SelectionDAGISel.cpp revision d0e9b6728ee42919652fd1fe450f2c73ebe0ea79
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/Statistic.h"
50#include <algorithm>
51using namespace llvm;
52
53STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
54STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
55
56static cl::opt<bool>
57EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
58          cl::desc("Enable verbose messages in the \"fast\" "
59                   "instruction selector"));
60static cl::opt<bool>
61EnableFastISelAbort("fast-isel-abort", cl::Hidden,
62          cl::desc("Enable abort calls when \"fast\" instruction fails"));
63
64#ifndef NDEBUG
65static cl::opt<bool>
66ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
67          cl::desc("Pop up a window to show dags before the first "
68                   "dag combine pass"));
69static cl::opt<bool>
70ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
71          cl::desc("Pop up a window to show dags before legalize types"));
72static cl::opt<bool>
73ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
74          cl::desc("Pop up a window to show dags before legalize"));
75static cl::opt<bool>
76ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the second "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before the post legalize types"
82                   " dag combine pass"));
83static cl::opt<bool>
84ViewISelDAGs("view-isel-dags", cl::Hidden,
85          cl::desc("Pop up a window to show isel dags as they are selected"));
86static cl::opt<bool>
87ViewSchedDAGs("view-sched-dags", cl::Hidden,
88          cl::desc("Pop up a window to show sched dags as they are processed"));
89static cl::opt<bool>
90ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
91      cl::desc("Pop up a window to show SUnit dags after they are processed"));
92#else
93static const bool ViewDAGCombine1 = false,
94                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
95                  ViewDAGCombine2 = false,
96                  ViewDAGCombineLT = false,
97                  ViewISelDAGs = false, ViewSchedDAGs = false,
98                  ViewSUnitDAGs = false;
99#endif
100
101//===---------------------------------------------------------------------===//
102///
103/// RegisterScheduler class - Track the registration of instruction schedulers.
104///
105//===---------------------------------------------------------------------===//
106MachinePassRegistry RegisterScheduler::Registry;
107
108//===---------------------------------------------------------------------===//
109///
110/// ISHeuristic command line option for instruction schedulers.
111///
112//===---------------------------------------------------------------------===//
113static cl::opt<RegisterScheduler::FunctionPassCtor, false,
114               RegisterPassParser<RegisterScheduler> >
115ISHeuristic("pre-RA-sched",
116            cl::init(&createDefaultScheduler),
117            cl::desc("Instruction schedulers available (before register"
118                     " allocation):"));
119
120static RegisterScheduler
121defaultListDAGScheduler("default", "Best scheduler for the target",
122                        createDefaultScheduler);
123
124namespace llvm {
125  //===--------------------------------------------------------------------===//
126  /// createDefaultScheduler - This creates an instruction scheduler appropriate
127  /// for the target.
128  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
129                                             CodeGenOpt::Level OptLevel) {
130    const TargetLowering &TLI = IS->getTargetLowering();
131
132    if (OptLevel == CodeGenOpt::None)
133      return createFastDAGScheduler(IS, OptLevel);
134    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
135      return createTDListDAGScheduler(IS, OptLevel);
136    assert(TLI.getSchedulingPreference() ==
137           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
138    return createBURRListDAGScheduler(IS, OptLevel);
139  }
140}
141
142// EmitInstrWithCustomInserter - This method should be implemented by targets
143// that mark instructions with the 'usesCustomInserter' flag.  These
144// instructions are special in various ways, which require special support to
145// insert.  The specified MachineInstr is created but not inserted into any
146// basic blocks, and this method is called to expand it into a sequence of
147// instructions, potentially also creating new basic blocks and control flow.
148// When new basic blocks are inserted and the edges from MBB to its successors
149// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
150// DenseMap.
151MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
152                                                         MachineBasicBlock *MBB,
153                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
154#ifndef NDEBUG
155  dbgs() << "If a target marks an instruction with "
156          "'usesCustomInserter', it must implement "
157          "TargetLowering::EmitInstrWithCustomInserter!";
158#endif
159  llvm_unreachable(0);
160  return 0;
161}
162
163//===----------------------------------------------------------------------===//
164// SelectionDAGISel code
165//===----------------------------------------------------------------------===//
166
167SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
168  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
169  FuncInfo(new FunctionLoweringInfo(TLI)),
170  CurDAG(new SelectionDAG(tm, *FuncInfo)),
171  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
172  GFI(),
173  OptLevel(OL),
174  DAGSize(0)
175{}
176
177SelectionDAGISel::~SelectionDAGISel() {
178  delete SDB;
179  delete CurDAG;
180  delete FuncInfo;
181}
182
183void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
184  AU.addRequired<AliasAnalysis>();
185  AU.addPreserved<AliasAnalysis>();
186  AU.addRequired<GCModuleInfo>();
187  AU.addPreserved<GCModuleInfo>();
188  MachineFunctionPass::getAnalysisUsage(AU);
189}
190
191bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
192  // Do some sanity-checking on the command-line options.
193  assert((!EnableFastISelVerbose || EnableFastISel) &&
194         "-fast-isel-verbose requires -fast-isel");
195  assert((!EnableFastISelAbort || EnableFastISel) &&
196         "-fast-isel-abort requires -fast-isel");
197
198  const Function &Fn = *mf.getFunction();
199  const TargetInstrInfo &TII = *TM.getInstrInfo();
200  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
201
202  MF = &mf;
203  RegInfo = &MF->getRegInfo();
204  AA = &getAnalysis<AliasAnalysis>();
205  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
206
207  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
208
209  CurDAG->init(*MF);
210  FuncInfo->set(Fn, *MF, EnableFastISel);
211  SDB->init(GFI, *AA);
212
213  SelectAllBasicBlocks(Fn);
214
215  // Release function-specific state. SDB and CurDAG are already cleared
216  // at this point.
217  FuncInfo->clear();
218
219  // If the first basic block in the function has live ins that need to be
220  // copied into vregs, emit the copies into the top of the block before
221  // emitting the code for the block.
222  RegInfo->EmitLiveInCopies(MF->begin(), TRI, TII);
223
224  return true;
225}
226
227/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
228/// attached with this instruction.
229static void SetDebugLoc(const Instruction *I, SelectionDAGBuilder *SDB,
230                        FastISel *FastIS, MachineFunction *MF) {
231  DebugLoc DL = I->getDebugLoc();
232  if (DL.isUnknown()) return;
233
234  SDB->setCurDebugLoc(DL);
235
236  if (FastIS)
237    FastIS->setCurDebugLoc(DL);
238}
239
240/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
241static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
242  SDB->setCurDebugLoc(DebugLoc());
243  if (FastIS)
244    FastIS->setCurDebugLoc(DebugLoc());
245}
246
247MachineBasicBlock *
248SelectionDAGISel::SelectBasicBlock(MachineBasicBlock *BB,
249                                   const BasicBlock *LLVMBB,
250                                   BasicBlock::const_iterator Begin,
251                                   BasicBlock::const_iterator End,
252                                   bool &HadTailCall) {
253  // Lower all of the non-terminator instructions. If a call is emitted
254  // as a tail call, cease emitting nodes for this block. Terminators
255  // are handled below.
256  for (BasicBlock::const_iterator I = Begin;
257       I != End && !SDB->HasTailCall && !isa<TerminatorInst>(I);
258       ++I) {
259    SetDebugLoc(I, SDB, 0, MF);
260    SDB->visit(*I);
261    ResetDebugLoc(SDB, 0);
262  }
263
264  if (!SDB->HasTailCall) {
265    // Ensure that all instructions which are used outside of their defining
266    // blocks are available as virtual registers.  Invoke is handled elsewhere.
267    for (BasicBlock::const_iterator I = Begin; I != End; ++I)
268      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
269        SDB->CopyToExportRegsIfNeeded(I);
270
271    // Handle PHI nodes in successor blocks.
272    if (End == LLVMBB->end()) {
273      HandlePHINodesInSuccessorBlocks(LLVMBB);
274
275      // Lower the terminator after the copies are emitted.
276      SetDebugLoc(LLVMBB->getTerminator(), SDB, 0, MF);
277      SDB->visit(*LLVMBB->getTerminator());
278      ResetDebugLoc(SDB, 0);
279    }
280  }
281
282  // Make sure the root of the DAG is up-to-date.
283  CurDAG->setRoot(SDB->getControlRoot());
284
285  // Final step, emit the lowered DAG as machine code.
286  BB = CodeGenAndEmitDAG(BB);
287  HadTailCall = SDB->HasTailCall;
288  SDB->clear();
289  return BB;
290}
291
292namespace {
293/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
294/// nodes from the worklist.
295class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
296  SmallVector<SDNode*, 128> &Worklist;
297  SmallPtrSet<SDNode*, 128> &InWorklist;
298public:
299  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
300                       SmallPtrSet<SDNode*, 128> &inwl)
301    : Worklist(wl), InWorklist(inwl) {}
302
303  void RemoveFromWorklist(SDNode *N) {
304    if (!InWorklist.erase(N)) return;
305
306    SmallVector<SDNode*, 128>::iterator I =
307    std::find(Worklist.begin(), Worklist.end(), N);
308    assert(I != Worklist.end() && "Not in worklist");
309
310    *I = Worklist.back();
311    Worklist.pop_back();
312  }
313
314  virtual void NodeDeleted(SDNode *N, SDNode *E) {
315    RemoveFromWorklist(N);
316  }
317
318  virtual void NodeUpdated(SDNode *N) {
319    // Ignore updates.
320  }
321};
322}
323
324/// TrivialTruncElim - Eliminate some trivial nops that can result from
325/// ShrinkDemandedOps: (trunc (ext n)) -> n.
326static bool TrivialTruncElim(SDValue Op,
327                             TargetLowering::TargetLoweringOpt &TLO) {
328  SDValue N0 = Op.getOperand(0);
329  EVT VT = Op.getValueType();
330  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
331       N0.getOpcode() == ISD::SIGN_EXTEND ||
332       N0.getOpcode() == ISD::ANY_EXTEND) &&
333      N0.getOperand(0).getValueType() == VT) {
334    return TLO.CombineTo(Op, N0.getOperand(0));
335  }
336  return false;
337}
338
339/// ShrinkDemandedOps - A late transformation pass that shrink expressions
340/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
341/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
342void SelectionDAGISel::ShrinkDemandedOps() {
343  SmallVector<SDNode*, 128> Worklist;
344  SmallPtrSet<SDNode*, 128> InWorklist;
345
346  // Add all the dag nodes to the worklist.
347  Worklist.reserve(CurDAG->allnodes_size());
348  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
349       E = CurDAG->allnodes_end(); I != E; ++I) {
350    Worklist.push_back(I);
351    InWorklist.insert(I);
352  }
353
354  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true, true, true);
355  while (!Worklist.empty()) {
356    SDNode *N = Worklist.pop_back_val();
357    InWorklist.erase(N);
358
359    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
360      // Deleting this node may make its operands dead, add them to the worklist
361      // if they aren't already there.
362      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
363        if (InWorklist.insert(N->getOperand(i).getNode()))
364          Worklist.push_back(N->getOperand(i).getNode());
365
366      CurDAG->DeleteNode(N);
367      continue;
368    }
369
370    // Run ShrinkDemandedOp on scalar binary operations.
371    if (N->getNumValues() != 1 ||
372        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
373      continue;
374
375    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
376    APInt Demanded = APInt::getAllOnesValue(BitWidth);
377    APInt KnownZero, KnownOne;
378    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
379                                  KnownZero, KnownOne, TLO) &&
380        (N->getOpcode() != ISD::TRUNCATE ||
381         !TrivialTruncElim(SDValue(N, 0), TLO)))
382      continue;
383
384    // Revisit the node.
385    assert(!InWorklist.count(N) && "Already in worklist");
386    Worklist.push_back(N);
387    InWorklist.insert(N);
388
389    // Replace the old value with the new one.
390    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
391          TLO.Old.getNode()->dump(CurDAG);
392          errs() << "\nWith: ";
393          TLO.New.getNode()->dump(CurDAG);
394          errs() << '\n');
395
396    if (InWorklist.insert(TLO.New.getNode()))
397      Worklist.push_back(TLO.New.getNode());
398
399    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
400    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
401
402    if (!TLO.Old.getNode()->use_empty()) continue;
403
404    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
405         i != e; ++i) {
406      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
407      if (OpNode->hasOneUse()) {
408        // Add OpNode to the end of the list to revisit.
409        DeadNodes.RemoveFromWorklist(OpNode);
410        Worklist.push_back(OpNode);
411        InWorklist.insert(OpNode);
412      }
413    }
414
415    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
416    CurDAG->DeleteNode(TLO.Old.getNode());
417  }
418}
419
420void SelectionDAGISel::ComputeLiveOutVRegInfo() {
421  SmallPtrSet<SDNode*, 128> VisitedNodes;
422  SmallVector<SDNode*, 128> Worklist;
423
424  Worklist.push_back(CurDAG->getRoot().getNode());
425
426  APInt Mask;
427  APInt KnownZero;
428  APInt KnownOne;
429
430  do {
431    SDNode *N = Worklist.pop_back_val();
432
433    // If we've already seen this node, ignore it.
434    if (!VisitedNodes.insert(N))
435      continue;
436
437    // Otherwise, add all chain operands to the worklist.
438    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
439      if (N->getOperand(i).getValueType() == MVT::Other)
440        Worklist.push_back(N->getOperand(i).getNode());
441
442    // If this is a CopyToReg with a vreg dest, process it.
443    if (N->getOpcode() != ISD::CopyToReg)
444      continue;
445
446    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
447    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
448      continue;
449
450    // Ignore non-scalar or non-integer values.
451    SDValue Src = N->getOperand(2);
452    EVT SrcVT = Src.getValueType();
453    if (!SrcVT.isInteger() || SrcVT.isVector())
454      continue;
455
456    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
457    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
458    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
459
460    // Only install this information if it tells us something.
461    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
462      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
463      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
464        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
465      FunctionLoweringInfo::LiveOutInfo &LOI =
466        FuncInfo->LiveOutRegInfo[DestReg];
467      LOI.NumSignBits = NumSignBits;
468      LOI.KnownOne = KnownOne;
469      LOI.KnownZero = KnownZero;
470    }
471  } while (!Worklist.empty());
472}
473
474MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
475  std::string GroupName;
476  if (TimePassesIsEnabled)
477    GroupName = "Instruction Selection and Scheduling";
478  std::string BlockName;
479  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
480      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
481      ViewSUnitDAGs)
482    BlockName = MF->getFunction()->getNameStr() + ":" +
483                BB->getBasicBlock()->getNameStr();
484
485  DEBUG(dbgs() << "Initial selection DAG:\n");
486  DEBUG(CurDAG->dump());
487
488  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
489
490  // Run the DAG combiner in pre-legalize mode.
491  if (TimePassesIsEnabled) {
492    NamedRegionTimer T("DAG Combining 1", GroupName);
493    CurDAG->Combine(Unrestricted, *AA, OptLevel);
494  } else {
495    CurDAG->Combine(Unrestricted, *AA, OptLevel);
496  }
497
498  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
499  DEBUG(CurDAG->dump());
500
501  // Second step, hack on the DAG until it only uses operations and types that
502  // the target supports.
503  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
504                                               BlockName);
505
506  bool Changed;
507  if (TimePassesIsEnabled) {
508    NamedRegionTimer T("Type Legalization", GroupName);
509    Changed = CurDAG->LegalizeTypes();
510  } else {
511    Changed = CurDAG->LegalizeTypes();
512  }
513
514  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
515  DEBUG(CurDAG->dump());
516
517  if (Changed) {
518    if (ViewDAGCombineLT)
519      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
520
521    // Run the DAG combiner in post-type-legalize mode.
522    if (TimePassesIsEnabled) {
523      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
524      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
525    } else {
526      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
527    }
528
529    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
530    DEBUG(CurDAG->dump());
531  }
532
533  if (TimePassesIsEnabled) {
534    NamedRegionTimer T("Vector Legalization", GroupName);
535    Changed = CurDAG->LegalizeVectors();
536  } else {
537    Changed = CurDAG->LegalizeVectors();
538  }
539
540  if (Changed) {
541    if (TimePassesIsEnabled) {
542      NamedRegionTimer T("Type Legalization 2", GroupName);
543      CurDAG->LegalizeTypes();
544    } else {
545      CurDAG->LegalizeTypes();
546    }
547
548    if (ViewDAGCombineLT)
549      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
550
551    // Run the DAG combiner in post-type-legalize mode.
552    if (TimePassesIsEnabled) {
553      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
554      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
555    } else {
556      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
557    }
558
559    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
560    DEBUG(CurDAG->dump());
561  }
562
563  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
564
565  if (TimePassesIsEnabled) {
566    NamedRegionTimer T("DAG Legalization", GroupName);
567    CurDAG->Legalize(OptLevel);
568  } else {
569    CurDAG->Legalize(OptLevel);
570  }
571
572  DEBUG(dbgs() << "Legalized selection DAG:\n");
573  DEBUG(CurDAG->dump());
574
575  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
576
577  // Run the DAG combiner in post-legalize mode.
578  if (TimePassesIsEnabled) {
579    NamedRegionTimer T("DAG Combining 2", GroupName);
580    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
581  } else {
582    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
583  }
584
585  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
586  DEBUG(CurDAG->dump());
587
588  if (OptLevel != CodeGenOpt::None) {
589    ShrinkDemandedOps();
590    ComputeLiveOutVRegInfo();
591  }
592
593  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
594
595  // Third, instruction select all of the operations to machine code, adding the
596  // code to the MachineBasicBlock.
597  if (TimePassesIsEnabled) {
598    NamedRegionTimer T("Instruction Selection", GroupName);
599    DoInstructionSelection();
600  } else {
601    DoInstructionSelection();
602  }
603
604  DEBUG(dbgs() << "Selected selection DAG:\n");
605  DEBUG(CurDAG->dump());
606
607  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
608
609  // Schedule machine code.
610  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
611  if (TimePassesIsEnabled) {
612    NamedRegionTimer T("Instruction Scheduling", GroupName);
613    Scheduler->Run(CurDAG, BB, BB->end());
614  } else {
615    Scheduler->Run(CurDAG, BB, BB->end());
616  }
617
618  if (ViewSUnitDAGs) Scheduler->viewGraph();
619
620  // Emit machine code to BB.  This can change 'BB' to the last block being
621  // inserted into.
622  if (TimePassesIsEnabled) {
623    NamedRegionTimer T("Instruction Creation", GroupName);
624    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
625  } else {
626    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
627  }
628
629  // Free the scheduler state.
630  if (TimePassesIsEnabled) {
631    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
632    delete Scheduler;
633  } else {
634    delete Scheduler;
635  }
636
637  DEBUG(dbgs() << "Selected machine code:\n");
638  DEBUG(BB->dump());
639  return BB;
640}
641
642void SelectionDAGISel::DoInstructionSelection() {
643  DEBUG(errs() << "===== Instruction selection begins:\n");
644
645  PreprocessISelDAG();
646
647  // Select target instructions for the DAG.
648  {
649    // Number all nodes with a topological order and set DAGSize.
650    DAGSize = CurDAG->AssignTopologicalOrder();
651
652    // Create a dummy node (which is not added to allnodes), that adds
653    // a reference to the root node, preventing it from being deleted,
654    // and tracking any changes of the root.
655    HandleSDNode Dummy(CurDAG->getRoot());
656    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
657    ++ISelPosition;
658
659    // The AllNodes list is now topological-sorted. Visit the
660    // nodes by starting at the end of the list (the root of the
661    // graph) and preceding back toward the beginning (the entry
662    // node).
663    while (ISelPosition != CurDAG->allnodes_begin()) {
664      SDNode *Node = --ISelPosition;
665      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
666      // but there are currently some corner cases that it misses. Also, this
667      // makes it theoretically possible to disable the DAGCombiner.
668      if (Node->use_empty())
669        continue;
670
671      SDNode *ResNode = Select(Node);
672
673      // FIXME: This is pretty gross.  'Select' should be changed to not return
674      // anything at all and this code should be nuked with a tactical strike.
675
676      // If node should not be replaced, continue with the next one.
677      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
678        continue;
679      // Replace node.
680      if (ResNode)
681        ReplaceUses(Node, ResNode);
682
683      // If after the replacement this node is not used any more,
684      // remove this dead node.
685      if (Node->use_empty()) { // Don't delete EntryToken, etc.
686        ISelUpdater ISU(ISelPosition);
687        CurDAG->RemoveDeadNode(Node, &ISU);
688      }
689    }
690
691    CurDAG->setRoot(Dummy.getValue());
692  }
693  DEBUG(errs() << "===== Instruction selection ends:\n");
694
695  PostprocessISelDAG();
696}
697
698/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
699/// do other setup for EH landing-pad blocks.
700void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
701  // Add a label to mark the beginning of the landing pad.  Deletion of the
702  // landing pad can thus be detected via the MachineModuleInfo.
703  MCSymbol *Label = MF->getMMI().addLandingPad(BB);
704
705  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
706  BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
707
708  // Mark exception register as live in.
709  unsigned Reg = TLI.getExceptionAddressRegister();
710  if (Reg) BB->addLiveIn(Reg);
711
712  // Mark exception selector register as live in.
713  Reg = TLI.getExceptionSelectorRegister();
714  if (Reg) BB->addLiveIn(Reg);
715
716  // FIXME: Hack around an exception handling flaw (PR1508): the personality
717  // function and list of typeids logically belong to the invoke (or, if you
718  // like, the basic block containing the invoke), and need to be associated
719  // with it in the dwarf exception handling tables.  Currently however the
720  // information is provided by an intrinsic (eh.selector) that can be moved
721  // to unexpected places by the optimizers: if the unwind edge is critical,
722  // then breaking it can result in the intrinsics being in the successor of
723  // the landing pad, not the landing pad itself.  This results
724  // in exceptions not being caught because no typeids are associated with
725  // the invoke.  This may not be the only way things can go wrong, but it
726  // is the only way we try to work around for the moment.
727  const BasicBlock *LLVMBB = BB->getBasicBlock();
728  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
729
730  if (Br && Br->isUnconditional()) { // Critical edge?
731    BasicBlock::const_iterator I, E;
732    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
733      if (isa<EHSelectorInst>(I))
734        break;
735
736    if (I == E)
737      // No catch info found - try to extract some from the successor.
738      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
739  }
740}
741
742void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
743  // Initialize the Fast-ISel state, if needed.
744  FastISel *FastIS = 0;
745  if (EnableFastISel)
746    FastIS = TLI.createFastISel(*MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
747                                FuncInfo->StaticAllocaMap
748#ifndef NDEBUG
749                                , FuncInfo->CatchInfoLost
750#endif
751                                );
752
753  // Iterate over all basic blocks in the function.
754  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
755    const BasicBlock *LLVMBB = &*I;
756    MachineBasicBlock *BB = FuncInfo->MBBMap[LLVMBB];
757
758    BasicBlock::const_iterator const Begin = LLVMBB->begin();
759    BasicBlock::const_iterator const End = LLVMBB->end();
760    BasicBlock::const_iterator BI = Begin;
761
762    // Lower any arguments needed in this block if this is the entry block.
763    bool SuppressFastISel = false;
764    if (LLVMBB == &Fn.getEntryBlock()) {
765      LowerArguments(LLVMBB);
766
767      // If any of the arguments has the byval attribute, forgo
768      // fast-isel in the entry block.
769      if (FastIS) {
770        unsigned j = 1;
771        for (Function::const_arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
772             I != E; ++I, ++j)
773          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
774            if (EnableFastISelVerbose || EnableFastISelAbort)
775              dbgs() << "FastISel skips entry block due to byval argument\n";
776            SuppressFastISel = true;
777            break;
778          }
779      }
780    }
781
782    // Setup an EH landing-pad block.
783    if (BB->isLandingPad())
784      PrepareEHLandingPad(BB);
785
786    // Before doing SelectionDAG ISel, see if FastISel has been requested.
787    if (FastIS && !SuppressFastISel) {
788      // Emit code for any incoming arguments. This must happen before
789      // beginning FastISel on the entry block.
790      if (LLVMBB == &Fn.getEntryBlock()) {
791        CurDAG->setRoot(SDB->getControlRoot());
792        BB = CodeGenAndEmitDAG(BB);
793        SDB->clear();
794      }
795      FastIS->startNewBlock(BB);
796      // Do FastISel on as many instructions as possible.
797      for (; BI != End; ++BI) {
798        // Just before the terminator instruction, insert instructions to
799        // feed PHI nodes in successor blocks.
800        if (isa<TerminatorInst>(BI))
801          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
802            ++NumFastIselFailures;
803            ResetDebugLoc(SDB, FastIS);
804            if (EnableFastISelVerbose || EnableFastISelAbort) {
805              dbgs() << "FastISel miss: ";
806              BI->dump();
807            }
808            assert(!EnableFastISelAbort &&
809                   "FastISel didn't handle a PHI in a successor");
810            break;
811          }
812
813        SetDebugLoc(BI, SDB, FastIS, MF);
814
815        // Try to select the instruction with FastISel.
816        if (FastIS->SelectInstruction(BI)) {
817          ResetDebugLoc(SDB, FastIS);
818          continue;
819        }
820
821        // Clear out the debug location so that it doesn't carry over to
822        // unrelated instructions.
823        ResetDebugLoc(SDB, FastIS);
824
825        // Then handle certain instructions as single-LLVM-Instruction blocks.
826        if (isa<CallInst>(BI)) {
827          ++NumFastIselFailures;
828          if (EnableFastISelVerbose || EnableFastISelAbort) {
829            dbgs() << "FastISel missed call: ";
830            BI->dump();
831          }
832
833          if (!BI->getType()->isVoidTy() && !BI->use_empty()) {
834            unsigned &R = FuncInfo->ValueMap[BI];
835            if (!R)
836              R = FuncInfo->CreateRegForValue(BI);
837          }
838
839          bool HadTailCall = false;
840          BB = SelectBasicBlock(BB, LLVMBB, BI, llvm::next(BI), HadTailCall);
841
842          // If the call was emitted as a tail call, we're done with the block.
843          if (HadTailCall) {
844            BI = End;
845            break;
846          }
847
848          // If the instruction was codegen'd with multiple blocks,
849          // inform the FastISel object where to resume inserting.
850          FastIS->setCurrentBlock(BB);
851          continue;
852        }
853
854        // Otherwise, give up on FastISel for the rest of the block.
855        // For now, be a little lenient about non-branch terminators.
856        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
857          ++NumFastIselFailures;
858          if (EnableFastISelVerbose || EnableFastISelAbort) {
859            dbgs() << "FastISel miss: ";
860            BI->dump();
861          }
862          if (EnableFastISelAbort)
863            // The "fast" selector couldn't handle something and bailed.
864            // For the purpose of debugging, just abort.
865            llvm_unreachable("FastISel didn't select the entire block");
866        }
867        break;
868      }
869    }
870
871    // Run SelectionDAG instruction selection on the remainder of the block
872    // not handled by FastISel. If FastISel is not run, this is the entire
873    // block.
874    if (BI != End) {
875      bool HadTailCall;
876      BB = SelectBasicBlock(BB, LLVMBB, BI, End, HadTailCall);
877    }
878
879    FinishBasicBlock(BB);
880  }
881
882  delete FastIS;
883}
884
885void
886SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
887
888  DEBUG(dbgs() << "Target-post-processed machine code:\n");
889  DEBUG(BB->dump());
890
891  DEBUG(dbgs() << "Total amount of phi nodes to update: "
892               << SDB->PHINodesToUpdate.size() << "\n");
893  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
894          dbgs() << "Node " << i << " : ("
895                 << SDB->PHINodesToUpdate[i].first
896                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
897
898  // Next, now that we know what the last MBB the LLVM BB expanded is, update
899  // PHI nodes in successors.
900  if (SDB->SwitchCases.empty() &&
901      SDB->JTCases.empty() &&
902      SDB->BitTestCases.empty()) {
903    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
904      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
905      assert(PHI->isPHI() &&
906             "This is not a machine PHI node that we are updating!");
907      if (!BB->isSuccessor(PHI->getParent()))
908        continue;
909      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
910                                                false));
911      PHI->addOperand(MachineOperand::CreateMBB(BB));
912    }
913    SDB->PHINodesToUpdate.clear();
914    return;
915  }
916
917  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
918    // Lower header first, if it wasn't already lowered
919    if (!SDB->BitTestCases[i].Emitted) {
920      // Set the current basic block to the mbb we wish to insert the code into
921      BB = SDB->BitTestCases[i].Parent;
922      // Emit the code
923      SDB->visitBitTestHeader(SDB->BitTestCases[i], BB);
924      CurDAG->setRoot(SDB->getRoot());
925      BB = CodeGenAndEmitDAG(BB);
926      SDB->clear();
927    }
928
929    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
930      // Set the current basic block to the mbb we wish to insert the code into
931      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
932      // Emit the code
933      if (j+1 != ej)
934        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
935                              SDB->BitTestCases[i].Reg,
936                              SDB->BitTestCases[i].Cases[j],
937                              BB);
938      else
939        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
940                              SDB->BitTestCases[i].Reg,
941                              SDB->BitTestCases[i].Cases[j],
942                              BB);
943
944
945      CurDAG->setRoot(SDB->getRoot());
946      BB = CodeGenAndEmitDAG(BB);
947      SDB->clear();
948    }
949
950    // Update PHI Nodes
951    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
952      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
953      MachineBasicBlock *PHIBB = PHI->getParent();
954      assert(PHI->isPHI() &&
955             "This is not a machine PHI node that we are updating!");
956      // This is "default" BB. We have two jumps to it. From "header" BB and
957      // from last "case" BB.
958      if (PHIBB == SDB->BitTestCases[i].Default) {
959        PHI->addOperand(MachineOperand::
960                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
961        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
962        PHI->addOperand(MachineOperand::
963                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
964        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
965                                                  back().ThisBB));
966      }
967      // One of "cases" BB.
968      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
969           j != ej; ++j) {
970        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
971        if (cBB->isSuccessor(PHIBB)) {
972          PHI->addOperand(MachineOperand::
973                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
974          PHI->addOperand(MachineOperand::CreateMBB(cBB));
975        }
976      }
977    }
978  }
979  SDB->BitTestCases.clear();
980
981  // If the JumpTable record is filled in, then we need to emit a jump table.
982  // Updating the PHI nodes is tricky in this case, since we need to determine
983  // whether the PHI is a successor of the range check MBB or the jump table MBB
984  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
985    // Lower header first, if it wasn't already lowered
986    if (!SDB->JTCases[i].first.Emitted) {
987      // Set the current basic block to the mbb we wish to insert the code into
988      BB = SDB->JTCases[i].first.HeaderBB;
989      // Emit the code
990      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
991                                BB);
992      CurDAG->setRoot(SDB->getRoot());
993      BB = CodeGenAndEmitDAG(BB);
994      SDB->clear();
995    }
996
997    // Set the current basic block to the mbb we wish to insert the code into
998    BB = SDB->JTCases[i].second.MBB;
999    // Emit the code
1000    SDB->visitJumpTable(SDB->JTCases[i].second);
1001    CurDAG->setRoot(SDB->getRoot());
1002    BB = CodeGenAndEmitDAG(BB);
1003    SDB->clear();
1004
1005    // Update PHI Nodes
1006    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1007      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1008      MachineBasicBlock *PHIBB = PHI->getParent();
1009      assert(PHI->isPHI() &&
1010             "This is not a machine PHI node that we are updating!");
1011      // "default" BB. We can go there only from header BB.
1012      if (PHIBB == SDB->JTCases[i].second.Default) {
1013        PHI->addOperand
1014          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1015        PHI->addOperand
1016          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1017      }
1018      // JT BB. Just iterate over successors here
1019      if (BB->isSuccessor(PHIBB)) {
1020        PHI->addOperand
1021          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1022        PHI->addOperand(MachineOperand::CreateMBB(BB));
1023      }
1024    }
1025  }
1026  SDB->JTCases.clear();
1027
1028  // If the switch block involved a branch to one of the actual successors, we
1029  // need to update PHI nodes in that block.
1030  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1031    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1032    assert(PHI->isPHI() &&
1033           "This is not a machine PHI node that we are updating!");
1034    if (BB->isSuccessor(PHI->getParent())) {
1035      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1036                                                false));
1037      PHI->addOperand(MachineOperand::CreateMBB(BB));
1038    }
1039  }
1040
1041  // If we generated any switch lowering information, build and codegen any
1042  // additional DAGs necessary.
1043  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1044    // Set the current basic block to the mbb we wish to insert the code into
1045    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1046
1047    // Emit the code
1048    SDB->visitSwitchCase(SDB->SwitchCases[i], BB);
1049    CurDAG->setRoot(SDB->getRoot());
1050    BB = CodeGenAndEmitDAG(BB);
1051
1052    // Handle any PHI nodes in successors of this chunk, as if we were coming
1053    // from the original BB before switch expansion.  Note that PHI nodes can
1054    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1055    // handle them the right number of times.
1056    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1057      // If new BB's are created during scheduling, the edges may have been
1058      // updated. That is, the edge from ThisBB to BB may have been split and
1059      // BB's predecessor is now another block.
1060      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1061        SDB->EdgeMapping.find(BB);
1062      if (EI != SDB->EdgeMapping.end())
1063        ThisBB = EI->second;
1064
1065      // BB may have been removed from the CFG if a branch was constant folded.
1066      if (ThisBB->isSuccessor(BB)) {
1067        for (MachineBasicBlock::iterator Phi = BB->begin();
1068             Phi != BB->end() && Phi->isPHI();
1069             ++Phi) {
1070          // This value for this PHI node is recorded in PHINodesToUpdate.
1071          for (unsigned pn = 0; ; ++pn) {
1072            assert(pn != SDB->PHINodesToUpdate.size() &&
1073                   "Didn't find PHI entry!");
1074            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1075              Phi->addOperand(MachineOperand::
1076                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1077                                        false));
1078              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1079              break;
1080            }
1081          }
1082        }
1083      }
1084
1085      // Don't process RHS if same block as LHS.
1086      if (BB == SDB->SwitchCases[i].FalseBB)
1087        SDB->SwitchCases[i].FalseBB = 0;
1088
1089      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1090      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1091      SDB->SwitchCases[i].FalseBB = 0;
1092    }
1093    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1094    SDB->clear();
1095  }
1096  SDB->SwitchCases.clear();
1097
1098  SDB->PHINodesToUpdate.clear();
1099}
1100
1101
1102/// Create the scheduler. If a specific scheduler was specified
1103/// via the SchedulerRegistry, use it, otherwise select the
1104/// one preferred by the target.
1105///
1106ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1107  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1108
1109  if (!Ctor) {
1110    Ctor = ISHeuristic;
1111    RegisterScheduler::setDefault(Ctor);
1112  }
1113
1114  return Ctor(this, OptLevel);
1115}
1116
1117ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1118  return new ScheduleHazardRecognizer();
1119}
1120
1121//===----------------------------------------------------------------------===//
1122// Helper functions used by the generated instruction selector.
1123//===----------------------------------------------------------------------===//
1124// Calls to these methods are generated by tblgen.
1125
1126/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1127/// the dag combiner simplified the 255, we still want to match.  RHS is the
1128/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1129/// specified in the .td file (e.g. 255).
1130bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1131                                    int64_t DesiredMaskS) const {
1132  const APInt &ActualMask = RHS->getAPIntValue();
1133  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1134
1135  // If the actual mask exactly matches, success!
1136  if (ActualMask == DesiredMask)
1137    return true;
1138
1139  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1140  if (ActualMask.intersects(~DesiredMask))
1141    return false;
1142
1143  // Otherwise, the DAG Combiner may have proven that the value coming in is
1144  // either already zero or is not demanded.  Check for known zero input bits.
1145  APInt NeededMask = DesiredMask & ~ActualMask;
1146  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1147    return true;
1148
1149  // TODO: check to see if missing bits are just not demanded.
1150
1151  // Otherwise, this pattern doesn't match.
1152  return false;
1153}
1154
1155/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1156/// the dag combiner simplified the 255, we still want to match.  RHS is the
1157/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1158/// specified in the .td file (e.g. 255).
1159bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1160                                   int64_t DesiredMaskS) const {
1161  const APInt &ActualMask = RHS->getAPIntValue();
1162  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1163
1164  // If the actual mask exactly matches, success!
1165  if (ActualMask == DesiredMask)
1166    return true;
1167
1168  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1169  if (ActualMask.intersects(~DesiredMask))
1170    return false;
1171
1172  // Otherwise, the DAG Combiner may have proven that the value coming in is
1173  // either already zero or is not demanded.  Check for known zero input bits.
1174  APInt NeededMask = DesiredMask & ~ActualMask;
1175
1176  APInt KnownZero, KnownOne;
1177  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1178
1179  // If all the missing bits in the or are already known to be set, match!
1180  if ((NeededMask & KnownOne) == NeededMask)
1181    return true;
1182
1183  // TODO: check to see if missing bits are just not demanded.
1184
1185  // Otherwise, this pattern doesn't match.
1186  return false;
1187}
1188
1189
1190/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1191/// by tblgen.  Others should not call it.
1192void SelectionDAGISel::
1193SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1194  std::vector<SDValue> InOps;
1195  std::swap(InOps, Ops);
1196
1197  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1198  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1199  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1200
1201  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1202  if (InOps[e-1].getValueType() == MVT::Flag)
1203    --e;  // Don't process a flag operand if it is here.
1204
1205  while (i != e) {
1206    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1207    if (!InlineAsm::isMemKind(Flags)) {
1208      // Just skip over this operand, copying the operands verbatim.
1209      Ops.insert(Ops.end(), InOps.begin()+i,
1210                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1211      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1212    } else {
1213      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1214             "Memory operand with multiple values?");
1215      // Otherwise, this is a memory operand.  Ask the target to select it.
1216      std::vector<SDValue> SelOps;
1217      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1218        report_fatal_error("Could not match memory address.  Inline asm"
1219                           " failure!");
1220
1221      // Add this to the output node.
1222      unsigned NewFlags =
1223        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1224      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1225      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1226      i += 2;
1227    }
1228  }
1229
1230  // Add the flag input back if present.
1231  if (e != InOps.size())
1232    Ops.push_back(InOps.back());
1233}
1234
1235/// findFlagUse - Return use of EVT::Flag value produced by the specified
1236/// SDNode.
1237///
1238static SDNode *findFlagUse(SDNode *N) {
1239  unsigned FlagResNo = N->getNumValues()-1;
1240  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1241    SDUse &Use = I.getUse();
1242    if (Use.getResNo() == FlagResNo)
1243      return Use.getUser();
1244  }
1245  return NULL;
1246}
1247
1248/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1249/// This function recursively traverses up the operand chain, ignoring
1250/// certain nodes.
1251static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1252                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1253                          bool IgnoreChains) {
1254  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1255  // greater than all of its (recursive) operands.  If we scan to a point where
1256  // 'use' is smaller than the node we're scanning for, then we know we will
1257  // never find it.
1258  //
1259  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1260  // happen because we scan down to newly selected nodes in the case of flag
1261  // uses.
1262  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1263    return false;
1264
1265  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1266  // won't fail if we scan it again.
1267  if (!Visited.insert(Use))
1268    return false;
1269
1270  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1271    // Ignore chain uses, they are validated by HandleMergeInputChains.
1272    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1273      continue;
1274
1275    SDNode *N = Use->getOperand(i).getNode();
1276    if (N == Def) {
1277      if (Use == ImmedUse || Use == Root)
1278        continue;  // We are not looking for immediate use.
1279      assert(N != Root);
1280      return true;
1281    }
1282
1283    // Traverse up the operand chain.
1284    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1285      return true;
1286  }
1287  return false;
1288}
1289
1290/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1291/// operand node N of U during instruction selection that starts at Root.
1292bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1293                                          SDNode *Root) const {
1294  if (OptLevel == CodeGenOpt::None) return false;
1295  return N.hasOneUse();
1296}
1297
1298/// IsLegalToFold - Returns true if the specific operand node N of
1299/// U can be folded during instruction selection that starts at Root.
1300bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1301                                     CodeGenOpt::Level OptLevel,
1302                                     bool IgnoreChains) {
1303  if (OptLevel == CodeGenOpt::None) return false;
1304
1305  // If Root use can somehow reach N through a path that that doesn't contain
1306  // U then folding N would create a cycle. e.g. In the following
1307  // diagram, Root can reach N through X. If N is folded into into Root, then
1308  // X is both a predecessor and a successor of U.
1309  //
1310  //          [N*]           //
1311  //         ^   ^           //
1312  //        /     \          //
1313  //      [U*]    [X]?       //
1314  //        ^     ^          //
1315  //         \   /           //
1316  //          \ /            //
1317  //         [Root*]         //
1318  //
1319  // * indicates nodes to be folded together.
1320  //
1321  // If Root produces a flag, then it gets (even more) interesting. Since it
1322  // will be "glued" together with its flag use in the scheduler, we need to
1323  // check if it might reach N.
1324  //
1325  //          [N*]           //
1326  //         ^   ^           //
1327  //        /     \          //
1328  //      [U*]    [X]?       //
1329  //        ^       ^        //
1330  //         \       \       //
1331  //          \      |       //
1332  //         [Root*] |       //
1333  //          ^      |       //
1334  //          f      |       //
1335  //          |      /       //
1336  //         [Y]    /        //
1337  //           ^   /         //
1338  //           f  /          //
1339  //           | /           //
1340  //          [FU]           //
1341  //
1342  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1343  // (call it Fold), then X is a predecessor of FU and a successor of
1344  // Fold. But since Fold and FU are flagged together, this will create
1345  // a cycle in the scheduling graph.
1346
1347  // If the node has flags, walk down the graph to the "lowest" node in the
1348  // flagged set.
1349  EVT VT = Root->getValueType(Root->getNumValues()-1);
1350  while (VT == MVT::Flag) {
1351    SDNode *FU = findFlagUse(Root);
1352    if (FU == NULL)
1353      break;
1354    Root = FU;
1355    VT = Root->getValueType(Root->getNumValues()-1);
1356
1357    // If our query node has a flag result with a use, we've walked up it.  If
1358    // the user (which has already been selected) has a chain or indirectly uses
1359    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1360    // this, we cannot ignore chains in this predicate.
1361    IgnoreChains = false;
1362  }
1363
1364
1365  SmallPtrSet<SDNode*, 16> Visited;
1366  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1367}
1368
1369SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1370  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1371  SelectInlineAsmMemoryOperands(Ops);
1372
1373  std::vector<EVT> VTs;
1374  VTs.push_back(MVT::Other);
1375  VTs.push_back(MVT::Flag);
1376  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1377                                VTs, &Ops[0], Ops.size());
1378  New->setNodeId(-1);
1379  return New.getNode();
1380}
1381
1382SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1383  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1384}
1385
1386/// GetVBR - decode a vbr encoding whose top bit is set.
1387ALWAYS_INLINE static uint64_t
1388GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1389  assert(Val >= 128 && "Not a VBR");
1390  Val &= 127;  // Remove first vbr bit.
1391
1392  unsigned Shift = 7;
1393  uint64_t NextBits;
1394  do {
1395    NextBits = MatcherTable[Idx++];
1396    Val |= (NextBits&127) << Shift;
1397    Shift += 7;
1398  } while (NextBits & 128);
1399
1400  return Val;
1401}
1402
1403
1404/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1405/// interior flag and chain results to use the new flag and chain results.
1406void SelectionDAGISel::
1407UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1408                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1409                     SDValue InputFlag,
1410                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1411                     bool isMorphNodeTo) {
1412  SmallVector<SDNode*, 4> NowDeadNodes;
1413
1414  ISelUpdater ISU(ISelPosition);
1415
1416  // Now that all the normal results are replaced, we replace the chain and
1417  // flag results if present.
1418  if (!ChainNodesMatched.empty()) {
1419    assert(InputChain.getNode() != 0 &&
1420           "Matched input chains but didn't produce a chain");
1421    // Loop over all of the nodes we matched that produced a chain result.
1422    // Replace all the chain results with the final chain we ended up with.
1423    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1424      SDNode *ChainNode = ChainNodesMatched[i];
1425
1426      // If this node was already deleted, don't look at it.
1427      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1428        continue;
1429
1430      // Don't replace the results of the root node if we're doing a
1431      // MorphNodeTo.
1432      if (ChainNode == NodeToMatch && isMorphNodeTo)
1433        continue;
1434
1435      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1436      if (ChainVal.getValueType() == MVT::Flag)
1437        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1438      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1439      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1440
1441      // If the node became dead and we haven't already seen it, delete it.
1442      if (ChainNode->use_empty() &&
1443          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1444        NowDeadNodes.push_back(ChainNode);
1445    }
1446  }
1447
1448  // If the result produces a flag, update any flag results in the matched
1449  // pattern with the flag result.
1450  if (InputFlag.getNode() != 0) {
1451    // Handle any interior nodes explicitly marked.
1452    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1453      SDNode *FRN = FlagResultNodesMatched[i];
1454
1455      // If this node was already deleted, don't look at it.
1456      if (FRN->getOpcode() == ISD::DELETED_NODE)
1457        continue;
1458
1459      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1460             "Doesn't have a flag result");
1461      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1462                                        InputFlag, &ISU);
1463
1464      // If the node became dead and we haven't already seen it, delete it.
1465      if (FRN->use_empty() &&
1466          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1467        NowDeadNodes.push_back(FRN);
1468    }
1469  }
1470
1471  if (!NowDeadNodes.empty())
1472    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1473
1474  DEBUG(errs() << "ISEL: Match complete!\n");
1475}
1476
1477enum ChainResult {
1478  CR_Simple,
1479  CR_InducesCycle,
1480  CR_LeadsToInteriorNode
1481};
1482
1483/// WalkChainUsers - Walk down the users of the specified chained node that is
1484/// part of the pattern we're matching, looking at all of the users we find.
1485/// This determines whether something is an interior node, whether we have a
1486/// non-pattern node in between two pattern nodes (which prevent folding because
1487/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1488/// between pattern nodes (in which case the TF becomes part of the pattern).
1489///
1490/// The walk we do here is guaranteed to be small because we quickly get down to
1491/// already selected nodes "below" us.
1492static ChainResult
1493WalkChainUsers(SDNode *ChainedNode,
1494               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1495               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1496  ChainResult Result = CR_Simple;
1497
1498  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1499         E = ChainedNode->use_end(); UI != E; ++UI) {
1500    // Make sure the use is of the chain, not some other value we produce.
1501    if (UI.getUse().getValueType() != MVT::Other) continue;
1502
1503    SDNode *User = *UI;
1504
1505    // If we see an already-selected machine node, then we've gone beyond the
1506    // pattern that we're selecting down into the already selected chunk of the
1507    // DAG.
1508    if (User->isMachineOpcode() ||
1509        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1510      continue;
1511
1512    if (User->getOpcode() == ISD::CopyToReg ||
1513        User->getOpcode() == ISD::CopyFromReg ||
1514        User->getOpcode() == ISD::INLINEASM ||
1515        User->getOpcode() == ISD::EH_LABEL) {
1516      // If their node ID got reset to -1 then they've already been selected.
1517      // Treat them like a MachineOpcode.
1518      if (User->getNodeId() == -1)
1519        continue;
1520    }
1521
1522    // If we have a TokenFactor, we handle it specially.
1523    if (User->getOpcode() != ISD::TokenFactor) {
1524      // If the node isn't a token factor and isn't part of our pattern, then it
1525      // must be a random chained node in between two nodes we're selecting.
1526      // This happens when we have something like:
1527      //   x = load ptr
1528      //   call
1529      //   y = x+4
1530      //   store y -> ptr
1531      // Because we structurally match the load/store as a read/modify/write,
1532      // but the call is chained between them.  We cannot fold in this case
1533      // because it would induce a cycle in the graph.
1534      if (!std::count(ChainedNodesInPattern.begin(),
1535                      ChainedNodesInPattern.end(), User))
1536        return CR_InducesCycle;
1537
1538      // Otherwise we found a node that is part of our pattern.  For example in:
1539      //   x = load ptr
1540      //   y = x+4
1541      //   store y -> ptr
1542      // This would happen when we're scanning down from the load and see the
1543      // store as a user.  Record that there is a use of ChainedNode that is
1544      // part of the pattern and keep scanning uses.
1545      Result = CR_LeadsToInteriorNode;
1546      InteriorChainedNodes.push_back(User);
1547      continue;
1548    }
1549
1550    // If we found a TokenFactor, there are two cases to consider: first if the
1551    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1552    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1553    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1554    //     [Load chain]
1555    //         ^
1556    //         |
1557    //       [Load]
1558    //       ^    ^
1559    //       |    \                    DAG's like cheese
1560    //      /       \                       do you?
1561    //     /         |
1562    // [TokenFactor] [Op]
1563    //     ^          ^
1564    //     |          |
1565    //      \        /
1566    //       \      /
1567    //       [Store]
1568    //
1569    // In this case, the TokenFactor becomes part of our match and we rewrite it
1570    // as a new TokenFactor.
1571    //
1572    // To distinguish these two cases, do a recursive walk down the uses.
1573    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1574    case CR_Simple:
1575      // If the uses of the TokenFactor are just already-selected nodes, ignore
1576      // it, it is "below" our pattern.
1577      continue;
1578    case CR_InducesCycle:
1579      // If the uses of the TokenFactor lead to nodes that are not part of our
1580      // pattern that are not selected, folding would turn this into a cycle,
1581      // bail out now.
1582      return CR_InducesCycle;
1583    case CR_LeadsToInteriorNode:
1584      break;  // Otherwise, keep processing.
1585    }
1586
1587    // Okay, we know we're in the interesting interior case.  The TokenFactor
1588    // is now going to be considered part of the pattern so that we rewrite its
1589    // uses (it may have uses that are not part of the pattern) with the
1590    // ultimate chain result of the generated code.  We will also add its chain
1591    // inputs as inputs to the ultimate TokenFactor we create.
1592    Result = CR_LeadsToInteriorNode;
1593    ChainedNodesInPattern.push_back(User);
1594    InteriorChainedNodes.push_back(User);
1595    continue;
1596  }
1597
1598  return Result;
1599}
1600
1601/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1602/// operation for when the pattern matched at least one node with a chains.  The
1603/// input vector contains a list of all of the chained nodes that we match.  We
1604/// must determine if this is a valid thing to cover (i.e. matching it won't
1605/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1606/// be used as the input node chain for the generated nodes.
1607static SDValue
1608HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1609                       SelectionDAG *CurDAG) {
1610  // Walk all of the chained nodes we've matched, recursively scanning down the
1611  // users of the chain result. This adds any TokenFactor nodes that are caught
1612  // in between chained nodes to the chained and interior nodes list.
1613  SmallVector<SDNode*, 3> InteriorChainedNodes;
1614  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1615    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1616                       InteriorChainedNodes) == CR_InducesCycle)
1617      return SDValue(); // Would induce a cycle.
1618  }
1619
1620  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1621  // that we are interested in.  Form our input TokenFactor node.
1622  SmallVector<SDValue, 3> InputChains;
1623  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1624    // Add the input chain of this node to the InputChains list (which will be
1625    // the operands of the generated TokenFactor) if it's not an interior node.
1626    SDNode *N = ChainNodesMatched[i];
1627    if (N->getOpcode() != ISD::TokenFactor) {
1628      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1629        continue;
1630
1631      // Otherwise, add the input chain.
1632      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1633      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1634      InputChains.push_back(InChain);
1635      continue;
1636    }
1637
1638    // If we have a token factor, we want to add all inputs of the token factor
1639    // that are not part of the pattern we're matching.
1640    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1641      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1642                      N->getOperand(op).getNode()))
1643        InputChains.push_back(N->getOperand(op));
1644    }
1645  }
1646
1647  SDValue Res;
1648  if (InputChains.size() == 1)
1649    return InputChains[0];
1650  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1651                         MVT::Other, &InputChains[0], InputChains.size());
1652}
1653
1654/// MorphNode - Handle morphing a node in place for the selector.
1655SDNode *SelectionDAGISel::
1656MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1657          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1658  // It is possible we're using MorphNodeTo to replace a node with no
1659  // normal results with one that has a normal result (or we could be
1660  // adding a chain) and the input could have flags and chains as well.
1661  // In this case we need to shift the operands down.
1662  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1663  // than the old isel though.
1664  int OldFlagResultNo = -1, OldChainResultNo = -1;
1665
1666  unsigned NTMNumResults = Node->getNumValues();
1667  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1668    OldFlagResultNo = NTMNumResults-1;
1669    if (NTMNumResults != 1 &&
1670        Node->getValueType(NTMNumResults-2) == MVT::Other)
1671      OldChainResultNo = NTMNumResults-2;
1672  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1673    OldChainResultNo = NTMNumResults-1;
1674
1675  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1676  // that this deletes operands of the old node that become dead.
1677  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1678
1679  // MorphNodeTo can operate in two ways: if an existing node with the
1680  // specified operands exists, it can just return it.  Otherwise, it
1681  // updates the node in place to have the requested operands.
1682  if (Res == Node) {
1683    // If we updated the node in place, reset the node ID.  To the isel,
1684    // this should be just like a newly allocated machine node.
1685    Res->setNodeId(-1);
1686  }
1687
1688  unsigned ResNumResults = Res->getNumValues();
1689  // Move the flag if needed.
1690  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1691      (unsigned)OldFlagResultNo != ResNumResults-1)
1692    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1693                                      SDValue(Res, ResNumResults-1));
1694
1695  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1696  --ResNumResults;
1697
1698  // Move the chain reference if needed.
1699  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1700      (unsigned)OldChainResultNo != ResNumResults-1)
1701    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1702                                      SDValue(Res, ResNumResults-1));
1703
1704  // Otherwise, no replacement happened because the node already exists. Replace
1705  // Uses of the old node with the new one.
1706  if (Res != Node)
1707    CurDAG->ReplaceAllUsesWith(Node, Res);
1708
1709  return Res;
1710}
1711
1712/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1713ALWAYS_INLINE static bool
1714CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1715          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1716  // Accept if it is exactly the same as a previously recorded node.
1717  unsigned RecNo = MatcherTable[MatcherIndex++];
1718  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1719  return N == RecordedNodes[RecNo];
1720}
1721
1722/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1723ALWAYS_INLINE static bool
1724CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1725                      SelectionDAGISel &SDISel) {
1726  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1727}
1728
1729/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1730ALWAYS_INLINE static bool
1731CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1732                   SelectionDAGISel &SDISel, SDNode *N) {
1733  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1734}
1735
1736ALWAYS_INLINE static bool
1737CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1738            SDNode *N) {
1739  uint16_t Opc = MatcherTable[MatcherIndex++];
1740  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1741  return N->getOpcode() == Opc;
1742}
1743
1744ALWAYS_INLINE static bool
1745CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1746          SDValue N, const TargetLowering &TLI) {
1747  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1748  if (N.getValueType() == VT) return true;
1749
1750  // Handle the case when VT is iPTR.
1751  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1752}
1753
1754ALWAYS_INLINE static bool
1755CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1756               SDValue N, const TargetLowering &TLI,
1757               unsigned ChildNo) {
1758  if (ChildNo >= N.getNumOperands())
1759    return false;  // Match fails if out of range child #.
1760  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1761}
1762
1763
1764ALWAYS_INLINE static bool
1765CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1766              SDValue N) {
1767  return cast<CondCodeSDNode>(N)->get() ==
1768      (ISD::CondCode)MatcherTable[MatcherIndex++];
1769}
1770
1771ALWAYS_INLINE static bool
1772CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1773               SDValue N, const TargetLowering &TLI) {
1774  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1775  if (cast<VTSDNode>(N)->getVT() == VT)
1776    return true;
1777
1778  // Handle the case when VT is iPTR.
1779  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1780}
1781
1782ALWAYS_INLINE static bool
1783CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1784             SDValue N) {
1785  int64_t Val = MatcherTable[MatcherIndex++];
1786  if (Val & 128)
1787    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1788
1789  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1790  return C != 0 && C->getSExtValue() == Val;
1791}
1792
1793ALWAYS_INLINE static bool
1794CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1795            SDValue N, SelectionDAGISel &SDISel) {
1796  int64_t Val = MatcherTable[MatcherIndex++];
1797  if (Val & 128)
1798    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1799
1800  if (N->getOpcode() != ISD::AND) return false;
1801
1802  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1803  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1804}
1805
1806ALWAYS_INLINE static bool
1807CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1808           SDValue N, SelectionDAGISel &SDISel) {
1809  int64_t Val = MatcherTable[MatcherIndex++];
1810  if (Val & 128)
1811    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1812
1813  if (N->getOpcode() != ISD::OR) return false;
1814
1815  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1816  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1817}
1818
1819/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1820/// scope, evaluate the current node.  If the current predicate is known to
1821/// fail, set Result=true and return anything.  If the current predicate is
1822/// known to pass, set Result=false and return the MatcherIndex to continue
1823/// with.  If the current predicate is unknown, set Result=false and return the
1824/// MatcherIndex to continue with.
1825static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1826                                       unsigned Index, SDValue N,
1827                                       bool &Result, SelectionDAGISel &SDISel,
1828                                       SmallVectorImpl<SDValue> &RecordedNodes){
1829  switch (Table[Index++]) {
1830  default:
1831    Result = false;
1832    return Index-1;  // Could not evaluate this predicate.
1833  case SelectionDAGISel::OPC_CheckSame:
1834    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1835    return Index;
1836  case SelectionDAGISel::OPC_CheckPatternPredicate:
1837    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1838    return Index;
1839  case SelectionDAGISel::OPC_CheckPredicate:
1840    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1841    return Index;
1842  case SelectionDAGISel::OPC_CheckOpcode:
1843    Result = !::CheckOpcode(Table, Index, N.getNode());
1844    return Index;
1845  case SelectionDAGISel::OPC_CheckType:
1846    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1847    return Index;
1848  case SelectionDAGISel::OPC_CheckChild0Type:
1849  case SelectionDAGISel::OPC_CheckChild1Type:
1850  case SelectionDAGISel::OPC_CheckChild2Type:
1851  case SelectionDAGISel::OPC_CheckChild3Type:
1852  case SelectionDAGISel::OPC_CheckChild4Type:
1853  case SelectionDAGISel::OPC_CheckChild5Type:
1854  case SelectionDAGISel::OPC_CheckChild6Type:
1855  case SelectionDAGISel::OPC_CheckChild7Type:
1856    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1857                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1858    return Index;
1859  case SelectionDAGISel::OPC_CheckCondCode:
1860    Result = !::CheckCondCode(Table, Index, N);
1861    return Index;
1862  case SelectionDAGISel::OPC_CheckValueType:
1863    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1864    return Index;
1865  case SelectionDAGISel::OPC_CheckInteger:
1866    Result = !::CheckInteger(Table, Index, N);
1867    return Index;
1868  case SelectionDAGISel::OPC_CheckAndImm:
1869    Result = !::CheckAndImm(Table, Index, N, SDISel);
1870    return Index;
1871  case SelectionDAGISel::OPC_CheckOrImm:
1872    Result = !::CheckOrImm(Table, Index, N, SDISel);
1873    return Index;
1874  }
1875}
1876
1877namespace {
1878
1879struct MatchScope {
1880  /// FailIndex - If this match fails, this is the index to continue with.
1881  unsigned FailIndex;
1882
1883  /// NodeStack - The node stack when the scope was formed.
1884  SmallVector<SDValue, 4> NodeStack;
1885
1886  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1887  unsigned NumRecordedNodes;
1888
1889  /// NumMatchedMemRefs - The number of matched memref entries.
1890  unsigned NumMatchedMemRefs;
1891
1892  /// InputChain/InputFlag - The current chain/flag
1893  SDValue InputChain, InputFlag;
1894
1895  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1896  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1897};
1898
1899}
1900
1901SDNode *SelectionDAGISel::
1902SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1903                 unsigned TableSize) {
1904  // FIXME: Should these even be selected?  Handle these cases in the caller?
1905  switch (NodeToMatch->getOpcode()) {
1906  default:
1907    break;
1908  case ISD::EntryToken:       // These nodes remain the same.
1909  case ISD::BasicBlock:
1910  case ISD::Register:
1911  //case ISD::VALUETYPE:
1912  //case ISD::CONDCODE:
1913  case ISD::HANDLENODE:
1914  case ISD::MDNODE_SDNODE:
1915  case ISD::TargetConstant:
1916  case ISD::TargetConstantFP:
1917  case ISD::TargetConstantPool:
1918  case ISD::TargetFrameIndex:
1919  case ISD::TargetExternalSymbol:
1920  case ISD::TargetBlockAddress:
1921  case ISD::TargetJumpTable:
1922  case ISD::TargetGlobalTLSAddress:
1923  case ISD::TargetGlobalAddress:
1924  case ISD::TokenFactor:
1925  case ISD::CopyFromReg:
1926  case ISD::CopyToReg:
1927  case ISD::EH_LABEL:
1928    NodeToMatch->setNodeId(-1); // Mark selected.
1929    return 0;
1930  case ISD::AssertSext:
1931  case ISD::AssertZext:
1932    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1933                                      NodeToMatch->getOperand(0));
1934    return 0;
1935  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1936  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1937  }
1938
1939  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1940
1941  // Set up the node stack with NodeToMatch as the only node on the stack.
1942  SmallVector<SDValue, 8> NodeStack;
1943  SDValue N = SDValue(NodeToMatch, 0);
1944  NodeStack.push_back(N);
1945
1946  // MatchScopes - Scopes used when matching, if a match failure happens, this
1947  // indicates where to continue checking.
1948  SmallVector<MatchScope, 8> MatchScopes;
1949
1950  // RecordedNodes - This is the set of nodes that have been recorded by the
1951  // state machine.
1952  SmallVector<SDValue, 8> RecordedNodes;
1953
1954  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1955  // pattern.
1956  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1957
1958  // These are the current input chain and flag for use when generating nodes.
1959  // Various Emit operations change these.  For example, emitting a copytoreg
1960  // uses and updates these.
1961  SDValue InputChain, InputFlag;
1962
1963  // ChainNodesMatched - If a pattern matches nodes that have input/output
1964  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1965  // which ones they are.  The result is captured into this list so that we can
1966  // update the chain results when the pattern is complete.
1967  SmallVector<SDNode*, 3> ChainNodesMatched;
1968  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1969
1970  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1971        NodeToMatch->dump(CurDAG);
1972        errs() << '\n');
1973
1974  // Determine where to start the interpreter.  Normally we start at opcode #0,
1975  // but if the state machine starts with an OPC_SwitchOpcode, then we
1976  // accelerate the first lookup (which is guaranteed to be hot) with the
1977  // OpcodeOffset table.
1978  unsigned MatcherIndex = 0;
1979
1980  if (!OpcodeOffset.empty()) {
1981    // Already computed the OpcodeOffset table, just index into it.
1982    if (N.getOpcode() < OpcodeOffset.size())
1983      MatcherIndex = OpcodeOffset[N.getOpcode()];
1984    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1985
1986  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1987    // Otherwise, the table isn't computed, but the state machine does start
1988    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1989    // is the first time we're selecting an instruction.
1990    unsigned Idx = 1;
1991    while (1) {
1992      // Get the size of this case.
1993      unsigned CaseSize = MatcherTable[Idx++];
1994      if (CaseSize & 128)
1995        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1996      if (CaseSize == 0) break;
1997
1998      // Get the opcode, add the index to the table.
1999      uint16_t Opc = MatcherTable[Idx++];
2000      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2001      if (Opc >= OpcodeOffset.size())
2002        OpcodeOffset.resize((Opc+1)*2);
2003      OpcodeOffset[Opc] = Idx;
2004      Idx += CaseSize;
2005    }
2006
2007    // Okay, do the lookup for the first opcode.
2008    if (N.getOpcode() < OpcodeOffset.size())
2009      MatcherIndex = OpcodeOffset[N.getOpcode()];
2010  }
2011
2012  while (1) {
2013    assert(MatcherIndex < TableSize && "Invalid index");
2014#ifndef NDEBUG
2015    unsigned CurrentOpcodeIndex = MatcherIndex;
2016#endif
2017    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2018    switch (Opcode) {
2019    case OPC_Scope: {
2020      // Okay, the semantics of this operation are that we should push a scope
2021      // then evaluate the first child.  However, pushing a scope only to have
2022      // the first check fail (which then pops it) is inefficient.  If we can
2023      // determine immediately that the first check (or first several) will
2024      // immediately fail, don't even bother pushing a scope for them.
2025      unsigned FailIndex;
2026
2027      while (1) {
2028        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2029        if (NumToSkip & 128)
2030          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2031        // Found the end of the scope with no match.
2032        if (NumToSkip == 0) {
2033          FailIndex = 0;
2034          break;
2035        }
2036
2037        FailIndex = MatcherIndex+NumToSkip;
2038
2039        unsigned MatcherIndexOfPredicate = MatcherIndex;
2040        (void)MatcherIndexOfPredicate; // silence warning.
2041
2042        // If we can't evaluate this predicate without pushing a scope (e.g. if
2043        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2044        // push the scope and evaluate the full predicate chain.
2045        bool Result;
2046        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2047                                              Result, *this, RecordedNodes);
2048        if (!Result)
2049          break;
2050
2051        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2052                     << "index " << MatcherIndexOfPredicate
2053                     << ", continuing at " << FailIndex << "\n");
2054        ++NumDAGIselRetries;
2055
2056        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2057        // move to the next case.
2058        MatcherIndex = FailIndex;
2059      }
2060
2061      // If the whole scope failed to match, bail.
2062      if (FailIndex == 0) break;
2063
2064      // Push a MatchScope which indicates where to go if the first child fails
2065      // to match.
2066      MatchScope NewEntry;
2067      NewEntry.FailIndex = FailIndex;
2068      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2069      NewEntry.NumRecordedNodes = RecordedNodes.size();
2070      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2071      NewEntry.InputChain = InputChain;
2072      NewEntry.InputFlag = InputFlag;
2073      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2074      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2075      MatchScopes.push_back(NewEntry);
2076      continue;
2077    }
2078    case OPC_RecordNode:
2079      // Remember this node, it may end up being an operand in the pattern.
2080      RecordedNodes.push_back(N);
2081      continue;
2082
2083    case OPC_RecordChild0: case OPC_RecordChild1:
2084    case OPC_RecordChild2: case OPC_RecordChild3:
2085    case OPC_RecordChild4: case OPC_RecordChild5:
2086    case OPC_RecordChild6: case OPC_RecordChild7: {
2087      unsigned ChildNo = Opcode-OPC_RecordChild0;
2088      if (ChildNo >= N.getNumOperands())
2089        break;  // Match fails if out of range child #.
2090
2091      RecordedNodes.push_back(N->getOperand(ChildNo));
2092      continue;
2093    }
2094    case OPC_RecordMemRef:
2095      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2096      continue;
2097
2098    case OPC_CaptureFlagInput:
2099      // If the current node has an input flag, capture it in InputFlag.
2100      if (N->getNumOperands() != 0 &&
2101          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2102        InputFlag = N->getOperand(N->getNumOperands()-1);
2103      continue;
2104
2105    case OPC_MoveChild: {
2106      unsigned ChildNo = MatcherTable[MatcherIndex++];
2107      if (ChildNo >= N.getNumOperands())
2108        break;  // Match fails if out of range child #.
2109      N = N.getOperand(ChildNo);
2110      NodeStack.push_back(N);
2111      continue;
2112    }
2113
2114    case OPC_MoveParent:
2115      // Pop the current node off the NodeStack.
2116      NodeStack.pop_back();
2117      assert(!NodeStack.empty() && "Node stack imbalance!");
2118      N = NodeStack.back();
2119      continue;
2120
2121    case OPC_CheckSame:
2122      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2123      continue;
2124    case OPC_CheckPatternPredicate:
2125      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2126      continue;
2127    case OPC_CheckPredicate:
2128      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2129                                N.getNode()))
2130        break;
2131      continue;
2132    case OPC_CheckComplexPat: {
2133      unsigned CPNum = MatcherTable[MatcherIndex++];
2134      unsigned RecNo = MatcherTable[MatcherIndex++];
2135      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2136      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2137                               RecordedNodes))
2138        break;
2139      continue;
2140    }
2141    case OPC_CheckOpcode:
2142      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2143      continue;
2144
2145    case OPC_CheckType:
2146      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2147      continue;
2148
2149    case OPC_SwitchOpcode: {
2150      unsigned CurNodeOpcode = N.getOpcode();
2151      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2152      unsigned CaseSize;
2153      while (1) {
2154        // Get the size of this case.
2155        CaseSize = MatcherTable[MatcherIndex++];
2156        if (CaseSize & 128)
2157          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2158        if (CaseSize == 0) break;
2159
2160        uint16_t Opc = MatcherTable[MatcherIndex++];
2161        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2162
2163        // If the opcode matches, then we will execute this case.
2164        if (CurNodeOpcode == Opc)
2165          break;
2166
2167        // Otherwise, skip over this case.
2168        MatcherIndex += CaseSize;
2169      }
2170
2171      // If no cases matched, bail out.
2172      if (CaseSize == 0) break;
2173
2174      // Otherwise, execute the case we found.
2175      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2176                   << " to " << MatcherIndex << "\n");
2177      continue;
2178    }
2179
2180    case OPC_SwitchType: {
2181      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2182      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2183      unsigned CaseSize;
2184      while (1) {
2185        // Get the size of this case.
2186        CaseSize = MatcherTable[MatcherIndex++];
2187        if (CaseSize & 128)
2188          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2189        if (CaseSize == 0) break;
2190
2191        MVT::SimpleValueType CaseVT =
2192          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2193        if (CaseVT == MVT::iPTR)
2194          CaseVT = TLI.getPointerTy().SimpleTy;
2195
2196        // If the VT matches, then we will execute this case.
2197        if (CurNodeVT == CaseVT)
2198          break;
2199
2200        // Otherwise, skip over this case.
2201        MatcherIndex += CaseSize;
2202      }
2203
2204      // If no cases matched, bail out.
2205      if (CaseSize == 0) break;
2206
2207      // Otherwise, execute the case we found.
2208      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2209                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2210      continue;
2211    }
2212    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2213    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2214    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2215    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2216      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2217                            Opcode-OPC_CheckChild0Type))
2218        break;
2219      continue;
2220    case OPC_CheckCondCode:
2221      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2222      continue;
2223    case OPC_CheckValueType:
2224      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2225      continue;
2226    case OPC_CheckInteger:
2227      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2228      continue;
2229    case OPC_CheckAndImm:
2230      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2231      continue;
2232    case OPC_CheckOrImm:
2233      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2234      continue;
2235
2236    case OPC_CheckFoldableChainNode: {
2237      assert(NodeStack.size() != 1 && "No parent node");
2238      // Verify that all intermediate nodes between the root and this one have
2239      // a single use.
2240      bool HasMultipleUses = false;
2241      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2242        if (!NodeStack[i].hasOneUse()) {
2243          HasMultipleUses = true;
2244          break;
2245        }
2246      if (HasMultipleUses) break;
2247
2248      // Check to see that the target thinks this is profitable to fold and that
2249      // we can fold it without inducing cycles in the graph.
2250      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2251                              NodeToMatch) ||
2252          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2253                         NodeToMatch, OptLevel,
2254                         true/*We validate our own chains*/))
2255        break;
2256
2257      continue;
2258    }
2259    case OPC_EmitInteger: {
2260      MVT::SimpleValueType VT =
2261        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2262      int64_t Val = MatcherTable[MatcherIndex++];
2263      if (Val & 128)
2264        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2265      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2266      continue;
2267    }
2268    case OPC_EmitRegister: {
2269      MVT::SimpleValueType VT =
2270        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2271      unsigned RegNo = MatcherTable[MatcherIndex++];
2272      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2273      continue;
2274    }
2275
2276    case OPC_EmitConvertToTarget:  {
2277      // Convert from IMM/FPIMM to target version.
2278      unsigned RecNo = MatcherTable[MatcherIndex++];
2279      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2280      SDValue Imm = RecordedNodes[RecNo];
2281
2282      if (Imm->getOpcode() == ISD::Constant) {
2283        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2284        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2285      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2286        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2287        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2288      }
2289
2290      RecordedNodes.push_back(Imm);
2291      continue;
2292    }
2293
2294    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2295    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2296      // These are space-optimized forms of OPC_EmitMergeInputChains.
2297      assert(InputChain.getNode() == 0 &&
2298             "EmitMergeInputChains should be the first chain producing node");
2299      assert(ChainNodesMatched.empty() &&
2300             "Should only have one EmitMergeInputChains per match");
2301
2302      // Read all of the chained nodes.
2303      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2304      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2305      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2306
2307      // FIXME: What if other value results of the node have uses not matched
2308      // by this pattern?
2309      if (ChainNodesMatched.back() != NodeToMatch &&
2310          !RecordedNodes[RecNo].hasOneUse()) {
2311        ChainNodesMatched.clear();
2312        break;
2313      }
2314
2315      // Merge the input chains if they are not intra-pattern references.
2316      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2317
2318      if (InputChain.getNode() == 0)
2319        break;  // Failed to merge.
2320      continue;
2321    }
2322
2323    case OPC_EmitMergeInputChains: {
2324      assert(InputChain.getNode() == 0 &&
2325             "EmitMergeInputChains should be the first chain producing node");
2326      // This node gets a list of nodes we matched in the input that have
2327      // chains.  We want to token factor all of the input chains to these nodes
2328      // together.  However, if any of the input chains is actually one of the
2329      // nodes matched in this pattern, then we have an intra-match reference.
2330      // Ignore these because the newly token factored chain should not refer to
2331      // the old nodes.
2332      unsigned NumChains = MatcherTable[MatcherIndex++];
2333      assert(NumChains != 0 && "Can't TF zero chains");
2334
2335      assert(ChainNodesMatched.empty() &&
2336             "Should only have one EmitMergeInputChains per match");
2337
2338      // Read all of the chained nodes.
2339      for (unsigned i = 0; i != NumChains; ++i) {
2340        unsigned RecNo = MatcherTable[MatcherIndex++];
2341        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2342        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2343
2344        // FIXME: What if other value results of the node have uses not matched
2345        // by this pattern?
2346        if (ChainNodesMatched.back() != NodeToMatch &&
2347            !RecordedNodes[RecNo].hasOneUse()) {
2348          ChainNodesMatched.clear();
2349          break;
2350        }
2351      }
2352
2353      // If the inner loop broke out, the match fails.
2354      if (ChainNodesMatched.empty())
2355        break;
2356
2357      // Merge the input chains if they are not intra-pattern references.
2358      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2359
2360      if (InputChain.getNode() == 0)
2361        break;  // Failed to merge.
2362
2363      continue;
2364    }
2365
2366    case OPC_EmitCopyToReg: {
2367      unsigned RecNo = MatcherTable[MatcherIndex++];
2368      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2369      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2370
2371      if (InputChain.getNode() == 0)
2372        InputChain = CurDAG->getEntryNode();
2373
2374      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2375                                        DestPhysReg, RecordedNodes[RecNo],
2376                                        InputFlag);
2377
2378      InputFlag = InputChain.getValue(1);
2379      continue;
2380    }
2381
2382    case OPC_EmitNodeXForm: {
2383      unsigned XFormNo = MatcherTable[MatcherIndex++];
2384      unsigned RecNo = MatcherTable[MatcherIndex++];
2385      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2386      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2387      continue;
2388    }
2389
2390    case OPC_EmitNode:
2391    case OPC_MorphNodeTo: {
2392      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2393      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2394      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2395      // Get the result VT list.
2396      unsigned NumVTs = MatcherTable[MatcherIndex++];
2397      SmallVector<EVT, 4> VTs;
2398      for (unsigned i = 0; i != NumVTs; ++i) {
2399        MVT::SimpleValueType VT =
2400          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2401        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2402        VTs.push_back(VT);
2403      }
2404
2405      if (EmitNodeInfo & OPFL_Chain)
2406        VTs.push_back(MVT::Other);
2407      if (EmitNodeInfo & OPFL_FlagOutput)
2408        VTs.push_back(MVT::Flag);
2409
2410      // This is hot code, so optimize the two most common cases of 1 and 2
2411      // results.
2412      SDVTList VTList;
2413      if (VTs.size() == 1)
2414        VTList = CurDAG->getVTList(VTs[0]);
2415      else if (VTs.size() == 2)
2416        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2417      else
2418        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2419
2420      // Get the operand list.
2421      unsigned NumOps = MatcherTable[MatcherIndex++];
2422      SmallVector<SDValue, 8> Ops;
2423      for (unsigned i = 0; i != NumOps; ++i) {
2424        unsigned RecNo = MatcherTable[MatcherIndex++];
2425        if (RecNo & 128)
2426          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2427
2428        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2429        Ops.push_back(RecordedNodes[RecNo]);
2430      }
2431
2432      // If there are variadic operands to add, handle them now.
2433      if (EmitNodeInfo & OPFL_VariadicInfo) {
2434        // Determine the start index to copy from.
2435        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2436        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2437        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2438               "Invalid variadic node");
2439        // Copy all of the variadic operands, not including a potential flag
2440        // input.
2441        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2442             i != e; ++i) {
2443          SDValue V = NodeToMatch->getOperand(i);
2444          if (V.getValueType() == MVT::Flag) break;
2445          Ops.push_back(V);
2446        }
2447      }
2448
2449      // If this has chain/flag inputs, add them.
2450      if (EmitNodeInfo & OPFL_Chain)
2451        Ops.push_back(InputChain);
2452      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2453        Ops.push_back(InputFlag);
2454
2455      // Create the node.
2456      SDNode *Res = 0;
2457      if (Opcode != OPC_MorphNodeTo) {
2458        // If this is a normal EmitNode command, just create the new node and
2459        // add the results to the RecordedNodes list.
2460        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2461                                     VTList, Ops.data(), Ops.size());
2462
2463        // Add all the non-flag/non-chain results to the RecordedNodes list.
2464        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2465          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2466          RecordedNodes.push_back(SDValue(Res, i));
2467        }
2468
2469      } else {
2470        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2471                        EmitNodeInfo);
2472      }
2473
2474      // If the node had chain/flag results, update our notion of the current
2475      // chain and flag.
2476      if (EmitNodeInfo & OPFL_FlagOutput) {
2477        InputFlag = SDValue(Res, VTs.size()-1);
2478        if (EmitNodeInfo & OPFL_Chain)
2479          InputChain = SDValue(Res, VTs.size()-2);
2480      } else if (EmitNodeInfo & OPFL_Chain)
2481        InputChain = SDValue(Res, VTs.size()-1);
2482
2483      // If the OPFL_MemRefs flag is set on this node, slap all of the
2484      // accumulated memrefs onto it.
2485      //
2486      // FIXME: This is vastly incorrect for patterns with multiple outputs
2487      // instructions that access memory and for ComplexPatterns that match
2488      // loads.
2489      if (EmitNodeInfo & OPFL_MemRefs) {
2490        MachineSDNode::mmo_iterator MemRefs =
2491          MF->allocateMemRefsArray(MatchedMemRefs.size());
2492        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2493        cast<MachineSDNode>(Res)
2494          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2495      }
2496
2497      DEBUG(errs() << "  "
2498                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2499                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2500
2501      // If this was a MorphNodeTo then we're completely done!
2502      if (Opcode == OPC_MorphNodeTo) {
2503        // Update chain and flag uses.
2504        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2505                             InputFlag, FlagResultNodesMatched, true);
2506        return Res;
2507      }
2508
2509      continue;
2510    }
2511
2512    case OPC_MarkFlagResults: {
2513      unsigned NumNodes = MatcherTable[MatcherIndex++];
2514
2515      // Read and remember all the flag-result nodes.
2516      for (unsigned i = 0; i != NumNodes; ++i) {
2517        unsigned RecNo = MatcherTable[MatcherIndex++];
2518        if (RecNo & 128)
2519          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2520
2521        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2522        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2523      }
2524      continue;
2525    }
2526
2527    case OPC_CompleteMatch: {
2528      // The match has been completed, and any new nodes (if any) have been
2529      // created.  Patch up references to the matched dag to use the newly
2530      // created nodes.
2531      unsigned NumResults = MatcherTable[MatcherIndex++];
2532
2533      for (unsigned i = 0; i != NumResults; ++i) {
2534        unsigned ResSlot = MatcherTable[MatcherIndex++];
2535        if (ResSlot & 128)
2536          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2537
2538        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2539        SDValue Res = RecordedNodes[ResSlot];
2540
2541        assert(i < NodeToMatch->getNumValues() &&
2542               NodeToMatch->getValueType(i) != MVT::Other &&
2543               NodeToMatch->getValueType(i) != MVT::Flag &&
2544               "Invalid number of results to complete!");
2545        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2546                NodeToMatch->getValueType(i) == MVT::iPTR ||
2547                Res.getValueType() == MVT::iPTR ||
2548                NodeToMatch->getValueType(i).getSizeInBits() ==
2549                    Res.getValueType().getSizeInBits()) &&
2550               "invalid replacement");
2551        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2552      }
2553
2554      // If the root node defines a flag, add it to the flag nodes to update
2555      // list.
2556      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2557        FlagResultNodesMatched.push_back(NodeToMatch);
2558
2559      // Update chain and flag uses.
2560      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2561                           InputFlag, FlagResultNodesMatched, false);
2562
2563      assert(NodeToMatch->use_empty() &&
2564             "Didn't replace all uses of the node?");
2565
2566      // FIXME: We just return here, which interacts correctly with SelectRoot
2567      // above.  We should fix this to not return an SDNode* anymore.
2568      return 0;
2569    }
2570    }
2571
2572    // If the code reached this point, then the match failed.  See if there is
2573    // another child to try in the current 'Scope', otherwise pop it until we
2574    // find a case to check.
2575    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2576    ++NumDAGIselRetries;
2577    while (1) {
2578      if (MatchScopes.empty()) {
2579        CannotYetSelect(NodeToMatch);
2580        return 0;
2581      }
2582
2583      // Restore the interpreter state back to the point where the scope was
2584      // formed.
2585      MatchScope &LastScope = MatchScopes.back();
2586      RecordedNodes.resize(LastScope.NumRecordedNodes);
2587      NodeStack.clear();
2588      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2589      N = NodeStack.back();
2590
2591      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2592        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2593      MatcherIndex = LastScope.FailIndex;
2594
2595      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2596
2597      InputChain = LastScope.InputChain;
2598      InputFlag = LastScope.InputFlag;
2599      if (!LastScope.HasChainNodesMatched)
2600        ChainNodesMatched.clear();
2601      if (!LastScope.HasFlagResultNodesMatched)
2602        FlagResultNodesMatched.clear();
2603
2604      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2605      // we have reached the end of this scope, otherwise we have another child
2606      // in the current scope to try.
2607      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2608      if (NumToSkip & 128)
2609        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2610
2611      // If we have another child in this scope to match, update FailIndex and
2612      // try it.
2613      if (NumToSkip != 0) {
2614        LastScope.FailIndex = MatcherIndex+NumToSkip;
2615        break;
2616      }
2617
2618      // End of this scope, pop it and try the next child in the containing
2619      // scope.
2620      MatchScopes.pop_back();
2621    }
2622  }
2623}
2624
2625
2626
2627void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2628  std::string msg;
2629  raw_string_ostream Msg(msg);
2630  Msg << "Cannot yet select: ";
2631
2632  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2633      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2634      N->getOpcode() != ISD::INTRINSIC_VOID) {
2635    N->printrFull(Msg, CurDAG);
2636  } else {
2637    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2638    unsigned iid =
2639      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2640    if (iid < Intrinsic::num_intrinsics)
2641      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2642    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2643      Msg << "target intrinsic %" << TII->getName(iid);
2644    else
2645      Msg << "unknown intrinsic #" << iid;
2646  }
2647  report_fatal_error(Msg.str());
2648}
2649
2650char SelectionDAGISel::ID = 0;
2651