructions that are used
3557  // across basic blocks and rewrite them to improve basic-block-at-a-time
3558  // selection.
3559  //
3560  bool MadeChange = true;
3561  while (MadeChange) {
3562    MadeChange = false;
3563  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
3564    // Split all critical edges where the dest block has a PHI.
3565    TerminatorInst *BBTI = BB->getTerminator();
3566    if (BBTI->getNumSuccessors() > 1) {
3567      for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
3568        if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
3569            isCriticalEdge(BBTI, i, true))
3570          SplitEdgeNicely(BBTI, i, this);
3571    }
3572
3573
3574    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3575      Instruction *I = BBI++;
3576      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
3577        MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
3578      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
3579        // If the source of the cast is a constant, then this should have
3580        // already been constant folded.  The only reason NOT to constant fold
3581        // it is if something (e.g. LSR) was careful to place the constant
3582        // evaluation in a block other than then one that uses it (e.g. to hoist
3583        // the address of globals out of a loop).  If this is the case, we don't
3584        // want to forward-subst the cast.
3585        if (isa<Constant>(CI->getOperand(0)))
3586          continue;
3587
3588        // If this is a noop copy, sink it into user blocks to reduce the number
3589        // of virtual registers that must be created and coallesced.
3590        MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
3591        MVT::ValueType DstVT = TLI.getValueType(CI->getType());
3592
3593        // This is an fp<->int conversion?
3594        if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
3595          continue;
3596
3597        // If this is an extension, it will be a zero or sign extension, which
3598        // isn't a noop.
3599        if (SrcVT < DstVT) continue;
3600
3601        // If these values will be promoted, find out what they will be promoted
3602        // to.  This helps us consider truncates on PPC as noop copies when they
3603        // are.
3604        if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
3605          SrcVT = TLI.getTypeToTransformTo(SrcVT);
3606        if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
3607          DstVT = TLI.getTypeToTransformTo(DstVT);
3608
3609        // If, after promotion, these are the same types, this is a noop copy.
3610        if (SrcVT == DstVT)
3611          MadeChange |= OptimizeNoopCopyExpression(CI);
3612      }
3613    }
3614  }
3615  }
3616
3617  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
3618
3619  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
3620    SelectBasicBlock(I, MF, FuncInfo);
3621
3622  return true;
3623}
3624
3625SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
3626                                                           unsigned Reg) {
3627  SDOperand Op = getValue(V);
3628  assert((Op.getOpcode() != ISD::CopyFromReg ||
3629          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
3630         "Copy from a reg to the same reg!");
3631
3632  // If this type is not legal, we must make sure to not create an invalid
3633  // register use.
3634  MVT::ValueType SrcVT = Op.getValueType();
3635  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
3636  if (SrcVT == DestVT) {
3637    return DAG.getCopyToReg(getRoot(), Reg, Op);
3638  } else if (SrcVT == MVT::Vector) {
3639    // Handle copies from generic vectors to registers.
3640    MVT::ValueType PTyElementVT, PTyLegalElementVT;
3641    unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
3642                                             PTyElementVT, PTyLegalElementVT);
3643
3644    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
3645    // MVT::Vector type.
3646    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
3647                     DAG.getConstant(NE, MVT::i32),
3648                     DAG.getValueType(PTyElementVT));
3649
3650    // Loop over all of the elements of the resultant vector,
3651    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
3652    // copying them into output registers.
3653    SmallVector<SDOperand, 8> OutChains;
3654    SDOperand Root = getRoot();
3655    for (unsigned i = 0; i != NE; ++i) {
3656      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
3657                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
3658      if (PTyElementVT == PTyLegalElementVT) {
3659        // Elements are legal.
3660        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3661      } else if (PTyLegalElementVT > PTyElementVT) {
3662        // Elements are promoted.
3663        if (MVT::isFloatingPoint(PTyLegalElementVT))
3664          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
3665        else
3666          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
3667        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3668      } else {
3669        // Elements are expanded.
3670        // The src value is expanded into multiple registers.
3671        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3672                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
3673        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3674                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
3675        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
3676        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
3677      }
3678    }
3679    return DAG.getNode(ISD::TokenFactor, MVT::Other,
3680                       &OutChains[0], OutChains.size());
3681  } else if (SrcVT < DestVT) {
3682    // The src value is promoted to the register.
3683    if (MVT::isFloatingPoint(SrcVT))
3684      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
3685    else
3686      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
3687    return DAG.getCopyToReg(getRoot(), Reg, Op);
3688  } else  {
3689    // The src value is expanded into multiple registers.
3690    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3691                               Op, DAG.getConstant(0, TLI.getPointerTy()));
3692    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3693                               Op, DAG.getConstant(1, TLI.getPointerTy()));
3694    Op = DAG.getCopyToReg(getRoot(), Reg, Lo);
3695    return DAG.getCopyToReg(Op, Reg+1, Hi);
3696  }
3697}
3698
3699void SelectionDAGISel::
3700LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
3701               std::vector<SDOperand> &UnorderedChains) {
3702  // If this is the entry block, emit arguments.
3703  Function &F = *BB->getParent();
3704  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
3705  SDOperand OldRoot = SDL.DAG.getRoot();
3706  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
3707
3708  unsigned a = 0;
3709  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
3710       AI != E; ++AI, ++a)
3711    if (!AI->use_empty()) {
3712      SDL.setValue(AI, Args[a]);
3713
3714      // If this argument is live outside of the entry block, insert a copy from
3715      // whereever we got it to the vreg that other BB's will reference it as.
3716      if (FuncInfo.ValueMap.count(AI)) {
3717        SDOperand Copy =
3718          SDL.CopyValueToVirtualRegister(AI, FuncInfo.ValueMap[AI]);
3719        UnorderedChains.push_back(Copy);
3720      }
3721    }
3722
3723  // Finally, if the target has anything special to do, allow it to do so.
3724  // FIXME: this should insert code into the DAG!
3725  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
3726}
3727
3728void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
3729       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
3730                                         FunctionLoweringInfo &FuncInfo) {
3731  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
3732
3733  std::vector<SDOperand> UnorderedChains;
3734
3735  // Lower any arguments needed in this block if this is the entry block.
3736  if (LLVMBB == &LLVMBB->getParent()->front())
3737    LowerArguments(LLVMBB, SDL, UnorderedChains);
3738
3739  BB = FuncInfo.MBBMap[LLVMBB];
3740  SDL.setCurrentBasicBlock(BB);
3741
3742  // Lower all of the non-terminator instructions.
3743  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
3744       I != E; ++I)
3745    SDL.visit(*I);
3746
3747  // Ensure that all instructions which are used outside of their defining
3748  // blocks are available as virtual registers.
3749  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
3750    if (!I->use_empty() && !isa<PHINode>(I)) {
3751      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
3752      if (VMI != FuncInfo.ValueMap.end())
3753        UnorderedChains.push_back(
3754                                SDL.CopyValueToVirtualRegister(I, VMI->second));
3755    }
3756
3757  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
3758  // ensure constants are generated when needed.  Remember the virtual registers
3759  // that need to be added to the Machine PHI nodes as input.  We cannot just
3760  // directly add them, because expansion might result in multiple MBB's for one
3761  // BB.  As such, the start of the BB might correspond to a different MBB than
3762  // the end.
3763  //
3764  TerminatorInst *TI = LLVMBB->getTerminator();
3765
3766  // Emit constants only once even if used by multiple PHI nodes.
3767  std::map<Constant*, unsigned> ConstantsOut;
3768
3769  // Vector bool would be better, but vector<bool> is really slow.
3770  std::vector<unsigned char> SuccsHandled;
3771  if (TI->getNumSuccessors())
3772    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
3773
3774  // Check successor nodes PHI nodes that expect a constant to be available from
3775  // this block.
3776  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
3777    BasicBlock *SuccBB = TI->getSuccessor(succ);
3778    if (!isa<PHINode>(SuccBB->begin())) continue;
3779    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
3780
3781    // If this terminator has multiple identical successors (common for
3782    // switches), only handle each succ once.
3783    unsigned SuccMBBNo = SuccMBB->getNumber();
3784    if (SuccsHandled[SuccMBBNo]) continue;
3785    SuccsHandled[SuccMBBNo] = true;
3786
3787    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
3788    PHINode *PN;
3789
3790    // At this point we know that there is a 1-1 correspondence between LLVM PHI
3791    // nodes and Machine PHI nodes, but the incoming operands have not been
3792    // emitted yet.
3793    for (BasicBlock::iterator I = SuccBB->begin();
3794         (PN = dyn_cast<PHINode>(I)); ++I) {
3795      // Ignore dead phi's.
3796      if (PN->use_empty()) continue;
3797
3798      unsigned Reg;
3799      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
3800      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
3801        unsigned &RegOut = ConstantsOut[C];
3802        if (RegOut == 0) {
3803          RegOut = FuncInfo.CreateRegForValue(C);
3804          UnorderedChains.push_back(
3805                           SDL.CopyValueToVirtualRegister(C, RegOut));
3806        }
3807        Reg = RegOut;
3808      } else {
3809        Reg = FuncInfo.ValueMap[PHIOp];
3810        if (Reg == 0) {
3811          assert(isa<AllocaInst>(PHIOp) &&
3812                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
3813                 "Didn't codegen value into a register!??");
3814          Reg = FuncInfo.CreateRegForValue(PHIOp);
3815          UnorderedChains.push_back(
3816                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
3817        }
3818      }
3819
3820      // Remember that this register needs to added to the machine PHI node as
3821      // the input for this MBB.
3822      MVT::ValueType VT = TLI.getValueType(PN->getType());
3823      unsigned NumElements;
3824      if (VT != MVT::Vector)
3825        NumElements = TLI.getNumElements(VT);
3826      else {
3827        MVT::ValueType VT1,VT2;
3828        NumElements =
3829          TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
3830                                     VT1, VT2);
3831      }
3832      for (unsigned i = 0, e = NumElements; i != e; ++i)
3833        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
3834    }
3835  }
3836  ConstantsOut.clear();
3837
3838  // Turn all of the unordered chains into one factored node.
3839  if (!UnorderedChains.empty()) {
3840    SDOperand Root = SDL.getRoot();
3841    if (Root.getOpcode() != ISD::EntryToken) {
3842      unsigned i = 0, e = UnorderedChains.size();
3843      for (; i != e; ++i) {
3844        assert(UnorderedChains[i].Val->getNumOperands() > 1);
3845        if (UnorderedChains[i].Val->getOperand(0) == Root)
3846          break;  // Don't add the root if we already indirectly depend on it.
3847      }
3848
3849      if (i == e)
3850        UnorderedChains.push_back(Root);
3851    }
3852    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3853                            &UnorderedChains[0], UnorderedChains.size()));
3854  }
3855
3856  // Lower the terminator after the copies are emitted.
3857  SDL.visit(*LLVMBB->getTerminator());
3858
3859  // Copy over any CaseBlock records that may now exist due to SwitchInst
3860  // lowering, as well as any jump table information.
3861  SwitchCases.clear();
3862  SwitchCases = SDL.SwitchCases;
3863  JT = SDL.JT;
3864
3865  // Make sure the root of the DAG is up-to-date.
3866  DAG.setRoot(SDL.getRoot());
3867}
3868
3869void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
3870  // Get alias analysis for load/store combining.
3871  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
3872
3873  // Run the DAG combiner in pre-legalize mode.
3874  DAG.Combine(false, AA);
3875
3876  DEBUG(std::cerr << "Lowered selection DAG:\n");
3877  DEBUG(DAG.dump());
3878
3879  // Second step, hack on the DAG until it only uses operations and types that
3880  // the target supports.
3881  DAG.Legalize();
3882
3883  DEBUG(std::cerr << "Legalized selection DAG:\n");
3884  DEBUG(DAG.dump());
3885
3886  // Run the DAG combiner in post-legalize mode.
3887  DAG.Combine(true, AA);
3888
3889  if (ViewISelDAGs) DAG.viewGraph();
3890
3891  // Third, instruction select all of the operations to machine code, adding the
3892  // code to the MachineBasicBlock.
3893  InstructionSelectBasicBlock(DAG);
3894
3895  DEBUG(std::cerr << "Selected machine code:\n");
3896  DEBUG(BB->dump());
3897}
3898
3899void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
3900                                        FunctionLoweringInfo &FuncInfo) {
3901  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
3902  {
3903    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3904    CurDAG = &DAG;
3905
3906    // First step, lower LLVM code to some DAG.  This DAG may use operations and
3907    // types that are not supported by the target.
3908    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
3909
3910    // Second step, emit the lowered DAG as machine code.
3911    CodeGenAndEmitDAG(DAG);
3912  }
3913
3914  // Next, now that we know what the last MBB the LLVM BB expanded is, update
3915  // PHI nodes in successors.
3916  if (SwitchCases.empty() && JT.Reg == 0) {
3917    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
3918      MachineInstr *PHI = PHINodesToUpdate[i].first;
3919      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3920             "This is not a machine PHI node that we are updating!");
3921      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
3922      PHI->addMachineBasicBlockOperand(BB);
3923    }
3924    return;
3925  }
3926
3927  // If the JumpTable record is filled in, then we need to emit a jump table.
3928  // Updating the PHI nodes is tricky in this case, since we need to determine
3929  // whether the PHI is a successor of the range check MBB or the jump table MBB
3930  if (JT.Reg) {
3931    assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
3932    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3933    CurDAG = &SDAG;
3934    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3935    MachineBasicBlock *RangeBB = BB;
3936    // Set the current basic block to the mbb we wish to insert the code into
3937    BB = JT.MBB;
3938    SDL.setCurrentBasicBlock(BB);
3939    // Emit the code
3940    SDL.visitJumpTable(JT);
3941    SDAG.setRoot(SDL.getRoot());
3942    CodeGenAndEmitDAG(SDAG);
3943    // Update PHI Nodes
3944    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
3945      MachineInstr *PHI = PHINodesToUpdate[pi].first;
3946      MachineBasicBlock *PHIBB = PHI->getParent();
3947      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3948             "This is not a machine PHI node that we are updating!");
3949      if (PHIBB == JT.Default) {
3950        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
3951        PHI->addMachineBasicBlockOperand(RangeBB);
3952      }
3953      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
3954        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
3955        PHI->addMachineBasicBlockOperand(BB);
3956      }
3957    }
3958    return;
3959  }
3960
3961  // If the switch block involved a branch to one of the actual successors, we
3962  // need to update PHI nodes in that block.
3963  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
3964    MachineInstr *PHI = PHINodesToUpdate[i].first;
3965    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3966           "This is not a machine PHI node that we are updating!");
3967    if (BB->isSuccessor(PHI->getParent())) {
3968      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
3969      PHI->addMachineBasicBlockOperand(BB);
3970    }
3971  }
3972
3973  // If we generated any switch lowering information, build and codegen any
3974  // additional DAGs necessary.
3975  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
3976    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3977    CurDAG = &SDAG;
3978    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3979
3980    // Set the current basic block to the mbb we wish to insert the code into
3981    BB = SwitchCases[i].ThisBB;
3982    SDL.setCurrentBasicBlock(BB);
3983
3984    // Emit the code
3985    SDL.visitSwitchCase(SwitchCases[i]);
3986    SDAG.setRoot(SDL.getRoot());
3987    CodeGenAndEmitDAG(SDAG);
3988
3989    // Handle any PHI nodes in successors of this chunk, as if we were coming
3990    // from the original BB before switch expansion.  Note that PHI nodes can
3991    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
3992    // handle them the right number of times.
3993    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
3994      for (MachineBasicBlock::iterator Phi = BB->begin();
3995           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
3996        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
3997        for (unsigned pn = 0; ; ++pn) {
3998          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
3999          if (PHINodesToUpdate[pn].first == Phi) {
4000            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4001            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4002            break;
4003          }
4004        }
4005      }
4006
4007      // Don't process RHS if same block as LHS.
4008      if (BB == SwitchCases[i].FalseBB)
4009        SwitchCases[i].FalseBB = 0;
4010
4011      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4012      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4013      SwitchCases[i].FalseBB = 0;
4014    }
4015    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4016  }
4017}
4018
4019
4020//===----------------------------------------------------------------------===//
4021/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4022/// target node in the graph.
4023void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4024  if (ViewSchedDAGs) DAG.viewGraph();
4025
4026  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4027
4028  if (!Ctor) {
4029    Ctor = ISHeuristic;
4030    RegisterScheduler::setDefault(Ctor);
4031  }
4032
4033  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4034  BB = SL->Run();
4035  delete SL;
4036}
4037
4038
4039HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4040  return new HazardRecognizer();
4041}
4042
4043//===----------------------------------------------------------------------===//
4044// Helper functions used by the generated instruction selector.
4045//===----------------------------------------------------------------------===//
4046// Calls to these methods are generated by tblgen.
4047
4048/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4049/// the dag combiner simplified the 255, we still want to match.  RHS is the
4050/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4051/// specified in the .td file (e.g. 255).
4052bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4053                                    int64_t DesiredMaskS) {
4054  uint64_t ActualMask = RHS->getValue();
4055  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4056
4057  // If the actual mask exactly matches, success!
4058  if (ActualMask == DesiredMask)
4059    return true;
4060
4061  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4062  if (ActualMask & ~DesiredMask)
4063    return false;
4064
4065  // Otherwise, the DAG Combiner may have proven that the value coming in is
4066  // either already zero or is not demanded.  Check for known zero input bits.
4067  uint64_t NeededMask = DesiredMask & ~ActualMask;
4068  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
4069    return true;
4070
4071  // TODO: check to see if missing bits are just not demanded.
4072
4073  // Otherwise, this pattern doesn't match.
4074  return false;
4075}
4076
4077/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4078/// the dag combiner simplified the 255, we still want to match.  RHS is the
4079/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4080/// specified in the .td file (e.g. 255).
4081bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4082                                    int64_t DesiredMaskS) {
4083  uint64_t ActualMask = RHS->getValue();
4084  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4085
4086  // If the actual mask exactly matches, success!
4087  if (ActualMask == DesiredMask)
4088    return true;
4089
4090  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4091  if (ActualMask & ~DesiredMask)
4092    return false;
4093
4094  // Otherwise, the DAG Combiner may have proven that the value coming in is
4095  // either already zero or is not demanded.  Check for known zero input bits.
4096  uint64_t NeededMask = DesiredMask & ~ActualMask;
4097
4098  uint64_t KnownZero, KnownOne;
4099  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4100
4101  // If all the missing bits in the or are already known to be set, match!
4102  if ((NeededMask & KnownOne) == NeededMask)
4103    return true;
4104
4105  // TODO: check to see if missing bits are just not demanded.
4106
4107  // Otherwise, this pattern doesn't match.
4108  return false;
4109}
4110
4111
4112/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4113/// by tblgen.  Others should not call it.
4114void SelectionDAGISel::
4115SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4116  std::vector<SDOperand> InOps;
4117  std::swap(InOps, Ops);
4118
4119  Ops.push_back(InOps[0]);  // input chain.
4120  Ops.push_back(InOps[1]);  // input asm string.
4121
4122  unsigned i = 2, e = InOps.size();
4123  if (InOps[e-1].getValueType() == MVT::Flag)
4124    --e;  // Don't process a flag operand if it is here.
4125
4126  while (i != e) {
4127    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4128    if ((Flags & 7) != 4 /*MEM*/) {
4129      // Just skip over this operand, copying the operands verbatim.
4130      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4131      i += (Flags >> 3) + 1;
4132    } else {
4133      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4134      // Otherwise, this is a memory operand.  Ask the target to select it.
4135      std::vector<SDOperand> SelOps;
4136      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4137        std::cerr << "Could not match memory address.  Inline asm failure!\n";
4138        exit(1);
4139      }
4140
4141      // Add this to the output node.
4142      Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
4143      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4144      i += 2;
4145    }
4146  }
4147
4148  // Add the flag input back if present.
4149  if (e != InOps.size())
4150    Ops.push_back(InOps.back());
4151}
4152