SelectionDAGISel.cpp revision f09400f3bb920cf6f79dc030f42e8d103e14b5c6
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
36#include "llvm/CodeGen/SchedulerRegistry.h"
37#include "llvm/CodeGen/SelectionDAG.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/Timer.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/Statistic.h"
50#include <algorithm>
51using namespace llvm;
52
53STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
54STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
55
56static cl::opt<bool>
57EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
58          cl::desc("Enable verbose messages in the \"fast\" "
59                   "instruction selector"));
60static cl::opt<bool>
61EnableFastISelAbort("fast-isel-abort", cl::Hidden,
62          cl::desc("Enable abort calls when \"fast\" instruction fails"));
63
64#ifndef NDEBUG
65static cl::opt<bool>
66ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
67          cl::desc("Pop up a window to show dags before the first "
68                   "dag combine pass"));
69static cl::opt<bool>
70ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
71          cl::desc("Pop up a window to show dags before legalize types"));
72static cl::opt<bool>
73ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
74          cl::desc("Pop up a window to show dags before legalize"));
75static cl::opt<bool>
76ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
77          cl::desc("Pop up a window to show dags before the second "
78                   "dag combine pass"));
79static cl::opt<bool>
80ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before the post legalize types"
82                   " dag combine pass"));
83static cl::opt<bool>
84ViewISelDAGs("view-isel-dags", cl::Hidden,
85          cl::desc("Pop up a window to show isel dags as they are selected"));
86static cl::opt<bool>
87ViewSchedDAGs("view-sched-dags", cl::Hidden,
88          cl::desc("Pop up a window to show sched dags as they are processed"));
89static cl::opt<bool>
90ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
91      cl::desc("Pop up a window to show SUnit dags after they are processed"));
92#else
93static const bool ViewDAGCombine1 = false,
94                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
95                  ViewDAGCombine2 = false,
96                  ViewDAGCombineLT = false,
97                  ViewISelDAGs = false, ViewSchedDAGs = false,
98                  ViewSUnitDAGs = false;
99#endif
100
101//===---------------------------------------------------------------------===//
102///
103/// RegisterScheduler class - Track the registration of instruction schedulers.
104///
105//===---------------------------------------------------------------------===//
106MachinePassRegistry RegisterScheduler::Registry;
107
108//===---------------------------------------------------------------------===//
109///
110/// ISHeuristic command line option for instruction schedulers.
111///
112//===---------------------------------------------------------------------===//
113static cl::opt<RegisterScheduler::FunctionPassCtor, false,
114               RegisterPassParser<RegisterScheduler> >
115ISHeuristic("pre-RA-sched",
116            cl::init(&createDefaultScheduler),
117            cl::desc("Instruction schedulers available (before register"
118                     " allocation):"));
119
120static RegisterScheduler
121defaultListDAGScheduler("default", "Best scheduler for the target",
122                        createDefaultScheduler);
123
124namespace llvm {
125  //===--------------------------------------------------------------------===//
126  /// createDefaultScheduler - This creates an instruction scheduler appropriate
127  /// for the target.
128  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
129                                             CodeGenOpt::Level OptLevel) {
130    const TargetLowering &TLI = IS->getTargetLowering();
131
132    if (OptLevel == CodeGenOpt::None)
133      return createFastDAGScheduler(IS, OptLevel);
134    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
135      return createTDListDAGScheduler(IS, OptLevel);
136    assert(TLI.getSchedulingPreference() ==
137           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
138    return createBURRListDAGScheduler(IS, OptLevel);
139  }
140}
141
142// EmitInstrWithCustomInserter - This method should be implemented by targets
143// that mark instructions with the 'usesCustomInserter' flag.  These
144// instructions are special in various ways, which require special support to
145// insert.  The specified MachineInstr is created but not inserted into any
146// basic blocks, and this method is called to expand it into a sequence of
147// instructions, potentially also creating new basic blocks and control flow.
148// When new basic blocks are inserted and the edges from MBB to its successors
149// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
150// DenseMap.
151MachineBasicBlock *
152TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
153                                            MachineBasicBlock *MBB) const {
154#ifndef NDEBUG
155  dbgs() << "If a target marks an instruction with "
156          "'usesCustomInserter', it must implement "
157          "TargetLowering::EmitInstrWithCustomInserter!";
158#endif
159  llvm_unreachable(0);
160  return 0;
161}
162
163//===----------------------------------------------------------------------===//
164// SelectionDAGISel code
165//===----------------------------------------------------------------------===//
166
167SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
168  MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
169  FuncInfo(new FunctionLoweringInfo(TLI)),
170  CurDAG(new SelectionDAG(tm, *FuncInfo)),
171  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
172  GFI(),
173  OptLevel(OL),
174  DAGSize(0)
175{}
176
177SelectionDAGISel::~SelectionDAGISel() {
178  delete SDB;
179  delete CurDAG;
180  delete FuncInfo;
181}
182
183void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
184  AU.addRequired<AliasAnalysis>();
185  AU.addPreserved<AliasAnalysis>();
186  AU.addRequired<GCModuleInfo>();
187  AU.addPreserved<GCModuleInfo>();
188  MachineFunctionPass::getAnalysisUsage(AU);
189}
190
191bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
192  // Do some sanity-checking on the command-line options.
193  assert((!EnableFastISelVerbose || EnableFastISel) &&
194         "-fast-isel-verbose requires -fast-isel");
195  assert((!EnableFastISelAbort || EnableFastISel) &&
196         "-fast-isel-abort requires -fast-isel");
197
198  const Function &Fn = *mf.getFunction();
199  const TargetInstrInfo &TII = *TM.getInstrInfo();
200  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
201
202  MF = &mf;
203  RegInfo = &MF->getRegInfo();
204  AA = &getAnalysis<AliasAnalysis>();
205  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
206
207  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
208
209  CurDAG->init(*MF);
210  FuncInfo->set(Fn, *MF, EnableFastISel);
211  SDB->init(GFI, *AA);
212
213  SelectAllBasicBlocks(Fn);
214
215 // If the first basic block in the function has live ins that need to be
216  // copied into vregs, emit the copies into the top of the block before
217  // emitting the code for the block.
218  MachineBasicBlock *EntryMBB = MF->begin();
219  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
220
221  // Insert DBG_VALUE instructions for function arguments to the entry block.
222  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
223    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
224    unsigned Reg = MI->getOperand(0).getReg();
225    if (TargetRegisterInfo::isPhysicalRegister(Reg))
226      EntryMBB->insert(EntryMBB->begin(), MI);
227    else {
228      MachineInstr *Def = RegInfo->getVRegDef(Reg);
229      MachineBasicBlock::iterator InsertPos = Def;
230      EntryMBB->insert(llvm::next(InsertPos), MI);
231    }
232  }
233
234  // Release function-specific state. SDB and CurDAG are already cleared
235  // at this point.
236  FuncInfo->clear();
237
238  return true;
239}
240
241MachineBasicBlock *
242SelectionDAGISel::SelectBasicBlock(MachineBasicBlock *BB,
243                                   const BasicBlock *LLVMBB,
244                                   BasicBlock::const_iterator Begin,
245                                   BasicBlock::const_iterator End,
246                                   bool &HadTailCall) {
247  // Lower all of the non-terminator instructions. If a call is emitted
248  // as a tail call, cease emitting nodes for this block. Terminators
249  // are handled below.
250  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
251    SDB->visit(*I);
252
253  // Make sure the root of the DAG is up-to-date.
254  CurDAG->setRoot(SDB->getControlRoot());
255  HadTailCall = SDB->HasTailCall;
256  SDB->clear();
257
258  // Final step, emit the lowered DAG as machine code.
259  return CodeGenAndEmitDAG(BB);
260}
261
262namespace {
263/// WorkListRemover - This class is a DAGUpdateListener that removes any deleted
264/// nodes from the worklist.
265class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener {
266  SmallVector<SDNode*, 128> &Worklist;
267  SmallPtrSet<SDNode*, 128> &InWorklist;
268public:
269  SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl,
270                       SmallPtrSet<SDNode*, 128> &inwl)
271    : Worklist(wl), InWorklist(inwl) {}
272
273  void RemoveFromWorklist(SDNode *N) {
274    if (!InWorklist.erase(N)) return;
275
276    SmallVector<SDNode*, 128>::iterator I =
277    std::find(Worklist.begin(), Worklist.end(), N);
278    assert(I != Worklist.end() && "Not in worklist");
279
280    *I = Worklist.back();
281    Worklist.pop_back();
282  }
283
284  virtual void NodeDeleted(SDNode *N, SDNode *E) {
285    RemoveFromWorklist(N);
286  }
287
288  virtual void NodeUpdated(SDNode *N) {
289    // Ignore updates.
290  }
291};
292}
293
294/// TrivialTruncElim - Eliminate some trivial nops that can result from
295/// ShrinkDemandedOps: (trunc (ext n)) -> n.
296static bool TrivialTruncElim(SDValue Op,
297                             TargetLowering::TargetLoweringOpt &TLO) {
298  SDValue N0 = Op.getOperand(0);
299  EVT VT = Op.getValueType();
300  if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
301       N0.getOpcode() == ISD::SIGN_EXTEND ||
302       N0.getOpcode() == ISD::ANY_EXTEND) &&
303      N0.getOperand(0).getValueType() == VT) {
304    return TLO.CombineTo(Op, N0.getOperand(0));
305  }
306  return false;
307}
308
309/// ShrinkDemandedOps - A late transformation pass that shrink expressions
310/// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts
311/// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
312void SelectionDAGISel::ShrinkDemandedOps() {
313  SmallVector<SDNode*, 128> Worklist;
314  SmallPtrSet<SDNode*, 128> InWorklist;
315
316  // Add all the dag nodes to the worklist.
317  Worklist.reserve(CurDAG->allnodes_size());
318  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
319       E = CurDAG->allnodes_end(); I != E; ++I) {
320    Worklist.push_back(I);
321    InWorklist.insert(I);
322  }
323
324  TargetLowering::TargetLoweringOpt TLO(*CurDAG, true, true, true);
325  while (!Worklist.empty()) {
326    SDNode *N = Worklist.pop_back_val();
327    InWorklist.erase(N);
328
329    if (N->use_empty() && N != CurDAG->getRoot().getNode()) {
330      // Deleting this node may make its operands dead, add them to the worklist
331      // if they aren't already there.
332      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
333        if (InWorklist.insert(N->getOperand(i).getNode()))
334          Worklist.push_back(N->getOperand(i).getNode());
335
336      CurDAG->DeleteNode(N);
337      continue;
338    }
339
340    // Run ShrinkDemandedOp on scalar binary operations.
341    if (N->getNumValues() != 1 ||
342        !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger())
343      continue;
344
345    unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
346    APInt Demanded = APInt::getAllOnesValue(BitWidth);
347    APInt KnownZero, KnownOne;
348    if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded,
349                                  KnownZero, KnownOne, TLO) &&
350        (N->getOpcode() != ISD::TRUNCATE ||
351         !TrivialTruncElim(SDValue(N, 0), TLO)))
352      continue;
353
354    // Revisit the node.
355    assert(!InWorklist.count(N) && "Already in worklist");
356    Worklist.push_back(N);
357    InWorklist.insert(N);
358
359    // Replace the old value with the new one.
360    DEBUG(errs() << "\nShrinkDemandedOps replacing ";
361          TLO.Old.getNode()->dump(CurDAG);
362          errs() << "\nWith: ";
363          TLO.New.getNode()->dump(CurDAG);
364          errs() << '\n');
365
366    if (InWorklist.insert(TLO.New.getNode()))
367      Worklist.push_back(TLO.New.getNode());
368
369    SDOPsWorkListRemover DeadNodes(Worklist, InWorklist);
370    CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes);
371
372    if (!TLO.Old.getNode()->use_empty()) continue;
373
374    for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands();
375         i != e; ++i) {
376      SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode();
377      if (OpNode->hasOneUse()) {
378        // Add OpNode to the end of the list to revisit.
379        DeadNodes.RemoveFromWorklist(OpNode);
380        Worklist.push_back(OpNode);
381        InWorklist.insert(OpNode);
382      }
383    }
384
385    DeadNodes.RemoveFromWorklist(TLO.Old.getNode());
386    CurDAG->DeleteNode(TLO.Old.getNode());
387  }
388}
389
390void SelectionDAGISel::ComputeLiveOutVRegInfo() {
391  SmallPtrSet<SDNode*, 128> VisitedNodes;
392  SmallVector<SDNode*, 128> Worklist;
393
394  Worklist.push_back(CurDAG->getRoot().getNode());
395
396  APInt Mask;
397  APInt KnownZero;
398  APInt KnownOne;
399
400  do {
401    SDNode *N = Worklist.pop_back_val();
402
403    // If we've already seen this node, ignore it.
404    if (!VisitedNodes.insert(N))
405      continue;
406
407    // Otherwise, add all chain operands to the worklist.
408    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
409      if (N->getOperand(i).getValueType() == MVT::Other)
410        Worklist.push_back(N->getOperand(i).getNode());
411
412    // If this is a CopyToReg with a vreg dest, process it.
413    if (N->getOpcode() != ISD::CopyToReg)
414      continue;
415
416    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
417    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
418      continue;
419
420    // Ignore non-scalar or non-integer values.
421    SDValue Src = N->getOperand(2);
422    EVT SrcVT = Src.getValueType();
423    if (!SrcVT.isInteger() || SrcVT.isVector())
424      continue;
425
426    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
427    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
428    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
429
430    // Only install this information if it tells us something.
431    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
432      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
433      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
434        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
435      FunctionLoweringInfo::LiveOutInfo &LOI =
436        FuncInfo->LiveOutRegInfo[DestReg];
437      LOI.NumSignBits = NumSignBits;
438      LOI.KnownOne = KnownOne;
439      LOI.KnownZero = KnownZero;
440    }
441  } while (!Worklist.empty());
442}
443
444MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
445  std::string GroupName;
446  if (TimePassesIsEnabled)
447    GroupName = "Instruction Selection and Scheduling";
448  std::string BlockName;
449  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
450      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
451      ViewSUnitDAGs)
452    BlockName = MF->getFunction()->getNameStr() + ":" +
453                BB->getBasicBlock()->getNameStr();
454
455  DEBUG(dbgs() << "Initial selection DAG:\n");
456  DEBUG(CurDAG->dump());
457
458  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
459
460  // Run the DAG combiner in pre-legalize mode.
461  if (TimePassesIsEnabled) {
462    NamedRegionTimer T("DAG Combining 1", GroupName);
463    CurDAG->Combine(Unrestricted, *AA, OptLevel);
464  } else {
465    CurDAG->Combine(Unrestricted, *AA, OptLevel);
466  }
467
468  DEBUG(dbgs() << "Optimized lowered selection DAG:\n");
469  DEBUG(CurDAG->dump());
470
471  // Second step, hack on the DAG until it only uses operations and types that
472  // the target supports.
473  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
474                                               BlockName);
475
476  bool Changed;
477  if (TimePassesIsEnabled) {
478    NamedRegionTimer T("Type Legalization", GroupName);
479    Changed = CurDAG->LegalizeTypes();
480  } else {
481    Changed = CurDAG->LegalizeTypes();
482  }
483
484  DEBUG(dbgs() << "Type-legalized selection DAG:\n");
485  DEBUG(CurDAG->dump());
486
487  if (Changed) {
488    if (ViewDAGCombineLT)
489      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
490
491    // Run the DAG combiner in post-type-legalize mode.
492    if (TimePassesIsEnabled) {
493      NamedRegionTimer T("DAG Combining after legalize types", GroupName);
494      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
495    } else {
496      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
497    }
498
499    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n");
500    DEBUG(CurDAG->dump());
501  }
502
503  if (TimePassesIsEnabled) {
504    NamedRegionTimer T("Vector Legalization", GroupName);
505    Changed = CurDAG->LegalizeVectors();
506  } else {
507    Changed = CurDAG->LegalizeVectors();
508  }
509
510  if (Changed) {
511    if (TimePassesIsEnabled) {
512      NamedRegionTimer T("Type Legalization 2", GroupName);
513      CurDAG->LegalizeTypes();
514    } else {
515      CurDAG->LegalizeTypes();
516    }
517
518    if (ViewDAGCombineLT)
519      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
520
521    // Run the DAG combiner in post-type-legalize mode.
522    if (TimePassesIsEnabled) {
523      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
524      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
525    } else {
526      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
527    }
528
529    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n");
530    DEBUG(CurDAG->dump());
531  }
532
533  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
534
535  if (TimePassesIsEnabled) {
536    NamedRegionTimer T("DAG Legalization", GroupName);
537    CurDAG->Legalize(OptLevel);
538  } else {
539    CurDAG->Legalize(OptLevel);
540  }
541
542  DEBUG(dbgs() << "Legalized selection DAG:\n");
543  DEBUG(CurDAG->dump());
544
545  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
546
547  // Run the DAG combiner in post-legalize mode.
548  if (TimePassesIsEnabled) {
549    NamedRegionTimer T("DAG Combining 2", GroupName);
550    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
551  } else {
552    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
553  }
554
555  DEBUG(dbgs() << "Optimized legalized selection DAG:\n");
556  DEBUG(CurDAG->dump());
557
558  if (OptLevel != CodeGenOpt::None) {
559    ShrinkDemandedOps();
560    ComputeLiveOutVRegInfo();
561  }
562
563  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
564
565  // Third, instruction select all of the operations to machine code, adding the
566  // code to the MachineBasicBlock.
567  if (TimePassesIsEnabled) {
568    NamedRegionTimer T("Instruction Selection", GroupName);
569    DoInstructionSelection();
570  } else {
571    DoInstructionSelection();
572  }
573
574  DEBUG(dbgs() << "Selected selection DAG:\n");
575  DEBUG(CurDAG->dump());
576
577  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
578
579  // Schedule machine code.
580  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
581  if (TimePassesIsEnabled) {
582    NamedRegionTimer T("Instruction Scheduling", GroupName);
583    Scheduler->Run(CurDAG, BB, BB->end());
584  } else {
585    Scheduler->Run(CurDAG, BB, BB->end());
586  }
587
588  if (ViewSUnitDAGs) Scheduler->viewGraph();
589
590  // Emit machine code to BB.  This can change 'BB' to the last block being
591  // inserted into.
592  if (TimePassesIsEnabled) {
593    NamedRegionTimer T("Instruction Creation", GroupName);
594    BB = Scheduler->EmitSchedule();
595  } else {
596    BB = Scheduler->EmitSchedule();
597  }
598
599  // Free the scheduler state.
600  if (TimePassesIsEnabled) {
601    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
602    delete Scheduler;
603  } else {
604    delete Scheduler;
605  }
606
607  // Free the SelectionDAG state, now that we're finished with it.
608  CurDAG->clear();
609
610  return BB;
611}
612
613void SelectionDAGISel::DoInstructionSelection() {
614  DEBUG(errs() << "===== Instruction selection begins:\n");
615
616  PreprocessISelDAG();
617
618  // Select target instructions for the DAG.
619  {
620    // Number all nodes with a topological order and set DAGSize.
621    DAGSize = CurDAG->AssignTopologicalOrder();
622
623    // Create a dummy node (which is not added to allnodes), that adds
624    // a reference to the root node, preventing it from being deleted,
625    // and tracking any changes of the root.
626    HandleSDNode Dummy(CurDAG->getRoot());
627    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
628    ++ISelPosition;
629
630    // The AllNodes list is now topological-sorted. Visit the
631    // nodes by starting at the end of the list (the root of the
632    // graph) and preceding back toward the beginning (the entry
633    // node).
634    while (ISelPosition != CurDAG->allnodes_begin()) {
635      SDNode *Node = --ISelPosition;
636      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
637      // but there are currently some corner cases that it misses. Also, this
638      // makes it theoretically possible to disable the DAGCombiner.
639      if (Node->use_empty())
640        continue;
641
642      SDNode *ResNode = Select(Node);
643
644      // FIXME: This is pretty gross.  'Select' should be changed to not return
645      // anything at all and this code should be nuked with a tactical strike.
646
647      // If node should not be replaced, continue with the next one.
648      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
649        continue;
650      // Replace node.
651      if (ResNode)
652        ReplaceUses(Node, ResNode);
653
654      // If after the replacement this node is not used any more,
655      // remove this dead node.
656      if (Node->use_empty()) { // Don't delete EntryToken, etc.
657        ISelUpdater ISU(ISelPosition);
658        CurDAG->RemoveDeadNode(Node, &ISU);
659      }
660    }
661
662    CurDAG->setRoot(Dummy.getValue());
663  }
664  DEBUG(errs() << "===== Instruction selection ends:\n");
665
666  PostprocessISelDAG();
667}
668
669/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
670/// do other setup for EH landing-pad blocks.
671void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
672  // Add a label to mark the beginning of the landing pad.  Deletion of the
673  // landing pad can thus be detected via the MachineModuleInfo.
674  MCSymbol *Label = MF->getMMI().addLandingPad(BB);
675
676  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
677  BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label);
678
679  // Mark exception register as live in.
680  unsigned Reg = TLI.getExceptionAddressRegister();
681  if (Reg) BB->addLiveIn(Reg);
682
683  // Mark exception selector register as live in.
684  Reg = TLI.getExceptionSelectorRegister();
685  if (Reg) BB->addLiveIn(Reg);
686
687  // FIXME: Hack around an exception handling flaw (PR1508): the personality
688  // function and list of typeids logically belong to the invoke (or, if you
689  // like, the basic block containing the invoke), and need to be associated
690  // with it in the dwarf exception handling tables.  Currently however the
691  // information is provided by an intrinsic (eh.selector) that can be moved
692  // to unexpected places by the optimizers: if the unwind edge is critical,
693  // then breaking it can result in the intrinsics being in the successor of
694  // the landing pad, not the landing pad itself.  This results
695  // in exceptions not being caught because no typeids are associated with
696  // the invoke.  This may not be the only way things can go wrong, but it
697  // is the only way we try to work around for the moment.
698  const BasicBlock *LLVMBB = BB->getBasicBlock();
699  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
700
701  if (Br && Br->isUnconditional()) { // Critical edge?
702    BasicBlock::const_iterator I, E;
703    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
704      if (isa<EHSelectorInst>(I))
705        break;
706
707    if (I == E)
708      // No catch info found - try to extract some from the successor.
709      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
710  }
711}
712
713void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
714  // Initialize the Fast-ISel state, if needed.
715  FastISel *FastIS = 0;
716  if (EnableFastISel)
717    FastIS = TLI.createFastISel(*MF, FuncInfo->ValueMap, FuncInfo->MBBMap,
718                                FuncInfo->StaticAllocaMap,
719                                FuncInfo->PHINodesToUpdate
720#ifndef NDEBUG
721                                , FuncInfo->CatchInfoLost
722#endif
723                                );
724
725  // Iterate over all basic blocks in the function.
726  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
727    const BasicBlock *LLVMBB = &*I;
728    MachineBasicBlock *BB = FuncInfo->MBBMap[LLVMBB];
729
730    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
731    BasicBlock::const_iterator const End = LLVMBB->end();
732    BasicBlock::const_iterator BI = Begin;
733
734    // Lower any arguments needed in this block if this is the entry block.
735    bool SuppressFastISel = false;
736    if (LLVMBB == &Fn.getEntryBlock()) {
737      LowerArguments(LLVMBB);
738
739      // If any of the arguments has the byval attribute, forgo
740      // fast-isel in the entry block.
741      if (FastIS) {
742        unsigned j = 1;
743        for (Function::const_arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
744             I != E; ++I, ++j)
745          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
746            if (EnableFastISelVerbose || EnableFastISelAbort)
747              dbgs() << "FastISel skips entry block due to byval argument\n";
748            SuppressFastISel = true;
749            break;
750          }
751      }
752    }
753
754    // Setup an EH landing-pad block.
755    if (BB->isLandingPad())
756      PrepareEHLandingPad(BB);
757
758    // Before doing SelectionDAG ISel, see if FastISel has been requested.
759    if (FastIS && !SuppressFastISel) {
760      // Emit code for any incoming arguments. This must happen before
761      // beginning FastISel on the entry block.
762      if (LLVMBB == &Fn.getEntryBlock()) {
763        CurDAG->setRoot(SDB->getControlRoot());
764        SDB->clear();
765        BB = CodeGenAndEmitDAG(BB);
766      }
767      FastIS->startNewBlock(BB);
768      // Do FastISel on as many instructions as possible.
769      for (; BI != End; ++BI) {
770        // Try to select the instruction with FastISel.
771        if (FastIS->SelectInstruction(BI))
772          continue;
773
774        // Then handle certain instructions as single-LLVM-Instruction blocks.
775        if (isa<CallInst>(BI)) {
776          ++NumFastIselFailures;
777          if (EnableFastISelVerbose || EnableFastISelAbort) {
778            dbgs() << "FastISel missed call: ";
779            BI->dump();
780          }
781
782          if (!BI->getType()->isVoidTy() && !BI->use_empty()) {
783            unsigned &R = FuncInfo->ValueMap[BI];
784            if (!R)
785              R = FuncInfo->CreateRegForValue(BI);
786          }
787
788          bool HadTailCall = false;
789          BB = SelectBasicBlock(BB, LLVMBB, BI, llvm::next(BI), HadTailCall);
790
791          // If the call was emitted as a tail call, we're done with the block.
792          if (HadTailCall) {
793            BI = End;
794            break;
795          }
796
797          // If the instruction was codegen'd with multiple blocks,
798          // inform the FastISel object where to resume inserting.
799          FastIS->setCurrentBlock(BB);
800          continue;
801        }
802
803        // Otherwise, give up on FastISel for the rest of the block.
804        // For now, be a little lenient about non-branch terminators.
805        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
806          ++NumFastIselFailures;
807          if (EnableFastISelVerbose || EnableFastISelAbort) {
808            dbgs() << "FastISel miss: ";
809            BI->dump();
810          }
811          if (EnableFastISelAbort)
812            // The "fast" selector couldn't handle something and bailed.
813            // For the purpose of debugging, just abort.
814            llvm_unreachable("FastISel didn't select the entire block");
815        }
816        break;
817      }
818    }
819
820    // Run SelectionDAG instruction selection on the remainder of the block
821    // not handled by FastISel. If FastISel is not run, this is the entire
822    // block.
823    if (BI != End) {
824      bool HadTailCall;
825      BB = SelectBasicBlock(BB, LLVMBB, BI, End, HadTailCall);
826    }
827
828    FinishBasicBlock(BB);
829    FuncInfo->PHINodesToUpdate.clear();
830  }
831
832  delete FastIS;
833}
834
835void
836SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
837
838  DEBUG(dbgs() << "Total amount of phi nodes to update: "
839               << FuncInfo->PHINodesToUpdate.size() << "\n");
840  DEBUG(for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
841          dbgs() << "Node " << i << " : ("
842                 << FuncInfo->PHINodesToUpdate[i].first
843                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
844
845  // Next, now that we know what the last MBB the LLVM BB expanded is, update
846  // PHI nodes in successors.
847  if (SDB->SwitchCases.empty() &&
848      SDB->JTCases.empty() &&
849      SDB->BitTestCases.empty()) {
850    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
851      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
852      assert(PHI->isPHI() &&
853             "This is not a machine PHI node that we are updating!");
854      if (!BB->isSuccessor(PHI->getParent()))
855        continue;
856      PHI->addOperand(
857        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
858      PHI->addOperand(MachineOperand::CreateMBB(BB));
859    }
860    return;
861  }
862
863  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
864    // Lower header first, if it wasn't already lowered
865    if (!SDB->BitTestCases[i].Emitted) {
866      // Set the current basic block to the mbb we wish to insert the code into
867      BB = SDB->BitTestCases[i].Parent;
868      // Emit the code
869      SDB->visitBitTestHeader(SDB->BitTestCases[i], BB);
870      CurDAG->setRoot(SDB->getRoot());
871      SDB->clear();
872      BB = CodeGenAndEmitDAG(BB);
873    }
874
875    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
876      // Set the current basic block to the mbb we wish to insert the code into
877      BB = SDB->BitTestCases[i].Cases[j].ThisBB;
878      // Emit the code
879      if (j+1 != ej)
880        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
881                              SDB->BitTestCases[i].Reg,
882                              SDB->BitTestCases[i].Cases[j],
883                              BB);
884      else
885        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
886                              SDB->BitTestCases[i].Reg,
887                              SDB->BitTestCases[i].Cases[j],
888                              BB);
889
890
891      CurDAG->setRoot(SDB->getRoot());
892      SDB->clear();
893      BB = CodeGenAndEmitDAG(BB);
894    }
895
896    // Update PHI Nodes
897    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
898         pi != pe; ++pi) {
899      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
900      MachineBasicBlock *PHIBB = PHI->getParent();
901      assert(PHI->isPHI() &&
902             "This is not a machine PHI node that we are updating!");
903      // This is "default" BB. We have two jumps to it. From "header" BB and
904      // from last "case" BB.
905      if (PHIBB == SDB->BitTestCases[i].Default) {
906        PHI->addOperand(MachineOperand::
907                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
908                                  false));
909        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
910        PHI->addOperand(MachineOperand::
911                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
912                                  false));
913        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
914                                                  back().ThisBB));
915      }
916      // One of "cases" BB.
917      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
918           j != ej; ++j) {
919        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
920        if (cBB->isSuccessor(PHIBB)) {
921          PHI->addOperand(MachineOperand::
922                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
923                                    false));
924          PHI->addOperand(MachineOperand::CreateMBB(cBB));
925        }
926      }
927    }
928  }
929  SDB->BitTestCases.clear();
930
931  // If the JumpTable record is filled in, then we need to emit a jump table.
932  // Updating the PHI nodes is tricky in this case, since we need to determine
933  // whether the PHI is a successor of the range check MBB or the jump table MBB
934  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
935    // Lower header first, if it wasn't already lowered
936    if (!SDB->JTCases[i].first.Emitted) {
937      // Set the current basic block to the mbb we wish to insert the code into
938      BB = SDB->JTCases[i].first.HeaderBB;
939      // Emit the code
940      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
941                                BB);
942      CurDAG->setRoot(SDB->getRoot());
943      SDB->clear();
944      BB = CodeGenAndEmitDAG(BB);
945    }
946
947    // Set the current basic block to the mbb we wish to insert the code into
948    BB = SDB->JTCases[i].second.MBB;
949    // Emit the code
950    SDB->visitJumpTable(SDB->JTCases[i].second);
951    CurDAG->setRoot(SDB->getRoot());
952    SDB->clear();
953    BB = CodeGenAndEmitDAG(BB);
954
955    // Update PHI Nodes
956    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
957         pi != pe; ++pi) {
958      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
959      MachineBasicBlock *PHIBB = PHI->getParent();
960      assert(PHI->isPHI() &&
961             "This is not a machine PHI node that we are updating!");
962      // "default" BB. We can go there only from header BB.
963      if (PHIBB == SDB->JTCases[i].second.Default) {
964        PHI->addOperand
965          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
966                                     false));
967        PHI->addOperand
968          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
969      }
970      // JT BB. Just iterate over successors here
971      if (BB->isSuccessor(PHIBB)) {
972        PHI->addOperand
973          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
974                                     false));
975        PHI->addOperand(MachineOperand::CreateMBB(BB));
976      }
977    }
978  }
979  SDB->JTCases.clear();
980
981  // If the switch block involved a branch to one of the actual successors, we
982  // need to update PHI nodes in that block.
983  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
984    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
985    assert(PHI->isPHI() &&
986           "This is not a machine PHI node that we are updating!");
987    if (BB->isSuccessor(PHI->getParent())) {
988      PHI->addOperand(
989        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
990      PHI->addOperand(MachineOperand::CreateMBB(BB));
991    }
992  }
993
994  // If we generated any switch lowering information, build and codegen any
995  // additional DAGs necessary.
996  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
997    // Set the current basic block to the mbb we wish to insert the code into
998    MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB;
999
1000    // Determine the unique successors.
1001    SmallVector<MachineBasicBlock *, 2> Succs;
1002    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1003    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1004      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1005
1006    // Emit the code. Note that this could result in ThisBB being split, so
1007    // we need to check for updates.
1008    SDB->visitSwitchCase(SDB->SwitchCases[i], BB);
1009    CurDAG->setRoot(SDB->getRoot());
1010    SDB->clear();
1011    ThisBB = CodeGenAndEmitDAG(BB);
1012
1013    // Handle any PHI nodes in successors of this chunk, as if we were coming
1014    // from the original BB before switch expansion.  Note that PHI nodes can
1015    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1016    // handle them the right number of times.
1017    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1018      BB = Succs[i];
1019      // BB may have been removed from the CFG if a branch was constant folded.
1020      if (ThisBB->isSuccessor(BB)) {
1021        for (MachineBasicBlock::iterator Phi = BB->begin();
1022             Phi != BB->end() && Phi->isPHI();
1023             ++Phi) {
1024          // This value for this PHI node is recorded in PHINodesToUpdate.
1025          for (unsigned pn = 0; ; ++pn) {
1026            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1027                   "Didn't find PHI entry!");
1028            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1029              Phi->addOperand(MachineOperand::
1030                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1031                                        false));
1032              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1033              break;
1034            }
1035          }
1036        }
1037      }
1038    }
1039  }
1040  SDB->SwitchCases.clear();
1041}
1042
1043
1044/// Create the scheduler. If a specific scheduler was specified
1045/// via the SchedulerRegistry, use it, otherwise select the
1046/// one preferred by the target.
1047///
1048ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1049  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1050
1051  if (!Ctor) {
1052    Ctor = ISHeuristic;
1053    RegisterScheduler::setDefault(Ctor);
1054  }
1055
1056  return Ctor(this, OptLevel);
1057}
1058
1059ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1060  return new ScheduleHazardRecognizer();
1061}
1062
1063//===----------------------------------------------------------------------===//
1064// Helper functions used by the generated instruction selector.
1065//===----------------------------------------------------------------------===//
1066// Calls to these methods are generated by tblgen.
1067
1068/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1069/// the dag combiner simplified the 255, we still want to match.  RHS is the
1070/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1071/// specified in the .td file (e.g. 255).
1072bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1073                                    int64_t DesiredMaskS) const {
1074  const APInt &ActualMask = RHS->getAPIntValue();
1075  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1076
1077  // If the actual mask exactly matches, success!
1078  if (ActualMask == DesiredMask)
1079    return true;
1080
1081  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1082  if (ActualMask.intersects(~DesiredMask))
1083    return false;
1084
1085  // Otherwise, the DAG Combiner may have proven that the value coming in is
1086  // either already zero or is not demanded.  Check for known zero input bits.
1087  APInt NeededMask = DesiredMask & ~ActualMask;
1088  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1089    return true;
1090
1091  // TODO: check to see if missing bits are just not demanded.
1092
1093  // Otherwise, this pattern doesn't match.
1094  return false;
1095}
1096
1097/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1098/// the dag combiner simplified the 255, we still want to match.  RHS is the
1099/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1100/// specified in the .td file (e.g. 255).
1101bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1102                                   int64_t DesiredMaskS) const {
1103  const APInt &ActualMask = RHS->getAPIntValue();
1104  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1105
1106  // If the actual mask exactly matches, success!
1107  if (ActualMask == DesiredMask)
1108    return true;
1109
1110  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1111  if (ActualMask.intersects(~DesiredMask))
1112    return false;
1113
1114  // Otherwise, the DAG Combiner may have proven that the value coming in is
1115  // either already zero or is not demanded.  Check for known zero input bits.
1116  APInt NeededMask = DesiredMask & ~ActualMask;
1117
1118  APInt KnownZero, KnownOne;
1119  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1120
1121  // If all the missing bits in the or are already known to be set, match!
1122  if ((NeededMask & KnownOne) == NeededMask)
1123    return true;
1124
1125  // TODO: check to see if missing bits are just not demanded.
1126
1127  // Otherwise, this pattern doesn't match.
1128  return false;
1129}
1130
1131
1132/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1133/// by tblgen.  Others should not call it.
1134void SelectionDAGISel::
1135SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1136  std::vector<SDValue> InOps;
1137  std::swap(InOps, Ops);
1138
1139  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1140  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1141  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1142
1143  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1144  if (InOps[e-1].getValueType() == MVT::Flag)
1145    --e;  // Don't process a flag operand if it is here.
1146
1147  while (i != e) {
1148    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1149    if (!InlineAsm::isMemKind(Flags)) {
1150      // Just skip over this operand, copying the operands verbatim.
1151      Ops.insert(Ops.end(), InOps.begin()+i,
1152                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1153      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1154    } else {
1155      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1156             "Memory operand with multiple values?");
1157      // Otherwise, this is a memory operand.  Ask the target to select it.
1158      std::vector<SDValue> SelOps;
1159      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1160        report_fatal_error("Could not match memory address.  Inline asm"
1161                           " failure!");
1162
1163      // Add this to the output node.
1164      unsigned NewFlags =
1165        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1166      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1167      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1168      i += 2;
1169    }
1170  }
1171
1172  // Add the flag input back if present.
1173  if (e != InOps.size())
1174    Ops.push_back(InOps.back());
1175}
1176
1177/// findFlagUse - Return use of EVT::Flag value produced by the specified
1178/// SDNode.
1179///
1180static SDNode *findFlagUse(SDNode *N) {
1181  unsigned FlagResNo = N->getNumValues()-1;
1182  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1183    SDUse &Use = I.getUse();
1184    if (Use.getResNo() == FlagResNo)
1185      return Use.getUser();
1186  }
1187  return NULL;
1188}
1189
1190/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1191/// This function recursively traverses up the operand chain, ignoring
1192/// certain nodes.
1193static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1194                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1195                          bool IgnoreChains) {
1196  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1197  // greater than all of its (recursive) operands.  If we scan to a point where
1198  // 'use' is smaller than the node we're scanning for, then we know we will
1199  // never find it.
1200  //
1201  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1202  // happen because we scan down to newly selected nodes in the case of flag
1203  // uses.
1204  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1205    return false;
1206
1207  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1208  // won't fail if we scan it again.
1209  if (!Visited.insert(Use))
1210    return false;
1211
1212  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1213    // Ignore chain uses, they are validated by HandleMergeInputChains.
1214    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1215      continue;
1216
1217    SDNode *N = Use->getOperand(i).getNode();
1218    if (N == Def) {
1219      if (Use == ImmedUse || Use == Root)
1220        continue;  // We are not looking for immediate use.
1221      assert(N != Root);
1222      return true;
1223    }
1224
1225    // Traverse up the operand chain.
1226    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1227      return true;
1228  }
1229  return false;
1230}
1231
1232/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1233/// operand node N of U during instruction selection that starts at Root.
1234bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1235                                          SDNode *Root) const {
1236  if (OptLevel == CodeGenOpt::None) return false;
1237  return N.hasOneUse();
1238}
1239
1240/// IsLegalToFold - Returns true if the specific operand node N of
1241/// U can be folded during instruction selection that starts at Root.
1242bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1243                                     CodeGenOpt::Level OptLevel,
1244                                     bool IgnoreChains) {
1245  if (OptLevel == CodeGenOpt::None) return false;
1246
1247  // If Root use can somehow reach N through a path that that doesn't contain
1248  // U then folding N would create a cycle. e.g. In the following
1249  // diagram, Root can reach N through X. If N is folded into into Root, then
1250  // X is both a predecessor and a successor of U.
1251  //
1252  //          [N*]           //
1253  //         ^   ^           //
1254  //        /     \          //
1255  //      [U*]    [X]?       //
1256  //        ^     ^          //
1257  //         \   /           //
1258  //          \ /            //
1259  //         [Root*]         //
1260  //
1261  // * indicates nodes to be folded together.
1262  //
1263  // If Root produces a flag, then it gets (even more) interesting. Since it
1264  // will be "glued" together with its flag use in the scheduler, we need to
1265  // check if it might reach N.
1266  //
1267  //          [N*]           //
1268  //         ^   ^           //
1269  //        /     \          //
1270  //      [U*]    [X]?       //
1271  //        ^       ^        //
1272  //         \       \       //
1273  //          \      |       //
1274  //         [Root*] |       //
1275  //          ^      |       //
1276  //          f      |       //
1277  //          |      /       //
1278  //         [Y]    /        //
1279  //           ^   /         //
1280  //           f  /          //
1281  //           | /           //
1282  //          [FU]           //
1283  //
1284  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1285  // (call it Fold), then X is a predecessor of FU and a successor of
1286  // Fold. But since Fold and FU are flagged together, this will create
1287  // a cycle in the scheduling graph.
1288
1289  // If the node has flags, walk down the graph to the "lowest" node in the
1290  // flagged set.
1291  EVT VT = Root->getValueType(Root->getNumValues()-1);
1292  while (VT == MVT::Flag) {
1293    SDNode *FU = findFlagUse(Root);
1294    if (FU == NULL)
1295      break;
1296    Root = FU;
1297    VT = Root->getValueType(Root->getNumValues()-1);
1298
1299    // If our query node has a flag result with a use, we've walked up it.  If
1300    // the user (which has already been selected) has a chain or indirectly uses
1301    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1302    // this, we cannot ignore chains in this predicate.
1303    IgnoreChains = false;
1304  }
1305
1306
1307  SmallPtrSet<SDNode*, 16> Visited;
1308  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1309}
1310
1311SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1312  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1313  SelectInlineAsmMemoryOperands(Ops);
1314
1315  std::vector<EVT> VTs;
1316  VTs.push_back(MVT::Other);
1317  VTs.push_back(MVT::Flag);
1318  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1319                                VTs, &Ops[0], Ops.size());
1320  New->setNodeId(-1);
1321  return New.getNode();
1322}
1323
1324SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1325  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1326}
1327
1328/// GetVBR - decode a vbr encoding whose top bit is set.
1329ALWAYS_INLINE static uint64_t
1330GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1331  assert(Val >= 128 && "Not a VBR");
1332  Val &= 127;  // Remove first vbr bit.
1333
1334  unsigned Shift = 7;
1335  uint64_t NextBits;
1336  do {
1337    NextBits = MatcherTable[Idx++];
1338    Val |= (NextBits&127) << Shift;
1339    Shift += 7;
1340  } while (NextBits & 128);
1341
1342  return Val;
1343}
1344
1345
1346/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1347/// interior flag and chain results to use the new flag and chain results.
1348void SelectionDAGISel::
1349UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1350                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1351                     SDValue InputFlag,
1352                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1353                     bool isMorphNodeTo) {
1354  SmallVector<SDNode*, 4> NowDeadNodes;
1355
1356  ISelUpdater ISU(ISelPosition);
1357
1358  // Now that all the normal results are replaced, we replace the chain and
1359  // flag results if present.
1360  if (!ChainNodesMatched.empty()) {
1361    assert(InputChain.getNode() != 0 &&
1362           "Matched input chains but didn't produce a chain");
1363    // Loop over all of the nodes we matched that produced a chain result.
1364    // Replace all the chain results with the final chain we ended up with.
1365    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1366      SDNode *ChainNode = ChainNodesMatched[i];
1367
1368      // If this node was already deleted, don't look at it.
1369      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1370        continue;
1371
1372      // Don't replace the results of the root node if we're doing a
1373      // MorphNodeTo.
1374      if (ChainNode == NodeToMatch && isMorphNodeTo)
1375        continue;
1376
1377      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1378      if (ChainVal.getValueType() == MVT::Flag)
1379        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1380      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1381      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1382
1383      // If the node became dead and we haven't already seen it, delete it.
1384      if (ChainNode->use_empty() &&
1385          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1386        NowDeadNodes.push_back(ChainNode);
1387    }
1388  }
1389
1390  // If the result produces a flag, update any flag results in the matched
1391  // pattern with the flag result.
1392  if (InputFlag.getNode() != 0) {
1393    // Handle any interior nodes explicitly marked.
1394    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1395      SDNode *FRN = FlagResultNodesMatched[i];
1396
1397      // If this node was already deleted, don't look at it.
1398      if (FRN->getOpcode() == ISD::DELETED_NODE)
1399        continue;
1400
1401      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1402             "Doesn't have a flag result");
1403      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1404                                        InputFlag, &ISU);
1405
1406      // If the node became dead and we haven't already seen it, delete it.
1407      if (FRN->use_empty() &&
1408          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1409        NowDeadNodes.push_back(FRN);
1410    }
1411  }
1412
1413  if (!NowDeadNodes.empty())
1414    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1415
1416  DEBUG(errs() << "ISEL: Match complete!\n");
1417}
1418
1419enum ChainResult {
1420  CR_Simple,
1421  CR_InducesCycle,
1422  CR_LeadsToInteriorNode
1423};
1424
1425/// WalkChainUsers - Walk down the users of the specified chained node that is
1426/// part of the pattern we're matching, looking at all of the users we find.
1427/// This determines whether something is an interior node, whether we have a
1428/// non-pattern node in between two pattern nodes (which prevent folding because
1429/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1430/// between pattern nodes (in which case the TF becomes part of the pattern).
1431///
1432/// The walk we do here is guaranteed to be small because we quickly get down to
1433/// already selected nodes "below" us.
1434static ChainResult
1435WalkChainUsers(SDNode *ChainedNode,
1436               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1437               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1438  ChainResult Result = CR_Simple;
1439
1440  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1441         E = ChainedNode->use_end(); UI != E; ++UI) {
1442    // Make sure the use is of the chain, not some other value we produce.
1443    if (UI.getUse().getValueType() != MVT::Other) continue;
1444
1445    SDNode *User = *UI;
1446
1447    // If we see an already-selected machine node, then we've gone beyond the
1448    // pattern that we're selecting down into the already selected chunk of the
1449    // DAG.
1450    if (User->isMachineOpcode() ||
1451        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1452      continue;
1453
1454    if (User->getOpcode() == ISD::CopyToReg ||
1455        User->getOpcode() == ISD::CopyFromReg ||
1456        User->getOpcode() == ISD::INLINEASM ||
1457        User->getOpcode() == ISD::EH_LABEL) {
1458      // If their node ID got reset to -1 then they've already been selected.
1459      // Treat them like a MachineOpcode.
1460      if (User->getNodeId() == -1)
1461        continue;
1462    }
1463
1464    // If we have a TokenFactor, we handle it specially.
1465    if (User->getOpcode() != ISD::TokenFactor) {
1466      // If the node isn't a token factor and isn't part of our pattern, then it
1467      // must be a random chained node in between two nodes we're selecting.
1468      // This happens when we have something like:
1469      //   x = load ptr
1470      //   call
1471      //   y = x+4
1472      //   store y -> ptr
1473      // Because we structurally match the load/store as a read/modify/write,
1474      // but the call is chained between them.  We cannot fold in this case
1475      // because it would induce a cycle in the graph.
1476      if (!std::count(ChainedNodesInPattern.begin(),
1477                      ChainedNodesInPattern.end(), User))
1478        return CR_InducesCycle;
1479
1480      // Otherwise we found a node that is part of our pattern.  For example in:
1481      //   x = load ptr
1482      //   y = x+4
1483      //   store y -> ptr
1484      // This would happen when we're scanning down from the load and see the
1485      // store as a user.  Record that there is a use of ChainedNode that is
1486      // part of the pattern and keep scanning uses.
1487      Result = CR_LeadsToInteriorNode;
1488      InteriorChainedNodes.push_back(User);
1489      continue;
1490    }
1491
1492    // If we found a TokenFactor, there are two cases to consider: first if the
1493    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1494    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1495    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1496    //     [Load chain]
1497    //         ^
1498    //         |
1499    //       [Load]
1500    //       ^    ^
1501    //       |    \                    DAG's like cheese
1502    //      /       \                       do you?
1503    //     /         |
1504    // [TokenFactor] [Op]
1505    //     ^          ^
1506    //     |          |
1507    //      \        /
1508    //       \      /
1509    //       [Store]
1510    //
1511    // In this case, the TokenFactor becomes part of our match and we rewrite it
1512    // as a new TokenFactor.
1513    //
1514    // To distinguish these two cases, do a recursive walk down the uses.
1515    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1516    case CR_Simple:
1517      // If the uses of the TokenFactor are just already-selected nodes, ignore
1518      // it, it is "below" our pattern.
1519      continue;
1520    case CR_InducesCycle:
1521      // If the uses of the TokenFactor lead to nodes that are not part of our
1522      // pattern that are not selected, folding would turn this into a cycle,
1523      // bail out now.
1524      return CR_InducesCycle;
1525    case CR_LeadsToInteriorNode:
1526      break;  // Otherwise, keep processing.
1527    }
1528
1529    // Okay, we know we're in the interesting interior case.  The TokenFactor
1530    // is now going to be considered part of the pattern so that we rewrite its
1531    // uses (it may have uses that are not part of the pattern) with the
1532    // ultimate chain result of the generated code.  We will also add its chain
1533    // inputs as inputs to the ultimate TokenFactor we create.
1534    Result = CR_LeadsToInteriorNode;
1535    ChainedNodesInPattern.push_back(User);
1536    InteriorChainedNodes.push_back(User);
1537    continue;
1538  }
1539
1540  return Result;
1541}
1542
1543/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1544/// operation for when the pattern matched at least one node with a chains.  The
1545/// input vector contains a list of all of the chained nodes that we match.  We
1546/// must determine if this is a valid thing to cover (i.e. matching it won't
1547/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1548/// be used as the input node chain for the generated nodes.
1549static SDValue
1550HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1551                       SelectionDAG *CurDAG) {
1552  // Walk all of the chained nodes we've matched, recursively scanning down the
1553  // users of the chain result. This adds any TokenFactor nodes that are caught
1554  // in between chained nodes to the chained and interior nodes list.
1555  SmallVector<SDNode*, 3> InteriorChainedNodes;
1556  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1557    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1558                       InteriorChainedNodes) == CR_InducesCycle)
1559      return SDValue(); // Would induce a cycle.
1560  }
1561
1562  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1563  // that we are interested in.  Form our input TokenFactor node.
1564  SmallVector<SDValue, 3> InputChains;
1565  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1566    // Add the input chain of this node to the InputChains list (which will be
1567    // the operands of the generated TokenFactor) if it's not an interior node.
1568    SDNode *N = ChainNodesMatched[i];
1569    if (N->getOpcode() != ISD::TokenFactor) {
1570      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1571        continue;
1572
1573      // Otherwise, add the input chain.
1574      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1575      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1576      InputChains.push_back(InChain);
1577      continue;
1578    }
1579
1580    // If we have a token factor, we want to add all inputs of the token factor
1581    // that are not part of the pattern we're matching.
1582    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1583      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1584                      N->getOperand(op).getNode()))
1585        InputChains.push_back(N->getOperand(op));
1586    }
1587  }
1588
1589  SDValue Res;
1590  if (InputChains.size() == 1)
1591    return InputChains[0];
1592  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1593                         MVT::Other, &InputChains[0], InputChains.size());
1594}
1595
1596/// MorphNode - Handle morphing a node in place for the selector.
1597SDNode *SelectionDAGISel::
1598MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1599          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1600  // It is possible we're using MorphNodeTo to replace a node with no
1601  // normal results with one that has a normal result (or we could be
1602  // adding a chain) and the input could have flags and chains as well.
1603  // In this case we need to shift the operands down.
1604  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1605  // than the old isel though.
1606  int OldFlagResultNo = -1, OldChainResultNo = -1;
1607
1608  unsigned NTMNumResults = Node->getNumValues();
1609  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1610    OldFlagResultNo = NTMNumResults-1;
1611    if (NTMNumResults != 1 &&
1612        Node->getValueType(NTMNumResults-2) == MVT::Other)
1613      OldChainResultNo = NTMNumResults-2;
1614  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1615    OldChainResultNo = NTMNumResults-1;
1616
1617  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1618  // that this deletes operands of the old node that become dead.
1619  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1620
1621  // MorphNodeTo can operate in two ways: if an existing node with the
1622  // specified operands exists, it can just return it.  Otherwise, it
1623  // updates the node in place to have the requested operands.
1624  if (Res == Node) {
1625    // If we updated the node in place, reset the node ID.  To the isel,
1626    // this should be just like a newly allocated machine node.
1627    Res->setNodeId(-1);
1628  }
1629
1630  unsigned ResNumResults = Res->getNumValues();
1631  // Move the flag if needed.
1632  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1633      (unsigned)OldFlagResultNo != ResNumResults-1)
1634    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1635                                      SDValue(Res, ResNumResults-1));
1636
1637  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1638  --ResNumResults;
1639
1640  // Move the chain reference if needed.
1641  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1642      (unsigned)OldChainResultNo != ResNumResults-1)
1643    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1644                                      SDValue(Res, ResNumResults-1));
1645
1646  // Otherwise, no replacement happened because the node already exists. Replace
1647  // Uses of the old node with the new one.
1648  if (Res != Node)
1649    CurDAG->ReplaceAllUsesWith(Node, Res);
1650
1651  return Res;
1652}
1653
1654/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1655ALWAYS_INLINE static bool
1656CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1657          SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) {
1658  // Accept if it is exactly the same as a previously recorded node.
1659  unsigned RecNo = MatcherTable[MatcherIndex++];
1660  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1661  return N == RecordedNodes[RecNo];
1662}
1663
1664/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1665ALWAYS_INLINE static bool
1666CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1667                      SelectionDAGISel &SDISel) {
1668  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1669}
1670
1671/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1672ALWAYS_INLINE static bool
1673CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1674                   SelectionDAGISel &SDISel, SDNode *N) {
1675  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1676}
1677
1678ALWAYS_INLINE static bool
1679CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1680            SDNode *N) {
1681  uint16_t Opc = MatcherTable[MatcherIndex++];
1682  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1683  return N->getOpcode() == Opc;
1684}
1685
1686ALWAYS_INLINE static bool
1687CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1688          SDValue N, const TargetLowering &TLI) {
1689  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1690  if (N.getValueType() == VT) return true;
1691
1692  // Handle the case when VT is iPTR.
1693  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1694}
1695
1696ALWAYS_INLINE static bool
1697CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1698               SDValue N, const TargetLowering &TLI,
1699               unsigned ChildNo) {
1700  if (ChildNo >= N.getNumOperands())
1701    return false;  // Match fails if out of range child #.
1702  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1703}
1704
1705
1706ALWAYS_INLINE static bool
1707CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1708              SDValue N) {
1709  return cast<CondCodeSDNode>(N)->get() ==
1710      (ISD::CondCode)MatcherTable[MatcherIndex++];
1711}
1712
1713ALWAYS_INLINE static bool
1714CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1715               SDValue N, const TargetLowering &TLI) {
1716  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1717  if (cast<VTSDNode>(N)->getVT() == VT)
1718    return true;
1719
1720  // Handle the case when VT is iPTR.
1721  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1722}
1723
1724ALWAYS_INLINE static bool
1725CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1726             SDValue N) {
1727  int64_t Val = MatcherTable[MatcherIndex++];
1728  if (Val & 128)
1729    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1730
1731  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1732  return C != 0 && C->getSExtValue() == Val;
1733}
1734
1735ALWAYS_INLINE static bool
1736CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1737            SDValue N, SelectionDAGISel &SDISel) {
1738  int64_t Val = MatcherTable[MatcherIndex++];
1739  if (Val & 128)
1740    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1741
1742  if (N->getOpcode() != ISD::AND) return false;
1743
1744  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1745  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1746}
1747
1748ALWAYS_INLINE static bool
1749CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1750           SDValue N, SelectionDAGISel &SDISel) {
1751  int64_t Val = MatcherTable[MatcherIndex++];
1752  if (Val & 128)
1753    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1754
1755  if (N->getOpcode() != ISD::OR) return false;
1756
1757  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1758  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1759}
1760
1761/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1762/// scope, evaluate the current node.  If the current predicate is known to
1763/// fail, set Result=true and return anything.  If the current predicate is
1764/// known to pass, set Result=false and return the MatcherIndex to continue
1765/// with.  If the current predicate is unknown, set Result=false and return the
1766/// MatcherIndex to continue with.
1767static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1768                                       unsigned Index, SDValue N,
1769                                       bool &Result, SelectionDAGISel &SDISel,
1770                                       SmallVectorImpl<SDValue> &RecordedNodes){
1771  switch (Table[Index++]) {
1772  default:
1773    Result = false;
1774    return Index-1;  // Could not evaluate this predicate.
1775  case SelectionDAGISel::OPC_CheckSame:
1776    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1777    return Index;
1778  case SelectionDAGISel::OPC_CheckPatternPredicate:
1779    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1780    return Index;
1781  case SelectionDAGISel::OPC_CheckPredicate:
1782    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1783    return Index;
1784  case SelectionDAGISel::OPC_CheckOpcode:
1785    Result = !::CheckOpcode(Table, Index, N.getNode());
1786    return Index;
1787  case SelectionDAGISel::OPC_CheckType:
1788    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1789    return Index;
1790  case SelectionDAGISel::OPC_CheckChild0Type:
1791  case SelectionDAGISel::OPC_CheckChild1Type:
1792  case SelectionDAGISel::OPC_CheckChild2Type:
1793  case SelectionDAGISel::OPC_CheckChild3Type:
1794  case SelectionDAGISel::OPC_CheckChild4Type:
1795  case SelectionDAGISel::OPC_CheckChild5Type:
1796  case SelectionDAGISel::OPC_CheckChild6Type:
1797  case SelectionDAGISel::OPC_CheckChild7Type:
1798    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1799                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1800    return Index;
1801  case SelectionDAGISel::OPC_CheckCondCode:
1802    Result = !::CheckCondCode(Table, Index, N);
1803    return Index;
1804  case SelectionDAGISel::OPC_CheckValueType:
1805    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1806    return Index;
1807  case SelectionDAGISel::OPC_CheckInteger:
1808    Result = !::CheckInteger(Table, Index, N);
1809    return Index;
1810  case SelectionDAGISel::OPC_CheckAndImm:
1811    Result = !::CheckAndImm(Table, Index, N, SDISel);
1812    return Index;
1813  case SelectionDAGISel::OPC_CheckOrImm:
1814    Result = !::CheckOrImm(Table, Index, N, SDISel);
1815    return Index;
1816  }
1817}
1818
1819namespace {
1820
1821struct MatchScope {
1822  /// FailIndex - If this match fails, this is the index to continue with.
1823  unsigned FailIndex;
1824
1825  /// NodeStack - The node stack when the scope was formed.
1826  SmallVector<SDValue, 4> NodeStack;
1827
1828  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1829  unsigned NumRecordedNodes;
1830
1831  /// NumMatchedMemRefs - The number of matched memref entries.
1832  unsigned NumMatchedMemRefs;
1833
1834  /// InputChain/InputFlag - The current chain/flag
1835  SDValue InputChain, InputFlag;
1836
1837  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1838  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1839};
1840
1841}
1842
1843SDNode *SelectionDAGISel::
1844SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1845                 unsigned TableSize) {
1846  // FIXME: Should these even be selected?  Handle these cases in the caller?
1847  switch (NodeToMatch->getOpcode()) {
1848  default:
1849    break;
1850  case ISD::EntryToken:       // These nodes remain the same.
1851  case ISD::BasicBlock:
1852  case ISD::Register:
1853  //case ISD::VALUETYPE:
1854  //case ISD::CONDCODE:
1855  case ISD::HANDLENODE:
1856  case ISD::MDNODE_SDNODE:
1857  case ISD::TargetConstant:
1858  case ISD::TargetConstantFP:
1859  case ISD::TargetConstantPool:
1860  case ISD::TargetFrameIndex:
1861  case ISD::TargetExternalSymbol:
1862  case ISD::TargetBlockAddress:
1863  case ISD::TargetJumpTable:
1864  case ISD::TargetGlobalTLSAddress:
1865  case ISD::TargetGlobalAddress:
1866  case ISD::TokenFactor:
1867  case ISD::CopyFromReg:
1868  case ISD::CopyToReg:
1869  case ISD::EH_LABEL:
1870    NodeToMatch->setNodeId(-1); // Mark selected.
1871    return 0;
1872  case ISD::AssertSext:
1873  case ISD::AssertZext:
1874    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1875                                      NodeToMatch->getOperand(0));
1876    return 0;
1877  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1878  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1879  }
1880
1881  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1882
1883  // Set up the node stack with NodeToMatch as the only node on the stack.
1884  SmallVector<SDValue, 8> NodeStack;
1885  SDValue N = SDValue(NodeToMatch, 0);
1886  NodeStack.push_back(N);
1887
1888  // MatchScopes - Scopes used when matching, if a match failure happens, this
1889  // indicates where to continue checking.
1890  SmallVector<MatchScope, 8> MatchScopes;
1891
1892  // RecordedNodes - This is the set of nodes that have been recorded by the
1893  // state machine.
1894  SmallVector<SDValue, 8> RecordedNodes;
1895
1896  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1897  // pattern.
1898  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1899
1900  // These are the current input chain and flag for use when generating nodes.
1901  // Various Emit operations change these.  For example, emitting a copytoreg
1902  // uses and updates these.
1903  SDValue InputChain, InputFlag;
1904
1905  // ChainNodesMatched - If a pattern matches nodes that have input/output
1906  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1907  // which ones they are.  The result is captured into this list so that we can
1908  // update the chain results when the pattern is complete.
1909  SmallVector<SDNode*, 3> ChainNodesMatched;
1910  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1911
1912  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1913        NodeToMatch->dump(CurDAG);
1914        errs() << '\n');
1915
1916  // Determine where to start the interpreter.  Normally we start at opcode #0,
1917  // but if the state machine starts with an OPC_SwitchOpcode, then we
1918  // accelerate the first lookup (which is guaranteed to be hot) with the
1919  // OpcodeOffset table.
1920  unsigned MatcherIndex = 0;
1921
1922  if (!OpcodeOffset.empty()) {
1923    // Already computed the OpcodeOffset table, just index into it.
1924    if (N.getOpcode() < OpcodeOffset.size())
1925      MatcherIndex = OpcodeOffset[N.getOpcode()];
1926    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1927
1928  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1929    // Otherwise, the table isn't computed, but the state machine does start
1930    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1931    // is the first time we're selecting an instruction.
1932    unsigned Idx = 1;
1933    while (1) {
1934      // Get the size of this case.
1935      unsigned CaseSize = MatcherTable[Idx++];
1936      if (CaseSize & 128)
1937        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1938      if (CaseSize == 0) break;
1939
1940      // Get the opcode, add the index to the table.
1941      uint16_t Opc = MatcherTable[Idx++];
1942      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
1943      if (Opc >= OpcodeOffset.size())
1944        OpcodeOffset.resize((Opc+1)*2);
1945      OpcodeOffset[Opc] = Idx;
1946      Idx += CaseSize;
1947    }
1948
1949    // Okay, do the lookup for the first opcode.
1950    if (N.getOpcode() < OpcodeOffset.size())
1951      MatcherIndex = OpcodeOffset[N.getOpcode()];
1952  }
1953
1954  while (1) {
1955    assert(MatcherIndex < TableSize && "Invalid index");
1956#ifndef NDEBUG
1957    unsigned CurrentOpcodeIndex = MatcherIndex;
1958#endif
1959    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
1960    switch (Opcode) {
1961    case OPC_Scope: {
1962      // Okay, the semantics of this operation are that we should push a scope
1963      // then evaluate the first child.  However, pushing a scope only to have
1964      // the first check fail (which then pops it) is inefficient.  If we can
1965      // determine immediately that the first check (or first several) will
1966      // immediately fail, don't even bother pushing a scope for them.
1967      unsigned FailIndex;
1968
1969      while (1) {
1970        unsigned NumToSkip = MatcherTable[MatcherIndex++];
1971        if (NumToSkip & 128)
1972          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
1973        // Found the end of the scope with no match.
1974        if (NumToSkip == 0) {
1975          FailIndex = 0;
1976          break;
1977        }
1978
1979        FailIndex = MatcherIndex+NumToSkip;
1980
1981        unsigned MatcherIndexOfPredicate = MatcherIndex;
1982        (void)MatcherIndexOfPredicate; // silence warning.
1983
1984        // If we can't evaluate this predicate without pushing a scope (e.g. if
1985        // it is a 'MoveParent') or if the predicate succeeds on this node, we
1986        // push the scope and evaluate the full predicate chain.
1987        bool Result;
1988        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
1989                                              Result, *this, RecordedNodes);
1990        if (!Result)
1991          break;
1992
1993        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
1994                     << "index " << MatcherIndexOfPredicate
1995                     << ", continuing at " << FailIndex << "\n");
1996        ++NumDAGIselRetries;
1997
1998        // Otherwise, we know that this case of the Scope is guaranteed to fail,
1999        // move to the next case.
2000        MatcherIndex = FailIndex;
2001      }
2002
2003      // If the whole scope failed to match, bail.
2004      if (FailIndex == 0) break;
2005
2006      // Push a MatchScope which indicates where to go if the first child fails
2007      // to match.
2008      MatchScope NewEntry;
2009      NewEntry.FailIndex = FailIndex;
2010      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2011      NewEntry.NumRecordedNodes = RecordedNodes.size();
2012      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2013      NewEntry.InputChain = InputChain;
2014      NewEntry.InputFlag = InputFlag;
2015      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2016      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2017      MatchScopes.push_back(NewEntry);
2018      continue;
2019    }
2020    case OPC_RecordNode:
2021      // Remember this node, it may end up being an operand in the pattern.
2022      RecordedNodes.push_back(N);
2023      continue;
2024
2025    case OPC_RecordChild0: case OPC_RecordChild1:
2026    case OPC_RecordChild2: case OPC_RecordChild3:
2027    case OPC_RecordChild4: case OPC_RecordChild5:
2028    case OPC_RecordChild6: case OPC_RecordChild7: {
2029      unsigned ChildNo = Opcode-OPC_RecordChild0;
2030      if (ChildNo >= N.getNumOperands())
2031        break;  // Match fails if out of range child #.
2032
2033      RecordedNodes.push_back(N->getOperand(ChildNo));
2034      continue;
2035    }
2036    case OPC_RecordMemRef:
2037      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2038      continue;
2039
2040    case OPC_CaptureFlagInput:
2041      // If the current node has an input flag, capture it in InputFlag.
2042      if (N->getNumOperands() != 0 &&
2043          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2044        InputFlag = N->getOperand(N->getNumOperands()-1);
2045      continue;
2046
2047    case OPC_MoveChild: {
2048      unsigned ChildNo = MatcherTable[MatcherIndex++];
2049      if (ChildNo >= N.getNumOperands())
2050        break;  // Match fails if out of range child #.
2051      N = N.getOperand(ChildNo);
2052      NodeStack.push_back(N);
2053      continue;
2054    }
2055
2056    case OPC_MoveParent:
2057      // Pop the current node off the NodeStack.
2058      NodeStack.pop_back();
2059      assert(!NodeStack.empty() && "Node stack imbalance!");
2060      N = NodeStack.back();
2061      continue;
2062
2063    case OPC_CheckSame:
2064      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2065      continue;
2066    case OPC_CheckPatternPredicate:
2067      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2068      continue;
2069    case OPC_CheckPredicate:
2070      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2071                                N.getNode()))
2072        break;
2073      continue;
2074    case OPC_CheckComplexPat: {
2075      unsigned CPNum = MatcherTable[MatcherIndex++];
2076      unsigned RecNo = MatcherTable[MatcherIndex++];
2077      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2078      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum,
2079                               RecordedNodes))
2080        break;
2081      continue;
2082    }
2083    case OPC_CheckOpcode:
2084      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2085      continue;
2086
2087    case OPC_CheckType:
2088      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2089      continue;
2090
2091    case OPC_SwitchOpcode: {
2092      unsigned CurNodeOpcode = N.getOpcode();
2093      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2094      unsigned CaseSize;
2095      while (1) {
2096        // Get the size of this case.
2097        CaseSize = MatcherTable[MatcherIndex++];
2098        if (CaseSize & 128)
2099          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2100        if (CaseSize == 0) break;
2101
2102        uint16_t Opc = MatcherTable[MatcherIndex++];
2103        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2104
2105        // If the opcode matches, then we will execute this case.
2106        if (CurNodeOpcode == Opc)
2107          break;
2108
2109        // Otherwise, skip over this case.
2110        MatcherIndex += CaseSize;
2111      }
2112
2113      // If no cases matched, bail out.
2114      if (CaseSize == 0) break;
2115
2116      // Otherwise, execute the case we found.
2117      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2118                   << " to " << MatcherIndex << "\n");
2119      continue;
2120    }
2121
2122    case OPC_SwitchType: {
2123      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2124      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2125      unsigned CaseSize;
2126      while (1) {
2127        // Get the size of this case.
2128        CaseSize = MatcherTable[MatcherIndex++];
2129        if (CaseSize & 128)
2130          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2131        if (CaseSize == 0) break;
2132
2133        MVT::SimpleValueType CaseVT =
2134          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2135        if (CaseVT == MVT::iPTR)
2136          CaseVT = TLI.getPointerTy().SimpleTy;
2137
2138        // If the VT matches, then we will execute this case.
2139        if (CurNodeVT == CaseVT)
2140          break;
2141
2142        // Otherwise, skip over this case.
2143        MatcherIndex += CaseSize;
2144      }
2145
2146      // If no cases matched, bail out.
2147      if (CaseSize == 0) break;
2148
2149      // Otherwise, execute the case we found.
2150      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2151                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2152      continue;
2153    }
2154    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2155    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2156    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2157    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2158      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2159                            Opcode-OPC_CheckChild0Type))
2160        break;
2161      continue;
2162    case OPC_CheckCondCode:
2163      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2164      continue;
2165    case OPC_CheckValueType:
2166      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2167      continue;
2168    case OPC_CheckInteger:
2169      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2170      continue;
2171    case OPC_CheckAndImm:
2172      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2173      continue;
2174    case OPC_CheckOrImm:
2175      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2176      continue;
2177
2178    case OPC_CheckFoldableChainNode: {
2179      assert(NodeStack.size() != 1 && "No parent node");
2180      // Verify that all intermediate nodes between the root and this one have
2181      // a single use.
2182      bool HasMultipleUses = false;
2183      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2184        if (!NodeStack[i].hasOneUse()) {
2185          HasMultipleUses = true;
2186          break;
2187        }
2188      if (HasMultipleUses) break;
2189
2190      // Check to see that the target thinks this is profitable to fold and that
2191      // we can fold it without inducing cycles in the graph.
2192      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2193                              NodeToMatch) ||
2194          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2195                         NodeToMatch, OptLevel,
2196                         true/*We validate our own chains*/))
2197        break;
2198
2199      continue;
2200    }
2201    case OPC_EmitInteger: {
2202      MVT::SimpleValueType VT =
2203        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2204      int64_t Val = MatcherTable[MatcherIndex++];
2205      if (Val & 128)
2206        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2207      RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT));
2208      continue;
2209    }
2210    case OPC_EmitRegister: {
2211      MVT::SimpleValueType VT =
2212        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2213      unsigned RegNo = MatcherTable[MatcherIndex++];
2214      RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT));
2215      continue;
2216    }
2217
2218    case OPC_EmitConvertToTarget:  {
2219      // Convert from IMM/FPIMM to target version.
2220      unsigned RecNo = MatcherTable[MatcherIndex++];
2221      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2222      SDValue Imm = RecordedNodes[RecNo];
2223
2224      if (Imm->getOpcode() == ISD::Constant) {
2225        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2226        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2227      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2228        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2229        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2230      }
2231
2232      RecordedNodes.push_back(Imm);
2233      continue;
2234    }
2235
2236    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2237    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2238      // These are space-optimized forms of OPC_EmitMergeInputChains.
2239      assert(InputChain.getNode() == 0 &&
2240             "EmitMergeInputChains should be the first chain producing node");
2241      assert(ChainNodesMatched.empty() &&
2242             "Should only have one EmitMergeInputChains per match");
2243
2244      // Read all of the chained nodes.
2245      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2246      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2247      ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2248
2249      // FIXME: What if other value results of the node have uses not matched
2250      // by this pattern?
2251      if (ChainNodesMatched.back() != NodeToMatch &&
2252          !RecordedNodes[RecNo].hasOneUse()) {
2253        ChainNodesMatched.clear();
2254        break;
2255      }
2256
2257      // Merge the input chains if they are not intra-pattern references.
2258      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2259
2260      if (InputChain.getNode() == 0)
2261        break;  // Failed to merge.
2262      continue;
2263    }
2264
2265    case OPC_EmitMergeInputChains: {
2266      assert(InputChain.getNode() == 0 &&
2267             "EmitMergeInputChains should be the first chain producing node");
2268      // This node gets a list of nodes we matched in the input that have
2269      // chains.  We want to token factor all of the input chains to these nodes
2270      // together.  However, if any of the input chains is actually one of the
2271      // nodes matched in this pattern, then we have an intra-match reference.
2272      // Ignore these because the newly token factored chain should not refer to
2273      // the old nodes.
2274      unsigned NumChains = MatcherTable[MatcherIndex++];
2275      assert(NumChains != 0 && "Can't TF zero chains");
2276
2277      assert(ChainNodesMatched.empty() &&
2278             "Should only have one EmitMergeInputChains per match");
2279
2280      // Read all of the chained nodes.
2281      for (unsigned i = 0; i != NumChains; ++i) {
2282        unsigned RecNo = MatcherTable[MatcherIndex++];
2283        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2284        ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2285
2286        // FIXME: What if other value results of the node have uses not matched
2287        // by this pattern?
2288        if (ChainNodesMatched.back() != NodeToMatch &&
2289            !RecordedNodes[RecNo].hasOneUse()) {
2290          ChainNodesMatched.clear();
2291          break;
2292        }
2293      }
2294
2295      // If the inner loop broke out, the match fails.
2296      if (ChainNodesMatched.empty())
2297        break;
2298
2299      // Merge the input chains if they are not intra-pattern references.
2300      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2301
2302      if (InputChain.getNode() == 0)
2303        break;  // Failed to merge.
2304
2305      continue;
2306    }
2307
2308    case OPC_EmitCopyToReg: {
2309      unsigned RecNo = MatcherTable[MatcherIndex++];
2310      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2311      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2312
2313      if (InputChain.getNode() == 0)
2314        InputChain = CurDAG->getEntryNode();
2315
2316      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2317                                        DestPhysReg, RecordedNodes[RecNo],
2318                                        InputFlag);
2319
2320      InputFlag = InputChain.getValue(1);
2321      continue;
2322    }
2323
2324    case OPC_EmitNodeXForm: {
2325      unsigned XFormNo = MatcherTable[MatcherIndex++];
2326      unsigned RecNo = MatcherTable[MatcherIndex++];
2327      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2328      RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo));
2329      continue;
2330    }
2331
2332    case OPC_EmitNode:
2333    case OPC_MorphNodeTo: {
2334      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2335      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2336      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2337      // Get the result VT list.
2338      unsigned NumVTs = MatcherTable[MatcherIndex++];
2339      SmallVector<EVT, 4> VTs;
2340      for (unsigned i = 0; i != NumVTs; ++i) {
2341        MVT::SimpleValueType VT =
2342          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2343        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2344        VTs.push_back(VT);
2345      }
2346
2347      if (EmitNodeInfo & OPFL_Chain)
2348        VTs.push_back(MVT::Other);
2349      if (EmitNodeInfo & OPFL_FlagOutput)
2350        VTs.push_back(MVT::Flag);
2351
2352      // This is hot code, so optimize the two most common cases of 1 and 2
2353      // results.
2354      SDVTList VTList;
2355      if (VTs.size() == 1)
2356        VTList = CurDAG->getVTList(VTs[0]);
2357      else if (VTs.size() == 2)
2358        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2359      else
2360        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2361
2362      // Get the operand list.
2363      unsigned NumOps = MatcherTable[MatcherIndex++];
2364      SmallVector<SDValue, 8> Ops;
2365      for (unsigned i = 0; i != NumOps; ++i) {
2366        unsigned RecNo = MatcherTable[MatcherIndex++];
2367        if (RecNo & 128)
2368          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2369
2370        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2371        Ops.push_back(RecordedNodes[RecNo]);
2372      }
2373
2374      // If there are variadic operands to add, handle them now.
2375      if (EmitNodeInfo & OPFL_VariadicInfo) {
2376        // Determine the start index to copy from.
2377        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2378        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2379        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2380               "Invalid variadic node");
2381        // Copy all of the variadic operands, not including a potential flag
2382        // input.
2383        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2384             i != e; ++i) {
2385          SDValue V = NodeToMatch->getOperand(i);
2386          if (V.getValueType() == MVT::Flag) break;
2387          Ops.push_back(V);
2388        }
2389      }
2390
2391      // If this has chain/flag inputs, add them.
2392      if (EmitNodeInfo & OPFL_Chain)
2393        Ops.push_back(InputChain);
2394      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2395        Ops.push_back(InputFlag);
2396
2397      // Create the node.
2398      SDNode *Res = 0;
2399      if (Opcode != OPC_MorphNodeTo) {
2400        // If this is a normal EmitNode command, just create the new node and
2401        // add the results to the RecordedNodes list.
2402        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2403                                     VTList, Ops.data(), Ops.size());
2404
2405        // Add all the non-flag/non-chain results to the RecordedNodes list.
2406        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2407          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2408          RecordedNodes.push_back(SDValue(Res, i));
2409        }
2410
2411      } else {
2412        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2413                        EmitNodeInfo);
2414      }
2415
2416      // If the node had chain/flag results, update our notion of the current
2417      // chain and flag.
2418      if (EmitNodeInfo & OPFL_FlagOutput) {
2419        InputFlag = SDValue(Res, VTs.size()-1);
2420        if (EmitNodeInfo & OPFL_Chain)
2421          InputChain = SDValue(Res, VTs.size()-2);
2422      } else if (EmitNodeInfo & OPFL_Chain)
2423        InputChain = SDValue(Res, VTs.size()-1);
2424
2425      // If the OPFL_MemRefs flag is set on this node, slap all of the
2426      // accumulated memrefs onto it.
2427      //
2428      // FIXME: This is vastly incorrect for patterns with multiple outputs
2429      // instructions that access memory and for ComplexPatterns that match
2430      // loads.
2431      if (EmitNodeInfo & OPFL_MemRefs) {
2432        MachineSDNode::mmo_iterator MemRefs =
2433          MF->allocateMemRefsArray(MatchedMemRefs.size());
2434        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2435        cast<MachineSDNode>(Res)
2436          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2437      }
2438
2439      DEBUG(errs() << "  "
2440                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2441                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2442
2443      // If this was a MorphNodeTo then we're completely done!
2444      if (Opcode == OPC_MorphNodeTo) {
2445        // Update chain and flag uses.
2446        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2447                             InputFlag, FlagResultNodesMatched, true);
2448        return Res;
2449      }
2450
2451      continue;
2452    }
2453
2454    case OPC_MarkFlagResults: {
2455      unsigned NumNodes = MatcherTable[MatcherIndex++];
2456
2457      // Read and remember all the flag-result nodes.
2458      for (unsigned i = 0; i != NumNodes; ++i) {
2459        unsigned RecNo = MatcherTable[MatcherIndex++];
2460        if (RecNo & 128)
2461          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2462
2463        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2464        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode());
2465      }
2466      continue;
2467    }
2468
2469    case OPC_CompleteMatch: {
2470      // The match has been completed, and any new nodes (if any) have been
2471      // created.  Patch up references to the matched dag to use the newly
2472      // created nodes.
2473      unsigned NumResults = MatcherTable[MatcherIndex++];
2474
2475      for (unsigned i = 0; i != NumResults; ++i) {
2476        unsigned ResSlot = MatcherTable[MatcherIndex++];
2477        if (ResSlot & 128)
2478          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2479
2480        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2481        SDValue Res = RecordedNodes[ResSlot];
2482
2483        assert(i < NodeToMatch->getNumValues() &&
2484               NodeToMatch->getValueType(i) != MVT::Other &&
2485               NodeToMatch->getValueType(i) != MVT::Flag &&
2486               "Invalid number of results to complete!");
2487        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2488                NodeToMatch->getValueType(i) == MVT::iPTR ||
2489                Res.getValueType() == MVT::iPTR ||
2490                NodeToMatch->getValueType(i).getSizeInBits() ==
2491                    Res.getValueType().getSizeInBits()) &&
2492               "invalid replacement");
2493        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2494      }
2495
2496      // If the root node defines a flag, add it to the flag nodes to update
2497      // list.
2498      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2499        FlagResultNodesMatched.push_back(NodeToMatch);
2500
2501      // Update chain and flag uses.
2502      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2503                           InputFlag, FlagResultNodesMatched, false);
2504
2505      assert(NodeToMatch->use_empty() &&
2506             "Didn't replace all uses of the node?");
2507
2508      // FIXME: We just return here, which interacts correctly with SelectRoot
2509      // above.  We should fix this to not return an SDNode* anymore.
2510      return 0;
2511    }
2512    }
2513
2514    // If the code reached this point, then the match failed.  See if there is
2515    // another child to try in the current 'Scope', otherwise pop it until we
2516    // find a case to check.
2517    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2518    ++NumDAGIselRetries;
2519    while (1) {
2520      if (MatchScopes.empty()) {
2521        CannotYetSelect(NodeToMatch);
2522        return 0;
2523      }
2524
2525      // Restore the interpreter state back to the point where the scope was
2526      // formed.
2527      MatchScope &LastScope = MatchScopes.back();
2528      RecordedNodes.resize(LastScope.NumRecordedNodes);
2529      NodeStack.clear();
2530      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2531      N = NodeStack.back();
2532
2533      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2534        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2535      MatcherIndex = LastScope.FailIndex;
2536
2537      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2538
2539      InputChain = LastScope.InputChain;
2540      InputFlag = LastScope.InputFlag;
2541      if (!LastScope.HasChainNodesMatched)
2542        ChainNodesMatched.clear();
2543      if (!LastScope.HasFlagResultNodesMatched)
2544        FlagResultNodesMatched.clear();
2545
2546      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2547      // we have reached the end of this scope, otherwise we have another child
2548      // in the current scope to try.
2549      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2550      if (NumToSkip & 128)
2551        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2552
2553      // If we have another child in this scope to match, update FailIndex and
2554      // try it.
2555      if (NumToSkip != 0) {
2556        LastScope.FailIndex = MatcherIndex+NumToSkip;
2557        break;
2558      }
2559
2560      // End of this scope, pop it and try the next child in the containing
2561      // scope.
2562      MatchScopes.pop_back();
2563    }
2564  }
2565}
2566
2567
2568
2569void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2570  std::string msg;
2571  raw_string_ostream Msg(msg);
2572  Msg << "Cannot yet select: ";
2573
2574  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2575      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2576      N->getOpcode() != ISD::INTRINSIC_VOID) {
2577    N->printrFull(Msg, CurDAG);
2578  } else {
2579    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2580    unsigned iid =
2581      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2582    if (iid < Intrinsic::num_intrinsics)
2583      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2584    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2585      Msg << "target intrinsic %" << TII->getName(iid);
2586    else
2587      Msg << "unknown intrinsic #" << iid;
2588  }
2589  report_fatal_error(Msg.str());
2590}
2591
2592char SelectionDAGISel::ID = 0;
2593