SelectionDAGISel.cpp revision d3f03e4b50feb6abfa9fec8b0aa705d45134c59e
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/CodeGen/MachineFunction.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/SSARegMap.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetFrameInfo.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include <map>
34#include <iostream>
35using namespace llvm;
36
37#ifndef _NDEBUG
38static cl::opt<bool>
39ViewDAGs("view-isel-dags", cl::Hidden,
40         cl::desc("Pop up a window to show isel dags as they are selected"));
41#else
42static const bool ViewDAGS = 0;
43#endif
44
45namespace llvm {
46  //===--------------------------------------------------------------------===//
47  /// FunctionLoweringInfo - This contains information that is global to a
48  /// function that is used when lowering a region of the function.
49  class FunctionLoweringInfo {
50  public:
51    TargetLowering &TLI;
52    Function &Fn;
53    MachineFunction &MF;
54    SSARegMap *RegMap;
55
56    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
57
58    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
59    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
60
61    /// ValueMap - Since we emit code for the function a basic block at a time,
62    /// we must remember which virtual registers hold the values for
63    /// cross-basic-block values.
64    std::map<const Value*, unsigned> ValueMap;
65
66    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
67    /// the entry block.  This allows the allocas to be efficiently referenced
68    /// anywhere in the function.
69    std::map<const AllocaInst*, int> StaticAllocaMap;
70
71    /// BlockLocalArguments - If any arguments are only used in a single basic
72    /// block, and if the target can access the arguments without side-effects,
73    /// avoid emitting CopyToReg nodes for those arguments.  This map keeps
74    /// track of which arguments are local to each BB.
75    std::multimap<BasicBlock*, std::pair<Argument*,
76                                         unsigned> > BlockLocalArguments;
77
78
79    unsigned MakeReg(MVT::ValueType VT) {
80      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
81    }
82
83    unsigned CreateRegForValue(const Value *V) {
84      MVT::ValueType VT = TLI.getValueType(V->getType());
85      // The common case is that we will only create one register for this
86      // value.  If we have that case, create and return the virtual register.
87      unsigned NV = TLI.getNumElements(VT);
88      if (NV == 1) {
89        // If we are promoting this value, pick the next largest supported type.
90        return MakeReg(TLI.getTypeToTransformTo(VT));
91      }
92
93      // If this value is represented with multiple target registers, make sure
94      // to create enough consequtive registers of the right (smaller) type.
95      unsigned NT = VT-1;  // Find the type to use.
96      while (TLI.getNumElements((MVT::ValueType)NT) != 1)
97        --NT;
98
99      unsigned R = MakeReg((MVT::ValueType)NT);
100      for (unsigned i = 1; i != NV; ++i)
101        MakeReg((MVT::ValueType)NT);
102      return R;
103    }
104
105    unsigned InitializeRegForValue(const Value *V) {
106      unsigned &R = ValueMap[V];
107      assert(R == 0 && "Already initialized this value register!");
108      return R = CreateRegForValue(V);
109    }
110  };
111}
112
113/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
114/// PHI nodes or outside of the basic block that defines it.
115static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
116  if (isa<PHINode>(I)) return true;
117  BasicBlock *BB = I->getParent();
118  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
119    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
120      return true;
121  return false;
122}
123
124FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
125                                           Function &fn, MachineFunction &mf)
126    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
127
128  // Initialize the mapping of values to registers.  This is only set up for
129  // instruction values that are used outside of the block that defines
130  // them.
131  for (Function::aiterator AI = Fn.abegin(), E = Fn.aend(); AI != E; ++AI)
132    InitializeRegForValue(AI);
133
134  Function::iterator BB = Fn.begin(), E = Fn.end();
135  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
136    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
137      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
138        const Type *Ty = AI->getAllocatedType();
139        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
140        unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
141        TySize *= CUI->getValue();   // Get total allocated size.
142        StaticAllocaMap[AI] =
143          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
144      }
145
146  for (; BB != E; ++BB)
147    for (BasicBlock::iterator I = BB->begin(), e = BB->end(); I != e; ++I)
148      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
149        if (!isa<AllocaInst>(I) ||
150            !StaticAllocaMap.count(cast<AllocaInst>(I)))
151          InitializeRegForValue(I);
152
153  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
154  // also creates the initial PHI MachineInstrs, though none of the input
155  // operands are populated.
156  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
157    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
158    MBBMap[BB] = MBB;
159    MF.getBasicBlockList().push_back(MBB);
160
161    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
162    // appropriate.
163    PHINode *PN;
164    for (BasicBlock::iterator I = BB->begin();
165         (PN = dyn_cast<PHINode>(I)); ++I)
166      if (!PN->use_empty()) {
167        unsigned NumElements =
168          TLI.getNumElements(TLI.getValueType(PN->getType()));
169        unsigned PHIReg = ValueMap[PN];
170        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
171        for (unsigned i = 0; i != NumElements; ++i)
172          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
173      }
174  }
175}
176
177
178
179//===----------------------------------------------------------------------===//
180/// SelectionDAGLowering - This is the common target-independent lowering
181/// implementation that is parameterized by a TargetLowering object.
182/// Also, targets can overload any lowering method.
183///
184namespace llvm {
185class SelectionDAGLowering {
186  MachineBasicBlock *CurMBB;
187
188  std::map<const Value*, SDOperand> NodeMap;
189
190  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
191  /// them up and then emit token factor nodes when possible.  This allows us to
192  /// get simple disambiguation between loads without worrying about alias
193  /// analysis.
194  std::vector<SDOperand> PendingLoads;
195
196public:
197  // TLI - This is information that describes the available target features we
198  // need for lowering.  This indicates when operations are unavailable,
199  // implemented with a libcall, etc.
200  TargetLowering &TLI;
201  SelectionDAG &DAG;
202  const TargetData &TD;
203
204  /// FuncInfo - Information about the function as a whole.
205  ///
206  FunctionLoweringInfo &FuncInfo;
207
208  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
209                       FunctionLoweringInfo &funcinfo)
210    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
211      FuncInfo(funcinfo) {
212  }
213
214  /// getRoot - Return the current virtual root of the Selection DAG.
215  ///
216  SDOperand getRoot() {
217    if (PendingLoads.empty())
218      return DAG.getRoot();
219
220    if (PendingLoads.size() == 1) {
221      SDOperand Root = PendingLoads[0];
222      DAG.setRoot(Root);
223      PendingLoads.clear();
224      return Root;
225    }
226
227    // Otherwise, we have to make a token factor node.
228    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
229    PendingLoads.clear();
230    DAG.setRoot(Root);
231    return Root;
232  }
233
234  void visit(Instruction &I) { visit(I.getOpcode(), I); }
235
236  void visit(unsigned Opcode, User &I) {
237    switch (Opcode) {
238    default: assert(0 && "Unknown instruction type encountered!");
239             abort();
240      // Build the switch statement using the Instruction.def file.
241#define HANDLE_INST(NUM, OPCODE, CLASS) \
242    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
243#include "llvm/Instruction.def"
244    }
245  }
246
247  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
248
249
250  SDOperand getIntPtrConstant(uint64_t Val) {
251    return DAG.getConstant(Val, TLI.getPointerTy());
252  }
253
254  SDOperand getValue(const Value *V) {
255    SDOperand &N = NodeMap[V];
256    if (N.Val) return N;
257
258    MVT::ValueType VT = TLI.getValueType(V->getType());
259    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
260      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
261        visit(CE->getOpcode(), *CE);
262        assert(N.Val && "visit didn't populate the ValueMap!");
263        return N;
264      } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
265        return N = DAG.getGlobalAddress(GV, VT);
266      } else if (isa<ConstantPointerNull>(C)) {
267        return N = DAG.getConstant(0, TLI.getPointerTy());
268      } else if (isa<UndefValue>(C)) {
269	/// FIXME: Implement UNDEFVALUE better.
270        if (MVT::isInteger(VT))
271          return N = DAG.getConstant(0, VT);
272        else if (MVT::isFloatingPoint(VT))
273          return N = DAG.getConstantFP(0, VT);
274        else
275          assert(0 && "Unknown value type!");
276
277      } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
278        return N = DAG.getConstantFP(CFP->getValue(), VT);
279      } else {
280        // Canonicalize all constant ints to be unsigned.
281        return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
282      }
283
284    if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
285      std::map<const AllocaInst*, int>::iterator SI =
286        FuncInfo.StaticAllocaMap.find(AI);
287      if (SI != FuncInfo.StaticAllocaMap.end())
288        return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
289    }
290
291    std::map<const Value*, unsigned>::const_iterator VMI =
292      FuncInfo.ValueMap.find(V);
293    assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
294
295    return N = DAG.getCopyFromReg(VMI->second, VT, DAG.getEntryNode());
296  }
297
298  const SDOperand &setValue(const Value *V, SDOperand NewN) {
299    SDOperand &N = NodeMap[V];
300    assert(N.Val == 0 && "Already set a value for this node!");
301    return N = NewN;
302  }
303
304  // Terminator instructions.
305  void visitRet(ReturnInst &I);
306  void visitBr(BranchInst &I);
307  void visitUnreachable(UnreachableInst &I) { /* noop */ }
308
309  // These all get lowered before this pass.
310  void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
311  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
312  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
313
314  //
315  void visitBinary(User &I, unsigned Opcode);
316  void visitAdd(User &I) { visitBinary(I, ISD::ADD); }
317  void visitSub(User &I) { visitBinary(I, ISD::SUB); }
318  void visitMul(User &I) { visitBinary(I, ISD::MUL); }
319  void visitDiv(User &I) {
320    visitBinary(I, I.getType()->isUnsigned() ? ISD::UDIV : ISD::SDIV);
321  }
322  void visitRem(User &I) {
323    visitBinary(I, I.getType()->isUnsigned() ? ISD::UREM : ISD::SREM);
324  }
325  void visitAnd(User &I) { visitBinary(I, ISD::AND); }
326  void visitOr (User &I) { visitBinary(I, ISD::OR); }
327  void visitXor(User &I) { visitBinary(I, ISD::XOR); }
328  void visitShl(User &I) { visitBinary(I, ISD::SHL); }
329  void visitShr(User &I) {
330    visitBinary(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
331  }
332
333  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
334  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
335  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
336  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
337  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
338  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
339  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
340
341  void visitGetElementPtr(User &I);
342  void visitCast(User &I);
343  void visitSelect(User &I);
344  //
345
346  void visitMalloc(MallocInst &I);
347  void visitFree(FreeInst &I);
348  void visitAlloca(AllocaInst &I);
349  void visitLoad(LoadInst &I);
350  void visitStore(StoreInst &I);
351  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
352  void visitCall(CallInst &I);
353
354  void visitVAStart(CallInst &I);
355  void visitVANext(VANextInst &I);
356  void visitVAArg(VAArgInst &I);
357  void visitVAEnd(CallInst &I);
358  void visitVACopy(CallInst &I);
359  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
360
361  void visitMemIntrinsic(CallInst &I, unsigned Op);
362
363  void visitUserOp1(Instruction &I) {
364    assert(0 && "UserOp1 should not exist at instruction selection time!");
365    abort();
366  }
367  void visitUserOp2(Instruction &I) {
368    assert(0 && "UserOp2 should not exist at instruction selection time!");
369    abort();
370  }
371};
372} // end namespace llvm
373
374void SelectionDAGLowering::visitRet(ReturnInst &I) {
375  if (I.getNumOperands() == 0) {
376    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
377    return;
378  }
379
380  SDOperand Op1 = getValue(I.getOperand(0));
381  switch (Op1.getValueType()) {
382  default: assert(0 && "Unknown value type!");
383  case MVT::i1:
384  case MVT::i8:
385  case MVT::i16:
386    // Extend integer types to 32-bits.
387    if (I.getOperand(0)->getType()->isSigned())
388      Op1 = DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Op1);
389    else
390      Op1 = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op1);
391    break;
392  case MVT::f32:
393    // Extend float to double.
394    Op1 = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Op1);
395    break;
396  case MVT::i32:
397  case MVT::i64:
398  case MVT::f64:
399    break; // No extension needed!
400  }
401
402  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot(), Op1));
403}
404
405void SelectionDAGLowering::visitBr(BranchInst &I) {
406  // Update machine-CFG edges.
407  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
408  CurMBB->addSuccessor(Succ0MBB);
409
410  // Figure out which block is immediately after the current one.
411  MachineBasicBlock *NextBlock = 0;
412  MachineFunction::iterator BBI = CurMBB;
413  if (++BBI != CurMBB->getParent()->end())
414    NextBlock = BBI;
415
416  if (I.isUnconditional()) {
417    // If this is not a fall-through branch, emit the branch.
418    if (Succ0MBB != NextBlock)
419      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
420			      DAG.getBasicBlock(Succ0MBB)));
421  } else {
422    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
423    CurMBB->addSuccessor(Succ1MBB);
424
425    SDOperand Cond = getValue(I.getCondition());
426
427    if (Succ1MBB == NextBlock) {
428      // If the condition is false, fall through.  This means we should branch
429      // if the condition is true to Succ #0.
430      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
431			      Cond, DAG.getBasicBlock(Succ0MBB)));
432    } else if (Succ0MBB == NextBlock) {
433      // If the condition is true, fall through.  This means we should branch if
434      // the condition is false to Succ #1.  Invert the condition first.
435      SDOperand True = DAG.getConstant(1, Cond.getValueType());
436      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
437      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
438			      Cond, DAG.getBasicBlock(Succ1MBB)));
439    } else {
440      // Neither edge is a fall through.  If the comparison is true, jump to
441      // Succ#0, otherwise branch unconditionally to succ #1.
442      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
443			      Cond, DAG.getBasicBlock(Succ0MBB)));
444      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
445			      DAG.getBasicBlock(Succ1MBB)));
446    }
447  }
448}
449
450void SelectionDAGLowering::visitBinary(User &I, unsigned Opcode) {
451  SDOperand Op1 = getValue(I.getOperand(0));
452  SDOperand Op2 = getValue(I.getOperand(1));
453
454  if (isa<ShiftInst>(I))
455    Op2 = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), Op2);
456
457  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
458}
459
460void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
461                                      ISD::CondCode UnsignedOpcode) {
462  SDOperand Op1 = getValue(I.getOperand(0));
463  SDOperand Op2 = getValue(I.getOperand(1));
464  ISD::CondCode Opcode = SignedOpcode;
465  if (I.getOperand(0)->getType()->isUnsigned())
466    Opcode = UnsignedOpcode;
467  setValue(&I, DAG.getSetCC(Opcode, MVT::i1, Op1, Op2));
468}
469
470void SelectionDAGLowering::visitSelect(User &I) {
471  SDOperand Cond     = getValue(I.getOperand(0));
472  SDOperand TrueVal  = getValue(I.getOperand(1));
473  SDOperand FalseVal = getValue(I.getOperand(2));
474  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
475                           TrueVal, FalseVal));
476}
477
478void SelectionDAGLowering::visitCast(User &I) {
479  SDOperand N = getValue(I.getOperand(0));
480  MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
481  MVT::ValueType DestTy = TLI.getValueType(I.getType());
482
483  if (N.getValueType() == DestTy) {
484    setValue(&I, N);  // noop cast.
485  } else if (isInteger(SrcTy)) {
486    if (isInteger(DestTy)) {        // Int -> Int cast
487      if (DestTy < SrcTy)   // Truncating cast?
488        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
489      else if (I.getOperand(0)->getType()->isSigned())
490        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
491      else
492        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
493    } else {                        // Int -> FP cast
494      if (I.getOperand(0)->getType()->isSigned())
495        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
496      else
497        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
498    }
499  } else {
500    assert(isFloatingPoint(SrcTy) && "Unknown value type!");
501    if (isFloatingPoint(DestTy)) {  // FP -> FP cast
502      if (DestTy < SrcTy)   // Rounding cast?
503        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
504      else
505        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
506    } else {                        // FP -> Int cast.
507      if (I.getType()->isSigned())
508        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
509      else
510        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
511    }
512  }
513}
514
515void SelectionDAGLowering::visitGetElementPtr(User &I) {
516  SDOperand N = getValue(I.getOperand(0));
517  const Type *Ty = I.getOperand(0)->getType();
518  const Type *UIntPtrTy = TD.getIntPtrType();
519
520  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
521       OI != E; ++OI) {
522    Value *Idx = *OI;
523    if (const StructType *StTy = dyn_cast<StructType> (Ty)) {
524      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
525      if (Field) {
526        // N = N + Offset
527        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
528        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
529			getIntPtrConstant(Offset));
530      }
531      Ty = StTy->getElementType(Field);
532    } else {
533      Ty = cast<SequentialType>(Ty)->getElementType();
534      if (!isa<Constant>(Idx) || !cast<Constant>(Idx)->isNullValue()) {
535        // N = N + Idx * ElementSize;
536        uint64_t ElementSize = TD.getTypeSize(Ty);
537        SDOperand IdxN = getValue(Idx), Scale = getIntPtrConstant(ElementSize);
538
539        // If the index is smaller or larger than intptr_t, truncate or extend
540        // it.
541        if (IdxN.getValueType() < Scale.getValueType()) {
542          if (Idx->getType()->isSigned())
543            IdxN = DAG.getNode(ISD::SIGN_EXTEND, Scale.getValueType(), IdxN);
544          else
545            IdxN = DAG.getNode(ISD::ZERO_EXTEND, Scale.getValueType(), IdxN);
546        } else if (IdxN.getValueType() > Scale.getValueType())
547          IdxN = DAG.getNode(ISD::TRUNCATE, Scale.getValueType(), IdxN);
548
549        IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
550
551        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
552      }
553    }
554  }
555  setValue(&I, N);
556}
557
558void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
559  // If this is a fixed sized alloca in the entry block of the function,
560  // allocate it statically on the stack.
561  if (FuncInfo.StaticAllocaMap.count(&I))
562    return;   // getValue will auto-populate this.
563
564  const Type *Ty = I.getAllocatedType();
565  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
566  unsigned Align = TLI.getTargetData().getTypeAlignment(Ty);
567
568  SDOperand AllocSize = getValue(I.getArraySize());
569  MVT::ValueType IntPtr = TLI.getPointerTy();
570  if (IntPtr < AllocSize.getValueType())
571    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
572  else if (IntPtr > AllocSize.getValueType())
573    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
574
575  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
576                          getIntPtrConstant(TySize));
577
578  // Handle alignment.  If the requested alignment is less than or equal to the
579  // stack alignment, ignore it and round the size of the allocation up to the
580  // stack alignment size.  If the size is greater than the stack alignment, we
581  // note this in the DYNAMIC_STACKALLOC node.
582  unsigned StackAlign =
583    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
584  if (Align <= StackAlign) {
585    Align = 0;
586    // Add SA-1 to the size.
587    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
588                            getIntPtrConstant(StackAlign-1));
589    // Mask out the low bits for alignment purposes.
590    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
591                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
592  }
593
594  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, AllocSize.getValueType(),
595                              getRoot(), AllocSize,
596                              getIntPtrConstant(Align));
597  DAG.setRoot(setValue(&I, DSA).getValue(1));
598
599  // Inform the Frame Information that we have just allocated a variable-sized
600  // object.
601  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
602}
603
604
605void SelectionDAGLowering::visitLoad(LoadInst &I) {
606  SDOperand Ptr = getValue(I.getOperand(0));
607
608  SDOperand Root;
609  if (I.isVolatile())
610    Root = getRoot();
611  else {
612    // Do not serialize non-volatile loads against each other.
613    Root = DAG.getRoot();
614  }
615
616  SDOperand L = DAG.getLoad(TLI.getValueType(I.getType()), Root, Ptr);
617  setValue(&I, L);
618
619  if (I.isVolatile())
620    DAG.setRoot(L.getValue(1));
621  else
622    PendingLoads.push_back(L.getValue(1));
623}
624
625
626void SelectionDAGLowering::visitStore(StoreInst &I) {
627  Value *SrcV = I.getOperand(0);
628  SDOperand Src = getValue(SrcV);
629  SDOperand Ptr = getValue(I.getOperand(1));
630  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr));
631}
632
633void SelectionDAGLowering::visitCall(CallInst &I) {
634  const char *RenameFn = 0;
635  if (Function *F = I.getCalledFunction())
636    switch (F->getIntrinsicID()) {
637    case 0: break;  // Not an intrinsic.
638    case Intrinsic::vastart:  visitVAStart(I); return;
639    case Intrinsic::vaend:    visitVAEnd(I); return;
640    case Intrinsic::vacopy:   visitVACopy(I); return;
641    case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return;
642    case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return;
643    default:
644      // FIXME: IMPLEMENT THESE.
645      // readport, writeport, readio, writeio
646      assert(0 && "This intrinsic is not implemented yet!");
647      return;
648    case Intrinsic::setjmp:  RenameFn = "setjmp"; break;
649    case Intrinsic::longjmp: RenameFn = "longjmp"; break;
650    case Intrinsic::memcpy:  visitMemIntrinsic(I, ISD::MEMCPY); return;
651    case Intrinsic::memset:  visitMemIntrinsic(I, ISD::MEMSET); return;
652    case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return;
653
654    case Intrinsic::isunordered:
655      setValue(&I, DAG.getSetCC(ISD::SETUO, MVT::i1, getValue(I.getOperand(1)),
656                                getValue(I.getOperand(2))));
657      return;
658    }
659
660  SDOperand Callee;
661  if (!RenameFn)
662    Callee = getValue(I.getOperand(0));
663  else
664    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
665  std::vector<std::pair<SDOperand, const Type*> > Args;
666
667  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
668    Value *Arg = I.getOperand(i);
669    SDOperand ArgNode = getValue(Arg);
670    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
671  }
672
673  std::pair<SDOperand,SDOperand> Result =
674    TLI.LowerCallTo(getRoot(), I.getType(), Callee, Args, DAG);
675  if (I.getType() != Type::VoidTy)
676    setValue(&I, Result.first);
677  DAG.setRoot(Result.second);
678}
679
680void SelectionDAGLowering::visitMalloc(MallocInst &I) {
681  SDOperand Src = getValue(I.getOperand(0));
682
683  MVT::ValueType IntPtr = TLI.getPointerTy();
684
685  if (IntPtr < Src.getValueType())
686    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
687  else if (IntPtr > Src.getValueType())
688    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
689
690  // Scale the source by the type size.
691  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
692  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
693                    Src, getIntPtrConstant(ElementSize));
694
695  std::vector<std::pair<SDOperand, const Type*> > Args;
696  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
697
698  std::pair<SDOperand,SDOperand> Result =
699    TLI.LowerCallTo(getRoot(), I.getType(),
700                    DAG.getExternalSymbol("malloc", IntPtr),
701                    Args, DAG);
702  setValue(&I, Result.first);  // Pointers always fit in registers
703  DAG.setRoot(Result.second);
704}
705
706void SelectionDAGLowering::visitFree(FreeInst &I) {
707  std::vector<std::pair<SDOperand, const Type*> > Args;
708  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
709                                TLI.getTargetData().getIntPtrType()));
710  MVT::ValueType IntPtr = TLI.getPointerTy();
711  std::pair<SDOperand,SDOperand> Result =
712    TLI.LowerCallTo(getRoot(), Type::VoidTy,
713                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
714  DAG.setRoot(Result.second);
715}
716
717std::pair<SDOperand, SDOperand>
718TargetLowering::LowerVAStart(SDOperand Chain, SelectionDAG &DAG) {
719  // We have no sane default behavior, just emit a useful error message and bail
720  // out.
721  std::cerr << "Variable arguments handling not implemented on this target!\n";
722  abort();
723  return std::make_pair(SDOperand(), SDOperand());
724}
725
726SDOperand TargetLowering::LowerVAEnd(SDOperand Chain, SDOperand L,
727                                     SelectionDAG &DAG) {
728  // Default to a noop.
729  return Chain;
730}
731
732std::pair<SDOperand,SDOperand>
733TargetLowering::LowerVACopy(SDOperand Chain, SDOperand L, SelectionDAG &DAG) {
734  // Default to returning the input list.
735  return std::make_pair(L, Chain);
736}
737
738std::pair<SDOperand,SDOperand>
739TargetLowering::LowerVAArgNext(bool isVANext, SDOperand Chain, SDOperand VAList,
740                               const Type *ArgTy, SelectionDAG &DAG) {
741  // We have no sane default behavior, just emit a useful error message and bail
742  // out.
743  std::cerr << "Variable arguments handling not implemented on this target!\n";
744  abort();
745  return std::make_pair(SDOperand(), SDOperand());
746}
747
748
749void SelectionDAGLowering::visitVAStart(CallInst &I) {
750  std::pair<SDOperand,SDOperand> Result = TLI.LowerVAStart(getRoot(), DAG);
751  setValue(&I, Result.first);
752  DAG.setRoot(Result.second);
753}
754
755void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
756  std::pair<SDOperand,SDOperand> Result =
757    TLI.LowerVAArgNext(false, getRoot(), getValue(I.getOperand(0)),
758                       I.getType(), DAG);
759  setValue(&I, Result.first);
760  DAG.setRoot(Result.second);
761}
762
763void SelectionDAGLowering::visitVANext(VANextInst &I) {
764  std::pair<SDOperand,SDOperand> Result =
765    TLI.LowerVAArgNext(true, getRoot(), getValue(I.getOperand(0)),
766                       I.getArgType(), DAG);
767  setValue(&I, Result.first);
768  DAG.setRoot(Result.second);
769}
770
771void SelectionDAGLowering::visitVAEnd(CallInst &I) {
772  DAG.setRoot(TLI.LowerVAEnd(getRoot(), getValue(I.getOperand(1)), DAG));
773}
774
775void SelectionDAGLowering::visitVACopy(CallInst &I) {
776  std::pair<SDOperand,SDOperand> Result =
777    TLI.LowerVACopy(getRoot(), getValue(I.getOperand(1)), DAG);
778  setValue(&I, Result.first);
779  DAG.setRoot(Result.second);
780}
781
782
783// It is always conservatively correct for llvm.returnaddress and
784// llvm.frameaddress to return 0.
785std::pair<SDOperand, SDOperand>
786TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
787                                        unsigned Depth, SelectionDAG &DAG) {
788  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
789}
790
791SDOperand TargetLowering::LowerOperation(SDOperand Op) {
792  assert(0 && "LowerOperation not implemented for this target!");
793  abort();
794  return SDOperand();
795}
796
797void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
798  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
799  std::pair<SDOperand,SDOperand> Result =
800    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
801  setValue(&I, Result.first);
802  DAG.setRoot(Result.second);
803}
804
805void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
806  std::vector<SDOperand> Ops;
807  Ops.push_back(getRoot());
808  Ops.push_back(getValue(I.getOperand(1)));
809  Ops.push_back(getValue(I.getOperand(2)));
810  Ops.push_back(getValue(I.getOperand(3)));
811  Ops.push_back(getValue(I.getOperand(4)));
812  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
813}
814
815//===----------------------------------------------------------------------===//
816// SelectionDAGISel code
817//===----------------------------------------------------------------------===//
818
819unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
820  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
821}
822
823
824
825bool SelectionDAGISel::runOnFunction(Function &Fn) {
826  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
827  RegMap = MF.getSSARegMap();
828  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
829
830  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
831
832  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
833    SelectBasicBlock(I, MF, FuncInfo);
834
835  return true;
836}
837
838
839SDOperand SelectionDAGISel::
840CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
841  SelectionDAG &DAG = SDL.DAG;
842  SDOperand Op = SDL.getValue(V);
843  assert((Op.getOpcode() != ISD::CopyFromReg ||
844          cast<RegSDNode>(Op)->getReg() != Reg) &&
845         "Copy from a reg to the same reg!");
846  return DAG.getCopyToReg(SDL.getRoot(), Op, Reg);
847}
848
849/// IsOnlyUsedInOneBasicBlock - If the specified argument is only used in a
850/// single basic block, return that block.  Otherwise, return a null pointer.
851static BasicBlock *IsOnlyUsedInOneBasicBlock(Argument *A) {
852  if (A->use_empty()) return 0;
853  BasicBlock *BB = cast<Instruction>(A->use_back())->getParent();
854  for (Argument::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E;
855       ++UI)
856    if (isa<PHINode>(*UI) || cast<Instruction>(*UI)->getParent() != BB)
857      return 0;  // Disagreement among the users?
858
859  // Okay, there is a single BB user.  Only permit this optimization if this is
860  // the entry block, otherwise, we might sink argument loads into loops and
861  // stuff.  Later, when we have global instruction selection, this won't be an
862  // issue clearly.
863  if (BB == BB->getParent()->begin())
864    return BB;
865  return 0;
866}
867
868void SelectionDAGISel::
869LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
870               std::vector<SDOperand> &UnorderedChains) {
871  // If this is the entry block, emit arguments.
872  Function &F = *BB->getParent();
873  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
874
875  if (BB == &F.front()) {
876    SDOperand OldRoot = SDL.DAG.getRoot();
877
878    std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
879
880    // If there were side effects accessing the argument list, do not do
881    // anything special.
882    if (OldRoot != SDL.DAG.getRoot()) {
883      unsigned a = 0;
884      for (Function::aiterator AI = F.abegin(), E = F.aend(); AI != E; ++AI,++a)
885        if (!AI->use_empty()) {
886          SDL.setValue(AI, Args[a]);
887          SDOperand Copy =
888            CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
889          UnorderedChains.push_back(Copy);
890        }
891    } else {
892      // Otherwise, if any argument is only accessed in a single basic block,
893      // emit that argument only to that basic block.
894      unsigned a = 0;
895      for (Function::aiterator AI = F.abegin(), E = F.aend(); AI != E; ++AI,++a)
896        if (!AI->use_empty()) {
897          if (BasicBlock *BBU = IsOnlyUsedInOneBasicBlock(AI)) {
898            FuncInfo.BlockLocalArguments.insert(std::make_pair(BBU,
899                                                      std::make_pair(AI, a)));
900          } else {
901            SDL.setValue(AI, Args[a]);
902            SDOperand Copy =
903              CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
904            UnorderedChains.push_back(Copy);
905          }
906        }
907    }
908  }
909
910  // See if there are any block-local arguments that need to be emitted in this
911  // block.
912
913  if (!FuncInfo.BlockLocalArguments.empty()) {
914    std::multimap<BasicBlock*, std::pair<Argument*, unsigned> >::iterator BLAI =
915      FuncInfo.BlockLocalArguments.lower_bound(BB);
916    if (BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB) {
917      // Lower the arguments into this block.
918      std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
919
920      // Set up the value mapping for the local arguments.
921      for (; BLAI != FuncInfo.BlockLocalArguments.end() && BLAI->first == BB;
922           ++BLAI)
923        SDL.setValue(BLAI->second.first, Args[BLAI->second.second]);
924
925      // Any dead arguments will just be ignored here.
926    }
927  }
928}
929
930
931void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
932       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
933                                    FunctionLoweringInfo &FuncInfo) {
934  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
935
936  std::vector<SDOperand> UnorderedChains;
937
938  // Lower any arguments needed in this block.
939  LowerArguments(LLVMBB, SDL, UnorderedChains);
940
941  BB = FuncInfo.MBBMap[LLVMBB];
942  SDL.setCurrentBasicBlock(BB);
943
944  // Lower all of the non-terminator instructions.
945  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
946       I != E; ++I)
947    SDL.visit(*I);
948
949  // Ensure that all instructions which are used outside of their defining
950  // blocks are available as virtual registers.
951  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
952    if (!I->use_empty() && !isa<PHINode>(I)) {
953      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
954      if (VMI != FuncInfo.ValueMap.end())
955        UnorderedChains.push_back(
956                           CopyValueToVirtualRegister(SDL, I, VMI->second));
957    }
958
959  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
960  // ensure constants are generated when needed.  Remember the virtual registers
961  // that need to be added to the Machine PHI nodes as input.  We cannot just
962  // directly add them, because expansion might result in multiple MBB's for one
963  // BB.  As such, the start of the BB might correspond to a different MBB than
964  // the end.
965  //
966
967  // Emit constants only once even if used by multiple PHI nodes.
968  std::map<Constant*, unsigned> ConstantsOut;
969
970  // Check successor nodes PHI nodes that expect a constant to be available from
971  // this block.
972  TerminatorInst *TI = LLVMBB->getTerminator();
973  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
974    BasicBlock *SuccBB = TI->getSuccessor(succ);
975    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
976    PHINode *PN;
977
978    // At this point we know that there is a 1-1 correspondence between LLVM PHI
979    // nodes and Machine PHI nodes, but the incoming operands have not been
980    // emitted yet.
981    for (BasicBlock::iterator I = SuccBB->begin();
982         (PN = dyn_cast<PHINode>(I)); ++I)
983      if (!PN->use_empty()) {
984        unsigned Reg;
985        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
986        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
987          unsigned &RegOut = ConstantsOut[C];
988          if (RegOut == 0) {
989            RegOut = FuncInfo.CreateRegForValue(C);
990            UnorderedChains.push_back(
991                             CopyValueToVirtualRegister(SDL, C, RegOut));
992          }
993          Reg = RegOut;
994        } else {
995          Reg = FuncInfo.ValueMap[PHIOp];
996          if (Reg == 0) {
997            assert(isa<AllocaInst>(PHIOp) &&
998                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
999                   "Didn't codegen value into a register!??");
1000            Reg = FuncInfo.CreateRegForValue(PHIOp);
1001            UnorderedChains.push_back(
1002                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
1003          }
1004        }
1005
1006        // Remember that this register needs to added to the machine PHI node as
1007        // the input for this MBB.
1008        unsigned NumElements =
1009          TLI.getNumElements(TLI.getValueType(PN->getType()));
1010        for (unsigned i = 0, e = NumElements; i != e; ++i)
1011          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
1012      }
1013  }
1014  ConstantsOut.clear();
1015
1016  // Turn all of the unordered chains into one factored node.
1017  if (!UnorderedChains.empty()) {
1018    UnorderedChains.push_back(SDL.getRoot());
1019    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
1020  }
1021
1022  // Lower the terminator after the copies are emitted.
1023  SDL.visit(*LLVMBB->getTerminator());
1024
1025  // Make sure the root of the DAG is up-to-date.
1026  DAG.setRoot(SDL.getRoot());
1027}
1028
1029void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
1030                                        FunctionLoweringInfo &FuncInfo) {
1031  SelectionDAG DAG(TLI, MF);
1032  CurDAG = &DAG;
1033  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
1034
1035  // First step, lower LLVM code to some DAG.  This DAG may use operations and
1036  // types that are not supported by the target.
1037  BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
1038
1039  DEBUG(std::cerr << "Lowered selection DAG:\n");
1040  DEBUG(DAG.dump());
1041
1042  // Second step, hack on the DAG until it only uses operations and types that
1043  // the target supports.
1044  DAG.Legalize();
1045
1046  DEBUG(std::cerr << "Legalized selection DAG:\n");
1047  DEBUG(DAG.dump());
1048
1049  // Finally, instruction select all of the operations to machine code, adding
1050  // the code to the MachineBasicBlock.
1051  InstructionSelectBasicBlock(DAG);
1052
1053  if (ViewDAGs) DAG.viewGraph();
1054
1055  DEBUG(std::cerr << "Selected machine code:\n");
1056  DEBUG(BB->dump());
1057
1058  // Finally, now that we know what the last MBB the LLVM BB expanded is, update
1059  // PHI nodes in successors.
1060  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
1061    MachineInstr *PHI = PHINodesToUpdate[i].first;
1062    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
1063           "This is not a machine PHI node that we are updating!");
1064    PHI->addRegOperand(PHINodesToUpdate[i].second);
1065    PHI->addMachineBasicBlockOperand(BB);
1066  }
1067}
1068