SelectionDAGISel.cpp revision dd6547db865163f5292361d2b8bfdb0217b25f33
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "SelectionDAGBuild.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/Constants.h"
19#include "llvm/CallingConv.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/FastISel.h"
28#include "llvm/CodeGen/GCStrategy.h"
29#include "llvm/CodeGen/GCMetadata.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/ScheduleDAGSDNodes.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/CodeGen/DwarfWriter.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetData.h"
43#include "llvm/Target/TargetFrameInfo.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/Timer.h"
52#include <algorithm>
53using namespace llvm;
54
55static cl::opt<bool>
56EnableValueProp("enable-value-prop", cl::Hidden);
57static cl::opt<bool>
58DisableLegalizeTypes("disable-legalize-types", cl::Hidden);
59#ifndef NDEBUG
60static cl::opt<bool>
61EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
62          cl::desc("Enable verbose messages in the \"fast\" "
63                   "instruction selector"));
64static cl::opt<bool>
65EnableFastISelAbort("fast-isel-abort", cl::Hidden,
66          cl::desc("Enable abort calls when \"fast\" instruction fails"));
67#else
68static const bool EnableFastISelVerbose = false,
69                  EnableFastISelAbort = false;
70#endif
71static cl::opt<bool>
72SchedLiveInCopies("schedule-livein-copies",
73                  cl::desc("Schedule copies of livein registers"),
74                  cl::init(false));
75
76#ifndef NDEBUG
77static cl::opt<bool>
78ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the first "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before legalize types"));
84static cl::opt<bool>
85ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
86          cl::desc("Pop up a window to show dags before legalize"));
87static cl::opt<bool>
88ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
89          cl::desc("Pop up a window to show dags before the second "
90                   "dag combine pass"));
91static cl::opt<bool>
92ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
93          cl::desc("Pop up a window to show dags before the post legalize types"
94                   " dag combine pass"));
95static cl::opt<bool>
96ViewISelDAGs("view-isel-dags", cl::Hidden,
97          cl::desc("Pop up a window to show isel dags as they are selected"));
98static cl::opt<bool>
99ViewSchedDAGs("view-sched-dags", cl::Hidden,
100          cl::desc("Pop up a window to show sched dags as they are processed"));
101static cl::opt<bool>
102ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
103      cl::desc("Pop up a window to show SUnit dags after they are processed"));
104#else
105static const bool ViewDAGCombine1 = false,
106                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
107                  ViewDAGCombine2 = false,
108                  ViewDAGCombineLT = false,
109                  ViewISelDAGs = false, ViewSchedDAGs = false,
110                  ViewSUnitDAGs = false;
111#endif
112
113//===---------------------------------------------------------------------===//
114///
115/// RegisterScheduler class - Track the registration of instruction schedulers.
116///
117//===---------------------------------------------------------------------===//
118MachinePassRegistry RegisterScheduler::Registry;
119
120//===---------------------------------------------------------------------===//
121///
122/// ISHeuristic command line option for instruction schedulers.
123///
124//===---------------------------------------------------------------------===//
125static cl::opt<RegisterScheduler::FunctionPassCtor, false,
126               RegisterPassParser<RegisterScheduler> >
127ISHeuristic("pre-RA-sched",
128            cl::init(&createDefaultScheduler),
129            cl::desc("Instruction schedulers available (before register"
130                     " allocation):"));
131
132static RegisterScheduler
133defaultListDAGScheduler("default", "Best scheduler for the target",
134                        createDefaultScheduler);
135
136namespace llvm {
137  //===--------------------------------------------------------------------===//
138  /// createDefaultScheduler - This creates an instruction scheduler appropriate
139  /// for the target.
140  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
141                                      bool Fast) {
142    const TargetLowering &TLI = IS->getTargetLowering();
143
144    if (Fast)
145      return createFastDAGScheduler(IS, Fast);
146    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
147      return createTDListDAGScheduler(IS, Fast);
148    assert(TLI.getSchedulingPreference() ==
149         TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
150    return createBURRListDAGScheduler(IS, Fast);
151  }
152}
153
154// EmitInstrWithCustomInserter - This method should be implemented by targets
155// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
156// instructions are special in various ways, which require special support to
157// insert.  The specified MachineInstr is created but not inserted into any
158// basic blocks, and the scheduler passes ownership of it to this method.
159MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
160                                                       MachineBasicBlock *MBB) {
161  cerr << "If a target marks an instruction with "
162       << "'usesCustomDAGSchedInserter', it must implement "
163       << "TargetLowering::EmitInstrWithCustomInserter!\n";
164  abort();
165  return 0;
166}
167
168/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
169/// physical register has only a single copy use, then coalesced the copy
170/// if possible.
171static void EmitLiveInCopy(MachineBasicBlock *MBB,
172                           MachineBasicBlock::iterator &InsertPos,
173                           unsigned VirtReg, unsigned PhysReg,
174                           const TargetRegisterClass *RC,
175                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
176                           const MachineRegisterInfo &MRI,
177                           const TargetRegisterInfo &TRI,
178                           const TargetInstrInfo &TII) {
179  unsigned NumUses = 0;
180  MachineInstr *UseMI = NULL;
181  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
182         UE = MRI.use_end(); UI != UE; ++UI) {
183    UseMI = &*UI;
184    if (++NumUses > 1)
185      break;
186  }
187
188  // If the number of uses is not one, or the use is not a move instruction,
189  // don't coalesce. Also, only coalesce away a virtual register to virtual
190  // register copy.
191  bool Coalesced = false;
192  unsigned SrcReg, DstReg;
193  if (NumUses == 1 &&
194      TII.isMoveInstr(*UseMI, SrcReg, DstReg) &&
195      TargetRegisterInfo::isVirtualRegister(DstReg)) {
196    VirtReg = DstReg;
197    Coalesced = true;
198  }
199
200  // Now find an ideal location to insert the copy.
201  MachineBasicBlock::iterator Pos = InsertPos;
202  while (Pos != MBB->begin()) {
203    MachineInstr *PrevMI = prior(Pos);
204    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
205    // copyRegToReg might emit multiple instructions to do a copy.
206    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
207    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
208      // This is what the BB looks like right now:
209      // r1024 = mov r0
210      // ...
211      // r1    = mov r1024
212      //
213      // We want to insert "r1025 = mov r1". Inserting this copy below the
214      // move to r1024 makes it impossible for that move to be coalesced.
215      //
216      // r1025 = mov r1
217      // r1024 = mov r0
218      // ...
219      // r1    = mov 1024
220      // r2    = mov 1025
221      break; // Woot! Found a good location.
222    --Pos;
223  }
224
225  TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
226  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
227  if (Coalesced) {
228    if (&*InsertPos == UseMI) ++InsertPos;
229    MBB->erase(UseMI);
230  }
231}
232
233/// EmitLiveInCopies - If this is the first basic block in the function,
234/// and if it has live ins that need to be copied into vregs, emit the
235/// copies into the block.
236static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
237                             const MachineRegisterInfo &MRI,
238                             const TargetRegisterInfo &TRI,
239                             const TargetInstrInfo &TII) {
240  if (SchedLiveInCopies) {
241    // Emit the copies at a heuristically-determined location in the block.
242    DenseMap<MachineInstr*, unsigned> CopyRegMap;
243    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
244    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
245           E = MRI.livein_end(); LI != E; ++LI)
246      if (LI->second) {
247        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
248        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
249                       RC, CopyRegMap, MRI, TRI, TII);
250      }
251  } else {
252    // Emit the copies into the top of the block.
253    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
254           E = MRI.livein_end(); LI != E; ++LI)
255      if (LI->second) {
256        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
257        TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
258                         LI->second, LI->first, RC, RC);
259      }
260  }
261}
262
263//===----------------------------------------------------------------------===//
264// SelectionDAGISel code
265//===----------------------------------------------------------------------===//
266
267SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, bool fast) :
268  FunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
269  FuncInfo(new FunctionLoweringInfo(TLI)),
270  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
271  SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo)),
272  GFI(),
273  Fast(fast),
274  DAGSize(0)
275{}
276
277SelectionDAGISel::~SelectionDAGISel() {
278  delete SDL;
279  delete CurDAG;
280  delete FuncInfo;
281}
282
283unsigned SelectionDAGISel::MakeReg(MVT VT) {
284  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
285}
286
287void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
288  AU.addRequired<AliasAnalysis>();
289  AU.addRequired<GCModuleInfo>();
290  AU.addRequired<DwarfWriter>();
291  AU.setPreservesAll();
292}
293
294bool SelectionDAGISel::runOnFunction(Function &Fn) {
295  // Do some sanity-checking on the command-line options.
296  assert((!EnableFastISelVerbose || EnableFastISel) &&
297         "-fast-isel-verbose requires -fast-isel");
298  assert((!EnableFastISelAbort || EnableFastISel) &&
299         "-fast-isel-abort requires -fast-isel");
300
301  // Get alias analysis for load/store combining.
302  AA = &getAnalysis<AliasAnalysis>();
303
304  TargetMachine &TM = TLI.getTargetMachine();
305  MF = &MachineFunction::construct(&Fn, TM);
306  const TargetInstrInfo &TII = *TM.getInstrInfo();
307  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
308
309  if (MF->getFunction()->hasGC())
310    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(*MF->getFunction());
311  else
312    GFI = 0;
313  RegInfo = &MF->getRegInfo();
314  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
315
316  FuncInfo->set(Fn, *MF, EnableFastISel);
317  MachineModuleInfo *MMI = getAnalysisToUpdate<MachineModuleInfo>();
318  DwarfWriter *DW = getAnalysisToUpdate<DwarfWriter>();
319  CurDAG->init(*MF, MMI, DW);
320  SDL->init(GFI, *AA);
321
322  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
323    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
324      // Mark landing pad.
325      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
326
327  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
328
329  // If the first basic block in the function has live ins that need to be
330  // copied into vregs, emit the copies into the top of the block before
331  // emitting the code for the block.
332  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
333
334  // Add function live-ins to entry block live-in set.
335  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
336         E = RegInfo->livein_end(); I != E; ++I)
337    MF->begin()->addLiveIn(I->first);
338
339#ifndef NDEBUG
340  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
341         "Not all catch info was assigned to a landing pad!");
342#endif
343
344  FuncInfo->clear();
345
346  return true;
347}
348
349static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
350                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
351  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
352    if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
353      // Apply the catch info to DestBB.
354      AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
355#ifndef NDEBUG
356      if (!FLI.MBBMap[SrcBB]->isLandingPad())
357        FLI.CatchInfoFound.insert(EHSel);
358#endif
359    }
360}
361
362/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
363/// whether object offset >= 0.
364static bool
365IsFixedFrameObjectWithPosOffset(MachineFrameInfo *MFI, SDValue Op) {
366  if (!isa<FrameIndexSDNode>(Op)) return false;
367
368  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
369  int FrameIdx =  FrameIdxNode->getIndex();
370  return MFI->isFixedObjectIndex(FrameIdx) &&
371    MFI->getObjectOffset(FrameIdx) >= 0;
372}
373
374/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
375/// possibly be overwritten when lowering the outgoing arguments in a tail
376/// call. Currently the implementation of this call is very conservative and
377/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
378/// virtual registers would be overwritten by direct lowering.
379static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
380                                                    MachineFrameInfo *MFI) {
381  RegisterSDNode * OpReg = NULL;
382  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
383      (Op.getOpcode()== ISD::CopyFromReg &&
384       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
385       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
386      (Op.getOpcode() == ISD::LOAD &&
387       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
388      (Op.getOpcode() == ISD::MERGE_VALUES &&
389       Op.getOperand(Op.getResNo()).getOpcode() == ISD::LOAD &&
390       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.getResNo()).
391                                       getOperand(1))))
392    return true;
393  return false;
394}
395
396/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
397/// DAG and fixes their tailcall attribute operand.
398static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
399                                           const TargetLowering& TLI) {
400  SDNode * Ret = NULL;
401  SDValue Terminator = DAG.getRoot();
402
403  // Find RET node.
404  if (Terminator.getOpcode() == ISD::RET) {
405    Ret = Terminator.getNode();
406  }
407
408  // Fix tail call attribute of CALL nodes.
409  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
410         BI = DAG.allnodes_end(); BI != BE; ) {
411    --BI;
412    if (CallSDNode *TheCall = dyn_cast<CallSDNode>(BI)) {
413      SDValue OpRet(Ret, 0);
414      SDValue OpCall(BI, 0);
415      bool isMarkedTailCall = TheCall->isTailCall();
416      // If CALL node has tail call attribute set to true and the call is not
417      // eligible (no RET or the target rejects) the attribute is fixed to
418      // false. The TargetLowering::IsEligibleForTailCallOptimization function
419      // must correctly identify tail call optimizable calls.
420      if (!isMarkedTailCall) continue;
421      if (Ret==NULL ||
422          !TLI.IsEligibleForTailCallOptimization(TheCall, OpRet, DAG)) {
423        // Not eligible. Mark CALL node as non tail call. Note that we
424        // can modify the call node in place since calls are not CSE'd.
425        TheCall->setNotTailCall();
426      } else {
427        // Look for tail call clobbered arguments. Emit a series of
428        // copyto/copyfrom virtual register nodes to protect them.
429        SmallVector<SDValue, 32> Ops;
430        SDValue Chain = TheCall->getChain(), InFlag;
431        Ops.push_back(Chain);
432        Ops.push_back(TheCall->getCallee());
433        for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; ++i) {
434          SDValue Arg = TheCall->getArg(i);
435          bool isByVal = TheCall->getArgFlags(i).isByVal();
436          MachineFunction &MF = DAG.getMachineFunction();
437          MachineFrameInfo *MFI = MF.getFrameInfo();
438          if (!isByVal &&
439              IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
440            MVT VT = Arg.getValueType();
441            unsigned VReg = MF.getRegInfo().
442              createVirtualRegister(TLI.getRegClassFor(VT));
443            Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
444            InFlag = Chain.getValue(1);
445            Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
446            Chain = Arg.getValue(1);
447            InFlag = Arg.getValue(2);
448          }
449          Ops.push_back(Arg);
450          Ops.push_back(TheCall->getArgFlagsVal(i));
451        }
452        // Link in chain of CopyTo/CopyFromReg.
453        Ops[0] = Chain;
454        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
455      }
456    }
457  }
458}
459
460void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
461                                        BasicBlock::iterator Begin,
462                                        BasicBlock::iterator End) {
463  SDL->setCurrentBasicBlock(BB);
464
465  // Lower all of the non-terminator instructions.
466  for (BasicBlock::iterator I = Begin; I != End; ++I)
467    if (!isa<TerminatorInst>(I))
468      SDL->visit(*I);
469
470  // Ensure that all instructions which are used outside of their defining
471  // blocks are available as virtual registers.  Invoke is handled elsewhere.
472  for (BasicBlock::iterator I = Begin; I != End; ++I)
473    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
474      DenseMap<const Value*,unsigned>::iterator VMI =FuncInfo->ValueMap.find(I);
475      if (VMI != FuncInfo->ValueMap.end())
476        SDL->CopyValueToVirtualRegister(I, VMI->second);
477    }
478
479  // Handle PHI nodes in successor blocks.
480  if (End == LLVMBB->end()) {
481    HandlePHINodesInSuccessorBlocks(LLVMBB);
482
483    // Lower the terminator after the copies are emitted.
484    SDL->visit(*LLVMBB->getTerminator());
485  }
486
487  // Make sure the root of the DAG is up-to-date.
488  CurDAG->setRoot(SDL->getControlRoot());
489
490  // Check whether calls in this block are real tail calls. Fix up CALL nodes
491  // with correct tailcall attribute so that the target can rely on the tailcall
492  // attribute indicating whether the call is really eligible for tail call
493  // optimization.
494  if (PerformTailCallOpt)
495    CheckDAGForTailCallsAndFixThem(*CurDAG, TLI);
496
497  // Final step, emit the lowered DAG as machine code.
498  CodeGenAndEmitDAG();
499  SDL->clear();
500}
501
502void SelectionDAGISel::ComputeLiveOutVRegInfo() {
503  SmallPtrSet<SDNode*, 128> VisitedNodes;
504  SmallVector<SDNode*, 128> Worklist;
505
506  Worklist.push_back(CurDAG->getRoot().getNode());
507
508  APInt Mask;
509  APInt KnownZero;
510  APInt KnownOne;
511
512  while (!Worklist.empty()) {
513    SDNode *N = Worklist.back();
514    Worklist.pop_back();
515
516    // If we've already seen this node, ignore it.
517    if (!VisitedNodes.insert(N))
518      continue;
519
520    // Otherwise, add all chain operands to the worklist.
521    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
522      if (N->getOperand(i).getValueType() == MVT::Other)
523        Worklist.push_back(N->getOperand(i).getNode());
524
525    // If this is a CopyToReg with a vreg dest, process it.
526    if (N->getOpcode() != ISD::CopyToReg)
527      continue;
528
529    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
530    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
531      continue;
532
533    // Ignore non-scalar or non-integer values.
534    SDValue Src = N->getOperand(2);
535    MVT SrcVT = Src.getValueType();
536    if (!SrcVT.isInteger() || SrcVT.isVector())
537      continue;
538
539    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
540    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
541    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
542
543    // Only install this information if it tells us something.
544    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
545      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
546      FunctionLoweringInfo &FLI = CurDAG->getFunctionLoweringInfo();
547      if (DestReg >= FLI.LiveOutRegInfo.size())
548        FLI.LiveOutRegInfo.resize(DestReg+1);
549      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
550      LOI.NumSignBits = NumSignBits;
551      LOI.KnownOne = NumSignBits;
552      LOI.KnownZero = NumSignBits;
553    }
554  }
555}
556
557void SelectionDAGISel::CodeGenAndEmitDAG() {
558  std::string GroupName;
559  if (TimePassesIsEnabled)
560    GroupName = "Instruction Selection and Scheduling";
561  std::string BlockName;
562  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
563      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
564      ViewSUnitDAGs)
565    BlockName = CurDAG->getMachineFunction().getFunction()->getName() + ':' +
566                BB->getBasicBlock()->getName();
567
568  DOUT << "Initial selection DAG:\n";
569  DEBUG(CurDAG->dump());
570
571  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
572
573  // Run the DAG combiner in pre-legalize mode.
574  if (TimePassesIsEnabled) {
575    NamedRegionTimer T("DAG Combining 1", GroupName);
576    CurDAG->Combine(Unrestricted, *AA, Fast);
577  } else {
578    CurDAG->Combine(Unrestricted, *AA, Fast);
579  }
580
581  DOUT << "Optimized lowered selection DAG:\n";
582  DEBUG(CurDAG->dump());
583
584  // Second step, hack on the DAG until it only uses operations and types that
585  // the target supports.
586  if (!DisableLegalizeTypes) {
587    if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
588                                                 BlockName);
589
590    bool Changed;
591    if (TimePassesIsEnabled) {
592      NamedRegionTimer T("Type Legalization", GroupName);
593      Changed = CurDAG->LegalizeTypes();
594    } else {
595      Changed = CurDAG->LegalizeTypes();
596    }
597
598    DOUT << "Type-legalized selection DAG:\n";
599    DEBUG(CurDAG->dump());
600
601    if (Changed) {
602      if (ViewDAGCombineLT)
603        CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
604
605      // Run the DAG combiner in post-type-legalize mode.
606      if (TimePassesIsEnabled) {
607        NamedRegionTimer T("DAG Combining after legalize types", GroupName);
608        CurDAG->Combine(NoIllegalTypes, *AA, Fast);
609      } else {
610        CurDAG->Combine(NoIllegalTypes, *AA, Fast);
611      }
612
613      DOUT << "Optimized type-legalized selection DAG:\n";
614      DEBUG(CurDAG->dump());
615    }
616  }
617
618  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
619
620  if (TimePassesIsEnabled) {
621    NamedRegionTimer T("DAG Legalization", GroupName);
622    CurDAG->Legalize(DisableLegalizeTypes);
623  } else {
624    CurDAG->Legalize(DisableLegalizeTypes);
625  }
626
627  DOUT << "Legalized selection DAG:\n";
628  DEBUG(CurDAG->dump());
629
630  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
631
632  // Run the DAG combiner in post-legalize mode.
633  if (TimePassesIsEnabled) {
634    NamedRegionTimer T("DAG Combining 2", GroupName);
635    CurDAG->Combine(NoIllegalOperations, *AA, Fast);
636  } else {
637    CurDAG->Combine(NoIllegalOperations, *AA, Fast);
638  }
639
640  DOUT << "Optimized legalized selection DAG:\n";
641  DEBUG(CurDAG->dump());
642
643  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
644
645  if (!Fast && EnableValueProp)
646    ComputeLiveOutVRegInfo();
647
648  // Third, instruction select all of the operations to machine code, adding the
649  // code to the MachineBasicBlock.
650  if (TimePassesIsEnabled) {
651    NamedRegionTimer T("Instruction Selection", GroupName);
652    InstructionSelect();
653  } else {
654    InstructionSelect();
655  }
656
657  DOUT << "Selected selection DAG:\n";
658  DEBUG(CurDAG->dump());
659
660  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
661
662  // Schedule machine code.
663  ScheduleDAG *Scheduler;
664  if (TimePassesIsEnabled) {
665    NamedRegionTimer T("Instruction Scheduling", GroupName);
666    Scheduler = Schedule();
667  } else {
668    Scheduler = Schedule();
669  }
670
671  if (ViewSUnitDAGs) Scheduler->viewGraph();
672
673  // Emit machine code to BB.  This can change 'BB' to the last block being
674  // inserted into.
675  if (TimePassesIsEnabled) {
676    NamedRegionTimer T("Instruction Creation", GroupName);
677    BB = Scheduler->EmitSchedule();
678  } else {
679    BB = Scheduler->EmitSchedule();
680  }
681
682  // Free the scheduler state.
683  if (TimePassesIsEnabled) {
684    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
685    delete Scheduler;
686  } else {
687    delete Scheduler;
688  }
689
690  DOUT << "Selected machine code:\n";
691  DEBUG(BB->dump());
692}
693
694void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
695                                            MachineFunction &MF,
696                                            MachineModuleInfo *MMI,
697                                            DwarfWriter *DW,
698                                            const TargetInstrInfo &TII) {
699  // Initialize the Fast-ISel state, if needed.
700  FastISel *FastIS = 0;
701  if (EnableFastISel)
702    FastIS = TLI.createFastISel(MF, MMI, DW,
703                                FuncInfo->ValueMap,
704                                FuncInfo->MBBMap,
705                                FuncInfo->StaticAllocaMap
706#ifndef NDEBUG
707                                , FuncInfo->CatchInfoLost
708#endif
709                                );
710
711  // Iterate over all basic blocks in the function.
712  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
713    BasicBlock *LLVMBB = &*I;
714    BB = FuncInfo->MBBMap[LLVMBB];
715
716    BasicBlock::iterator const Begin = LLVMBB->begin();
717    BasicBlock::iterator const End = LLVMBB->end();
718    BasicBlock::iterator BI = Begin;
719
720    // Lower any arguments needed in this block if this is the entry block.
721    bool SuppressFastISel = false;
722    if (LLVMBB == &Fn.getEntryBlock()) {
723      LowerArguments(LLVMBB);
724
725      // If any of the arguments has the byval attribute, forgo
726      // fast-isel in the entry block.
727      if (FastIS) {
728        unsigned j = 1;
729        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
730             I != E; ++I, ++j)
731          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
732            if (EnableFastISelVerbose || EnableFastISelAbort)
733              cerr << "FastISel skips entry block due to byval argument\n";
734            SuppressFastISel = true;
735            break;
736          }
737      }
738    }
739
740    if (MMI && BB->isLandingPad()) {
741      // Add a label to mark the beginning of the landing pad.  Deletion of the
742      // landing pad can thus be detected via the MachineModuleInfo.
743      unsigned LabelID = MMI->addLandingPad(BB);
744
745      const TargetInstrDesc &II = TII.get(TargetInstrInfo::EH_LABEL);
746      BuildMI(BB, II).addImm(LabelID);
747
748      // Mark exception register as live in.
749      unsigned Reg = TLI.getExceptionAddressRegister();
750      if (Reg) BB->addLiveIn(Reg);
751
752      // Mark exception selector register as live in.
753      Reg = TLI.getExceptionSelectorRegister();
754      if (Reg) BB->addLiveIn(Reg);
755
756      // FIXME: Hack around an exception handling flaw (PR1508): the personality
757      // function and list of typeids logically belong to the invoke (or, if you
758      // like, the basic block containing the invoke), and need to be associated
759      // with it in the dwarf exception handling tables.  Currently however the
760      // information is provided by an intrinsic (eh.selector) that can be moved
761      // to unexpected places by the optimizers: if the unwind edge is critical,
762      // then breaking it can result in the intrinsics being in the successor of
763      // the landing pad, not the landing pad itself.  This results in exceptions
764      // not being caught because no typeids are associated with the invoke.
765      // This may not be the only way things can go wrong, but it is the only way
766      // we try to work around for the moment.
767      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
768
769      if (Br && Br->isUnconditional()) { // Critical edge?
770        BasicBlock::iterator I, E;
771        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
772          if (isa<EHSelectorInst>(I))
773            break;
774
775        if (I == E)
776          // No catch info found - try to extract some from the successor.
777          copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
778      }
779    }
780
781    // Before doing SelectionDAG ISel, see if FastISel has been requested.
782    if (FastIS && !SuppressFastISel) {
783      // Emit code for any incoming arguments. This must happen before
784      // beginning FastISel on the entry block.
785      if (LLVMBB == &Fn.getEntryBlock()) {
786        CurDAG->setRoot(SDL->getControlRoot());
787        CodeGenAndEmitDAG();
788        SDL->clear();
789      }
790      FastIS->startNewBlock(BB);
791      // Do FastISel on as many instructions as possible.
792      for (; BI != End; ++BI) {
793        // Just before the terminator instruction, insert instructions to
794        // feed PHI nodes in successor blocks.
795        if (isa<TerminatorInst>(BI))
796          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
797            if (EnableFastISelVerbose || EnableFastISelAbort) {
798              cerr << "FastISel miss: ";
799              BI->dump();
800            }
801            if (EnableFastISelAbort)
802              assert(0 && "FastISel didn't handle a PHI in a successor");
803            break;
804          }
805
806        // First try normal tablegen-generated "fast" selection.
807        if (FastIS->SelectInstruction(BI))
808          continue;
809
810        // Next, try calling the target to attempt to handle the instruction.
811        if (FastIS->TargetSelectInstruction(BI))
812          continue;
813
814        // Then handle certain instructions as single-LLVM-Instruction blocks.
815        if (isa<CallInst>(BI)) {
816          if (EnableFastISelVerbose || EnableFastISelAbort) {
817            cerr << "FastISel missed call: ";
818            BI->dump();
819          }
820
821          if (BI->getType() != Type::VoidTy) {
822            unsigned &R = FuncInfo->ValueMap[BI];
823            if (!R)
824              R = FuncInfo->CreateRegForValue(BI);
825          }
826
827          SelectBasicBlock(LLVMBB, BI, next(BI));
828          // If the instruction was codegen'd with multiple blocks,
829          // inform the FastISel object where to resume inserting.
830          FastIS->setCurrentBlock(BB);
831          continue;
832        }
833
834        // Otherwise, give up on FastISel for the rest of the block.
835        // For now, be a little lenient about non-branch terminators.
836        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
837          if (EnableFastISelVerbose || EnableFastISelAbort) {
838            cerr << "FastISel miss: ";
839            BI->dump();
840          }
841          if (EnableFastISelAbort)
842            // The "fast" selector couldn't handle something and bailed.
843            // For the purpose of debugging, just abort.
844            assert(0 && "FastISel didn't select the entire block");
845        }
846        break;
847      }
848    }
849
850    // Run SelectionDAG instruction selection on the remainder of the block
851    // not handled by FastISel. If FastISel is not run, this is the entire
852    // block.
853    if (BI != End)
854      SelectBasicBlock(LLVMBB, BI, End);
855
856    FinishBasicBlock();
857  }
858
859  delete FastIS;
860}
861
862void
863SelectionDAGISel::FinishBasicBlock() {
864
865  DOUT << "Target-post-processed machine code:\n";
866  DEBUG(BB->dump());
867
868  DOUT << "Total amount of phi nodes to update: "
869       << SDL->PHINodesToUpdate.size() << "\n";
870  DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
871          DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
872               << ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
873
874  // Next, now that we know what the last MBB the LLVM BB expanded is, update
875  // PHI nodes in successors.
876  if (SDL->SwitchCases.empty() &&
877      SDL->JTCases.empty() &&
878      SDL->BitTestCases.empty()) {
879    for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
880      MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
881      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
882             "This is not a machine PHI node that we are updating!");
883      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
884                                                false));
885      PHI->addOperand(MachineOperand::CreateMBB(BB));
886    }
887    SDL->PHINodesToUpdate.clear();
888    return;
889  }
890
891  for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) {
892    // Lower header first, if it wasn't already lowered
893    if (!SDL->BitTestCases[i].Emitted) {
894      // Set the current basic block to the mbb we wish to insert the code into
895      BB = SDL->BitTestCases[i].Parent;
896      SDL->setCurrentBasicBlock(BB);
897      // Emit the code
898      SDL->visitBitTestHeader(SDL->BitTestCases[i]);
899      CurDAG->setRoot(SDL->getRoot());
900      CodeGenAndEmitDAG();
901      SDL->clear();
902    }
903
904    for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
905      // Set the current basic block to the mbb we wish to insert the code into
906      BB = SDL->BitTestCases[i].Cases[j].ThisBB;
907      SDL->setCurrentBasicBlock(BB);
908      // Emit the code
909      if (j+1 != ej)
910        SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB,
911                              SDL->BitTestCases[i].Reg,
912                              SDL->BitTestCases[i].Cases[j]);
913      else
914        SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
915                              SDL->BitTestCases[i].Reg,
916                              SDL->BitTestCases[i].Cases[j]);
917
918
919      CurDAG->setRoot(SDL->getRoot());
920      CodeGenAndEmitDAG();
921      SDL->clear();
922    }
923
924    // Update PHI Nodes
925    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
926      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
927      MachineBasicBlock *PHIBB = PHI->getParent();
928      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
929             "This is not a machine PHI node that we are updating!");
930      // This is "default" BB. We have two jumps to it. From "header" BB and
931      // from last "case" BB.
932      if (PHIBB == SDL->BitTestCases[i].Default) {
933        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
934                                                  false));
935        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent));
936        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
937                                                  false));
938        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases.
939                                                  back().ThisBB));
940      }
941      // One of "cases" BB.
942      for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size();
943           j != ej; ++j) {
944        MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB;
945        if (cBB->succ_end() !=
946            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
947          PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
948                                                    false));
949          PHI->addOperand(MachineOperand::CreateMBB(cBB));
950        }
951      }
952    }
953  }
954  SDL->BitTestCases.clear();
955
956  // If the JumpTable record is filled in, then we need to emit a jump table.
957  // Updating the PHI nodes is tricky in this case, since we need to determine
958  // whether the PHI is a successor of the range check MBB or the jump table MBB
959  for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) {
960    // Lower header first, if it wasn't already lowered
961    if (!SDL->JTCases[i].first.Emitted) {
962      // Set the current basic block to the mbb we wish to insert the code into
963      BB = SDL->JTCases[i].first.HeaderBB;
964      SDL->setCurrentBasicBlock(BB);
965      // Emit the code
966      SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first);
967      CurDAG->setRoot(SDL->getRoot());
968      CodeGenAndEmitDAG();
969      SDL->clear();
970    }
971
972    // Set the current basic block to the mbb we wish to insert the code into
973    BB = SDL->JTCases[i].second.MBB;
974    SDL->setCurrentBasicBlock(BB);
975    // Emit the code
976    SDL->visitJumpTable(SDL->JTCases[i].second);
977    CurDAG->setRoot(SDL->getRoot());
978    CodeGenAndEmitDAG();
979    SDL->clear();
980
981    // Update PHI Nodes
982    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
983      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
984      MachineBasicBlock *PHIBB = PHI->getParent();
985      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
986             "This is not a machine PHI node that we are updating!");
987      // "default" BB. We can go there only from header BB.
988      if (PHIBB == SDL->JTCases[i].second.Default) {
989        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
990                                                  false));
991        PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
992      }
993      // JT BB. Just iterate over successors here
994      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
995        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
996                                                  false));
997        PHI->addOperand(MachineOperand::CreateMBB(BB));
998      }
999    }
1000  }
1001  SDL->JTCases.clear();
1002
1003  // If the switch block involved a branch to one of the actual successors, we
1004  // need to update PHI nodes in that block.
1005  for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
1006    MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
1007    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
1008           "This is not a machine PHI node that we are updating!");
1009    if (BB->isSuccessor(PHI->getParent())) {
1010      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
1011                                                false));
1012      PHI->addOperand(MachineOperand::CreateMBB(BB));
1013    }
1014  }
1015
1016  // If we generated any switch lowering information, build and codegen any
1017  // additional DAGs necessary.
1018  for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
1019    // Set the current basic block to the mbb we wish to insert the code into
1020    BB = SDL->SwitchCases[i].ThisBB;
1021    SDL->setCurrentBasicBlock(BB);
1022
1023    // Emit the code
1024    SDL->visitSwitchCase(SDL->SwitchCases[i]);
1025    CurDAG->setRoot(SDL->getRoot());
1026    CodeGenAndEmitDAG();
1027    SDL->clear();
1028
1029    // Handle any PHI nodes in successors of this chunk, as if we were coming
1030    // from the original BB before switch expansion.  Note that PHI nodes can
1031    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1032    // handle them the right number of times.
1033    while ((BB = SDL->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1034      for (MachineBasicBlock::iterator Phi = BB->begin();
1035           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
1036        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
1037        for (unsigned pn = 0; ; ++pn) {
1038          assert(pn != SDL->PHINodesToUpdate.size() &&
1039                 "Didn't find PHI entry!");
1040          if (SDL->PHINodesToUpdate[pn].first == Phi) {
1041            Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
1042                                                      second, false));
1043            Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
1044            break;
1045          }
1046        }
1047      }
1048
1049      // Don't process RHS if same block as LHS.
1050      if (BB == SDL->SwitchCases[i].FalseBB)
1051        SDL->SwitchCases[i].FalseBB = 0;
1052
1053      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1054      SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
1055      SDL->SwitchCases[i].FalseBB = 0;
1056    }
1057    assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
1058  }
1059  SDL->SwitchCases.clear();
1060
1061  SDL->PHINodesToUpdate.clear();
1062}
1063
1064
1065/// Schedule - Pick a safe ordering for instructions for each
1066/// target node in the graph.
1067///
1068ScheduleDAG *SelectionDAGISel::Schedule() {
1069  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1070
1071  if (!Ctor) {
1072    Ctor = ISHeuristic;
1073    RegisterScheduler::setDefault(Ctor);
1074  }
1075
1076  ScheduleDAG *Scheduler = Ctor(this, Fast);
1077  Scheduler->Run(CurDAG, BB);
1078
1079  return Scheduler;
1080}
1081
1082
1083ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1084  return new ScheduleHazardRecognizer();
1085}
1086
1087//===----------------------------------------------------------------------===//
1088// Helper functions used by the generated instruction selector.
1089//===----------------------------------------------------------------------===//
1090// Calls to these methods are generated by tblgen.
1091
1092/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1093/// the dag combiner simplified the 255, we still want to match.  RHS is the
1094/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1095/// specified in the .td file (e.g. 255).
1096bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1097                                    int64_t DesiredMaskS) const {
1098  const APInt &ActualMask = RHS->getAPIntValue();
1099  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1100
1101  // If the actual mask exactly matches, success!
1102  if (ActualMask == DesiredMask)
1103    return true;
1104
1105  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1106  if (ActualMask.intersects(~DesiredMask))
1107    return false;
1108
1109  // Otherwise, the DAG Combiner may have proven that the value coming in is
1110  // either already zero or is not demanded.  Check for known zero input bits.
1111  APInt NeededMask = DesiredMask & ~ActualMask;
1112  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1113    return true;
1114
1115  // TODO: check to see if missing bits are just not demanded.
1116
1117  // Otherwise, this pattern doesn't match.
1118  return false;
1119}
1120
1121/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1122/// the dag combiner simplified the 255, we still want to match.  RHS is the
1123/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1124/// specified in the .td file (e.g. 255).
1125bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1126                                   int64_t DesiredMaskS) const {
1127  const APInt &ActualMask = RHS->getAPIntValue();
1128  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1129
1130  // If the actual mask exactly matches, success!
1131  if (ActualMask == DesiredMask)
1132    return true;
1133
1134  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1135  if (ActualMask.intersects(~DesiredMask))
1136    return false;
1137
1138  // Otherwise, the DAG Combiner may have proven that the value coming in is
1139  // either already zero or is not demanded.  Check for known zero input bits.
1140  APInt NeededMask = DesiredMask & ~ActualMask;
1141
1142  APInt KnownZero, KnownOne;
1143  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1144
1145  // If all the missing bits in the or are already known to be set, match!
1146  if ((NeededMask & KnownOne) == NeededMask)
1147    return true;
1148
1149  // TODO: check to see if missing bits are just not demanded.
1150
1151  // Otherwise, this pattern doesn't match.
1152  return false;
1153}
1154
1155
1156/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1157/// by tblgen.  Others should not call it.
1158void SelectionDAGISel::
1159SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1160  std::vector<SDValue> InOps;
1161  std::swap(InOps, Ops);
1162
1163  Ops.push_back(InOps[0]);  // input chain.
1164  Ops.push_back(InOps[1]);  // input asm string.
1165
1166  unsigned i = 2, e = InOps.size();
1167  if (InOps[e-1].getValueType() == MVT::Flag)
1168    --e;  // Don't process a flag operand if it is here.
1169
1170  while (i != e) {
1171    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1172    if ((Flags & 7) != 4 /*MEM*/) {
1173      // Just skip over this operand, copying the operands verbatim.
1174      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
1175      i += (Flags >> 3) + 1;
1176    } else {
1177      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
1178      // Otherwise, this is a memory operand.  Ask the target to select it.
1179      std::vector<SDValue> SelOps;
1180      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1181        cerr << "Could not match memory address.  Inline asm failure!\n";
1182        exit(1);
1183      }
1184
1185      // Add this to the output node.
1186      MVT IntPtrTy = CurDAG->getTargetLoweringInfo().getPointerTy();
1187      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1188                                              IntPtrTy));
1189      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1190      i += 2;
1191    }
1192  }
1193
1194  // Add the flag input back if present.
1195  if (e != InOps.size())
1196    Ops.push_back(InOps.back());
1197}
1198
1199char SelectionDAGISel::ID = 0;
1200