SelectionDAGISel.cpp revision ebc3a3a3b2adb3bf5a1dae0c0e6572be79375efd
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Target/TargetFrameInfo.h"
41#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetLowering.h"
43#include "llvm/Target/TargetMachine.h"
44#include "llvm/Target/TargetOptions.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/Debug.h"
47#include "llvm/Support/Compiler.h"
48#include <algorithm>
49using namespace llvm;
50
51#ifndef NDEBUG
52static cl::opt<bool>
53ViewISelDAGs("view-isel-dags", cl::Hidden,
54          cl::desc("Pop up a window to show isel dags as they are selected"));
55static cl::opt<bool>
56ViewSchedDAGs("view-sched-dags", cl::Hidden,
57          cl::desc("Pop up a window to show sched dags as they are processed"));
58static cl::opt<bool>
59ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
60      cl::desc("Pop up a window to show SUnit dags after they are processed"));
61#else
62static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
63#endif
64
65//===---------------------------------------------------------------------===//
66///
67/// RegisterScheduler class - Track the registration of instruction schedulers.
68///
69//===---------------------------------------------------------------------===//
70MachinePassRegistry RegisterScheduler::Registry;
71
72//===---------------------------------------------------------------------===//
73///
74/// ISHeuristic command line option for instruction schedulers.
75///
76//===---------------------------------------------------------------------===//
77namespace {
78  cl::opt<RegisterScheduler::FunctionPassCtor, false,
79          RegisterPassParser<RegisterScheduler> >
80  ISHeuristic("pre-RA-sched",
81              cl::init(&createDefaultScheduler),
82              cl::desc("Instruction schedulers available (before register"
83                       " allocation):"));
84
85  static RegisterScheduler
86  defaultListDAGScheduler("default", "  Best scheduler for the target",
87                          createDefaultScheduler);
88} // namespace
89
90namespace { struct SDISelAsmOperandInfo; }
91
92/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
93/// MVT::ValueTypes that represent all the individual underlying
94/// non-aggregate types that comprise it.
95static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
96                            SmallVectorImpl<MVT::ValueType> &ValueVTs) {
97  // Given a struct type, recursively traverse the elements.
98  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
99    for (StructType::element_iterator EI = STy->element_begin(),
100                                      EB = STy->element_end();
101        EI != EB; ++EI)
102      ComputeValueVTs(TLI, *EI, ValueVTs);
103    return;
104  }
105  // Given an array type, recursively traverse the elements.
106  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
107    const Type *EltTy = ATy->getElementType();
108    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
109      ComputeValueVTs(TLI, EltTy, ValueVTs);
110    return;
111  }
112  // Base case: we can get an MVT::ValueType for this LLVM IR type.
113  ValueVTs.push_back(TLI.getValueType(Ty));
114}
115
116namespace {
117  /// RegsForValue - This struct represents the registers (physical or virtual)
118  /// that a particular set of values is assigned, and the type information about
119  /// the value. The most common situation is to represent one value at a time,
120  /// but struct or array values are handled element-wise as multiple values.
121  /// The splitting of aggregates is performed recursively, so that we never
122  /// have aggregate-typed registers. The values at this point do not necessarily
123  /// have legal types, so each value may require one or more registers of some
124  /// legal type.
125  ///
126  struct VISIBILITY_HIDDEN RegsForValue {
127    /// TLI - The TargetLowering object.
128    ///
129    const TargetLowering *TLI;
130
131    /// ValueVTs - The value types of the values, which may not be legal, and
132    /// may need be promoted or synthesized from one or more registers.
133    ///
134    SmallVector<MVT::ValueType, 4> ValueVTs;
135
136    /// RegVTs - The value types of the registers. This is the same size as
137    /// ValueVTs and it records, for each value, what the type of the assigned
138    /// register or registers are. (Individual values are never synthesized
139    /// from more than one type of register.)
140    ///
141    /// With virtual registers, the contents of RegVTs is redundant with TLI's
142    /// getRegisterType member function, however when with physical registers
143    /// it is necessary to have a separate record of the types.
144    ///
145    SmallVector<MVT::ValueType, 4> RegVTs;
146
147    /// Regs - This list holds the registers assigned to the values.
148    /// Each legal or promoted value requires one register, and each
149    /// expanded value requires multiple registers.
150    ///
151    SmallVector<unsigned, 4> Regs;
152
153    RegsForValue() : TLI(0) {}
154
155    RegsForValue(const TargetLowering &tli,
156                 const SmallVector<unsigned, 4> &regs,
157                 MVT::ValueType regvt, MVT::ValueType valuevt)
158      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
159    RegsForValue(const TargetLowering &tli,
160                 const SmallVector<unsigned, 4> &regs,
161                 const SmallVector<MVT::ValueType, 4> &regvts,
162                 const SmallVector<MVT::ValueType, 4> &valuevts)
163      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
164    RegsForValue(const TargetLowering &tli,
165                 unsigned Reg, const Type *Ty) : TLI(&tli) {
166      ComputeValueVTs(tli, Ty, ValueVTs);
167
168      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
169        MVT::ValueType ValueVT = ValueVTs[Value];
170        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
171        MVT::ValueType RegisterVT = TLI->getRegisterType(ValueVT);
172        for (unsigned i = 0; i != NumRegs; ++i)
173          Regs.push_back(Reg + i);
174        RegVTs.push_back(RegisterVT);
175        Reg += NumRegs;
176      }
177    }
178
179    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
180    /// this value and returns the result as a ValueVTs value.  This uses
181    /// Chain/Flag as the input and updates them for the output Chain/Flag.
182    /// If the Flag pointer is NULL, no flag is used.
183    SDOperand getCopyFromRegs(SelectionDAG &DAG,
184                              SDOperand &Chain, SDOperand *Flag) const;
185
186    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
187    /// specified value into the registers specified by this object.  This uses
188    /// Chain/Flag as the input and updates them for the output Chain/Flag.
189    /// If the Flag pointer is NULL, no flag is used.
190    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
191                       SDOperand &Chain, SDOperand *Flag) const;
192
193    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
194    /// operand list.  This adds the code marker and includes the number of
195    /// values added into it.
196    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
197                              std::vector<SDOperand> &Ops) const;
198  };
199}
200
201namespace llvm {
202  //===--------------------------------------------------------------------===//
203  /// createDefaultScheduler - This creates an instruction scheduler appropriate
204  /// for the target.
205  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
206                                      SelectionDAG *DAG,
207                                      MachineBasicBlock *BB) {
208    TargetLowering &TLI = IS->getTargetLowering();
209
210    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
211      return createTDListDAGScheduler(IS, DAG, BB);
212    } else {
213      assert(TLI.getSchedulingPreference() ==
214           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
215      return createBURRListDAGScheduler(IS, DAG, BB);
216    }
217  }
218
219
220  //===--------------------------------------------------------------------===//
221  /// FunctionLoweringInfo - This contains information that is global to a
222  /// function that is used when lowering a region of the function.
223  class FunctionLoweringInfo {
224  public:
225    TargetLowering &TLI;
226    Function &Fn;
227    MachineFunction &MF;
228    MachineRegisterInfo &RegInfo;
229
230    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
231
232    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
233    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
234
235    /// ValueMap - Since we emit code for the function a basic block at a time,
236    /// we must remember which virtual registers hold the values for
237    /// cross-basic-block values.
238    DenseMap<const Value*, unsigned> ValueMap;
239
240    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
241    /// the entry block.  This allows the allocas to be efficiently referenced
242    /// anywhere in the function.
243    std::map<const AllocaInst*, int> StaticAllocaMap;
244
245#ifndef NDEBUG
246    SmallSet<Instruction*, 8> CatchInfoLost;
247    SmallSet<Instruction*, 8> CatchInfoFound;
248#endif
249
250    unsigned MakeReg(MVT::ValueType VT) {
251      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
252    }
253
254    /// isExportedInst - Return true if the specified value is an instruction
255    /// exported from its block.
256    bool isExportedInst(const Value *V) {
257      return ValueMap.count(V);
258    }
259
260    unsigned CreateRegForValue(const Value *V);
261
262    unsigned InitializeRegForValue(const Value *V) {
263      unsigned &R = ValueMap[V];
264      assert(R == 0 && "Already initialized this value register!");
265      return R = CreateRegForValue(V);
266    }
267  };
268}
269
270/// isSelector - Return true if this instruction is a call to the
271/// eh.selector intrinsic.
272static bool isSelector(Instruction *I) {
273  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
274    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
275            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
276  return false;
277}
278
279/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
280/// PHI nodes or outside of the basic block that defines it, or used by a
281/// switch or atomic instruction, which may expand to multiple basic blocks.
282static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
283  if (isa<PHINode>(I)) return true;
284  BasicBlock *BB = I->getParent();
285  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
286    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
287        // FIXME: Remove switchinst special case.
288        isa<SwitchInst>(*UI))
289      return true;
290  return false;
291}
292
293/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
294/// entry block, return true.  This includes arguments used by switches, since
295/// the switch may expand into multiple basic blocks.
296static bool isOnlyUsedInEntryBlock(Argument *A) {
297  BasicBlock *Entry = A->getParent()->begin();
298  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
299    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
300      return false;  // Use not in entry block.
301  return true;
302}
303
304FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
305                                           Function &fn, MachineFunction &mf)
306    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
307
308  // Create a vreg for each argument register that is not dead and is used
309  // outside of the entry block for the function.
310  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
311       AI != E; ++AI)
312    if (!isOnlyUsedInEntryBlock(AI))
313      InitializeRegForValue(AI);
314
315  // Initialize the mapping of values to registers.  This is only set up for
316  // instruction values that are used outside of the block that defines
317  // them.
318  Function::iterator BB = Fn.begin(), EB = Fn.end();
319  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
320    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
321      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
322        const Type *Ty = AI->getAllocatedType();
323        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
324        unsigned Align =
325          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
326                   AI->getAlignment());
327
328        TySize *= CUI->getZExtValue();   // Get total allocated size.
329        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
330        StaticAllocaMap[AI] =
331          MF.getFrameInfo()->CreateStackObject(TySize, Align);
332      }
333
334  for (; BB != EB; ++BB)
335    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
336      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
337        if (!isa<AllocaInst>(I) ||
338            !StaticAllocaMap.count(cast<AllocaInst>(I)))
339          InitializeRegForValue(I);
340
341  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
342  // also creates the initial PHI MachineInstrs, though none of the input
343  // operands are populated.
344  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
345    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
346    MBBMap[BB] = MBB;
347    MF.getBasicBlockList().push_back(MBB);
348
349    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
350    // appropriate.
351    PHINode *PN;
352    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
353      if (PN->use_empty()) continue;
354
355      MVT::ValueType VT = TLI.getValueType(PN->getType());
356      unsigned NumRegisters = TLI.getNumRegisters(VT);
357      unsigned PHIReg = ValueMap[PN];
358      assert(PHIReg && "PHI node does not have an assigned virtual register!");
359      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
360      for (unsigned i = 0; i != NumRegisters; ++i)
361        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
362    }
363  }
364}
365
366/// CreateRegForValue - Allocate the appropriate number of virtual registers of
367/// the correctly promoted or expanded types.  Assign these registers
368/// consecutive vreg numbers and return the first assigned number.
369///
370/// In the case that the given value has struct or array type, this function
371/// will assign registers for each member or element.
372///
373unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
374  SmallVector<MVT::ValueType, 4> ValueVTs;
375  ComputeValueVTs(TLI, V->getType(), ValueVTs);
376
377  unsigned FirstReg = 0;
378  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
379    MVT::ValueType ValueVT = ValueVTs[Value];
380    MVT::ValueType RegisterVT = TLI.getRegisterType(ValueVT);
381
382    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
383    for (unsigned i = 0; i != NumRegs; ++i) {
384      unsigned R = MakeReg(RegisterVT);
385      if (!FirstReg) FirstReg = R;
386    }
387  }
388  return FirstReg;
389}
390
391//===----------------------------------------------------------------------===//
392/// SelectionDAGLowering - This is the common target-independent lowering
393/// implementation that is parameterized by a TargetLowering object.
394/// Also, targets can overload any lowering method.
395///
396namespace llvm {
397class SelectionDAGLowering {
398  MachineBasicBlock *CurMBB;
399
400  DenseMap<const Value*, SDOperand> NodeMap;
401
402  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
403  /// them up and then emit token factor nodes when possible.  This allows us to
404  /// get simple disambiguation between loads without worrying about alias
405  /// analysis.
406  std::vector<SDOperand> PendingLoads;
407
408  /// PendingExports - CopyToReg nodes that copy values to virtual registers
409  /// for export to other blocks need to be emitted before any terminator
410  /// instruction, but they have no other ordering requirements. We bunch them
411  /// up and the emit a single tokenfactor for them just before terminator
412  /// instructions.
413  std::vector<SDOperand> PendingExports;
414
415  /// Case - A struct to record the Value for a switch case, and the
416  /// case's target basic block.
417  struct Case {
418    Constant* Low;
419    Constant* High;
420    MachineBasicBlock* BB;
421
422    Case() : Low(0), High(0), BB(0) { }
423    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
424      Low(low), High(high), BB(bb) { }
425    uint64_t size() const {
426      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
427      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
428      return (rHigh - rLow + 1ULL);
429    }
430  };
431
432  struct CaseBits {
433    uint64_t Mask;
434    MachineBasicBlock* BB;
435    unsigned Bits;
436
437    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
438      Mask(mask), BB(bb), Bits(bits) { }
439  };
440
441  typedef std::vector<Case>           CaseVector;
442  typedef std::vector<CaseBits>       CaseBitsVector;
443  typedef CaseVector::iterator        CaseItr;
444  typedef std::pair<CaseItr, CaseItr> CaseRange;
445
446  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
447  /// of conditional branches.
448  struct CaseRec {
449    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
450    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
451
452    /// CaseBB - The MBB in which to emit the compare and branch
453    MachineBasicBlock *CaseBB;
454    /// LT, GE - If nonzero, we know the current case value must be less-than or
455    /// greater-than-or-equal-to these Constants.
456    Constant *LT;
457    Constant *GE;
458    /// Range - A pair of iterators representing the range of case values to be
459    /// processed at this point in the binary search tree.
460    CaseRange Range;
461  };
462
463  typedef std::vector<CaseRec> CaseRecVector;
464
465  /// The comparison function for sorting the switch case values in the vector.
466  /// WARNING: Case ranges should be disjoint!
467  struct CaseCmp {
468    bool operator () (const Case& C1, const Case& C2) {
469      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
470      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
471      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
472      return CI1->getValue().slt(CI2->getValue());
473    }
474  };
475
476  struct CaseBitsCmp {
477    bool operator () (const CaseBits& C1, const CaseBits& C2) {
478      return C1.Bits > C2.Bits;
479    }
480  };
481
482  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
483
484public:
485  // TLI - This is information that describes the available target features we
486  // need for lowering.  This indicates when operations are unavailable,
487  // implemented with a libcall, etc.
488  TargetLowering &TLI;
489  SelectionDAG &DAG;
490  const TargetData *TD;
491  AliasAnalysis &AA;
492
493  /// SwitchCases - Vector of CaseBlock structures used to communicate
494  /// SwitchInst code generation information.
495  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
496  /// JTCases - Vector of JumpTable structures used to communicate
497  /// SwitchInst code generation information.
498  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
499  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
500
501  /// FuncInfo - Information about the function as a whole.
502  ///
503  FunctionLoweringInfo &FuncInfo;
504
505  /// GCI - Garbage collection metadata for the function.
506  CollectorMetadata *GCI;
507
508  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
509                       AliasAnalysis &aa,
510                       FunctionLoweringInfo &funcinfo,
511                       CollectorMetadata *gci)
512    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
513      FuncInfo(funcinfo), GCI(gci) {
514  }
515
516  /// getRoot - Return the current virtual root of the Selection DAG,
517  /// flushing any PendingLoad items. This must be done before emitting
518  /// a store or any other node that may need to be ordered after any
519  /// prior load instructions.
520  ///
521  SDOperand getRoot() {
522    if (PendingLoads.empty())
523      return DAG.getRoot();
524
525    if (PendingLoads.size() == 1) {
526      SDOperand Root = PendingLoads[0];
527      DAG.setRoot(Root);
528      PendingLoads.clear();
529      return Root;
530    }
531
532    // Otherwise, we have to make a token factor node.
533    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
534                                 &PendingLoads[0], PendingLoads.size());
535    PendingLoads.clear();
536    DAG.setRoot(Root);
537    return Root;
538  }
539
540  /// getControlRoot - Similar to getRoot, but instead of flushing all the
541  /// PendingLoad items, flush all the PendingExports items. It is necessary
542  /// to do this before emitting a terminator instruction.
543  ///
544  SDOperand getControlRoot() {
545    SDOperand Root = DAG.getRoot();
546
547    if (PendingExports.empty())
548      return Root;
549
550    // Turn all of the CopyToReg chains into one factored node.
551    if (Root.getOpcode() != ISD::EntryToken) {
552      unsigned i = 0, e = PendingExports.size();
553      for (; i != e; ++i) {
554        assert(PendingExports[i].Val->getNumOperands() > 1);
555        if (PendingExports[i].Val->getOperand(0) == Root)
556          break;  // Don't add the root if we already indirectly depend on it.
557      }
558
559      if (i == e)
560        PendingExports.push_back(Root);
561    }
562
563    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
564                       &PendingExports[0],
565                       PendingExports.size());
566    PendingExports.clear();
567    DAG.setRoot(Root);
568    return Root;
569  }
570
571  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
572
573  void visit(Instruction &I) { visit(I.getOpcode(), I); }
574
575  void visit(unsigned Opcode, User &I) {
576    // Note: this doesn't use InstVisitor, because it has to work with
577    // ConstantExpr's in addition to instructions.
578    switch (Opcode) {
579    default: assert(0 && "Unknown instruction type encountered!");
580             abort();
581      // Build the switch statement using the Instruction.def file.
582#define HANDLE_INST(NUM, OPCODE, CLASS) \
583    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
584#include "llvm/Instruction.def"
585    }
586  }
587
588  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
589
590  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
591                        const Value *SV, SDOperand Root,
592                        bool isVolatile, unsigned Alignment);
593
594  SDOperand getValue(const Value *V);
595
596  void setValue(const Value *V, SDOperand NewN) {
597    SDOperand &N = NodeMap[V];
598    assert(N.Val == 0 && "Already set a value for this node!");
599    N = NewN;
600  }
601
602  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
603                            std::set<unsigned> &OutputRegs,
604                            std::set<unsigned> &InputRegs);
605
606  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
607                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
608                            unsigned Opc);
609  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
610  void ExportFromCurrentBlock(Value *V);
611  void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
612                   MachineBasicBlock *LandingPad = NULL);
613
614  // Terminator instructions.
615  void visitRet(ReturnInst &I);
616  void visitBr(BranchInst &I);
617  void visitSwitch(SwitchInst &I);
618  void visitUnreachable(UnreachableInst &I) { /* noop */ }
619
620  // Helpers for visitSwitch
621  bool handleSmallSwitchRange(CaseRec& CR,
622                              CaseRecVector& WorkList,
623                              Value* SV,
624                              MachineBasicBlock* Default);
625  bool handleJTSwitchCase(CaseRec& CR,
626                          CaseRecVector& WorkList,
627                          Value* SV,
628                          MachineBasicBlock* Default);
629  bool handleBTSplitSwitchCase(CaseRec& CR,
630                               CaseRecVector& WorkList,
631                               Value* SV,
632                               MachineBasicBlock* Default);
633  bool handleBitTestsSwitchCase(CaseRec& CR,
634                                CaseRecVector& WorkList,
635                                Value* SV,
636                                MachineBasicBlock* Default);
637  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
638  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
639  void visitBitTestCase(MachineBasicBlock* NextMBB,
640                        unsigned Reg,
641                        SelectionDAGISel::BitTestCase &B);
642  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
643  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
644                            SelectionDAGISel::JumpTableHeader &JTH);
645
646  // These all get lowered before this pass.
647  void visitInvoke(InvokeInst &I);
648  void visitUnwind(UnwindInst &I);
649
650  void visitBinary(User &I, unsigned OpCode);
651  void visitShift(User &I, unsigned Opcode);
652  void visitAdd(User &I) {
653    if (I.getType()->isFPOrFPVector())
654      visitBinary(I, ISD::FADD);
655    else
656      visitBinary(I, ISD::ADD);
657  }
658  void visitSub(User &I);
659  void visitMul(User &I) {
660    if (I.getType()->isFPOrFPVector())
661      visitBinary(I, ISD::FMUL);
662    else
663      visitBinary(I, ISD::MUL);
664  }
665  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
666  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
667  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
668  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
669  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
670  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
671  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
672  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
673  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
674  void visitShl (User &I) { visitShift(I, ISD::SHL); }
675  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
676  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
677  void visitICmp(User &I);
678  void visitFCmp(User &I);
679  // Visit the conversion instructions
680  void visitTrunc(User &I);
681  void visitZExt(User &I);
682  void visitSExt(User &I);
683  void visitFPTrunc(User &I);
684  void visitFPExt(User &I);
685  void visitFPToUI(User &I);
686  void visitFPToSI(User &I);
687  void visitUIToFP(User &I);
688  void visitSIToFP(User &I);
689  void visitPtrToInt(User &I);
690  void visitIntToPtr(User &I);
691  void visitBitCast(User &I);
692
693  void visitExtractElement(User &I);
694  void visitInsertElement(User &I);
695  void visitShuffleVector(User &I);
696
697  void visitGetElementPtr(User &I);
698  void visitSelect(User &I);
699
700  void visitMalloc(MallocInst &I);
701  void visitFree(FreeInst &I);
702  void visitAlloca(AllocaInst &I);
703  void visitLoad(LoadInst &I);
704  void visitStore(StoreInst &I);
705  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
706  void visitCall(CallInst &I);
707  void visitInlineAsm(CallSite CS);
708  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
709  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
710
711  void visitVAStart(CallInst &I);
712  void visitVAArg(VAArgInst &I);
713  void visitVAEnd(CallInst &I);
714  void visitVACopy(CallInst &I);
715
716  void visitGetResult(GetResultInst &I);
717
718  void visitUserOp1(Instruction &I) {
719    assert(0 && "UserOp1 should not exist at instruction selection time!");
720    abort();
721  }
722  void visitUserOp2(Instruction &I) {
723    assert(0 && "UserOp2 should not exist at instruction selection time!");
724    abort();
725  }
726};
727} // end namespace llvm
728
729
730/// getCopyFromParts - Create a value that contains the specified legal parts
731/// combined into the value they represent.  If the parts combine to a type
732/// larger then ValueVT then AssertOp can be used to specify whether the extra
733/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
734/// (ISD::AssertSext).
735static SDOperand getCopyFromParts(SelectionDAG &DAG,
736                                  const SDOperand *Parts,
737                                  unsigned NumParts,
738                                  MVT::ValueType PartVT,
739                                  MVT::ValueType ValueVT,
740                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
741  assert(NumParts > 0 && "No parts to assemble!");
742  TargetLowering &TLI = DAG.getTargetLoweringInfo();
743  SDOperand Val = Parts[0];
744
745  if (NumParts > 1) {
746    // Assemble the value from multiple parts.
747    if (!MVT::isVector(ValueVT)) {
748      unsigned PartBits = MVT::getSizeInBits(PartVT);
749      unsigned ValueBits = MVT::getSizeInBits(ValueVT);
750
751      // Assemble the power of 2 part.
752      unsigned RoundParts = NumParts & (NumParts - 1) ?
753        1 << Log2_32(NumParts) : NumParts;
754      unsigned RoundBits = PartBits * RoundParts;
755      MVT::ValueType RoundVT = RoundBits == ValueBits ?
756        ValueVT : MVT::getIntegerType(RoundBits);
757      SDOperand Lo, Hi;
758
759      if (RoundParts > 2) {
760        MVT::ValueType HalfVT = MVT::getIntegerType(RoundBits/2);
761        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
762        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
763                              PartVT, HalfVT);
764      } else {
765        Lo = Parts[0];
766        Hi = Parts[1];
767      }
768      if (TLI.isBigEndian())
769        std::swap(Lo, Hi);
770      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
771
772      if (RoundParts < NumParts) {
773        // Assemble the trailing non-power-of-2 part.
774        unsigned OddParts = NumParts - RoundParts;
775        MVT::ValueType OddVT = MVT::getIntegerType(OddParts * PartBits);
776        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
777
778        // Combine the round and odd parts.
779        Lo = Val;
780        if (TLI.isBigEndian())
781          std::swap(Lo, Hi);
782        MVT::ValueType TotalVT = MVT::getIntegerType(NumParts * PartBits);
783        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
784        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
785                         DAG.getConstant(MVT::getSizeInBits(Lo.getValueType()),
786                                         TLI.getShiftAmountTy()));
787        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
788        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
789      }
790    } else {
791      // Handle a multi-element vector.
792      MVT::ValueType IntermediateVT, RegisterVT;
793      unsigned NumIntermediates;
794      unsigned NumRegs =
795        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
796                                   RegisterVT);
797
798      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
799      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
800      assert(RegisterVT == Parts[0].getValueType() &&
801             "Part type doesn't match part!");
802
803      // Assemble the parts into intermediate operands.
804      SmallVector<SDOperand, 8> Ops(NumIntermediates);
805      if (NumIntermediates == NumParts) {
806        // If the register was not expanded, truncate or copy the value,
807        // as appropriate.
808        for (unsigned i = 0; i != NumParts; ++i)
809          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
810                                    PartVT, IntermediateVT);
811      } else if (NumParts > 0) {
812        // If the intermediate type was expanded, build the intermediate operands
813        // from the parts.
814        assert(NumParts % NumIntermediates == 0 &&
815               "Must expand into a divisible number of parts!");
816        unsigned Factor = NumParts / NumIntermediates;
817        for (unsigned i = 0; i != NumIntermediates; ++i)
818          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
819                                    PartVT, IntermediateVT);
820      }
821
822      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
823      // operands.
824      Val = DAG.getNode(MVT::isVector(IntermediateVT) ?
825                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
826                        ValueVT, &Ops[0], NumIntermediates);
827    }
828  }
829
830  // There is now one part, held in Val.  Correct it to match ValueVT.
831  PartVT = Val.getValueType();
832
833  if (PartVT == ValueVT)
834    return Val;
835
836  if (MVT::isVector(PartVT)) {
837    assert(MVT::isVector(ValueVT) && "Unknown vector conversion!");
838    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
839  }
840
841  if (MVT::isVector(ValueVT)) {
842    assert(MVT::getVectorElementType(ValueVT) == PartVT &&
843           MVT::getVectorNumElements(ValueVT) == 1 &&
844           "Only trivial scalar-to-vector conversions should get here!");
845    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
846  }
847
848  if (MVT::isInteger(PartVT) &&
849      MVT::isInteger(ValueVT)) {
850    if (MVT::getSizeInBits(ValueVT) < MVT::getSizeInBits(PartVT)) {
851      // For a truncate, see if we have any information to
852      // indicate whether the truncated bits will always be
853      // zero or sign-extension.
854      if (AssertOp != ISD::DELETED_NODE)
855        Val = DAG.getNode(AssertOp, PartVT, Val,
856                          DAG.getValueType(ValueVT));
857      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
858    } else {
859      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
860    }
861  }
862
863  if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT)) {
864    if (ValueVT < Val.getValueType())
865      // FP_ROUND's are always exact here.
866      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
867                         DAG.getIntPtrConstant(1));
868    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
869  }
870
871  if (MVT::getSizeInBits(PartVT) == MVT::getSizeInBits(ValueVT))
872    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
873
874  assert(0 && "Unknown mismatch!");
875  return SDOperand();
876}
877
878/// getCopyToParts - Create a series of nodes that contain the specified value
879/// split into legal parts.  If the parts contain more bits than Val, then, for
880/// integers, ExtendKind can be used to specify how to generate the extra bits.
881static void getCopyToParts(SelectionDAG &DAG,
882                           SDOperand Val,
883                           SDOperand *Parts,
884                           unsigned NumParts,
885                           MVT::ValueType PartVT,
886                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
887  TargetLowering &TLI = DAG.getTargetLoweringInfo();
888  MVT::ValueType PtrVT = TLI.getPointerTy();
889  MVT::ValueType ValueVT = Val.getValueType();
890  unsigned PartBits = MVT::getSizeInBits(PartVT);
891  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
892
893  if (!NumParts)
894    return;
895
896  if (!MVT::isVector(ValueVT)) {
897    if (PartVT == ValueVT) {
898      assert(NumParts == 1 && "No-op copy with multiple parts!");
899      Parts[0] = Val;
900      return;
901    }
902
903    if (NumParts * PartBits > MVT::getSizeInBits(ValueVT)) {
904      // If the parts cover more bits than the value has, promote the value.
905      if (MVT::isFloatingPoint(PartVT) && MVT::isFloatingPoint(ValueVT)) {
906        assert(NumParts == 1 && "Do not know what to promote to!");
907        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
908      } else if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
909        ValueVT = MVT::getIntegerType(NumParts * PartBits);
910        Val = DAG.getNode(ExtendKind, ValueVT, Val);
911      } else {
912        assert(0 && "Unknown mismatch!");
913      }
914    } else if (PartBits == MVT::getSizeInBits(ValueVT)) {
915      // Different types of the same size.
916      assert(NumParts == 1 && PartVT != ValueVT);
917      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
918    } else if (NumParts * PartBits < MVT::getSizeInBits(ValueVT)) {
919      // If the parts cover less bits than value has, truncate the value.
920      if (MVT::isInteger(PartVT) && MVT::isInteger(ValueVT)) {
921        ValueVT = MVT::getIntegerType(NumParts * PartBits);
922        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
923      } else {
924        assert(0 && "Unknown mismatch!");
925      }
926    }
927
928    // The value may have changed - recompute ValueVT.
929    ValueVT = Val.getValueType();
930    assert(NumParts * PartBits == MVT::getSizeInBits(ValueVT) &&
931           "Failed to tile the value with PartVT!");
932
933    if (NumParts == 1) {
934      assert(PartVT == ValueVT && "Type conversion failed!");
935      Parts[0] = Val;
936      return;
937    }
938
939    // Expand the value into multiple parts.
940    if (NumParts & (NumParts - 1)) {
941      // The number of parts is not a power of 2.  Split off and copy the tail.
942      assert(MVT::isInteger(PartVT) && MVT::isInteger(ValueVT) &&
943             "Do not know what to expand to!");
944      unsigned RoundParts = 1 << Log2_32(NumParts);
945      unsigned RoundBits = RoundParts * PartBits;
946      unsigned OddParts = NumParts - RoundParts;
947      SDOperand OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
948                                     DAG.getConstant(RoundBits,
949                                                     TLI.getShiftAmountTy()));
950      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
951      if (TLI.isBigEndian())
952        // The odd parts were reversed by getCopyToParts - unreverse them.
953        std::reverse(Parts + RoundParts, Parts + NumParts);
954      NumParts = RoundParts;
955      ValueVT = MVT::getIntegerType(NumParts * PartBits);
956      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
957    }
958
959    // The number of parts is a power of 2.  Repeatedly bisect the value using
960    // EXTRACT_ELEMENT.
961    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
962                           MVT::getIntegerType(MVT::getSizeInBits(ValueVT)),
963                           Val);
964    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
965      for (unsigned i = 0; i < NumParts; i += StepSize) {
966        unsigned ThisBits = StepSize * PartBits / 2;
967        MVT::ValueType ThisVT = MVT::getIntegerType (ThisBits);
968        SDOperand &Part0 = Parts[i];
969        SDOperand &Part1 = Parts[i+StepSize/2];
970
971        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
972                            DAG.getConstant(1, PtrVT));
973        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
974                            DAG.getConstant(0, PtrVT));
975
976        if (ThisBits == PartBits && ThisVT != PartVT) {
977          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
978          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
979        }
980      }
981    }
982
983    if (TLI.isBigEndian())
984      std::reverse(Parts, Parts + NumParts);
985
986    return;
987  }
988
989  // Vector ValueVT.
990  if (NumParts == 1) {
991    if (PartVT != ValueVT) {
992      if (MVT::isVector(PartVT)) {
993        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
994      } else {
995        assert(MVT::getVectorElementType(ValueVT) == PartVT &&
996               MVT::getVectorNumElements(ValueVT) == 1 &&
997               "Only trivial vector-to-scalar conversions should get here!");
998        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
999                          DAG.getConstant(0, PtrVT));
1000      }
1001    }
1002
1003    Parts[0] = Val;
1004    return;
1005  }
1006
1007  // Handle a multi-element vector.
1008  MVT::ValueType IntermediateVT, RegisterVT;
1009  unsigned NumIntermediates;
1010  unsigned NumRegs =
1011    DAG.getTargetLoweringInfo()
1012      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1013                              RegisterVT);
1014  unsigned NumElements = MVT::getVectorNumElements(ValueVT);
1015
1016  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1017  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1018
1019  // Split the vector into intermediate operands.
1020  SmallVector<SDOperand, 8> Ops(NumIntermediates);
1021  for (unsigned i = 0; i != NumIntermediates; ++i)
1022    if (MVT::isVector(IntermediateVT))
1023      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
1024                           IntermediateVT, Val,
1025                           DAG.getConstant(i * (NumElements / NumIntermediates),
1026                                           PtrVT));
1027    else
1028      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
1029                           IntermediateVT, Val,
1030                           DAG.getConstant(i, PtrVT));
1031
1032  // Split the intermediate operands into legal parts.
1033  if (NumParts == NumIntermediates) {
1034    // If the register was not expanded, promote or copy the value,
1035    // as appropriate.
1036    for (unsigned i = 0; i != NumParts; ++i)
1037      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
1038  } else if (NumParts > 0) {
1039    // If the intermediate type was expanded, split each the value into
1040    // legal parts.
1041    assert(NumParts % NumIntermediates == 0 &&
1042           "Must expand into a divisible number of parts!");
1043    unsigned Factor = NumParts / NumIntermediates;
1044    for (unsigned i = 0; i != NumIntermediates; ++i)
1045      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
1046  }
1047}
1048
1049
1050SDOperand SelectionDAGLowering::getValue(const Value *V) {
1051  SDOperand &N = NodeMap[V];
1052  if (N.Val) return N;
1053
1054  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
1055    MVT::ValueType VT = TLI.getValueType(V->getType(), true);
1056
1057    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1058      return N = DAG.getConstant(CI->getValue(), VT);
1059
1060    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
1061      return N = DAG.getGlobalAddress(GV, VT);
1062
1063    if (isa<ConstantPointerNull>(C))
1064      return N = DAG.getConstant(0, TLI.getPointerTy());
1065
1066    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1067      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
1068
1069    if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()))
1070      return N = DAG.getNode(ISD::UNDEF, VT);
1071
1072    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1073      visit(CE->getOpcode(), *CE);
1074      SDOperand N1 = NodeMap[V];
1075      assert(N1.Val && "visit didn't populate the ValueMap!");
1076      return N1;
1077    }
1078
1079    const VectorType *VecTy = cast<VectorType>(V->getType());
1080    unsigned NumElements = VecTy->getNumElements();
1081
1082    // Now that we know the number and type of the elements, get that number of
1083    // elements into the Ops array based on what kind of constant it is.
1084    SmallVector<SDOperand, 16> Ops;
1085    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1086      for (unsigned i = 0; i != NumElements; ++i)
1087        Ops.push_back(getValue(CP->getOperand(i)));
1088    } else {
1089      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1090             "Unknown vector constant!");
1091      MVT::ValueType EltVT = TLI.getValueType(VecTy->getElementType());
1092
1093      SDOperand Op;
1094      if (isa<UndefValue>(C))
1095        Op = DAG.getNode(ISD::UNDEF, EltVT);
1096      else if (MVT::isFloatingPoint(EltVT))
1097        Op = DAG.getConstantFP(0, EltVT);
1098      else
1099        Op = DAG.getConstant(0, EltVT);
1100      Ops.assign(NumElements, Op);
1101    }
1102
1103    // Create a BUILD_VECTOR node.
1104    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1105  }
1106
1107  // If this is a static alloca, generate it as the frameindex instead of
1108  // computation.
1109  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1110    std::map<const AllocaInst*, int>::iterator SI =
1111      FuncInfo.StaticAllocaMap.find(AI);
1112    if (SI != FuncInfo.StaticAllocaMap.end())
1113      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1114  }
1115
1116  unsigned InReg = FuncInfo.ValueMap[V];
1117  assert(InReg && "Value not in map!");
1118
1119  RegsForValue RFV(TLI, InReg, V->getType());
1120  SDOperand Chain = DAG.getEntryNode();
1121  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1122}
1123
1124
1125void SelectionDAGLowering::visitRet(ReturnInst &I) {
1126  if (I.getNumOperands() == 0) {
1127    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
1128    return;
1129  }
1130
1131  SmallVector<SDOperand, 8> NewValues;
1132  NewValues.push_back(getControlRoot());
1133  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1134    SDOperand RetOp = getValue(I.getOperand(i));
1135    MVT::ValueType VT = RetOp.getValueType();
1136
1137    // FIXME: C calling convention requires the return type to be promoted to
1138    // at least 32-bit. But this is not necessary for non-C calling conventions.
1139    if (MVT::isInteger(VT)) {
1140      MVT::ValueType MinVT = TLI.getRegisterType(MVT::i32);
1141      if (MVT::getSizeInBits(VT) < MVT::getSizeInBits(MinVT))
1142        VT = MinVT;
1143    }
1144
1145    unsigned NumParts = TLI.getNumRegisters(VT);
1146    MVT::ValueType PartVT = TLI.getRegisterType(VT);
1147    SmallVector<SDOperand, 4> Parts(NumParts);
1148    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1149
1150    const Function *F = I.getParent()->getParent();
1151    if (F->paramHasAttr(0, ParamAttr::SExt))
1152      ExtendKind = ISD::SIGN_EXTEND;
1153    else if (F->paramHasAttr(0, ParamAttr::ZExt))
1154      ExtendKind = ISD::ZERO_EXTEND;
1155
1156    getCopyToParts(DAG, RetOp, &Parts[0], NumParts, PartVT, ExtendKind);
1157
1158    for (unsigned i = 0; i < NumParts; ++i) {
1159      NewValues.push_back(Parts[i]);
1160      NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
1161    }
1162  }
1163  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1164                          &NewValues[0], NewValues.size()));
1165}
1166
1167/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1168/// the current basic block, add it to ValueMap now so that we'll get a
1169/// CopyTo/FromReg.
1170void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1171  // No need to export constants.
1172  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1173
1174  // Already exported?
1175  if (FuncInfo.isExportedInst(V)) return;
1176
1177  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1178  CopyValueToVirtualRegister(V, Reg);
1179}
1180
1181bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1182                                                    const BasicBlock *FromBB) {
1183  // The operands of the setcc have to be in this block.  We don't know
1184  // how to export them from some other block.
1185  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1186    // Can export from current BB.
1187    if (VI->getParent() == FromBB)
1188      return true;
1189
1190    // Is already exported, noop.
1191    return FuncInfo.isExportedInst(V);
1192  }
1193
1194  // If this is an argument, we can export it if the BB is the entry block or
1195  // if it is already exported.
1196  if (isa<Argument>(V)) {
1197    if (FromBB == &FromBB->getParent()->getEntryBlock())
1198      return true;
1199
1200    // Otherwise, can only export this if it is already exported.
1201    return FuncInfo.isExportedInst(V);
1202  }
1203
1204  // Otherwise, constants can always be exported.
1205  return true;
1206}
1207
1208static bool InBlock(const Value *V, const BasicBlock *BB) {
1209  if (const Instruction *I = dyn_cast<Instruction>(V))
1210    return I->getParent() == BB;
1211  return true;
1212}
1213
1214/// FindMergedConditions - If Cond is an expression like
1215void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1216                                                MachineBasicBlock *TBB,
1217                                                MachineBasicBlock *FBB,
1218                                                MachineBasicBlock *CurBB,
1219                                                unsigned Opc) {
1220  // If this node is not part of the or/and tree, emit it as a branch.
1221  Instruction *BOp = dyn_cast<Instruction>(Cond);
1222
1223  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1224      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1225      BOp->getParent() != CurBB->getBasicBlock() ||
1226      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1227      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1228    const BasicBlock *BB = CurBB->getBasicBlock();
1229
1230    // If the leaf of the tree is a comparison, merge the condition into
1231    // the caseblock.
1232    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1233        // The operands of the cmp have to be in this block.  We don't know
1234        // how to export them from some other block.  If this is the first block
1235        // of the sequence, no exporting is needed.
1236        (CurBB == CurMBB ||
1237         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1238          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1239      BOp = cast<Instruction>(Cond);
1240      ISD::CondCode Condition;
1241      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1242        switch (IC->getPredicate()) {
1243        default: assert(0 && "Unknown icmp predicate opcode!");
1244        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1245        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1246        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1247        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1248        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1249        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1250        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1251        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1252        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1253        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1254        }
1255      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1256        ISD::CondCode FPC, FOC;
1257        switch (FC->getPredicate()) {
1258        default: assert(0 && "Unknown fcmp predicate opcode!");
1259        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1260        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1261        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1262        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1263        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1264        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1265        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1266        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1267        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1268        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1269        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1270        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1271        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1272        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1273        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1274        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1275        }
1276        if (FiniteOnlyFPMath())
1277          Condition = FOC;
1278        else
1279          Condition = FPC;
1280      } else {
1281        Condition = ISD::SETEQ; // silence warning.
1282        assert(0 && "Unknown compare instruction");
1283      }
1284
1285      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1286                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1287      SwitchCases.push_back(CB);
1288      return;
1289    }
1290
1291    // Create a CaseBlock record representing this branch.
1292    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1293                                   NULL, TBB, FBB, CurBB);
1294    SwitchCases.push_back(CB);
1295    return;
1296  }
1297
1298
1299  //  Create TmpBB after CurBB.
1300  MachineFunction::iterator BBI = CurBB;
1301  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1302  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1303
1304  if (Opc == Instruction::Or) {
1305    // Codegen X | Y as:
1306    //   jmp_if_X TBB
1307    //   jmp TmpBB
1308    // TmpBB:
1309    //   jmp_if_Y TBB
1310    //   jmp FBB
1311    //
1312
1313    // Emit the LHS condition.
1314    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1315
1316    // Emit the RHS condition into TmpBB.
1317    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1318  } else {
1319    assert(Opc == Instruction::And && "Unknown merge op!");
1320    // Codegen X & Y as:
1321    //   jmp_if_X TmpBB
1322    //   jmp FBB
1323    // TmpBB:
1324    //   jmp_if_Y TBB
1325    //   jmp FBB
1326    //
1327    //  This requires creation of TmpBB after CurBB.
1328
1329    // Emit the LHS condition.
1330    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1331
1332    // Emit the RHS condition into TmpBB.
1333    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1334  }
1335}
1336
1337/// If the set of cases should be emitted as a series of branches, return true.
1338/// If we should emit this as a bunch of and/or'd together conditions, return
1339/// false.
1340static bool
1341ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1342  if (Cases.size() != 2) return true;
1343
1344  // If this is two comparisons of the same values or'd or and'd together, they
1345  // will get folded into a single comparison, so don't emit two blocks.
1346  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1347       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1348      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1349       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1350    return false;
1351  }
1352
1353  return true;
1354}
1355
1356void SelectionDAGLowering::visitBr(BranchInst &I) {
1357  // Update machine-CFG edges.
1358  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1359
1360  // Figure out which block is immediately after the current one.
1361  MachineBasicBlock *NextBlock = 0;
1362  MachineFunction::iterator BBI = CurMBB;
1363  if (++BBI != CurMBB->getParent()->end())
1364    NextBlock = BBI;
1365
1366  if (I.isUnconditional()) {
1367    // If this is not a fall-through branch, emit the branch.
1368    if (Succ0MBB != NextBlock)
1369      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1370                              DAG.getBasicBlock(Succ0MBB)));
1371
1372    // Update machine-CFG edges.
1373    CurMBB->addSuccessor(Succ0MBB);
1374    return;
1375  }
1376
1377  // If this condition is one of the special cases we handle, do special stuff
1378  // now.
1379  Value *CondVal = I.getCondition();
1380  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1381
1382  // If this is a series of conditions that are or'd or and'd together, emit
1383  // this as a sequence of branches instead of setcc's with and/or operations.
1384  // For example, instead of something like:
1385  //     cmp A, B
1386  //     C = seteq
1387  //     cmp D, E
1388  //     F = setle
1389  //     or C, F
1390  //     jnz foo
1391  // Emit:
1392  //     cmp A, B
1393  //     je foo
1394  //     cmp D, E
1395  //     jle foo
1396  //
1397  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1398    if (BOp->hasOneUse() &&
1399        (BOp->getOpcode() == Instruction::And ||
1400         BOp->getOpcode() == Instruction::Or)) {
1401      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1402      // If the compares in later blocks need to use values not currently
1403      // exported from this block, export them now.  This block should always
1404      // be the first entry.
1405      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1406
1407      // Allow some cases to be rejected.
1408      if (ShouldEmitAsBranches(SwitchCases)) {
1409        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1410          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1411          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1412        }
1413
1414        // Emit the branch for this block.
1415        visitSwitchCase(SwitchCases[0]);
1416        SwitchCases.erase(SwitchCases.begin());
1417        return;
1418      }
1419
1420      // Okay, we decided not to do this, remove any inserted MBB's and clear
1421      // SwitchCases.
1422      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1423        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1424
1425      SwitchCases.clear();
1426    }
1427  }
1428
1429  // Create a CaseBlock record representing this branch.
1430  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1431                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1432  // Use visitSwitchCase to actually insert the fast branch sequence for this
1433  // cond branch.
1434  visitSwitchCase(CB);
1435}
1436
1437/// visitSwitchCase - Emits the necessary code to represent a single node in
1438/// the binary search tree resulting from lowering a switch instruction.
1439void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1440  SDOperand Cond;
1441  SDOperand CondLHS = getValue(CB.CmpLHS);
1442
1443  // Build the setcc now.
1444  if (CB.CmpMHS == NULL) {
1445    // Fold "(X == true)" to X and "(X == false)" to !X to
1446    // handle common cases produced by branch lowering.
1447    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1448      Cond = CondLHS;
1449    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1450      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1451      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1452    } else
1453      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1454  } else {
1455    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1456
1457    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1458    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1459
1460    SDOperand CmpOp = getValue(CB.CmpMHS);
1461    MVT::ValueType VT = CmpOp.getValueType();
1462
1463    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1464      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1465    } else {
1466      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1467      Cond = DAG.getSetCC(MVT::i1, SUB,
1468                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1469    }
1470
1471  }
1472
1473  // Set NextBlock to be the MBB immediately after the current one, if any.
1474  // This is used to avoid emitting unnecessary branches to the next block.
1475  MachineBasicBlock *NextBlock = 0;
1476  MachineFunction::iterator BBI = CurMBB;
1477  if (++BBI != CurMBB->getParent()->end())
1478    NextBlock = BBI;
1479
1480  // If the lhs block is the next block, invert the condition so that we can
1481  // fall through to the lhs instead of the rhs block.
1482  if (CB.TrueBB == NextBlock) {
1483    std::swap(CB.TrueBB, CB.FalseBB);
1484    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1485    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1486  }
1487  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1488                                 DAG.getBasicBlock(CB.TrueBB));
1489  if (CB.FalseBB == NextBlock)
1490    DAG.setRoot(BrCond);
1491  else
1492    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1493                            DAG.getBasicBlock(CB.FalseBB)));
1494  // Update successor info
1495  CurMBB->addSuccessor(CB.TrueBB);
1496  CurMBB->addSuccessor(CB.FalseBB);
1497}
1498
1499/// visitJumpTable - Emit JumpTable node in the current MBB
1500void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1501  // Emit the code for the jump table
1502  assert(JT.Reg != -1U && "Should lower JT Header first!");
1503  MVT::ValueType PTy = TLI.getPointerTy();
1504  SDOperand Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1505  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1506  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1507                          Table, Index));
1508  return;
1509}
1510
1511/// visitJumpTableHeader - This function emits necessary code to produce index
1512/// in the JumpTable from switch case.
1513void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1514                                         SelectionDAGISel::JumpTableHeader &JTH) {
1515  // Subtract the lowest switch case value from the value being switched on
1516  // and conditional branch to default mbb if the result is greater than the
1517  // difference between smallest and largest cases.
1518  SDOperand SwitchOp = getValue(JTH.SValue);
1519  MVT::ValueType VT = SwitchOp.getValueType();
1520  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1521                              DAG.getConstant(JTH.First, VT));
1522
1523  // The SDNode we just created, which holds the value being switched on
1524  // minus the the smallest case value, needs to be copied to a virtual
1525  // register so it can be used as an index into the jump table in a
1526  // subsequent basic block.  This value may be smaller or larger than the
1527  // target's pointer type, and therefore require extension or truncating.
1528  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
1529    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1530  else
1531    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1532
1533  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1534  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1535  JT.Reg = JumpTableReg;
1536
1537  // Emit the range check for the jump table, and branch to the default
1538  // block for the switch statement if the value being switched on exceeds
1539  // the largest case in the switch.
1540  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1541                               DAG.getConstant(JTH.Last-JTH.First,VT),
1542                               ISD::SETUGT);
1543
1544  // Set NextBlock to be the MBB immediately after the current one, if any.
1545  // This is used to avoid emitting unnecessary branches to the next block.
1546  MachineBasicBlock *NextBlock = 0;
1547  MachineFunction::iterator BBI = CurMBB;
1548  if (++BBI != CurMBB->getParent()->end())
1549    NextBlock = BBI;
1550
1551  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1552                                 DAG.getBasicBlock(JT.Default));
1553
1554  if (JT.MBB == NextBlock)
1555    DAG.setRoot(BrCond);
1556  else
1557    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1558                            DAG.getBasicBlock(JT.MBB)));
1559
1560  return;
1561}
1562
1563/// visitBitTestHeader - This function emits necessary code to produce value
1564/// suitable for "bit tests"
1565void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1566  // Subtract the minimum value
1567  SDOperand SwitchOp = getValue(B.SValue);
1568  MVT::ValueType VT = SwitchOp.getValueType();
1569  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1570                              DAG.getConstant(B.First, VT));
1571
1572  // Check range
1573  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1574                                    DAG.getConstant(B.Range, VT),
1575                                    ISD::SETUGT);
1576
1577  SDOperand ShiftOp;
1578  if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getShiftAmountTy()))
1579    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1580  else
1581    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1582
1583  // Make desired shift
1584  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1585                                    DAG.getConstant(1, TLI.getPointerTy()),
1586                                    ShiftOp);
1587
1588  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1589  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1590  B.Reg = SwitchReg;
1591
1592  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1593                                  DAG.getBasicBlock(B.Default));
1594
1595  // Set NextBlock to be the MBB immediately after the current one, if any.
1596  // This is used to avoid emitting unnecessary branches to the next block.
1597  MachineBasicBlock *NextBlock = 0;
1598  MachineFunction::iterator BBI = CurMBB;
1599  if (++BBI != CurMBB->getParent()->end())
1600    NextBlock = BBI;
1601
1602  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1603  if (MBB == NextBlock)
1604    DAG.setRoot(BrRange);
1605  else
1606    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1607                            DAG.getBasicBlock(MBB)));
1608
1609  CurMBB->addSuccessor(B.Default);
1610  CurMBB->addSuccessor(MBB);
1611
1612  return;
1613}
1614
1615/// visitBitTestCase - this function produces one "bit test"
1616void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1617                                            unsigned Reg,
1618                                            SelectionDAGISel::BitTestCase &B) {
1619  // Emit bit tests and jumps
1620  SDOperand SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg, TLI.getPointerTy());
1621
1622  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1623                                SwitchVal,
1624                                DAG.getConstant(B.Mask,
1625                                                TLI.getPointerTy()));
1626  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1627                                  DAG.getConstant(0, TLI.getPointerTy()),
1628                                  ISD::SETNE);
1629  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1630                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1631
1632  // Set NextBlock to be the MBB immediately after the current one, if any.
1633  // This is used to avoid emitting unnecessary branches to the next block.
1634  MachineBasicBlock *NextBlock = 0;
1635  MachineFunction::iterator BBI = CurMBB;
1636  if (++BBI != CurMBB->getParent()->end())
1637    NextBlock = BBI;
1638
1639  if (NextMBB == NextBlock)
1640    DAG.setRoot(BrAnd);
1641  else
1642    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1643                            DAG.getBasicBlock(NextMBB)));
1644
1645  CurMBB->addSuccessor(B.TargetBB);
1646  CurMBB->addSuccessor(NextMBB);
1647
1648  return;
1649}
1650
1651void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1652  // Retrieve successors.
1653  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1654  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1655
1656  if (isa<InlineAsm>(I.getCalledValue()))
1657    visitInlineAsm(&I);
1658  else
1659    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1660
1661  // If the value of the invoke is used outside of its defining block, make it
1662  // available as a virtual register.
1663  if (!I.use_empty()) {
1664    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1665    if (VMI != FuncInfo.ValueMap.end())
1666      CopyValueToVirtualRegister(&I, VMI->second);
1667  }
1668
1669  // Drop into normal successor.
1670  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1671                          DAG.getBasicBlock(Return)));
1672
1673  // Update successor info
1674  CurMBB->addSuccessor(Return);
1675  CurMBB->addSuccessor(LandingPad);
1676}
1677
1678void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1679}
1680
1681/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1682/// small case ranges).
1683bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1684                                                  CaseRecVector& WorkList,
1685                                                  Value* SV,
1686                                                  MachineBasicBlock* Default) {
1687  Case& BackCase  = *(CR.Range.second-1);
1688
1689  // Size is the number of Cases represented by this range.
1690  unsigned Size = CR.Range.second - CR.Range.first;
1691  if (Size > 3)
1692    return false;
1693
1694  // Get the MachineFunction which holds the current MBB.  This is used when
1695  // inserting any additional MBBs necessary to represent the switch.
1696  MachineFunction *CurMF = CurMBB->getParent();
1697
1698  // Figure out which block is immediately after the current one.
1699  MachineBasicBlock *NextBlock = 0;
1700  MachineFunction::iterator BBI = CR.CaseBB;
1701
1702  if (++BBI != CurMBB->getParent()->end())
1703    NextBlock = BBI;
1704
1705  // TODO: If any two of the cases has the same destination, and if one value
1706  // is the same as the other, but has one bit unset that the other has set,
1707  // use bit manipulation to do two compares at once.  For example:
1708  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1709
1710  // Rearrange the case blocks so that the last one falls through if possible.
1711  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1712    // The last case block won't fall through into 'NextBlock' if we emit the
1713    // branches in this order.  See if rearranging a case value would help.
1714    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1715      if (I->BB == NextBlock) {
1716        std::swap(*I, BackCase);
1717        break;
1718      }
1719    }
1720  }
1721
1722  // Create a CaseBlock record representing a conditional branch to
1723  // the Case's target mbb if the value being switched on SV is equal
1724  // to C.
1725  MachineBasicBlock *CurBlock = CR.CaseBB;
1726  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1727    MachineBasicBlock *FallThrough;
1728    if (I != E-1) {
1729      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1730      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1731    } else {
1732      // If the last case doesn't match, go to the default block.
1733      FallThrough = Default;
1734    }
1735
1736    Value *RHS, *LHS, *MHS;
1737    ISD::CondCode CC;
1738    if (I->High == I->Low) {
1739      // This is just small small case range :) containing exactly 1 case
1740      CC = ISD::SETEQ;
1741      LHS = SV; RHS = I->High; MHS = NULL;
1742    } else {
1743      CC = ISD::SETLE;
1744      LHS = I->Low; MHS = SV; RHS = I->High;
1745    }
1746    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1747                                   I->BB, FallThrough, CurBlock);
1748
1749    // If emitting the first comparison, just call visitSwitchCase to emit the
1750    // code into the current block.  Otherwise, push the CaseBlock onto the
1751    // vector to be later processed by SDISel, and insert the node's MBB
1752    // before the next MBB.
1753    if (CurBlock == CurMBB)
1754      visitSwitchCase(CB);
1755    else
1756      SwitchCases.push_back(CB);
1757
1758    CurBlock = FallThrough;
1759  }
1760
1761  return true;
1762}
1763
1764static inline bool areJTsAllowed(const TargetLowering &TLI) {
1765  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1766          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1767}
1768
1769/// handleJTSwitchCase - Emit jumptable for current switch case range
1770bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1771                                              CaseRecVector& WorkList,
1772                                              Value* SV,
1773                                              MachineBasicBlock* Default) {
1774  Case& FrontCase = *CR.Range.first;
1775  Case& BackCase  = *(CR.Range.second-1);
1776
1777  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1778  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1779
1780  uint64_t TSize = 0;
1781  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1782       I!=E; ++I)
1783    TSize += I->size();
1784
1785  if (!areJTsAllowed(TLI) || TSize <= 3)
1786    return false;
1787
1788  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1789  if (Density < 0.4)
1790    return false;
1791
1792  DOUT << "Lowering jump table\n"
1793       << "First entry: " << First << ". Last entry: " << Last << "\n"
1794       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1795
1796  // Get the MachineFunction which holds the current MBB.  This is used when
1797  // inserting any additional MBBs necessary to represent the switch.
1798  MachineFunction *CurMF = CurMBB->getParent();
1799
1800  // Figure out which block is immediately after the current one.
1801  MachineBasicBlock *NextBlock = 0;
1802  MachineFunction::iterator BBI = CR.CaseBB;
1803
1804  if (++BBI != CurMBB->getParent()->end())
1805    NextBlock = BBI;
1806
1807  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1808
1809  // Create a new basic block to hold the code for loading the address
1810  // of the jump table, and jumping to it.  Update successor information;
1811  // we will either branch to the default case for the switch, or the jump
1812  // table.
1813  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1814  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1815  CR.CaseBB->addSuccessor(Default);
1816  CR.CaseBB->addSuccessor(JumpTableBB);
1817
1818  // Build a vector of destination BBs, corresponding to each target
1819  // of the jump table. If the value of the jump table slot corresponds to
1820  // a case statement, push the case's BB onto the vector, otherwise, push
1821  // the default BB.
1822  std::vector<MachineBasicBlock*> DestBBs;
1823  int64_t TEI = First;
1824  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1825    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1826    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1827
1828    if ((Low <= TEI) && (TEI <= High)) {
1829      DestBBs.push_back(I->BB);
1830      if (TEI==High)
1831        ++I;
1832    } else {
1833      DestBBs.push_back(Default);
1834    }
1835  }
1836
1837  // Update successor info. Add one edge to each unique successor.
1838  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1839  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1840         E = DestBBs.end(); I != E; ++I) {
1841    if (!SuccsHandled[(*I)->getNumber()]) {
1842      SuccsHandled[(*I)->getNumber()] = true;
1843      JumpTableBB->addSuccessor(*I);
1844    }
1845  }
1846
1847  // Create a jump table index for this jump table, or return an existing
1848  // one.
1849  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1850
1851  // Set the jump table information so that we can codegen it as a second
1852  // MachineBasicBlock
1853  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1854  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1855                                        (CR.CaseBB == CurMBB));
1856  if (CR.CaseBB == CurMBB)
1857    visitJumpTableHeader(JT, JTH);
1858
1859  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1860
1861  return true;
1862}
1863
1864/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1865/// 2 subtrees.
1866bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1867                                                   CaseRecVector& WorkList,
1868                                                   Value* SV,
1869                                                   MachineBasicBlock* Default) {
1870  // Get the MachineFunction which holds the current MBB.  This is used when
1871  // inserting any additional MBBs necessary to represent the switch.
1872  MachineFunction *CurMF = CurMBB->getParent();
1873
1874  // Figure out which block is immediately after the current one.
1875  MachineBasicBlock *NextBlock = 0;
1876  MachineFunction::iterator BBI = CR.CaseBB;
1877
1878  if (++BBI != CurMBB->getParent()->end())
1879    NextBlock = BBI;
1880
1881  Case& FrontCase = *CR.Range.first;
1882  Case& BackCase  = *(CR.Range.second-1);
1883  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1884
1885  // Size is the number of Cases represented by this range.
1886  unsigned Size = CR.Range.second - CR.Range.first;
1887
1888  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1889  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1890  double FMetric = 0;
1891  CaseItr Pivot = CR.Range.first + Size/2;
1892
1893  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1894  // (heuristically) allow us to emit JumpTable's later.
1895  uint64_t TSize = 0;
1896  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1897       I!=E; ++I)
1898    TSize += I->size();
1899
1900  uint64_t LSize = FrontCase.size();
1901  uint64_t RSize = TSize-LSize;
1902  DOUT << "Selecting best pivot: \n"
1903       << "First: " << First << ", Last: " << Last <<"\n"
1904       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1905  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1906       J!=E; ++I, ++J) {
1907    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1908    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1909    assert((RBegin-LEnd>=1) && "Invalid case distance");
1910    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1911    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1912    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1913    // Should always split in some non-trivial place
1914    DOUT <<"=>Step\n"
1915         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1916         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1917         << "Metric: " << Metric << "\n";
1918    if (FMetric < Metric) {
1919      Pivot = J;
1920      FMetric = Metric;
1921      DOUT << "Current metric set to: " << FMetric << "\n";
1922    }
1923
1924    LSize += J->size();
1925    RSize -= J->size();
1926  }
1927  if (areJTsAllowed(TLI)) {
1928    // If our case is dense we *really* should handle it earlier!
1929    assert((FMetric > 0) && "Should handle dense range earlier!");
1930  } else {
1931    Pivot = CR.Range.first + Size/2;
1932  }
1933
1934  CaseRange LHSR(CR.Range.first, Pivot);
1935  CaseRange RHSR(Pivot, CR.Range.second);
1936  Constant *C = Pivot->Low;
1937  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1938
1939  // We know that we branch to the LHS if the Value being switched on is
1940  // less than the Pivot value, C.  We use this to optimize our binary
1941  // tree a bit, by recognizing that if SV is greater than or equal to the
1942  // LHS's Case Value, and that Case Value is exactly one less than the
1943  // Pivot's Value, then we can branch directly to the LHS's Target,
1944  // rather than creating a leaf node for it.
1945  if ((LHSR.second - LHSR.first) == 1 &&
1946      LHSR.first->High == CR.GE &&
1947      cast<ConstantInt>(C)->getSExtValue() ==
1948      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1949    TrueBB = LHSR.first->BB;
1950  } else {
1951    TrueBB = new MachineBasicBlock(LLVMBB);
1952    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1953    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1954  }
1955
1956  // Similar to the optimization above, if the Value being switched on is
1957  // known to be less than the Constant CR.LT, and the current Case Value
1958  // is CR.LT - 1, then we can branch directly to the target block for
1959  // the current Case Value, rather than emitting a RHS leaf node for it.
1960  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1961      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1962      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1963    FalseBB = RHSR.first->BB;
1964  } else {
1965    FalseBB = new MachineBasicBlock(LLVMBB);
1966    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1967    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1968  }
1969
1970  // Create a CaseBlock record representing a conditional branch to
1971  // the LHS node if the value being switched on SV is less than C.
1972  // Otherwise, branch to LHS.
1973  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1974                                 TrueBB, FalseBB, CR.CaseBB);
1975
1976  if (CR.CaseBB == CurMBB)
1977    visitSwitchCase(CB);
1978  else
1979    SwitchCases.push_back(CB);
1980
1981  return true;
1982}
1983
1984/// handleBitTestsSwitchCase - if current case range has few destination and
1985/// range span less, than machine word bitwidth, encode case range into series
1986/// of masks and emit bit tests with these masks.
1987bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1988                                                    CaseRecVector& WorkList,
1989                                                    Value* SV,
1990                                                    MachineBasicBlock* Default){
1991  unsigned IntPtrBits = MVT::getSizeInBits(TLI.getPointerTy());
1992
1993  Case& FrontCase = *CR.Range.first;
1994  Case& BackCase  = *(CR.Range.second-1);
1995
1996  // Get the MachineFunction which holds the current MBB.  This is used when
1997  // inserting any additional MBBs necessary to represent the switch.
1998  MachineFunction *CurMF = CurMBB->getParent();
1999
2000  unsigned numCmps = 0;
2001  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2002       I!=E; ++I) {
2003    // Single case counts one, case range - two.
2004    if (I->Low == I->High)
2005      numCmps +=1;
2006    else
2007      numCmps +=2;
2008  }
2009
2010  // Count unique destinations
2011  SmallSet<MachineBasicBlock*, 4> Dests;
2012  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2013    Dests.insert(I->BB);
2014    if (Dests.size() > 3)
2015      // Don't bother the code below, if there are too much unique destinations
2016      return false;
2017  }
2018  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
2019       << "Total number of comparisons: " << numCmps << "\n";
2020
2021  // Compute span of values.
2022  Constant* minValue = FrontCase.Low;
2023  Constant* maxValue = BackCase.High;
2024  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
2025                   cast<ConstantInt>(minValue)->getSExtValue();
2026  DOUT << "Compare range: " << range << "\n"
2027       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
2028       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
2029
2030  if (range>=IntPtrBits ||
2031      (!(Dests.size() == 1 && numCmps >= 3) &&
2032       !(Dests.size() == 2 && numCmps >= 5) &&
2033       !(Dests.size() >= 3 && numCmps >= 6)))
2034    return false;
2035
2036  DOUT << "Emitting bit tests\n";
2037  int64_t lowBound = 0;
2038
2039  // Optimize the case where all the case values fit in a
2040  // word without having to subtract minValue. In this case,
2041  // we can optimize away the subtraction.
2042  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
2043      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
2044    range = cast<ConstantInt>(maxValue)->getSExtValue();
2045  } else {
2046    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
2047  }
2048
2049  CaseBitsVector CasesBits;
2050  unsigned i, count = 0;
2051
2052  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2053    MachineBasicBlock* Dest = I->BB;
2054    for (i = 0; i < count; ++i)
2055      if (Dest == CasesBits[i].BB)
2056        break;
2057
2058    if (i == count) {
2059      assert((count < 3) && "Too much destinations to test!");
2060      CasesBits.push_back(CaseBits(0, Dest, 0));
2061      count++;
2062    }
2063
2064    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2065    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2066
2067    for (uint64_t j = lo; j <= hi; j++) {
2068      CasesBits[i].Mask |=  1ULL << j;
2069      CasesBits[i].Bits++;
2070    }
2071
2072  }
2073  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2074
2075  SelectionDAGISel::BitTestInfo BTC;
2076
2077  // Figure out which block is immediately after the current one.
2078  MachineFunction::iterator BBI = CR.CaseBB;
2079  ++BBI;
2080
2081  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2082
2083  DOUT << "Cases:\n";
2084  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2085    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2086         << ", BB: " << CasesBits[i].BB << "\n";
2087
2088    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
2089    CurMF->getBasicBlockList().insert(BBI, CaseBB);
2090    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
2091                                                CaseBB,
2092                                                CasesBits[i].BB));
2093  }
2094
2095  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
2096                                     -1U, (CR.CaseBB == CurMBB),
2097                                     CR.CaseBB, Default, BTC);
2098
2099  if (CR.CaseBB == CurMBB)
2100    visitBitTestHeader(BTB);
2101
2102  BitTestCases.push_back(BTB);
2103
2104  return true;
2105}
2106
2107
2108/// Clusterify - Transform simple list of Cases into list of CaseRange's
2109unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2110                                          const SwitchInst& SI) {
2111  unsigned numCmps = 0;
2112
2113  // Start with "simple" cases
2114  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2115    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2116    Cases.push_back(Case(SI.getSuccessorValue(i),
2117                         SI.getSuccessorValue(i),
2118                         SMBB));
2119  }
2120  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2121
2122  // Merge case into clusters
2123  if (Cases.size()>=2)
2124    // Must recompute end() each iteration because it may be
2125    // invalidated by erase if we hold on to it
2126    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2127      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2128      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2129      MachineBasicBlock* nextBB = J->BB;
2130      MachineBasicBlock* currentBB = I->BB;
2131
2132      // If the two neighboring cases go to the same destination, merge them
2133      // into a single case.
2134      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2135        I->High = J->High;
2136        J = Cases.erase(J);
2137      } else {
2138        I = J++;
2139      }
2140    }
2141
2142  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2143    if (I->Low != I->High)
2144      // A range counts double, since it requires two compares.
2145      ++numCmps;
2146  }
2147
2148  return numCmps;
2149}
2150
2151void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2152  // Figure out which block is immediately after the current one.
2153  MachineBasicBlock *NextBlock = 0;
2154  MachineFunction::iterator BBI = CurMBB;
2155
2156  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2157
2158  // If there is only the default destination, branch to it if it is not the
2159  // next basic block.  Otherwise, just fall through.
2160  if (SI.getNumOperands() == 2) {
2161    // Update machine-CFG edges.
2162
2163    // If this is not a fall-through branch, emit the branch.
2164    if (Default != NextBlock)
2165      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2166                              DAG.getBasicBlock(Default)));
2167
2168    CurMBB->addSuccessor(Default);
2169    return;
2170  }
2171
2172  // If there are any non-default case statements, create a vector of Cases
2173  // representing each one, and sort the vector so that we can efficiently
2174  // create a binary search tree from them.
2175  CaseVector Cases;
2176  unsigned numCmps = Clusterify(Cases, SI);
2177  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2178       << ". Total compares: " << numCmps << "\n";
2179
2180  // Get the Value to be switched on and default basic blocks, which will be
2181  // inserted into CaseBlock records, representing basic blocks in the binary
2182  // search tree.
2183  Value *SV = SI.getOperand(0);
2184
2185  // Push the initial CaseRec onto the worklist
2186  CaseRecVector WorkList;
2187  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2188
2189  while (!WorkList.empty()) {
2190    // Grab a record representing a case range to process off the worklist
2191    CaseRec CR = WorkList.back();
2192    WorkList.pop_back();
2193
2194    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2195      continue;
2196
2197    // If the range has few cases (two or less) emit a series of specific
2198    // tests.
2199    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2200      continue;
2201
2202    // If the switch has more than 5 blocks, and at least 40% dense, and the
2203    // target supports indirect branches, then emit a jump table rather than
2204    // lowering the switch to a binary tree of conditional branches.
2205    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2206      continue;
2207
2208    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2209    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2210    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2211  }
2212}
2213
2214
2215void SelectionDAGLowering::visitSub(User &I) {
2216  // -0.0 - X --> fneg
2217  const Type *Ty = I.getType();
2218  if (isa<VectorType>(Ty)) {
2219    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2220      const VectorType *DestTy = cast<VectorType>(I.getType());
2221      const Type *ElTy = DestTy->getElementType();
2222      if (ElTy->isFloatingPoint()) {
2223        unsigned VL = DestTy->getNumElements();
2224        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2225        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2226        if (CV == CNZ) {
2227          SDOperand Op2 = getValue(I.getOperand(1));
2228          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2229          return;
2230        }
2231      }
2232    }
2233  }
2234  if (Ty->isFloatingPoint()) {
2235    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2236      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2237        SDOperand Op2 = getValue(I.getOperand(1));
2238        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2239        return;
2240      }
2241  }
2242
2243  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2244}
2245
2246void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2247  SDOperand Op1 = getValue(I.getOperand(0));
2248  SDOperand Op2 = getValue(I.getOperand(1));
2249
2250  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2251}
2252
2253void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2254  SDOperand Op1 = getValue(I.getOperand(0));
2255  SDOperand Op2 = getValue(I.getOperand(1));
2256
2257  if (MVT::getSizeInBits(TLI.getShiftAmountTy()) <
2258      MVT::getSizeInBits(Op2.getValueType()))
2259    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2260  else if (TLI.getShiftAmountTy() > Op2.getValueType())
2261    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2262
2263  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2264}
2265
2266void SelectionDAGLowering::visitICmp(User &I) {
2267  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2268  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2269    predicate = IC->getPredicate();
2270  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2271    predicate = ICmpInst::Predicate(IC->getPredicate());
2272  SDOperand Op1 = getValue(I.getOperand(0));
2273  SDOperand Op2 = getValue(I.getOperand(1));
2274  ISD::CondCode Opcode;
2275  switch (predicate) {
2276    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2277    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2278    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2279    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2280    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2281    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2282    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2283    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2284    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2285    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2286    default:
2287      assert(!"Invalid ICmp predicate value");
2288      Opcode = ISD::SETEQ;
2289      break;
2290  }
2291  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2292}
2293
2294void SelectionDAGLowering::visitFCmp(User &I) {
2295  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2296  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2297    predicate = FC->getPredicate();
2298  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2299    predicate = FCmpInst::Predicate(FC->getPredicate());
2300  SDOperand Op1 = getValue(I.getOperand(0));
2301  SDOperand Op2 = getValue(I.getOperand(1));
2302  ISD::CondCode Condition, FOC, FPC;
2303  switch (predicate) {
2304    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2305    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2306    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2307    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2308    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2309    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2310    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2311    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2312    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2313    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2314    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2315    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2316    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2317    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2318    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2319    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2320    default:
2321      assert(!"Invalid FCmp predicate value");
2322      FOC = FPC = ISD::SETFALSE;
2323      break;
2324  }
2325  if (FiniteOnlyFPMath())
2326    Condition = FOC;
2327  else
2328    Condition = FPC;
2329  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2330}
2331
2332void SelectionDAGLowering::visitSelect(User &I) {
2333  SDOperand Cond     = getValue(I.getOperand(0));
2334  SDOperand TrueVal  = getValue(I.getOperand(1));
2335  SDOperand FalseVal = getValue(I.getOperand(2));
2336  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2337                           TrueVal, FalseVal));
2338}
2339
2340
2341void SelectionDAGLowering::visitTrunc(User &I) {
2342  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2343  SDOperand N = getValue(I.getOperand(0));
2344  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2345  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2346}
2347
2348void SelectionDAGLowering::visitZExt(User &I) {
2349  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2350  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2351  SDOperand N = getValue(I.getOperand(0));
2352  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2353  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2354}
2355
2356void SelectionDAGLowering::visitSExt(User &I) {
2357  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2358  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2359  SDOperand N = getValue(I.getOperand(0));
2360  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2361  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2362}
2363
2364void SelectionDAGLowering::visitFPTrunc(User &I) {
2365  // FPTrunc is never a no-op cast, no need to check
2366  SDOperand N = getValue(I.getOperand(0));
2367  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2368  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2369}
2370
2371void SelectionDAGLowering::visitFPExt(User &I){
2372  // FPTrunc is never a no-op cast, no need to check
2373  SDOperand N = getValue(I.getOperand(0));
2374  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2375  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2376}
2377
2378void SelectionDAGLowering::visitFPToUI(User &I) {
2379  // FPToUI is never a no-op cast, no need to check
2380  SDOperand N = getValue(I.getOperand(0));
2381  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2382  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2383}
2384
2385void SelectionDAGLowering::visitFPToSI(User &I) {
2386  // FPToSI is never a no-op cast, no need to check
2387  SDOperand N = getValue(I.getOperand(0));
2388  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2389  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2390}
2391
2392void SelectionDAGLowering::visitUIToFP(User &I) {
2393  // UIToFP is never a no-op cast, no need to check
2394  SDOperand N = getValue(I.getOperand(0));
2395  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2396  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2397}
2398
2399void SelectionDAGLowering::visitSIToFP(User &I){
2400  // UIToFP is never a no-op cast, no need to check
2401  SDOperand N = getValue(I.getOperand(0));
2402  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2403  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2404}
2405
2406void SelectionDAGLowering::visitPtrToInt(User &I) {
2407  // What to do depends on the size of the integer and the size of the pointer.
2408  // We can either truncate, zero extend, or no-op, accordingly.
2409  SDOperand N = getValue(I.getOperand(0));
2410  MVT::ValueType SrcVT = N.getValueType();
2411  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2412  SDOperand Result;
2413  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2414    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2415  else
2416    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2417    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2418  setValue(&I, Result);
2419}
2420
2421void SelectionDAGLowering::visitIntToPtr(User &I) {
2422  // What to do depends on the size of the integer and the size of the pointer.
2423  // We can either truncate, zero extend, or no-op, accordingly.
2424  SDOperand N = getValue(I.getOperand(0));
2425  MVT::ValueType SrcVT = N.getValueType();
2426  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2427  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2428    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2429  else
2430    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2431    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2432}
2433
2434void SelectionDAGLowering::visitBitCast(User &I) {
2435  SDOperand N = getValue(I.getOperand(0));
2436  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2437
2438  // BitCast assures us that source and destination are the same size so this
2439  // is either a BIT_CONVERT or a no-op.
2440  if (DestVT != N.getValueType())
2441    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2442  else
2443    setValue(&I, N); // noop cast.
2444}
2445
2446void SelectionDAGLowering::visitInsertElement(User &I) {
2447  SDOperand InVec = getValue(I.getOperand(0));
2448  SDOperand InVal = getValue(I.getOperand(1));
2449  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2450                                getValue(I.getOperand(2)));
2451
2452  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2453                           TLI.getValueType(I.getType()),
2454                           InVec, InVal, InIdx));
2455}
2456
2457void SelectionDAGLowering::visitExtractElement(User &I) {
2458  SDOperand InVec = getValue(I.getOperand(0));
2459  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2460                                getValue(I.getOperand(1)));
2461  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2462                           TLI.getValueType(I.getType()), InVec, InIdx));
2463}
2464
2465void SelectionDAGLowering::visitShuffleVector(User &I) {
2466  SDOperand V1   = getValue(I.getOperand(0));
2467  SDOperand V2   = getValue(I.getOperand(1));
2468  SDOperand Mask = getValue(I.getOperand(2));
2469
2470  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2471                           TLI.getValueType(I.getType()),
2472                           V1, V2, Mask));
2473}
2474
2475
2476void SelectionDAGLowering::visitGetElementPtr(User &I) {
2477  SDOperand N = getValue(I.getOperand(0));
2478  const Type *Ty = I.getOperand(0)->getType();
2479
2480  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2481       OI != E; ++OI) {
2482    Value *Idx = *OI;
2483    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2484      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2485      if (Field) {
2486        // N = N + Offset
2487        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2488        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2489                        DAG.getIntPtrConstant(Offset));
2490      }
2491      Ty = StTy->getElementType(Field);
2492    } else {
2493      Ty = cast<SequentialType>(Ty)->getElementType();
2494
2495      // If this is a constant subscript, handle it quickly.
2496      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2497        if (CI->getZExtValue() == 0) continue;
2498        uint64_t Offs =
2499            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2500        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2501                        DAG.getIntPtrConstant(Offs));
2502        continue;
2503      }
2504
2505      // N = N + Idx * ElementSize;
2506      uint64_t ElementSize = TD->getABITypeSize(Ty);
2507      SDOperand IdxN = getValue(Idx);
2508
2509      // If the index is smaller or larger than intptr_t, truncate or extend
2510      // it.
2511      if (IdxN.getValueType() < N.getValueType()) {
2512        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2513      } else if (IdxN.getValueType() > N.getValueType())
2514        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2515
2516      // If this is a multiply by a power of two, turn it into a shl
2517      // immediately.  This is a very common case.
2518      if (isPowerOf2_64(ElementSize)) {
2519        unsigned Amt = Log2_64(ElementSize);
2520        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2521                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2522        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2523        continue;
2524      }
2525
2526      SDOperand Scale = DAG.getIntPtrConstant(ElementSize);
2527      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2528      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2529    }
2530  }
2531  setValue(&I, N);
2532}
2533
2534void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2535  // If this is a fixed sized alloca in the entry block of the function,
2536  // allocate it statically on the stack.
2537  if (FuncInfo.StaticAllocaMap.count(&I))
2538    return;   // getValue will auto-populate this.
2539
2540  const Type *Ty = I.getAllocatedType();
2541  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2542  unsigned Align =
2543    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2544             I.getAlignment());
2545
2546  SDOperand AllocSize = getValue(I.getArraySize());
2547  MVT::ValueType IntPtr = TLI.getPointerTy();
2548  if (IntPtr < AllocSize.getValueType())
2549    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2550  else if (IntPtr > AllocSize.getValueType())
2551    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2552
2553  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2554                          DAG.getIntPtrConstant(TySize));
2555
2556  // Handle alignment.  If the requested alignment is less than or equal to
2557  // the stack alignment, ignore it.  If the size is greater than or equal to
2558  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2559  unsigned StackAlign =
2560    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2561  if (Align <= StackAlign)
2562    Align = 0;
2563
2564  // Round the size of the allocation up to the stack alignment size
2565  // by add SA-1 to the size.
2566  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2567                          DAG.getIntPtrConstant(StackAlign-1));
2568  // Mask out the low bits for alignment purposes.
2569  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2570                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2571
2572  SDOperand Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2573  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2574                                                    MVT::Other);
2575  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2576  setValue(&I, DSA);
2577  DAG.setRoot(DSA.getValue(1));
2578
2579  // Inform the Frame Information that we have just allocated a variable-sized
2580  // object.
2581  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2582}
2583
2584void SelectionDAGLowering::visitLoad(LoadInst &I) {
2585  SDOperand Ptr = getValue(I.getOperand(0));
2586
2587  SDOperand Root;
2588  if (I.isVolatile())
2589    Root = getRoot();
2590  else {
2591    // Do not serialize non-volatile loads against each other.
2592    Root = DAG.getRoot();
2593  }
2594
2595  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2596                           Root, I.isVolatile(), I.getAlignment()));
2597}
2598
2599SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2600                                            const Value *SV, SDOperand Root,
2601                                            bool isVolatile,
2602                                            unsigned Alignment) {
2603  SDOperand L =
2604    DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2605                isVolatile, Alignment);
2606
2607  if (isVolatile)
2608    DAG.setRoot(L.getValue(1));
2609  else
2610    PendingLoads.push_back(L.getValue(1));
2611
2612  return L;
2613}
2614
2615
2616void SelectionDAGLowering::visitStore(StoreInst &I) {
2617  Value *SrcV = I.getOperand(0);
2618  SDOperand Src = getValue(SrcV);
2619  SDOperand Ptr = getValue(I.getOperand(1));
2620  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2621                           I.isVolatile(), I.getAlignment()));
2622}
2623
2624/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2625/// node.
2626void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2627                                                unsigned Intrinsic) {
2628  bool HasChain = !I.doesNotAccessMemory();
2629  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2630
2631  // Build the operand list.
2632  SmallVector<SDOperand, 8> Ops;
2633  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2634    if (OnlyLoad) {
2635      // We don't need to serialize loads against other loads.
2636      Ops.push_back(DAG.getRoot());
2637    } else {
2638      Ops.push_back(getRoot());
2639    }
2640  }
2641
2642  // Add the intrinsic ID as an integer operand.
2643  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2644
2645  // Add all operands of the call to the operand list.
2646  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2647    SDOperand Op = getValue(I.getOperand(i));
2648    assert(TLI.isTypeLegal(Op.getValueType()) &&
2649           "Intrinsic uses a non-legal type?");
2650    Ops.push_back(Op);
2651  }
2652
2653  std::vector<MVT::ValueType> VTs;
2654  if (I.getType() != Type::VoidTy) {
2655    MVT::ValueType VT = TLI.getValueType(I.getType());
2656    if (MVT::isVector(VT)) {
2657      const VectorType *DestTy = cast<VectorType>(I.getType());
2658      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2659
2660      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2661      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2662    }
2663
2664    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2665    VTs.push_back(VT);
2666  }
2667  if (HasChain)
2668    VTs.push_back(MVT::Other);
2669
2670  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2671
2672  // Create the node.
2673  SDOperand Result;
2674  if (!HasChain)
2675    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2676                         &Ops[0], Ops.size());
2677  else if (I.getType() != Type::VoidTy)
2678    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2679                         &Ops[0], Ops.size());
2680  else
2681    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2682                         &Ops[0], Ops.size());
2683
2684  if (HasChain) {
2685    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2686    if (OnlyLoad)
2687      PendingLoads.push_back(Chain);
2688    else
2689      DAG.setRoot(Chain);
2690  }
2691  if (I.getType() != Type::VoidTy) {
2692    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2693      MVT::ValueType VT = TLI.getValueType(PTy);
2694      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2695    }
2696    setValue(&I, Result);
2697  }
2698}
2699
2700/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2701static GlobalVariable *ExtractTypeInfo (Value *V) {
2702  V = IntrinsicInst::StripPointerCasts(V);
2703  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2704  assert ((GV || isa<ConstantPointerNull>(V)) &&
2705          "TypeInfo must be a global variable or NULL");
2706  return GV;
2707}
2708
2709/// addCatchInfo - Extract the personality and type infos from an eh.selector
2710/// call, and add them to the specified machine basic block.
2711static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2712                         MachineBasicBlock *MBB) {
2713  // Inform the MachineModuleInfo of the personality for this landing pad.
2714  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2715  assert(CE->getOpcode() == Instruction::BitCast &&
2716         isa<Function>(CE->getOperand(0)) &&
2717         "Personality should be a function");
2718  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2719
2720  // Gather all the type infos for this landing pad and pass them along to
2721  // MachineModuleInfo.
2722  std::vector<GlobalVariable *> TyInfo;
2723  unsigned N = I.getNumOperands();
2724
2725  for (unsigned i = N - 1; i > 2; --i) {
2726    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2727      unsigned FilterLength = CI->getZExtValue();
2728      unsigned FirstCatch = i + FilterLength + !FilterLength;
2729      assert (FirstCatch <= N && "Invalid filter length");
2730
2731      if (FirstCatch < N) {
2732        TyInfo.reserve(N - FirstCatch);
2733        for (unsigned j = FirstCatch; j < N; ++j)
2734          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2735        MMI->addCatchTypeInfo(MBB, TyInfo);
2736        TyInfo.clear();
2737      }
2738
2739      if (!FilterLength) {
2740        // Cleanup.
2741        MMI->addCleanup(MBB);
2742      } else {
2743        // Filter.
2744        TyInfo.reserve(FilterLength - 1);
2745        for (unsigned j = i + 1; j < FirstCatch; ++j)
2746          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2747        MMI->addFilterTypeInfo(MBB, TyInfo);
2748        TyInfo.clear();
2749      }
2750
2751      N = i;
2752    }
2753  }
2754
2755  if (N > 3) {
2756    TyInfo.reserve(N - 3);
2757    for (unsigned j = 3; j < N; ++j)
2758      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2759    MMI->addCatchTypeInfo(MBB, TyInfo);
2760  }
2761}
2762
2763/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2764/// we want to emit this as a call to a named external function, return the name
2765/// otherwise lower it and return null.
2766const char *
2767SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2768  switch (Intrinsic) {
2769  default:
2770    // By default, turn this into a target intrinsic node.
2771    visitTargetIntrinsic(I, Intrinsic);
2772    return 0;
2773  case Intrinsic::vastart:  visitVAStart(I); return 0;
2774  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2775  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2776  case Intrinsic::returnaddress:
2777    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2778                             getValue(I.getOperand(1))));
2779    return 0;
2780  case Intrinsic::frameaddress:
2781    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2782                             getValue(I.getOperand(1))));
2783    return 0;
2784  case Intrinsic::setjmp:
2785    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2786    break;
2787  case Intrinsic::longjmp:
2788    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2789    break;
2790  case Intrinsic::memcpy_i32:
2791  case Intrinsic::memcpy_i64: {
2792    SDOperand Op1 = getValue(I.getOperand(1));
2793    SDOperand Op2 = getValue(I.getOperand(2));
2794    SDOperand Op3 = getValue(I.getOperand(3));
2795    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
2796    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
2797                              I.getOperand(1), 0, I.getOperand(2), 0));
2798    return 0;
2799  }
2800  case Intrinsic::memset_i32:
2801  case Intrinsic::memset_i64: {
2802    SDOperand Op1 = getValue(I.getOperand(1));
2803    SDOperand Op2 = getValue(I.getOperand(2));
2804    SDOperand Op3 = getValue(I.getOperand(3));
2805    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
2806    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
2807                              I.getOperand(1), 0));
2808    return 0;
2809  }
2810  case Intrinsic::memmove_i32:
2811  case Intrinsic::memmove_i64: {
2812    SDOperand Op1 = getValue(I.getOperand(1));
2813    SDOperand Op2 = getValue(I.getOperand(2));
2814    SDOperand Op3 = getValue(I.getOperand(3));
2815    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
2816
2817    // If the source and destination are known to not be aliases, we can
2818    // lower memmove as memcpy.
2819    uint64_t Size = -1ULL;
2820    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
2821      Size = C->getValue();
2822    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
2823        AliasAnalysis::NoAlias) {
2824      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
2825                                I.getOperand(1), 0, I.getOperand(2), 0));
2826      return 0;
2827    }
2828
2829    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
2830                               I.getOperand(1), 0, I.getOperand(2), 0));
2831    return 0;
2832  }
2833  case Intrinsic::dbg_stoppoint: {
2834    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2835    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2836    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2837      SDOperand Ops[5];
2838
2839      Ops[0] = getRoot();
2840      Ops[1] = getValue(SPI.getLineValue());
2841      Ops[2] = getValue(SPI.getColumnValue());
2842
2843      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2844      assert(DD && "Not a debug information descriptor");
2845      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2846
2847      Ops[3] = DAG.getString(CompileUnit->getFileName());
2848      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2849
2850      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2851    }
2852
2853    return 0;
2854  }
2855  case Intrinsic::dbg_region_start: {
2856    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2857    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2858    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2859      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2860      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2861                              DAG.getConstant(LabelID, MVT::i32),
2862                              DAG.getConstant(0, MVT::i32)));
2863    }
2864
2865    return 0;
2866  }
2867  case Intrinsic::dbg_region_end: {
2868    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2869    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2870    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2871      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2872      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2873                              DAG.getConstant(LabelID, MVT::i32),
2874                              DAG.getConstant(0, MVT::i32)));
2875    }
2876
2877    return 0;
2878  }
2879  case Intrinsic::dbg_func_start: {
2880    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2881    if (!MMI) return 0;
2882    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2883    Value *SP = FSI.getSubprogram();
2884    if (SP && MMI->Verify(SP)) {
2885      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
2886      // what (most?) gdb expects.
2887      DebugInfoDesc *DD = MMI->getDescFor(SP);
2888      assert(DD && "Not a debug information descriptor");
2889      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
2890      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
2891      unsigned SrcFile = MMI->RecordSource(CompileUnit->getDirectory(),
2892                                           CompileUnit->getFileName());
2893      // Record the source line but does create a label. It will be emitted
2894      // at asm emission time.
2895      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
2896    }
2897
2898    return 0;
2899  }
2900  case Intrinsic::dbg_declare: {
2901    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2902    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2903    Value *Variable = DI.getVariable();
2904    if (MMI && Variable && MMI->Verify(Variable))
2905      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
2906                              getValue(DI.getAddress()), getValue(Variable)));
2907    return 0;
2908  }
2909
2910  case Intrinsic::eh_exception: {
2911    if (!CurMBB->isLandingPad()) {
2912      // FIXME: Mark exception register as live in.  Hack for PR1508.
2913      unsigned Reg = TLI.getExceptionAddressRegister();
2914      if (Reg) CurMBB->addLiveIn(Reg);
2915    }
2916    // Insert the EXCEPTIONADDR instruction.
2917    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2918    SDOperand Ops[1];
2919    Ops[0] = DAG.getRoot();
2920    SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2921    setValue(&I, Op);
2922    DAG.setRoot(Op.getValue(1));
2923    return 0;
2924  }
2925
2926  case Intrinsic::eh_selector_i32:
2927  case Intrinsic::eh_selector_i64: {
2928    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2929    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
2930                         MVT::i32 : MVT::i64);
2931
2932    if (MMI) {
2933      if (CurMBB->isLandingPad())
2934        addCatchInfo(I, MMI, CurMBB);
2935      else {
2936#ifndef NDEBUG
2937        FuncInfo.CatchInfoLost.insert(&I);
2938#endif
2939        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
2940        unsigned Reg = TLI.getExceptionSelectorRegister();
2941        if (Reg) CurMBB->addLiveIn(Reg);
2942      }
2943
2944      // Insert the EHSELECTION instruction.
2945      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2946      SDOperand Ops[2];
2947      Ops[0] = getValue(I.getOperand(1));
2948      Ops[1] = getRoot();
2949      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2950      setValue(&I, Op);
2951      DAG.setRoot(Op.getValue(1));
2952    } else {
2953      setValue(&I, DAG.getConstant(0, VT));
2954    }
2955
2956    return 0;
2957  }
2958
2959  case Intrinsic::eh_typeid_for_i32:
2960  case Intrinsic::eh_typeid_for_i64: {
2961    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2962    MVT::ValueType VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
2963                         MVT::i32 : MVT::i64);
2964
2965    if (MMI) {
2966      // Find the type id for the given typeinfo.
2967      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
2968
2969      unsigned TypeID = MMI->getTypeIDFor(GV);
2970      setValue(&I, DAG.getConstant(TypeID, VT));
2971    } else {
2972      // Return something different to eh_selector.
2973      setValue(&I, DAG.getConstant(1, VT));
2974    }
2975
2976    return 0;
2977  }
2978
2979  case Intrinsic::eh_return: {
2980    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2981
2982    if (MMI) {
2983      MMI->setCallsEHReturn(true);
2984      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
2985                              MVT::Other,
2986                              getControlRoot(),
2987                              getValue(I.getOperand(1)),
2988                              getValue(I.getOperand(2))));
2989    } else {
2990      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2991    }
2992
2993    return 0;
2994  }
2995
2996   case Intrinsic::eh_unwind_init: {
2997     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
2998       MMI->setCallsUnwindInit(true);
2999     }
3000
3001     return 0;
3002   }
3003
3004   case Intrinsic::eh_dwarf_cfa: {
3005     MVT::ValueType VT = getValue(I.getOperand(1)).getValueType();
3006     SDOperand CfaArg;
3007     if (MVT::getSizeInBits(VT) > MVT::getSizeInBits(TLI.getPointerTy()))
3008       CfaArg = DAG.getNode(ISD::TRUNCATE,
3009                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3010     else
3011       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3012                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3013
3014     SDOperand Offset = DAG.getNode(ISD::ADD,
3015                                    TLI.getPointerTy(),
3016                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3017                                                TLI.getPointerTy()),
3018                                    CfaArg);
3019     setValue(&I, DAG.getNode(ISD::ADD,
3020                              TLI.getPointerTy(),
3021                              DAG.getNode(ISD::FRAMEADDR,
3022                                          TLI.getPointerTy(),
3023                                          DAG.getConstant(0,
3024                                                          TLI.getPointerTy())),
3025                              Offset));
3026     return 0;
3027  }
3028
3029  case Intrinsic::sqrt:
3030    setValue(&I, DAG.getNode(ISD::FSQRT,
3031                             getValue(I.getOperand(1)).getValueType(),
3032                             getValue(I.getOperand(1))));
3033    return 0;
3034  case Intrinsic::powi:
3035    setValue(&I, DAG.getNode(ISD::FPOWI,
3036                             getValue(I.getOperand(1)).getValueType(),
3037                             getValue(I.getOperand(1)),
3038                             getValue(I.getOperand(2))));
3039    return 0;
3040  case Intrinsic::sin:
3041    setValue(&I, DAG.getNode(ISD::FSIN,
3042                             getValue(I.getOperand(1)).getValueType(),
3043                             getValue(I.getOperand(1))));
3044    return 0;
3045  case Intrinsic::cos:
3046    setValue(&I, DAG.getNode(ISD::FCOS,
3047                             getValue(I.getOperand(1)).getValueType(),
3048                             getValue(I.getOperand(1))));
3049    return 0;
3050  case Intrinsic::pow:
3051    setValue(&I, DAG.getNode(ISD::FPOW,
3052                             getValue(I.getOperand(1)).getValueType(),
3053                             getValue(I.getOperand(1)),
3054                             getValue(I.getOperand(2))));
3055    return 0;
3056  case Intrinsic::pcmarker: {
3057    SDOperand Tmp = getValue(I.getOperand(1));
3058    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3059    return 0;
3060  }
3061  case Intrinsic::readcyclecounter: {
3062    SDOperand Op = getRoot();
3063    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3064                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3065                                &Op, 1);
3066    setValue(&I, Tmp);
3067    DAG.setRoot(Tmp.getValue(1));
3068    return 0;
3069  }
3070  case Intrinsic::part_select: {
3071    // Currently not implemented: just abort
3072    assert(0 && "part_select intrinsic not implemented");
3073    abort();
3074  }
3075  case Intrinsic::part_set: {
3076    // Currently not implemented: just abort
3077    assert(0 && "part_set intrinsic not implemented");
3078    abort();
3079  }
3080  case Intrinsic::bswap:
3081    setValue(&I, DAG.getNode(ISD::BSWAP,
3082                             getValue(I.getOperand(1)).getValueType(),
3083                             getValue(I.getOperand(1))));
3084    return 0;
3085  case Intrinsic::cttz: {
3086    SDOperand Arg = getValue(I.getOperand(1));
3087    MVT::ValueType Ty = Arg.getValueType();
3088    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3089    setValue(&I, result);
3090    return 0;
3091  }
3092  case Intrinsic::ctlz: {
3093    SDOperand Arg = getValue(I.getOperand(1));
3094    MVT::ValueType Ty = Arg.getValueType();
3095    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3096    setValue(&I, result);
3097    return 0;
3098  }
3099  case Intrinsic::ctpop: {
3100    SDOperand Arg = getValue(I.getOperand(1));
3101    MVT::ValueType Ty = Arg.getValueType();
3102    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3103    setValue(&I, result);
3104    return 0;
3105  }
3106  case Intrinsic::stacksave: {
3107    SDOperand Op = getRoot();
3108    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
3109              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3110    setValue(&I, Tmp);
3111    DAG.setRoot(Tmp.getValue(1));
3112    return 0;
3113  }
3114  case Intrinsic::stackrestore: {
3115    SDOperand Tmp = getValue(I.getOperand(1));
3116    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3117    return 0;
3118  }
3119  case Intrinsic::var_annotation:
3120    // Discard annotate attributes
3121    return 0;
3122
3123  case Intrinsic::init_trampoline: {
3124    const Function *F =
3125      cast<Function>(IntrinsicInst::StripPointerCasts(I.getOperand(2)));
3126
3127    SDOperand Ops[6];
3128    Ops[0] = getRoot();
3129    Ops[1] = getValue(I.getOperand(1));
3130    Ops[2] = getValue(I.getOperand(2));
3131    Ops[3] = getValue(I.getOperand(3));
3132    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3133    Ops[5] = DAG.getSrcValue(F);
3134
3135    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
3136                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3137                                                      MVT::Other), 2,
3138                                Ops, 6);
3139
3140    setValue(&I, Tmp);
3141    DAG.setRoot(Tmp.getValue(1));
3142    return 0;
3143  }
3144
3145  case Intrinsic::gcroot:
3146    if (GCI) {
3147      Value *Alloca = I.getOperand(1);
3148      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3149
3150      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3151      GCI->addStackRoot(FI->getIndex(), TypeMap);
3152    }
3153    return 0;
3154
3155  case Intrinsic::gcread:
3156  case Intrinsic::gcwrite:
3157    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3158    return 0;
3159
3160  case Intrinsic::flt_rounds: {
3161    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3162    return 0;
3163  }
3164
3165  case Intrinsic::trap: {
3166    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3167    return 0;
3168  }
3169  case Intrinsic::prefetch: {
3170    SDOperand Ops[4];
3171    Ops[0] = getRoot();
3172    Ops[1] = getValue(I.getOperand(1));
3173    Ops[2] = getValue(I.getOperand(2));
3174    Ops[3] = getValue(I.getOperand(3));
3175    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3176    return 0;
3177  }
3178
3179  case Intrinsic::memory_barrier: {
3180    SDOperand Ops[6];
3181    Ops[0] = getRoot();
3182    for (int x = 1; x < 6; ++x)
3183      Ops[x] = getValue(I.getOperand(x));
3184
3185    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3186    return 0;
3187  }
3188  case Intrinsic::atomic_lcs: {
3189    SDOperand Root = getRoot();
3190    SDOperand O3 = getValue(I.getOperand(3));
3191    SDOperand L = DAG.getAtomic(ISD::ATOMIC_LCS, Root,
3192                                getValue(I.getOperand(1)),
3193                                getValue(I.getOperand(2)),
3194                                O3, O3.getValueType());
3195    setValue(&I, L);
3196    DAG.setRoot(L.getValue(1));
3197    return 0;
3198  }
3199  case Intrinsic::atomic_las: {
3200    SDOperand Root = getRoot();
3201    SDOperand O2 = getValue(I.getOperand(2));
3202    SDOperand L = DAG.getAtomic(ISD::ATOMIC_LAS, Root,
3203                                getValue(I.getOperand(1)),
3204                                O2, O2.getValueType());
3205    setValue(&I, L);
3206    DAG.setRoot(L.getValue(1));
3207    return 0;
3208  }
3209  case Intrinsic::atomic_swap: {
3210    SDOperand Root = getRoot();
3211    SDOperand O2 = getValue(I.getOperand(2));
3212    SDOperand L = DAG.getAtomic(ISD::ATOMIC_SWAP, Root,
3213                                getValue(I.getOperand(1)),
3214                                O2, O2.getValueType());
3215    setValue(&I, L);
3216    DAG.setRoot(L.getValue(1));
3217    return 0;
3218  }
3219
3220  }
3221}
3222
3223
3224void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
3225                                       bool IsTailCall,
3226                                       MachineBasicBlock *LandingPad) {
3227  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3228  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3229  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3230  unsigned BeginLabel = 0, EndLabel = 0;
3231
3232  TargetLowering::ArgListTy Args;
3233  TargetLowering::ArgListEntry Entry;
3234  Args.reserve(CS.arg_size());
3235  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3236       i != e; ++i) {
3237    SDOperand ArgNode = getValue(*i);
3238    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3239
3240    unsigned attrInd = i - CS.arg_begin() + 1;
3241    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3242    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3243    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3244    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3245    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3246    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3247    Entry.Alignment = CS.getParamAlignment(attrInd);
3248    Args.push_back(Entry);
3249  }
3250
3251  if (LandingPad && MMI) {
3252    // Insert a label before the invoke call to mark the try range.  This can be
3253    // used to detect deletion of the invoke via the MachineModuleInfo.
3254    BeginLabel = MMI->NextLabelID();
3255    // Both PendingLoads and PendingExports must be flushed here;
3256    // this call might not return.
3257    (void)getRoot();
3258    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getControlRoot(),
3259                            DAG.getConstant(BeginLabel, MVT::i32),
3260                            DAG.getConstant(1, MVT::i32)));
3261  }
3262
3263  std::pair<SDOperand,SDOperand> Result =
3264    TLI.LowerCallTo(getRoot(), CS.getType(),
3265                    CS.paramHasAttr(0, ParamAttr::SExt),
3266                    CS.paramHasAttr(0, ParamAttr::ZExt),
3267                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3268                    Callee, Args, DAG);
3269  if (CS.getType() != Type::VoidTy)
3270    setValue(CS.getInstruction(), Result.first);
3271  DAG.setRoot(Result.second);
3272
3273  if (LandingPad && MMI) {
3274    // Insert a label at the end of the invoke call to mark the try range.  This
3275    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3276    EndLabel = MMI->NextLabelID();
3277    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3278                            DAG.getConstant(EndLabel, MVT::i32),
3279                            DAG.getConstant(1, MVT::i32)));
3280
3281    // Inform MachineModuleInfo of range.
3282    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3283  }
3284}
3285
3286
3287void SelectionDAGLowering::visitCall(CallInst &I) {
3288  const char *RenameFn = 0;
3289  if (Function *F = I.getCalledFunction()) {
3290    if (F->isDeclaration()) {
3291      if (unsigned IID = F->getIntrinsicID()) {
3292        RenameFn = visitIntrinsicCall(I, IID);
3293        if (!RenameFn)
3294          return;
3295      }
3296    }
3297
3298    // Check for well-known libc/libm calls.  If the function is internal, it
3299    // can't be a library call.
3300    unsigned NameLen = F->getNameLen();
3301    if (!F->hasInternalLinkage() && NameLen) {
3302      const char *NameStr = F->getNameStart();
3303      if (NameStr[0] == 'c' &&
3304          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3305           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3306        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3307            I.getOperand(1)->getType()->isFloatingPoint() &&
3308            I.getType() == I.getOperand(1)->getType() &&
3309            I.getType() == I.getOperand(2)->getType()) {
3310          SDOperand LHS = getValue(I.getOperand(1));
3311          SDOperand RHS = getValue(I.getOperand(2));
3312          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3313                                   LHS, RHS));
3314          return;
3315        }
3316      } else if (NameStr[0] == 'f' &&
3317                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3318                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3319                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3320        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3321            I.getOperand(1)->getType()->isFloatingPoint() &&
3322            I.getType() == I.getOperand(1)->getType()) {
3323          SDOperand Tmp = getValue(I.getOperand(1));
3324          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3325          return;
3326        }
3327      } else if (NameStr[0] == 's' &&
3328                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3329                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3330                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3331        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3332            I.getOperand(1)->getType()->isFloatingPoint() &&
3333            I.getType() == I.getOperand(1)->getType()) {
3334          SDOperand Tmp = getValue(I.getOperand(1));
3335          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3336          return;
3337        }
3338      } else if (NameStr[0] == 'c' &&
3339                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3340                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3341                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3342        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3343            I.getOperand(1)->getType()->isFloatingPoint() &&
3344            I.getType() == I.getOperand(1)->getType()) {
3345          SDOperand Tmp = getValue(I.getOperand(1));
3346          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3347          return;
3348        }
3349      }
3350    }
3351  } else if (isa<InlineAsm>(I.getOperand(0))) {
3352    visitInlineAsm(&I);
3353    return;
3354  }
3355
3356  SDOperand Callee;
3357  if (!RenameFn)
3358    Callee = getValue(I.getOperand(0));
3359  else
3360    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3361
3362  LowerCallTo(&I, Callee, I.isTailCall());
3363}
3364
3365
3366void SelectionDAGLowering::visitGetResult(GetResultInst &I) {
3367  if (isa<UndefValue>(I.getOperand(0))) {
3368    SDOperand Undef = DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()));
3369    setValue(&I, Undef);
3370    return;
3371  }
3372
3373  // To add support for individual return values with aggregate types,
3374  // we'd need a way to take a getresult index and determine which
3375  // values of the Call SDNode are associated with it.
3376  assert(TLI.getValueType(I.getType(), true) != MVT::Other &&
3377         "Individual return values must not be aggregates!");
3378
3379  SDOperand Call = getValue(I.getOperand(0));
3380  setValue(&I, SDOperand(Call.Val, I.getIndex()));
3381}
3382
3383
3384/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3385/// this value and returns the result as a ValueVT value.  This uses
3386/// Chain/Flag as the input and updates them for the output Chain/Flag.
3387/// If the Flag pointer is NULL, no flag is used.
3388SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3389                                        SDOperand &Chain,
3390                                        SDOperand *Flag) const {
3391  // Assemble the legal parts into the final values.
3392  SmallVector<SDOperand, 4> Values(ValueVTs.size());
3393  SmallVector<SDOperand, 8> Parts;
3394  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3395    // Copy the legal parts from the registers.
3396    MVT::ValueType ValueVT = ValueVTs[Value];
3397    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
3398    MVT::ValueType RegisterVT = RegVTs[Value];
3399
3400    Parts.resize(NumRegs);
3401    for (unsigned i = 0; i != NumRegs; ++i) {
3402      SDOperand P;
3403      if (Flag == 0)
3404        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
3405      else {
3406        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
3407        *Flag = P.getValue(2);
3408      }
3409      Chain = P.getValue(1);
3410      Parts[Part+i] = P;
3411    }
3412
3413    Values[Value] = getCopyFromParts(DAG, &Parts[Part], NumRegs, RegisterVT,
3414                                     ValueVT);
3415    Part += NumRegs;
3416  }
3417
3418  if (ValueVTs.size() == 1)
3419    return Values[0];
3420
3421  return DAG.getNode(ISD::MERGE_VALUES,
3422                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
3423                     &Values[0], ValueVTs.size());
3424}
3425
3426/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3427/// specified value into the registers specified by this object.  This uses
3428/// Chain/Flag as the input and updates them for the output Chain/Flag.
3429/// If the Flag pointer is NULL, no flag is used.
3430void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3431                                 SDOperand &Chain, SDOperand *Flag) const {
3432  // Get the list of the values's legal parts.
3433  unsigned NumRegs = Regs.size();
3434  SmallVector<SDOperand, 8> Parts(NumRegs);
3435  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3436    MVT::ValueType ValueVT = ValueVTs[Value];
3437    unsigned NumParts = TLI->getNumRegisters(ValueVT);
3438    MVT::ValueType RegisterVT = RegVTs[Value];
3439
3440    getCopyToParts(DAG, Val.getValue(Val.ResNo + Value),
3441                   &Parts[Part], NumParts, RegisterVT);
3442    Part += NumParts;
3443  }
3444
3445  // Copy the parts into the registers.
3446  SmallVector<SDOperand, 8> Chains(NumRegs);
3447  for (unsigned i = 0; i != NumRegs; ++i) {
3448    SDOperand Part;
3449    if (Flag == 0)
3450      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3451    else {
3452      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
3453      *Flag = Part.getValue(1);
3454    }
3455    Chains[i] = Part.getValue(0);
3456  }
3457
3458  if (NumRegs == 1)
3459    Chain = Chains[0];
3460  else
3461    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
3462}
3463
3464/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3465/// operand list.  This adds the code marker and includes the number of
3466/// values added into it.
3467void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3468                                        std::vector<SDOperand> &Ops) const {
3469  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3470  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3471  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
3472    unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
3473    MVT::ValueType RegisterVT = RegVTs[Value];
3474    for (unsigned i = 0; i != NumRegs; ++i)
3475      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
3476  }
3477}
3478
3479/// isAllocatableRegister - If the specified register is safe to allocate,
3480/// i.e. it isn't a stack pointer or some other special register, return the
3481/// register class for the register.  Otherwise, return null.
3482static const TargetRegisterClass *
3483isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3484                      const TargetLowering &TLI,
3485                      const TargetRegisterInfo *TRI) {
3486  MVT::ValueType FoundVT = MVT::Other;
3487  const TargetRegisterClass *FoundRC = 0;
3488  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3489       E = TRI->regclass_end(); RCI != E; ++RCI) {
3490    MVT::ValueType ThisVT = MVT::Other;
3491
3492    const TargetRegisterClass *RC = *RCI;
3493    // If none of the the value types for this register class are valid, we
3494    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3495    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3496         I != E; ++I) {
3497      if (TLI.isTypeLegal(*I)) {
3498        // If we have already found this register in a different register class,
3499        // choose the one with the largest VT specified.  For example, on
3500        // PowerPC, we favor f64 register classes over f32.
3501        if (FoundVT == MVT::Other ||
3502            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
3503          ThisVT = *I;
3504          break;
3505        }
3506      }
3507    }
3508
3509    if (ThisVT == MVT::Other) continue;
3510
3511    // NOTE: This isn't ideal.  In particular, this might allocate the
3512    // frame pointer in functions that need it (due to them not being taken
3513    // out of allocation, because a variable sized allocation hasn't been seen
3514    // yet).  This is a slight code pessimization, but should still work.
3515    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3516         E = RC->allocation_order_end(MF); I != E; ++I)
3517      if (*I == Reg) {
3518        // We found a matching register class.  Keep looking at others in case
3519        // we find one with larger registers that this physreg is also in.
3520        FoundRC = RC;
3521        FoundVT = ThisVT;
3522        break;
3523      }
3524  }
3525  return FoundRC;
3526}
3527
3528
3529namespace {
3530/// AsmOperandInfo - This contains information for each constraint that we are
3531/// lowering.
3532struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
3533  /// CallOperand - If this is the result output operand or a clobber
3534  /// this is null, otherwise it is the incoming operand to the CallInst.
3535  /// This gets modified as the asm is processed.
3536  SDOperand CallOperand;
3537
3538  /// AssignedRegs - If this is a register or register class operand, this
3539  /// contains the set of register corresponding to the operand.
3540  RegsForValue AssignedRegs;
3541
3542  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3543    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
3544  }
3545
3546  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3547  /// busy in OutputRegs/InputRegs.
3548  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3549                         std::set<unsigned> &OutputRegs,
3550                         std::set<unsigned> &InputRegs,
3551                         const TargetRegisterInfo &TRI) const {
3552    if (isOutReg) {
3553      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3554        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3555    }
3556    if (isInReg) {
3557      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3558        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3559    }
3560  }
3561
3562private:
3563  /// MarkRegAndAliases - Mark the specified register and all aliases in the
3564  /// specified set.
3565  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3566                                const TargetRegisterInfo &TRI) {
3567    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3568    Regs.insert(Reg);
3569    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3570      for (; *Aliases; ++Aliases)
3571        Regs.insert(*Aliases);
3572  }
3573};
3574} // end anon namespace.
3575
3576
3577/// GetRegistersForValue - Assign registers (virtual or physical) for the
3578/// specified operand.  We prefer to assign virtual registers, to allow the
3579/// register allocator handle the assignment process.  However, if the asm uses
3580/// features that we can't model on machineinstrs, we have SDISel do the
3581/// allocation.  This produces generally horrible, but correct, code.
3582///
3583///   OpInfo describes the operand.
3584///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
3585///     or any explicitly clobbered registers.
3586///   Input and OutputRegs are the set of already allocated physical registers.
3587///
3588void SelectionDAGLowering::
3589GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
3590                     std::set<unsigned> &OutputRegs,
3591                     std::set<unsigned> &InputRegs) {
3592  // Compute whether this value requires an input register, an output register,
3593  // or both.
3594  bool isOutReg = false;
3595  bool isInReg = false;
3596  switch (OpInfo.Type) {
3597  case InlineAsm::isOutput:
3598    isOutReg = true;
3599
3600    // If this is an early-clobber output, or if there is an input
3601    // constraint that matches this, we need to reserve the input register
3602    // so no other inputs allocate to it.
3603    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3604    break;
3605  case InlineAsm::isInput:
3606    isInReg = true;
3607    isOutReg = false;
3608    break;
3609  case InlineAsm::isClobber:
3610    isOutReg = true;
3611    isInReg = true;
3612    break;
3613  }
3614
3615
3616  MachineFunction &MF = DAG.getMachineFunction();
3617  SmallVector<unsigned, 4> Regs;
3618
3619  // If this is a constraint for a single physreg, or a constraint for a
3620  // register class, find it.
3621  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3622    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3623                                     OpInfo.ConstraintVT);
3624
3625  unsigned NumRegs = 1;
3626  if (OpInfo.ConstraintVT != MVT::Other)
3627    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
3628  MVT::ValueType RegVT;
3629  MVT::ValueType ValueVT = OpInfo.ConstraintVT;
3630
3631
3632  // If this is a constraint for a specific physical register, like {r17},
3633  // assign it now.
3634  if (PhysReg.first) {
3635    if (OpInfo.ConstraintVT == MVT::Other)
3636      ValueVT = *PhysReg.second->vt_begin();
3637
3638    // Get the actual register value type.  This is important, because the user
3639    // may have asked for (e.g.) the AX register in i32 type.  We need to
3640    // remember that AX is actually i16 to get the right extension.
3641    RegVT = *PhysReg.second->vt_begin();
3642
3643    // This is a explicit reference to a physical register.
3644    Regs.push_back(PhysReg.first);
3645
3646    // If this is an expanded reference, add the rest of the regs to Regs.
3647    if (NumRegs != 1) {
3648      TargetRegisterClass::iterator I = PhysReg.second->begin();
3649      TargetRegisterClass::iterator E = PhysReg.second->end();
3650      for (; *I != PhysReg.first; ++I)
3651        assert(I != E && "Didn't find reg!");
3652
3653      // Already added the first reg.
3654      --NumRegs; ++I;
3655      for (; NumRegs; --NumRegs, ++I) {
3656        assert(I != E && "Ran out of registers to allocate!");
3657        Regs.push_back(*I);
3658      }
3659    }
3660    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
3661    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3662    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
3663    return;
3664  }
3665
3666  // Otherwise, if this was a reference to an LLVM register class, create vregs
3667  // for this reference.
3668  std::vector<unsigned> RegClassRegs;
3669  const TargetRegisterClass *RC = PhysReg.second;
3670  if (RC) {
3671    // If this is an early clobber or tied register, our regalloc doesn't know
3672    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3673    // and let the regalloc do the right thing.
3674    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
3675        // If there is some other early clobber and this is an input register,
3676        // then we are forced to pre-allocate the input reg so it doesn't
3677        // conflict with the earlyclobber.
3678        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
3679      RegVT = *PhysReg.second->vt_begin();
3680
3681      if (OpInfo.ConstraintVT == MVT::Other)
3682        ValueVT = RegVT;
3683
3684      // Create the appropriate number of virtual registers.
3685      MachineRegisterInfo &RegInfo = MF.getRegInfo();
3686      for (; NumRegs; --NumRegs)
3687        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
3688
3689      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
3690      return;
3691    }
3692
3693    // Otherwise, we can't allocate it.  Let the code below figure out how to
3694    // maintain these constraints.
3695    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3696
3697  } else {
3698    // This is a reference to a register class that doesn't directly correspond
3699    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3700    // registers from the class.
3701    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
3702                                                         OpInfo.ConstraintVT);
3703  }
3704
3705  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
3706  unsigned NumAllocated = 0;
3707  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3708    unsigned Reg = RegClassRegs[i];
3709    // See if this register is available.
3710    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3711        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3712      // Make sure we find consecutive registers.
3713      NumAllocated = 0;
3714      continue;
3715    }
3716
3717    // Check to see if this register is allocatable (i.e. don't give out the
3718    // stack pointer).
3719    if (RC == 0) {
3720      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
3721      if (!RC) {        // Couldn't allocate this register.
3722        // Reset NumAllocated to make sure we return consecutive registers.
3723        NumAllocated = 0;
3724        continue;
3725      }
3726    }
3727
3728    // Okay, this register is good, we can use it.
3729    ++NumAllocated;
3730
3731    // If we allocated enough consecutive registers, succeed.
3732    if (NumAllocated == NumRegs) {
3733      unsigned RegStart = (i-NumAllocated)+1;
3734      unsigned RegEnd   = i+1;
3735      // Mark all of the allocated registers used.
3736      for (unsigned i = RegStart; i != RegEnd; ++i)
3737        Regs.push_back(RegClassRegs[i]);
3738
3739      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
3740                                         OpInfo.ConstraintVT);
3741      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
3742      return;
3743    }
3744  }
3745
3746  // Otherwise, we couldn't allocate enough registers for this.
3747  return;
3748}
3749
3750
3751/// visitInlineAsm - Handle a call to an InlineAsm object.
3752///
3753void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
3754  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3755
3756  /// ConstraintOperands - Information about all of the constraints.
3757  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
3758
3759  SDOperand Chain = getRoot();
3760  SDOperand Flag;
3761
3762  std::set<unsigned> OutputRegs, InputRegs;
3763
3764  // Do a prepass over the constraints, canonicalizing them, and building up the
3765  // ConstraintOperands list.
3766  std::vector<InlineAsm::ConstraintInfo>
3767    ConstraintInfos = IA->ParseConstraints();
3768
3769  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
3770  // constraint.  If so, we can't let the register allocator allocate any input
3771  // registers, because it will not know to avoid the earlyclobbered output reg.
3772  bool SawEarlyClobber = false;
3773
3774  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3775  unsigned ResNo = 0;   // ResNo - The result number of the next output.
3776  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
3777    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
3778    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
3779
3780    MVT::ValueType OpVT = MVT::Other;
3781
3782    // Compute the value type for each operand.
3783    switch (OpInfo.Type) {
3784    case InlineAsm::isOutput:
3785      // Indirect outputs just consume an argument.
3786      if (OpInfo.isIndirect) {
3787        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3788        break;
3789      }
3790      // The return value of the call is this value.  As such, there is no
3791      // corresponding argument.
3792      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3793      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
3794        OpVT = TLI.getValueType(STy->getElementType(ResNo));
3795      } else {
3796        assert(ResNo == 0 && "Asm only has one result!");
3797        OpVT = TLI.getValueType(CS.getType());
3798      }
3799      ++ResNo;
3800      break;
3801    case InlineAsm::isInput:
3802      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
3803      break;
3804    case InlineAsm::isClobber:
3805      // Nothing to do.
3806      break;
3807    }
3808
3809    // If this is an input or an indirect output, process the call argument.
3810    // BasicBlocks are labels, currently appearing only in asm's.
3811    if (OpInfo.CallOperandVal) {
3812      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
3813        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
3814      else {
3815        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
3816        const Type *OpTy = OpInfo.CallOperandVal->getType();
3817        // If this is an indirect operand, the operand is a pointer to the
3818        // accessed type.
3819        if (OpInfo.isIndirect)
3820          OpTy = cast<PointerType>(OpTy)->getElementType();
3821
3822        // If OpTy is not a first-class value, it may be a struct/union that we
3823        // can tile with integers.
3824        if (!OpTy->isFirstClassType() && OpTy->isSized()) {
3825          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
3826          switch (BitSize) {
3827          default: break;
3828          case 1:
3829          case 8:
3830          case 16:
3831          case 32:
3832          case 64:
3833            OpTy = IntegerType::get(BitSize);
3834            break;
3835          }
3836        }
3837
3838        OpVT = TLI.getValueType(OpTy, true);
3839      }
3840    }
3841
3842    OpInfo.ConstraintVT = OpVT;
3843
3844    // Compute the constraint code and ConstraintType to use.
3845    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
3846
3847    // Keep track of whether we see an earlyclobber.
3848    SawEarlyClobber |= OpInfo.isEarlyClobber;
3849
3850    // If we see a clobber of a register, it is an early clobber.
3851    if (!SawEarlyClobber &&
3852        OpInfo.Type == InlineAsm::isClobber &&
3853        OpInfo.ConstraintType == TargetLowering::C_Register) {
3854      // Note that we want to ignore things that we don't trick here, like
3855      // dirflag, fpsr, flags, etc.
3856      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3857        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
3858                                         OpInfo.ConstraintVT);
3859      if (PhysReg.first || PhysReg.second) {
3860        // This is a register we know of.
3861        SawEarlyClobber = true;
3862      }
3863    }
3864
3865    // If this is a memory input, and if the operand is not indirect, do what we
3866    // need to to provide an address for the memory input.
3867    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
3868        !OpInfo.isIndirect) {
3869      assert(OpInfo.Type == InlineAsm::isInput &&
3870             "Can only indirectify direct input operands!");
3871
3872      // Memory operands really want the address of the value.  If we don't have
3873      // an indirect input, put it in the constpool if we can, otherwise spill
3874      // it to a stack slot.
3875
3876      // If the operand is a float, integer, or vector constant, spill to a
3877      // constant pool entry to get its address.
3878      Value *OpVal = OpInfo.CallOperandVal;
3879      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
3880          isa<ConstantVector>(OpVal)) {
3881        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
3882                                                 TLI.getPointerTy());
3883      } else {
3884        // Otherwise, create a stack slot and emit a store to it before the
3885        // asm.
3886        const Type *Ty = OpVal->getType();
3887        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
3888        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
3889        MachineFunction &MF = DAG.getMachineFunction();
3890        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
3891        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
3892        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
3893        OpInfo.CallOperand = StackSlot;
3894      }
3895
3896      // There is no longer a Value* corresponding to this operand.
3897      OpInfo.CallOperandVal = 0;
3898      // It is now an indirect operand.
3899      OpInfo.isIndirect = true;
3900    }
3901
3902    // If this constraint is for a specific register, allocate it before
3903    // anything else.
3904    if (OpInfo.ConstraintType == TargetLowering::C_Register)
3905      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3906  }
3907  ConstraintInfos.clear();
3908
3909
3910  // Second pass - Loop over all of the operands, assigning virtual or physregs
3911  // to registerclass operands.
3912  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3913    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
3914
3915    // C_Register operands have already been allocated, Other/Memory don't need
3916    // to be.
3917    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
3918      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
3919  }
3920
3921  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
3922  std::vector<SDOperand> AsmNodeOperands;
3923  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3924  AsmNodeOperands.push_back(
3925          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
3926
3927
3928  // Loop over all of the inputs, copying the operand values into the
3929  // appropriate registers and processing the output regs.
3930  RegsForValue RetValRegs;
3931
3932  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
3933  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3934
3935  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
3936    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
3937
3938    switch (OpInfo.Type) {
3939    case InlineAsm::isOutput: {
3940      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
3941          OpInfo.ConstraintType != TargetLowering::C_Register) {
3942        // Memory output, or 'other' output (e.g. 'X' constraint).
3943        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
3944
3945        // Add information to the INLINEASM node to know about this output.
3946        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3947        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
3948                                                        TLI.getPointerTy()));
3949        AsmNodeOperands.push_back(OpInfo.CallOperand);
3950        break;
3951      }
3952
3953      // Otherwise, this is a register or register class output.
3954
3955      // Copy the output from the appropriate register.  Find a register that
3956      // we can use.
3957      if (OpInfo.AssignedRegs.Regs.empty()) {
3958        cerr << "Couldn't allocate output reg for contraint '"
3959             << OpInfo.ConstraintCode << "'!\n";
3960        exit(1);
3961      }
3962
3963      if (!OpInfo.isIndirect) {
3964        // This is the result value of the call.
3965        assert(RetValRegs.Regs.empty() &&
3966               "Cannot have multiple output constraints yet!");
3967        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
3968        RetValRegs = OpInfo.AssignedRegs;
3969      } else {
3970        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
3971                                                      OpInfo.CallOperandVal));
3972      }
3973
3974      // Add information to the INLINEASM node to know that this register is
3975      // set.
3976      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
3977                                               AsmNodeOperands);
3978      break;
3979    }
3980    case InlineAsm::isInput: {
3981      SDOperand InOperandVal = OpInfo.CallOperand;
3982
3983      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
3984        // If this is required to match an output register we have already set,
3985        // just use its register.
3986        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
3987
3988        // Scan until we find the definition we already emitted of this operand.
3989        // When we find it, create a RegsForValue operand.
3990        unsigned CurOp = 2;  // The first operand.
3991        for (; OperandNo; --OperandNo) {
3992          // Advance to the next operand.
3993          unsigned NumOps =
3994            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3995          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3996                  (NumOps & 7) == 4 /*MEM*/) &&
3997                 "Skipped past definitions?");
3998          CurOp += (NumOps>>3)+1;
3999        }
4000
4001        unsigned NumOps =
4002          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4003        if ((NumOps & 7) == 2 /*REGDEF*/) {
4004          // Add NumOps>>3 registers to MatchedRegs.
4005          RegsForValue MatchedRegs;
4006          MatchedRegs.TLI = &TLI;
4007          MatchedRegs.ValueVTs.resize(1, InOperandVal.getValueType());
4008          MatchedRegs.RegVTs.resize(1, AsmNodeOperands[CurOp+1].getValueType());
4009          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
4010            unsigned Reg =
4011              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4012            MatchedRegs.Regs.push_back(Reg);
4013          }
4014
4015          // Use the produced MatchedRegs object to
4016          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4017          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
4018          break;
4019        } else {
4020          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
4021          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4022          // Add information to the INLINEASM node to know about this input.
4023          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4024          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4025                                                          TLI.getPointerTy()));
4026          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4027          break;
4028        }
4029      }
4030
4031      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4032        assert(!OpInfo.isIndirect &&
4033               "Don't know how to handle indirect other inputs yet!");
4034
4035        std::vector<SDOperand> Ops;
4036        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
4037                                         Ops, DAG);
4038        if (Ops.empty()) {
4039          cerr << "Invalid operand for inline asm constraint '"
4040               << OpInfo.ConstraintCode << "'!\n";
4041          exit(1);
4042        }
4043
4044        // Add information to the INLINEASM node to know about this input.
4045        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4046        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4047                                                        TLI.getPointerTy()));
4048        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4049        break;
4050      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4051        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4052        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4053               "Memory operands expect pointer values");
4054
4055        // Add information to the INLINEASM node to know about this input.
4056        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4057        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4058                                                        TLI.getPointerTy()));
4059        AsmNodeOperands.push_back(InOperandVal);
4060        break;
4061      }
4062
4063      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4064              OpInfo.ConstraintType == TargetLowering::C_Register) &&
4065             "Unknown constraint type!");
4066      assert(!OpInfo.isIndirect &&
4067             "Don't know how to handle indirect register inputs yet!");
4068
4069      // Copy the input into the appropriate registers.
4070      assert(!OpInfo.AssignedRegs.Regs.empty() &&
4071             "Couldn't allocate input reg!");
4072
4073      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4074
4075      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
4076                                               AsmNodeOperands);
4077      break;
4078    }
4079    case InlineAsm::isClobber: {
4080      // Add the clobbered value to the operand list, so that the register
4081      // allocator is aware that the physreg got clobbered.
4082      if (!OpInfo.AssignedRegs.Regs.empty())
4083        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
4084                                                 AsmNodeOperands);
4085      break;
4086    }
4087    }
4088  }
4089
4090  // Finish up input operands.
4091  AsmNodeOperands[0] = Chain;
4092  if (Flag.Val) AsmNodeOperands.push_back(Flag);
4093
4094  Chain = DAG.getNode(ISD::INLINEASM,
4095                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4096                      &AsmNodeOperands[0], AsmNodeOperands.size());
4097  Flag = Chain.getValue(1);
4098
4099  // If this asm returns a register value, copy the result from that register
4100  // and set it as the value of the call.
4101  if (!RetValRegs.Regs.empty()) {
4102    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4103
4104    // If the result of the inline asm is a vector, it may have the wrong
4105    // width/num elts.  Make sure to convert it to the right type with
4106    // bit_convert.
4107    if (MVT::isVector(Val.getValueType())) {
4108      const VectorType *VTy = cast<VectorType>(CS.getType());
4109      MVT::ValueType DesiredVT = TLI.getValueType(VTy);
4110
4111      Val = DAG.getNode(ISD::BIT_CONVERT, DesiredVT, Val);
4112    }
4113
4114    setValue(CS.getInstruction(), Val);
4115  }
4116
4117  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
4118
4119  // Process indirect outputs, first output all of the flagged copies out of
4120  // physregs.
4121  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4122    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4123    Value *Ptr = IndirectStoresToEmit[i].second;
4124    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4125    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4126  }
4127
4128  // Emit the non-flagged stores from the physregs.
4129  SmallVector<SDOperand, 8> OutChains;
4130  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4131    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4132                                    getValue(StoresToEmit[i].second),
4133                                    StoresToEmit[i].second, 0));
4134  if (!OutChains.empty())
4135    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4136                        &OutChains[0], OutChains.size());
4137  DAG.setRoot(Chain);
4138}
4139
4140
4141void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4142  SDOperand Src = getValue(I.getOperand(0));
4143
4144  MVT::ValueType IntPtr = TLI.getPointerTy();
4145
4146  if (IntPtr < Src.getValueType())
4147    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4148  else if (IntPtr > Src.getValueType())
4149    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4150
4151  // Scale the source by the type size.
4152  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4153  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4154                    Src, DAG.getIntPtrConstant(ElementSize));
4155
4156  TargetLowering::ArgListTy Args;
4157  TargetLowering::ArgListEntry Entry;
4158  Entry.Node = Src;
4159  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4160  Args.push_back(Entry);
4161
4162  std::pair<SDOperand,SDOperand> Result =
4163    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4164                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4165  setValue(&I, Result.first);  // Pointers always fit in registers
4166  DAG.setRoot(Result.second);
4167}
4168
4169void SelectionDAGLowering::visitFree(FreeInst &I) {
4170  TargetLowering::ArgListTy Args;
4171  TargetLowering::ArgListEntry Entry;
4172  Entry.Node = getValue(I.getOperand(0));
4173  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4174  Args.push_back(Entry);
4175  MVT::ValueType IntPtr = TLI.getPointerTy();
4176  std::pair<SDOperand,SDOperand> Result =
4177    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4178                    CallingConv::C, true,
4179                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4180  DAG.setRoot(Result.second);
4181}
4182
4183// EmitInstrWithCustomInserter - This method should be implemented by targets
4184// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4185// instructions are special in various ways, which require special support to
4186// insert.  The specified MachineInstr is created but not inserted into any
4187// basic blocks, and the scheduler passes ownership of it to this method.
4188MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4189                                                       MachineBasicBlock *MBB) {
4190  cerr << "If a target marks an instruction with "
4191       << "'usesCustomDAGSchedInserter', it must implement "
4192       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4193  abort();
4194  return 0;
4195}
4196
4197void SelectionDAGLowering::visitVAStart(CallInst &I) {
4198  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4199                          getValue(I.getOperand(1)),
4200                          DAG.getSrcValue(I.getOperand(1))));
4201}
4202
4203void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4204  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4205                             getValue(I.getOperand(0)),
4206                             DAG.getSrcValue(I.getOperand(0)));
4207  setValue(&I, V);
4208  DAG.setRoot(V.getValue(1));
4209}
4210
4211void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4212  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4213                          getValue(I.getOperand(1)),
4214                          DAG.getSrcValue(I.getOperand(1))));
4215}
4216
4217void SelectionDAGLowering::visitVACopy(CallInst &I) {
4218  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4219                          getValue(I.getOperand(1)),
4220                          getValue(I.getOperand(2)),
4221                          DAG.getSrcValue(I.getOperand(1)),
4222                          DAG.getSrcValue(I.getOperand(2))));
4223}
4224
4225/// TargetLowering::LowerArguments - This is the default LowerArguments
4226/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4227/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4228/// integrated into SDISel.
4229std::vector<SDOperand>
4230TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
4231  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4232  std::vector<SDOperand> Ops;
4233  Ops.push_back(DAG.getRoot());
4234  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4235  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4236
4237  // Add one result value for each formal argument.
4238  std::vector<MVT::ValueType> RetVals;
4239  unsigned j = 1;
4240  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4241       I != E; ++I, ++j) {
4242    MVT::ValueType VT = getValueType(I->getType());
4243    ISD::ArgFlagsTy Flags;
4244    unsigned OriginalAlignment =
4245      getTargetData()->getABITypeAlignment(I->getType());
4246
4247    if (F.paramHasAttr(j, ParamAttr::ZExt))
4248      Flags.setZExt();
4249    if (F.paramHasAttr(j, ParamAttr::SExt))
4250      Flags.setSExt();
4251    if (F.paramHasAttr(j, ParamAttr::InReg))
4252      Flags.setInReg();
4253    if (F.paramHasAttr(j, ParamAttr::StructRet))
4254      Flags.setSRet();
4255    if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4256      Flags.setByVal();
4257      const PointerType *Ty = cast<PointerType>(I->getType());
4258      const Type *ElementTy = Ty->getElementType();
4259      unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4260      unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4261      // For ByVal, alignment should be passed from FE.  BE will guess if
4262      // this info is not there but there are cases it cannot get right.
4263      if (F.getParamAlignment(j))
4264        FrameAlign = F.getParamAlignment(j);
4265      Flags.setByValAlign(FrameAlign);
4266      Flags.setByValSize(FrameSize);
4267    }
4268    if (F.paramHasAttr(j, ParamAttr::Nest))
4269      Flags.setNest();
4270    Flags.setOrigAlign(OriginalAlignment);
4271
4272    MVT::ValueType RegisterVT = getRegisterType(VT);
4273    unsigned NumRegs = getNumRegisters(VT);
4274    for (unsigned i = 0; i != NumRegs; ++i) {
4275      RetVals.push_back(RegisterVT);
4276      ISD::ArgFlagsTy MyFlags = Flags;
4277      if (NumRegs > 1 && i == 0)
4278        MyFlags.setSplit();
4279      // if it isn't first piece, alignment must be 1
4280      else if (i > 0)
4281        MyFlags.setOrigAlign(1);
4282      Ops.push_back(DAG.getArgFlags(MyFlags));
4283    }
4284  }
4285
4286  RetVals.push_back(MVT::Other);
4287
4288  // Create the node.
4289  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4290                               DAG.getVTList(&RetVals[0], RetVals.size()),
4291                               &Ops[0], Ops.size()).Val;
4292
4293  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4294  // allows exposing the loads that may be part of the argument access to the
4295  // first DAGCombiner pass.
4296  SDOperand TmpRes = LowerOperation(SDOperand(Result, 0), DAG);
4297
4298  // The number of results should match up, except that the lowered one may have
4299  // an extra flag result.
4300  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4301          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4302           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4303         && "Lowering produced unexpected number of results!");
4304  Result = TmpRes.Val;
4305
4306  unsigned NumArgRegs = Result->getNumValues() - 1;
4307  DAG.setRoot(SDOperand(Result, NumArgRegs));
4308
4309  // Set up the return result vector.
4310  Ops.clear();
4311  unsigned i = 0;
4312  unsigned Idx = 1;
4313  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4314      ++I, ++Idx) {
4315    MVT::ValueType VT = getValueType(I->getType());
4316    MVT::ValueType PartVT = getRegisterType(VT);
4317
4318    unsigned NumParts = getNumRegisters(VT);
4319    SmallVector<SDOperand, 4> Parts(NumParts);
4320    for (unsigned j = 0; j != NumParts; ++j)
4321      Parts[j] = SDOperand(Result, i++);
4322
4323    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4324    if (F.paramHasAttr(Idx, ParamAttr::SExt))
4325      AssertOp = ISD::AssertSext;
4326    else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4327      AssertOp = ISD::AssertZext;
4328
4329    Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4330                                   AssertOp));
4331  }
4332  assert(i == NumArgRegs && "Argument register count mismatch!");
4333  return Ops;
4334}
4335
4336
4337/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4338/// implementation, which just inserts an ISD::CALL node, which is later custom
4339/// lowered by the target to something concrete.  FIXME: When all targets are
4340/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4341std::pair<SDOperand, SDOperand>
4342TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4343                            bool RetSExt, bool RetZExt, bool isVarArg,
4344                            unsigned CallingConv, bool isTailCall,
4345                            SDOperand Callee,
4346                            ArgListTy &Args, SelectionDAG &DAG) {
4347  SmallVector<SDOperand, 32> Ops;
4348  Ops.push_back(Chain);   // Op#0 - Chain
4349  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4350  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4351  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4352  Ops.push_back(Callee);
4353
4354  // Handle all of the outgoing arguments.
4355  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4356    MVT::ValueType VT = getValueType(Args[i].Ty);
4357    SDOperand Op = Args[i].Node;
4358    ISD::ArgFlagsTy Flags;
4359    unsigned OriginalAlignment =
4360      getTargetData()->getABITypeAlignment(Args[i].Ty);
4361
4362    if (Args[i].isZExt)
4363      Flags.setZExt();
4364    if (Args[i].isSExt)
4365      Flags.setSExt();
4366    if (Args[i].isInReg)
4367      Flags.setInReg();
4368    if (Args[i].isSRet)
4369      Flags.setSRet();
4370    if (Args[i].isByVal) {
4371      Flags.setByVal();
4372      const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4373      const Type *ElementTy = Ty->getElementType();
4374      unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4375      unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4376      // For ByVal, alignment should come from FE.  BE will guess if this
4377      // info is not there but there are cases it cannot get right.
4378      if (Args[i].Alignment)
4379        FrameAlign = Args[i].Alignment;
4380      Flags.setByValAlign(FrameAlign);
4381      Flags.setByValSize(FrameSize);
4382    }
4383    if (Args[i].isNest)
4384      Flags.setNest();
4385    Flags.setOrigAlign(OriginalAlignment);
4386
4387    MVT::ValueType PartVT = getRegisterType(VT);
4388    unsigned NumParts = getNumRegisters(VT);
4389    SmallVector<SDOperand, 4> Parts(NumParts);
4390    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4391
4392    if (Args[i].isSExt)
4393      ExtendKind = ISD::SIGN_EXTEND;
4394    else if (Args[i].isZExt)
4395      ExtendKind = ISD::ZERO_EXTEND;
4396
4397    getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4398
4399    for (unsigned i = 0; i != NumParts; ++i) {
4400      // if it isn't first piece, alignment must be 1
4401      ISD::ArgFlagsTy MyFlags = Flags;
4402      if (NumParts > 1 && i == 0)
4403        MyFlags.setSplit();
4404      else if (i != 0)
4405        MyFlags.setOrigAlign(1);
4406
4407      Ops.push_back(Parts[i]);
4408      Ops.push_back(DAG.getArgFlags(MyFlags));
4409    }
4410  }
4411
4412  // Figure out the result value types. We start by making a list of
4413  // the potentially illegal return value types.
4414  SmallVector<MVT::ValueType, 4> LoweredRetTys;
4415  SmallVector<MVT::ValueType, 4> RetTys;
4416  ComputeValueVTs(*this, RetTy, RetTys);
4417
4418  // Then we translate that to a list of legal types.
4419  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4420    MVT::ValueType VT = RetTys[I];
4421    MVT::ValueType RegisterVT = getRegisterType(VT);
4422    unsigned NumRegs = getNumRegisters(VT);
4423    for (unsigned i = 0; i != NumRegs; ++i)
4424      LoweredRetTys.push_back(RegisterVT);
4425  }
4426
4427  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
4428
4429  // Create the CALL node.
4430  SDOperand Res = DAG.getNode(ISD::CALL,
4431                              DAG.getVTList(&LoweredRetTys[0],
4432                                            LoweredRetTys.size()),
4433                              &Ops[0], Ops.size());
4434  Chain = Res.getValue(LoweredRetTys.size() - 1);
4435
4436  // Gather up the call result into a single value.
4437  if (RetTy != Type::VoidTy) {
4438    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4439
4440    if (RetSExt)
4441      AssertOp = ISD::AssertSext;
4442    else if (RetZExt)
4443      AssertOp = ISD::AssertZext;
4444
4445    SmallVector<SDOperand, 4> ReturnValues;
4446    unsigned RegNo = 0;
4447    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4448      MVT::ValueType VT = RetTys[I];
4449      MVT::ValueType RegisterVT = getRegisterType(VT);
4450      unsigned NumRegs = getNumRegisters(VT);
4451      unsigned RegNoEnd = NumRegs + RegNo;
4452      SmallVector<SDOperand, 4> Results;
4453      for (; RegNo != RegNoEnd; ++RegNo)
4454        Results.push_back(Res.getValue(RegNo));
4455      SDOperand ReturnValue =
4456        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4457                         AssertOp);
4458      ReturnValues.push_back(ReturnValue);
4459    }
4460    Res = ReturnValues.size() == 1 ? ReturnValues.front() :
4461          DAG.getNode(ISD::MERGE_VALUES,
4462                      DAG.getVTList(&RetTys[0], RetTys.size()),
4463                      &ReturnValues[0], ReturnValues.size());
4464  }
4465
4466  return std::make_pair(Res, Chain);
4467}
4468
4469SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4470  assert(0 && "LowerOperation not implemented for this target!");
4471  abort();
4472  return SDOperand();
4473}
4474
4475SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4476                                                 SelectionDAG &DAG) {
4477  assert(0 && "CustomPromoteOperation not implemented for this target!");
4478  abort();
4479  return SDOperand();
4480}
4481
4482//===----------------------------------------------------------------------===//
4483// SelectionDAGISel code
4484//===----------------------------------------------------------------------===//
4485
4486unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4487  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4488}
4489
4490void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4491  AU.addRequired<AliasAnalysis>();
4492  AU.addRequired<CollectorModuleMetadata>();
4493  AU.setPreservesAll();
4494}
4495
4496
4497
4498bool SelectionDAGISel::runOnFunction(Function &Fn) {
4499  // Get alias analysis for load/store combining.
4500  AA = &getAnalysis<AliasAnalysis>();
4501
4502  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4503  if (MF.getFunction()->hasCollector())
4504    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4505  else
4506    GCI = 0;
4507  RegInfo = &MF.getRegInfo();
4508  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4509
4510  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4511
4512  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4513    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4514      // Mark landing pad.
4515      FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4516
4517  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4518    SelectBasicBlock(I, MF, FuncInfo);
4519
4520  // Add function live-ins to entry block live-in set.
4521  BasicBlock *EntryBB = &Fn.getEntryBlock();
4522  BB = FuncInfo.MBBMap[EntryBB];
4523  if (!RegInfo->livein_empty())
4524    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4525           E = RegInfo->livein_end(); I != E; ++I)
4526      BB->addLiveIn(I->first);
4527
4528#ifndef NDEBUG
4529  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4530         "Not all catch info was assigned to a landing pad!");
4531#endif
4532
4533  return true;
4534}
4535
4536void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
4537  SDOperand Op = getValue(V);
4538  assert((Op.getOpcode() != ISD::CopyFromReg ||
4539          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4540         "Copy from a reg to the same reg!");
4541  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
4542
4543  RegsForValue RFV(TLI, Reg, V->getType());
4544  SDOperand Chain = DAG.getEntryNode();
4545  RFV.getCopyToRegs(Op, DAG, Chain, 0);
4546  PendingExports.push_back(Chain);
4547}
4548
4549void SelectionDAGISel::
4550LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) {
4551  // If this is the entry block, emit arguments.
4552  Function &F = *LLVMBB->getParent();
4553  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4554  SDOperand OldRoot = SDL.DAG.getRoot();
4555  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4556
4557  unsigned a = 0;
4558  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4559       AI != E; ++AI, ++a)
4560    if (!AI->use_empty()) {
4561      SDL.setValue(AI, Args[a]);
4562
4563      // If this argument is live outside of the entry block, insert a copy from
4564      // whereever we got it to the vreg that other BB's will reference it as.
4565      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4566      if (VMI != FuncInfo.ValueMap.end()) {
4567        SDL.CopyValueToVirtualRegister(AI, VMI->second);
4568      }
4569    }
4570
4571  // Finally, if the target has anything special to do, allow it to do so.
4572  // FIXME: this should insert code into the DAG!
4573  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4574}
4575
4576static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4577                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4578  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4579    if (isSelector(I)) {
4580      // Apply the catch info to DestBB.
4581      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4582#ifndef NDEBUG
4583      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4584        FLI.CatchInfoFound.insert(I);
4585#endif
4586    }
4587}
4588
4589/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
4590/// DAG and fixes their tailcall attribute operand.
4591static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
4592                                           TargetLowering& TLI) {
4593  SDNode * Ret = NULL;
4594  SDOperand Terminator = DAG.getRoot();
4595
4596  // Find RET node.
4597  if (Terminator.getOpcode() == ISD::RET) {
4598    Ret = Terminator.Val;
4599  }
4600
4601  // Fix tail call attribute of CALL nodes.
4602  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
4603         BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
4604    if (BI->getOpcode() == ISD::CALL) {
4605      SDOperand OpRet(Ret, 0);
4606      SDOperand OpCall(static_cast<SDNode*>(BI), 0);
4607      bool isMarkedTailCall =
4608        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
4609      // If CALL node has tail call attribute set to true and the call is not
4610      // eligible (no RET or the target rejects) the attribute is fixed to
4611      // false. The TargetLowering::IsEligibleForTailCallOptimization function
4612      // must correctly identify tail call optimizable calls.
4613      if (isMarkedTailCall &&
4614          (Ret==NULL ||
4615           !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG))) {
4616        SmallVector<SDOperand, 32> Ops;
4617        unsigned idx=0;
4618        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
4619              E=OpCall.Val->op_end(); I!=E; I++, idx++) {
4620          if (idx!=3)
4621            Ops.push_back(*I);
4622          else
4623            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
4624        }
4625        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
4626      }
4627    }
4628  }
4629}
4630
4631void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4632       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4633                                         FunctionLoweringInfo &FuncInfo) {
4634  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
4635
4636  // Lower any arguments needed in this block if this is the entry block.
4637  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4638    LowerArguments(LLVMBB, SDL);
4639
4640  BB = FuncInfo.MBBMap[LLVMBB];
4641  SDL.setCurrentBasicBlock(BB);
4642
4643  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4644
4645  if (MMI && BB->isLandingPad()) {
4646    // Add a label to mark the beginning of the landing pad.  Deletion of the
4647    // landing pad can thus be detected via the MachineModuleInfo.
4648    unsigned LabelID = MMI->addLandingPad(BB);
4649    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
4650                            DAG.getConstant(LabelID, MVT::i32),
4651                            DAG.getConstant(1, MVT::i32)));
4652
4653    // Mark exception register as live in.
4654    unsigned Reg = TLI.getExceptionAddressRegister();
4655    if (Reg) BB->addLiveIn(Reg);
4656
4657    // Mark exception selector register as live in.
4658    Reg = TLI.getExceptionSelectorRegister();
4659    if (Reg) BB->addLiveIn(Reg);
4660
4661    // FIXME: Hack around an exception handling flaw (PR1508): the personality
4662    // function and list of typeids logically belong to the invoke (or, if you
4663    // like, the basic block containing the invoke), and need to be associated
4664    // with it in the dwarf exception handling tables.  Currently however the
4665    // information is provided by an intrinsic (eh.selector) that can be moved
4666    // to unexpected places by the optimizers: if the unwind edge is critical,
4667    // then breaking it can result in the intrinsics being in the successor of
4668    // the landing pad, not the landing pad itself.  This results in exceptions
4669    // not being caught because no typeids are associated with the invoke.
4670    // This may not be the only way things can go wrong, but it is the only way
4671    // we try to work around for the moment.
4672    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
4673
4674    if (Br && Br->isUnconditional()) { // Critical edge?
4675      BasicBlock::iterator I, E;
4676      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
4677        if (isSelector(I))
4678          break;
4679
4680      if (I == E)
4681        // No catch info found - try to extract some from the successor.
4682        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
4683    }
4684  }
4685
4686  // Lower all of the non-terminator instructions.
4687  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4688       I != E; ++I)
4689    SDL.visit(*I);
4690
4691  // Ensure that all instructions which are used outside of their defining
4692  // blocks are available as virtual registers.  Invoke is handled elsewhere.
4693  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4694    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
4695      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4696      if (VMI != FuncInfo.ValueMap.end())
4697        SDL.CopyValueToVirtualRegister(I, VMI->second);
4698    }
4699
4700  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4701  // ensure constants are generated when needed.  Remember the virtual registers
4702  // that need to be added to the Machine PHI nodes as input.  We cannot just
4703  // directly add them, because expansion might result in multiple MBB's for one
4704  // BB.  As such, the start of the BB might correspond to a different MBB than
4705  // the end.
4706  //
4707  TerminatorInst *TI = LLVMBB->getTerminator();
4708
4709  // Emit constants only once even if used by multiple PHI nodes.
4710  std::map<Constant*, unsigned> ConstantsOut;
4711
4712  // Vector bool would be better, but vector<bool> is really slow.
4713  std::vector<unsigned char> SuccsHandled;
4714  if (TI->getNumSuccessors())
4715    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4716
4717  // Check successor nodes' PHI nodes that expect a constant to be available
4718  // from this block.
4719  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4720    BasicBlock *SuccBB = TI->getSuccessor(succ);
4721    if (!isa<PHINode>(SuccBB->begin())) continue;
4722    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4723
4724    // If this terminator has multiple identical successors (common for
4725    // switches), only handle each succ once.
4726    unsigned SuccMBBNo = SuccMBB->getNumber();
4727    if (SuccsHandled[SuccMBBNo]) continue;
4728    SuccsHandled[SuccMBBNo] = true;
4729
4730    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4731    PHINode *PN;
4732
4733    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4734    // nodes and Machine PHI nodes, but the incoming operands have not been
4735    // emitted yet.
4736    for (BasicBlock::iterator I = SuccBB->begin();
4737         (PN = dyn_cast<PHINode>(I)); ++I) {
4738      // Ignore dead phi's.
4739      if (PN->use_empty()) continue;
4740
4741      unsigned Reg;
4742      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4743
4744      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4745        unsigned &RegOut = ConstantsOut[C];
4746        if (RegOut == 0) {
4747          RegOut = FuncInfo.CreateRegForValue(C);
4748          SDL.CopyValueToVirtualRegister(C, RegOut);
4749        }
4750        Reg = RegOut;
4751      } else {
4752        Reg = FuncInfo.ValueMap[PHIOp];
4753        if (Reg == 0) {
4754          assert(isa<AllocaInst>(PHIOp) &&
4755                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4756                 "Didn't codegen value into a register!??");
4757          Reg = FuncInfo.CreateRegForValue(PHIOp);
4758          SDL.CopyValueToVirtualRegister(PHIOp, Reg);
4759        }
4760      }
4761
4762      // Remember that this register needs to added to the machine PHI node as
4763      // the input for this MBB.
4764      MVT::ValueType VT = TLI.getValueType(PN->getType());
4765      unsigned NumRegisters = TLI.getNumRegisters(VT);
4766      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
4767        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4768    }
4769  }
4770  ConstantsOut.clear();
4771
4772  // Lower the terminator after the copies are emitted.
4773  SDL.visit(*LLVMBB->getTerminator());
4774
4775  // Copy over any CaseBlock records that may now exist due to SwitchInst
4776  // lowering, as well as any jump table information.
4777  SwitchCases.clear();
4778  SwitchCases = SDL.SwitchCases;
4779  JTCases.clear();
4780  JTCases = SDL.JTCases;
4781  BitTestCases.clear();
4782  BitTestCases = SDL.BitTestCases;
4783
4784  // Make sure the root of the DAG is up-to-date.
4785  DAG.setRoot(SDL.getControlRoot());
4786
4787  // Check whether calls in this block are real tail calls. Fix up CALL nodes
4788  // with correct tailcall attribute so that the target can rely on the tailcall
4789  // attribute indicating whether the call is really eligible for tail call
4790  // optimization.
4791  CheckDAGForTailCallsAndFixThem(DAG, TLI);
4792}
4793
4794void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4795  DOUT << "Lowered selection DAG:\n";
4796  DEBUG(DAG.dump());
4797
4798  // Run the DAG combiner in pre-legalize mode.
4799  DAG.Combine(false, *AA);
4800
4801  DOUT << "Optimized lowered selection DAG:\n";
4802  DEBUG(DAG.dump());
4803
4804  // Second step, hack on the DAG until it only uses operations and types that
4805  // the target supports.
4806#if 0  // Enable this some day.
4807  DAG.LegalizeTypes();
4808  // Someday even later, enable a dag combine pass here.
4809#endif
4810  DAG.Legalize();
4811
4812  DOUT << "Legalized selection DAG:\n";
4813  DEBUG(DAG.dump());
4814
4815  // Run the DAG combiner in post-legalize mode.
4816  DAG.Combine(true, *AA);
4817
4818  DOUT << "Optimized legalized selection DAG:\n";
4819  DEBUG(DAG.dump());
4820
4821  if (ViewISelDAGs) DAG.viewGraph();
4822
4823  // Third, instruction select all of the operations to machine code, adding the
4824  // code to the MachineBasicBlock.
4825  InstructionSelectBasicBlock(DAG);
4826
4827  DOUT << "Selected machine code:\n";
4828  DEBUG(BB->dump());
4829}
4830
4831void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4832                                        FunctionLoweringInfo &FuncInfo) {
4833  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4834  {
4835    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4836    CurDAG = &DAG;
4837
4838    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4839    // types that are not supported by the target.
4840    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4841
4842    // Second step, emit the lowered DAG as machine code.
4843    CodeGenAndEmitDAG(DAG);
4844  }
4845
4846  DOUT << "Total amount of phi nodes to update: "
4847       << PHINodesToUpdate.size() << "\n";
4848  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4849          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4850               << ", " << PHINodesToUpdate[i].second << ")\n";);
4851
4852  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4853  // PHI nodes in successors.
4854  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4855    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4856      MachineInstr *PHI = PHINodesToUpdate[i].first;
4857      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4858             "This is not a machine PHI node that we are updating!");
4859      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4860                                                false));
4861      PHI->addOperand(MachineOperand::CreateMBB(BB));
4862    }
4863    return;
4864  }
4865
4866  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4867    // Lower header first, if it wasn't already lowered
4868    if (!BitTestCases[i].Emitted) {
4869      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4870      CurDAG = &HSDAG;
4871      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
4872      // Set the current basic block to the mbb we wish to insert the code into
4873      BB = BitTestCases[i].Parent;
4874      HSDL.setCurrentBasicBlock(BB);
4875      // Emit the code
4876      HSDL.visitBitTestHeader(BitTestCases[i]);
4877      HSDAG.setRoot(HSDL.getRoot());
4878      CodeGenAndEmitDAG(HSDAG);
4879    }
4880
4881    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4882      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4883      CurDAG = &BSDAG;
4884      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
4885      // Set the current basic block to the mbb we wish to insert the code into
4886      BB = BitTestCases[i].Cases[j].ThisBB;
4887      BSDL.setCurrentBasicBlock(BB);
4888      // Emit the code
4889      if (j+1 != ej)
4890        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4891                              BitTestCases[i].Reg,
4892                              BitTestCases[i].Cases[j]);
4893      else
4894        BSDL.visitBitTestCase(BitTestCases[i].Default,
4895                              BitTestCases[i].Reg,
4896                              BitTestCases[i].Cases[j]);
4897
4898
4899      BSDAG.setRoot(BSDL.getRoot());
4900      CodeGenAndEmitDAG(BSDAG);
4901    }
4902
4903    // Update PHI Nodes
4904    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4905      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4906      MachineBasicBlock *PHIBB = PHI->getParent();
4907      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4908             "This is not a machine PHI node that we are updating!");
4909      // This is "default" BB. We have two jumps to it. From "header" BB and
4910      // from last "case" BB.
4911      if (PHIBB == BitTestCases[i].Default) {
4912        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4913                                                  false));
4914        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
4915        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4916                                                  false));
4917        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
4918                                                  back().ThisBB));
4919      }
4920      // One of "cases" BB.
4921      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4922        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4923        if (cBB->succ_end() !=
4924            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4925          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4926                                                    false));
4927          PHI->addOperand(MachineOperand::CreateMBB(cBB));
4928        }
4929      }
4930    }
4931  }
4932
4933  // If the JumpTable record is filled in, then we need to emit a jump table.
4934  // Updating the PHI nodes is tricky in this case, since we need to determine
4935  // whether the PHI is a successor of the range check MBB or the jump table MBB
4936  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4937    // Lower header first, if it wasn't already lowered
4938    if (!JTCases[i].first.Emitted) {
4939      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4940      CurDAG = &HSDAG;
4941      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
4942      // Set the current basic block to the mbb we wish to insert the code into
4943      BB = JTCases[i].first.HeaderBB;
4944      HSDL.setCurrentBasicBlock(BB);
4945      // Emit the code
4946      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4947      HSDAG.setRoot(HSDL.getRoot());
4948      CodeGenAndEmitDAG(HSDAG);
4949    }
4950
4951    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4952    CurDAG = &JSDAG;
4953    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
4954    // Set the current basic block to the mbb we wish to insert the code into
4955    BB = JTCases[i].second.MBB;
4956    JSDL.setCurrentBasicBlock(BB);
4957    // Emit the code
4958    JSDL.visitJumpTable(JTCases[i].second);
4959    JSDAG.setRoot(JSDL.getRoot());
4960    CodeGenAndEmitDAG(JSDAG);
4961
4962    // Update PHI Nodes
4963    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4964      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4965      MachineBasicBlock *PHIBB = PHI->getParent();
4966      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4967             "This is not a machine PHI node that we are updating!");
4968      // "default" BB. We can go there only from header BB.
4969      if (PHIBB == JTCases[i].second.Default) {
4970        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4971                                                  false));
4972        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
4973      }
4974      // JT BB. Just iterate over successors here
4975      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4976        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
4977                                                  false));
4978        PHI->addOperand(MachineOperand::CreateMBB(BB));
4979      }
4980    }
4981  }
4982
4983  // If the switch block involved a branch to one of the actual successors, we
4984  // need to update PHI nodes in that block.
4985  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4986    MachineInstr *PHI = PHINodesToUpdate[i].first;
4987    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4988           "This is not a machine PHI node that we are updating!");
4989    if (BB->isSuccessor(PHI->getParent())) {
4990      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
4991                                                false));
4992      PHI->addOperand(MachineOperand::CreateMBB(BB));
4993    }
4994  }
4995
4996  // If we generated any switch lowering information, build and codegen any
4997  // additional DAGs necessary.
4998  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4999    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
5000    CurDAG = &SDAG;
5001    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
5002
5003    // Set the current basic block to the mbb we wish to insert the code into
5004    BB = SwitchCases[i].ThisBB;
5005    SDL.setCurrentBasicBlock(BB);
5006
5007    // Emit the code
5008    SDL.visitSwitchCase(SwitchCases[i]);
5009    SDAG.setRoot(SDL.getRoot());
5010    CodeGenAndEmitDAG(SDAG);
5011
5012    // Handle any PHI nodes in successors of this chunk, as if we were coming
5013    // from the original BB before switch expansion.  Note that PHI nodes can
5014    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5015    // handle them the right number of times.
5016    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5017      for (MachineBasicBlock::iterator Phi = BB->begin();
5018           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5019        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5020        for (unsigned pn = 0; ; ++pn) {
5021          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5022          if (PHINodesToUpdate[pn].first == Phi) {
5023            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5024                                                      second, false));
5025            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5026            break;
5027          }
5028        }
5029      }
5030
5031      // Don't process RHS if same block as LHS.
5032      if (BB == SwitchCases[i].FalseBB)
5033        SwitchCases[i].FalseBB = 0;
5034
5035      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5036      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5037      SwitchCases[i].FalseBB = 0;
5038    }
5039    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5040  }
5041}
5042
5043
5044//===----------------------------------------------------------------------===//
5045/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
5046/// target node in the graph.
5047void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
5048  if (ViewSchedDAGs) DAG.viewGraph();
5049
5050  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5051
5052  if (!Ctor) {
5053    Ctor = ISHeuristic;
5054    RegisterScheduler::setDefault(Ctor);
5055  }
5056
5057  ScheduleDAG *SL = Ctor(this, &DAG, BB);
5058  BB = SL->Run();
5059
5060  if (ViewSUnitDAGs) SL->viewGraph();
5061
5062  delete SL;
5063}
5064
5065
5066HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5067  return new HazardRecognizer();
5068}
5069
5070//===----------------------------------------------------------------------===//
5071// Helper functions used by the generated instruction selector.
5072//===----------------------------------------------------------------------===//
5073// Calls to these methods are generated by tblgen.
5074
5075/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5076/// the dag combiner simplified the 255, we still want to match.  RHS is the
5077/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5078/// specified in the .td file (e.g. 255).
5079bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
5080                                    int64_t DesiredMaskS) const {
5081  const APInt &ActualMask = RHS->getAPIntValue();
5082  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5083
5084  // If the actual mask exactly matches, success!
5085  if (ActualMask == DesiredMask)
5086    return true;
5087
5088  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5089  if (ActualMask.intersects(~DesiredMask))
5090    return false;
5091
5092  // Otherwise, the DAG Combiner may have proven that the value coming in is
5093  // either already zero or is not demanded.  Check for known zero input bits.
5094  APInt NeededMask = DesiredMask & ~ActualMask;
5095  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5096    return true;
5097
5098  // TODO: check to see if missing bits are just not demanded.
5099
5100  // Otherwise, this pattern doesn't match.
5101  return false;
5102}
5103
5104/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5105/// the dag combiner simplified the 255, we still want to match.  RHS is the
5106/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5107/// specified in the .td file (e.g. 255).
5108bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5109                                   int64_t DesiredMaskS) const {
5110  const APInt &ActualMask = RHS->getAPIntValue();
5111  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5112
5113  // If the actual mask exactly matches, success!
5114  if (ActualMask == DesiredMask)
5115    return true;
5116
5117  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5118  if (ActualMask.intersects(~DesiredMask))
5119    return false;
5120
5121  // Otherwise, the DAG Combiner may have proven that the value coming in is
5122  // either already zero or is not demanded.  Check for known zero input bits.
5123  APInt NeededMask = DesiredMask & ~ActualMask;
5124
5125  APInt KnownZero, KnownOne;
5126  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5127
5128  // If all the missing bits in the or are already known to be set, match!
5129  if ((NeededMask & KnownOne) == NeededMask)
5130    return true;
5131
5132  // TODO: check to see if missing bits are just not demanded.
5133
5134  // Otherwise, this pattern doesn't match.
5135  return false;
5136}
5137
5138
5139/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5140/// by tblgen.  Others should not call it.
5141void SelectionDAGISel::
5142SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5143  std::vector<SDOperand> InOps;
5144  std::swap(InOps, Ops);
5145
5146  Ops.push_back(InOps[0]);  // input chain.
5147  Ops.push_back(InOps[1]);  // input asm string.
5148
5149  unsigned i = 2, e = InOps.size();
5150  if (InOps[e-1].getValueType() == MVT::Flag)
5151    --e;  // Don't process a flag operand if it is here.
5152
5153  while (i != e) {
5154    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5155    if ((Flags & 7) != 4 /*MEM*/) {
5156      // Just skip over this operand, copying the operands verbatim.
5157      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5158      i += (Flags >> 3) + 1;
5159    } else {
5160      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5161      // Otherwise, this is a memory operand.  Ask the target to select it.
5162      std::vector<SDOperand> SelOps;
5163      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5164        cerr << "Could not match memory address.  Inline asm failure!\n";
5165        exit(1);
5166      }
5167
5168      // Add this to the output node.
5169      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5170      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5171                                          IntPtrTy));
5172      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5173      i += 2;
5174    }
5175  }
5176
5177  // Add the flag input back if present.
5178  if (e != InOps.size())
5179    Ops.push_back(InOps.back());
5180}
5181
5182char SelectionDAGISel::ID = 0;
5183