SelectionDAGISel.cpp revision eac59b0c6ce69beed03154b5d3f51a311b6dd9c1
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/CallingConv.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Function.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/FastISel.h"
32#include "llvm/CodeGen/GCStrategy.h"
33#include "llvm/CodeGen/GCMetadata.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineFunctionAnalysis.h"
36#include "llvm/CodeGen/MachineFrameInfo.h"
37#include "llvm/CodeGen/MachineInstrBuilder.h"
38#include "llvm/CodeGen/MachineJumpTableInfo.h"
39#include "llvm/CodeGen/MachineModuleInfo.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
42#include "llvm/CodeGen/SchedulerRegistry.h"
43#include "llvm/CodeGen/SelectionDAG.h"
44#include "llvm/CodeGen/DwarfWriter.h"
45#include "llvm/Target/TargetRegisterInfo.h"
46#include "llvm/Target/TargetData.h"
47#include "llvm/Target/TargetFrameInfo.h"
48#include "llvm/Target/TargetIntrinsicInfo.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetLowering.h"
51#include "llvm/Target/TargetMachine.h"
52#include "llvm/Target/TargetOptions.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/MathExtras.h"
57#include "llvm/Support/Timer.h"
58#include "llvm/Support/raw_ostream.h"
59#include <algorithm>
60using namespace llvm;
61
62static cl::opt<bool>
63EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
64          cl::desc("Enable verbose messages in the \"fast\" "
65                   "instruction selector"));
66static cl::opt<bool>
67EnableFastISelAbort("fast-isel-abort", cl::Hidden,
68          cl::desc("Enable abort calls when \"fast\" instruction fails"));
69static cl::opt<bool>
70SchedLiveInCopies("schedule-livein-copies", cl::Hidden,
71                  cl::desc("Schedule copies of livein registers"),
72                  cl::init(false));
73
74#ifndef NDEBUG
75static cl::opt<bool>
76ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the first "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before legalize types"));
82static cl::opt<bool>
83ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
84          cl::desc("Pop up a window to show dags before legalize"));
85static cl::opt<bool>
86ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
87          cl::desc("Pop up a window to show dags before the second "
88                   "dag combine pass"));
89static cl::opt<bool>
90ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
91          cl::desc("Pop up a window to show dags before the post legalize types"
92                   " dag combine pass"));
93static cl::opt<bool>
94ViewISelDAGs("view-isel-dags", cl::Hidden,
95          cl::desc("Pop up a window to show isel dags as they are selected"));
96static cl::opt<bool>
97ViewSchedDAGs("view-sched-dags", cl::Hidden,
98          cl::desc("Pop up a window to show sched dags as they are processed"));
99static cl::opt<bool>
100ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
101      cl::desc("Pop up a window to show SUnit dags after they are processed"));
102#else
103static const bool ViewDAGCombine1 = false,
104                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
105                  ViewDAGCombine2 = false,
106                  ViewDAGCombineLT = false,
107                  ViewISelDAGs = false, ViewSchedDAGs = false,
108                  ViewSUnitDAGs = false;
109#endif
110
111//===---------------------------------------------------------------------===//
112///
113/// RegisterScheduler class - Track the registration of instruction schedulers.
114///
115//===---------------------------------------------------------------------===//
116MachinePassRegistry RegisterScheduler::Registry;
117
118//===---------------------------------------------------------------------===//
119///
120/// ISHeuristic command line option for instruction schedulers.
121///
122//===---------------------------------------------------------------------===//
123static cl::opt<RegisterScheduler::FunctionPassCtor, false,
124               RegisterPassParser<RegisterScheduler> >
125ISHeuristic("pre-RA-sched",
126            cl::init(&createDefaultScheduler),
127            cl::desc("Instruction schedulers available (before register"
128                     " allocation):"));
129
130static RegisterScheduler
131defaultListDAGScheduler("default", "Best scheduler for the target",
132                        createDefaultScheduler);
133
134namespace llvm {
135  //===--------------------------------------------------------------------===//
136  /// createDefaultScheduler - This creates an instruction scheduler appropriate
137  /// for the target.
138  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
139                                             CodeGenOpt::Level OptLevel) {
140    const TargetLowering &TLI = IS->getTargetLowering();
141
142    if (OptLevel == CodeGenOpt::None)
143      return createFastDAGScheduler(IS, OptLevel);
144    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
145      return createTDListDAGScheduler(IS, OptLevel);
146    assert(TLI.getSchedulingPreference() ==
147           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
148    return createBURRListDAGScheduler(IS, OptLevel);
149  }
150}
151
152// EmitInstrWithCustomInserter - This method should be implemented by targets
153// that mark instructions with the 'usesCustomInserter' flag.  These
154// instructions are special in various ways, which require special support to
155// insert.  The specified MachineInstr is created but not inserted into any
156// basic blocks, and this method is called to expand it into a sequence of
157// instructions, potentially also creating new basic blocks and control flow.
158// When new basic blocks are inserted and the edges from MBB to its successors
159// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
160// DenseMap.
161MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
162                                                         MachineBasicBlock *MBB,
163                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
164#ifndef NDEBUG
165  dbgs() << "If a target marks an instruction with "
166          "'usesCustomInserter', it must implement "
167          "TargetLowering::EmitInstrWithCustomInserter!";
168#endif
169  llvm_unreachable(0);
170  return 0;
171}
172
173/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
174/// physical register has only a single copy use, then coalesced the copy
175/// if possible.
176static void EmitLiveInCopy(MachineBasicBlock *MBB,
177                           MachineBasicBlock::iterator &InsertPos,
178                           unsigned VirtReg, unsigned PhysReg,
179                           const TargetRegisterClass *RC,
180                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
181                           const MachineRegisterInfo &MRI,
182                           const TargetRegisterInfo &TRI,
183                           const TargetInstrInfo &TII) {
184  unsigned NumUses = 0;
185  MachineInstr *UseMI = NULL;
186  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
187         UE = MRI.use_end(); UI != UE; ++UI) {
188    UseMI = &*UI;
189    if (++NumUses > 1)
190      break;
191  }
192
193  // If the number of uses is not one, or the use is not a move instruction,
194  // don't coalesce. Also, only coalesce away a virtual register to virtual
195  // register copy.
196  bool Coalesced = false;
197  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
198  if (NumUses == 1 &&
199      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
200      TargetRegisterInfo::isVirtualRegister(DstReg)) {
201    VirtReg = DstReg;
202    Coalesced = true;
203  }
204
205  // Now find an ideal location to insert the copy.
206  MachineBasicBlock::iterator Pos = InsertPos;
207  while (Pos != MBB->begin()) {
208    MachineInstr *PrevMI = prior(Pos);
209    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
210    // copyRegToReg might emit multiple instructions to do a copy.
211    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
212    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
213      // This is what the BB looks like right now:
214      // r1024 = mov r0
215      // ...
216      // r1    = mov r1024
217      //
218      // We want to insert "r1025 = mov r1". Inserting this copy below the
219      // move to r1024 makes it impossible for that move to be coalesced.
220      //
221      // r1025 = mov r1
222      // r1024 = mov r0
223      // ...
224      // r1    = mov 1024
225      // r2    = mov 1025
226      break; // Woot! Found a good location.
227    --Pos;
228  }
229
230  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
231  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
232  (void) Emitted;
233
234  CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
235  if (Coalesced) {
236    if (&*InsertPos == UseMI) ++InsertPos;
237    MBB->erase(UseMI);
238  }
239}
240
241/// EmitLiveInCopies - If this is the first basic block in the function,
242/// and if it has live ins that need to be copied into vregs, emit the
243/// copies into the block.
244static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
245                             const MachineRegisterInfo &MRI,
246                             const TargetRegisterInfo &TRI,
247                             const TargetInstrInfo &TII) {
248  if (SchedLiveInCopies) {
249    // Emit the copies at a heuristically-determined location in the block.
250    DenseMap<MachineInstr*, unsigned> CopyRegMap;
251    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
252    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
253           E = MRI.livein_end(); LI != E; ++LI)
254      if (LI->second) {
255        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
256        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
257                       RC, CopyRegMap, MRI, TRI, TII);
258      }
259  } else {
260    // Emit the copies into the top of the block.
261    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
262           E = MRI.livein_end(); LI != E; ++LI)
263      if (LI->second) {
264        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
265        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
266                                        LI->second, LI->first, RC, RC);
267        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
268        (void) Emitted;
269      }
270  }
271}
272
273//===----------------------------------------------------------------------===//
274// SelectionDAGISel code
275//===----------------------------------------------------------------------===//
276
277SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
278  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
279  FuncInfo(new FunctionLoweringInfo(TLI)),
280  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
281  SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)),
282  GFI(),
283  OptLevel(OL),
284  DAGSize(0)
285{}
286
287SelectionDAGISel::~SelectionDAGISel() {
288  delete SDB;
289  delete CurDAG;
290  delete FuncInfo;
291}
292
293unsigned SelectionDAGISel::MakeReg(EVT VT) {
294  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
295}
296
297void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
298  AU.addRequired<AliasAnalysis>();
299  AU.addPreserved<AliasAnalysis>();
300  AU.addRequired<GCModuleInfo>();
301  AU.addPreserved<GCModuleInfo>();
302  AU.addRequired<DwarfWriter>();
303  AU.addPreserved<DwarfWriter>();
304  MachineFunctionPass::getAnalysisUsage(AU);
305}
306
307bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
308  Function &Fn = *mf.getFunction();
309
310  // Do some sanity-checking on the command-line options.
311  assert((!EnableFastISelVerbose || EnableFastISel) &&
312         "-fast-isel-verbose requires -fast-isel");
313  assert((!EnableFastISelAbort || EnableFastISel) &&
314         "-fast-isel-abort requires -fast-isel");
315
316  // Get alias analysis for load/store combining.
317  AA = &getAnalysis<AliasAnalysis>();
318
319  MF = &mf;
320  const TargetInstrInfo &TII = *TM.getInstrInfo();
321  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
322
323  if (Fn.hasGC())
324    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn);
325  else
326    GFI = 0;
327  RegInfo = &MF->getRegInfo();
328  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
329
330  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
331  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
332  CurDAG->init(*MF, MMI, DW);
333  FuncInfo->set(Fn, *MF, EnableFastISel);
334  SDB->init(GFI, *AA);
335
336  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
337    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
338      // Mark landing pad.
339      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
340
341  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
342
343  // If the first basic block in the function has live ins that need to be
344  // copied into vregs, emit the copies into the top of the block before
345  // emitting the code for the block.
346  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
347
348  // Add function live-ins to entry block live-in set.
349  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
350         E = RegInfo->livein_end(); I != E; ++I)
351    MF->begin()->addLiveIn(I->first);
352
353#ifndef NDEBUG
354  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
355         "Not all catch info was assigned to a landing pad!");
356#endif
357
358  FuncInfo->clear();
359
360  return true;
361}
362
363/// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is
364/// attached with this instruction.
365static void SetDebugLoc(unsigned MDDbgKind, Instruction *I,
366                        SelectionDAGBuilder *SDB,
367                        FastISel *FastIS, MachineFunction *MF) {
368  if (isa<DbgInfoIntrinsic>(I)) return;
369
370  if (MDNode *Dbg = I->getMetadata(MDDbgKind)) {
371    DILocation DILoc(Dbg);
372    DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo());
373
374    SDB->setCurDebugLoc(Loc);
375
376    if (FastIS)
377      FastIS->setCurDebugLoc(Loc);
378
379    // If the function doesn't have a default debug location yet, set
380    // it. This is kind of a hack.
381    if (MF->getDefaultDebugLoc().isUnknown())
382      MF->setDefaultDebugLoc(Loc);
383  }
384}
385
386/// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown.
387static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) {
388  SDB->setCurDebugLoc(DebugLoc::getUnknownLoc());
389  if (FastIS)
390    FastIS->setCurDebugLoc(DebugLoc::getUnknownLoc());
391}
392
393void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
394                                        BasicBlock::iterator Begin,
395                                        BasicBlock::iterator End,
396                                        bool &HadTailCall) {
397  SDB->setCurrentBasicBlock(BB);
398  unsigned MDDbgKind = LLVMBB->getContext().getMDKindID("dbg");
399
400  // Lower all of the non-terminator instructions. If a call is emitted
401  // as a tail call, cease emitting nodes for this block.
402  for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
403    SetDebugLoc(MDDbgKind, I, SDB, 0, MF);
404
405    if (!isa<TerminatorInst>(I)) {
406      SDB->visit(*I);
407
408      // Set the current debug location back to "unknown" so that it doesn't
409      // spuriously apply to subsequent instructions.
410      ResetDebugLoc(SDB, 0);
411    }
412  }
413
414  if (!SDB->HasTailCall) {
415    // Ensure that all instructions which are used outside of their defining
416    // blocks are available as virtual registers.  Invoke is handled elsewhere.
417    for (BasicBlock::iterator I = Begin; I != End; ++I)
418      if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
419        SDB->CopyToExportRegsIfNeeded(I);
420
421    // Handle PHI nodes in successor blocks.
422    if (End == LLVMBB->end()) {
423      HandlePHINodesInSuccessorBlocks(LLVMBB);
424
425      // Lower the terminator after the copies are emitted.
426      SetDebugLoc(MDDbgKind, LLVMBB->getTerminator(), SDB, 0, MF);
427      SDB->visit(*LLVMBB->getTerminator());
428      ResetDebugLoc(SDB, 0);
429    }
430  }
431
432  // Make sure the root of the DAG is up-to-date.
433  CurDAG->setRoot(SDB->getControlRoot());
434
435  // Final step, emit the lowered DAG as machine code.
436  CodeGenAndEmitDAG();
437  HadTailCall = SDB->HasTailCall;
438  SDB->clear();
439}
440
441namespace {
442/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
443/// nodes from the worklist.
444class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
445  SmallVector<SDNode*, 128> &Worklist;
446public:
447  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl) : Worklist(wl) {}
448
449  virtual void NodeDeleted(SDNode *N, SDNode *E) {
450    Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
451                   Worklist.end());
452  }
453
454  virtual void NodeUpdated(SDNode *N) {
455    // Ignore updates.
456  }
457};
458}
459
460/// TrivialTruncElim - Eliminate some trivial nops that can result from
461/// ShrinkDemandedOps: (trunc (ext n)) -> n.
462static bool TrivialTruncElim(SDValue Op,
463                             TargetLowering::TargetLoweringOpt &TLO) {
464  SDValue N0 = Op.getOperand(0);
465  EVT VT = Op.getValueType();
466  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
467       N0.getOpcode() == ISD::SIGN_EXTEND ||
468       N0.getOpcode() == ISD::ANY_EXTEND) &&
469      N0.getOperand(0).getValueType() == VT) {
470    return TLO.CombineTo(Op, N0.getOperand(0));
471  }
472  return false;
473}
474
475/// ShrinkDemandedOps - A late transformation pass that shrink expressions
476/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
477/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
478void SelectionDAGISel::ShrinkDemandedOps() {
479  SmallVector<SDNode*, 128> Worklist;
480
481  // Add all the dag nodes to the worklist.
482  Worklist.reserve(CurDAG->allnodes_size());
483  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
484       E = CurDAG->allnodes_end(); I != E; ++I)
485    Worklist.push_back(I);
486
487  APInt Mask;
488  APInt KnownZero;
489  APInt KnownOne;
490
491  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true);
492  while (!Worklist.empty()) {
493    SDNode *N = Worklist.pop_back_val();
494
495    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
496      CurDAG->DeleteNode(N);
497      continue;
498    }
499
500    // Run ShrinkDemandedOp on scalar binary operations.
501    if (N->getNumValues() == 1 &&
502        N->getValueType(0).isSimple() && N->getValueType(0).isInteger()) {
503      unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
504      APInt Demanded = APInt::getAllOnesValue(BitWidth);
505      APInt KnownZero, KnownOne;
506      if (TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
507                                   KnownZero, KnownOne, TLO) ||
508          (N->getOpcode() == ISD::TRUNCATE &&
509           TrivialTruncElim(SDValue(N, 0), TLO))) {
510        // Revisit the node.
511        Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), N),
512                       Worklist.end());
513        Worklist.push_back(N);
514
515        // Replace the old value with the new one.
516        DEBUG(errs() << "\nReplacing ";
517              TLO.Old.getNode()->dump(CurDAG);
518              errs() << "\nWith: ";
519              TLO.New.getNode()->dump(CurDAG);
520              errs() << '\n');
521
522        Worklist.push_back(TLO.New.getNode());
523
524        SDOPsWorkListRemover DeadNodes(Worklist);
525        CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
526
527        if (TLO.Old.getNode()->use_empty()) {
528          for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
529               i != e; ++i) {
530            SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
531            if (OpNode->hasOneUse()) {
532              Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
533                                         OpNode), Worklist.end());
534              Worklist.push_back(OpNode);
535            }
536          }
537
538          Worklist.erase(std::remove(Worklist.begin(), Worklist.end(),
539                                     TLO.Old.getNode()), Worklist.end());
540          CurDAG->DeleteNode(TLO.Old.getNode());
541        }
542      }
543    }
544  }
545}
546
547void SelectionDAGISel::ComputeLiveOutVRegInfo() {
548  SmallPtrSet<SDNode*, 128> VisitedNodes;
549  SmallVector<SDNode*, 128> Worklist;
550
551  Worklist.push_back(CurDAG->getRoot().getNode());
552
553  APInt Mask;
554  APInt KnownZero;
555  APInt KnownOne;
556
557  do {
558    SDNode *N = Worklist.pop_back_val();
559
560    // If we've already seen this node, ignore it.
561    if (!VisitedNodes.insert(N))
562      continue;
563
564    // Otherwise, add all chain operands to the worklist.
565    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
566      if (N->getOperand(i).getValueType() == MVT::Other)
567        Worklist.push_back(N->getOperand(i).getNode());
568
569    // If this is a CopyToReg with a vreg dest, process it.
570    if (N->getOpcode() != ISD::CopyToReg)
571      continue;
572
573    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
574    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
575      continue;
576
577    // Ignore non-scalar or non-integer values.
578    SDValue Src = N->getOperand(2);
579    EVT SrcVT = Src.getValueType();
580    if (!SrcVT.isInteger() || SrcVT.isVector())
581      continue;
582
583    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
584    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
585    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
586
587    // Only install this information if it tells us something.
588    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
589      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
590      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
591        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
592      FunctionLoweringInfo::LiveOutInfo &LOI =
593        FuncInfo->LiveOutRegInfo[DestReg];
594      LOI.NumSignBits = NumSignBits;
595      LOI.KnownOne = KnownOne;
596      LOI.KnownZero = KnownZero;
597    }
598  } while (!Worklist.empty());
599}
600
601void SelectionDAGISel::CodeGenAndEmitDAG() {
602  std::string GroupName;
603  if (TimePassesIsEnabled)
604    GroupName = "Instruction Selection and Scheduling";
605  std::string BlockName;
606  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
607      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
608      ViewSUnitDAGs)
609    BlockName = MF->getFunction()->getNameStr() + ":" +
610                BB->getBasicBlock()->getNameStr();
611
612  DEBUG(dbgs() << "Initial selection DAG:\n");
613  DEBUG(CurDAG->dump());
614
615  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
616
617  // Run the DAG combiner in pre-legalize mode.
618  if (TimePassesIsEnabled) {
619    NamedRegionTimer T("DAG Combining 1", GroupName);
620    CurDAG->Combine(Unrestricted, *AA, OptLevel);
621  } else {
622    CurDAG->Combine(Unrestricted, *AA, OptLevel);
623  }
624
625  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
626  DEBUG(CurDAG->dump());
627
628  // Second step, hack on the DAG until it only uses operations and types that
629  // the target supports.
630  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
631                                               BlockName);
632
633  bool Changed;
634  if (TimePassesIsEnabled) {
635    NamedRegionTimer T("Type Legalization", GroupName);
636    Changed = CurDAG->LegalizeTypes();
637  } else {
638    Changed = CurDAG->LegalizeTypes();
639  }
640
641  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
642  DEBUG(CurDAG->dump());
643
644  if (Changed) {
645    if (ViewDAGCombineLT)
646      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
647
648    // Run the DAG combiner in post-type-legalize mode.
649    if (TimePassesIsEnabled) {
650      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
651      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
652    } else {
653      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
654    }
655
656    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
657    DEBUG(CurDAG->dump());
658  }
659
660  if (TimePassesIsEnabled) {
661    NamedRegionTimer T("Vector Legalization", GroupName);
662    Changed = CurDAG->LegalizeVectors();
663  } else {
664    Changed = CurDAG->LegalizeVectors();
665  }
666
667  if (Changed) {
668    if (TimePassesIsEnabled) {
669      NamedRegionTimer T("Type Legalization 2", GroupName);
670      CurDAG->LegalizeTypes();
671    } else {
672      CurDAG->LegalizeTypes();
673    }
674
675    if (ViewDAGCombineLT)
676      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
677
678    // Run the DAG combiner in post-type-legalize mode.
679    if (TimePassesIsEnabled) {
680      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
681      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
682    } else {
683      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
684    }
685
686    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
687    DEBUG(CurDAG->dump());
688  }
689
690  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
691
692  if (TimePassesIsEnabled) {
693    NamedRegionTimer T("DAG Legalization", GroupName);
694    CurDAG->Legalize(OptLevel);
695  } else {
696    CurDAG->Legalize(OptLevel);
697  }
698
699  DEBUG(dbgs() << "Legalized selection DAG:\n");
700  DEBUG(CurDAG->dump());
701
702  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
703
704  // Run the DAG combiner in post-legalize mode.
705  if (TimePassesIsEnabled) {
706    NamedRegionTimer T("DAG Combining 2", GroupName);
707    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
708  } else {
709    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
710  }
711
712  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
713  DEBUG(CurDAG->dump());
714
715  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
716
717  if (OptLevel != CodeGenOpt::None) {
718    ShrinkDemandedOps();
719    ComputeLiveOutVRegInfo();
720  }
721
722  // Third, instruction select all of the operations to machine code, adding the
723  // code to the MachineBasicBlock.
724  if (TimePassesIsEnabled) {
725    NamedRegionTimer T("Instruction Selection", GroupName);
726    InstructionSelect();
727  } else {
728    InstructionSelect();
729  }
730
731  DEBUG(dbgs() << "Selected selection DAG:\n");
732  DEBUG(CurDAG->dump());
733
734  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
735
736  // Schedule machine code.
737  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
738  if (TimePassesIsEnabled) {
739    NamedRegionTimer T("Instruction Scheduling", GroupName);
740    Scheduler->Run(CurDAG, BB, BB->end());
741  } else {
742    Scheduler->Run(CurDAG, BB, BB->end());
743  }
744
745  if (ViewSUnitDAGs) Scheduler->viewGraph();
746
747  // Emit machine code to BB.  This can change 'BB' to the last block being
748  // inserted into.
749  if (TimePassesIsEnabled) {
750    NamedRegionTimer T("Instruction Creation", GroupName);
751    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
752  } else {
753    BB = Scheduler->EmitSchedule(&SDB->EdgeMapping);
754  }
755
756  // Free the scheduler state.
757  if (TimePassesIsEnabled) {
758    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
759    delete Scheduler;
760  } else {
761    delete Scheduler;
762  }
763
764  DEBUG(dbgs() << "Selected machine code:\n");
765  DEBUG(BB->dump());
766}
767
768void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
769                                            MachineFunction &MF,
770                                            MachineModuleInfo *MMI,
771                                            DwarfWriter *DW,
772                                            const TargetInstrInfo &TII) {
773  // Initialize the Fast-ISel state, if needed.
774  FastISel *FastIS = 0;
775  if (EnableFastISel)
776    FastIS = TLI.createFastISel(MF, MMI, DW,
777                                FuncInfo->ValueMap,
778                                FuncInfo->MBBMap,
779                                FuncInfo->StaticAllocaMap
780#ifndef NDEBUG
781                                , FuncInfo->CatchInfoLost
782#endif
783                                );
784
785  unsigned MDDbgKind = Fn.getContext().getMDKindID("dbg");
786
787  // Iterate over all basic blocks in the function.
788  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
789    BasicBlock *LLVMBB = &*I;
790    BB = FuncInfo->MBBMap[LLVMBB];
791
792    BasicBlock::iterator const Begin = LLVMBB->begin();
793    BasicBlock::iterator const End = LLVMBB->end();
794    BasicBlock::iterator BI = Begin;
795
796    // Lower any arguments needed in this block if this is the entry block.
797    bool SuppressFastISel = false;
798    if (LLVMBB == &Fn.getEntryBlock()) {
799      LowerArguments(LLVMBB);
800
801      // If any of the arguments has the byval attribute, forgo
802      // fast-isel in the entry block.
803      if (FastIS) {
804        unsigned j = 1;
805        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
806             I != E; ++I, ++j)
807          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
808            if (EnableFastISelVerbose || EnableFastISelAbort)
809              dbgs() << "FastISel skips entry block due to byval argument\n";
810            SuppressFastISel = true;
811            break;
812          }
813      }
814    }
815
816    if (MMI && BB->isLandingPad()) {
817      // Add a label to mark the beginning of the landing pad.  Deletion of the
818      // landing pad can thus be detected via the MachineModuleInfo.
819      unsigned LabelID = MMI->addLandingPad(BB);
820
821      const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL);
822      BuildMI(BB, SDB->getCurDebugLoc(), II).addImm(LabelID);
823
824      // Mark exception register as live in.
825      unsigned Reg = TLI.getExceptionAddressRegister();
826      if (Reg) BB->addLiveIn(Reg);
827
828      // Mark exception selector register as live in.
829      Reg = TLI.getExceptionSelectorRegister();
830      if (Reg) BB->addLiveIn(Reg);
831
832      // FIXME: Hack around an exception handling flaw (PR1508): the personality
833      // function and list of typeids logically belong to the invoke (or, if you
834      // like, the basic block containing the invoke), and need to be associated
835      // with it in the dwarf exception handling tables.  Currently however the
836      // information is provided by an intrinsic (eh.selector) that can be moved
837      // to unexpected places by the optimizers: if the unwind edge is critical,
838      // then breaking it can result in the intrinsics being in the successor of
839      // the landing pad, not the landing pad itself.  This results
840      // in exceptions not being caught because no typeids are associated with
841      // the invoke.  This may not be the only way things can go wrong, but it
842      // is the only way we try to work around for the moment.
843      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
844
845      if (Br && Br->isUnconditional()) { // Critical edge?
846        BasicBlock::iterator I, E;
847        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
848          if (isa<EHSelectorInst>(I))
849            break;
850
851        if (I == E)
852          // No catch info found - try to extract some from the successor.
853          CopyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
854      }
855    }
856
857    // Before doing SelectionDAG ISel, see if FastISel has been requested.
858    if (FastIS && !SuppressFastISel) {
859      // Emit code for any incoming arguments. This must happen before
860      // beginning FastISel on the entry block.
861      if (LLVMBB == &Fn.getEntryBlock()) {
862        CurDAG->setRoot(SDB->getControlRoot());
863        CodeGenAndEmitDAG();
864        SDB->clear();
865      }
866      FastIS->startNewBlock(BB);
867      // Do FastISel on as many instructions as possible.
868      for (; BI != End; ++BI) {
869        // Just before the terminator instruction, insert instructions to
870        // feed PHI nodes in successor blocks.
871        if (isa<TerminatorInst>(BI))
872          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
873            ResetDebugLoc(SDB, FastIS);
874            if (EnableFastISelVerbose || EnableFastISelAbort) {
875              dbgs() << "FastISel miss: ";
876              BI->dump();
877            }
878            assert(!EnableFastISelAbort &&
879                   "FastISel didn't handle a PHI in a successor");
880            break;
881          }
882
883        SetDebugLoc(MDDbgKind, BI, SDB, FastIS, &MF);
884
885        // Try to select the instruction with FastISel.
886        if (FastIS->SelectInstruction(BI)) {
887          ResetDebugLoc(SDB, FastIS);
888          continue;
889        }
890
891        // Clear out the debug location so that it doesn't carry over to
892        // unrelated instructions.
893        ResetDebugLoc(SDB, FastIS);
894
895        // Then handle certain instructions as single-LLVM-Instruction blocks.
896        if (isa<CallInst>(BI)) {
897          if (EnableFastISelVerbose || EnableFastISelAbort) {
898            dbgs() << "FastISel missed call: ";
899            BI->dump();
900          }
901
902          if (!BI->getType()->isVoidTy()) {
903            unsigned &R = FuncInfo->ValueMap[BI];
904            if (!R)
905              R = FuncInfo->CreateRegForValue(BI);
906          }
907
908          bool HadTailCall = false;
909          SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall);
910
911          // If the call was emitted as a tail call, we're done with the block.
912          if (HadTailCall) {
913            BI = End;
914            break;
915          }
916
917          // If the instruction was codegen'd with multiple blocks,
918          // inform the FastISel object where to resume inserting.
919          FastIS->setCurrentBlock(BB);
920          continue;
921        }
922
923        // Otherwise, give up on FastISel for the rest of the block.
924        // For now, be a little lenient about non-branch terminators.
925        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
926          if (EnableFastISelVerbose || EnableFastISelAbort) {
927            dbgs() << "FastISel miss: ";
928            BI->dump();
929          }
930          if (EnableFastISelAbort)
931            // The "fast" selector couldn't handle something and bailed.
932            // For the purpose of debugging, just abort.
933            llvm_unreachable("FastISel didn't select the entire block");
934        }
935        break;
936      }
937    }
938
939    // Run SelectionDAG instruction selection on the remainder of the block
940    // not handled by FastISel. If FastISel is not run, this is the entire
941    // block.
942    if (BI != End) {
943      bool HadTailCall;
944      SelectBasicBlock(LLVMBB, BI, End, HadTailCall);
945    }
946
947    FinishBasicBlock();
948  }
949
950  delete FastIS;
951}
952
953void
954SelectionDAGISel::FinishBasicBlock() {
955
956  DEBUG(dbgs() << "Target-post-processed machine code:\n");
957  DEBUG(BB->dump());
958
959  DEBUG(dbgs() << "Total amount of phi nodes to update: "
960               << SDB->PHINodesToUpdate.size() << "\n");
961  DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i)
962          dbgs() << "Node " << i << " : ("
963                 << SDB->PHINodesToUpdate[i].first
964                 << ", " << SDB->PHINodesToUpdate[i].second << ")\n");
965
966  // Next, now that we know what the last MBB the LLVM BB expanded is, update
967  // PHI nodes in successors.
968  if (SDB->SwitchCases.empty() &&
969      SDB->JTCases.empty() &&
970      SDB->BitTestCases.empty()) {
971    for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
972      MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
973      assert(PHI->isPHI() &&
974             "This is not a machine PHI node that we are updating!");
975      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
976                                                false));
977      PHI->addOperand(MachineOperand::CreateMBB(BB));
978    }
979    SDB->PHINodesToUpdate.clear();
980    return;
981  }
982
983  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
984    // Lower header first, if it wasn't already lowered
985    if (!SDB->BitTestCases[i].Emitted) {
986      // Set the current basic block to the mbb we wish to insert the code into
987      BB = SDB->BitTestCases[i].Parent;
988      SDB->setCurrentBasicBlock(BB);
989      // Emit the code
990      SDB->visitBitTestHeader(SDB->BitTestCases[i]);
991      CurDAG->setRoot(SDB->getRoot());
992      CodeGenAndEmitDAG();
993      SDB->clear();
994    }
995
996    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
997      // Set the current basic block to the mbb we wish to insert the code into
998      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
999      SDB->setCurrentBasicBlock(BB);
1000      // Emit the code
1001      if (j+1 != ej)
1002        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
1003                              SDB->BitTestCases[i].Reg,
1004                              SDB->BitTestCases[i].Cases[j]);
1005      else
1006        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
1007                              SDB->BitTestCases[i].Reg,
1008                              SDB->BitTestCases[i].Cases[j]);
1009
1010
1011      CurDAG->setRoot(SDB->getRoot());
1012      CodeGenAndEmitDAG();
1013      SDB->clear();
1014    }
1015
1016    // Update PHI Nodes
1017    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1018      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1019      MachineBasicBlock *PHIBB = PHI->getParent();
1020      assert(PHI->isPHI() &&
1021             "This is not a machine PHI node that we are updating!");
1022      // This is "default" BB. We have two jumps to it. From "header" BB and
1023      // from last "case" BB.
1024      if (PHIBB == SDB->BitTestCases[i].Default) {
1025        PHI->addOperand(MachineOperand::
1026                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1027        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1028        PHI->addOperand(MachineOperand::
1029                        CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1030        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1031                                                  back().ThisBB));
1032      }
1033      // One of "cases" BB.
1034      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1035           j != ej; ++j) {
1036        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1037        if (cBB->isSuccessor(PHIBB)) {
1038          PHI->addOperand(MachineOperand::
1039                          CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1040          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1041        }
1042      }
1043    }
1044  }
1045  SDB->BitTestCases.clear();
1046
1047  // If the JumpTable record is filled in, then we need to emit a jump table.
1048  // Updating the PHI nodes is tricky in this case, since we need to determine
1049  // whether the PHI is a successor of the range check MBB or the jump table MBB
1050  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1051    // Lower header first, if it wasn't already lowered
1052    if (!SDB->JTCases[i].first.Emitted) {
1053      // Set the current basic block to the mbb we wish to insert the code into
1054      BB = SDB->JTCases[i].first.HeaderBB;
1055      SDB->setCurrentBasicBlock(BB);
1056      // Emit the code
1057      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first);
1058      CurDAG->setRoot(SDB->getRoot());
1059      CodeGenAndEmitDAG();
1060      SDB->clear();
1061    }
1062
1063    // Set the current basic block to the mbb we wish to insert the code into
1064    BB = SDB->JTCases[i].second.MBB;
1065    SDB->setCurrentBasicBlock(BB);
1066    // Emit the code
1067    SDB->visitJumpTable(SDB->JTCases[i].second);
1068    CurDAG->setRoot(SDB->getRoot());
1069    CodeGenAndEmitDAG();
1070    SDB->clear();
1071
1072    // Update PHI Nodes
1073    for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) {
1074      MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first;
1075      MachineBasicBlock *PHIBB = PHI->getParent();
1076      assert(PHI->isPHI() &&
1077             "This is not a machine PHI node that we are updating!");
1078      // "default" BB. We can go there only from header BB.
1079      if (PHIBB == SDB->JTCases[i].second.Default) {
1080        PHI->addOperand
1081          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1082        PHI->addOperand
1083          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1084      }
1085      // JT BB. Just iterate over successors here
1086      if (BB->isSuccessor(PHIBB)) {
1087        PHI->addOperand
1088          (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false));
1089        PHI->addOperand(MachineOperand::CreateMBB(BB));
1090      }
1091    }
1092  }
1093  SDB->JTCases.clear();
1094
1095  // If the switch block involved a branch to one of the actual successors, we
1096  // need to update PHI nodes in that block.
1097  for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) {
1098    MachineInstr *PHI = SDB->PHINodesToUpdate[i].first;
1099    assert(PHI->isPHI() &&
1100           "This is not a machine PHI node that we are updating!");
1101    if (BB->isSuccessor(PHI->getParent())) {
1102      PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second,
1103                                                false));
1104      PHI->addOperand(MachineOperand::CreateMBB(BB));
1105    }
1106  }
1107
1108  // If we generated any switch lowering information, build and codegen any
1109  // additional DAGs necessary.
1110  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1111    // Set the current basic block to the mbb we wish to insert the code into
1112    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
1113    SDB->setCurrentBasicBlock(BB);
1114
1115    // Emit the code
1116    SDB->visitSwitchCase(SDB->SwitchCases[i]);
1117    CurDAG->setRoot(SDB->getRoot());
1118    CodeGenAndEmitDAG();
1119
1120    // Handle any PHI nodes in successors of this chunk, as if we were coming
1121    // from the original BB before switch expansion.  Note that PHI nodes can
1122    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1123    // handle them the right number of times.
1124    while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1125      // If new BB's are created during scheduling, the edges may have been
1126      // updated. That is, the edge from ThisBB to BB may have been split and
1127      // BB's predecessor is now another block.
1128      DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI =
1129        SDB->EdgeMapping.find(BB);
1130      if (EI != SDB->EdgeMapping.end())
1131        ThisBB = EI->second;
1132
1133      // BB may have been removed from the CFG if a branch was constant folded.
1134      if (ThisBB->isSuccessor(BB)) {
1135        for (MachineBasicBlock::iterator Phi = BB->begin();
1136             Phi != BB->end() && Phi->isPHI();
1137             ++Phi) {
1138          // This value for this PHI node is recorded in PHINodesToUpdate.
1139          for (unsigned pn = 0; ; ++pn) {
1140            assert(pn != SDB->PHINodesToUpdate.size() &&
1141                   "Didn't find PHI entry!");
1142            if (SDB->PHINodesToUpdate[pn].first == Phi) {
1143              Phi->addOperand(MachineOperand::
1144                              CreateReg(SDB->PHINodesToUpdate[pn].second,
1145                                        false));
1146              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1147              break;
1148            }
1149          }
1150        }
1151      }
1152
1153      // Don't process RHS if same block as LHS.
1154      if (BB == SDB->SwitchCases[i].FalseBB)
1155        SDB->SwitchCases[i].FalseBB = 0;
1156
1157      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1158      SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB;
1159      SDB->SwitchCases[i].FalseBB = 0;
1160    }
1161    assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0);
1162    SDB->clear();
1163  }
1164  SDB->SwitchCases.clear();
1165
1166  SDB->PHINodesToUpdate.clear();
1167}
1168
1169
1170/// Create the scheduler. If a specific scheduler was specified
1171/// via the SchedulerRegistry, use it, otherwise select the
1172/// one preferred by the target.
1173///
1174ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1175  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1176
1177  if (!Ctor) {
1178    Ctor = ISHeuristic;
1179    RegisterScheduler::setDefault(Ctor);
1180  }
1181
1182  return Ctor(this, OptLevel);
1183}
1184
1185ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1186  return new ScheduleHazardRecognizer();
1187}
1188
1189//===----------------------------------------------------------------------===//
1190// Helper functions used by the generated instruction selector.
1191//===----------------------------------------------------------------------===//
1192// Calls to these methods are generated by tblgen.
1193
1194/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1195/// the dag combiner simplified the 255, we still want to match.  RHS is the
1196/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1197/// specified in the .td file (e.g. 255).
1198bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1199                                    int64_t DesiredMaskS) const {
1200  const APInt &ActualMask = RHS->getAPIntValue();
1201  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1202
1203  // If the actual mask exactly matches, success!
1204  if (ActualMask == DesiredMask)
1205    return true;
1206
1207  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1208  if (ActualMask.intersects(~DesiredMask))
1209    return false;
1210
1211  // Otherwise, the DAG Combiner may have proven that the value coming in is
1212  // either already zero or is not demanded.  Check for known zero input bits.
1213  APInt NeededMask = DesiredMask & ~ActualMask;
1214  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1215    return true;
1216
1217  // TODO: check to see if missing bits are just not demanded.
1218
1219  // Otherwise, this pattern doesn't match.
1220  return false;
1221}
1222
1223/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1224/// the dag combiner simplified the 255, we still want to match.  RHS is the
1225/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1226/// specified in the .td file (e.g. 255).
1227bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1228                                   int64_t DesiredMaskS) const {
1229  const APInt &ActualMask = RHS->getAPIntValue();
1230  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1231
1232  // If the actual mask exactly matches, success!
1233  if (ActualMask == DesiredMask)
1234    return true;
1235
1236  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1237  if (ActualMask.intersects(~DesiredMask))
1238    return false;
1239
1240  // Otherwise, the DAG Combiner may have proven that the value coming in is
1241  // either already zero or is not demanded.  Check for known zero input bits.
1242  APInt NeededMask = DesiredMask & ~ActualMask;
1243
1244  APInt KnownZero, KnownOne;
1245  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1246
1247  // If all the missing bits in the or are already known to be set, match!
1248  if ((NeededMask & KnownOne) == NeededMask)
1249    return true;
1250
1251  // TODO: check to see if missing bits are just not demanded.
1252
1253  // Otherwise, this pattern doesn't match.
1254  return false;
1255}
1256
1257
1258/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1259/// by tblgen.  Others should not call it.
1260void SelectionDAGISel::
1261SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1262  std::vector<SDValue> InOps;
1263  std::swap(InOps, Ops);
1264
1265  Ops.push_back(InOps[0]);  // input chain.
1266  Ops.push_back(InOps[1]);  // input asm string.
1267
1268  unsigned i = 2, e = InOps.size();
1269  if (InOps[e-1].getValueType() == MVT::Flag)
1270    --e;  // Don't process a flag operand if it is here.
1271
1272  while (i != e) {
1273    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1274    if ((Flags & 7) != 4 /*MEM*/) {
1275      // Just skip over this operand, copying the operands verbatim.
1276      Ops.insert(Ops.end(), InOps.begin()+i,
1277                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1278      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1279    } else {
1280      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1281             "Memory operand with multiple values?");
1282      // Otherwise, this is a memory operand.  Ask the target to select it.
1283      std::vector<SDValue> SelOps;
1284      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1285        llvm_report_error("Could not match memory address.  Inline asm"
1286                          " failure!");
1287      }
1288
1289      // Add this to the output node.
1290      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1291                                              MVT::i32));
1292      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1293      i += 2;
1294    }
1295  }
1296
1297  // Add the flag input back if present.
1298  if (e != InOps.size())
1299    Ops.push_back(InOps.back());
1300}
1301
1302/// findFlagUse - Return use of EVT::Flag value produced by the specified
1303/// SDNode.
1304///
1305static SDNode *findFlagUse(SDNode *N) {
1306  unsigned FlagResNo = N->getNumValues()-1;
1307  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1308    SDUse &Use = I.getUse();
1309    if (Use.getResNo() == FlagResNo)
1310      return Use.getUser();
1311  }
1312  return NULL;
1313}
1314
1315/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1316/// This function recursively traverses up the operand chain, ignoring
1317/// certain nodes.
1318static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1319                          SDNode *Root,
1320                          SmallPtrSet<SDNode*, 16> &Visited) {
1321  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1322  // greater than all of its (recursive) operands.  If we scan to a point where
1323  // 'use' is smaller than the node we're scanning for, then we know we will
1324  // never find it.
1325  //
1326  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1327  // happen because we scan down to newly selected nodes in the case of flag
1328  // uses.
1329  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1330    return false;
1331
1332  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1333  // won't fail if we scan it again.
1334  if (!Visited.insert(Use))
1335    return false;
1336
1337  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1338    SDNode *N = Use->getOperand(i).getNode();
1339    if (N == Def) {
1340      if (Use == ImmedUse || Use == Root)
1341        continue;  // We are not looking for immediate use.
1342      assert(N != Root);
1343      return true;
1344    }
1345
1346    // Traverse up the operand chain.
1347    if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
1348      return true;
1349  }
1350  return false;
1351}
1352
1353/// isNonImmUse - Start searching from Root up the DAG to check is Def can
1354/// be reached. Return true if that's the case. However, ignore direct uses
1355/// by ImmedUse (which would be U in the example illustrated in
1356/// IsLegalToFold) and by Root (which can happen in the store case).
1357/// FIXME: to be really generic, we should allow direct use by any node
1358/// that is being folded. But realisticly since we only fold loads which
1359/// have one non-chain use, we only need to watch out for load/op/store
1360/// and load/op/cmp case where the root (store / cmp) may reach the load via
1361/// its chain operand.
1362static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
1363  SmallPtrSet<SDNode*, 16> Visited;
1364  return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
1365}
1366
1367/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1368/// operand node N of U during instruction selection that starts at Root.
1369bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1370                                          SDNode *Root) const {
1371  if (OptLevel == CodeGenOpt::None) return false;
1372  return N.hasOneUse();
1373}
1374
1375/// IsLegalToFold - Returns true if the specific operand node N of
1376/// U can be folded during instruction selection that starts at Root.
1377bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root) const {
1378  if (OptLevel == CodeGenOpt::None) return false;
1379
1380  // If Root use can somehow reach N through a path that that doesn't contain
1381  // U then folding N would create a cycle. e.g. In the following
1382  // diagram, Root can reach N through X. If N is folded into into Root, then
1383  // X is both a predecessor and a successor of U.
1384  //
1385  //          [N*]           //
1386  //         ^   ^           //
1387  //        /     \          //
1388  //      [U*]    [X]?       //
1389  //        ^     ^          //
1390  //         \   /           //
1391  //          \ /            //
1392  //         [Root*]         //
1393  //
1394  // * indicates nodes to be folded together.
1395  //
1396  // If Root produces a flag, then it gets (even more) interesting. Since it
1397  // will be "glued" together with its flag use in the scheduler, we need to
1398  // check if it might reach N.
1399  //
1400  //          [N*]           //
1401  //         ^   ^           //
1402  //        /     \          //
1403  //      [U*]    [X]?       //
1404  //        ^       ^        //
1405  //         \       \       //
1406  //          \      |       //
1407  //         [Root*] |       //
1408  //          ^      |       //
1409  //          f      |       //
1410  //          |      /       //
1411  //         [Y]    /        //
1412  //           ^   /         //
1413  //           f  /          //
1414  //           | /           //
1415  //          [FU]           //
1416  //
1417  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1418  // (call it Fold), then X is a predecessor of FU and a successor of
1419  // Fold. But since Fold and FU are flagged together, this will create
1420  // a cycle in the scheduling graph.
1421
1422  EVT VT = Root->getValueType(Root->getNumValues()-1);
1423  while (VT == MVT::Flag) {
1424    SDNode *FU = findFlagUse(Root);
1425    if (FU == NULL)
1426      break;
1427    Root = FU;
1428    VT = Root->getValueType(Root->getNumValues()-1);
1429  }
1430
1431  return !isNonImmUse(Root, N.getNode(), U);
1432}
1433
1434SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1435  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1436  SelectInlineAsmMemoryOperands(Ops);
1437
1438  std::vector<EVT> VTs;
1439  VTs.push_back(MVT::Other);
1440  VTs.push_back(MVT::Flag);
1441  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1442                                VTs, &Ops[0], Ops.size());
1443  return New.getNode();
1444}
1445
1446SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1447  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1448}
1449
1450SDNode *SelectionDAGISel::Select_EH_LABEL(SDNode *N) {
1451  SDValue Chain = N->getOperand(0);
1452  unsigned C = cast<LabelSDNode>(N)->getLabelID();
1453  SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);
1454  return CurDAG->SelectNodeTo(N, TargetOpcode::EH_LABEL,
1455                              MVT::Other, Tmp, Chain);
1456}
1457
1458
1459/// ChainNotReachable - Returns true if Chain does not reach Op.
1460static bool ChainNotReachable(SDNode *Chain, SDNode *Op) {
1461  if (Chain->getOpcode() == ISD::EntryToken)
1462    return true;
1463  if (Chain->getOpcode() == ISD::TokenFactor)
1464    return false;
1465  if (Chain->getNumOperands() > 0) {
1466    SDValue C0 = Chain->getOperand(0);
1467    if (C0.getValueType() == MVT::Other)
1468      return C0.getNode() != Op && ChainNotReachable(C0.getNode(), Op);
1469  }
1470  return true;
1471}
1472
1473/// IsChainCompatible - Returns true if Chain is Op or Chain does not reach Op.
1474/// This is used to ensure that there are no nodes trapped between Chain, which
1475/// is the first chain node discovered in a pattern and Op, a later node, that
1476/// will not be selected into the pattern.
1477static bool IsChainCompatible(SDNode *Chain, SDNode *Op) {
1478  return Chain == Op || ChainNotReachable(Chain, Op);
1479}
1480
1481
1482/// GetVBR - decode a vbr encoding whose top bit is set.
1483ALWAYS_INLINE static uint64_t
1484GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1485  assert(Val >= 128 && "Not a VBR");
1486  Val &= 127;  // Remove first vbr bit.
1487
1488  unsigned Shift = 7;
1489  uint64_t NextBits;
1490  do {
1491    NextBits = MatcherTable[Idx++];
1492    Val |= (NextBits&127) << Shift;
1493    Shift += 7;
1494  } while (NextBits & 128);
1495
1496  return Val;
1497}
1498
1499
1500/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1501/// interior flag and chain results to use the new flag and chain results.
1502static void UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1503                              const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1504                                 SDValue InputFlag,
1505                         const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1506                                 bool isMorphNodeTo, SelectionDAG *CurDAG) {
1507  // Now that all the normal results are replaced, we replace the chain and
1508  // flag results if present.
1509  if (!ChainNodesMatched.empty()) {
1510    assert(InputChain.getNode() != 0 &&
1511           "Matched input chains but didn't produce a chain");
1512    // Loop over all of the nodes we matched that produced a chain result.
1513    // Replace all the chain results with the final chain we ended up with.
1514    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1515      SDNode *ChainNode = ChainNodesMatched[i];
1516
1517      // Don't replace the results of the root node if we're doing a
1518      // MorphNodeTo.
1519      if (ChainNode == NodeToMatch && isMorphNodeTo)
1520        continue;
1521
1522      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1523      if (ChainVal.getValueType() == MVT::Flag)
1524        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1525      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1526      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
1527    }
1528  }
1529
1530  // If the result produces a flag, update any flag results in the matched
1531  // pattern with the flag result.
1532  if (InputFlag.getNode() != 0) {
1533    // Handle any interior nodes explicitly marked.
1534    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1535      SDNode *FRN = FlagResultNodesMatched[i];
1536      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1537             "Doesn't have a flag result");
1538      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1539                                        InputFlag);
1540    }
1541  }
1542
1543  DEBUG(errs() << "ISEL: Match complete!\n");
1544}
1545
1546/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1547/// operation for when the pattern matched multiple nodes with chains.
1548static SDValue
1549HandleMergeInputChains(const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1550                       SelectionDAG *CurDAG) {
1551  assert(ChainNodesMatched.size() > 1 &&
1552         "Should only happen for multi chain node case");
1553
1554  // Walk all the chained nodes, adding the input chains if they are not in
1555  // ChainedNodes (and this, not in the matched pattern).  This is an N^2
1556  // algorithm, but # chains is usually 2 here, at most 3 for MSP430.
1557  SmallVector<SDValue, 3> InputChains;
1558  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1559    SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1560    assert(InChain.getValueType() == MVT::Other && "Not a chain");
1561    bool Invalid = false;
1562    for (unsigned j = 0; j != e; ++j)
1563      Invalid |= ChainNodesMatched[j] == InChain.getNode();
1564    if (!Invalid)
1565      InputChains.push_back(InChain);
1566  }
1567
1568  SDValue Res;
1569  if (InputChains.size() == 1)
1570    return InputChains[0];
1571  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1572                         MVT::Other, &InputChains[0], InputChains.size());
1573}
1574
1575struct MatchScope {
1576  /// FailIndex - If this match fails, this is the index to continue with.
1577  unsigned FailIndex;
1578
1579  /// NodeStack - The node stack when the scope was formed.
1580  SmallVector<SDValue, 4> NodeStack;
1581
1582  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1583  unsigned NumRecordedNodes;
1584
1585  /// NumMatchedMemRefs - The number of matched memref entries.
1586  unsigned NumMatchedMemRefs;
1587
1588  /// InputChain/InputFlag - The current chain/flag
1589  SDValue InputChain, InputFlag;
1590
1591  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1592  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1593};
1594
1595SDNode *SelectionDAGISel::
1596SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1597                 unsigned TableSize) {
1598  // FIXME: Should these even be selected?  Handle these cases in the caller?
1599  switch (NodeToMatch->getOpcode()) {
1600  default:
1601    break;
1602  case ISD::EntryToken:       // These nodes remain the same.
1603  case ISD::BasicBlock:
1604  case ISD::Register:
1605  case ISD::HANDLENODE:
1606  case ISD::TargetConstant:
1607  case ISD::TargetConstantFP:
1608  case ISD::TargetConstantPool:
1609  case ISD::TargetFrameIndex:
1610  case ISD::TargetExternalSymbol:
1611  case ISD::TargetBlockAddress:
1612  case ISD::TargetJumpTable:
1613  case ISD::TargetGlobalTLSAddress:
1614  case ISD::TargetGlobalAddress:
1615  case ISD::TokenFactor:
1616  case ISD::CopyFromReg:
1617  case ISD::CopyToReg:
1618    return 0;
1619  case ISD::AssertSext:
1620  case ISD::AssertZext:
1621    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1622                                      NodeToMatch->getOperand(0));
1623    return 0;
1624  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1625  case ISD::EH_LABEL:  return Select_EH_LABEL(NodeToMatch);
1626  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1627  }
1628
1629  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1630
1631  // Set up the node stack with NodeToMatch as the only node on the stack.
1632  SmallVector<SDValue, 8> NodeStack;
1633  SDValue N = SDValue(NodeToMatch, 0);
1634  NodeStack.push_back(N);
1635
1636  // MatchScopes - Scopes used when matching, if a match failure happens, this
1637  // indicates where to continue checking.
1638  SmallVector<MatchScope, 8> MatchScopes;
1639
1640  // RecordedNodes - This is the set of nodes that have been recorded by the
1641  // state machine.
1642  SmallVector<SDValue, 8> RecordedNodes;
1643
1644  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1645  // pattern.
1646  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1647
1648  // These are the current input chain and flag for use when generating nodes.
1649  // Various Emit operations change these.  For example, emitting a copytoreg
1650  // uses and updates these.
1651  SDValue InputChain, InputFlag;
1652
1653  // ChainNodesMatched - If a pattern matches nodes that have input/output
1654  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1655  // which ones they are.  The result is captured into this list so that we can
1656  // update the chain results when the pattern is complete.
1657  SmallVector<SDNode*, 3> ChainNodesMatched;
1658  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1659
1660  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1661        NodeToMatch->dump(CurDAG);
1662        errs() << '\n');
1663
1664  // Determine where to start the interpreter.  Normally we start at opcode #0,
1665  // but if the state machine starts with an OPC_SwitchOpcode, then we
1666  // accelerate the first lookup (which is guaranteed to be hot) with the
1667  // OpcodeOffset table.
1668  unsigned MatcherIndex = 0;
1669
1670  if (!OpcodeOffset.empty()) {
1671    // Already computed the OpcodeOffset table, just index into it.
1672    if (N.getOpcode() < OpcodeOffset.size())
1673      MatcherIndex = OpcodeOffset[N.getOpcode()];
1674    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1675
1676  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1677    // Otherwise, the table isn't computed, but the state machine does start
1678    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1679    // is the first time we're selecting an instruction.
1680    unsigned Idx = 1;
1681    while (1) {
1682      // Get the size of this case.
1683      unsigned CaseSize = MatcherTable[Idx++];
1684      if (CaseSize & 128)
1685        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1686      if (CaseSize == 0) break;
1687
1688      // Get the opcode, add the index to the table.
1689      unsigned Opc = MatcherTable[Idx++];
1690      if (Opc >= OpcodeOffset.size())
1691        OpcodeOffset.resize((Opc+1)*2);
1692      OpcodeOffset[Opc] = Idx;
1693      Idx += CaseSize;
1694    }
1695
1696    // Okay, do the lookup for the first opcode.
1697    if (N.getOpcode() < OpcodeOffset.size())
1698      MatcherIndex = OpcodeOffset[N.getOpcode()];
1699  }
1700
1701  while (1) {
1702    assert(MatcherIndex < TableSize && "Invalid index");
1703    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
1704    switch (Opcode) {
1705    case OPC_Scope: {
1706      unsigned NumToSkip = MatcherTable[MatcherIndex++];
1707      if (NumToSkip & 128)
1708        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
1709      assert(NumToSkip != 0 &&
1710             "First entry of OPC_Scope shouldn't be 0, scope has no children?");
1711
1712      // Push a MatchScope which indicates where to go if the first child fails
1713      // to match.
1714      MatchScope NewEntry;
1715      NewEntry.FailIndex = MatcherIndex+NumToSkip;
1716      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
1717      NewEntry.NumRecordedNodes = RecordedNodes.size();
1718      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
1719      NewEntry.InputChain = InputChain;
1720      NewEntry.InputFlag = InputFlag;
1721      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
1722      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
1723      MatchScopes.push_back(NewEntry);
1724      continue;
1725    }
1726    case OPC_RecordNode:
1727      // Remember this node, it may end up being an operand in the pattern.
1728      RecordedNodes.push_back(N);
1729      continue;
1730
1731    case OPC_RecordChild0: case OPC_RecordChild1:
1732    case OPC_RecordChild2: case OPC_RecordChild3:
1733    case OPC_RecordChild4: case OPC_RecordChild5:
1734    case OPC_RecordChild6: case OPC_RecordChild7: {
1735      unsigned ChildNo = Opcode-OPC_RecordChild0;
1736      if (ChildNo >= N.getNumOperands())
1737        break;  // Match fails if out of range child #.
1738
1739      RecordedNodes.push_back(N->getOperand(ChildNo));
1740      continue;
1741    }
1742    case OPC_RecordMemRef:
1743      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
1744      continue;
1745
1746    case OPC_CaptureFlagInput:
1747      // If the current node has an input flag, capture it in InputFlag.
1748      if (N->getNumOperands() != 0 &&
1749          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
1750        InputFlag = N->getOperand(N->getNumOperands()-1);
1751      continue;
1752
1753    case OPC_MoveChild: {
1754      unsigned ChildNo = MatcherTable[MatcherIndex++];
1755      if (ChildNo >= N.getNumOperands())
1756        break;  // Match fails if out of range child #.
1757      N = N.getOperand(ChildNo);
1758      NodeStack.push_back(N);
1759      continue;
1760    }
1761
1762    case OPC_MoveParent:
1763      // Pop the current node off the NodeStack.
1764      NodeStack.pop_back();
1765      assert(!NodeStack.empty() && "Node stack imbalance!");
1766      N = NodeStack.back();
1767      continue;
1768
1769    case OPC_CheckSame: {
1770      // Accept if it is exactly the same as a previously recorded node.
1771      unsigned RecNo = MatcherTable[MatcherIndex++];
1772      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1773      if (N != RecordedNodes[RecNo]) break;
1774      continue;
1775    }
1776    case OPC_CheckPatternPredicate:
1777      if (!CheckPatternPredicate(MatcherTable[MatcherIndex++])) break;
1778      continue;
1779    case OPC_CheckPredicate:
1780      if (!CheckNodePredicate(N.getNode(), MatcherTable[MatcherIndex++])) break;
1781      continue;
1782    case OPC_CheckComplexPat:
1783      if (!CheckComplexPattern(NodeToMatch, N,
1784                               MatcherTable[MatcherIndex++], RecordedNodes))
1785        break;
1786      continue;
1787    case OPC_CheckOpcode:
1788      if (N->getOpcode() != MatcherTable[MatcherIndex++]) break;
1789      continue;
1790
1791    case OPC_SwitchOpcode: {
1792      unsigned CurNodeOpcode = N.getOpcode();
1793
1794      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
1795
1796      unsigned CaseSize;
1797      while (1) {
1798        // Get the size of this case.
1799        CaseSize = MatcherTable[MatcherIndex++];
1800        if (CaseSize & 128)
1801          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
1802        if (CaseSize == 0) break;
1803
1804        // If the opcode matches, then we will execute this case.
1805        if (CurNodeOpcode == MatcherTable[MatcherIndex++])
1806          break;
1807
1808        // Otherwise, skip over this case.
1809        MatcherIndex += CaseSize;
1810      }
1811
1812      // If we failed to match, bail out.
1813      if (CaseSize == 0) break;
1814
1815      // Otherwise, execute the case we found.
1816      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
1817                   << " to " << MatcherIndex << "\n");
1818      continue;
1819    }
1820
1821    case OPC_CheckType: {
1822      MVT::SimpleValueType VT =
1823        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1824      if (N.getValueType() != VT) {
1825        // Handle the case when VT is iPTR.
1826        if (VT != MVT::iPTR || N.getValueType() != TLI.getPointerTy())
1827          break;
1828      }
1829      continue;
1830    }
1831    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
1832    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
1833    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
1834    case OPC_CheckChild6Type: case OPC_CheckChild7Type: {
1835      unsigned ChildNo = Opcode-OPC_CheckChild0Type;
1836      if (ChildNo >= N.getNumOperands())
1837        break;  // Match fails if out of range child #.
1838
1839      MVT::SimpleValueType VT =
1840        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1841      EVT ChildVT = N.getOperand(ChildNo).getValueType();
1842      if (ChildVT != VT) {
1843        // Handle the case when VT is iPTR.
1844        if (VT != MVT::iPTR || ChildVT != TLI.getPointerTy())
1845          break;
1846      }
1847      continue;
1848    }
1849    case OPC_CheckCondCode:
1850      if (cast<CondCodeSDNode>(N)->get() !=
1851          (ISD::CondCode)MatcherTable[MatcherIndex++]) break;
1852      continue;
1853    case OPC_CheckValueType: {
1854      MVT::SimpleValueType VT =
1855        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1856      if (cast<VTSDNode>(N)->getVT() != VT) {
1857        // Handle the case when VT is iPTR.
1858        if (VT != MVT::iPTR || cast<VTSDNode>(N)->getVT() != TLI.getPointerTy())
1859          break;
1860      }
1861      continue;
1862    }
1863    case OPC_CheckInteger: {
1864      int64_t Val = MatcherTable[MatcherIndex++];
1865      if (Val & 128)
1866        Val = GetVBR(Val, MatcherTable, MatcherIndex);
1867
1868      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1869      if (C == 0 || C->getSExtValue() != Val)
1870        break;
1871      continue;
1872    }
1873    case OPC_CheckAndImm: {
1874      int64_t Val = MatcherTable[MatcherIndex++];
1875      if (Val & 128)
1876        Val = GetVBR(Val, MatcherTable, MatcherIndex);
1877
1878      if (N->getOpcode() != ISD::AND) break;
1879      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1880      if (C == 0 || !CheckAndMask(N.getOperand(0), C, Val))
1881        break;
1882      continue;
1883    }
1884    case OPC_CheckOrImm: {
1885      int64_t Val = MatcherTable[MatcherIndex++];
1886      if (Val & 128)
1887        Val = GetVBR(Val, MatcherTable, MatcherIndex);
1888
1889      if (N->getOpcode() != ISD::OR) break;
1890
1891      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1892      if (C == 0 || !CheckOrMask(N.getOperand(0), C, Val))
1893        break;
1894      continue;
1895    }
1896
1897    case OPC_CheckFoldableChainNode: {
1898      assert(NodeStack.size() != 1 && "No parent node");
1899      // Verify that all intermediate nodes between the root and this one have
1900      // a single use.
1901      bool HasMultipleUses = false;
1902      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
1903        if (!NodeStack[i].hasOneUse()) {
1904          HasMultipleUses = true;
1905          break;
1906        }
1907      if (HasMultipleUses) break;
1908
1909      // Check to see that the target thinks this is profitable to fold and that
1910      // we can fold it without inducing cycles in the graph.
1911      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
1912                              NodeToMatch) ||
1913          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
1914                         NodeToMatch))
1915        break;
1916
1917      continue;
1918    }
1919    case OPC_CheckChainCompatible: {
1920      unsigned PrevNode = MatcherTable[MatcherIndex++];
1921      assert(PrevNode < RecordedNodes.size() && "Invalid CheckChainCompatible");
1922      SDValue PrevChainedNode = RecordedNodes[PrevNode];
1923      SDValue ThisChainedNode = RecordedNodes.back();
1924
1925      // We have two nodes with chains, verify that their input chains are good.
1926      assert(PrevChainedNode.getOperand(0).getValueType() == MVT::Other &&
1927             ThisChainedNode.getOperand(0).getValueType() == MVT::Other &&
1928             "Invalid chained nodes");
1929
1930      if (!IsChainCompatible(// Input chain of the previous node.
1931                             PrevChainedNode.getOperand(0).getNode(),
1932                             // Node with chain.
1933                             ThisChainedNode.getNode()))
1934        break;
1935      continue;
1936    }
1937
1938    case OPC_EmitInteger: {
1939      MVT::SimpleValueType VT =
1940        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1941      int64_t Val = MatcherTable[MatcherIndex++];
1942      if (Val & 128)
1943        Val = GetVBR(Val, MatcherTable, MatcherIndex);
1944      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
1945      continue;
1946    }
1947    case OPC_EmitRegister: {
1948      MVT::SimpleValueType VT =
1949        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1950      unsigned RegNo = MatcherTable[MatcherIndex++];
1951      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
1952      continue;
1953    }
1954
1955    case OPC_EmitConvertToTarget:  {
1956      // Convert from IMM/FPIMM to target version.
1957      unsigned RecNo = MatcherTable[MatcherIndex++];
1958      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1959      SDValue Imm = RecordedNodes[RecNo];
1960
1961      if (Imm->getOpcode() == ISD::Constant) {
1962        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
1963        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
1964      } else if (Imm->getOpcode() == ISD::ConstantFP) {
1965        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
1966        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
1967      }
1968
1969      RecordedNodes.push_back(Imm);
1970      continue;
1971    }
1972
1973    case OPC_EmitMergeInputChains: {
1974      assert(InputChain.getNode() == 0 &&
1975             "EmitMergeInputChains should be the first chain producing node");
1976      // This node gets a list of nodes we matched in the input that have
1977      // chains.  We want to token factor all of the input chains to these nodes
1978      // together.  However, if any of the input chains is actually one of the
1979      // nodes matched in this pattern, then we have an intra-match reference.
1980      // Ignore these because the newly token factored chain should not refer to
1981      // the old nodes.
1982      unsigned NumChains = MatcherTable[MatcherIndex++];
1983      assert(NumChains != 0 && "Can't TF zero chains");
1984
1985      assert(ChainNodesMatched.empty() &&
1986             "Should only have one EmitMergeInputChains per match");
1987
1988      // Handle the first chain.
1989      unsigned RecNo = MatcherTable[MatcherIndex++];
1990      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1991      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
1992
1993      // If the chained node is not the root, we can't fold it if it has
1994      // multiple uses.
1995      // FIXME: What if other value results of the node have uses not matched by
1996      // this pattern?
1997      if (ChainNodesMatched.back() != NodeToMatch &&
1998          !RecordedNodes[RecNo].hasOneUse()) {
1999        ChainNodesMatched.clear();
2000        break;
2001      }
2002
2003      // The common case here is that we have exactly one chain, which is really
2004      // cheap to handle, just do it.
2005      if (NumChains == 1) {
2006        InputChain = RecordedNodes[RecNo].getOperand(0);
2007        assert(InputChain.getValueType() == MVT::Other && "Not a chain");
2008        continue;
2009      }
2010
2011      // Read all of the chained nodes.
2012      for (unsigned i = 1; i != NumChains; ++i) {
2013        RecNo = MatcherTable[MatcherIndex++];
2014        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2015        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2016
2017        // FIXME: What if other value results of the node have uses not matched
2018        // by this pattern?
2019        if (ChainNodesMatched.back() != NodeToMatch &&
2020            !RecordedNodes[RecNo].hasOneUse()) {
2021          ChainNodesMatched.clear();
2022          break;
2023        }
2024      }
2025
2026      // If the inner loop broke out, the match fails.
2027      if (ChainNodesMatched.empty())
2028        break;
2029
2030      // Merge the input chains if they are not intra-pattern references.
2031      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2032
2033      if (InputChain.getNode() == 0)
2034        break;  // Failed to merge.
2035
2036      continue;
2037    }
2038
2039    case OPC_EmitCopyToReg: {
2040      unsigned RecNo = MatcherTable[MatcherIndex++];
2041      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2042      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2043
2044      if (InputChain.getNode() == 0)
2045        InputChain = CurDAG->getEntryNode();
2046
2047      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2048                                        DestPhysReg, RecordedNodes[RecNo],
2049                                        InputFlag);
2050
2051      InputFlag = InputChain.getValue(1);
2052      continue;
2053    }
2054
2055    case OPC_EmitNodeXForm: {
2056      unsigned XFormNo = MatcherTable[MatcherIndex++];
2057      unsigned RecNo = MatcherTable[MatcherIndex++];
2058      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2059      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2060      continue;
2061    }
2062
2063    case OPC_EmitNode:
2064    case OPC_MorphNodeTo: {
2065      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2066      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2067      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2068      // Get the result VT list.
2069      unsigned NumVTs = MatcherTable[MatcherIndex++];
2070      SmallVector<EVT, 4> VTs;
2071      for (unsigned i = 0; i != NumVTs; ++i) {
2072        MVT::SimpleValueType VT =
2073          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2074        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2075        VTs.push_back(VT);
2076      }
2077
2078      if (EmitNodeInfo & OPFL_Chain)
2079        VTs.push_back(MVT::Other);
2080      if (EmitNodeInfo & OPFL_FlagOutput)
2081        VTs.push_back(MVT::Flag);
2082
2083      // This is hot code, so optimize the two most common cases of 1 and 2
2084      // results.
2085      SDVTList VTList;
2086      if (VTs.size() == 1)
2087        VTList = CurDAG->getVTList(VTs[0]);
2088      else if (VTs.size() == 2)
2089        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2090      else
2091        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2092
2093      // Get the operand list.
2094      unsigned NumOps = MatcherTable[MatcherIndex++];
2095      SmallVector<SDValue, 8> Ops;
2096      for (unsigned i = 0; i != NumOps; ++i) {
2097        unsigned RecNo = MatcherTable[MatcherIndex++];
2098        if (RecNo & 128)
2099          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2100
2101        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2102        Ops.push_back(RecordedNodes[RecNo]);
2103      }
2104
2105      // If there are variadic operands to add, handle them now.
2106      if (EmitNodeInfo & OPFL_VariadicInfo) {
2107        // Determine the start index to copy from.
2108        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2109        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2110        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2111               "Invalid variadic node");
2112        // Copy all of the variadic operands, not including a potential flag
2113        // input.
2114        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2115             i != e; ++i) {
2116          SDValue V = NodeToMatch->getOperand(i);
2117          if (V.getValueType() == MVT::Flag) break;
2118          Ops.push_back(V);
2119        }
2120      }
2121
2122      // If this has chain/flag inputs, add them.
2123      if (EmitNodeInfo & OPFL_Chain)
2124        Ops.push_back(InputChain);
2125      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2126        Ops.push_back(InputFlag);
2127
2128      // Create the node.
2129      SDNode *Res = 0;
2130      if (Opcode != OPC_MorphNodeTo) {
2131        // If this is a normal EmitNode command, just create the new node and
2132        // add the results to the RecordedNodes list.
2133        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2134                                     VTList, Ops.data(), Ops.size());
2135
2136        // Add all the non-flag/non-chain results to the RecordedNodes list.
2137        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2138          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2139          RecordedNodes.push_back(SDValue(Res, i));
2140        }
2141
2142      } else {
2143        // It is possible we're using MorphNodeTo to replace a node with no
2144        // normal results with one that has a normal result (or we could be
2145        // adding a chain) and the input could have flags and chains as well.
2146        // In this case we need to shifting the operands down.
2147        // FIXME: This is a horrible hack and broken in obscure cases, no worse
2148        // than the old isel though.  We should sink this into MorphNodeTo.
2149        int OldFlagResultNo = -1, OldChainResultNo = -1;
2150
2151        unsigned NTMNumResults = NodeToMatch->getNumValues();
2152        if (NodeToMatch->getValueType(NTMNumResults-1) == MVT::Flag) {
2153          OldFlagResultNo = NTMNumResults-1;
2154          if (NTMNumResults != 1 &&
2155              NodeToMatch->getValueType(NTMNumResults-2) == MVT::Other)
2156            OldChainResultNo = NTMNumResults-2;
2157        } else if (NodeToMatch->getValueType(NTMNumResults-1) == MVT::Other)
2158          OldChainResultNo = NTMNumResults-1;
2159
2160        Res = CurDAG->MorphNodeTo(NodeToMatch, ~TargetOpc, VTList,
2161                                  Ops.data(), Ops.size());
2162
2163        // MorphNodeTo can operate in two ways: if an existing node with the
2164        // specified operands exists, it can just return it.  Otherwise, it
2165        // updates the node in place to have the requested operands.
2166        if (Res == NodeToMatch) {
2167          // If we updated the node in place, reset the node ID.  To the isel,
2168          // this should be just like a newly allocated machine node.
2169          Res->setNodeId(-1);
2170        }
2171
2172        unsigned ResNumResults = Res->getNumValues();
2173        // Move the flag if needed.
2174        if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
2175            (unsigned)OldFlagResultNo != ResNumResults-1)
2176          CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch,
2177                                                    OldFlagResultNo),
2178                                            SDValue(Res, ResNumResults-1));
2179
2180        if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
2181          --ResNumResults;
2182
2183        // Move the chain reference if needed.
2184        if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
2185            (unsigned)OldChainResultNo != ResNumResults-1)
2186          CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch,
2187                                                    OldChainResultNo),
2188                                            SDValue(Res, ResNumResults-1));
2189
2190        if (Res != NodeToMatch) {
2191          // Otherwise, no replacement happened because the node already exists.
2192          CurDAG->ReplaceAllUsesWith(NodeToMatch, Res);
2193        }
2194      }
2195
2196      // If the node had chain/flag results, update our notion of the current
2197      // chain and flag.
2198      if (VTs.back() == MVT::Flag) {
2199        InputFlag = SDValue(Res, VTs.size()-1);
2200        if (EmitNodeInfo & OPFL_Chain)
2201          InputChain = SDValue(Res, VTs.size()-2);
2202      } else if (EmitNodeInfo & OPFL_Chain)
2203        InputChain = SDValue(Res, VTs.size()-1);
2204
2205      // If the OPFL_MemRefs flag is set on this node, slap all of the
2206      // accumulated memrefs onto it.
2207      //
2208      // FIXME: This is vastly incorrect for patterns with multiple outputs
2209      // instructions that access memory and for ComplexPatterns that match
2210      // loads.
2211      if (EmitNodeInfo & OPFL_MemRefs) {
2212        MachineSDNode::mmo_iterator MemRefs =
2213          MF->allocateMemRefsArray(MatchedMemRefs.size());
2214        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2215        cast<MachineSDNode>(Res)
2216          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2217      }
2218
2219      DEBUG(errs() << "  "
2220                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2221                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2222
2223      // If this was a MorphNodeTo then we're completely done!
2224      if (Opcode == OPC_MorphNodeTo) {
2225        // Update chain and flag uses.
2226        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2227                             InputFlag, FlagResultNodesMatched, true, CurDAG);
2228        return 0;
2229      }
2230
2231      continue;
2232    }
2233
2234    case OPC_MarkFlagResults: {
2235      unsigned NumNodes = MatcherTable[MatcherIndex++];
2236
2237      // Read and remember all the flag-result nodes.
2238      for (unsigned i = 0; i != NumNodes; ++i) {
2239        unsigned RecNo = MatcherTable[MatcherIndex++];
2240        if (RecNo & 128)
2241          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2242
2243        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2244        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2245      }
2246      continue;
2247    }
2248
2249    case OPC_CompleteMatch: {
2250      // The match has been completed, and any new nodes (if any) have been
2251      // created.  Patch up references to the matched dag to use the newly
2252      // created nodes.
2253      unsigned NumResults = MatcherTable[MatcherIndex++];
2254
2255      for (unsigned i = 0; i != NumResults; ++i) {
2256        unsigned ResSlot = MatcherTable[MatcherIndex++];
2257        if (ResSlot & 128)
2258          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2259
2260        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2261        SDValue Res = RecordedNodes[ResSlot];
2262
2263        // FIXME2: Eliminate this horrible hack by fixing the 'Gen' program
2264        // after (parallel) on input patterns are removed.  This would also
2265        // allow us to stop encoding #results in OPC_CompleteMatch's table
2266        // entry.
2267        if (NodeToMatch->getNumValues() <= i ||
2268            NodeToMatch->getValueType(i) == MVT::Other ||
2269            NodeToMatch->getValueType(i) == MVT::Flag)
2270          break;
2271        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2272                NodeToMatch->getValueType(i) == MVT::iPTR ||
2273                Res.getValueType() == MVT::iPTR ||
2274                NodeToMatch->getValueType(i).getSizeInBits() ==
2275                    Res.getValueType().getSizeInBits()) &&
2276               "invalid replacement");
2277        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2278      }
2279
2280      // If the root node defines a flag, add it to the flag nodes to update
2281      // list.
2282      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2283        FlagResultNodesMatched.push_back(NodeToMatch);
2284
2285      // Update chain and flag uses.
2286      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2287                           InputFlag, FlagResultNodesMatched, false, CurDAG);
2288
2289      assert(NodeToMatch->use_empty() &&
2290             "Didn't replace all uses of the node?");
2291
2292      // FIXME: We just return here, which interacts correctly with SelectRoot
2293      // above.  We should fix this to not return an SDNode* anymore.
2294      return 0;
2295    }
2296    }
2297
2298    // If the code reached this point, then the match failed.  See if there is
2299    // another child to try in the current 'Scope', otherwise pop it until we
2300    // find a case to check.
2301    while (1) {
2302      if (MatchScopes.empty()) {
2303        CannotYetSelect(NodeToMatch);
2304        return 0;
2305      }
2306
2307      // Restore the interpreter state back to the point where the scope was
2308      // formed.
2309      MatchScope &LastScope = MatchScopes.back();
2310      RecordedNodes.resize(LastScope.NumRecordedNodes);
2311      NodeStack.clear();
2312      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2313      N = NodeStack.back();
2314
2315      DEBUG(errs() << "  Match failed at index " << MatcherIndex
2316                   << " continuing at " << LastScope.FailIndex << "\n");
2317
2318      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2319        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2320      MatcherIndex = LastScope.FailIndex;
2321
2322      InputChain = LastScope.InputChain;
2323      InputFlag = LastScope.InputFlag;
2324      if (!LastScope.HasChainNodesMatched)
2325        ChainNodesMatched.clear();
2326      if (!LastScope.HasFlagResultNodesMatched)
2327        FlagResultNodesMatched.clear();
2328
2329      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2330      // we have reached the end of this scope, otherwise we have another child
2331      // in the current scope to try.
2332      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2333      if (NumToSkip & 128)
2334        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2335
2336      // If we have another child in this scope to match, update FailIndex and
2337      // try it.
2338      if (NumToSkip != 0) {
2339        LastScope.FailIndex = MatcherIndex+NumToSkip;
2340        break;
2341      }
2342
2343      // End of this scope, pop it and try the next child in the containing
2344      // scope.
2345      MatchScopes.pop_back();
2346    }
2347  }
2348}
2349
2350
2351
2352void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2353  if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2354      N->getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2355      N->getOpcode() == ISD::INTRINSIC_VOID)
2356    return CannotYetSelectIntrinsic(N);
2357
2358  std::string msg;
2359  raw_string_ostream Msg(msg);
2360  Msg << "Cannot yet select: ";
2361  N->printrFull(Msg, CurDAG);
2362  llvm_report_error(Msg.str());
2363}
2364
2365void SelectionDAGISel::CannotYetSelectIntrinsic(SDNode *N) {
2366  dbgs() << "Cannot yet select: ";
2367  unsigned iid =
2368    cast<ConstantSDNode>(N->getOperand(N->getOperand(0).getValueType() ==
2369                                       MVT::Other))->getZExtValue();
2370  if (iid < Intrinsic::num_intrinsics)
2371    llvm_report_error("Cannot yet select: intrinsic %" +
2372                      Intrinsic::getName((Intrinsic::ID)iid));
2373  else if (const TargetIntrinsicInfo *tii = TM.getIntrinsicInfo())
2374    llvm_report_error(Twine("Cannot yet select: target intrinsic %") +
2375                      tii->getName(iid));
2376}
2377
2378char SelectionDAGISel::ID = 0;
2379