SelectionDAGISel.cpp revision d9cb7ca388c400e3c7a509c00d4cf63031de0dde
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Support/Compiler.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/Timer.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
56STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
57
58static cl::opt<bool>
59EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
60          cl::desc("Enable verbose messages in the \"fast\" "
61                   "instruction selector"));
62static cl::opt<bool>
63EnableFastISelAbort("fast-isel-abort", cl::Hidden,
64          cl::desc("Enable abort calls when \"fast\" instruction fails"));
65
66#ifndef NDEBUG
67static cl::opt<bool>
68ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
69          cl::desc("Pop up a window to show dags before the first "
70                   "dag combine pass"));
71static cl::opt<bool>
72ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
73          cl::desc("Pop up a window to show dags before legalize types"));
74static cl::opt<bool>
75ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
76          cl::desc("Pop up a window to show dags before legalize"));
77static cl::opt<bool>
78ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the second "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before the post legalize types"
84                   " dag combine pass"));
85static cl::opt<bool>
86ViewISelDAGs("view-isel-dags", cl::Hidden,
87          cl::desc("Pop up a window to show isel dags as they are selected"));
88static cl::opt<bool>
89ViewSchedDAGs("view-sched-dags", cl::Hidden,
90          cl::desc("Pop up a window to show sched dags as they are processed"));
91static cl::opt<bool>
92ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
93      cl::desc("Pop up a window to show SUnit dags after they are processed"));
94#else
95static const bool ViewDAGCombine1 = false,
96                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
97                  ViewDAGCombine2 = false,
98                  ViewDAGCombineLT = false,
99                  ViewISelDAGs = false, ViewSchedDAGs = false,
100                  ViewSUnitDAGs = false;
101#endif
102
103//===---------------------------------------------------------------------===//
104///
105/// RegisterScheduler class - Track the registration of instruction schedulers.
106///
107//===---------------------------------------------------------------------===//
108MachinePassRegistry RegisterScheduler::Registry;
109
110//===---------------------------------------------------------------------===//
111///
112/// ISHeuristic command line option for instruction schedulers.
113///
114//===---------------------------------------------------------------------===//
115static cl::opt<RegisterScheduler::FunctionPassCtor, false,
116               RegisterPassParser<RegisterScheduler> >
117ISHeuristic("pre-RA-sched",
118            cl::init(&createDefaultScheduler),
119            cl::desc("Instruction schedulers available (before register"
120                     " allocation):"));
121
122static RegisterScheduler
123defaultListDAGScheduler("default", "Best scheduler for the target",
124                        createDefaultScheduler);
125
126namespace llvm {
127  //===--------------------------------------------------------------------===//
128  /// createDefaultScheduler - This creates an instruction scheduler appropriate
129  /// for the target.
130  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
131                                             CodeGenOpt::Level OptLevel) {
132    const TargetLowering &TLI = IS->getTargetLowering();
133
134    if (OptLevel == CodeGenOpt::None)
135      return createFastDAGScheduler(IS, OptLevel);
136    if (TLI.getSchedulingPreference() == Sched::Latency)
137      return createTDListDAGScheduler(IS, OptLevel);
138    if (TLI.getSchedulingPreference() == Sched::RegPressure)
139      return createBURRListDAGScheduler(IS, OptLevel);
140    assert(TLI.getSchedulingPreference() == Sched::Hybrid &&
141           "Unknown sched type!");
142    return createHybridListDAGScheduler(IS, OptLevel);
143  }
144}
145
146// EmitInstrWithCustomInserter - This method should be implemented by targets
147// that mark instructions with the 'usesCustomInserter' flag.  These
148// instructions are special in various ways, which require special support to
149// insert.  The specified MachineInstr is created but not inserted into any
150// basic blocks, and this method is called to expand it into a sequence of
151// instructions, potentially also creating new basic blocks and control flow.
152// When new basic blocks are inserted and the edges from MBB to its successors
153// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
154// DenseMap.
155MachineBasicBlock *
156TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
157                                            MachineBasicBlock *MBB) const {
158#ifndef NDEBUG
159  dbgs() << "If a target marks an instruction with "
160          "'usesCustomInserter', it must implement "
161          "TargetLowering::EmitInstrWithCustomInserter!";
162#endif
163  llvm_unreachable(0);
164  return 0;
165}
166
167//===----------------------------------------------------------------------===//
168// SelectionDAGISel code
169//===----------------------------------------------------------------------===//
170
171SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
172  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
173  FuncInfo(new FunctionLoweringInfo(TLI)),
174  CurDAG(new SelectionDAG(tm)),
175  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
176  GFI(),
177  OptLevel(OL),
178  DAGSize(0)
179{}
180
181SelectionDAGISel::~SelectionDAGISel() {
182  delete SDB;
183  delete CurDAG;
184  delete FuncInfo;
185}
186
187void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
188  AU.addRequired<AliasAnalysis>();
189  AU.addPreserved<AliasAnalysis>();
190  AU.addRequired<GCModuleInfo>();
191  AU.addPreserved<GCModuleInfo>();
192  MachineFunctionPass::getAnalysisUsage(AU);
193}
194
195/// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
196/// other function that gcc recognizes as "returning twice". This is used to
197/// limit code-gen optimizations on the machine function.
198///
199/// FIXME: Remove after <rdar://problem/8031714> is fixed.
200static bool FunctionCallsSetJmp(const Function *F) {
201  const Module *M = F->getParent();
202  static const char *ReturnsTwiceFns[] = {
203    "setjmp",
204    "sigsetjmp",
205    "setjmp_syscall",
206    "savectx",
207    "qsetjmp",
208    "vfork",
209    "getcontext"
210  };
211#define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
212
213  for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
214    if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
215      if (!Callee->use_empty())
216        for (Value::const_use_iterator
217               I = Callee->use_begin(), E = Callee->use_end();
218             I != E; ++I)
219          if (const CallInst *CI = dyn_cast<CallInst>(I))
220            if (CI->getParent()->getParent() == F)
221              return true;
222    }
223
224  return false;
225#undef NUM_RETURNS_TWICE_FNS
226}
227
228bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
229  // Do some sanity-checking on the command-line options.
230  assert((!EnableFastISelVerbose || EnableFastISel) &&
231         "-fast-isel-verbose requires -fast-isel");
232  assert((!EnableFastISelAbort || EnableFastISel) &&
233         "-fast-isel-abort requires -fast-isel");
234
235  const Function &Fn = *mf.getFunction();
236  const TargetInstrInfo &TII = *TM.getInstrInfo();
237  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
238
239  MF = &mf;
240  RegInfo = &MF->getRegInfo();
241  AA = &getAnalysis<AliasAnalysis>();
242  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
243
244  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
245
246  CurDAG->init(*MF);
247  FuncInfo->set(Fn, *MF);
248  SDB->init(GFI, *AA);
249
250  SelectAllBasicBlocks(Fn);
251
252  // If the first basic block in the function has live ins that need to be
253  // copied into vregs, emit the copies into the top of the block before
254  // emitting the code for the block.
255  MachineBasicBlock *EntryMBB = MF->begin();
256  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
257
258  DenseMap<unsigned, unsigned> LiveInMap;
259  if (!FuncInfo->ArgDbgValues.empty())
260    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
261           E = RegInfo->livein_end(); LI != E; ++LI)
262      if (LI->second)
263        LiveInMap.insert(std::make_pair(LI->first, LI->second));
264
265  // Insert DBG_VALUE instructions for function arguments to the entry block.
266  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
267    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
268    unsigned Reg = MI->getOperand(0).getReg();
269    if (TargetRegisterInfo::isPhysicalRegister(Reg))
270      EntryMBB->insert(EntryMBB->begin(), MI);
271    else {
272      MachineInstr *Def = RegInfo->getVRegDef(Reg);
273      MachineBasicBlock::iterator InsertPos = Def;
274      // FIXME: VR def may not be in entry block.
275      Def->getParent()->insert(llvm::next(InsertPos), MI);
276    }
277
278    // If Reg is live-in then update debug info to track its copy in a vreg.
279    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
280    if (LDI != LiveInMap.end()) {
281      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
282      MachineBasicBlock::iterator InsertPos = Def;
283      const MDNode *Variable =
284        MI->getOperand(MI->getNumOperands()-1).getMetadata();
285      unsigned Offset = MI->getOperand(1).getImm();
286      // Def is never a terminator here, so it is ok to increment InsertPos.
287      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
288              TII.get(TargetOpcode::DBG_VALUE))
289        .addReg(LDI->second, RegState::Debug)
290        .addImm(Offset).addMetadata(Variable);
291    }
292  }
293
294  // Determine if there are any calls in this machine function.
295  MachineFrameInfo *MFI = MF->getFrameInfo();
296  if (!MFI->hasCalls()) {
297    for (MachineFunction::const_iterator
298           I = MF->begin(), E = MF->end(); I != E; ++I) {
299      const MachineBasicBlock *MBB = I;
300      for (MachineBasicBlock::const_iterator
301             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
302        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
303        if (II->isInlineAsm() || (TID.isCall() && !TID.isReturn())) {
304          MFI->setHasCalls(true);
305          goto done;
306        }
307      }
308    }
309  done:;
310  }
311
312  // Determine if there is a call to setjmp in the machine function.
313  MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
314
315  // Release function-specific state. SDB and CurDAG are already cleared
316  // at this point.
317  FuncInfo->clear();
318
319  return true;
320}
321
322MachineBasicBlock *
323SelectionDAGISel::SelectBasicBlock(MachineBasicBlock *BB,
324                                   const BasicBlock *LLVMBB,
325                                   BasicBlock::const_iterator Begin,
326                                   BasicBlock::const_iterator End,
327                                   bool &HadTailCall) {
328  // Lower all of the non-terminator instructions. If a call is emitted
329  // as a tail call, cease emitting nodes for this block. Terminators
330  // are handled below.
331  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
332    SDB->visit(*I);
333
334  // Make sure the root of the DAG is up-to-date.
335  CurDAG->setRoot(SDB->getControlRoot());
336  HadTailCall = SDB->HasTailCall;
337  SDB->clear();
338
339  // Final step, emit the lowered DAG as machine code.
340  return CodeGenAndEmitDAG(BB);
341}
342
343namespace {
344/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
345/// nodes from the worklist.
346class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
347  SmallVector<SDNode*, 128> &Worklist;
348  SmallPtrSet<SDNode*, 128> &InWorklist;
349public:
350  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
351                       SmallPtrSet<SDNode*, 128> &inwl)
352    : Worklist(wl), InWorklist(inwl) {}
353
354  void RemoveFromWorklist(SDNode *N) {
355    if (!InWorklist.erase(N)) return;
356
357    SmallVector<SDNode*, 128>::iterator I =
358    std::find(Worklist.begin(), Worklist.end(), N);
359    assert(I != Worklist.end() && "Not in worklist");
360
361    *I = Worklist.back();
362    Worklist.pop_back();
363  }
364
365  virtual void NodeDeleted(SDNode *N, SDNode *E) {
366    RemoveFromWorklist(N);
367  }
368
369  virtual void NodeUpdated(SDNode *N) {
370    // Ignore updates.
371  }
372};
373}
374
375void SelectionDAGISel::ComputeLiveOutVRegInfo() {
376  SmallPtrSet<SDNode*, 128> VisitedNodes;
377  SmallVector<SDNode*, 128> Worklist;
378
379  Worklist.push_back(CurDAG->getRoot().getNode());
380
381  APInt Mask;
382  APInt KnownZero;
383  APInt KnownOne;
384
385  do {
386    SDNode *N = Worklist.pop_back_val();
387
388    // If we've already seen this node, ignore it.
389    if (!VisitedNodes.insert(N))
390      continue;
391
392    // Otherwise, add all chain operands to the worklist.
393    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
394      if (N->getOperand(i).getValueType() == MVT::Other)
395        Worklist.push_back(N->getOperand(i).getNode());
396
397    // If this is a CopyToReg with a vreg dest, process it.
398    if (N->getOpcode() != ISD::CopyToReg)
399      continue;
400
401    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
402    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
403      continue;
404
405    // Ignore non-scalar or non-integer values.
406    SDValue Src = N->getOperand(2);
407    EVT SrcVT = Src.getValueType();
408    if (!SrcVT.isInteger() || SrcVT.isVector())
409      continue;
410
411    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
412    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
413    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
414
415    // Only install this information if it tells us something.
416    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
417      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
418      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
419        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
420      FunctionLoweringInfo::LiveOutInfo &LOI =
421        FuncInfo->LiveOutRegInfo[DestReg];
422      LOI.NumSignBits = NumSignBits;
423      LOI.KnownOne = KnownOne;
424      LOI.KnownZero = KnownZero;
425    }
426  } while (!Worklist.empty());
427}
428
429MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
430  std::string GroupName;
431  if (TimePassesIsEnabled)
432    GroupName = "Instruction Selection and Scheduling";
433  std::string BlockName;
434  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
435      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
436      ViewSUnitDAGs)
437    BlockName = MF->getFunction()->getNameStr() + ":" +
438                BB->getBasicBlock()->getNameStr();
439
440  DEBUG(dbgs() << "Initial selection DAG:\n"; CurDAG->dump());
441
442  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
443
444  // Run the DAG combiner in pre-legalize mode.
445  {
446    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
447    CurDAG->Combine(Unrestricted, *AA, OptLevel);
448  }
449
450  DEBUG(dbgs() << "Optimized lowered selection DAG:\n"; CurDAG->dump());
451
452  // Second step, hack on the DAG until it only uses operations and types that
453  // the target supports.
454  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
455                                               BlockName);
456
457  bool Changed;
458  {
459    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
460    Changed = CurDAG->LegalizeTypes();
461  }
462
463  DEBUG(dbgs() << "Type-legalized selection DAG:\n"; CurDAG->dump());
464
465  if (Changed) {
466    if (ViewDAGCombineLT)
467      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
468
469    // Run the DAG combiner in post-type-legalize mode.
470    {
471      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
472                         TimePassesIsEnabled);
473      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
474    }
475
476    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n";
477          CurDAG->dump());
478  }
479
480  {
481    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
482    Changed = CurDAG->LegalizeVectors();
483  }
484
485  if (Changed) {
486    {
487      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
488      CurDAG->LegalizeTypes();
489    }
490
491    if (ViewDAGCombineLT)
492      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
493
494    // Run the DAG combiner in post-type-legalize mode.
495    {
496      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
497                         TimePassesIsEnabled);
498      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
499    }
500
501    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n";
502          CurDAG->dump());
503  }
504
505  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
506
507  {
508    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
509    CurDAG->Legalize(OptLevel);
510  }
511
512  DEBUG(dbgs() << "Legalized selection DAG:\n"; CurDAG->dump());
513
514  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
515
516  // Run the DAG combiner in post-legalize mode.
517  {
518    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
519    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
520  }
521
522  DEBUG(dbgs() << "Optimized legalized selection DAG:\n"; CurDAG->dump());
523
524  if (OptLevel != CodeGenOpt::None)
525    ComputeLiveOutVRegInfo();
526
527  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
528
529  // Third, instruction select all of the operations to machine code, adding the
530  // code to the MachineBasicBlock.
531  {
532    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
533    DoInstructionSelection();
534  }
535
536  DEBUG(dbgs() << "Selected selection DAG:\n"; CurDAG->dump());
537
538  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
539
540  // Schedule machine code.
541  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
542  {
543    NamedRegionTimer T("Instruction Scheduling", GroupName,
544                       TimePassesIsEnabled);
545    Scheduler->Run(CurDAG, BB, BB->end());
546  }
547
548  if (ViewSUnitDAGs) Scheduler->viewGraph();
549
550  // Emit machine code to BB.  This can change 'BB' to the last block being
551  // inserted into.
552  {
553    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
554    BB = Scheduler->EmitSchedule();
555  }
556
557  // Free the scheduler state.
558  {
559    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
560                       TimePassesIsEnabled);
561    delete Scheduler;
562  }
563
564  // Free the SelectionDAG state, now that we're finished with it.
565  CurDAG->clear();
566
567  return BB;
568}
569
570void SelectionDAGISel::DoInstructionSelection() {
571  DEBUG(errs() << "===== Instruction selection begins:\n");
572
573  PreprocessISelDAG();
574
575  // Select target instructions for the DAG.
576  {
577    // Number all nodes with a topological order and set DAGSize.
578    DAGSize = CurDAG->AssignTopologicalOrder();
579
580    // Create a dummy node (which is not added to allnodes), that adds
581    // a reference to the root node, preventing it from being deleted,
582    // and tracking any changes of the root.
583    HandleSDNode Dummy(CurDAG->getRoot());
584    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
585    ++ISelPosition;
586
587    // The AllNodes list is now topological-sorted. Visit the
588    // nodes by starting at the end of the list (the root of the
589    // graph) and preceding back toward the beginning (the entry
590    // node).
591    while (ISelPosition != CurDAG->allnodes_begin()) {
592      SDNode *Node = --ISelPosition;
593      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
594      // but there are currently some corner cases that it misses. Also, this
595      // makes it theoretically possible to disable the DAGCombiner.
596      if (Node->use_empty())
597        continue;
598
599      SDNode *ResNode = Select(Node);
600
601      // FIXME: This is pretty gross.  'Select' should be changed to not return
602      // anything at all and this code should be nuked with a tactical strike.
603
604      // If node should not be replaced, continue with the next one.
605      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
606        continue;
607      // Replace node.
608      if (ResNode)
609        ReplaceUses(Node, ResNode);
610
611      // If after the replacement this node is not used any more,
612      // remove this dead node.
613      if (Node->use_empty()) { // Don't delete EntryToken, etc.
614        ISelUpdater ISU(ISelPosition);
615        CurDAG->RemoveDeadNode(Node, &ISU);
616      }
617    }
618
619    CurDAG->setRoot(Dummy.getValue());
620  }
621
622  DEBUG(errs() << "===== Instruction selection ends:\n");
623
624  PostprocessISelDAG();
625}
626
627/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
628/// do other setup for EH landing-pad blocks.
629void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
630  // Add a label to mark the beginning of the landing pad.  Deletion of the
631  // landing pad can thus be detected via the MachineModuleInfo.
632  MCSymbol *Label = MF->getMMI().addLandingPad(BB);
633
634  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
635  BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
636
637  // Mark exception register as live in.
638  unsigned Reg = TLI.getExceptionAddressRegister();
639  if (Reg) BB->addLiveIn(Reg);
640
641  // Mark exception selector register as live in.
642  Reg = TLI.getExceptionSelectorRegister();
643  if (Reg) BB->addLiveIn(Reg);
644
645  // FIXME: Hack around an exception handling flaw (PR1508): the personality
646  // function and list of typeids logically belong to the invoke (or, if you
647  // like, the basic block containing the invoke), and need to be associated
648  // with it in the dwarf exception handling tables.  Currently however the
649  // information is provided by an intrinsic (eh.selector) that can be moved
650  // to unexpected places by the optimizers: if the unwind edge is critical,
651  // then breaking it can result in the intrinsics being in the successor of
652  // the landing pad, not the landing pad itself.  This results
653  // in exceptions not being caught because no typeids are associated with
654  // the invoke.  This may not be the only way things can go wrong, but it
655  // is the only way we try to work around for the moment.
656  const BasicBlock *LLVMBB = BB->getBasicBlock();
657  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
658
659  if (Br && Br->isUnconditional()) { // Critical edge?
660    BasicBlock::const_iterator I, E;
661    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
662      if (isa<EHSelectorInst>(I))
663        break;
664
665    if (I == E)
666      // No catch info found - try to extract some from the successor.
667      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
668  }
669}
670
671void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
672  // Initialize the Fast-ISel state, if needed.
673  FastISel *FastIS = 0;
674  if (EnableFastISel)
675    FastIS = TLI.createFastISel(*MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
676                                FuncInfo->StaticAllocaMap,
677                                FuncInfo->PHINodesToUpdate
678#ifndef NDEBUG
679                                , FuncInfo->CatchInfoLost
680#endif
681                                );
682
683  // Iterate over all basic blocks in the function.
684  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
685    const BasicBlock *LLVMBB = &*I;
686    MachineBasicBlock *BB = FuncInfo->MBBMap[LLVMBB];
687
688    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
689    BasicBlock::const_iterator const End = LLVMBB->end();
690    BasicBlock::const_iterator BI = Begin;
691
692    // Lower any arguments needed in this block if this is the entry block.
693    if (LLVMBB == &Fn.getEntryBlock())
694      LowerArguments(LLVMBB);
695
696    // Setup an EH landing-pad block.
697    if (BB->isLandingPad())
698      PrepareEHLandingPad(BB);
699
700    // Before doing SelectionDAG ISel, see if FastISel has been requested.
701    if (FastIS) {
702      // Emit code for any incoming arguments. This must happen before
703      // beginning FastISel on the entry block.
704      if (LLVMBB == &Fn.getEntryBlock()) {
705        CurDAG->setRoot(SDB->getControlRoot());
706        SDB->clear();
707        BB = CodeGenAndEmitDAG(BB);
708      }
709      FastIS->startNewBlock(BB);
710      // Do FastISel on as many instructions as possible.
711      for (; BI != End; ++BI) {
712#if 0
713        // Defer instructions with no side effects; they'll be emitted
714        // on-demand later.
715        if (BI->isSafeToSpeculativelyExecute() &&
716            !FuncInfo->isExportedInst(BI))
717          continue;
718#endif
719
720        // Try to select the instruction with FastISel.
721        if (FastIS->SelectInstruction(BI))
722          continue;
723
724        // Then handle certain instructions as single-LLVM-Instruction blocks.
725        if (isa<CallInst>(BI)) {
726          ++NumFastIselFailures;
727          if (EnableFastISelVerbose || EnableFastISelAbort) {
728            dbgs() << "FastISel missed call: ";
729            BI->dump();
730          }
731
732          if (!BI->getType()->isVoidTy() && !BI->use_empty()) {
733            unsigned &R = FuncInfo->ValueMap[BI];
734            if (!R)
735              R = FuncInfo->CreateRegs(BI->getType());
736          }
737
738          bool HadTailCall = false;
739          BB = SelectBasicBlock(BB, LLVMBB, BI, llvm::next(BI), HadTailCall);
740
741          // If the call was emitted as a tail call, we're done with the block.
742          if (HadTailCall) {
743            BI = End;
744            break;
745          }
746
747          // If the instruction was codegen'd with multiple blocks,
748          // inform the FastISel object where to resume inserting.
749          FastIS->setCurrentBlock(BB);
750          continue;
751        }
752
753        // Otherwise, give up on FastISel for the rest of the block.
754        // For now, be a little lenient about non-branch terminators.
755        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
756          ++NumFastIselFailures;
757          if (EnableFastISelVerbose || EnableFastISelAbort) {
758            dbgs() << "FastISel miss: ";
759            BI->dump();
760          }
761          if (EnableFastISelAbort)
762            // The "fast" selector couldn't handle something and bailed.
763            // For the purpose of debugging, just abort.
764            llvm_unreachable("FastISel didn't select the entire block");
765        }
766        break;
767      }
768    }
769
770    // Run SelectionDAG instruction selection on the remainder of the block
771    // not handled by FastISel. If FastISel is not run, this is the entire
772    // block.
773    if (BI != End) {
774      bool HadTailCall;
775      BB = SelectBasicBlock(BB, LLVMBB, BI, End, HadTailCall);
776    }
777
778    FinishBasicBlock(BB);
779    FuncInfo->PHINodesToUpdate.clear();
780  }
781
782  delete FastIS;
783}
784
785void
786SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
787
788  DEBUG(dbgs() << "Total amount of phi nodes to update: "
789               << FuncInfo->PHINodesToUpdate.size() << "\n";
790        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
791          dbgs() << "Node " << i << " : ("
792                 << FuncInfo->PHINodesToUpdate[i].first
793                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
794
795  // Next, now that we know what the last MBB the LLVM BB expanded is, update
796  // PHI nodes in successors.
797  if (SDB->SwitchCases.empty() &&
798      SDB->JTCases.empty() &&
799      SDB->BitTestCases.empty()) {
800    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
801      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
802      assert(PHI->isPHI() &&
803             "This is not a machine PHI node that we are updating!");
804      if (!BB->isSuccessor(PHI->getParent()))
805        continue;
806      PHI->addOperand(
807        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
808      PHI->addOperand(MachineOperand::CreateMBB(BB));
809    }
810    return;
811  }
812
813  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
814    // Lower header first, if it wasn't already lowered
815    if (!SDB->BitTestCases[i].Emitted) {
816      // Set the current basic block to the mbb we wish to insert the code into
817      BB = SDB->BitTestCases[i].Parent;
818      // Emit the code
819      SDB->visitBitTestHeader(SDB->BitTestCases[i], BB);
820      CurDAG->setRoot(SDB->getRoot());
821      SDB->clear();
822      BB = CodeGenAndEmitDAG(BB);
823    }
824
825    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
826      // Set the current basic block to the mbb we wish to insert the code into
827      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
828      // Emit the code
829      if (j+1 != ej)
830        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
831                              SDB->BitTestCases[i].Reg,
832                              SDB->BitTestCases[i].Cases[j],
833                              BB);
834      else
835        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
836                              SDB->BitTestCases[i].Reg,
837                              SDB->BitTestCases[i].Cases[j],
838                              BB);
839
840
841      CurDAG->setRoot(SDB->getRoot());
842      SDB->clear();
843      BB = CodeGenAndEmitDAG(BB);
844    }
845
846    // Update PHI Nodes
847    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
848         pi != pe; ++pi) {
849      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
850      MachineBasicBlock *PHIBB = PHI->getParent();
851      assert(PHI->isPHI() &&
852             "This is not a machine PHI node that we are updating!");
853      // This is "default" BB. We have two jumps to it. From "header" BB and
854      // from last "case" BB.
855      if (PHIBB == SDB->BitTestCases[i].Default) {
856        PHI->addOperand(MachineOperand::
857                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
858                                  false));
859        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
860        PHI->addOperand(MachineOperand::
861                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
862                                  false));
863        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
864                                                  back().ThisBB));
865      }
866      // One of "cases" BB.
867      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
868           j != ej; ++j) {
869        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
870        if (cBB->isSuccessor(PHIBB)) {
871          PHI->addOperand(MachineOperand::
872                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
873                                    false));
874          PHI->addOperand(MachineOperand::CreateMBB(cBB));
875        }
876      }
877    }
878  }
879  SDB->BitTestCases.clear();
880
881  // If the JumpTable record is filled in, then we need to emit a jump table.
882  // Updating the PHI nodes is tricky in this case, since we need to determine
883  // whether the PHI is a successor of the range check MBB or the jump table MBB
884  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
885    // Lower header first, if it wasn't already lowered
886    if (!SDB->JTCases[i].first.Emitted) {
887      // Set the current basic block to the mbb we wish to insert the code into
888      BB = SDB->JTCases[i].first.HeaderBB;
889      // Emit the code
890      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
891                                BB);
892      CurDAG->setRoot(SDB->getRoot());
893      SDB->clear();
894      BB = CodeGenAndEmitDAG(BB);
895    }
896
897    // Set the current basic block to the mbb we wish to insert the code into
898    BB = SDB->JTCases[i].second.MBB;
899    // Emit the code
900    SDB->visitJumpTable(SDB->JTCases[i].second);
901    CurDAG->setRoot(SDB->getRoot());
902    SDB->clear();
903    BB = CodeGenAndEmitDAG(BB);
904
905    // Update PHI Nodes
906    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
907         pi != pe; ++pi) {
908      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
909      MachineBasicBlock *PHIBB = PHI->getParent();
910      assert(PHI->isPHI() &&
911             "This is not a machine PHI node that we are updating!");
912      // "default" BB. We can go there only from header BB.
913      if (PHIBB == SDB->JTCases[i].second.Default) {
914        PHI->addOperand
915          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
916                                     false));
917        PHI->addOperand
918          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
919      }
920      // JT BB. Just iterate over successors here
921      if (BB->isSuccessor(PHIBB)) {
922        PHI->addOperand
923          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
924                                     false));
925        PHI->addOperand(MachineOperand::CreateMBB(BB));
926      }
927    }
928  }
929  SDB->JTCases.clear();
930
931  // If the switch block involved a branch to one of the actual successors, we
932  // need to update PHI nodes in that block.
933  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
934    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
935    assert(PHI->isPHI() &&
936           "This is not a machine PHI node that we are updating!");
937    if (BB->isSuccessor(PHI->getParent())) {
938      PHI->addOperand(
939        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
940      PHI->addOperand(MachineOperand::CreateMBB(BB));
941    }
942  }
943
944  // If we generated any switch lowering information, build and codegen any
945  // additional DAGs necessary.
946  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
947    // Set the current basic block to the mbb we wish to insert the code into
948    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
949
950    // Determine the unique successors.
951    SmallVector<MachineBasicBlock *, 2> Succs;
952    Succs.push_back(SDB->SwitchCases[i].TrueBB);
953    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
954      Succs.push_back(SDB->SwitchCases[i].FalseBB);
955
956    // Emit the code. Note that this could result in ThisBB being split, so
957    // we need to check for updates.
958    SDB->visitSwitchCase(SDB->SwitchCases[i], BB);
959    CurDAG->setRoot(SDB->getRoot());
960    SDB->clear();
961    ThisBB = CodeGenAndEmitDAG(BB);
962
963    // Handle any PHI nodes in successors of this chunk, as if we were coming
964    // from the original BB before switch expansion.  Note that PHI nodes can
965    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
966    // handle them the right number of times.
967    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
968      BB = Succs[i];
969      // BB may have been removed from the CFG if a branch was constant folded.
970      if (ThisBB->isSuccessor(BB)) {
971        for (MachineBasicBlock::iterator Phi = BB->begin();
972             Phi != BB->end() && Phi->isPHI();
973             ++Phi) {
974          // This value for this PHI node is recorded in PHINodesToUpdate.
975          for (unsigned pn = 0; ; ++pn) {
976            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
977                   "Didn't find PHI entry!");
978            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
979              Phi->addOperand(MachineOperand::
980                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
981                                        false));
982              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
983              break;
984            }
985          }
986        }
987      }
988    }
989  }
990  SDB->SwitchCases.clear();
991}
992
993
994/// Create the scheduler. If a specific scheduler was specified
995/// via the SchedulerRegistry, use it, otherwise select the
996/// one preferred by the target.
997///
998ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
999  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1000
1001  if (!Ctor) {
1002    Ctor = ISHeuristic;
1003    RegisterScheduler::setDefault(Ctor);
1004  }
1005
1006  return Ctor(this, OptLevel);
1007}
1008
1009ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1010  return new ScheduleHazardRecognizer();
1011}
1012
1013//===----------------------------------------------------------------------===//
1014// Helper functions used by the generated instruction selector.
1015//===----------------------------------------------------------------------===//
1016// Calls to these methods are generated by tblgen.
1017
1018/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1019/// the dag combiner simplified the 255, we still want to match.  RHS is the
1020/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1021/// specified in the .td file (e.g. 255).
1022bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1023                                    int64_t DesiredMaskS) const {
1024  const APInt &ActualMask = RHS->getAPIntValue();
1025  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1026
1027  // If the actual mask exactly matches, success!
1028  if (ActualMask == DesiredMask)
1029    return true;
1030
1031  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1032  if (ActualMask.intersects(~DesiredMask))
1033    return false;
1034
1035  // Otherwise, the DAG Combiner may have proven that the value coming in is
1036  // either already zero or is not demanded.  Check for known zero input bits.
1037  APInt NeededMask = DesiredMask & ~ActualMask;
1038  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1039    return true;
1040
1041  // TODO: check to see if missing bits are just not demanded.
1042
1043  // Otherwise, this pattern doesn't match.
1044  return false;
1045}
1046
1047/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1048/// the dag combiner simplified the 255, we still want to match.  RHS is the
1049/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1050/// specified in the .td file (e.g. 255).
1051bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1052                                   int64_t DesiredMaskS) const {
1053  const APInt &ActualMask = RHS->getAPIntValue();
1054  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1055
1056  // If the actual mask exactly matches, success!
1057  if (ActualMask == DesiredMask)
1058    return true;
1059
1060  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1061  if (ActualMask.intersects(~DesiredMask))
1062    return false;
1063
1064  // Otherwise, the DAG Combiner may have proven that the value coming in is
1065  // either already zero or is not demanded.  Check for known zero input bits.
1066  APInt NeededMask = DesiredMask & ~ActualMask;
1067
1068  APInt KnownZero, KnownOne;
1069  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1070
1071  // If all the missing bits in the or are already known to be set, match!
1072  if ((NeededMask & KnownOne) == NeededMask)
1073    return true;
1074
1075  // TODO: check to see if missing bits are just not demanded.
1076
1077  // Otherwise, this pattern doesn't match.
1078  return false;
1079}
1080
1081
1082/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1083/// by tblgen.  Others should not call it.
1084void SelectionDAGISel::
1085SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1086  std::vector<SDValue> InOps;
1087  std::swap(InOps, Ops);
1088
1089  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1090  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1091  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1092  Ops.push_back(InOps[InlineAsm::Op_IsAlignStack]);  // 3
1093
1094  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1095  if (InOps[e-1].getValueType() == MVT::Flag)
1096    --e;  // Don't process a flag operand if it is here.
1097
1098  while (i != e) {
1099    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1100    if (!InlineAsm::isMemKind(Flags)) {
1101      // Just skip over this operand, copying the operands verbatim.
1102      Ops.insert(Ops.end(), InOps.begin()+i,
1103                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1104      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1105    } else {
1106      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1107             "Memory operand with multiple values?");
1108      // Otherwise, this is a memory operand.  Ask the target to select it.
1109      std::vector<SDValue> SelOps;
1110      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1111        report_fatal_error("Could not match memory address.  Inline asm"
1112                           " failure!");
1113
1114      // Add this to the output node.
1115      unsigned NewFlags =
1116        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1117      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1118      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1119      i += 2;
1120    }
1121  }
1122
1123  // Add the flag input back if present.
1124  if (e != InOps.size())
1125    Ops.push_back(InOps.back());
1126}
1127
1128/// findFlagUse - Return use of EVT::Flag value produced by the specified
1129/// SDNode.
1130///
1131static SDNode *findFlagUse(SDNode *N) {
1132  unsigned FlagResNo = N->getNumValues()-1;
1133  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1134    SDUse &Use = I.getUse();
1135    if (Use.getResNo() == FlagResNo)
1136      return Use.getUser();
1137  }
1138  return NULL;
1139}
1140
1141/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1142/// This function recursively traverses up the operand chain, ignoring
1143/// certain nodes.
1144static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1145                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1146                          bool IgnoreChains) {
1147  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1148  // greater than all of its (recursive) operands.  If we scan to a point where
1149  // 'use' is smaller than the node we're scanning for, then we know we will
1150  // never find it.
1151  //
1152  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1153  // happen because we scan down to newly selected nodes in the case of flag
1154  // uses.
1155  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1156    return false;
1157
1158  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1159  // won't fail if we scan it again.
1160  if (!Visited.insert(Use))
1161    return false;
1162
1163  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1164    // Ignore chain uses, they are validated by HandleMergeInputChains.
1165    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1166      continue;
1167
1168    SDNode *N = Use->getOperand(i).getNode();
1169    if (N == Def) {
1170      if (Use == ImmedUse || Use == Root)
1171        continue;  // We are not looking for immediate use.
1172      assert(N != Root);
1173      return true;
1174    }
1175
1176    // Traverse up the operand chain.
1177    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1178      return true;
1179  }
1180  return false;
1181}
1182
1183/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1184/// operand node N of U during instruction selection that starts at Root.
1185bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1186                                          SDNode *Root) const {
1187  if (OptLevel == CodeGenOpt::None) return false;
1188  return N.hasOneUse();
1189}
1190
1191/// IsLegalToFold - Returns true if the specific operand node N of
1192/// U can be folded during instruction selection that starts at Root.
1193bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1194                                     CodeGenOpt::Level OptLevel,
1195                                     bool IgnoreChains) {
1196  if (OptLevel == CodeGenOpt::None) return false;
1197
1198  // If Root use can somehow reach N through a path that that doesn't contain
1199  // U then folding N would create a cycle. e.g. In the following
1200  // diagram, Root can reach N through X. If N is folded into into Root, then
1201  // X is both a predecessor and a successor of U.
1202  //
1203  //          [N*]           //
1204  //         ^   ^           //
1205  //        /     \          //
1206  //      [U*]    [X]?       //
1207  //        ^     ^          //
1208  //         \   /           //
1209  //          \ /            //
1210  //         [Root*]         //
1211  //
1212  // * indicates nodes to be folded together.
1213  //
1214  // If Root produces a flag, then it gets (even more) interesting. Since it
1215  // will be "glued" together with its flag use in the scheduler, we need to
1216  // check if it might reach N.
1217  //
1218  //          [N*]           //
1219  //         ^   ^           //
1220  //        /     \          //
1221  //      [U*]    [X]?       //
1222  //        ^       ^        //
1223  //         \       \       //
1224  //          \      |       //
1225  //         [Root*] |       //
1226  //          ^      |       //
1227  //          f      |       //
1228  //          |      /       //
1229  //         [Y]    /        //
1230  //           ^   /         //
1231  //           f  /          //
1232  //           | /           //
1233  //          [FU]           //
1234  //
1235  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1236  // (call it Fold), then X is a predecessor of FU and a successor of
1237  // Fold. But since Fold and FU are flagged together, this will create
1238  // a cycle in the scheduling graph.
1239
1240  // If the node has flags, walk down the graph to the "lowest" node in the
1241  // flagged set.
1242  EVT VT = Root->getValueType(Root->getNumValues()-1);
1243  while (VT == MVT::Flag) {
1244    SDNode *FU = findFlagUse(Root);
1245    if (FU == NULL)
1246      break;
1247    Root = FU;
1248    VT = Root->getValueType(Root->getNumValues()-1);
1249
1250    // If our query node has a flag result with a use, we've walked up it.  If
1251    // the user (which has already been selected) has a chain or indirectly uses
1252    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1253    // this, we cannot ignore chains in this predicate.
1254    IgnoreChains = false;
1255  }
1256
1257
1258  SmallPtrSet<SDNode*, 16> Visited;
1259  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1260}
1261
1262SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1263  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1264  SelectInlineAsmMemoryOperands(Ops);
1265
1266  std::vector<EVT> VTs;
1267  VTs.push_back(MVT::Other);
1268  VTs.push_back(MVT::Flag);
1269  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1270                                VTs, &Ops[0], Ops.size());
1271  New->setNodeId(-1);
1272  return New.getNode();
1273}
1274
1275SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1276  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1277}
1278
1279/// GetVBR - decode a vbr encoding whose top bit is set.
1280ALWAYS_INLINE static uint64_t
1281GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1282  assert(Val >= 128 && "Not a VBR");
1283  Val &= 127;  // Remove first vbr bit.
1284
1285  unsigned Shift = 7;
1286  uint64_t NextBits;
1287  do {
1288    NextBits = MatcherTable[Idx++];
1289    Val |= (NextBits&127) << Shift;
1290    Shift += 7;
1291  } while (NextBits & 128);
1292
1293  return Val;
1294}
1295
1296
1297/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1298/// interior flag and chain results to use the new flag and chain results.
1299void SelectionDAGISel::
1300UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1301                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1302                     SDValue InputFlag,
1303                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1304                     bool isMorphNodeTo) {
1305  SmallVector<SDNode*, 4> NowDeadNodes;
1306
1307  ISelUpdater ISU(ISelPosition);
1308
1309  // Now that all the normal results are replaced, we replace the chain and
1310  // flag results if present.
1311  if (!ChainNodesMatched.empty()) {
1312    assert(InputChain.getNode() != 0 &&
1313           "Matched input chains but didn't produce a chain");
1314    // Loop over all of the nodes we matched that produced a chain result.
1315    // Replace all the chain results with the final chain we ended up with.
1316    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1317      SDNode *ChainNode = ChainNodesMatched[i];
1318
1319      // If this node was already deleted, don't look at it.
1320      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1321        continue;
1322
1323      // Don't replace the results of the root node if we're doing a
1324      // MorphNodeTo.
1325      if (ChainNode == NodeToMatch && isMorphNodeTo)
1326        continue;
1327
1328      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1329      if (ChainVal.getValueType() == MVT::Flag)
1330        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1331      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1332      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1333
1334      // If the node became dead and we haven't already seen it, delete it.
1335      if (ChainNode->use_empty() &&
1336          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1337        NowDeadNodes.push_back(ChainNode);
1338    }
1339  }
1340
1341  // If the result produces a flag, update any flag results in the matched
1342  // pattern with the flag result.
1343  if (InputFlag.getNode() != 0) {
1344    // Handle any interior nodes explicitly marked.
1345    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1346      SDNode *FRN = FlagResultNodesMatched[i];
1347
1348      // If this node was already deleted, don't look at it.
1349      if (FRN->getOpcode() == ISD::DELETED_NODE)
1350        continue;
1351
1352      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1353             "Doesn't have a flag result");
1354      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1355                                        InputFlag, &ISU);
1356
1357      // If the node became dead and we haven't already seen it, delete it.
1358      if (FRN->use_empty() &&
1359          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1360        NowDeadNodes.push_back(FRN);
1361    }
1362  }
1363
1364  if (!NowDeadNodes.empty())
1365    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1366
1367  DEBUG(errs() << "ISEL: Match complete!\n");
1368}
1369
1370enum ChainResult {
1371  CR_Simple,
1372  CR_InducesCycle,
1373  CR_LeadsToInteriorNode
1374};
1375
1376/// WalkChainUsers - Walk down the users of the specified chained node that is
1377/// part of the pattern we're matching, looking at all of the users we find.
1378/// This determines whether something is an interior node, whether we have a
1379/// non-pattern node in between two pattern nodes (which prevent folding because
1380/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1381/// between pattern nodes (in which case the TF becomes part of the pattern).
1382///
1383/// The walk we do here is guaranteed to be small because we quickly get down to
1384/// already selected nodes "below" us.
1385static ChainResult
1386WalkChainUsers(SDNode *ChainedNode,
1387               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1388               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1389  ChainResult Result = CR_Simple;
1390
1391  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1392         E = ChainedNode->use_end(); UI != E; ++UI) {
1393    // Make sure the use is of the chain, not some other value we produce.
1394    if (UI.getUse().getValueType() != MVT::Other) continue;
1395
1396    SDNode *User = *UI;
1397
1398    // If we see an already-selected machine node, then we've gone beyond the
1399    // pattern that we're selecting down into the already selected chunk of the
1400    // DAG.
1401    if (User->isMachineOpcode() ||
1402        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1403      continue;
1404
1405    if (User->getOpcode() == ISD::CopyToReg ||
1406        User->getOpcode() == ISD::CopyFromReg ||
1407        User->getOpcode() == ISD::INLINEASM ||
1408        User->getOpcode() == ISD::EH_LABEL) {
1409      // If their node ID got reset to -1 then they've already been selected.
1410      // Treat them like a MachineOpcode.
1411      if (User->getNodeId() == -1)
1412        continue;
1413    }
1414
1415    // If we have a TokenFactor, we handle it specially.
1416    if (User->getOpcode() != ISD::TokenFactor) {
1417      // If the node isn't a token factor and isn't part of our pattern, then it
1418      // must be a random chained node in between two nodes we're selecting.
1419      // This happens when we have something like:
1420      //   x = load ptr
1421      //   call
1422      //   y = x+4
1423      //   store y -> ptr
1424      // Because we structurally match the load/store as a read/modify/write,
1425      // but the call is chained between them.  We cannot fold in this case
1426      // because it would induce a cycle in the graph.
1427      if (!std::count(ChainedNodesInPattern.begin(),
1428                      ChainedNodesInPattern.end(), User))
1429        return CR_InducesCycle;
1430
1431      // Otherwise we found a node that is part of our pattern.  For example in:
1432      //   x = load ptr
1433      //   y = x+4
1434      //   store y -> ptr
1435      // This would happen when we're scanning down from the load and see the
1436      // store as a user.  Record that there is a use of ChainedNode that is
1437      // part of the pattern and keep scanning uses.
1438      Result = CR_LeadsToInteriorNode;
1439      InteriorChainedNodes.push_back(User);
1440      continue;
1441    }
1442
1443    // If we found a TokenFactor, there are two cases to consider: first if the
1444    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1445    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1446    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1447    //     [Load chain]
1448    //         ^
1449    //         |
1450    //       [Load]
1451    //       ^    ^
1452    //       |    \                    DAG's like cheese
1453    //      /       \                       do you?
1454    //     /         |
1455    // [TokenFactor] [Op]
1456    //     ^          ^
1457    //     |          |
1458    //      \        /
1459    //       \      /
1460    //       [Store]
1461    //
1462    // In this case, the TokenFactor becomes part of our match and we rewrite it
1463    // as a new TokenFactor.
1464    //
1465    // To distinguish these two cases, do a recursive walk down the uses.
1466    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1467    case CR_Simple:
1468      // If the uses of the TokenFactor are just already-selected nodes, ignore
1469      // it, it is "below" our pattern.
1470      continue;
1471    case CR_InducesCycle:
1472      // If the uses of the TokenFactor lead to nodes that are not part of our
1473      // pattern that are not selected, folding would turn this into a cycle,
1474      // bail out now.
1475      return CR_InducesCycle;
1476    case CR_LeadsToInteriorNode:
1477      break;  // Otherwise, keep processing.
1478    }
1479
1480    // Okay, we know we're in the interesting interior case.  The TokenFactor
1481    // is now going to be considered part of the pattern so that we rewrite its
1482    // uses (it may have uses that are not part of the pattern) with the
1483    // ultimate chain result of the generated code.  We will also add its chain
1484    // inputs as inputs to the ultimate TokenFactor we create.
1485    Result = CR_LeadsToInteriorNode;
1486    ChainedNodesInPattern.push_back(User);
1487    InteriorChainedNodes.push_back(User);
1488    continue;
1489  }
1490
1491  return Result;
1492}
1493
1494/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1495/// operation for when the pattern matched at least one node with a chains.  The
1496/// input vector contains a list of all of the chained nodes that we match.  We
1497/// must determine if this is a valid thing to cover (i.e. matching it won't
1498/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1499/// be used as the input node chain for the generated nodes.
1500static SDValue
1501HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1502                       SelectionDAG *CurDAG) {
1503  // Walk all of the chained nodes we've matched, recursively scanning down the
1504  // users of the chain result. This adds any TokenFactor nodes that are caught
1505  // in between chained nodes to the chained and interior nodes list.
1506  SmallVector<SDNode*, 3> InteriorChainedNodes;
1507  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1508    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1509                       InteriorChainedNodes) == CR_InducesCycle)
1510      return SDValue(); // Would induce a cycle.
1511  }
1512
1513  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1514  // that we are interested in.  Form our input TokenFactor node.
1515  SmallVector<SDValue, 3> InputChains;
1516  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1517    // Add the input chain of this node to the InputChains list (which will be
1518    // the operands of the generated TokenFactor) if it's not an interior node.
1519    SDNode *N = ChainNodesMatched[i];
1520    if (N->getOpcode() != ISD::TokenFactor) {
1521      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1522        continue;
1523
1524      // Otherwise, add the input chain.
1525      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1526      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1527      InputChains.push_back(InChain);
1528      continue;
1529    }
1530
1531    // If we have a token factor, we want to add all inputs of the token factor
1532    // that are not part of the pattern we're matching.
1533    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1534      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1535                      N->getOperand(op).getNode()))
1536        InputChains.push_back(N->getOperand(op));
1537    }
1538  }
1539
1540  SDValue Res;
1541  if (InputChains.size() == 1)
1542    return InputChains[0];
1543  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1544                         MVT::Other, &InputChains[0], InputChains.size());
1545}
1546
1547/// MorphNode - Handle morphing a node in place for the selector.
1548SDNode *SelectionDAGISel::
1549MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1550          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1551  // It is possible we're using MorphNodeTo to replace a node with no
1552  // normal results with one that has a normal result (or we could be
1553  // adding a chain) and the input could have flags and chains as well.
1554  // In this case we need to shift the operands down.
1555  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1556  // than the old isel though.
1557  int OldFlagResultNo = -1, OldChainResultNo = -1;
1558
1559  unsigned NTMNumResults = Node->getNumValues();
1560  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1561    OldFlagResultNo = NTMNumResults-1;
1562    if (NTMNumResults != 1 &&
1563        Node->getValueType(NTMNumResults-2) == MVT::Other)
1564      OldChainResultNo = NTMNumResults-2;
1565  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1566    OldChainResultNo = NTMNumResults-1;
1567
1568  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1569  // that this deletes operands of the old node that become dead.
1570  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1571
1572  // MorphNodeTo can operate in two ways: if an existing node with the
1573  // specified operands exists, it can just return it.  Otherwise, it
1574  // updates the node in place to have the requested operands.
1575  if (Res == Node) {
1576    // If we updated the node in place, reset the node ID.  To the isel,
1577    // this should be just like a newly allocated machine node.
1578    Res->setNodeId(-1);
1579  }
1580
1581  unsigned ResNumResults = Res->getNumValues();
1582  // Move the flag if needed.
1583  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1584      (unsigned)OldFlagResultNo != ResNumResults-1)
1585    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1586                                      SDValue(Res, ResNumResults-1));
1587
1588  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1589    --ResNumResults;
1590
1591  // Move the chain reference if needed.
1592  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1593      (unsigned)OldChainResultNo != ResNumResults-1)
1594    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1595                                      SDValue(Res, ResNumResults-1));
1596
1597  // Otherwise, no replacement happened because the node already exists. Replace
1598  // Uses of the old node with the new one.
1599  if (Res != Node)
1600    CurDAG->ReplaceAllUsesWith(Node, Res);
1601
1602  return Res;
1603}
1604
1605/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1606ALWAYS_INLINE static bool
1607CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1608          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1609  // Accept if it is exactly the same as a previously recorded node.
1610  unsigned RecNo = MatcherTable[MatcherIndex++];
1611  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1612  return N == RecordedNodes[RecNo];
1613}
1614
1615/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1616ALWAYS_INLINE static bool
1617CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1618                      SelectionDAGISel &SDISel) {
1619  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1620}
1621
1622/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1623ALWAYS_INLINE static bool
1624CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1625                   SelectionDAGISel &SDISel, SDNode *N) {
1626  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1627}
1628
1629ALWAYS_INLINE static bool
1630CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1631            SDNode *N) {
1632  uint16_t Opc = MatcherTable[MatcherIndex++];
1633  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1634  return N->getOpcode() == Opc;
1635}
1636
1637ALWAYS_INLINE static bool
1638CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1639          SDValue N, const TargetLowering &TLI) {
1640  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1641  if (N.getValueType() == VT) return true;
1642
1643  // Handle the case when VT is iPTR.
1644  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1645}
1646
1647ALWAYS_INLINE static bool
1648CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1649               SDValue N, const TargetLowering &TLI,
1650               unsigned ChildNo) {
1651  if (ChildNo >= N.getNumOperands())
1652    return false;  // Match fails if out of range child #.
1653  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1654}
1655
1656
1657ALWAYS_INLINE static bool
1658CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1659              SDValue N) {
1660  return cast<CondCodeSDNode>(N)->get() ==
1661      (ISD::CondCode)MatcherTable[MatcherIndex++];
1662}
1663
1664ALWAYS_INLINE static bool
1665CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1666               SDValue N, const TargetLowering &TLI) {
1667  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1668  if (cast<VTSDNode>(N)->getVT() == VT)
1669    return true;
1670
1671  // Handle the case when VT is iPTR.
1672  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1673}
1674
1675ALWAYS_INLINE static bool
1676CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1677             SDValue N) {
1678  int64_t Val = MatcherTable[MatcherIndex++];
1679  if (Val & 128)
1680    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1681
1682  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1683  return C != 0 && C->getSExtValue() == Val;
1684}
1685
1686ALWAYS_INLINE static bool
1687CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1688            SDValue N, SelectionDAGISel &SDISel) {
1689  int64_t Val = MatcherTable[MatcherIndex++];
1690  if (Val & 128)
1691    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1692
1693  if (N->getOpcode() != ISD::AND) return false;
1694
1695  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1696  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1697}
1698
1699ALWAYS_INLINE static bool
1700CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1701           SDValue N, SelectionDAGISel &SDISel) {
1702  int64_t Val = MatcherTable[MatcherIndex++];
1703  if (Val & 128)
1704    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1705
1706  if (N->getOpcode() != ISD::OR) return false;
1707
1708  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1709  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1710}
1711
1712/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1713/// scope, evaluate the current node.  If the current predicate is known to
1714/// fail, set Result=true and return anything.  If the current predicate is
1715/// known to pass, set Result=false and return the MatcherIndex to continue
1716/// with.  If the current predicate is unknown, set Result=false and return the
1717/// MatcherIndex to continue with.
1718static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1719                                       unsigned Index, SDValue N,
1720                                       bool &Result, SelectionDAGISel &SDISel,
1721                                       SmallVectorImpl<SDValue> &RecordedNodes){
1722  switch (Table[Index++]) {
1723  default:
1724    Result = false;
1725    return Index-1;  // Could not evaluate this predicate.
1726  case SelectionDAGISel::OPC_CheckSame:
1727    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1728    return Index;
1729  case SelectionDAGISel::OPC_CheckPatternPredicate:
1730    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1731    return Index;
1732  case SelectionDAGISel::OPC_CheckPredicate:
1733    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1734    return Index;
1735  case SelectionDAGISel::OPC_CheckOpcode:
1736    Result = !::CheckOpcode(Table, Index, N.getNode());
1737    return Index;
1738  case SelectionDAGISel::OPC_CheckType:
1739    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1740    return Index;
1741  case SelectionDAGISel::OPC_CheckChild0Type:
1742  case SelectionDAGISel::OPC_CheckChild1Type:
1743  case SelectionDAGISel::OPC_CheckChild2Type:
1744  case SelectionDAGISel::OPC_CheckChild3Type:
1745  case SelectionDAGISel::OPC_CheckChild4Type:
1746  case SelectionDAGISel::OPC_CheckChild5Type:
1747  case SelectionDAGISel::OPC_CheckChild6Type:
1748  case SelectionDAGISel::OPC_CheckChild7Type:
1749    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1750                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1751    return Index;
1752  case SelectionDAGISel::OPC_CheckCondCode:
1753    Result = !::CheckCondCode(Table, Index, N);
1754    return Index;
1755  case SelectionDAGISel::OPC_CheckValueType:
1756    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1757    return Index;
1758  case SelectionDAGISel::OPC_CheckInteger:
1759    Result = !::CheckInteger(Table, Index, N);
1760    return Index;
1761  case SelectionDAGISel::OPC_CheckAndImm:
1762    Result = !::CheckAndImm(Table, Index, N, SDISel);
1763    return Index;
1764  case SelectionDAGISel::OPC_CheckOrImm:
1765    Result = !::CheckOrImm(Table, Index, N, SDISel);
1766    return Index;
1767  }
1768}
1769
1770namespace {
1771
1772struct MatchScope {
1773  /// FailIndex - If this match fails, this is the index to continue with.
1774  unsigned FailIndex;
1775
1776  /// NodeStack - The node stack when the scope was formed.
1777  SmallVector<SDValue, 4> NodeStack;
1778
1779  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1780  unsigned NumRecordedNodes;
1781
1782  /// NumMatchedMemRefs - The number of matched memref entries.
1783  unsigned NumMatchedMemRefs;
1784
1785  /// InputChain/InputFlag - The current chain/flag
1786  SDValue InputChain, InputFlag;
1787
1788  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1789  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1790};
1791
1792}
1793
1794SDNode *SelectionDAGISel::
1795SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1796                 unsigned TableSize) {
1797  // FIXME: Should these even be selected?  Handle these cases in the caller?
1798  switch (NodeToMatch->getOpcode()) {
1799  default:
1800    break;
1801  case ISD::EntryToken:       // These nodes remain the same.
1802  case ISD::BasicBlock:
1803  case ISD::Register:
1804  //case ISD::VALUETYPE:
1805  //case ISD::CONDCODE:
1806  case ISD::HANDLENODE:
1807  case ISD::MDNODE_SDNODE:
1808  case ISD::TargetConstant:
1809  case ISD::TargetConstantFP:
1810  case ISD::TargetConstantPool:
1811  case ISD::TargetFrameIndex:
1812  case ISD::TargetExternalSymbol:
1813  case ISD::TargetBlockAddress:
1814  case ISD::TargetJumpTable:
1815  case ISD::TargetGlobalTLSAddress:
1816  case ISD::TargetGlobalAddress:
1817  case ISD::TokenFactor:
1818  case ISD::CopyFromReg:
1819  case ISD::CopyToReg:
1820  case ISD::EH_LABEL:
1821    NodeToMatch->setNodeId(-1); // Mark selected.
1822    return 0;
1823  case ISD::AssertSext:
1824  case ISD::AssertZext:
1825    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1826                                      NodeToMatch->getOperand(0));
1827    return 0;
1828  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1829  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1830  }
1831
1832  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1833
1834  // Set up the node stack with NodeToMatch as the only node on the stack.
1835  SmallVector<SDValue, 8> NodeStack;
1836  SDValue N = SDValue(NodeToMatch, 0);
1837  NodeStack.push_back(N);
1838
1839  // MatchScopes - Scopes used when matching, if a match failure happens, this
1840  // indicates where to continue checking.
1841  SmallVector<MatchScope, 8> MatchScopes;
1842
1843  // RecordedNodes - This is the set of nodes that have been recorded by the
1844  // state machine.
1845  SmallVector<SDValue, 8> RecordedNodes;
1846
1847  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1848  // pattern.
1849  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1850
1851  // These are the current input chain and flag for use when generating nodes.
1852  // Various Emit operations change these.  For example, emitting a copytoreg
1853  // uses and updates these.
1854  SDValue InputChain, InputFlag;
1855
1856  // ChainNodesMatched - If a pattern matches nodes that have input/output
1857  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1858  // which ones they are.  The result is captured into this list so that we can
1859  // update the chain results when the pattern is complete.
1860  SmallVector<SDNode*, 3> ChainNodesMatched;
1861  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1862
1863  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1864        NodeToMatch->dump(CurDAG);
1865        errs() << '\n');
1866
1867  // Determine where to start the interpreter.  Normally we start at opcode #0,
1868  // but if the state machine starts with an OPC_SwitchOpcode, then we
1869  // accelerate the first lookup (which is guaranteed to be hot) with the
1870  // OpcodeOffset table.
1871  unsigned MatcherIndex = 0;
1872
1873  if (!OpcodeOffset.empty()) {
1874    // Already computed the OpcodeOffset table, just index into it.
1875    if (N.getOpcode() < OpcodeOffset.size())
1876      MatcherIndex = OpcodeOffset[N.getOpcode()];
1877    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1878
1879  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1880    // Otherwise, the table isn't computed, but the state machine does start
1881    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1882    // is the first time we're selecting an instruction.
1883    unsigned Idx = 1;
1884    while (1) {
1885      // Get the size of this case.
1886      unsigned CaseSize = MatcherTable[Idx++];
1887      if (CaseSize & 128)
1888        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1889      if (CaseSize == 0) break;
1890
1891      // Get the opcode, add the index to the table.
1892      uint16_t Opc = MatcherTable[Idx++];
1893      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
1894      if (Opc >= OpcodeOffset.size())
1895        OpcodeOffset.resize((Opc+1)*2);
1896      OpcodeOffset[Opc] = Idx;
1897      Idx += CaseSize;
1898    }
1899
1900    // Okay, do the lookup for the first opcode.
1901    if (N.getOpcode() < OpcodeOffset.size())
1902      MatcherIndex = OpcodeOffset[N.getOpcode()];
1903  }
1904
1905  while (1) {
1906    assert(MatcherIndex < TableSize && "Invalid index");
1907#ifndef NDEBUG
1908    unsigned CurrentOpcodeIndex = MatcherIndex;
1909#endif
1910    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
1911    switch (Opcode) {
1912    case OPC_Scope: {
1913      // Okay, the semantics of this operation are that we should push a scope
1914      // then evaluate the first child.  However, pushing a scope only to have
1915      // the first check fail (which then pops it) is inefficient.  If we can
1916      // determine immediately that the first check (or first several) will
1917      // immediately fail, don't even bother pushing a scope for them.
1918      unsigned FailIndex;
1919
1920      while (1) {
1921        unsigned NumToSkip = MatcherTable[MatcherIndex++];
1922        if (NumToSkip & 128)
1923          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
1924        // Found the end of the scope with no match.
1925        if (NumToSkip == 0) {
1926          FailIndex = 0;
1927          break;
1928        }
1929
1930        FailIndex = MatcherIndex+NumToSkip;
1931
1932        unsigned MatcherIndexOfPredicate = MatcherIndex;
1933        (void)MatcherIndexOfPredicate; // silence warning.
1934
1935        // If we can't evaluate this predicate without pushing a scope (e.g. if
1936        // it is a 'MoveParent') or if the predicate succeeds on this node, we
1937        // push the scope and evaluate the full predicate chain.
1938        bool Result;
1939        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
1940                                              Result, *this, RecordedNodes);
1941        if (!Result)
1942          break;
1943
1944        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
1945                     << "index " << MatcherIndexOfPredicate
1946                     << ", continuing at " << FailIndex << "\n");
1947        ++NumDAGIselRetries;
1948
1949        // Otherwise, we know that this case of the Scope is guaranteed to fail,
1950        // move to the next case.
1951        MatcherIndex = FailIndex;
1952      }
1953
1954      // If the whole scope failed to match, bail.
1955      if (FailIndex == 0) break;
1956
1957      // Push a MatchScope which indicates where to go if the first child fails
1958      // to match.
1959      MatchScope NewEntry;
1960      NewEntry.FailIndex = FailIndex;
1961      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
1962      NewEntry.NumRecordedNodes = RecordedNodes.size();
1963      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
1964      NewEntry.InputChain = InputChain;
1965      NewEntry.InputFlag = InputFlag;
1966      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
1967      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
1968      MatchScopes.push_back(NewEntry);
1969      continue;
1970    }
1971    case OPC_RecordNode:
1972      // Remember this node, it may end up being an operand in the pattern.
1973      RecordedNodes.push_back(N);
1974      continue;
1975
1976    case OPC_RecordChild0: case OPC_RecordChild1:
1977    case OPC_RecordChild2: case OPC_RecordChild3:
1978    case OPC_RecordChild4: case OPC_RecordChild5:
1979    case OPC_RecordChild6: case OPC_RecordChild7: {
1980      unsigned ChildNo = Opcode-OPC_RecordChild0;
1981      if (ChildNo >= N.getNumOperands())
1982        break;  // Match fails if out of range child #.
1983
1984      RecordedNodes.push_back(N->getOperand(ChildNo));
1985      continue;
1986    }
1987    case OPC_RecordMemRef:
1988      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
1989      continue;
1990
1991    case OPC_CaptureFlagInput:
1992      // If the current node has an input flag, capture it in InputFlag.
1993      if (N->getNumOperands() != 0 &&
1994          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
1995        InputFlag = N->getOperand(N->getNumOperands()-1);
1996      continue;
1997
1998    case OPC_MoveChild: {
1999      unsigned ChildNo = MatcherTable[MatcherIndex++];
2000      if (ChildNo >= N.getNumOperands())
2001        break;  // Match fails if out of range child #.
2002      N = N.getOperand(ChildNo);
2003      NodeStack.push_back(N);
2004      continue;
2005    }
2006
2007    case OPC_MoveParent:
2008      // Pop the current node off the NodeStack.
2009      NodeStack.pop_back();
2010      assert(!NodeStack.empty() && "Node stack imbalance!");
2011      N = NodeStack.back();
2012      continue;
2013
2014    case OPC_CheckSame:
2015      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2016      continue;
2017    case OPC_CheckPatternPredicate:
2018      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2019      continue;
2020    case OPC_CheckPredicate:
2021      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2022                                N.getNode()))
2023        break;
2024      continue;
2025    case OPC_CheckComplexPat: {
2026      unsigned CPNum = MatcherTable[MatcherIndex++];
2027      unsigned RecNo = MatcherTable[MatcherIndex++];
2028      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2029      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2030                               RecordedNodes))
2031        break;
2032      continue;
2033    }
2034    case OPC_CheckOpcode:
2035      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2036      continue;
2037
2038    case OPC_CheckType:
2039      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2040      continue;
2041
2042    case OPC_SwitchOpcode: {
2043      unsigned CurNodeOpcode = N.getOpcode();
2044      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2045      unsigned CaseSize;
2046      while (1) {
2047        // Get the size of this case.
2048        CaseSize = MatcherTable[MatcherIndex++];
2049        if (CaseSize & 128)
2050          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2051        if (CaseSize == 0) break;
2052
2053        uint16_t Opc = MatcherTable[MatcherIndex++];
2054        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2055
2056        // If the opcode matches, then we will execute this case.
2057        if (CurNodeOpcode == Opc)
2058          break;
2059
2060        // Otherwise, skip over this case.
2061        MatcherIndex += CaseSize;
2062      }
2063
2064      // If no cases matched, bail out.
2065      if (CaseSize == 0) break;
2066
2067      // Otherwise, execute the case we found.
2068      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2069                   << " to " << MatcherIndex << "\n");
2070      continue;
2071    }
2072
2073    case OPC_SwitchType: {
2074      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2075      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2076      unsigned CaseSize;
2077      while (1) {
2078        // Get the size of this case.
2079        CaseSize = MatcherTable[MatcherIndex++];
2080        if (CaseSize & 128)
2081          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2082        if (CaseSize == 0) break;
2083
2084        MVT::SimpleValueType CaseVT =
2085          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2086        if (CaseVT == MVT::iPTR)
2087          CaseVT = TLI.getPointerTy().SimpleTy;
2088
2089        // If the VT matches, then we will execute this case.
2090        if (CurNodeVT == CaseVT)
2091          break;
2092
2093        // Otherwise, skip over this case.
2094        MatcherIndex += CaseSize;
2095      }
2096
2097      // If no cases matched, bail out.
2098      if (CaseSize == 0) break;
2099
2100      // Otherwise, execute the case we found.
2101      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2102                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2103      continue;
2104    }
2105    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2106    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2107    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2108    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2109      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2110                            Opcode-OPC_CheckChild0Type))
2111        break;
2112      continue;
2113    case OPC_CheckCondCode:
2114      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2115      continue;
2116    case OPC_CheckValueType:
2117      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2118      continue;
2119    case OPC_CheckInteger:
2120      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2121      continue;
2122    case OPC_CheckAndImm:
2123      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2124      continue;
2125    case OPC_CheckOrImm:
2126      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2127      continue;
2128
2129    case OPC_CheckFoldableChainNode: {
2130      assert(NodeStack.size() != 1 && "No parent node");
2131      // Verify that all intermediate nodes between the root and this one have
2132      // a single use.
2133      bool HasMultipleUses = false;
2134      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2135        if (!NodeStack[i].hasOneUse()) {
2136          HasMultipleUses = true;
2137          break;
2138        }
2139      if (HasMultipleUses) break;
2140
2141      // Check to see that the target thinks this is profitable to fold and that
2142      // we can fold it without inducing cycles in the graph.
2143      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2144                              NodeToMatch) ||
2145          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2146                         NodeToMatch, OptLevel,
2147                         true/*We validate our own chains*/))
2148        break;
2149
2150      continue;
2151    }
2152    case OPC_EmitInteger: {
2153      MVT::SimpleValueType VT =
2154        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2155      int64_t Val = MatcherTable[MatcherIndex++];
2156      if (Val & 128)
2157        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2158      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2159      continue;
2160    }
2161    case OPC_EmitRegister: {
2162      MVT::SimpleValueType VT =
2163        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2164      unsigned RegNo = MatcherTable[MatcherIndex++];
2165      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2166      continue;
2167    }
2168
2169    case OPC_EmitConvertToTarget:  {
2170      // Convert from IMM/FPIMM to target version.
2171      unsigned RecNo = MatcherTable[MatcherIndex++];
2172      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2173      SDValue Imm = RecordedNodes[RecNo];
2174
2175      if (Imm->getOpcode() == ISD::Constant) {
2176        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2177        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2178      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2179        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2180        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2181      }
2182
2183      RecordedNodes.push_back(Imm);
2184      continue;
2185    }
2186
2187    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2188    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2189      // These are space-optimized forms of OPC_EmitMergeInputChains.
2190      assert(InputChain.getNode() == 0 &&
2191             "EmitMergeInputChains should be the first chain producing node");
2192      assert(ChainNodesMatched.empty() &&
2193             "Should only have one EmitMergeInputChains per match");
2194
2195      // Read all of the chained nodes.
2196      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2197      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2198      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2199
2200      // FIXME: What if other value results of the node have uses not matched
2201      // by this pattern?
2202      if (ChainNodesMatched.back() != NodeToMatch &&
2203          !RecordedNodes[RecNo].hasOneUse()) {
2204        ChainNodesMatched.clear();
2205        break;
2206      }
2207
2208      // Merge the input chains if they are not intra-pattern references.
2209      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2210
2211      if (InputChain.getNode() == 0)
2212        break;  // Failed to merge.
2213      continue;
2214    }
2215
2216    case OPC_EmitMergeInputChains: {
2217      assert(InputChain.getNode() == 0 &&
2218             "EmitMergeInputChains should be the first chain producing node");
2219      // This node gets a list of nodes we matched in the input that have
2220      // chains.  We want to token factor all of the input chains to these nodes
2221      // together.  However, if any of the input chains is actually one of the
2222      // nodes matched in this pattern, then we have an intra-match reference.
2223      // Ignore these because the newly token factored chain should not refer to
2224      // the old nodes.
2225      unsigned NumChains = MatcherTable[MatcherIndex++];
2226      assert(NumChains != 0 && "Can't TF zero chains");
2227
2228      assert(ChainNodesMatched.empty() &&
2229             "Should only have one EmitMergeInputChains per match");
2230
2231      // Read all of the chained nodes.
2232      for (unsigned i = 0; i != NumChains; ++i) {
2233        unsigned RecNo = MatcherTable[MatcherIndex++];
2234        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2235        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2236
2237        // FIXME: What if other value results of the node have uses not matched
2238        // by this pattern?
2239        if (ChainNodesMatched.back() != NodeToMatch &&
2240            !RecordedNodes[RecNo].hasOneUse()) {
2241          ChainNodesMatched.clear();
2242          break;
2243        }
2244      }
2245
2246      // If the inner loop broke out, the match fails.
2247      if (ChainNodesMatched.empty())
2248        break;
2249
2250      // Merge the input chains if they are not intra-pattern references.
2251      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2252
2253      if (InputChain.getNode() == 0)
2254        break;  // Failed to merge.
2255
2256      continue;
2257    }
2258
2259    case OPC_EmitCopyToReg: {
2260      unsigned RecNo = MatcherTable[MatcherIndex++];
2261      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2262      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2263
2264      if (InputChain.getNode() == 0)
2265        InputChain = CurDAG->getEntryNode();
2266
2267      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2268                                        DestPhysReg, RecordedNodes[RecNo],
2269                                        InputFlag);
2270
2271      InputFlag = InputChain.getValue(1);
2272      continue;
2273    }
2274
2275    case OPC_EmitNodeXForm: {
2276      unsigned XFormNo = MatcherTable[MatcherIndex++];
2277      unsigned RecNo = MatcherTable[MatcherIndex++];
2278      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2279      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2280      continue;
2281    }
2282
2283    case OPC_EmitNode:
2284    case OPC_MorphNodeTo: {
2285      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2286      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2287      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2288      // Get the result VT list.
2289      unsigned NumVTs = MatcherTable[MatcherIndex++];
2290      SmallVector<EVT, 4> VTs;
2291      for (unsigned i = 0; i != NumVTs; ++i) {
2292        MVT::SimpleValueType VT =
2293          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2294        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2295        VTs.push_back(VT);
2296      }
2297
2298      if (EmitNodeInfo & OPFL_Chain)
2299        VTs.push_back(MVT::Other);
2300      if (EmitNodeInfo & OPFL_FlagOutput)
2301        VTs.push_back(MVT::Flag);
2302
2303      // This is hot code, so optimize the two most common cases of 1 and 2
2304      // results.
2305      SDVTList VTList;
2306      if (VTs.size() == 1)
2307        VTList = CurDAG->getVTList(VTs[0]);
2308      else if (VTs.size() == 2)
2309        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2310      else
2311        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2312
2313      // Get the operand list.
2314      unsigned NumOps = MatcherTable[MatcherIndex++];
2315      SmallVector<SDValue, 8> Ops;
2316      for (unsigned i = 0; i != NumOps; ++i) {
2317        unsigned RecNo = MatcherTable[MatcherIndex++];
2318        if (RecNo & 128)
2319          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2320
2321        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2322        Ops.push_back(RecordedNodes[RecNo]);
2323      }
2324
2325      // If there are variadic operands to add, handle them now.
2326      if (EmitNodeInfo & OPFL_VariadicInfo) {
2327        // Determine the start index to copy from.
2328        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2329        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2330        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2331               "Invalid variadic node");
2332        // Copy all of the variadic operands, not including a potential flag
2333        // input.
2334        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2335             i != e; ++i) {
2336          SDValue V = NodeToMatch->getOperand(i);
2337          if (V.getValueType() == MVT::Flag) break;
2338          Ops.push_back(V);
2339        }
2340      }
2341
2342      // If this has chain/flag inputs, add them.
2343      if (EmitNodeInfo & OPFL_Chain)
2344        Ops.push_back(InputChain);
2345      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2346        Ops.push_back(InputFlag);
2347
2348      // Create the node.
2349      SDNode *Res = 0;
2350      if (Opcode != OPC_MorphNodeTo) {
2351        // If this is a normal EmitNode command, just create the new node and
2352        // add the results to the RecordedNodes list.
2353        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2354                                     VTList, Ops.data(), Ops.size());
2355
2356        // Add all the non-flag/non-chain results to the RecordedNodes list.
2357        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2358          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2359          RecordedNodes.push_back(SDValue(Res, i));
2360        }
2361
2362      } else {
2363        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2364                        EmitNodeInfo);
2365      }
2366
2367      // If the node had chain/flag results, update our notion of the current
2368      // chain and flag.
2369      if (EmitNodeInfo & OPFL_FlagOutput) {
2370        InputFlag = SDValue(Res, VTs.size()-1);
2371        if (EmitNodeInfo & OPFL_Chain)
2372          InputChain = SDValue(Res, VTs.size()-2);
2373      } else if (EmitNodeInfo & OPFL_Chain)
2374        InputChain = SDValue(Res, VTs.size()-1);
2375
2376      // If the OPFL_MemRefs flag is set on this node, slap all of the
2377      // accumulated memrefs onto it.
2378      //
2379      // FIXME: This is vastly incorrect for patterns with multiple outputs
2380      // instructions that access memory and for ComplexPatterns that match
2381      // loads.
2382      if (EmitNodeInfo & OPFL_MemRefs) {
2383        MachineSDNode::mmo_iterator MemRefs =
2384          MF->allocateMemRefsArray(MatchedMemRefs.size());
2385        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2386        cast<MachineSDNode>(Res)
2387          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2388      }
2389
2390      DEBUG(errs() << "  "
2391                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2392                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2393
2394      // If this was a MorphNodeTo then we're completely done!
2395      if (Opcode == OPC_MorphNodeTo) {
2396        // Update chain and flag uses.
2397        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2398                             InputFlag, FlagResultNodesMatched, true);
2399        return Res;
2400      }
2401
2402      continue;
2403    }
2404
2405    case OPC_MarkFlagResults: {
2406      unsigned NumNodes = MatcherTable[MatcherIndex++];
2407
2408      // Read and remember all the flag-result nodes.
2409      for (unsigned i = 0; i != NumNodes; ++i) {
2410        unsigned RecNo = MatcherTable[MatcherIndex++];
2411        if (RecNo & 128)
2412          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2413
2414        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2415        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2416      }
2417      continue;
2418    }
2419
2420    case OPC_CompleteMatch: {
2421      // The match has been completed, and any new nodes (if any) have been
2422      // created.  Patch up references to the matched dag to use the newly
2423      // created nodes.
2424      unsigned NumResults = MatcherTable[MatcherIndex++];
2425
2426      for (unsigned i = 0; i != NumResults; ++i) {
2427        unsigned ResSlot = MatcherTable[MatcherIndex++];
2428        if (ResSlot & 128)
2429          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2430
2431        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2432        SDValue Res = RecordedNodes[ResSlot];
2433
2434        assert(i < NodeToMatch->getNumValues() &&
2435               NodeToMatch->getValueType(i) != MVT::Other &&
2436               NodeToMatch->getValueType(i) != MVT::Flag &&
2437               "Invalid number of results to complete!");
2438        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2439                NodeToMatch->getValueType(i) == MVT::iPTR ||
2440                Res.getValueType() == MVT::iPTR ||
2441                NodeToMatch->getValueType(i).getSizeInBits() ==
2442                    Res.getValueType().getSizeInBits()) &&
2443               "invalid replacement");
2444        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2445      }
2446
2447      // If the root node defines a flag, add it to the flag nodes to update
2448      // list.
2449      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2450        FlagResultNodesMatched.push_back(NodeToMatch);
2451
2452      // Update chain and flag uses.
2453      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2454                           InputFlag, FlagResultNodesMatched, false);
2455
2456      assert(NodeToMatch->use_empty() &&
2457             "Didn't replace all uses of the node?");
2458
2459      // FIXME: We just return here, which interacts correctly with SelectRoot
2460      // above.  We should fix this to not return an SDNode* anymore.
2461      return 0;
2462    }
2463    }
2464
2465    // If the code reached this point, then the match failed.  See if there is
2466    // another child to try in the current 'Scope', otherwise pop it until we
2467    // find a case to check.
2468    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2469    ++NumDAGIselRetries;
2470    while (1) {
2471      if (MatchScopes.empty()) {
2472        CannotYetSelect(NodeToMatch);
2473        return 0;
2474      }
2475
2476      // Restore the interpreter state back to the point where the scope was
2477      // formed.
2478      MatchScope &LastScope = MatchScopes.back();
2479      RecordedNodes.resize(LastScope.NumRecordedNodes);
2480      NodeStack.clear();
2481      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2482      N = NodeStack.back();
2483
2484      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2485        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2486      MatcherIndex = LastScope.FailIndex;
2487
2488      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2489
2490      InputChain = LastScope.InputChain;
2491      InputFlag = LastScope.InputFlag;
2492      if (!LastScope.HasChainNodesMatched)
2493        ChainNodesMatched.clear();
2494      if (!LastScope.HasFlagResultNodesMatched)
2495        FlagResultNodesMatched.clear();
2496
2497      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2498      // we have reached the end of this scope, otherwise we have another child
2499      // in the current scope to try.
2500      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2501      if (NumToSkip & 128)
2502        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2503
2504      // If we have another child in this scope to match, update FailIndex and
2505      // try it.
2506      if (NumToSkip != 0) {
2507        LastScope.FailIndex = MatcherIndex+NumToSkip;
2508        break;
2509      }
2510
2511      // End of this scope, pop it and try the next child in the containing
2512      // scope.
2513      MatchScopes.pop_back();
2514    }
2515  }
2516}
2517
2518
2519
2520void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2521  std::string msg;
2522  raw_string_ostream Msg(msg);
2523  Msg << "Cannot yet select: ";
2524
2525  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2526      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2527      N->getOpcode() != ISD::INTRINSIC_VOID) {
2528    N->printrFull(Msg, CurDAG);
2529  } else {
2530    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2531    unsigned iid =
2532      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2533    if (iid < Intrinsic::num_intrinsics)
2534      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2535    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2536      Msg << "target intrinsic %" << TII->getName(iid);
2537    else
2538      Msg << "unknown intrinsic #" << iid;
2539  }
2540  report_fatal_error(Msg.str());
2541}
2542
2543char SelectionDAGISel::ID = 0;
2544