SelectionDAGISel.cpp revision da098e7d1017e9435617d4c3de58ff72ae01ca22
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/InlineAsm.h"
23#include "llvm/Instructions.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineDebugInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Target/MRegisterInfo.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Target/TargetFrameInfo.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetLowering.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Transforms/Utils/BasicBlockUtils.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/Debug.h"
44#include <map>
45#include <set>
46#include <iostream>
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61// Scheduling heuristics
62enum SchedHeuristics {
63  defaultScheduling,      // Let the target specify its preference.
64  noScheduling,           // No scheduling, emit breadth first sequence.
65  simpleScheduling,       // Two pass, min. critical path, max. utilization.
66  simpleNoItinScheduling, // Same as above exact using generic latency.
67  listSchedulingBURR,     // Bottom-up reg reduction list scheduling.
68  listSchedulingTDRR,     // Top-down reg reduction list scheduling.
69  listSchedulingTD        // Top-down list scheduler.
70};
71
72namespace {
73  cl::opt<SchedHeuristics>
74  ISHeuristic(
75    "sched",
76    cl::desc("Choose scheduling style"),
77    cl::init(defaultScheduling),
78    cl::values(
79      clEnumValN(defaultScheduling, "default",
80                 "Target preferred scheduling style"),
81      clEnumValN(noScheduling, "none",
82                 "No scheduling: breadth first sequencing"),
83      clEnumValN(simpleScheduling, "simple",
84                 "Simple two pass scheduling: minimize critical path "
85                 "and maximize processor utilization"),
86      clEnumValN(simpleNoItinScheduling, "simple-noitin",
87                 "Simple two pass scheduling: Same as simple "
88                 "except using generic latency"),
89      clEnumValN(listSchedulingBURR, "list-burr",
90                 "Bottom-up register reduction list scheduling"),
91      clEnumValN(listSchedulingTDRR, "list-tdrr",
92                 "Top-down register reduction list scheduling"),
93      clEnumValN(listSchedulingTD, "list-td",
94                 "Top-down list scheduler"),
95      clEnumValEnd));
96} // namespace
97
98namespace {
99  /// RegsForValue - This struct represents the physical registers that a
100  /// particular value is assigned and the type information about the value.
101  /// This is needed because values can be promoted into larger registers and
102  /// expanded into multiple smaller registers than the value.
103  struct RegsForValue {
104    /// Regs - This list hold the register (for legal and promoted values)
105    /// or register set (for expanded values) that the value should be assigned
106    /// to.
107    std::vector<unsigned> Regs;
108
109    /// RegVT - The value type of each register.
110    ///
111    MVT::ValueType RegVT;
112
113    /// ValueVT - The value type of the LLVM value, which may be promoted from
114    /// RegVT or made from merging the two expanded parts.
115    MVT::ValueType ValueVT;
116
117    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
118
119    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
120      : RegVT(regvt), ValueVT(valuevt) {
121        Regs.push_back(Reg);
122    }
123    RegsForValue(const std::vector<unsigned> &regs,
124                 MVT::ValueType regvt, MVT::ValueType valuevt)
125      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
126    }
127
128    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
129    /// this value and returns the result as a ValueVT value.  This uses
130    /// Chain/Flag as the input and updates them for the output Chain/Flag.
131    SDOperand getCopyFromRegs(SelectionDAG &DAG,
132                              SDOperand &Chain, SDOperand &Flag) const;
133
134    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
135    /// specified value into the registers specified by this object.  This uses
136    /// Chain/Flag as the input and updates them for the output Chain/Flag.
137    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
138                       SDOperand &Chain, SDOperand &Flag) const;
139
140    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
141    /// operand list.  This adds the code marker and includes the number of
142    /// values added into it.
143    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
144                              std::vector<SDOperand> &Ops) const;
145  };
146}
147
148namespace llvm {
149  //===--------------------------------------------------------------------===//
150  /// FunctionLoweringInfo - This contains information that is global to a
151  /// function that is used when lowering a region of the function.
152  class FunctionLoweringInfo {
153  public:
154    TargetLowering &TLI;
155    Function &Fn;
156    MachineFunction &MF;
157    SSARegMap *RegMap;
158
159    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
160
161    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
162    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
163
164    /// ValueMap - Since we emit code for the function a basic block at a time,
165    /// we must remember which virtual registers hold the values for
166    /// cross-basic-block values.
167    std::map<const Value*, unsigned> ValueMap;
168
169    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
170    /// the entry block.  This allows the allocas to be efficiently referenced
171    /// anywhere in the function.
172    std::map<const AllocaInst*, int> StaticAllocaMap;
173
174    unsigned MakeReg(MVT::ValueType VT) {
175      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
176    }
177
178    unsigned CreateRegForValue(const Value *V);
179
180    unsigned InitializeRegForValue(const Value *V) {
181      unsigned &R = ValueMap[V];
182      assert(R == 0 && "Already initialized this value register!");
183      return R = CreateRegForValue(V);
184    }
185  };
186}
187
188/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
189/// PHI nodes or outside of the basic block that defines it, or used by a
190/// switch instruction, which may expand to multiple basic blocks.
191static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
192  if (isa<PHINode>(I)) return true;
193  BasicBlock *BB = I->getParent();
194  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
195    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
196        isa<SwitchInst>(*UI))
197      return true;
198  return false;
199}
200
201/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
202/// entry block, return true.  This includes arguments used by switches, since
203/// the switch may expand into multiple basic blocks.
204static bool isOnlyUsedInEntryBlock(Argument *A) {
205  BasicBlock *Entry = A->getParent()->begin();
206  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
207    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
208      return false;  // Use not in entry block.
209  return true;
210}
211
212FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
213                                           Function &fn, MachineFunction &mf)
214    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
215
216  // Create a vreg for each argument register that is not dead and is used
217  // outside of the entry block for the function.
218  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
219       AI != E; ++AI)
220    if (!isOnlyUsedInEntryBlock(AI))
221      InitializeRegForValue(AI);
222
223  // Initialize the mapping of values to registers.  This is only set up for
224  // instruction values that are used outside of the block that defines
225  // them.
226  Function::iterator BB = Fn.begin(), EB = Fn.end();
227  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
228    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
229      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
230        const Type *Ty = AI->getAllocatedType();
231        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
232        unsigned Align =
233          std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
234                   AI->getAlignment());
235
236        // If the alignment of the value is smaller than the size of the value,
237        // and if the size of the value is particularly small (<= 8 bytes),
238        // round up to the size of the value for potentially better performance.
239        //
240        // FIXME: This could be made better with a preferred alignment hook in
241        // TargetData.  It serves primarily to 8-byte align doubles for X86.
242        if (Align < TySize && TySize <= 8) Align = TySize;
243        TySize *= CUI->getValue();   // Get total allocated size.
244        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
245        StaticAllocaMap[AI] =
246          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
247      }
248
249  for (; BB != EB; ++BB)
250    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
251      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
252        if (!isa<AllocaInst>(I) ||
253            !StaticAllocaMap.count(cast<AllocaInst>(I)))
254          InitializeRegForValue(I);
255
256  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
257  // also creates the initial PHI MachineInstrs, though none of the input
258  // operands are populated.
259  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
260    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
261    MBBMap[BB] = MBB;
262    MF.getBasicBlockList().push_back(MBB);
263
264    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
265    // appropriate.
266    PHINode *PN;
267    for (BasicBlock::iterator I = BB->begin();
268         (PN = dyn_cast<PHINode>(I)); ++I)
269      if (!PN->use_empty()) {
270        MVT::ValueType VT = TLI.getValueType(PN->getType());
271        unsigned NumElements;
272        if (VT != MVT::Vector)
273          NumElements = TLI.getNumElements(VT);
274        else {
275          MVT::ValueType VT1,VT2;
276          NumElements =
277            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
278                                       VT1, VT2);
279        }
280        unsigned PHIReg = ValueMap[PN];
281        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
282        for (unsigned i = 0; i != NumElements; ++i)
283          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
284      }
285  }
286}
287
288/// CreateRegForValue - Allocate the appropriate number of virtual registers of
289/// the correctly promoted or expanded types.  Assign these registers
290/// consecutive vreg numbers and return the first assigned number.
291unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
292  MVT::ValueType VT = TLI.getValueType(V->getType());
293
294  // The number of multiples of registers that we need, to, e.g., split up
295  // a <2 x int64> -> 4 x i32 registers.
296  unsigned NumVectorRegs = 1;
297
298  // If this is a packed type, figure out what type it will decompose into
299  // and how many of the elements it will use.
300  if (VT == MVT::Vector) {
301    const PackedType *PTy = cast<PackedType>(V->getType());
302    unsigned NumElts = PTy->getNumElements();
303    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
304
305    // Divide the input until we get to a supported size.  This will always
306    // end with a scalar if the target doesn't support vectors.
307    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
308      NumElts >>= 1;
309      NumVectorRegs <<= 1;
310    }
311    if (NumElts == 1)
312      VT = EltTy;
313    else
314      VT = getVectorType(EltTy, NumElts);
315  }
316
317  // The common case is that we will only create one register for this
318  // value.  If we have that case, create and return the virtual register.
319  unsigned NV = TLI.getNumElements(VT);
320  if (NV == 1) {
321    // If we are promoting this value, pick the next largest supported type.
322    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
323    unsigned Reg = MakeReg(PromotedType);
324    // If this is a vector of supported or promoted types (e.g. 4 x i16),
325    // create all of the registers.
326    for (unsigned i = 1; i != NumVectorRegs; ++i)
327      MakeReg(PromotedType);
328    return Reg;
329  }
330
331  // If this value is represented with multiple target registers, make sure
332  // to create enough consecutive registers of the right (smaller) type.
333  unsigned NT = VT-1;  // Find the type to use.
334  while (TLI.getNumElements((MVT::ValueType)NT) != 1)
335    --NT;
336
337  unsigned R = MakeReg((MVT::ValueType)NT);
338  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
339    MakeReg((MVT::ValueType)NT);
340  return R;
341}
342
343//===----------------------------------------------------------------------===//
344/// SelectionDAGLowering - This is the common target-independent lowering
345/// implementation that is parameterized by a TargetLowering object.
346/// Also, targets can overload any lowering method.
347///
348namespace llvm {
349class SelectionDAGLowering {
350  MachineBasicBlock *CurMBB;
351
352  std::map<const Value*, SDOperand> NodeMap;
353
354  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
355  /// them up and then emit token factor nodes when possible.  This allows us to
356  /// get simple disambiguation between loads without worrying about alias
357  /// analysis.
358  std::vector<SDOperand> PendingLoads;
359
360  /// Case - A pair of values to record the Value for a switch case, and the
361  /// case's target basic block.
362  typedef std::pair<Constant*, MachineBasicBlock*> Case;
363  typedef std::vector<Case>::iterator              CaseItr;
364  typedef std::pair<CaseItr, CaseItr>              CaseRange;
365
366  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
367  /// of conditional branches.
368  struct CaseRec {
369    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
370    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
371
372    /// CaseBB - The MBB in which to emit the compare and branch
373    MachineBasicBlock *CaseBB;
374    /// LT, GE - If nonzero, we know the current case value must be less-than or
375    /// greater-than-or-equal-to these Constants.
376    Constant *LT;
377    Constant *GE;
378    /// Range - A pair of iterators representing the range of case values to be
379    /// processed at this point in the binary search tree.
380    CaseRange Range;
381  };
382
383  /// The comparison function for sorting Case values.
384  struct CaseCmp {
385    bool operator () (const Case& C1, const Case& C2) {
386      if (const ConstantUInt* U1 = dyn_cast<const ConstantUInt>(C1.first))
387        return U1->getValue() < cast<const ConstantUInt>(C2.first)->getValue();
388
389      const ConstantSInt* S1 = dyn_cast<const ConstantSInt>(C1.first);
390      return S1->getValue() < cast<const ConstantSInt>(C2.first)->getValue();
391    }
392  };
393
394public:
395  // TLI - This is information that describes the available target features we
396  // need for lowering.  This indicates when operations are unavailable,
397  // implemented with a libcall, etc.
398  TargetLowering &TLI;
399  SelectionDAG &DAG;
400  const TargetData *TD;
401
402  /// SwitchCases - Vector of CaseBlock structures used to communicate
403  /// SwitchInst code generation information.
404  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
405  SelectionDAGISel::JumpTable JT;
406
407  /// FuncInfo - Information about the function as a whole.
408  ///
409  FunctionLoweringInfo &FuncInfo;
410
411  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
412                       FunctionLoweringInfo &funcinfo)
413    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
414      JT(0,0,0,0), FuncInfo(funcinfo) {
415  }
416
417  /// getRoot - Return the current virtual root of the Selection DAG.
418  ///
419  SDOperand getRoot() {
420    if (PendingLoads.empty())
421      return DAG.getRoot();
422
423    if (PendingLoads.size() == 1) {
424      SDOperand Root = PendingLoads[0];
425      DAG.setRoot(Root);
426      PendingLoads.clear();
427      return Root;
428    }
429
430    // Otherwise, we have to make a token factor node.
431    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
432    PendingLoads.clear();
433    DAG.setRoot(Root);
434    return Root;
435  }
436
437  void visit(Instruction &I) { visit(I.getOpcode(), I); }
438
439  void visit(unsigned Opcode, User &I) {
440    switch (Opcode) {
441    default: assert(0 && "Unknown instruction type encountered!");
442             abort();
443      // Build the switch statement using the Instruction.def file.
444#define HANDLE_INST(NUM, OPCODE, CLASS) \
445    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
446#include "llvm/Instruction.def"
447    }
448  }
449
450  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
451
452  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
453                        SDOperand SrcValue, SDOperand Root,
454                        bool isVolatile);
455
456  SDOperand getIntPtrConstant(uint64_t Val) {
457    return DAG.getConstant(Val, TLI.getPointerTy());
458  }
459
460  SDOperand getValue(const Value *V);
461
462  const SDOperand &setValue(const Value *V, SDOperand NewN) {
463    SDOperand &N = NodeMap[V];
464    assert(N.Val == 0 && "Already set a value for this node!");
465    return N = NewN;
466  }
467
468  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
469                                    MVT::ValueType VT,
470                                    bool OutReg, bool InReg,
471                                    std::set<unsigned> &OutputRegs,
472                                    std::set<unsigned> &InputRegs);
473
474  // Terminator instructions.
475  void visitRet(ReturnInst &I);
476  void visitBr(BranchInst &I);
477  void visitSwitch(SwitchInst &I);
478  void visitUnreachable(UnreachableInst &I) { /* noop */ }
479
480  // Helper for visitSwitch
481  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
482  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
483
484  // These all get lowered before this pass.
485  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
486  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
487
488  void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
489  void visitShift(User &I, unsigned Opcode);
490  void visitAdd(User &I) {
491    visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD);
492  }
493  void visitSub(User &I);
494  void visitMul(User &I) {
495    visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL);
496  }
497  void visitDiv(User &I) {
498    const Type *Ty = I.getType();
499    visitBinary(I,
500                Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV,
501                Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV);
502  }
503  void visitRem(User &I) {
504    const Type *Ty = I.getType();
505    visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
506  }
507  void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); }
508  void visitOr (User &I) { visitBinary(I, ISD::OR,  0, ISD::VOR); }
509  void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); }
510  void visitShl(User &I) { visitShift(I, ISD::SHL); }
511  void visitShr(User &I) {
512    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
513  }
514
515  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
516  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
517  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
518  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
519  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
520  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
521  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
522
523  void visitExtractElement(User &I);
524  void visitInsertElement(User &I);
525  void visitShuffleVector(User &I);
526
527  void visitGetElementPtr(User &I);
528  void visitCast(User &I);
529  void visitSelect(User &I);
530
531  void visitMalloc(MallocInst &I);
532  void visitFree(FreeInst &I);
533  void visitAlloca(AllocaInst &I);
534  void visitLoad(LoadInst &I);
535  void visitStore(StoreInst &I);
536  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
537  void visitCall(CallInst &I);
538  void visitInlineAsm(CallInst &I);
539  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
540  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
541
542  void visitVAStart(CallInst &I);
543  void visitVAArg(VAArgInst &I);
544  void visitVAEnd(CallInst &I);
545  void visitVACopy(CallInst &I);
546  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
547
548  void visitMemIntrinsic(CallInst &I, unsigned Op);
549
550  void visitUserOp1(Instruction &I) {
551    assert(0 && "UserOp1 should not exist at instruction selection time!");
552    abort();
553  }
554  void visitUserOp2(Instruction &I) {
555    assert(0 && "UserOp2 should not exist at instruction selection time!");
556    abort();
557  }
558};
559} // end namespace llvm
560
561SDOperand SelectionDAGLowering::getValue(const Value *V) {
562  SDOperand &N = NodeMap[V];
563  if (N.Val) return N;
564
565  const Type *VTy = V->getType();
566  MVT::ValueType VT = TLI.getValueType(VTy);
567  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
568    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
569      visit(CE->getOpcode(), *CE);
570      assert(N.Val && "visit didn't populate the ValueMap!");
571      return N;
572    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
573      return N = DAG.getGlobalAddress(GV, VT);
574    } else if (isa<ConstantPointerNull>(C)) {
575      return N = DAG.getConstant(0, TLI.getPointerTy());
576    } else if (isa<UndefValue>(C)) {
577      if (!isa<PackedType>(VTy))
578        return N = DAG.getNode(ISD::UNDEF, VT);
579
580      // Create a VBUILD_VECTOR of undef nodes.
581      const PackedType *PTy = cast<PackedType>(VTy);
582      unsigned NumElements = PTy->getNumElements();
583      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
584
585      std::vector<SDOperand> Ops;
586      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
587
588      // Create a VConstant node with generic Vector type.
589      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
590      Ops.push_back(DAG.getValueType(PVT));
591      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
592    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
593      return N = DAG.getConstantFP(CFP->getValue(), VT);
594    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
595      unsigned NumElements = PTy->getNumElements();
596      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
597
598      // Now that we know the number and type of the elements, push a
599      // Constant or ConstantFP node onto the ops list for each element of
600      // the packed constant.
601      std::vector<SDOperand> Ops;
602      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
603        for (unsigned i = 0; i != NumElements; ++i)
604          Ops.push_back(getValue(CP->getOperand(i)));
605      } else {
606        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
607        SDOperand Op;
608        if (MVT::isFloatingPoint(PVT))
609          Op = DAG.getConstantFP(0, PVT);
610        else
611          Op = DAG.getConstant(0, PVT);
612        Ops.assign(NumElements, Op);
613      }
614
615      // Create a VBUILD_VECTOR node with generic Vector type.
616      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
617      Ops.push_back(DAG.getValueType(PVT));
618      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
619    } else {
620      // Canonicalize all constant ints to be unsigned.
621      return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
622    }
623  }
624
625  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
626    std::map<const AllocaInst*, int>::iterator SI =
627    FuncInfo.StaticAllocaMap.find(AI);
628    if (SI != FuncInfo.StaticAllocaMap.end())
629      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
630  }
631
632  std::map<const Value*, unsigned>::const_iterator VMI =
633      FuncInfo.ValueMap.find(V);
634  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
635
636  unsigned InReg = VMI->second;
637
638  // If this type is not legal, make it so now.
639  if (VT != MVT::Vector) {
640    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
641
642    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
643    if (DestVT < VT) {
644      // Source must be expanded.  This input value is actually coming from the
645      // register pair VMI->second and VMI->second+1.
646      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
647                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
648    } else if (DestVT > VT) { // Promotion case
649      if (MVT::isFloatingPoint(VT))
650        N = DAG.getNode(ISD::FP_ROUND, VT, N);
651      else
652        N = DAG.getNode(ISD::TRUNCATE, VT, N);
653    }
654  } else {
655    // Otherwise, if this is a vector, make it available as a generic vector
656    // here.
657    MVT::ValueType PTyElementVT, PTyLegalElementVT;
658    const PackedType *PTy = cast<PackedType>(VTy);
659    unsigned NE = TLI.getPackedTypeBreakdown(PTy, PTyElementVT,
660                                             PTyLegalElementVT);
661
662    // Build a VBUILD_VECTOR with the input registers.
663    std::vector<SDOperand> Ops;
664    if (PTyElementVT == PTyLegalElementVT) {
665      // If the value types are legal, just VBUILD the CopyFromReg nodes.
666      for (unsigned i = 0; i != NE; ++i)
667        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
668                                         PTyElementVT));
669    } else if (PTyElementVT < PTyLegalElementVT) {
670      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
671      for (unsigned i = 0; i != NE; ++i) {
672        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
673                                          PTyElementVT);
674        if (MVT::isFloatingPoint(PTyElementVT))
675          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
676        else
677          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
678        Ops.push_back(Op);
679      }
680    } else {
681      // If the register was expanded, use BUILD_PAIR.
682      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
683      for (unsigned i = 0; i != NE/2; ++i) {
684        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
685                                           PTyElementVT);
686        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
687                                           PTyElementVT);
688        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
689      }
690    }
691
692    Ops.push_back(DAG.getConstant(NE, MVT::i32));
693    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
694    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
695
696    // Finally, use a VBIT_CONVERT to make this available as the appropriate
697    // vector type.
698    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
699                    DAG.getConstant(PTy->getNumElements(),
700                                    MVT::i32),
701                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
702  }
703
704  return N;
705}
706
707
708void SelectionDAGLowering::visitRet(ReturnInst &I) {
709  if (I.getNumOperands() == 0) {
710    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
711    return;
712  }
713  std::vector<SDOperand> NewValues;
714  NewValues.push_back(getRoot());
715  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
716    SDOperand RetOp = getValue(I.getOperand(i));
717
718    // If this is an integer return value, we need to promote it ourselves to
719    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
720    // than sign/zero.
721    if (MVT::isInteger(RetOp.getValueType()) &&
722        RetOp.getValueType() < MVT::i64) {
723      MVT::ValueType TmpVT;
724      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
725        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
726      else
727        TmpVT = MVT::i32;
728
729      if (I.getOperand(i)->getType()->isSigned())
730        RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
731      else
732        RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
733    }
734    NewValues.push_back(RetOp);
735  }
736  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, NewValues));
737}
738
739void SelectionDAGLowering::visitBr(BranchInst &I) {
740  // Update machine-CFG edges.
741  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
742  CurMBB->addSuccessor(Succ0MBB);
743
744  // Figure out which block is immediately after the current one.
745  MachineBasicBlock *NextBlock = 0;
746  MachineFunction::iterator BBI = CurMBB;
747  if (++BBI != CurMBB->getParent()->end())
748    NextBlock = BBI;
749
750  if (I.isUnconditional()) {
751    // If this is not a fall-through branch, emit the branch.
752    if (Succ0MBB != NextBlock)
753      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
754                              DAG.getBasicBlock(Succ0MBB)));
755  } else {
756    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
757    CurMBB->addSuccessor(Succ1MBB);
758
759    SDOperand Cond = getValue(I.getCondition());
760    if (Succ1MBB == NextBlock) {
761      // If the condition is false, fall through.  This means we should branch
762      // if the condition is true to Succ #0.
763      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
764                              Cond, DAG.getBasicBlock(Succ0MBB)));
765    } else if (Succ0MBB == NextBlock) {
766      // If the condition is true, fall through.  This means we should branch if
767      // the condition is false to Succ #1.  Invert the condition first.
768      SDOperand True = DAG.getConstant(1, Cond.getValueType());
769      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
770      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
771                              Cond, DAG.getBasicBlock(Succ1MBB)));
772    } else {
773      std::vector<SDOperand> Ops;
774      Ops.push_back(getRoot());
775      // If the false case is the current basic block, then this is a self
776      // loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it
777      // adds an extra instruction in the loop.  Instead, invert the
778      // condition and emit "Loop: ... br!cond Loop; br Out.
779      if (CurMBB == Succ1MBB) {
780        std::swap(Succ0MBB, Succ1MBB);
781        SDOperand True = DAG.getConstant(1, Cond.getValueType());
782        Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
783      }
784      SDOperand True = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
785                                   DAG.getBasicBlock(Succ0MBB));
786      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, True,
787                              DAG.getBasicBlock(Succ1MBB)));
788    }
789  }
790}
791
792/// visitSwitchCase - Emits the necessary code to represent a single node in
793/// the binary search tree resulting from lowering a switch instruction.
794void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
795  SDOperand SwitchOp = getValue(CB.SwitchV);
796  SDOperand CaseOp = getValue(CB.CaseC);
797  SDOperand Cond = DAG.getSetCC(MVT::i1, SwitchOp, CaseOp, CB.CC);
798
799  // Set NextBlock to be the MBB immediately after the current one, if any.
800  // This is used to avoid emitting unnecessary branches to the next block.
801  MachineBasicBlock *NextBlock = 0;
802  MachineFunction::iterator BBI = CurMBB;
803  if (++BBI != CurMBB->getParent()->end())
804    NextBlock = BBI;
805
806  // If the lhs block is the next block, invert the condition so that we can
807  // fall through to the lhs instead of the rhs block.
808  if (CB.LHSBB == NextBlock) {
809    std::swap(CB.LHSBB, CB.RHSBB);
810    SDOperand True = DAG.getConstant(1, Cond.getValueType());
811    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
812  }
813  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
814                                 DAG.getBasicBlock(CB.LHSBB));
815  if (CB.RHSBB == NextBlock)
816    DAG.setRoot(BrCond);
817  else
818    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
819                            DAG.getBasicBlock(CB.RHSBB)));
820  // Update successor info
821  CurMBB->addSuccessor(CB.LHSBB);
822  CurMBB->addSuccessor(CB.RHSBB);
823}
824
825/// visitSwitchCase - Emits the necessary code to represent a single node in
826/// the binary search tree resulting from lowering a switch instruction.
827void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
828  // FIXME: Need to emit different code for PIC vs. Non-PIC, specifically,
829  // we need to add the address of the jump table to the value loaded, since
830  // the entries in the jump table will be differences rather than absolute
831  // addresses.
832
833  // Emit the code for the jump table
834  MVT::ValueType PTy = TLI.getPointerTy();
835  unsigned PTyBytes = MVT::getSizeInBits(PTy)/8;
836  SDOperand Copy = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
837  SDOperand IDX = DAG.getNode(ISD::MUL, PTy, Copy,
838                              DAG.getConstant(PTyBytes, PTy));
839  SDOperand ADD = DAG.getNode(ISD::ADD, PTy, IDX, DAG.getJumpTable(JT.JTI,PTy));
840  SDOperand LD  = DAG.getLoad(PTy, Copy.getValue(1), ADD, DAG.getSrcValue(0));
841  DAG.setRoot(DAG.getNode(ISD::BRIND, MVT::Other, LD.getValue(1), LD));
842}
843
844void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
845  // Figure out which block is immediately after the current one.
846  MachineBasicBlock *NextBlock = 0;
847  MachineFunction::iterator BBI = CurMBB;
848  if (++BBI != CurMBB->getParent()->end())
849    NextBlock = BBI;
850
851  // If there is only the default destination, branch to it if it is not the
852  // next basic block.  Otherwise, just fall through.
853  if (I.getNumOperands() == 2) {
854    // Update machine-CFG edges.
855    MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[I.getDefaultDest()];
856    // If this is not a fall-through branch, emit the branch.
857    if (DefaultMBB != NextBlock)
858      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
859                              DAG.getBasicBlock(DefaultMBB)));
860    return;
861  }
862
863  // If there are any non-default case statements, create a vector of Cases
864  // representing each one, and sort the vector so that we can efficiently
865  // create a binary search tree from them.
866  std::vector<Case> Cases;
867  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
868    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
869    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
870  }
871  std::sort(Cases.begin(), Cases.end(), CaseCmp());
872
873  // Get the Value to be switched on and default basic blocks, which will be
874  // inserted into CaseBlock records, representing basic blocks in the binary
875  // search tree.
876  Value *SV = I.getOperand(0);
877  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
878
879  // Get the MachineFunction which holds the current MBB.  This is used during
880  // emission of jump tables, and when inserting any additional MBBs necessary
881  // to represent the switch.
882  MachineFunction *CurMF = CurMBB->getParent();
883  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
884  Reloc::Model Relocs = TLI.getTargetMachine().getRelocationModel();
885
886  // If the switch has more than 5 blocks, and at least 31.25% dense, and the
887  // target supports indirect branches, then emit a jump table rather than
888  // lowering the switch to a binary tree of conditional branches.
889  // FIXME: Make this work with PIC code
890  if (TLI.isOperationLegal(ISD::BRIND, TLI.getPointerTy()) &&
891      (Relocs == Reloc::Static || Relocs == Reloc::DynamicNoPIC) &&
892      Cases.size() > 5) {
893    uint64_t First = cast<ConstantIntegral>(Cases.front().first)->getRawValue();
894    uint64_t Last  = cast<ConstantIntegral>(Cases.back().first)->getRawValue();
895    double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
896
897    if (Density >= 0.3125) {
898      // Create a new basic block to hold the code for loading the address
899      // of the jump table, and jumping to it.  Update successor information;
900      // we will either branch to the default case for the switch, or the jump
901      // table.
902      MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
903      CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
904      CurMBB->addSuccessor(Default);
905      CurMBB->addSuccessor(JumpTableBB);
906
907      // Subtract the lowest switch case value from the value being switched on
908      // and conditional branch to default mbb if the result is greater than the
909      // difference between smallest and largest cases.
910      SDOperand SwitchOp = getValue(SV);
911      MVT::ValueType VT = SwitchOp.getValueType();
912      SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
913                                  DAG.getConstant(First, VT));
914
915      // The SDNode we just created, which holds the value being switched on
916      // minus the the smallest case value, needs to be copied to a virtual
917      // register so it can be used as an index into the jump table in a
918      // subsequent basic block.  This value may be smaller or larger than the
919      // target's pointer type, and therefore require extension or truncating.
920      if (VT > TLI.getPointerTy())
921        SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
922      else
923        SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
924      unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
925      SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
926
927      // Emit the range check for the jump table, and branch to the default
928      // block for the switch statement if the value being switched on exceeds
929      // the largest case in the switch.
930      SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
931                                   DAG.getConstant(Last-First,VT), ISD::SETUGT);
932      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
933                              DAG.getBasicBlock(Default)));
934
935      // Build a vector of destination BBs, corresponding to each target
936      // of the jump table.  If the value of the jump table slot corresponds to
937      // a case statement, push the case's BB onto the vector, otherwise, push
938      // the default BB.
939      std::set<MachineBasicBlock*> UniqueBBs;
940      std::vector<MachineBasicBlock*> DestBBs;
941      uint64_t TEI = First;
942      for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI) {
943        if (cast<ConstantIntegral>(ii->first)->getRawValue() == TEI) {
944          DestBBs.push_back(ii->second);
945          UniqueBBs.insert(ii->second);
946          ++ii;
947        } else {
948          DestBBs.push_back(Default);
949          UniqueBBs.insert(Default);
950        }
951      }
952
953      // Update successor info
954      for (std::set<MachineBasicBlock*>::iterator ii = UniqueBBs.begin(),
955           ee = UniqueBBs.end(); ii != ee; ++ii)
956        JumpTableBB->addSuccessor(*ii);
957
958      // Create a jump table index for this jump table, or return an existing
959      // one.
960      unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
961
962      // Set the jump table information so that we can codegen it as a second
963      // MachineBasicBlock
964      JT.Reg = JumpTableReg;
965      JT.JTI = JTI;
966      JT.MBB = JumpTableBB;
967      JT.Default = Default;
968      return;
969    }
970  }
971
972  // Push the initial CaseRec onto the worklist
973  std::vector<CaseRec> CaseVec;
974  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
975
976  while (!CaseVec.empty()) {
977    // Grab a record representing a case range to process off the worklist
978    CaseRec CR = CaseVec.back();
979    CaseVec.pop_back();
980
981    // Size is the number of Cases represented by this range.  If Size is 1,
982    // then we are processing a leaf of the binary search tree.  Otherwise,
983    // we need to pick a pivot, and push left and right ranges onto the
984    // worklist.
985    unsigned Size = CR.Range.second - CR.Range.first;
986
987    if (Size == 1) {
988      // Create a CaseBlock record representing a conditional branch to
989      // the Case's target mbb if the value being switched on SV is equal
990      // to C.  Otherwise, branch to default.
991      Constant *C = CR.Range.first->first;
992      MachineBasicBlock *Target = CR.Range.first->second;
993      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
994                                     CR.CaseBB);
995      // If the MBB representing the leaf node is the current MBB, then just
996      // call visitSwitchCase to emit the code into the current block.
997      // Otherwise, push the CaseBlock onto the vector to be later processed
998      // by SDISel, and insert the node's MBB before the next MBB.
999      if (CR.CaseBB == CurMBB)
1000        visitSwitchCase(CB);
1001      else {
1002        SwitchCases.push_back(CB);
1003        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
1004      }
1005    } else {
1006      // split case range at pivot
1007      CaseItr Pivot = CR.Range.first + (Size / 2);
1008      CaseRange LHSR(CR.Range.first, Pivot);
1009      CaseRange RHSR(Pivot, CR.Range.second);
1010      Constant *C = Pivot->first;
1011      MachineBasicBlock *RHSBB = 0, *LHSBB = 0;
1012      // We know that we branch to the LHS if the Value being switched on is
1013      // less than the Pivot value, C.  We use this to optimize our binary
1014      // tree a bit, by recognizing that if SV is greater than or equal to the
1015      // LHS's Case Value, and that Case Value is exactly one less than the
1016      // Pivot's Value, then we can branch directly to the LHS's Target,
1017      // rather than creating a leaf node for it.
1018      if ((LHSR.second - LHSR.first) == 1 &&
1019          LHSR.first->first == CR.GE &&
1020          cast<ConstantIntegral>(C)->getRawValue() ==
1021          (cast<ConstantIntegral>(CR.GE)->getRawValue() + 1ULL)) {
1022        LHSBB = LHSR.first->second;
1023      } else {
1024        LHSBB = new MachineBasicBlock(LLVMBB);
1025        CaseVec.push_back(CaseRec(LHSBB,C,CR.GE,LHSR));
1026      }
1027      // Similar to the optimization above, if the Value being switched on is
1028      // known to be less than the Constant CR.LT, and the current Case Value
1029      // is CR.LT - 1, then we can branch directly to the target block for
1030      // the current Case Value, rather than emitting a RHS leaf node for it.
1031      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1032          cast<ConstantIntegral>(RHSR.first->first)->getRawValue() ==
1033          (cast<ConstantIntegral>(CR.LT)->getRawValue() - 1ULL)) {
1034        RHSBB = RHSR.first->second;
1035      } else {
1036        RHSBB = new MachineBasicBlock(LLVMBB);
1037        CaseVec.push_back(CaseRec(RHSBB,CR.LT,C,RHSR));
1038      }
1039      // Create a CaseBlock record representing a conditional branch to
1040      // the LHS node if the value being switched on SV is less than C.
1041      // Otherwise, branch to LHS.
1042      ISD::CondCode CC = C->getType()->isSigned() ? ISD::SETLT : ISD::SETULT;
1043      SelectionDAGISel::CaseBlock CB(CC, SV, C, LHSBB, RHSBB, CR.CaseBB);
1044      if (CR.CaseBB == CurMBB)
1045        visitSwitchCase(CB);
1046      else {
1047        SwitchCases.push_back(CB);
1048        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
1049      }
1050    }
1051  }
1052}
1053
1054void SelectionDAGLowering::visitSub(User &I) {
1055  // -0.0 - X --> fneg
1056  if (I.getType()->isFloatingPoint()) {
1057    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1058      if (CFP->isExactlyValue(-0.0)) {
1059        SDOperand Op2 = getValue(I.getOperand(1));
1060        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1061        return;
1062      }
1063  }
1064  visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
1065}
1066
1067void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp,
1068                                       unsigned VecOp) {
1069  const Type *Ty = I.getType();
1070  SDOperand Op1 = getValue(I.getOperand(0));
1071  SDOperand Op2 = getValue(I.getOperand(1));
1072
1073  if (Ty->isIntegral()) {
1074    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
1075  } else if (Ty->isFloatingPoint()) {
1076    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
1077  } else {
1078    const PackedType *PTy = cast<PackedType>(Ty);
1079    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
1080    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
1081    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
1082  }
1083}
1084
1085void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1086  SDOperand Op1 = getValue(I.getOperand(0));
1087  SDOperand Op2 = getValue(I.getOperand(1));
1088
1089  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1090
1091  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1092}
1093
1094void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
1095                                      ISD::CondCode UnsignedOpcode) {
1096  SDOperand Op1 = getValue(I.getOperand(0));
1097  SDOperand Op2 = getValue(I.getOperand(1));
1098  ISD::CondCode Opcode = SignedOpcode;
1099  if (I.getOperand(0)->getType()->isUnsigned())
1100    Opcode = UnsignedOpcode;
1101  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1102}
1103
1104void SelectionDAGLowering::visitSelect(User &I) {
1105  SDOperand Cond     = getValue(I.getOperand(0));
1106  SDOperand TrueVal  = getValue(I.getOperand(1));
1107  SDOperand FalseVal = getValue(I.getOperand(2));
1108  if (!isa<PackedType>(I.getType())) {
1109    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1110                             TrueVal, FalseVal));
1111  } else {
1112    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1113                             *(TrueVal.Val->op_end()-2),
1114                             *(TrueVal.Val->op_end()-1)));
1115  }
1116}
1117
1118void SelectionDAGLowering::visitCast(User &I) {
1119  SDOperand N = getValue(I.getOperand(0));
1120  MVT::ValueType SrcVT = N.getValueType();
1121  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1122
1123  if (DestVT == MVT::Vector) {
1124    // This is a cast to a vector from something else.  This is always a bit
1125    // convert.  Get information about the input vector.
1126    const PackedType *DestTy = cast<PackedType>(I.getType());
1127    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1128    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1129                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1130                             DAG.getValueType(EltVT)));
1131  } else if (SrcVT == DestVT) {
1132    setValue(&I, N);  // noop cast.
1133  } else if (DestVT == MVT::i1) {
1134    // Cast to bool is a comparison against zero, not truncation to zero.
1135    SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) :
1136                                       DAG.getConstantFP(0.0, N.getValueType());
1137    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
1138  } else if (isInteger(SrcVT)) {
1139    if (isInteger(DestVT)) {        // Int -> Int cast
1140      if (DestVT < SrcVT)   // Truncating cast?
1141        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1142      else if (I.getOperand(0)->getType()->isSigned())
1143        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1144      else
1145        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1146    } else if (isFloatingPoint(DestVT)) {           // Int -> FP cast
1147      if (I.getOperand(0)->getType()->isSigned())
1148        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1149      else
1150        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1151    } else {
1152      assert(0 && "Unknown cast!");
1153    }
1154  } else if (isFloatingPoint(SrcVT)) {
1155    if (isFloatingPoint(DestVT)) {  // FP -> FP cast
1156      if (DestVT < SrcVT)   // Rounding cast?
1157        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1158      else
1159        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1160    } else if (isInteger(DestVT)) {        // FP -> Int cast.
1161      if (I.getType()->isSigned())
1162        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1163      else
1164        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1165    } else {
1166      assert(0 && "Unknown cast!");
1167    }
1168  } else {
1169    assert(SrcVT == MVT::Vector && "Unknown cast!");
1170    assert(DestVT != MVT::Vector && "Casts to vector already handled!");
1171    // This is a cast from a vector to something else.  This is always a bit
1172    // convert.  Get information about the input vector.
1173    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1174  }
1175}
1176
1177void SelectionDAGLowering::visitInsertElement(User &I) {
1178  SDOperand InVec = getValue(I.getOperand(0));
1179  SDOperand InVal = getValue(I.getOperand(1));
1180  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1181                                getValue(I.getOperand(2)));
1182
1183  SDOperand Num = *(InVec.Val->op_end()-2);
1184  SDOperand Typ = *(InVec.Val->op_end()-1);
1185  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1186                           InVec, InVal, InIdx, Num, Typ));
1187}
1188
1189void SelectionDAGLowering::visitExtractElement(User &I) {
1190  SDOperand InVec = getValue(I.getOperand(0));
1191  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1192                                getValue(I.getOperand(1)));
1193  SDOperand Typ = *(InVec.Val->op_end()-1);
1194  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1195                           TLI.getValueType(I.getType()), InVec, InIdx));
1196}
1197
1198void SelectionDAGLowering::visitShuffleVector(User &I) {
1199  SDOperand V1   = getValue(I.getOperand(0));
1200  SDOperand V2   = getValue(I.getOperand(1));
1201  SDOperand Mask = getValue(I.getOperand(2));
1202
1203  SDOperand Num = *(V1.Val->op_end()-2);
1204  SDOperand Typ = *(V2.Val->op_end()-1);
1205  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1206                           V1, V2, Mask, Num, Typ));
1207}
1208
1209
1210void SelectionDAGLowering::visitGetElementPtr(User &I) {
1211  SDOperand N = getValue(I.getOperand(0));
1212  const Type *Ty = I.getOperand(0)->getType();
1213
1214  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1215       OI != E; ++OI) {
1216    Value *Idx = *OI;
1217    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1218      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
1219      if (Field) {
1220        // N = N + Offset
1221        uint64_t Offset = TD->getStructLayout(StTy)->MemberOffsets[Field];
1222        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1223                        getIntPtrConstant(Offset));
1224      }
1225      Ty = StTy->getElementType(Field);
1226    } else {
1227      Ty = cast<SequentialType>(Ty)->getElementType();
1228
1229      // If this is a constant subscript, handle it quickly.
1230      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1231        if (CI->getRawValue() == 0) continue;
1232
1233        uint64_t Offs;
1234        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
1235          Offs = (int64_t)TD->getTypeSize(Ty)*CSI->getValue();
1236        else
1237          Offs = TD->getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
1238        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1239        continue;
1240      }
1241
1242      // N = N + Idx * ElementSize;
1243      uint64_t ElementSize = TD->getTypeSize(Ty);
1244      SDOperand IdxN = getValue(Idx);
1245
1246      // If the index is smaller or larger than intptr_t, truncate or extend
1247      // it.
1248      if (IdxN.getValueType() < N.getValueType()) {
1249        if (Idx->getType()->isSigned())
1250          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1251        else
1252          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
1253      } else if (IdxN.getValueType() > N.getValueType())
1254        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1255
1256      // If this is a multiply by a power of two, turn it into a shl
1257      // immediately.  This is a very common case.
1258      if (isPowerOf2_64(ElementSize)) {
1259        unsigned Amt = Log2_64(ElementSize);
1260        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1261                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1262        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1263        continue;
1264      }
1265
1266      SDOperand Scale = getIntPtrConstant(ElementSize);
1267      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1268      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1269    }
1270  }
1271  setValue(&I, N);
1272}
1273
1274void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1275  // If this is a fixed sized alloca in the entry block of the function,
1276  // allocate it statically on the stack.
1277  if (FuncInfo.StaticAllocaMap.count(&I))
1278    return;   // getValue will auto-populate this.
1279
1280  const Type *Ty = I.getAllocatedType();
1281  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
1282  unsigned Align = std::max((unsigned)TLI.getTargetData()->getTypeAlignment(Ty),
1283                            I.getAlignment());
1284
1285  SDOperand AllocSize = getValue(I.getArraySize());
1286  MVT::ValueType IntPtr = TLI.getPointerTy();
1287  if (IntPtr < AllocSize.getValueType())
1288    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1289  else if (IntPtr > AllocSize.getValueType())
1290    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1291
1292  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1293                          getIntPtrConstant(TySize));
1294
1295  // Handle alignment.  If the requested alignment is less than or equal to the
1296  // stack alignment, ignore it and round the size of the allocation up to the
1297  // stack alignment size.  If the size is greater than the stack alignment, we
1298  // note this in the DYNAMIC_STACKALLOC node.
1299  unsigned StackAlign =
1300    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1301  if (Align <= StackAlign) {
1302    Align = 0;
1303    // Add SA-1 to the size.
1304    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1305                            getIntPtrConstant(StackAlign-1));
1306    // Mask out the low bits for alignment purposes.
1307    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1308                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1309  }
1310
1311  std::vector<MVT::ValueType> VTs;
1312  VTs.push_back(AllocSize.getValueType());
1313  VTs.push_back(MVT::Other);
1314  std::vector<SDOperand> Ops;
1315  Ops.push_back(getRoot());
1316  Ops.push_back(AllocSize);
1317  Ops.push_back(getIntPtrConstant(Align));
1318  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
1319  DAG.setRoot(setValue(&I, DSA).getValue(1));
1320
1321  // Inform the Frame Information that we have just allocated a variable-sized
1322  // object.
1323  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1324}
1325
1326void SelectionDAGLowering::visitLoad(LoadInst &I) {
1327  SDOperand Ptr = getValue(I.getOperand(0));
1328
1329  SDOperand Root;
1330  if (I.isVolatile())
1331    Root = getRoot();
1332  else {
1333    // Do not serialize non-volatile loads against each other.
1334    Root = DAG.getRoot();
1335  }
1336
1337  setValue(&I, getLoadFrom(I.getType(), Ptr, DAG.getSrcValue(I.getOperand(0)),
1338                           Root, I.isVolatile()));
1339}
1340
1341SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1342                                            SDOperand SrcValue, SDOperand Root,
1343                                            bool isVolatile) {
1344  SDOperand L;
1345  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1346    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1347    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr, SrcValue);
1348  } else {
1349    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SrcValue);
1350  }
1351
1352  if (isVolatile)
1353    DAG.setRoot(L.getValue(1));
1354  else
1355    PendingLoads.push_back(L.getValue(1));
1356
1357  return L;
1358}
1359
1360
1361void SelectionDAGLowering::visitStore(StoreInst &I) {
1362  Value *SrcV = I.getOperand(0);
1363  SDOperand Src = getValue(SrcV);
1364  SDOperand Ptr = getValue(I.getOperand(1));
1365  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
1366                          DAG.getSrcValue(I.getOperand(1))));
1367}
1368
1369/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1370/// access memory and has no other side effects at all.
1371static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1372#define GET_NO_MEMORY_INTRINSICS
1373#include "llvm/Intrinsics.gen"
1374#undef GET_NO_MEMORY_INTRINSICS
1375  return false;
1376}
1377
1378// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
1379// have any side-effects or if it only reads memory.
1380static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
1381#define GET_SIDE_EFFECT_INFO
1382#include "llvm/Intrinsics.gen"
1383#undef GET_SIDE_EFFECT_INFO
1384  return false;
1385}
1386
1387/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1388/// node.
1389void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1390                                                unsigned Intrinsic) {
1391  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1392  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
1393
1394  // Build the operand list.
1395  std::vector<SDOperand> Ops;
1396  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
1397    if (OnlyLoad) {
1398      // We don't need to serialize loads against other loads.
1399      Ops.push_back(DAG.getRoot());
1400    } else {
1401      Ops.push_back(getRoot());
1402    }
1403  }
1404
1405  // Add the intrinsic ID as an integer operand.
1406  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1407
1408  // Add all operands of the call to the operand list.
1409  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1410    SDOperand Op = getValue(I.getOperand(i));
1411
1412    // If this is a vector type, force it to the right packed type.
1413    if (Op.getValueType() == MVT::Vector) {
1414      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1415      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1416
1417      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1418      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1419      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1420    }
1421
1422    assert(TLI.isTypeLegal(Op.getValueType()) &&
1423           "Intrinsic uses a non-legal type?");
1424    Ops.push_back(Op);
1425  }
1426
1427  std::vector<MVT::ValueType> VTs;
1428  if (I.getType() != Type::VoidTy) {
1429    MVT::ValueType VT = TLI.getValueType(I.getType());
1430    if (VT == MVT::Vector) {
1431      const PackedType *DestTy = cast<PackedType>(I.getType());
1432      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1433
1434      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1435      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1436    }
1437
1438    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1439    VTs.push_back(VT);
1440  }
1441  if (HasChain)
1442    VTs.push_back(MVT::Other);
1443
1444  // Create the node.
1445  SDOperand Result;
1446  if (!HasChain)
1447    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTs, Ops);
1448  else if (I.getType() != Type::VoidTy)
1449    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTs, Ops);
1450  else
1451    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTs, Ops);
1452
1453  if (HasChain) {
1454    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
1455    if (OnlyLoad)
1456      PendingLoads.push_back(Chain);
1457    else
1458      DAG.setRoot(Chain);
1459  }
1460  if (I.getType() != Type::VoidTy) {
1461    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1462      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1463      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1464                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1465                           DAG.getValueType(EVT));
1466    }
1467    setValue(&I, Result);
1468  }
1469}
1470
1471/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1472/// we want to emit this as a call to a named external function, return the name
1473/// otherwise lower it and return null.
1474const char *
1475SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1476  switch (Intrinsic) {
1477  default:
1478    // By default, turn this into a target intrinsic node.
1479    visitTargetIntrinsic(I, Intrinsic);
1480    return 0;
1481  case Intrinsic::vastart:  visitVAStart(I); return 0;
1482  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1483  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1484  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1485  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1486  case Intrinsic::setjmp:
1487    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1488    break;
1489  case Intrinsic::longjmp:
1490    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1491    break;
1492  case Intrinsic::memcpy_i32:
1493  case Intrinsic::memcpy_i64:
1494    visitMemIntrinsic(I, ISD::MEMCPY);
1495    return 0;
1496  case Intrinsic::memset_i32:
1497  case Intrinsic::memset_i64:
1498    visitMemIntrinsic(I, ISD::MEMSET);
1499    return 0;
1500  case Intrinsic::memmove_i32:
1501  case Intrinsic::memmove_i64:
1502    visitMemIntrinsic(I, ISD::MEMMOVE);
1503    return 0;
1504
1505  case Intrinsic::dbg_stoppoint: {
1506    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1507    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1508    if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
1509      std::vector<SDOperand> Ops;
1510
1511      Ops.push_back(getRoot());
1512      Ops.push_back(getValue(SPI.getLineValue()));
1513      Ops.push_back(getValue(SPI.getColumnValue()));
1514
1515      DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
1516      assert(DD && "Not a debug information descriptor");
1517      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1518
1519      Ops.push_back(DAG.getString(CompileUnit->getFileName()));
1520      Ops.push_back(DAG.getString(CompileUnit->getDirectory()));
1521
1522      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops));
1523    }
1524
1525    return 0;
1526  }
1527  case Intrinsic::dbg_region_start: {
1528    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1529    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1530    if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
1531      std::vector<SDOperand> Ops;
1532
1533      unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
1534
1535      Ops.push_back(getRoot());
1536      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1537
1538      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1539    }
1540
1541    return 0;
1542  }
1543  case Intrinsic::dbg_region_end: {
1544    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1545    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
1546    if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
1547      std::vector<SDOperand> Ops;
1548
1549      unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
1550
1551      Ops.push_back(getRoot());
1552      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1553
1554      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1555    }
1556
1557    return 0;
1558  }
1559  case Intrinsic::dbg_func_start: {
1560    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1561    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
1562    if (DebugInfo && FSI.getSubprogram() &&
1563        DebugInfo->Verify(FSI.getSubprogram())) {
1564      std::vector<SDOperand> Ops;
1565
1566      unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
1567
1568      Ops.push_back(getRoot());
1569      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1570
1571      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1572    }
1573
1574    return 0;
1575  }
1576  case Intrinsic::dbg_declare: {
1577    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1578    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
1579    if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) {
1580      std::vector<SDOperand> Ops;
1581
1582      SDOperand AddressOp  = getValue(DI.getAddress());
1583      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp)) {
1584        DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
1585      }
1586    }
1587
1588    return 0;
1589  }
1590
1591  case Intrinsic::isunordered_f32:
1592  case Intrinsic::isunordered_f64:
1593    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
1594                              getValue(I.getOperand(2)), ISD::SETUO));
1595    return 0;
1596
1597  case Intrinsic::sqrt_f32:
1598  case Intrinsic::sqrt_f64:
1599    setValue(&I, DAG.getNode(ISD::FSQRT,
1600                             getValue(I.getOperand(1)).getValueType(),
1601                             getValue(I.getOperand(1))));
1602    return 0;
1603  case Intrinsic::pcmarker: {
1604    SDOperand Tmp = getValue(I.getOperand(1));
1605    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
1606    return 0;
1607  }
1608  case Intrinsic::readcyclecounter: {
1609    std::vector<MVT::ValueType> VTs;
1610    VTs.push_back(MVT::i64);
1611    VTs.push_back(MVT::Other);
1612    std::vector<SDOperand> Ops;
1613    Ops.push_back(getRoot());
1614    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops);
1615    setValue(&I, Tmp);
1616    DAG.setRoot(Tmp.getValue(1));
1617    return 0;
1618  }
1619  case Intrinsic::bswap_i16:
1620  case Intrinsic::bswap_i32:
1621  case Intrinsic::bswap_i64:
1622    setValue(&I, DAG.getNode(ISD::BSWAP,
1623                             getValue(I.getOperand(1)).getValueType(),
1624                             getValue(I.getOperand(1))));
1625    return 0;
1626  case Intrinsic::cttz_i8:
1627  case Intrinsic::cttz_i16:
1628  case Intrinsic::cttz_i32:
1629  case Intrinsic::cttz_i64:
1630    setValue(&I, DAG.getNode(ISD::CTTZ,
1631                             getValue(I.getOperand(1)).getValueType(),
1632                             getValue(I.getOperand(1))));
1633    return 0;
1634  case Intrinsic::ctlz_i8:
1635  case Intrinsic::ctlz_i16:
1636  case Intrinsic::ctlz_i32:
1637  case Intrinsic::ctlz_i64:
1638    setValue(&I, DAG.getNode(ISD::CTLZ,
1639                             getValue(I.getOperand(1)).getValueType(),
1640                             getValue(I.getOperand(1))));
1641    return 0;
1642  case Intrinsic::ctpop_i8:
1643  case Intrinsic::ctpop_i16:
1644  case Intrinsic::ctpop_i32:
1645  case Intrinsic::ctpop_i64:
1646    setValue(&I, DAG.getNode(ISD::CTPOP,
1647                             getValue(I.getOperand(1)).getValueType(),
1648                             getValue(I.getOperand(1))));
1649    return 0;
1650  case Intrinsic::stacksave: {
1651    std::vector<MVT::ValueType> VTs;
1652    VTs.push_back(TLI.getPointerTy());
1653    VTs.push_back(MVT::Other);
1654    std::vector<SDOperand> Ops;
1655    Ops.push_back(getRoot());
1656    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops);
1657    setValue(&I, Tmp);
1658    DAG.setRoot(Tmp.getValue(1));
1659    return 0;
1660  }
1661  case Intrinsic::stackrestore: {
1662    SDOperand Tmp = getValue(I.getOperand(1));
1663    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
1664    return 0;
1665  }
1666  case Intrinsic::prefetch:
1667    // FIXME: Currently discarding prefetches.
1668    return 0;
1669  }
1670}
1671
1672
1673void SelectionDAGLowering::visitCall(CallInst &I) {
1674  const char *RenameFn = 0;
1675  if (Function *F = I.getCalledFunction()) {
1676    if (F->isExternal())
1677      if (unsigned IID = F->getIntrinsicID()) {
1678        RenameFn = visitIntrinsicCall(I, IID);
1679        if (!RenameFn)
1680          return;
1681      } else {    // Not an LLVM intrinsic.
1682        const std::string &Name = F->getName();
1683        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
1684          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
1685              I.getOperand(1)->getType()->isFloatingPoint() &&
1686              I.getType() == I.getOperand(1)->getType() &&
1687              I.getType() == I.getOperand(2)->getType()) {
1688            SDOperand LHS = getValue(I.getOperand(1));
1689            SDOperand RHS = getValue(I.getOperand(2));
1690            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
1691                                     LHS, RHS));
1692            return;
1693          }
1694        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
1695          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1696              I.getOperand(1)->getType()->isFloatingPoint() &&
1697              I.getType() == I.getOperand(1)->getType()) {
1698            SDOperand Tmp = getValue(I.getOperand(1));
1699            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
1700            return;
1701          }
1702        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
1703          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1704              I.getOperand(1)->getType()->isFloatingPoint() &&
1705              I.getType() == I.getOperand(1)->getType()) {
1706            SDOperand Tmp = getValue(I.getOperand(1));
1707            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
1708            return;
1709          }
1710        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
1711          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1712              I.getOperand(1)->getType()->isFloatingPoint() &&
1713              I.getType() == I.getOperand(1)->getType()) {
1714            SDOperand Tmp = getValue(I.getOperand(1));
1715            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
1716            return;
1717          }
1718        }
1719      }
1720  } else if (isa<InlineAsm>(I.getOperand(0))) {
1721    visitInlineAsm(I);
1722    return;
1723  }
1724
1725  SDOperand Callee;
1726  if (!RenameFn)
1727    Callee = getValue(I.getOperand(0));
1728  else
1729    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
1730  std::vector<std::pair<SDOperand, const Type*> > Args;
1731  Args.reserve(I.getNumOperands());
1732  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1733    Value *Arg = I.getOperand(i);
1734    SDOperand ArgNode = getValue(Arg);
1735    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
1736  }
1737
1738  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
1739  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1740
1741  std::pair<SDOperand,SDOperand> Result =
1742    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
1743                    I.isTailCall(), Callee, Args, DAG);
1744  if (I.getType() != Type::VoidTy)
1745    setValue(&I, Result.first);
1746  DAG.setRoot(Result.second);
1747}
1748
1749SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
1750                                        SDOperand &Chain, SDOperand &Flag)const{
1751  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
1752  Chain = Val.getValue(1);
1753  Flag  = Val.getValue(2);
1754
1755  // If the result was expanded, copy from the top part.
1756  if (Regs.size() > 1) {
1757    assert(Regs.size() == 2 &&
1758           "Cannot expand to more than 2 elts yet!");
1759    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
1760    Chain = Val.getValue(1);
1761    Flag  = Val.getValue(2);
1762    if (DAG.getTargetLoweringInfo().isLittleEndian())
1763      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
1764    else
1765      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
1766  }
1767
1768  // Otherwise, if the return value was promoted, truncate it to the
1769  // appropriate type.
1770  if (RegVT == ValueVT)
1771    return Val;
1772
1773  if (MVT::isInteger(RegVT))
1774    return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1775  else
1776    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
1777}
1778
1779/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
1780/// specified value into the registers specified by this object.  This uses
1781/// Chain/Flag as the input and updates them for the output Chain/Flag.
1782void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
1783                                 SDOperand &Chain, SDOperand &Flag) const {
1784  if (Regs.size() == 1) {
1785    // If there is a single register and the types differ, this must be
1786    // a promotion.
1787    if (RegVT != ValueVT) {
1788      if (MVT::isInteger(RegVT))
1789        Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
1790      else
1791        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
1792    }
1793    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
1794    Flag = Chain.getValue(1);
1795  } else {
1796    std::vector<unsigned> R(Regs);
1797    if (!DAG.getTargetLoweringInfo().isLittleEndian())
1798      std::reverse(R.begin(), R.end());
1799
1800    for (unsigned i = 0, e = R.size(); i != e; ++i) {
1801      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
1802                                   DAG.getConstant(i, MVT::i32));
1803      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
1804      Flag = Chain.getValue(1);
1805    }
1806  }
1807}
1808
1809/// AddInlineAsmOperands - Add this value to the specified inlineasm node
1810/// operand list.  This adds the code marker and includes the number of
1811/// values added into it.
1812void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
1813                                        std::vector<SDOperand> &Ops) const {
1814  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
1815  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1816    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
1817}
1818
1819/// isAllocatableRegister - If the specified register is safe to allocate,
1820/// i.e. it isn't a stack pointer or some other special register, return the
1821/// register class for the register.  Otherwise, return null.
1822static const TargetRegisterClass *
1823isAllocatableRegister(unsigned Reg, MachineFunction &MF,
1824                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
1825  MVT::ValueType FoundVT = MVT::Other;
1826  const TargetRegisterClass *FoundRC = 0;
1827  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
1828       E = MRI->regclass_end(); RCI != E; ++RCI) {
1829    MVT::ValueType ThisVT = MVT::Other;
1830
1831    const TargetRegisterClass *RC = *RCI;
1832    // If none of the the value types for this register class are valid, we
1833    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1834    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1835         I != E; ++I) {
1836      if (TLI.isTypeLegal(*I)) {
1837        // If we have already found this register in a different register class,
1838        // choose the one with the largest VT specified.  For example, on
1839        // PowerPC, we favor f64 register classes over f32.
1840        if (FoundVT == MVT::Other ||
1841            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
1842          ThisVT = *I;
1843          break;
1844        }
1845      }
1846    }
1847
1848    if (ThisVT == MVT::Other) continue;
1849
1850    // NOTE: This isn't ideal.  In particular, this might allocate the
1851    // frame pointer in functions that need it (due to them not being taken
1852    // out of allocation, because a variable sized allocation hasn't been seen
1853    // yet).  This is a slight code pessimization, but should still work.
1854    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
1855         E = RC->allocation_order_end(MF); I != E; ++I)
1856      if (*I == Reg) {
1857        // We found a matching register class.  Keep looking at others in case
1858        // we find one with larger registers that this physreg is also in.
1859        FoundRC = RC;
1860        FoundVT = ThisVT;
1861        break;
1862      }
1863  }
1864  return FoundRC;
1865}
1866
1867RegsForValue SelectionDAGLowering::
1868GetRegistersForValue(const std::string &ConstrCode,
1869                     MVT::ValueType VT, bool isOutReg, bool isInReg,
1870                     std::set<unsigned> &OutputRegs,
1871                     std::set<unsigned> &InputRegs) {
1872  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
1873    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
1874  std::vector<unsigned> Regs;
1875
1876  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
1877  MVT::ValueType RegVT;
1878  MVT::ValueType ValueVT = VT;
1879
1880  if (PhysReg.first) {
1881    if (VT == MVT::Other)
1882      ValueVT = *PhysReg.second->vt_begin();
1883    RegVT = VT;
1884
1885    // This is a explicit reference to a physical register.
1886    Regs.push_back(PhysReg.first);
1887
1888    // If this is an expanded reference, add the rest of the regs to Regs.
1889    if (NumRegs != 1) {
1890      RegVT = *PhysReg.second->vt_begin();
1891      TargetRegisterClass::iterator I = PhysReg.second->begin();
1892      TargetRegisterClass::iterator E = PhysReg.second->end();
1893      for (; *I != PhysReg.first; ++I)
1894        assert(I != E && "Didn't find reg!");
1895
1896      // Already added the first reg.
1897      --NumRegs; ++I;
1898      for (; NumRegs; --NumRegs, ++I) {
1899        assert(I != E && "Ran out of registers to allocate!");
1900        Regs.push_back(*I);
1901      }
1902    }
1903    return RegsForValue(Regs, RegVT, ValueVT);
1904  }
1905
1906  // This is a reference to a register class.  Allocate NumRegs consecutive,
1907  // available, registers from the class.
1908  std::vector<unsigned> RegClassRegs =
1909    TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
1910
1911  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
1912  MachineFunction &MF = *CurMBB->getParent();
1913  unsigned NumAllocated = 0;
1914  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
1915    unsigned Reg = RegClassRegs[i];
1916    // See if this register is available.
1917    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
1918        (isInReg  && InputRegs.count(Reg))) {    // Already used.
1919      // Make sure we find consecutive registers.
1920      NumAllocated = 0;
1921      continue;
1922    }
1923
1924    // Check to see if this register is allocatable (i.e. don't give out the
1925    // stack pointer).
1926    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
1927    if (!RC) {
1928      // Make sure we find consecutive registers.
1929      NumAllocated = 0;
1930      continue;
1931    }
1932
1933    // Okay, this register is good, we can use it.
1934    ++NumAllocated;
1935
1936    // If we allocated enough consecutive
1937    if (NumAllocated == NumRegs) {
1938      unsigned RegStart = (i-NumAllocated)+1;
1939      unsigned RegEnd   = i+1;
1940      // Mark all of the allocated registers used.
1941      for (unsigned i = RegStart; i != RegEnd; ++i) {
1942        unsigned Reg = RegClassRegs[i];
1943        Regs.push_back(Reg);
1944        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
1945        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
1946      }
1947
1948      return RegsForValue(Regs, *RC->vt_begin(), VT);
1949    }
1950  }
1951
1952  // Otherwise, we couldn't allocate enough registers for this.
1953  return RegsForValue();
1954}
1955
1956
1957/// visitInlineAsm - Handle a call to an InlineAsm object.
1958///
1959void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
1960  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
1961
1962  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
1963                                                 MVT::Other);
1964
1965  // Note, we treat inline asms both with and without side-effects as the same.
1966  // If an inline asm doesn't have side effects and doesn't access memory, we
1967  // could not choose to not chain it.
1968  bool hasSideEffects = IA->hasSideEffects();
1969
1970  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
1971  std::vector<MVT::ValueType> ConstraintVTs;
1972
1973  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
1974  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
1975  /// if it is a def of that register.
1976  std::vector<SDOperand> AsmNodeOperands;
1977  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
1978  AsmNodeOperands.push_back(AsmStr);
1979
1980  SDOperand Chain = getRoot();
1981  SDOperand Flag;
1982
1983  // We fully assign registers here at isel time.  This is not optimal, but
1984  // should work.  For register classes that correspond to LLVM classes, we
1985  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
1986  // over the constraints, collecting fixed registers that we know we can't use.
1987  std::set<unsigned> OutputRegs, InputRegs;
1988  unsigned OpNum = 1;
1989  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1990    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
1991    std::string &ConstraintCode = Constraints[i].Codes[0];
1992
1993    MVT::ValueType OpVT;
1994
1995    // Compute the value type for each operand and add it to ConstraintVTs.
1996    switch (Constraints[i].Type) {
1997    case InlineAsm::isOutput:
1998      if (!Constraints[i].isIndirectOutput) {
1999        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2000        OpVT = TLI.getValueType(I.getType());
2001      } else {
2002        const Type *OpTy = I.getOperand(OpNum)->getType();
2003        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2004        OpNum++;  // Consumes a call operand.
2005      }
2006      break;
2007    case InlineAsm::isInput:
2008      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2009      OpNum++;  // Consumes a call operand.
2010      break;
2011    case InlineAsm::isClobber:
2012      OpVT = MVT::Other;
2013      break;
2014    }
2015
2016    ConstraintVTs.push_back(OpVT);
2017
2018    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2019      continue;  // Not assigned a fixed reg.
2020
2021    // Build a list of regs that this operand uses.  This always has a single
2022    // element for promoted/expanded operands.
2023    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2024                                             false, false,
2025                                             OutputRegs, InputRegs);
2026
2027    switch (Constraints[i].Type) {
2028    case InlineAsm::isOutput:
2029      // We can't assign any other output to this register.
2030      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2031      // If this is an early-clobber output, it cannot be assigned to the same
2032      // value as the input reg.
2033      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2034        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2035      break;
2036    case InlineAsm::isInput:
2037      // We can't assign any other input to this register.
2038      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2039      break;
2040    case InlineAsm::isClobber:
2041      // Clobbered regs cannot be used as inputs or outputs.
2042      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2043      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2044      break;
2045    }
2046  }
2047
2048  // Loop over all of the inputs, copying the operand values into the
2049  // appropriate registers and processing the output regs.
2050  RegsForValue RetValRegs;
2051  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2052  OpNum = 1;
2053
2054  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2055    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
2056    std::string &ConstraintCode = Constraints[i].Codes[0];
2057
2058    switch (Constraints[i].Type) {
2059    case InlineAsm::isOutput: {
2060      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2061      if (ConstraintCode.size() == 1)   // not a physreg name.
2062        CTy = TLI.getConstraintType(ConstraintCode[0]);
2063
2064      if (CTy == TargetLowering::C_Memory) {
2065        // Memory output.
2066        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2067
2068        // Check that the operand (the address to store to) isn't a float.
2069        if (!MVT::isInteger(InOperandVal.getValueType()))
2070          assert(0 && "MATCH FAIL!");
2071
2072        if (!Constraints[i].isIndirectOutput)
2073          assert(0 && "MATCH FAIL!");
2074
2075        OpNum++;  // Consumes a call operand.
2076
2077        // Extend/truncate to the right pointer type if needed.
2078        MVT::ValueType PtrType = TLI.getPointerTy();
2079        if (InOperandVal.getValueType() < PtrType)
2080          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2081        else if (InOperandVal.getValueType() > PtrType)
2082          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2083
2084        // Add information to the INLINEASM node to know about this output.
2085        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2086        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2087        AsmNodeOperands.push_back(InOperandVal);
2088        break;
2089      }
2090
2091      // Otherwise, this is a register output.
2092      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2093
2094      // If this is an early-clobber output, or if there is an input
2095      // constraint that matches this, we need to reserve the input register
2096      // so no other inputs allocate to it.
2097      bool UsesInputRegister = false;
2098      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2099        UsesInputRegister = true;
2100
2101      // Copy the output from the appropriate register.  Find a register that
2102      // we can use.
2103      RegsForValue Regs =
2104        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2105                             true, UsesInputRegister,
2106                             OutputRegs, InputRegs);
2107      assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
2108
2109      if (!Constraints[i].isIndirectOutput) {
2110        assert(RetValRegs.Regs.empty() &&
2111               "Cannot have multiple output constraints yet!");
2112        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2113        RetValRegs = Regs;
2114      } else {
2115        IndirectStoresToEmit.push_back(std::make_pair(Regs,
2116                                                      I.getOperand(OpNum)));
2117        OpNum++;  // Consumes a call operand.
2118      }
2119
2120      // Add information to the INLINEASM node to know that this register is
2121      // set.
2122      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
2123      break;
2124    }
2125    case InlineAsm::isInput: {
2126      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2127      OpNum++;  // Consumes a call operand.
2128
2129      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
2130        // If this is required to match an output register we have already set,
2131        // just use its register.
2132        unsigned OperandNo = atoi(ConstraintCode.c_str());
2133
2134        // Scan until we find the definition we already emitted of this operand.
2135        // When we find it, create a RegsForValue operand.
2136        unsigned CurOp = 2;  // The first operand.
2137        for (; OperandNo; --OperandNo) {
2138          // Advance to the next operand.
2139          unsigned NumOps =
2140            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2141          assert((NumOps & 7) == 2 /*REGDEF*/ &&
2142                 "Skipped past definitions?");
2143          CurOp += (NumOps>>3)+1;
2144        }
2145
2146        unsigned NumOps =
2147          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2148        assert((NumOps & 7) == 2 /*REGDEF*/ &&
2149               "Skipped past definitions?");
2150
2151        // Add NumOps>>3 registers to MatchedRegs.
2152        RegsForValue MatchedRegs;
2153        MatchedRegs.ValueVT = InOperandVal.getValueType();
2154        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
2155        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
2156          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
2157          MatchedRegs.Regs.push_back(Reg);
2158        }
2159
2160        // Use the produced MatchedRegs object to
2161        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
2162        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2163        break;
2164      }
2165
2166      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2167      if (ConstraintCode.size() == 1)   // not a physreg name.
2168        CTy = TLI.getConstraintType(ConstraintCode[0]);
2169
2170      if (CTy == TargetLowering::C_Other) {
2171        if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
2172          assert(0 && "MATCH FAIL!");
2173
2174        // Add information to the INLINEASM node to know about this input.
2175        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2176        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2177        AsmNodeOperands.push_back(InOperandVal);
2178        break;
2179      } else if (CTy == TargetLowering::C_Memory) {
2180        // Memory input.
2181
2182        // Check that the operand isn't a float.
2183        if (!MVT::isInteger(InOperandVal.getValueType()))
2184          assert(0 && "MATCH FAIL!");
2185
2186        // Extend/truncate to the right pointer type if needed.
2187        MVT::ValueType PtrType = TLI.getPointerTy();
2188        if (InOperandVal.getValueType() < PtrType)
2189          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2190        else if (InOperandVal.getValueType() > PtrType)
2191          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2192
2193        // Add information to the INLINEASM node to know about this input.
2194        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2195        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2196        AsmNodeOperands.push_back(InOperandVal);
2197        break;
2198      }
2199
2200      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2201
2202      // Copy the input into the appropriate registers.
2203      RegsForValue InRegs =
2204        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2205                             false, true, OutputRegs, InputRegs);
2206      // FIXME: should be match fail.
2207      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2208
2209      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
2210
2211      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2212      break;
2213    }
2214    case InlineAsm::isClobber: {
2215      RegsForValue ClobberedRegs =
2216        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2217                             OutputRegs, InputRegs);
2218      // Add the clobbered value to the operand list, so that the register
2219      // allocator is aware that the physreg got clobbered.
2220      if (!ClobberedRegs.Regs.empty())
2221        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2222      break;
2223    }
2224    }
2225  }
2226
2227  // Finish up input operands.
2228  AsmNodeOperands[0] = Chain;
2229  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2230
2231  std::vector<MVT::ValueType> VTs;
2232  VTs.push_back(MVT::Other);
2233  VTs.push_back(MVT::Flag);
2234  Chain = DAG.getNode(ISD::INLINEASM, VTs, AsmNodeOperands);
2235  Flag = Chain.getValue(1);
2236
2237  // If this asm returns a register value, copy the result from that register
2238  // and set it as the value of the call.
2239  if (!RetValRegs.Regs.empty())
2240    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2241
2242  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2243
2244  // Process indirect outputs, first output all of the flagged copies out of
2245  // physregs.
2246  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2247    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2248    Value *Ptr = IndirectStoresToEmit[i].second;
2249    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2250    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2251  }
2252
2253  // Emit the non-flagged stores from the physregs.
2254  std::vector<SDOperand> OutChains;
2255  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2256    OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
2257                                    StoresToEmit[i].first,
2258                                    getValue(StoresToEmit[i].second),
2259                                    DAG.getSrcValue(StoresToEmit[i].second)));
2260  if (!OutChains.empty())
2261    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains);
2262  DAG.setRoot(Chain);
2263}
2264
2265
2266void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2267  SDOperand Src = getValue(I.getOperand(0));
2268
2269  MVT::ValueType IntPtr = TLI.getPointerTy();
2270
2271  if (IntPtr < Src.getValueType())
2272    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2273  else if (IntPtr > Src.getValueType())
2274    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2275
2276  // Scale the source by the type size.
2277  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
2278  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2279                    Src, getIntPtrConstant(ElementSize));
2280
2281  std::vector<std::pair<SDOperand, const Type*> > Args;
2282  Args.push_back(std::make_pair(Src, TLI.getTargetData()->getIntPtrType()));
2283
2284  std::pair<SDOperand,SDOperand> Result =
2285    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
2286                    DAG.getExternalSymbol("malloc", IntPtr),
2287                    Args, DAG);
2288  setValue(&I, Result.first);  // Pointers always fit in registers
2289  DAG.setRoot(Result.second);
2290}
2291
2292void SelectionDAGLowering::visitFree(FreeInst &I) {
2293  std::vector<std::pair<SDOperand, const Type*> > Args;
2294  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
2295                                TLI.getTargetData()->getIntPtrType()));
2296  MVT::ValueType IntPtr = TLI.getPointerTy();
2297  std::pair<SDOperand,SDOperand> Result =
2298    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
2299                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2300  DAG.setRoot(Result.second);
2301}
2302
2303// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2304// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2305// instructions are special in various ways, which require special support to
2306// insert.  The specified MachineInstr is created but not inserted into any
2307// basic blocks, and the scheduler passes ownership of it to this method.
2308MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2309                                                       MachineBasicBlock *MBB) {
2310  std::cerr << "If a target marks an instruction with "
2311               "'usesCustomDAGSchedInserter', it must implement "
2312               "TargetLowering::InsertAtEndOfBasicBlock!\n";
2313  abort();
2314  return 0;
2315}
2316
2317void SelectionDAGLowering::visitVAStart(CallInst &I) {
2318  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2319                          getValue(I.getOperand(1)),
2320                          DAG.getSrcValue(I.getOperand(1))));
2321}
2322
2323void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2324  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2325                             getValue(I.getOperand(0)),
2326                             DAG.getSrcValue(I.getOperand(0)));
2327  setValue(&I, V);
2328  DAG.setRoot(V.getValue(1));
2329}
2330
2331void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2332  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2333                          getValue(I.getOperand(1)),
2334                          DAG.getSrcValue(I.getOperand(1))));
2335}
2336
2337void SelectionDAGLowering::visitVACopy(CallInst &I) {
2338  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2339                          getValue(I.getOperand(1)),
2340                          getValue(I.getOperand(2)),
2341                          DAG.getSrcValue(I.getOperand(1)),
2342                          DAG.getSrcValue(I.getOperand(2))));
2343}
2344
2345/// TargetLowering::LowerArguments - This is the default LowerArguments
2346/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
2347/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
2348/// integrated into SDISel.
2349std::vector<SDOperand>
2350TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
2351  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
2352  std::vector<SDOperand> Ops;
2353  Ops.push_back(DAG.getRoot());
2354  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
2355  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
2356
2357  // Add one result value for each formal argument.
2358  std::vector<MVT::ValueType> RetVals;
2359  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2360    MVT::ValueType VT = getValueType(I->getType());
2361
2362    switch (getTypeAction(VT)) {
2363    default: assert(0 && "Unknown type action!");
2364    case Legal:
2365      RetVals.push_back(VT);
2366      break;
2367    case Promote:
2368      RetVals.push_back(getTypeToTransformTo(VT));
2369      break;
2370    case Expand:
2371      if (VT != MVT::Vector) {
2372        // If this is a large integer, it needs to be broken up into small
2373        // integers.  Figure out what the destination type is and how many small
2374        // integers it turns into.
2375        MVT::ValueType NVT = getTypeToTransformTo(VT);
2376        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2377        for (unsigned i = 0; i != NumVals; ++i)
2378          RetVals.push_back(NVT);
2379      } else {
2380        // Otherwise, this is a vector type.  We only support legal vectors
2381        // right now.
2382        unsigned NumElems = cast<PackedType>(I->getType())->getNumElements();
2383        const Type *EltTy = cast<PackedType>(I->getType())->getElementType();
2384
2385        // Figure out if there is a Packed type corresponding to this Vector
2386        // type.  If so, convert to the packed type.
2387        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2388        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2389          RetVals.push_back(TVT);
2390        } else {
2391          assert(0 && "Don't support illegal by-val vector arguments yet!");
2392        }
2393      }
2394      break;
2395    }
2396  }
2397
2398  RetVals.push_back(MVT::Other);
2399
2400  // Create the node.
2401  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS, RetVals, Ops).Val;
2402
2403  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
2404
2405  // Set up the return result vector.
2406  Ops.clear();
2407  unsigned i = 0;
2408  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
2409    MVT::ValueType VT = getValueType(I->getType());
2410
2411    switch (getTypeAction(VT)) {
2412    default: assert(0 && "Unknown type action!");
2413    case Legal:
2414      Ops.push_back(SDOperand(Result, i++));
2415      break;
2416    case Promote: {
2417      SDOperand Op(Result, i++);
2418      if (MVT::isInteger(VT)) {
2419        unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext
2420                                                     : ISD::AssertZext;
2421        Op = DAG.getNode(AssertOp, Op.getValueType(), Op, DAG.getValueType(VT));
2422        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
2423      } else {
2424        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2425        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
2426      }
2427      Ops.push_back(Op);
2428      break;
2429    }
2430    case Expand:
2431      if (VT != MVT::Vector) {
2432        // If this is a large integer, it needs to be reassembled from small
2433        // integers.  Figure out what the source elt type is and how many small
2434        // integers it is.
2435        MVT::ValueType NVT = getTypeToTransformTo(VT);
2436        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2437        if (NumVals == 2) {
2438          SDOperand Lo = SDOperand(Result, i++);
2439          SDOperand Hi = SDOperand(Result, i++);
2440
2441          if (!isLittleEndian())
2442            std::swap(Lo, Hi);
2443
2444          Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi));
2445        } else {
2446          // Value scalarized into many values.  Unimp for now.
2447          assert(0 && "Cannot expand i64 -> i16 yet!");
2448        }
2449      } else {
2450        // Otherwise, this is a vector type.  We only support legal vectors
2451        // right now.
2452        const PackedType *PTy = cast<PackedType>(I->getType());
2453        unsigned NumElems = PTy->getNumElements();
2454        const Type *EltTy = PTy->getElementType();
2455
2456        // Figure out if there is a Packed type corresponding to this Vector
2457        // type.  If so, convert to the packed type.
2458        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2459        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2460          SDOperand N = SDOperand(Result, i++);
2461          // Handle copies from generic vectors to registers.
2462          MVT::ValueType PTyElementVT, PTyLegalElementVT;
2463          unsigned NE = getPackedTypeBreakdown(PTy, PTyElementVT,
2464                                               PTyLegalElementVT);
2465          // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
2466          // "N x PTyElementVT" MVT::Vector type.
2467          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
2468                          DAG.getConstant(NE, MVT::i32),
2469                          DAG.getValueType(PTyElementVT));
2470          Ops.push_back(N);
2471        } else {
2472          assert(0 && "Don't support illegal by-val vector arguments yet!");
2473          abort();
2474        }
2475      }
2476      break;
2477    }
2478  }
2479  return Ops;
2480}
2481
2482
2483/// TargetLowering::LowerCallTo - This is the default LowerCallTo
2484/// implementation, which just inserts an ISD::CALL node, which is later custom
2485/// lowered by the target to something concrete.  FIXME: When all targets are
2486/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
2487std::pair<SDOperand, SDOperand>
2488TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg,
2489                            unsigned CallingConv, bool isTailCall,
2490                            SDOperand Callee,
2491                            ArgListTy &Args, SelectionDAG &DAG) {
2492  std::vector<SDOperand> Ops;
2493  Ops.push_back(Chain);   // Op#0 - Chain
2494  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
2495  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
2496  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
2497  Ops.push_back(Callee);
2498
2499  // Handle all of the outgoing arguments.
2500  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
2501    MVT::ValueType VT = getValueType(Args[i].second);
2502    SDOperand Op = Args[i].first;
2503    switch (getTypeAction(VT)) {
2504    default: assert(0 && "Unknown type action!");
2505    case Legal:
2506      Ops.push_back(Op);
2507      break;
2508    case Promote:
2509      if (MVT::isInteger(VT)) {
2510        unsigned ExtOp = Args[i].second->isSigned() ?
2511                                  ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2512        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
2513      } else {
2514        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
2515        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
2516      }
2517      Ops.push_back(Op);
2518      break;
2519    case Expand:
2520      if (VT != MVT::Vector) {
2521        // If this is a large integer, it needs to be broken down into small
2522        // integers.  Figure out what the source elt type is and how many small
2523        // integers it is.
2524        MVT::ValueType NVT = getTypeToTransformTo(VT);
2525        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2526        if (NumVals == 2) {
2527          SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
2528                                     DAG.getConstant(0, getPointerTy()));
2529          SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, NVT, Op,
2530                                     DAG.getConstant(1, getPointerTy()));
2531          if (!isLittleEndian())
2532            std::swap(Lo, Hi);
2533
2534          Ops.push_back(Lo);
2535          Ops.push_back(Hi);
2536        } else {
2537          // Value scalarized into many values.  Unimp for now.
2538          assert(0 && "Cannot expand i64 -> i16 yet!");
2539        }
2540      } else {
2541        // Otherwise, this is a vector type.  We only support legal vectors
2542        // right now.
2543        const PackedType *PTy = cast<PackedType>(Args[i].second);
2544        unsigned NumElems = PTy->getNumElements();
2545        const Type *EltTy = PTy->getElementType();
2546
2547        // Figure out if there is a Packed type corresponding to this Vector
2548        // type.  If so, convert to the packed type.
2549        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2550        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2551          // Handle copies from generic vectors to registers.
2552          MVT::ValueType PTyElementVT, PTyLegalElementVT;
2553          unsigned NE = getPackedTypeBreakdown(PTy, PTyElementVT,
2554                                               PTyLegalElementVT);
2555          // Insert a VBIT_CONVERT of the MVT::Vector type to the packed type.
2556          Ops.push_back(DAG.getNode(ISD::VBIT_CONVERT, TVT, Op));
2557        } else {
2558          assert(0 && "Don't support illegal by-val vector call args yet!");
2559          abort();
2560        }
2561      }
2562      break;
2563    }
2564  }
2565
2566  // Figure out the result value types.
2567  std::vector<MVT::ValueType> RetTys;
2568
2569  if (RetTy != Type::VoidTy) {
2570    MVT::ValueType VT = getValueType(RetTy);
2571    switch (getTypeAction(VT)) {
2572    default: assert(0 && "Unknown type action!");
2573    case Legal:
2574      RetTys.push_back(VT);
2575      break;
2576    case Promote:
2577      RetTys.push_back(getTypeToTransformTo(VT));
2578      break;
2579    case Expand:
2580      if (VT != MVT::Vector) {
2581        // If this is a large integer, it needs to be reassembled from small
2582        // integers.  Figure out what the source elt type is and how many small
2583        // integers it is.
2584        MVT::ValueType NVT = getTypeToTransformTo(VT);
2585        unsigned NumVals = MVT::getSizeInBits(VT)/MVT::getSizeInBits(NVT);
2586        for (unsigned i = 0; i != NumVals; ++i)
2587          RetTys.push_back(NVT);
2588      } else {
2589        // Otherwise, this is a vector type.  We only support legal vectors
2590        // right now.
2591        const PackedType *PTy = cast<PackedType>(RetTy);
2592        unsigned NumElems = PTy->getNumElements();
2593        const Type *EltTy = PTy->getElementType();
2594
2595        // Figure out if there is a Packed type corresponding to this Vector
2596        // type.  If so, convert to the packed type.
2597        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2598        if (TVT != MVT::Other && isTypeLegal(TVT)) {
2599          RetTys.push_back(TVT);
2600        } else {
2601          assert(0 && "Don't support illegal by-val vector call results yet!");
2602          abort();
2603        }
2604      }
2605    }
2606  }
2607
2608  RetTys.push_back(MVT::Other);  // Always has a chain.
2609
2610  // Finally, create the CALL node.
2611  SDOperand Res = DAG.getNode(ISD::CALL, RetTys, Ops);
2612
2613  // This returns a pair of operands.  The first element is the
2614  // return value for the function (if RetTy is not VoidTy).  The second
2615  // element is the outgoing token chain.
2616  SDOperand ResVal;
2617  if (RetTys.size() != 1) {
2618    MVT::ValueType VT = getValueType(RetTy);
2619    if (RetTys.size() == 2) {
2620      ResVal = Res;
2621
2622      // If this value was promoted, truncate it down.
2623      if (ResVal.getValueType() != VT) {
2624        if (VT == MVT::Vector) {
2625          // Insert a VBITCONVERT to convert from the packed result type to the
2626          // MVT::Vector type.
2627          unsigned NumElems = cast<PackedType>(RetTy)->getNumElements();
2628          const Type *EltTy = cast<PackedType>(RetTy)->getElementType();
2629
2630          // Figure out if there is a Packed type corresponding to this Vector
2631          // type.  If so, convert to the packed type.
2632          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
2633          if (TVT != MVT::Other && isTypeLegal(TVT)) {
2634            // Handle copies from generic vectors to registers.
2635            MVT::ValueType PTyElementVT, PTyLegalElementVT;
2636            unsigned NE = getPackedTypeBreakdown(cast<PackedType>(RetTy),
2637                                                 PTyElementVT,
2638                                                 PTyLegalElementVT);
2639            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
2640            // "N x PTyElementVT" MVT::Vector type.
2641            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
2642                                 DAG.getConstant(NE, MVT::i32),
2643                                 DAG.getValueType(PTyElementVT));
2644          } else {
2645            abort();
2646          }
2647        } else if (MVT::isInteger(VT)) {
2648          unsigned AssertOp = RetTy->isSigned() ?
2649                                  ISD::AssertSext : ISD::AssertZext;
2650          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
2651                               DAG.getValueType(VT));
2652          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
2653        } else {
2654          assert(MVT::isFloatingPoint(VT));
2655          ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
2656        }
2657      }
2658    } else if (RetTys.size() == 3) {
2659      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
2660                           Res.getValue(0), Res.getValue(1));
2661
2662    } else {
2663      assert(0 && "Case not handled yet!");
2664    }
2665  }
2666
2667  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
2668}
2669
2670
2671
2672// It is always conservatively correct for llvm.returnaddress and
2673// llvm.frameaddress to return 0.
2674//
2675// FIXME: Change this to insert a FRAMEADDR/RETURNADDR node, and have that be
2676// expanded to 0 if the target wants.
2677std::pair<SDOperand, SDOperand>
2678TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
2679                                        unsigned Depth, SelectionDAG &DAG) {
2680  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
2681}
2682
2683SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2684  assert(0 && "LowerOperation not implemented for this target!");
2685  abort();
2686  return SDOperand();
2687}
2688
2689SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
2690                                                 SelectionDAG &DAG) {
2691  assert(0 && "CustomPromoteOperation not implemented for this target!");
2692  abort();
2693  return SDOperand();
2694}
2695
2696void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
2697  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
2698  std::pair<SDOperand,SDOperand> Result =
2699    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
2700  setValue(&I, Result.first);
2701  DAG.setRoot(Result.second);
2702}
2703
2704/// getMemsetValue - Vectorized representation of the memset value
2705/// operand.
2706static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2707                                SelectionDAG &DAG) {
2708  MVT::ValueType CurVT = VT;
2709  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2710    uint64_t Val   = C->getValue() & 255;
2711    unsigned Shift = 8;
2712    while (CurVT != MVT::i8) {
2713      Val = (Val << Shift) | Val;
2714      Shift <<= 1;
2715      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2716    }
2717    return DAG.getConstant(Val, VT);
2718  } else {
2719    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2720    unsigned Shift = 8;
2721    while (CurVT != MVT::i8) {
2722      Value =
2723        DAG.getNode(ISD::OR, VT,
2724                    DAG.getNode(ISD::SHL, VT, Value,
2725                                DAG.getConstant(Shift, MVT::i8)), Value);
2726      Shift <<= 1;
2727      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2728    }
2729
2730    return Value;
2731  }
2732}
2733
2734/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2735/// used when a memcpy is turned into a memset when the source is a constant
2736/// string ptr.
2737static SDOperand getMemsetStringVal(MVT::ValueType VT,
2738                                    SelectionDAG &DAG, TargetLowering &TLI,
2739                                    std::string &Str, unsigned Offset) {
2740  MVT::ValueType CurVT = VT;
2741  uint64_t Val = 0;
2742  unsigned MSB = getSizeInBits(VT) / 8;
2743  if (TLI.isLittleEndian())
2744    Offset = Offset + MSB - 1;
2745  for (unsigned i = 0; i != MSB; ++i) {
2746    Val = (Val << 8) | Str[Offset];
2747    Offset += TLI.isLittleEndian() ? -1 : 1;
2748  }
2749  return DAG.getConstant(Val, VT);
2750}
2751
2752/// getMemBasePlusOffset - Returns base and offset node for the
2753static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2754                                      SelectionDAG &DAG, TargetLowering &TLI) {
2755  MVT::ValueType VT = Base.getValueType();
2756  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2757}
2758
2759/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2760/// to replace the memset / memcpy is below the threshold. It also returns the
2761/// types of the sequence of  memory ops to perform memset / memcpy.
2762static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2763                                     unsigned Limit, uint64_t Size,
2764                                     unsigned Align, TargetLowering &TLI) {
2765  MVT::ValueType VT;
2766
2767  if (TLI.allowsUnalignedMemoryAccesses()) {
2768    VT = MVT::i64;
2769  } else {
2770    switch (Align & 7) {
2771    case 0:
2772      VT = MVT::i64;
2773      break;
2774    case 4:
2775      VT = MVT::i32;
2776      break;
2777    case 2:
2778      VT = MVT::i16;
2779      break;
2780    default:
2781      VT = MVT::i8;
2782      break;
2783    }
2784  }
2785
2786  MVT::ValueType LVT = MVT::i64;
2787  while (!TLI.isTypeLegal(LVT))
2788    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2789  assert(MVT::isInteger(LVT));
2790
2791  if (VT > LVT)
2792    VT = LVT;
2793
2794  unsigned NumMemOps = 0;
2795  while (Size != 0) {
2796    unsigned VTSize = getSizeInBits(VT) / 8;
2797    while (VTSize > Size) {
2798      VT = (MVT::ValueType)((unsigned)VT - 1);
2799      VTSize >>= 1;
2800    }
2801    assert(MVT::isInteger(VT));
2802
2803    if (++NumMemOps > Limit)
2804      return false;
2805    MemOps.push_back(VT);
2806    Size -= VTSize;
2807  }
2808
2809  return true;
2810}
2811
2812void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
2813  SDOperand Op1 = getValue(I.getOperand(1));
2814  SDOperand Op2 = getValue(I.getOperand(2));
2815  SDOperand Op3 = getValue(I.getOperand(3));
2816  SDOperand Op4 = getValue(I.getOperand(4));
2817  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
2818  if (Align == 0) Align = 1;
2819
2820  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
2821    std::vector<MVT::ValueType> MemOps;
2822
2823    // Expand memset / memcpy to a series of load / store ops
2824    // if the size operand falls below a certain threshold.
2825    std::vector<SDOperand> OutChains;
2826    switch (Op) {
2827    default: break;  // Do nothing for now.
2828    case ISD::MEMSET: {
2829      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2830                                   Size->getValue(), Align, TLI)) {
2831        unsigned NumMemOps = MemOps.size();
2832        unsigned Offset = 0;
2833        for (unsigned i = 0; i < NumMemOps; i++) {
2834          MVT::ValueType VT = MemOps[i];
2835          unsigned VTSize = getSizeInBits(VT) / 8;
2836          SDOperand Value = getMemsetValue(Op2, VT, DAG);
2837          SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, getRoot(),
2838                                        Value,
2839                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
2840                                      DAG.getSrcValue(I.getOperand(1), Offset));
2841          OutChains.push_back(Store);
2842          Offset += VTSize;
2843        }
2844      }
2845      break;
2846    }
2847    case ISD::MEMCPY: {
2848      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
2849                                   Size->getValue(), Align, TLI)) {
2850        unsigned NumMemOps = MemOps.size();
2851        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
2852        GlobalAddressSDNode *G = NULL;
2853        std::string Str;
2854        bool CopyFromStr = false;
2855
2856        if (Op2.getOpcode() == ISD::GlobalAddress)
2857          G = cast<GlobalAddressSDNode>(Op2);
2858        else if (Op2.getOpcode() == ISD::ADD &&
2859                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2860                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
2861          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
2862          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
2863        }
2864        if (G) {
2865          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2866          if (GV) {
2867            Str = GV->getStringValue(false);
2868            if (!Str.empty()) {
2869              CopyFromStr = true;
2870              SrcOff += SrcDelta;
2871            }
2872          }
2873        }
2874
2875        for (unsigned i = 0; i < NumMemOps; i++) {
2876          MVT::ValueType VT = MemOps[i];
2877          unsigned VTSize = getSizeInBits(VT) / 8;
2878          SDOperand Value, Chain, Store;
2879
2880          if (CopyFromStr) {
2881            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2882            Chain = getRoot();
2883            Store =
2884              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2885                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2886                          DAG.getSrcValue(I.getOperand(1), DstOff));
2887          } else {
2888            Value = DAG.getLoad(VT, getRoot(),
2889                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
2890                        DAG.getSrcValue(I.getOperand(2), SrcOff));
2891            Chain = Value.getValue(1);
2892            Store =
2893              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2894                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2895                          DAG.getSrcValue(I.getOperand(1), DstOff));
2896          }
2897          OutChains.push_back(Store);
2898          SrcOff += VTSize;
2899          DstOff += VTSize;
2900        }
2901      }
2902      break;
2903    }
2904    }
2905
2906    if (!OutChains.empty()) {
2907      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains));
2908      return;
2909    }
2910  }
2911
2912  std::vector<SDOperand> Ops;
2913  Ops.push_back(getRoot());
2914  Ops.push_back(Op1);
2915  Ops.push_back(Op2);
2916  Ops.push_back(Op3);
2917  Ops.push_back(Op4);
2918  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
2919}
2920
2921//===----------------------------------------------------------------------===//
2922// SelectionDAGISel code
2923//===----------------------------------------------------------------------===//
2924
2925unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
2926  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
2927}
2928
2929void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
2930  // FIXME: we only modify the CFG to split critical edges.  This
2931  // updates dom and loop info.
2932}
2933
2934
2935/// OptimizeNoopCopyExpression - We have determined that the specified cast
2936/// instruction is a noop copy (e.g. it's casting from one pointer type to
2937/// another, int->uint, or int->sbyte on PPC.
2938///
2939/// Return true if any changes are made.
2940static bool OptimizeNoopCopyExpression(CastInst *CI) {
2941  BasicBlock *DefBB = CI->getParent();
2942
2943  /// InsertedCasts - Only insert a cast in each block once.
2944  std::map<BasicBlock*, CastInst*> InsertedCasts;
2945
2946  bool MadeChange = false;
2947  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
2948       UI != E; ) {
2949    Use &TheUse = UI.getUse();
2950    Instruction *User = cast<Instruction>(*UI);
2951
2952    // Figure out which BB this cast is used in.  For PHI's this is the
2953    // appropriate predecessor block.
2954    BasicBlock *UserBB = User->getParent();
2955    if (PHINode *PN = dyn_cast<PHINode>(User)) {
2956      unsigned OpVal = UI.getOperandNo()/2;
2957      UserBB = PN->getIncomingBlock(OpVal);
2958    }
2959
2960    // Preincrement use iterator so we don't invalidate it.
2961    ++UI;
2962
2963    // If this user is in the same block as the cast, don't change the cast.
2964    if (UserBB == DefBB) continue;
2965
2966    // If we have already inserted a cast into this block, use it.
2967    CastInst *&InsertedCast = InsertedCasts[UserBB];
2968
2969    if (!InsertedCast) {
2970      BasicBlock::iterator InsertPt = UserBB->begin();
2971      while (isa<PHINode>(InsertPt)) ++InsertPt;
2972
2973      InsertedCast =
2974        new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
2975      MadeChange = true;
2976    }
2977
2978    // Replace a use of the cast with a use of the new casat.
2979    TheUse = InsertedCast;
2980  }
2981
2982  // If we removed all uses, nuke the cast.
2983  if (CI->use_empty())
2984    CI->eraseFromParent();
2985
2986  return MadeChange;
2987}
2988
2989/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
2990/// casting to the type of GEPI.
2991static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
2992                                         Instruction *GEPI, Value *Ptr,
2993                                         Value *PtrOffset) {
2994  if (V) return V;   // Already computed.
2995
2996  BasicBlock::iterator InsertPt;
2997  if (BB == GEPI->getParent()) {
2998    // If insert into the GEP's block, insert right after the GEP.
2999    InsertPt = GEPI;
3000    ++InsertPt;
3001  } else {
3002    // Otherwise, insert at the top of BB, after any PHI nodes
3003    InsertPt = BB->begin();
3004    while (isa<PHINode>(InsertPt)) ++InsertPt;
3005  }
3006
3007  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
3008  // BB so that there is only one value live across basic blocks (the cast
3009  // operand).
3010  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
3011    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
3012      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
3013
3014  // Add the offset, cast it to the right type.
3015  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
3016  return V = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
3017}
3018
3019/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
3020/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
3021/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
3022/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
3023/// sink PtrOffset into user blocks where doing so will likely allow us to fold
3024/// the constant add into a load or store instruction.  Additionally, if a user
3025/// is a pointer-pointer cast, we look through it to find its users.
3026static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
3027                                 Constant *PtrOffset, BasicBlock *DefBB,
3028                                 GetElementPtrInst *GEPI,
3029                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
3030  while (!RepPtr->use_empty()) {
3031    Instruction *User = cast<Instruction>(RepPtr->use_back());
3032
3033    // If the user is a Pointer-Pointer cast, recurse.
3034    if (isa<CastInst>(User) && isa<PointerType>(User->getType())) {
3035      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3036
3037      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
3038      // could invalidate an iterator.
3039      User->setOperand(0, UndefValue::get(RepPtr->getType()));
3040      continue;
3041    }
3042
3043    // If this is a load of the pointer, or a store through the pointer, emit
3044    // the increment into the load/store block.
3045    Instruction *NewVal;
3046    if (isa<LoadInst>(User) ||
3047        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
3048      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
3049                                    User->getParent(), GEPI,
3050                                    Ptr, PtrOffset);
3051    } else {
3052      // If this use is not foldable into the addressing mode, use a version
3053      // emitted in the GEP block.
3054      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
3055                                    Ptr, PtrOffset);
3056    }
3057
3058    if (GEPI->getType() != RepPtr->getType()) {
3059      BasicBlock::iterator IP = NewVal;
3060      ++IP;
3061      NewVal = new CastInst(NewVal, RepPtr->getType(), "", IP);
3062    }
3063    User->replaceUsesOfWith(RepPtr, NewVal);
3064  }
3065}
3066
3067
3068/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
3069/// selection, we want to be a bit careful about some things.  In particular, if
3070/// we have a GEP instruction that is used in a different block than it is
3071/// defined, the addressing expression of the GEP cannot be folded into loads or
3072/// stores that use it.  In this case, decompose the GEP and move constant
3073/// indices into blocks that use it.
3074static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
3075                                  const TargetData *TD) {
3076  // If this GEP is only used inside the block it is defined in, there is no
3077  // need to rewrite it.
3078  bool isUsedOutsideDefBB = false;
3079  BasicBlock *DefBB = GEPI->getParent();
3080  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
3081       UI != E; ++UI) {
3082    if (cast<Instruction>(*UI)->getParent() != DefBB) {
3083      isUsedOutsideDefBB = true;
3084      break;
3085    }
3086  }
3087  if (!isUsedOutsideDefBB) return false;
3088
3089  // If this GEP has no non-zero constant indices, there is nothing we can do,
3090  // ignore it.
3091  bool hasConstantIndex = false;
3092  bool hasVariableIndex = false;
3093  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3094       E = GEPI->op_end(); OI != E; ++OI) {
3095    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
3096      if (CI->getRawValue()) {
3097        hasConstantIndex = true;
3098        break;
3099      }
3100    } else {
3101      hasVariableIndex = true;
3102    }
3103  }
3104
3105  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
3106  if (!hasConstantIndex && !hasVariableIndex) {
3107    Value *NC = new CastInst(GEPI->getOperand(0), GEPI->getType(),
3108                             GEPI->getName(), GEPI);
3109    GEPI->replaceAllUsesWith(NC);
3110    GEPI->eraseFromParent();
3111    return true;
3112  }
3113
3114  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
3115  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
3116    return false;
3117
3118  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
3119  // constant offset (which we now know is non-zero) and deal with it later.
3120  uint64_t ConstantOffset = 0;
3121  const Type *UIntPtrTy = TD->getIntPtrType();
3122  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
3123  const Type *Ty = GEPI->getOperand(0)->getType();
3124
3125  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3126       E = GEPI->op_end(); OI != E; ++OI) {
3127    Value *Idx = *OI;
3128    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
3129      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
3130      if (Field)
3131        ConstantOffset += TD->getStructLayout(StTy)->MemberOffsets[Field];
3132      Ty = StTy->getElementType(Field);
3133    } else {
3134      Ty = cast<SequentialType>(Ty)->getElementType();
3135
3136      // Handle constant subscripts.
3137      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3138        if (CI->getRawValue() == 0) continue;
3139
3140        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
3141          ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CSI->getValue();
3142        else
3143          ConstantOffset+=TD->getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
3144        continue;
3145      }
3146
3147      // Ptr = Ptr + Idx * ElementSize;
3148
3149      // Cast Idx to UIntPtrTy if needed.
3150      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
3151
3152      uint64_t ElementSize = TD->getTypeSize(Ty);
3153      // Mask off bits that should not be set.
3154      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3155      Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
3156
3157      // Multiply by the element size and add to the base.
3158      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
3159      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
3160    }
3161  }
3162
3163  // Make sure that the offset fits in uintptr_t.
3164  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3165  Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
3166
3167  // Okay, we have now emitted all of the variable index parts to the BB that
3168  // the GEP is defined in.  Loop over all of the using instructions, inserting
3169  // an "add Ptr, ConstantOffset" into each block that uses it and update the
3170  // instruction to use the newly computed value, making GEPI dead.  When the
3171  // user is a load or store instruction address, we emit the add into the user
3172  // block, otherwise we use a canonical version right next to the gep (these
3173  // won't be foldable as addresses, so we might as well share the computation).
3174
3175  std::map<BasicBlock*,Instruction*> InsertedExprs;
3176  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3177
3178  // Finally, the GEP is dead, remove it.
3179  GEPI->eraseFromParent();
3180
3181  return true;
3182}
3183
3184bool SelectionDAGISel::runOnFunction(Function &Fn) {
3185  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
3186  RegMap = MF.getSSARegMap();
3187  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
3188
3189  // First, split all critical edges for PHI nodes with incoming values that are
3190  // constants, this way the load of the constant into a vreg will not be placed
3191  // into MBBs that are used some other way.
3192  //
3193  // In this pass we also look for GEP and cast instructions that are used
3194  // across basic blocks and rewrite them to improve basic-block-at-a-time
3195  // selection.
3196  //
3197  //
3198  bool MadeChange = true;
3199  while (MadeChange) {
3200    MadeChange = false;
3201  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
3202    PHINode *PN;
3203    BasicBlock::iterator BBI;
3204    for (BBI = BB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI)
3205      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
3206        if (isa<Constant>(PN->getIncomingValue(i)))
3207          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
3208
3209    for (BasicBlock::iterator E = BB->end(); BBI != E; ) {
3210      Instruction *I = BBI++;
3211      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
3212        MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
3213      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
3214        // If this is a noop copy, sink it into user blocks to reduce the number
3215        // of virtual registers that must be created and coallesced.
3216        MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
3217        MVT::ValueType DstVT = TLI.getValueType(CI->getType());
3218
3219        // This is an fp<->int conversion?
3220        if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
3221          continue;
3222
3223        // If this is an extension, it will be a zero or sign extension, which
3224        // isn't a noop.
3225        if (SrcVT < DstVT) continue;
3226
3227        // If these values will be promoted, find out what they will be promoted
3228        // to.  This helps us consider truncates on PPC as noop copies when they
3229        // are.
3230        if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
3231          SrcVT = TLI.getTypeToTransformTo(SrcVT);
3232        if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
3233          DstVT = TLI.getTypeToTransformTo(DstVT);
3234
3235        // If, after promotion, these are the same types, this is a noop copy.
3236        if (SrcVT == DstVT)
3237          MadeChange |= OptimizeNoopCopyExpression(CI);
3238      }
3239    }
3240  }
3241  }
3242
3243  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
3244
3245  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
3246    SelectBasicBlock(I, MF, FuncInfo);
3247
3248  return true;
3249}
3250
3251
3252SDOperand SelectionDAGISel::
3253CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
3254  SDOperand Op = SDL.getValue(V);
3255  assert((Op.getOpcode() != ISD::CopyFromReg ||
3256          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
3257         "Copy from a reg to the same reg!");
3258
3259  // If this type is not legal, we must make sure to not create an invalid
3260  // register use.
3261  MVT::ValueType SrcVT = Op.getValueType();
3262  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
3263  SelectionDAG &DAG = SDL.DAG;
3264  if (SrcVT == DestVT) {
3265    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
3266  } else if (SrcVT == MVT::Vector) {
3267    // Handle copies from generic vectors to registers.
3268    MVT::ValueType PTyElementVT, PTyLegalElementVT;
3269    unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
3270                                             PTyElementVT, PTyLegalElementVT);
3271
3272    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
3273    // MVT::Vector type.
3274    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
3275                     DAG.getConstant(NE, MVT::i32),
3276                     DAG.getValueType(PTyElementVT));
3277
3278    // Loop over all of the elements of the resultant vector,
3279    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
3280    // copying them into output registers.
3281    std::vector<SDOperand> OutChains;
3282    SDOperand Root = SDL.getRoot();
3283    for (unsigned i = 0; i != NE; ++i) {
3284      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
3285                                  Op, DAG.getConstant(i, MVT::i32));
3286      if (PTyElementVT == PTyLegalElementVT) {
3287        // Elements are legal.
3288        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3289      } else if (PTyLegalElementVT > PTyElementVT) {
3290        // Elements are promoted.
3291        if (MVT::isFloatingPoint(PTyLegalElementVT))
3292          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
3293        else
3294          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
3295        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
3296      } else {
3297        // Elements are expanded.
3298        // The src value is expanded into multiple registers.
3299        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3300                                   Elt, DAG.getConstant(0, MVT::i32));
3301        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
3302                                   Elt, DAG.getConstant(1, MVT::i32));
3303        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
3304        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
3305      }
3306    }
3307    return DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains);
3308  } else if (SrcVT < DestVT) {
3309    // The src value is promoted to the register.
3310    if (MVT::isFloatingPoint(SrcVT))
3311      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
3312    else
3313      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
3314    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
3315  } else  {
3316    // The src value is expanded into multiple registers.
3317    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3318                               Op, DAG.getConstant(0, MVT::i32));
3319    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
3320                               Op, DAG.getConstant(1, MVT::i32));
3321    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
3322    return DAG.getCopyToReg(Op, Reg+1, Hi);
3323  }
3324}
3325
3326void SelectionDAGISel::
3327LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
3328               std::vector<SDOperand> &UnorderedChains) {
3329  // If this is the entry block, emit arguments.
3330  Function &F = *BB->getParent();
3331  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
3332  SDOperand OldRoot = SDL.DAG.getRoot();
3333  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
3334
3335  unsigned a = 0;
3336  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
3337       AI != E; ++AI, ++a)
3338    if (!AI->use_empty()) {
3339      SDL.setValue(AI, Args[a]);
3340
3341      // If this argument is live outside of the entry block, insert a copy from
3342      // whereever we got it to the vreg that other BB's will reference it as.
3343      if (FuncInfo.ValueMap.count(AI)) {
3344        SDOperand Copy =
3345          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
3346        UnorderedChains.push_back(Copy);
3347      }
3348    }
3349
3350  // Finally, if the target has anything special to do, allow it to do so.
3351  // FIXME: this should insert code into the DAG!
3352  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
3353}
3354
3355void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
3356       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
3357                                         FunctionLoweringInfo &FuncInfo) {
3358  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
3359
3360  std::vector<SDOperand> UnorderedChains;
3361
3362  // Lower any arguments needed in this block if this is the entry block.
3363  if (LLVMBB == &LLVMBB->getParent()->front())
3364    LowerArguments(LLVMBB, SDL, UnorderedChains);
3365
3366  BB = FuncInfo.MBBMap[LLVMBB];
3367  SDL.setCurrentBasicBlock(BB);
3368
3369  // Lower all of the non-terminator instructions.
3370  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
3371       I != E; ++I)
3372    SDL.visit(*I);
3373
3374  // Ensure that all instructions which are used outside of their defining
3375  // blocks are available as virtual registers.
3376  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
3377    if (!I->use_empty() && !isa<PHINode>(I)) {
3378      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
3379      if (VMI != FuncInfo.ValueMap.end())
3380        UnorderedChains.push_back(
3381                           CopyValueToVirtualRegister(SDL, I, VMI->second));
3382    }
3383
3384  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
3385  // ensure constants are generated when needed.  Remember the virtual registers
3386  // that need to be added to the Machine PHI nodes as input.  We cannot just
3387  // directly add them, because expansion might result in multiple MBB's for one
3388  // BB.  As such, the start of the BB might correspond to a different MBB than
3389  // the end.
3390  //
3391
3392  // Emit constants only once even if used by multiple PHI nodes.
3393  std::map<Constant*, unsigned> ConstantsOut;
3394
3395  // Check successor nodes PHI nodes that expect a constant to be available from
3396  // this block.
3397  TerminatorInst *TI = LLVMBB->getTerminator();
3398  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
3399    BasicBlock *SuccBB = TI->getSuccessor(succ);
3400    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
3401    PHINode *PN;
3402
3403    // At this point we know that there is a 1-1 correspondence between LLVM PHI
3404    // nodes and Machine PHI nodes, but the incoming operands have not been
3405    // emitted yet.
3406    for (BasicBlock::iterator I = SuccBB->begin();
3407         (PN = dyn_cast<PHINode>(I)); ++I)
3408      if (!PN->use_empty()) {
3409        unsigned Reg;
3410        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
3411        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
3412          unsigned &RegOut = ConstantsOut[C];
3413          if (RegOut == 0) {
3414            RegOut = FuncInfo.CreateRegForValue(C);
3415            UnorderedChains.push_back(
3416                             CopyValueToVirtualRegister(SDL, C, RegOut));
3417          }
3418          Reg = RegOut;
3419        } else {
3420          Reg = FuncInfo.ValueMap[PHIOp];
3421          if (Reg == 0) {
3422            assert(isa<AllocaInst>(PHIOp) &&
3423                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
3424                   "Didn't codegen value into a register!??");
3425            Reg = FuncInfo.CreateRegForValue(PHIOp);
3426            UnorderedChains.push_back(
3427                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
3428          }
3429        }
3430
3431        // Remember that this register needs to added to the machine PHI node as
3432        // the input for this MBB.
3433        MVT::ValueType VT = TLI.getValueType(PN->getType());
3434        unsigned NumElements;
3435        if (VT != MVT::Vector)
3436          NumElements = TLI.getNumElements(VT);
3437        else {
3438          MVT::ValueType VT1,VT2;
3439          NumElements =
3440            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
3441                                       VT1, VT2);
3442        }
3443        for (unsigned i = 0, e = NumElements; i != e; ++i)
3444          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
3445      }
3446  }
3447  ConstantsOut.clear();
3448
3449  // Turn all of the unordered chains into one factored node.
3450  if (!UnorderedChains.empty()) {
3451    SDOperand Root = SDL.getRoot();
3452    if (Root.getOpcode() != ISD::EntryToken) {
3453      unsigned i = 0, e = UnorderedChains.size();
3454      for (; i != e; ++i) {
3455        assert(UnorderedChains[i].Val->getNumOperands() > 1);
3456        if (UnorderedChains[i].Val->getOperand(0) == Root)
3457          break;  // Don't add the root if we already indirectly depend on it.
3458      }
3459
3460      if (i == e)
3461        UnorderedChains.push_back(Root);
3462    }
3463    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
3464  }
3465
3466  // Lower the terminator after the copies are emitted.
3467  SDL.visit(*LLVMBB->getTerminator());
3468
3469  // Copy over any CaseBlock records that may now exist due to SwitchInst
3470  // lowering, as well as any jump table information.
3471  SwitchCases.clear();
3472  SwitchCases = SDL.SwitchCases;
3473  JT = SDL.JT;
3474
3475  // Make sure the root of the DAG is up-to-date.
3476  DAG.setRoot(SDL.getRoot());
3477}
3478
3479void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
3480  // Run the DAG combiner in pre-legalize mode.
3481  DAG.Combine(false);
3482
3483  DEBUG(std::cerr << "Lowered selection DAG:\n");
3484  DEBUG(DAG.dump());
3485
3486  // Second step, hack on the DAG until it only uses operations and types that
3487  // the target supports.
3488  DAG.Legalize();
3489
3490  DEBUG(std::cerr << "Legalized selection DAG:\n");
3491  DEBUG(DAG.dump());
3492
3493  // Run the DAG combiner in post-legalize mode.
3494  DAG.Combine(true);
3495
3496  if (ViewISelDAGs) DAG.viewGraph();
3497
3498  // Third, instruction select all of the operations to machine code, adding the
3499  // code to the MachineBasicBlock.
3500  InstructionSelectBasicBlock(DAG);
3501
3502  DEBUG(std::cerr << "Selected machine code:\n");
3503  DEBUG(BB->dump());
3504}
3505
3506void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
3507                                        FunctionLoweringInfo &FuncInfo) {
3508  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
3509  {
3510    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3511    CurDAG = &DAG;
3512
3513    // First step, lower LLVM code to some DAG.  This DAG may use operations and
3514    // types that are not supported by the target.
3515    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
3516
3517    // Second step, emit the lowered DAG as machine code.
3518    CodeGenAndEmitDAG(DAG);
3519  }
3520
3521  // Next, now that we know what the last MBB the LLVM BB expanded is, update
3522  // PHI nodes in successors.
3523  if (SwitchCases.empty() && JT.Reg == 0) {
3524    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
3525      MachineInstr *PHI = PHINodesToUpdate[i].first;
3526      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3527             "This is not a machine PHI node that we are updating!");
3528      PHI->addRegOperand(PHINodesToUpdate[i].second);
3529      PHI->addMachineBasicBlockOperand(BB);
3530    }
3531    return;
3532  }
3533
3534  // If the JumpTable record is filled in, then we need to emit a jump table.
3535  // Updating the PHI nodes is tricky in this case, since we need to determine
3536  // whether the PHI is a successor of the range check MBB or the jump table MBB
3537  if (JT.Reg) {
3538    assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
3539    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3540    CurDAG = &SDAG;
3541    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3542    MachineBasicBlock *RangeBB = BB;
3543    // Set the current basic block to the mbb we wish to insert the code into
3544    BB = JT.MBB;
3545    SDL.setCurrentBasicBlock(BB);
3546    // Emit the code
3547    SDL.visitJumpTable(JT);
3548    SDAG.setRoot(SDL.getRoot());
3549    CodeGenAndEmitDAG(SDAG);
3550    // Update PHI Nodes
3551    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
3552      MachineInstr *PHI = PHINodesToUpdate[pi].first;
3553      MachineBasicBlock *PHIBB = PHI->getParent();
3554      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3555             "This is not a machine PHI node that we are updating!");
3556      if (PHIBB == JT.Default) {
3557        PHI->addRegOperand(PHINodesToUpdate[pi].second);
3558        PHI->addMachineBasicBlockOperand(RangeBB);
3559      }
3560      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
3561        PHI->addRegOperand(PHINodesToUpdate[pi].second);
3562        PHI->addMachineBasicBlockOperand(BB);
3563      }
3564    }
3565    return;
3566  }
3567
3568  // If we generated any switch lowering information, build and codegen any
3569  // additional DAGs necessary.
3570  for(unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
3571    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
3572    CurDAG = &SDAG;
3573    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
3574    // Set the current basic block to the mbb we wish to insert the code into
3575    BB = SwitchCases[i].ThisBB;
3576    SDL.setCurrentBasicBlock(BB);
3577    // Emit the code
3578    SDL.visitSwitchCase(SwitchCases[i]);
3579    SDAG.setRoot(SDL.getRoot());
3580    CodeGenAndEmitDAG(SDAG);
3581    // Iterate over the phi nodes, if there is a phi node in a successor of this
3582    // block (for instance, the default block), then add a pair of operands to
3583    // the phi node for this block, as if we were coming from the original
3584    // BB before switch expansion.
3585    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
3586      MachineInstr *PHI = PHINodesToUpdate[pi].first;
3587      MachineBasicBlock *PHIBB = PHI->getParent();
3588      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
3589             "This is not a machine PHI node that we are updating!");
3590      if (PHIBB == SwitchCases[i].LHSBB || PHIBB == SwitchCases[i].RHSBB) {
3591        PHI->addRegOperand(PHINodesToUpdate[pi].second);
3592        PHI->addMachineBasicBlockOperand(BB);
3593      }
3594    }
3595  }
3596}
3597
3598//===----------------------------------------------------------------------===//
3599/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
3600/// target node in the graph.
3601void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
3602  if (ViewSchedDAGs) DAG.viewGraph();
3603  ScheduleDAG *SL = NULL;
3604
3605  switch (ISHeuristic) {
3606  default: assert(0 && "Unrecognized scheduling heuristic");
3607  case defaultScheduling:
3608    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
3609      SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
3610    else {
3611      assert(TLI.getSchedulingPreference() ==
3612             TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
3613      SL = createBURRListDAGScheduler(DAG, BB);
3614    }
3615    break;
3616  case noScheduling:
3617    SL = createBFS_DAGScheduler(DAG, BB);
3618    break;
3619  case simpleScheduling:
3620    SL = createSimpleDAGScheduler(false, DAG, BB);
3621    break;
3622  case simpleNoItinScheduling:
3623    SL = createSimpleDAGScheduler(true, DAG, BB);
3624    break;
3625  case listSchedulingBURR:
3626    SL = createBURRListDAGScheduler(DAG, BB);
3627    break;
3628  case listSchedulingTDRR:
3629    SL = createTDRRListDAGScheduler(DAG, BB);
3630    break;
3631  case listSchedulingTD:
3632    SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
3633    break;
3634  }
3635  BB = SL->Run();
3636  delete SL;
3637}
3638
3639HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
3640  return new HazardRecognizer();
3641}
3642
3643/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
3644/// by tblgen.  Others should not call it.
3645void SelectionDAGISel::
3646SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
3647  std::vector<SDOperand> InOps;
3648  std::swap(InOps, Ops);
3649
3650  Ops.push_back(InOps[0]);  // input chain.
3651  Ops.push_back(InOps[1]);  // input asm string.
3652
3653  unsigned i = 2, e = InOps.size();
3654  if (InOps[e-1].getValueType() == MVT::Flag)
3655    --e;  // Don't process a flag operand if it is here.
3656
3657  while (i != e) {
3658    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
3659    if ((Flags & 7) != 4 /*MEM*/) {
3660      // Just skip over this operand, copying the operands verbatim.
3661      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
3662      i += (Flags >> 3) + 1;
3663    } else {
3664      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
3665      // Otherwise, this is a memory operand.  Ask the target to select it.
3666      std::vector<SDOperand> SelOps;
3667      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
3668        std::cerr << "Could not match memory address.  Inline asm failure!\n";
3669        exit(1);
3670      }
3671
3672      // Add this to the output node.
3673      Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
3674      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
3675      i += 2;
3676    }
3677  }
3678
3679  // Add the flag input back if present.
3680  if (e != InOps.size())
3681    Ops.push_back(InOps.back());
3682}
3683