SelectionDAGISel.cpp revision e50ed30282bb5b4a9ed952580523f2dda16215ac
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuild.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineFunctionAnalysis.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39#include "llvm/CodeGen/SchedulerRegistry.h"
40#include "llvm/CodeGen/SelectionDAG.h"
41#include "llvm/CodeGen/DwarfWriter.h"
42#include "llvm/Target/TargetRegisterInfo.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Target/TargetFrameInfo.h"
45#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetLowering.h"
47#include "llvm/Target/TargetMachine.h"
48#include "llvm/Target/TargetOptions.h"
49#include "llvm/Support/Compiler.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/Timer.h"
54#include "llvm/Support/raw_ostream.h"
55#include <algorithm>
56using namespace llvm;
57
58static cl::opt<bool>
59DisableLegalizeTypes("disable-legalize-types", cl::Hidden);
60static cl::opt<bool>
61EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
62          cl::desc("Enable verbose messages in the \"fast\" "
63                   "instruction selector"));
64static cl::opt<bool>
65EnableFastISelAbort("fast-isel-abort", cl::Hidden,
66          cl::desc("Enable abort calls when \"fast\" instruction fails"));
67static cl::opt<bool>
68SchedLiveInCopies("schedule-livein-copies",
69                  cl::desc("Schedule copies of livein registers"),
70                  cl::init(false));
71
72#ifndef NDEBUG
73static cl::opt<bool>
74ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
75          cl::desc("Pop up a window to show dags before the first "
76                   "dag combine pass"));
77static cl::opt<bool>
78ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before legalize types"));
80static cl::opt<bool>
81ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
82          cl::desc("Pop up a window to show dags before legalize"));
83static cl::opt<bool>
84ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
85          cl::desc("Pop up a window to show dags before the second "
86                   "dag combine pass"));
87static cl::opt<bool>
88ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
89          cl::desc("Pop up a window to show dags before the post legalize types"
90                   " dag combine pass"));
91static cl::opt<bool>
92ViewISelDAGs("view-isel-dags", cl::Hidden,
93          cl::desc("Pop up a window to show isel dags as they are selected"));
94static cl::opt<bool>
95ViewSchedDAGs("view-sched-dags", cl::Hidden,
96          cl::desc("Pop up a window to show sched dags as they are processed"));
97static cl::opt<bool>
98ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
99      cl::desc("Pop up a window to show SUnit dags after they are processed"));
100#else
101static const bool ViewDAGCombine1 = false,
102                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
103                  ViewDAGCombine2 = false,
104                  ViewDAGCombineLT = false,
105                  ViewISelDAGs = false, ViewSchedDAGs = false,
106                  ViewSUnitDAGs = false;
107#endif
108
109//===---------------------------------------------------------------------===//
110///
111/// RegisterScheduler class - Track the registration of instruction schedulers.
112///
113//===---------------------------------------------------------------------===//
114MachinePassRegistry RegisterScheduler::Registry;
115
116//===---------------------------------------------------------------------===//
117///
118/// ISHeuristic command line option for instruction schedulers.
119///
120//===---------------------------------------------------------------------===//
121static cl::opt<RegisterScheduler::FunctionPassCtor, false,
122               RegisterPassParser<RegisterScheduler> >
123ISHeuristic("pre-RA-sched",
124            cl::init(&createDefaultScheduler),
125            cl::desc("Instruction schedulers available (before register"
126                     " allocation):"));
127
128static RegisterScheduler
129defaultListDAGScheduler("default", "Best scheduler for the target",
130                        createDefaultScheduler);
131
132namespace llvm {
133  //===--------------------------------------------------------------------===//
134  /// createDefaultScheduler - This creates an instruction scheduler appropriate
135  /// for the target.
136  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
137                                             CodeGenOpt::Level OptLevel) {
138    const TargetLowering &TLI = IS->getTargetLowering();
139
140    if (OptLevel == CodeGenOpt::None)
141      return createFastDAGScheduler(IS, OptLevel);
142    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
143      return createTDListDAGScheduler(IS, OptLevel);
144    assert(TLI.getSchedulingPreference() ==
145         TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
146    return createBURRListDAGScheduler(IS, OptLevel);
147  }
148}
149
150// EmitInstrWithCustomInserter - This method should be implemented by targets
151// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
152// instructions are special in various ways, which require special support to
153// insert.  The specified MachineInstr is created but not inserted into any
154// basic blocks, and the scheduler passes ownership of it to this method.
155MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
156                                                 MachineBasicBlock *MBB) const {
157#ifndef NDEBUG
158  cerr << "If a target marks an instruction with "
159          "'usesCustomDAGSchedInserter', it must implement "
160          "TargetLowering::EmitInstrWithCustomInserter!";
161#endif
162  llvm_unreachable(0);
163  return 0;
164}
165
166/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
167/// physical register has only a single copy use, then coalesced the copy
168/// if possible.
169static void EmitLiveInCopy(MachineBasicBlock *MBB,
170                           MachineBasicBlock::iterator &InsertPos,
171                           unsigned VirtReg, unsigned PhysReg,
172                           const TargetRegisterClass *RC,
173                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
174                           const MachineRegisterInfo &MRI,
175                           const TargetRegisterInfo &TRI,
176                           const TargetInstrInfo &TII) {
177  unsigned NumUses = 0;
178  MachineInstr *UseMI = NULL;
179  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
180         UE = MRI.use_end(); UI != UE; ++UI) {
181    UseMI = &*UI;
182    if (++NumUses > 1)
183      break;
184  }
185
186  // If the number of uses is not one, or the use is not a move instruction,
187  // don't coalesce. Also, only coalesce away a virtual register to virtual
188  // register copy.
189  bool Coalesced = false;
190  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
191  if (NumUses == 1 &&
192      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
193      TargetRegisterInfo::isVirtualRegister(DstReg)) {
194    VirtReg = DstReg;
195    Coalesced = true;
196  }
197
198  // Now find an ideal location to insert the copy.
199  MachineBasicBlock::iterator Pos = InsertPos;
200  while (Pos != MBB->begin()) {
201    MachineInstr *PrevMI = prior(Pos);
202    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
203    // copyRegToReg might emit multiple instructions to do a copy.
204    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
205    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
206      // This is what the BB looks like right now:
207      // r1024 = mov r0
208      // ...
209      // r1    = mov r1024
210      //
211      // We want to insert "r1025 = mov r1". Inserting this copy below the
212      // move to r1024 makes it impossible for that move to be coalesced.
213      //
214      // r1025 = mov r1
215      // r1024 = mov r0
216      // ...
217      // r1    = mov 1024
218      // r2    = mov 1025
219      break; // Woot! Found a good location.
220    --Pos;
221  }
222
223  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
224  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
225  (void) Emitted;
226
227CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
228  if (Coalesced) {
229    if (&*InsertPos == UseMI) ++InsertPos;
230    MBB->erase(UseMI);
231  }
232}
233
234/// EmitLiveInCopies - If this is the first basic block in the function,
235/// and if it has live ins that need to be copied into vregs, emit the
236/// copies into the block.
237static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
238                             const MachineRegisterInfo &MRI,
239                             const TargetRegisterInfo &TRI,
240                             const TargetInstrInfo &TII) {
241  if (SchedLiveInCopies) {
242    // Emit the copies at a heuristically-determined location in the block.
243    DenseMap<MachineInstr*, unsigned> CopyRegMap;
244    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
245    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
246           E = MRI.livein_end(); LI != E; ++LI)
247      if (LI->second) {
248        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
249        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
250                       RC, CopyRegMap, MRI, TRI, TII);
251      }
252  } else {
253    // Emit the copies into the top of the block.
254    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
255           E = MRI.livein_end(); LI != E; ++LI)
256      if (LI->second) {
257        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
258        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
259                                        LI->second, LI->first, RC, RC);
260        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
261        (void) Emitted;
262      }
263  }
264}
265
266//===----------------------------------------------------------------------===//
267// SelectionDAGISel code
268//===----------------------------------------------------------------------===//
269
270SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
271  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
272  FuncInfo(new FunctionLoweringInfo(TLI)),
273  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
274  SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo, OL)),
275  GFI(),
276  OptLevel(OL),
277  DAGSize(0)
278{}
279
280SelectionDAGISel::~SelectionDAGISel() {
281  delete SDL;
282  delete CurDAG;
283  delete FuncInfo;
284}
285
286unsigned SelectionDAGISel::MakeReg(EVT VT) {
287  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
288}
289
290void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
291  AU.addRequired<AliasAnalysis>();
292  AU.addPreserved<AliasAnalysis>();
293  AU.addRequired<GCModuleInfo>();
294  AU.addPreserved<GCModuleInfo>();
295  AU.addRequired<DwarfWriter>();
296  AU.addPreserved<DwarfWriter>();
297  MachineFunctionPass::getAnalysisUsage(AU);
298}
299
300bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
301  Function &Fn = *mf.getFunction();
302
303  // Do some sanity-checking on the command-line options.
304  assert((!EnableFastISelVerbose || EnableFastISel) &&
305         "-fast-isel-verbose requires -fast-isel");
306  assert((!EnableFastISelAbort || EnableFastISel) &&
307         "-fast-isel-abort requires -fast-isel");
308
309  // Get alias analysis for load/store combining.
310  AA = &getAnalysis<AliasAnalysis>();
311
312  MF = &mf;
313  const TargetInstrInfo &TII = *TM.getInstrInfo();
314  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
315
316  if (Fn.hasGC())
317    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
318  else
319    GFI = 0;
320  RegInfo = &MF->getRegInfo();
321  DEBUG(errs() << "\n\n\n=== " << Fn.getName() << "\n");
322
323  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
324  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
325  CurDAG->init(*MF, MMI, DW);
326  FuncInfo->set(Fn, *MF, *CurDAG, EnableFastISel);
327  SDL->init(GFI, *AA);
328
329  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
330    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
331      // Mark landing pad.
332      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
333
334  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
335
336  // If the first basic block in the function has live ins that need to be
337  // copied into vregs, emit the copies into the top of the block before
338  // emitting the code for the block.
339  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
340
341  // Add function live-ins to entry block live-in set.
342  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
343         E = RegInfo->livein_end(); I != E; ++I)
344    MF->begin()->addLiveIn(I->first);
345
346#ifndef NDEBUG
347  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
348         "Not all catch info was assigned to a landing pad!");
349#endif
350
351  FuncInfo->clear();
352
353  return true;
354}
355
356static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
357                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
358  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
359    if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
360      // Apply the catch info to DestBB.
361      AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
362#ifndef NDEBUG
363      if (!FLI.MBBMap[SrcBB]->isLandingPad())
364        FLI.CatchInfoFound.insert(EHSel);
365#endif
366    }
367}
368
369void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
370                                        BasicBlock::iterator Begin,
371                                        BasicBlock::iterator End) {
372  SDL->setCurrentBasicBlock(BB);
373
374  // Lower all of the non-terminator instructions. If a call is emitted
375  // as a tail call, cease emitting nodes for this block.
376  for (BasicBlock::iterator I = Begin; I != End && !SDL->HasTailCall; ++I)
377    if (!isa<TerminatorInst>(I))
378      SDL->visit(*I);
379
380  if (!SDL->HasTailCall) {
381    // Ensure that all instructions which are used outside of their defining
382    // blocks are available as virtual registers.  Invoke is handled elsewhere.
383    for (BasicBlock::iterator I = Begin; I != End; ++I)
384      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
385        SDL->CopyToExportRegsIfNeeded(I);
386
387    // Handle PHI nodes in successor blocks.
388    if (End == LLVMBB->end()) {
389      HandlePHINodesInSuccessorBlocks(LLVMBB);
390
391      // Lower the terminator after the copies are emitted.
392      SDL->visit(*LLVMBB->getTerminator());
393    }
394  }
395
396  // Make sure the root of the DAG is up-to-date.
397  CurDAG->setRoot(SDL->getControlRoot());
398
399  // Final step, emit the lowered DAG as machine code.
400  CodeGenAndEmitDAG();
401  SDL->clear();
402}
403
404void SelectionDAGISel::ComputeLiveOutVRegInfo() {
405  SmallPtrSet<SDNode*, 128> VisitedNodes;
406  SmallVector<SDNode*, 128> Worklist;
407
408  Worklist.push_back(CurDAG->getRoot().getNode());
409
410  APInt Mask;
411  APInt KnownZero;
412  APInt KnownOne;
413
414  while (!Worklist.empty()) {
415    SDNode *N = Worklist.back();
416    Worklist.pop_back();
417
418    // If we've already seen this node, ignore it.
419    if (!VisitedNodes.insert(N))
420      continue;
421
422    // Otherwise, add all chain operands to the worklist.
423    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
424      if (N->getOperand(i).getValueType() == EVT::Other)
425        Worklist.push_back(N->getOperand(i).getNode());
426
427    // If this is a CopyToReg with a vreg dest, process it.
428    if (N->getOpcode() != ISD::CopyToReg)
429      continue;
430
431    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
432    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
433      continue;
434
435    // Ignore non-scalar or non-integer values.
436    SDValue Src = N->getOperand(2);
437    EVT SrcVT = Src.getValueType();
438    if (!SrcVT.isInteger() || SrcVT.isVector())
439      continue;
440
441    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
442    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
443    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
444
445    // Only install this information if it tells us something.
446    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
447      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
448      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
449        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
450      FunctionLoweringInfo::LiveOutInfo &LOI =
451        FuncInfo->LiveOutRegInfo[DestReg];
452      LOI.NumSignBits = NumSignBits;
453      LOI.KnownOne = KnownOne;
454      LOI.KnownZero = KnownZero;
455    }
456  }
457}
458
459void SelectionDAGISel::CodeGenAndEmitDAG() {
460  std::string GroupName;
461  if (TimePassesIsEnabled)
462    GroupName = "Instruction Selection and Scheduling";
463  std::string BlockName;
464  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
465      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
466      ViewSUnitDAGs)
467    BlockName = MF->getFunction()->getNameStr() + ":" +
468                BB->getBasicBlock()->getNameStr();
469
470  DOUT << "Initial selection DAG:\n";
471  DEBUG(CurDAG->dump());
472
473  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
474
475  // Run the DAG combiner in pre-legalize mode.
476  if (TimePassesIsEnabled) {
477    NamedRegionTimer T("DAG Combining 1", GroupName);
478    CurDAG->Combine(Unrestricted, *AA, OptLevel);
479  } else {
480    CurDAG->Combine(Unrestricted, *AA, OptLevel);
481  }
482
483  DOUT << "Optimized lowered selection DAG:\n";
484  DEBUG(CurDAG->dump());
485
486  // Second step, hack on the DAG until it only uses operations and types that
487  // the target supports.
488  if (!DisableLegalizeTypes) {
489    if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
490                                                 BlockName);
491
492    bool Changed;
493    if (TimePassesIsEnabled) {
494      NamedRegionTimer T("Type Legalization", GroupName);
495      Changed = CurDAG->LegalizeTypes();
496    } else {
497      Changed = CurDAG->LegalizeTypes();
498    }
499
500    DOUT << "Type-legalized selection DAG:\n";
501    DEBUG(CurDAG->dump());
502
503    if (Changed) {
504      if (ViewDAGCombineLT)
505        CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
506
507      // Run the DAG combiner in post-type-legalize mode.
508      if (TimePassesIsEnabled) {
509        NamedRegionTimer T("DAG Combining after legalize types", GroupName);
510        CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
511      } else {
512        CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
513      }
514
515      DOUT << "Optimized type-legalized selection DAG:\n";
516      DEBUG(CurDAG->dump());
517    }
518
519    if (TimePassesIsEnabled) {
520      NamedRegionTimer T("Vector Legalization", GroupName);
521      Changed = CurDAG->LegalizeVectors();
522    } else {
523      Changed = CurDAG->LegalizeVectors();
524    }
525
526    if (Changed) {
527      if (TimePassesIsEnabled) {
528        NamedRegionTimer T("Type Legalization 2", GroupName);
529        Changed = CurDAG->LegalizeTypes();
530      } else {
531        Changed = CurDAG->LegalizeTypes();
532      }
533
534      if (ViewDAGCombineLT)
535        CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
536
537      // Run the DAG combiner in post-type-legalize mode.
538      if (TimePassesIsEnabled) {
539        NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
540        CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
541      } else {
542        CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
543      }
544
545      DOUT << "Optimized vector-legalized selection DAG:\n";
546      DEBUG(CurDAG->dump());
547    }
548  }
549
550  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
551
552  if (TimePassesIsEnabled) {
553    NamedRegionTimer T("DAG Legalization", GroupName);
554    CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
555  } else {
556    CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
557  }
558
559  DOUT << "Legalized selection DAG:\n";
560  DEBUG(CurDAG->dump());
561
562  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
563
564  // Run the DAG combiner in post-legalize mode.
565  if (TimePassesIsEnabled) {
566    NamedRegionTimer T("DAG Combining 2", GroupName);
567    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
568  } else {
569    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
570  }
571
572  DOUT << "Optimized legalized selection DAG:\n";
573  DEBUG(CurDAG->dump());
574
575  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
576
577  if (OptLevel != CodeGenOpt::None)
578    ComputeLiveOutVRegInfo();
579
580  // Third, instruction select all of the operations to machine code, adding the
581  // code to the MachineBasicBlock.
582  if (TimePassesIsEnabled) {
583    NamedRegionTimer T("Instruction Selection", GroupName);
584    InstructionSelect();
585  } else {
586    InstructionSelect();
587  }
588
589  DOUT << "Selected selection DAG:\n";
590  DEBUG(CurDAG->dump());
591
592  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
593
594  // Schedule machine code.
595  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
596  if (TimePassesIsEnabled) {
597    NamedRegionTimer T("Instruction Scheduling", GroupName);
598    Scheduler->Run(CurDAG, BB, BB->end());
599  } else {
600    Scheduler->Run(CurDAG, BB, BB->end());
601  }
602
603  if (ViewSUnitDAGs) Scheduler->viewGraph();
604
605  // Emit machine code to BB.  This can change 'BB' to the last block being
606  // inserted into.
607  if (TimePassesIsEnabled) {
608    NamedRegionTimer T("Instruction Creation", GroupName);
609    BB = Scheduler->EmitSchedule();
610  } else {
611    BB = Scheduler->EmitSchedule();
612  }
613
614  // Free the scheduler state.
615  if (TimePassesIsEnabled) {
616    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
617    delete Scheduler;
618  } else {
619    delete Scheduler;
620  }
621
622  DOUT << "Selected machine code:\n";
623  DEBUG(BB->dump());
624}
625
626void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
627                                            MachineFunction &MF,
628                                            MachineModuleInfo *MMI,
629                                            DwarfWriter *DW,
630                                            const TargetInstrInfo &TII) {
631  // Initialize the Fast-ISel state, if needed.
632  FastISel *FastIS = 0;
633  if (EnableFastISel)
634    FastIS = TLI.createFastISel(MF, MMI, DW,
635                                FuncInfo->ValueMap,
636                                FuncInfo->MBBMap,
637                                FuncInfo->StaticAllocaMap
638#ifndef NDEBUG
639                                , FuncInfo->CatchInfoLost
640#endif
641                                );
642
643  // Iterate over all basic blocks in the function.
644  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
645    BasicBlock *LLVMBB = &*I;
646    BB = FuncInfo->MBBMap[LLVMBB];
647
648    BasicBlock::iterator const Begin = LLVMBB->begin();
649    BasicBlock::iterator const End = LLVMBB->end();
650    BasicBlock::iterator BI = Begin;
651
652    // Lower any arguments needed in this block if this is the entry block.
653    bool SuppressFastISel = false;
654    if (LLVMBB == &Fn.getEntryBlock()) {
655      LowerArguments(LLVMBB);
656
657      // If any of the arguments has the byval attribute, forgo
658      // fast-isel in the entry block.
659      if (FastIS) {
660        unsigned j = 1;
661        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
662             I != E; ++I, ++j)
663          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
664            if (EnableFastISelVerbose || EnableFastISelAbort)
665              cerr << "FastISel skips entry block due to byval argument\n";
666            SuppressFastISel = true;
667            break;
668          }
669      }
670    }
671
672    if (MMI && BB->isLandingPad()) {
673      // Add a label to mark the beginning of the landing pad.  Deletion of the
674      // landing pad can thus be detected via the MachineModuleInfo.
675      unsigned LabelID = MMI->addLandingPad(BB);
676
677      const TargetInstrDesc &II = TII.get(TargetInstrInfo::EH_LABEL);
678      BuildMI(BB, SDL->getCurDebugLoc(), II).addImm(LabelID);
679
680      // Mark exception register as live in.
681      unsigned Reg = TLI.getExceptionAddressRegister();
682      if (Reg) BB->addLiveIn(Reg);
683
684      // Mark exception selector register as live in.
685      Reg = TLI.getExceptionSelectorRegister();
686      if (Reg) BB->addLiveIn(Reg);
687
688      // FIXME: Hack around an exception handling flaw (PR1508): the personality
689      // function and list of typeids logically belong to the invoke (or, if you
690      // like, the basic block containing the invoke), and need to be associated
691      // with it in the dwarf exception handling tables.  Currently however the
692      // information is provided by an intrinsic (eh.selector) that can be moved
693      // to unexpected places by the optimizers: if the unwind edge is critical,
694      // then breaking it can result in the intrinsics being in the successor of
695      // the landing pad, not the landing pad itself.  This results in exceptions
696      // not being caught because no typeids are associated with the invoke.
697      // This may not be the only way things can go wrong, but it is the only way
698      // we try to work around for the moment.
699      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
700
701      if (Br && Br->isUnconditional()) { // Critical edge?
702        BasicBlock::iterator I, E;
703        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
704          if (isa<EHSelectorInst>(I))
705            break;
706
707        if (I == E)
708          // No catch info found - try to extract some from the successor.
709          copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
710      }
711    }
712
713    // Before doing SelectionDAG ISel, see if FastISel has been requested.
714    if (FastIS && !SuppressFastISel) {
715      // Emit code for any incoming arguments. This must happen before
716      // beginning FastISel on the entry block.
717      if (LLVMBB == &Fn.getEntryBlock()) {
718        CurDAG->setRoot(SDL->getControlRoot());
719        CodeGenAndEmitDAG();
720        SDL->clear();
721      }
722      FastIS->startNewBlock(BB);
723      // Do FastISel on as many instructions as possible.
724      for (; BI != End; ++BI) {
725        // Just before the terminator instruction, insert instructions to
726        // feed PHI nodes in successor blocks.
727        if (isa<TerminatorInst>(BI))
728          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
729            if (EnableFastISelVerbose || EnableFastISelAbort) {
730              cerr << "FastISel miss: ";
731              BI->dump();
732            }
733            assert(!EnableFastISelAbort &&
734                   "FastISel didn't handle a PHI in a successor");
735            break;
736          }
737
738        // First try normal tablegen-generated "fast" selection.
739        if (FastIS->SelectInstruction(BI))
740          continue;
741
742        // Next, try calling the target to attempt to handle the instruction.
743        if (FastIS->TargetSelectInstruction(BI))
744          continue;
745
746        // Then handle certain instructions as single-LLVM-Instruction blocks.
747        if (isa<CallInst>(BI)) {
748          if (EnableFastISelVerbose || EnableFastISelAbort) {
749            cerr << "FastISel missed call: ";
750            BI->dump();
751          }
752
753          if (BI->getType() != Type::VoidTy) {
754            unsigned &R = FuncInfo->ValueMap[BI];
755            if (!R)
756              R = FuncInfo->CreateRegForValue(BI);
757          }
758
759          SDL->setCurDebugLoc(FastIS->getCurDebugLoc());
760          SelectBasicBlock(LLVMBB, BI, next(BI));
761          // If the instruction was codegen'd with multiple blocks,
762          // inform the FastISel object where to resume inserting.
763          FastIS->setCurrentBlock(BB);
764          continue;
765        }
766
767        // Otherwise, give up on FastISel for the rest of the block.
768        // For now, be a little lenient about non-branch terminators.
769        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
770          if (EnableFastISelVerbose || EnableFastISelAbort) {
771            cerr << "FastISel miss: ";
772            BI->dump();
773          }
774          if (EnableFastISelAbort)
775            // The "fast" selector couldn't handle something and bailed.
776            // For the purpose of debugging, just abort.
777            llvm_unreachable("FastISel didn't select the entire block");
778        }
779        break;
780      }
781    }
782
783    // Run SelectionDAG instruction selection on the remainder of the block
784    // not handled by FastISel. If FastISel is not run, this is the entire
785    // block.
786    if (BI != End) {
787      // If FastISel is run and it has known DebugLoc then use it.
788      if (FastIS && !FastIS->getCurDebugLoc().isUnknown())
789        SDL->setCurDebugLoc(FastIS->getCurDebugLoc());
790      SelectBasicBlock(LLVMBB, BI, End);
791    }
792
793    FinishBasicBlock();
794  }
795
796  delete FastIS;
797}
798
799void
800SelectionDAGISel::FinishBasicBlock() {
801
802  DOUT << "Target-post-processed machine code:\n";
803  DEBUG(BB->dump());
804
805  DOUT << "Total amount of phi nodes to update: "
806       << SDL->PHINodesToUpdate.size() << "\n";
807  DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
808          DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
809               << ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
810
811  // Next, now that we know what the last MBB the LLVM BB expanded is, update
812  // PHI nodes in successors.
813  if (SDL->SwitchCases.empty() &&
814      SDL->JTCases.empty() &&
815      SDL->BitTestCases.empty()) {
816    for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
817      MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
818      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
819             "This is not a machine PHI node that we are updating!");
820      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
821                                                false));
822      PHI->addOperand(MachineOperand::CreateMBB(BB));
823    }
824    SDL->PHINodesToUpdate.clear();
825    return;
826  }
827
828  for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) {
829    // Lower header first, if it wasn't already lowered
830    if (!SDL->BitTestCases[i].Emitted) {
831      // Set the current basic block to the mbb we wish to insert the code into
832      BB = SDL->BitTestCases[i].Parent;
833      SDL->setCurrentBasicBlock(BB);
834      // Emit the code
835      SDL->visitBitTestHeader(SDL->BitTestCases[i]);
836      CurDAG->setRoot(SDL->getRoot());
837      CodeGenAndEmitDAG();
838      SDL->clear();
839    }
840
841    for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
842      // Set the current basic block to the mbb we wish to insert the code into
843      BB = SDL->BitTestCases[i].Cases[j].ThisBB;
844      SDL->setCurrentBasicBlock(BB);
845      // Emit the code
846      if (j+1 != ej)
847        SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB,
848                              SDL->BitTestCases[i].Reg,
849                              SDL->BitTestCases[i].Cases[j]);
850      else
851        SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
852                              SDL->BitTestCases[i].Reg,
853                              SDL->BitTestCases[i].Cases[j]);
854
855
856      CurDAG->setRoot(SDL->getRoot());
857      CodeGenAndEmitDAG();
858      SDL->clear();
859    }
860
861    // Update PHI Nodes
862    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
863      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
864      MachineBasicBlock *PHIBB = PHI->getParent();
865      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
866             "This is not a machine PHI node that we are updating!");
867      // This is "default" BB. We have two jumps to it. From "header" BB and
868      // from last "case" BB.
869      if (PHIBB == SDL->BitTestCases[i].Default) {
870        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
871                                                  false));
872        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent));
873        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
874                                                  false));
875        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases.
876                                                  back().ThisBB));
877      }
878      // One of "cases" BB.
879      for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size();
880           j != ej; ++j) {
881        MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB;
882        if (cBB->succ_end() !=
883            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
884          PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
885                                                    false));
886          PHI->addOperand(MachineOperand::CreateMBB(cBB));
887        }
888      }
889    }
890  }
891  SDL->BitTestCases.clear();
892
893  // If the JumpTable record is filled in, then we need to emit a jump table.
894  // Updating the PHI nodes is tricky in this case, since we need to determine
895  // whether the PHI is a successor of the range check MBB or the jump table MBB
896  for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) {
897    // Lower header first, if it wasn't already lowered
898    if (!SDL->JTCases[i].first.Emitted) {
899      // Set the current basic block to the mbb we wish to insert the code into
900      BB = SDL->JTCases[i].first.HeaderBB;
901      SDL->setCurrentBasicBlock(BB);
902      // Emit the code
903      SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first);
904      CurDAG->setRoot(SDL->getRoot());
905      CodeGenAndEmitDAG();
906      SDL->clear();
907    }
908
909    // Set the current basic block to the mbb we wish to insert the code into
910    BB = SDL->JTCases[i].second.MBB;
911    SDL->setCurrentBasicBlock(BB);
912    // Emit the code
913    SDL->visitJumpTable(SDL->JTCases[i].second);
914    CurDAG->setRoot(SDL->getRoot());
915    CodeGenAndEmitDAG();
916    SDL->clear();
917
918    // Update PHI Nodes
919    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
920      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
921      MachineBasicBlock *PHIBB = PHI->getParent();
922      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
923             "This is not a machine PHI node that we are updating!");
924      // "default" BB. We can go there only from header BB.
925      if (PHIBB == SDL->JTCases[i].second.Default) {
926        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
927                                                  false));
928        PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
929      }
930      // JT BB. Just iterate over successors here
931      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
932        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
933                                                  false));
934        PHI->addOperand(MachineOperand::CreateMBB(BB));
935      }
936    }
937  }
938  SDL->JTCases.clear();
939
940  // If the switch block involved a branch to one of the actual successors, we
941  // need to update PHI nodes in that block.
942  for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
943    MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
944    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
945           "This is not a machine PHI node that we are updating!");
946    if (BB->isSuccessor(PHI->getParent())) {
947      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
948                                                false));
949      PHI->addOperand(MachineOperand::CreateMBB(BB));
950    }
951  }
952
953  // If we generated any switch lowering information, build and codegen any
954  // additional DAGs necessary.
955  for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
956    // Set the current basic block to the mbb we wish to insert the code into
957    BB = SDL->SwitchCases[i].ThisBB;
958    SDL->setCurrentBasicBlock(BB);
959
960    // Emit the code
961    SDL->visitSwitchCase(SDL->SwitchCases[i]);
962    CurDAG->setRoot(SDL->getRoot());
963    CodeGenAndEmitDAG();
964    SDL->clear();
965
966    // Handle any PHI nodes in successors of this chunk, as if we were coming
967    // from the original BB before switch expansion.  Note that PHI nodes can
968    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
969    // handle them the right number of times.
970    while ((BB = SDL->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
971      for (MachineBasicBlock::iterator Phi = BB->begin();
972           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
973        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
974        for (unsigned pn = 0; ; ++pn) {
975          assert(pn != SDL->PHINodesToUpdate.size() &&
976                 "Didn't find PHI entry!");
977          if (SDL->PHINodesToUpdate[pn].first == Phi) {
978            Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
979                                                      second, false));
980            Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
981            break;
982          }
983        }
984      }
985
986      // Don't process RHS if same block as LHS.
987      if (BB == SDL->SwitchCases[i].FalseBB)
988        SDL->SwitchCases[i].FalseBB = 0;
989
990      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
991      SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
992      SDL->SwitchCases[i].FalseBB = 0;
993    }
994    assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
995  }
996  SDL->SwitchCases.clear();
997
998  SDL->PHINodesToUpdate.clear();
999}
1000
1001
1002/// Create the scheduler. If a specific scheduler was specified
1003/// via the SchedulerRegistry, use it, otherwise select the
1004/// one preferred by the target.
1005///
1006ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1007  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1008
1009  if (!Ctor) {
1010    Ctor = ISHeuristic;
1011    RegisterScheduler::setDefault(Ctor);
1012  }
1013
1014  return Ctor(this, OptLevel);
1015}
1016
1017ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1018  return new ScheduleHazardRecognizer();
1019}
1020
1021//===----------------------------------------------------------------------===//
1022// Helper functions used by the generated instruction selector.
1023//===----------------------------------------------------------------------===//
1024// Calls to these methods are generated by tblgen.
1025
1026/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1027/// the dag combiner simplified the 255, we still want to match.  RHS is the
1028/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1029/// specified in the .td file (e.g. 255).
1030bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1031                                    int64_t DesiredMaskS) const {
1032  const APInt &ActualMask = RHS->getAPIntValue();
1033  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1034
1035  // If the actual mask exactly matches, success!
1036  if (ActualMask == DesiredMask)
1037    return true;
1038
1039  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1040  if (ActualMask.intersects(~DesiredMask))
1041    return false;
1042
1043  // Otherwise, the DAG Combiner may have proven that the value coming in is
1044  // either already zero or is not demanded.  Check for known zero input bits.
1045  APInt NeededMask = DesiredMask & ~ActualMask;
1046  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1047    return true;
1048
1049  // TODO: check to see if missing bits are just not demanded.
1050
1051  // Otherwise, this pattern doesn't match.
1052  return false;
1053}
1054
1055/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1056/// the dag combiner simplified the 255, we still want to match.  RHS is the
1057/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1058/// specified in the .td file (e.g. 255).
1059bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1060                                   int64_t DesiredMaskS) const {
1061  const APInt &ActualMask = RHS->getAPIntValue();
1062  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1063
1064  // If the actual mask exactly matches, success!
1065  if (ActualMask == DesiredMask)
1066    return true;
1067
1068  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1069  if (ActualMask.intersects(~DesiredMask))
1070    return false;
1071
1072  // Otherwise, the DAG Combiner may have proven that the value coming in is
1073  // either already zero or is not demanded.  Check for known zero input bits.
1074  APInt NeededMask = DesiredMask & ~ActualMask;
1075
1076  APInt KnownZero, KnownOne;
1077  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1078
1079  // If all the missing bits in the or are already known to be set, match!
1080  if ((NeededMask & KnownOne) == NeededMask)
1081    return true;
1082
1083  // TODO: check to see if missing bits are just not demanded.
1084
1085  // Otherwise, this pattern doesn't match.
1086  return false;
1087}
1088
1089
1090/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1091/// by tblgen.  Others should not call it.
1092void SelectionDAGISel::
1093SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1094  std::vector<SDValue> InOps;
1095  std::swap(InOps, Ops);
1096
1097  Ops.push_back(InOps[0]);  // input chain.
1098  Ops.push_back(InOps[1]);  // input asm string.
1099
1100  unsigned i = 2, e = InOps.size();
1101  if (InOps[e-1].getValueType() == EVT::Flag)
1102    --e;  // Don't process a flag operand if it is here.
1103
1104  while (i != e) {
1105    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1106    if ((Flags & 7) != 4 /*MEM*/) {
1107      // Just skip over this operand, copying the operands verbatim.
1108      Ops.insert(Ops.end(), InOps.begin()+i,
1109                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1110      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1111    } else {
1112      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1113             "Memory operand with multiple values?");
1114      // Otherwise, this is a memory operand.  Ask the target to select it.
1115      std::vector<SDValue> SelOps;
1116      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1117        llvm_report_error("Could not match memory address.  Inline asm"
1118                          " failure!");
1119      }
1120
1121      // Add this to the output node.
1122      EVT IntPtrTy = TLI.getPointerTy();
1123      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1124                                              IntPtrTy));
1125      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1126      i += 2;
1127    }
1128  }
1129
1130  // Add the flag input back if present.
1131  if (e != InOps.size())
1132    Ops.push_back(InOps.back());
1133}
1134
1135/// findFlagUse - Return use of EVT::Flag value produced by the specified
1136/// SDNode.
1137///
1138static SDNode *findFlagUse(SDNode *N) {
1139  unsigned FlagResNo = N->getNumValues()-1;
1140  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1141    SDUse &Use = I.getUse();
1142    if (Use.getResNo() == FlagResNo)
1143      return Use.getUser();
1144  }
1145  return NULL;
1146}
1147
1148/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1149/// This function recursively traverses up the operand chain, ignoring
1150/// certain nodes.
1151static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1152                          SDNode *Root,
1153                          SmallPtrSet<SDNode*, 16> &Visited) {
1154  if (Use->getNodeId() < Def->getNodeId() ||
1155      !Visited.insert(Use))
1156    return false;
1157
1158  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1159    SDNode *N = Use->getOperand(i).getNode();
1160    if (N == Def) {
1161      if (Use == ImmedUse || Use == Root)
1162        continue;  // We are not looking for immediate use.
1163      assert(N != Root);
1164      return true;
1165    }
1166
1167    // Traverse up the operand chain.
1168    if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
1169      return true;
1170  }
1171  return false;
1172}
1173
1174/// isNonImmUse - Start searching from Root up the DAG to check is Def can
1175/// be reached. Return true if that's the case. However, ignore direct uses
1176/// by ImmedUse (which would be U in the example illustrated in
1177/// IsLegalAndProfitableToFold) and by Root (which can happen in the store
1178/// case).
1179/// FIXME: to be really generic, we should allow direct use by any node
1180/// that is being folded. But realisticly since we only fold loads which
1181/// have one non-chain use, we only need to watch out for load/op/store
1182/// and load/op/cmp case where the root (store / cmp) may reach the load via
1183/// its chain operand.
1184static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
1185  SmallPtrSet<SDNode*, 16> Visited;
1186  return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
1187}
1188
1189/// IsLegalAndProfitableToFold - Returns true if the specific operand node N of
1190/// U can be folded during instruction selection that starts at Root and
1191/// folding N is profitable.
1192bool SelectionDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
1193                                                  SDNode *Root) const {
1194  if (OptLevel == CodeGenOpt::None) return false;
1195
1196  // If Root use can somehow reach N through a path that that doesn't contain
1197  // U then folding N would create a cycle. e.g. In the following
1198  // diagram, Root can reach N through X. If N is folded into into Root, then
1199  // X is both a predecessor and a successor of U.
1200  //
1201  //          [N*]           //
1202  //         ^   ^           //
1203  //        /     \          //
1204  //      [U*]    [X]?       //
1205  //        ^     ^          //
1206  //         \   /           //
1207  //          \ /            //
1208  //         [Root*]         //
1209  //
1210  // * indicates nodes to be folded together.
1211  //
1212  // If Root produces a flag, then it gets (even more) interesting. Since it
1213  // will be "glued" together with its flag use in the scheduler, we need to
1214  // check if it might reach N.
1215  //
1216  //          [N*]           //
1217  //         ^   ^           //
1218  //        /     \          //
1219  //      [U*]    [X]?       //
1220  //        ^       ^        //
1221  //         \       \       //
1222  //          \      |       //
1223  //         [Root*] |       //
1224  //          ^      |       //
1225  //          f      |       //
1226  //          |      /       //
1227  //         [Y]    /        //
1228  //           ^   /         //
1229  //           f  /          //
1230  //           | /           //
1231  //          [FU]           //
1232  //
1233  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1234  // (call it Fold), then X is a predecessor of FU and a successor of
1235  // Fold. But since Fold and FU are flagged together, this will create
1236  // a cycle in the scheduling graph.
1237
1238  EVT VT = Root->getValueType(Root->getNumValues()-1);
1239  while (VT == EVT::Flag) {
1240    SDNode *FU = findFlagUse(Root);
1241    if (FU == NULL)
1242      break;
1243    Root = FU;
1244    VT = Root->getValueType(Root->getNumValues()-1);
1245  }
1246
1247  return !isNonImmUse(Root, N, U);
1248}
1249
1250
1251char SelectionDAGISel::ID = 0;
1252