SelectionDAGISel.cpp revision f147a8d56e0811525916f4d8cd5dd1777f834a85
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/SchedulerRegistry.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/SSARegMap.h"
37#include "llvm/Target/MRegisterInfo.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Target/TargetFrameInfo.h"
40#include "llvm/Target/TargetInstrInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetOptions.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61//===---------------------------------------------------------------------===//
62///
63/// RegisterScheduler class - Track the registration of instruction schedulers.
64///
65//===---------------------------------------------------------------------===//
66MachinePassRegistry RegisterScheduler::Registry;
67
68//===---------------------------------------------------------------------===//
69///
70/// ISHeuristic command line option for instruction schedulers.
71///
72//===---------------------------------------------------------------------===//
73namespace {
74  cl::opt<RegisterScheduler::FunctionPassCtor, false,
75          RegisterPassParser<RegisterScheduler> >
76  ISHeuristic("sched",
77              cl::init(&createDefaultScheduler),
78              cl::desc("Instruction schedulers available:"));
79
80  static RegisterScheduler
81  defaultListDAGScheduler("default", "  Best scheduler for the target",
82                          createDefaultScheduler);
83} // namespace
84
85namespace {
86  /// RegsForValue - This struct represents the physical registers that a
87  /// particular value is assigned and the type information about the value.
88  /// This is needed because values can be promoted into larger registers and
89  /// expanded into multiple smaller registers than the value.
90  struct VISIBILITY_HIDDEN RegsForValue {
91    /// Regs - This list hold the register (for legal and promoted values)
92    /// or register set (for expanded values) that the value should be assigned
93    /// to.
94    std::vector<unsigned> Regs;
95
96    /// RegVT - The value type of each register.
97    ///
98    MVT::ValueType RegVT;
99
100    /// ValueVT - The value type of the LLVM value, which may be promoted from
101    /// RegVT or made from merging the two expanded parts.
102    MVT::ValueType ValueVT;
103
104    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
105
106    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
107      : RegVT(regvt), ValueVT(valuevt) {
108        Regs.push_back(Reg);
109    }
110    RegsForValue(const std::vector<unsigned> &regs,
111                 MVT::ValueType regvt, MVT::ValueType valuevt)
112      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
113    }
114
115    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
116    /// this value and returns the result as a ValueVT value.  This uses
117    /// Chain/Flag as the input and updates them for the output Chain/Flag.
118    SDOperand getCopyFromRegs(SelectionDAG &DAG,
119                              SDOperand &Chain, SDOperand &Flag) const;
120
121    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
122    /// specified value into the registers specified by this object.  This uses
123    /// Chain/Flag as the input and updates them for the output Chain/Flag.
124    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
125                       SDOperand &Chain, SDOperand &Flag,
126                       MVT::ValueType PtrVT) const;
127
128    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
129    /// operand list.  This adds the code marker and includes the number of
130    /// values added into it.
131    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
132                              std::vector<SDOperand> &Ops) const;
133  };
134}
135
136namespace llvm {
137  //===--------------------------------------------------------------------===//
138  /// createDefaultScheduler - This creates an instruction scheduler appropriate
139  /// for the target.
140  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
141                                      SelectionDAG *DAG,
142                                      MachineBasicBlock *BB) {
143    TargetLowering &TLI = IS->getTargetLowering();
144
145    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
146      return createTDListDAGScheduler(IS, DAG, BB);
147    } else {
148      assert(TLI.getSchedulingPreference() ==
149           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
150      return createBURRListDAGScheduler(IS, DAG, BB);
151    }
152  }
153
154
155  //===--------------------------------------------------------------------===//
156  /// FunctionLoweringInfo - This contains information that is global to a
157  /// function that is used when lowering a region of the function.
158  class FunctionLoweringInfo {
159  public:
160    TargetLowering &TLI;
161    Function &Fn;
162    MachineFunction &MF;
163    SSARegMap *RegMap;
164
165    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
166
167    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
168    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
169
170    /// ValueMap - Since we emit code for the function a basic block at a time,
171    /// we must remember which virtual registers hold the values for
172    /// cross-basic-block values.
173    DenseMap<const Value*, unsigned> ValueMap;
174
175    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
176    /// the entry block.  This allows the allocas to be efficiently referenced
177    /// anywhere in the function.
178    std::map<const AllocaInst*, int> StaticAllocaMap;
179
180    unsigned MakeReg(MVT::ValueType VT) {
181      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
182    }
183
184    /// isExportedInst - Return true if the specified value is an instruction
185    /// exported from its block.
186    bool isExportedInst(const Value *V) {
187      return ValueMap.count(V);
188    }
189
190    unsigned CreateRegForValue(const Value *V);
191
192    unsigned InitializeRegForValue(const Value *V) {
193      unsigned &R = ValueMap[V];
194      assert(R == 0 && "Already initialized this value register!");
195      return R = CreateRegForValue(V);
196    }
197  };
198}
199
200/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
201/// PHI nodes or outside of the basic block that defines it, or used by a
202/// switch instruction, which may expand to multiple basic blocks.
203static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
204  if (isa<PHINode>(I)) return true;
205  BasicBlock *BB = I->getParent();
206  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
207    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
208        // FIXME: Remove switchinst special case.
209        isa<SwitchInst>(*UI))
210      return true;
211  return false;
212}
213
214/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
215/// entry block, return true.  This includes arguments used by switches, since
216/// the switch may expand into multiple basic blocks.
217static bool isOnlyUsedInEntryBlock(Argument *A) {
218  BasicBlock *Entry = A->getParent()->begin();
219  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
220    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
221      return false;  // Use not in entry block.
222  return true;
223}
224
225FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
226                                           Function &fn, MachineFunction &mf)
227    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
228
229  // Create a vreg for each argument register that is not dead and is used
230  // outside of the entry block for the function.
231  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
232       AI != E; ++AI)
233    if (!isOnlyUsedInEntryBlock(AI))
234      InitializeRegForValue(AI);
235
236  // Initialize the mapping of values to registers.  This is only set up for
237  // instruction values that are used outside of the block that defines
238  // them.
239  Function::iterator BB = Fn.begin(), EB = Fn.end();
240  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
241    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
242      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
243        const Type *Ty = AI->getAllocatedType();
244        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
245        unsigned Align =
246          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
247                   AI->getAlignment());
248
249        TySize *= CUI->getZExtValue();   // Get total allocated size.
250        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
251        StaticAllocaMap[AI] =
252          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
253      }
254
255  for (; BB != EB; ++BB)
256    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
257      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
258        if (!isa<AllocaInst>(I) ||
259            !StaticAllocaMap.count(cast<AllocaInst>(I)))
260          InitializeRegForValue(I);
261
262  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
263  // also creates the initial PHI MachineInstrs, though none of the input
264  // operands are populated.
265  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
266    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
267    MBBMap[BB] = MBB;
268    MF.getBasicBlockList().push_back(MBB);
269
270    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
271    // appropriate.
272    PHINode *PN;
273    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
274      if (PN->use_empty()) continue;
275
276      MVT::ValueType VT = TLI.getValueType(PN->getType());
277      unsigned NumElements;
278      if (VT != MVT::Vector)
279        NumElements = TLI.getNumElements(VT);
280      else {
281        MVT::ValueType VT1,VT2;
282        NumElements =
283          TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
284                                     VT1, VT2);
285      }
286      unsigned PHIReg = ValueMap[PN];
287      assert(PHIReg && "PHI node does not have an assigned virtual register!");
288      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
289      for (unsigned i = 0; i != NumElements; ++i)
290        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
291    }
292  }
293}
294
295/// CreateRegForValue - Allocate the appropriate number of virtual registers of
296/// the correctly promoted or expanded types.  Assign these registers
297/// consecutive vreg numbers and return the first assigned number.
298unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
299  MVT::ValueType VT = TLI.getValueType(V->getType());
300
301  // The number of multiples of registers that we need, to, e.g., split up
302  // a <2 x int64> -> 4 x i32 registers.
303  unsigned NumVectorRegs = 1;
304
305  // If this is a vector type, figure out what type it will decompose into
306  // and how many of the elements it will use.
307  if (VT == MVT::Vector) {
308    const VectorType *PTy = cast<VectorType>(V->getType());
309    unsigned NumElts = PTy->getNumElements();
310    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
311
312    // Divide the input until we get to a supported size.  This will always
313    // end with a scalar if the target doesn't support vectors.
314    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
315      NumElts >>= 1;
316      NumVectorRegs <<= 1;
317    }
318    if (NumElts == 1)
319      VT = EltTy;
320    else
321      VT = getVectorType(EltTy, NumElts);
322  }
323
324  // The common case is that we will only create one register for this
325  // value.  If we have that case, create and return the virtual register.
326  unsigned NV = TLI.getNumElements(VT);
327  if (NV == 1) {
328    // If we are promoting this value, pick the next largest supported type.
329    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
330    unsigned Reg = MakeReg(PromotedType);
331    // If this is a vector of supported or promoted types (e.g. 4 x i16),
332    // create all of the registers.
333    for (unsigned i = 1; i != NumVectorRegs; ++i)
334      MakeReg(PromotedType);
335    return Reg;
336  }
337
338  // If this value is represented with multiple target registers, make sure
339  // to create enough consecutive registers of the right (smaller) type.
340  VT = TLI.getTypeToExpandTo(VT);
341  unsigned R = MakeReg(VT);
342  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
343    MakeReg(VT);
344  return R;
345}
346
347//===----------------------------------------------------------------------===//
348/// SelectionDAGLowering - This is the common target-independent lowering
349/// implementation that is parameterized by a TargetLowering object.
350/// Also, targets can overload any lowering method.
351///
352namespace llvm {
353class SelectionDAGLowering {
354  MachineBasicBlock *CurMBB;
355
356  DenseMap<const Value*, SDOperand> NodeMap;
357
358  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
359  /// them up and then emit token factor nodes when possible.  This allows us to
360  /// get simple disambiguation between loads without worrying about alias
361  /// analysis.
362  std::vector<SDOperand> PendingLoads;
363
364  /// Case - A struct to record the Value for a switch case, and the
365  /// case's target basic block.
366  struct Case {
367    Constant* Low;
368    Constant* High;
369    MachineBasicBlock* BB;
370
371    Case() : Low(0), High(0), BB(0) { }
372    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
373      Low(low), High(high), BB(bb) { }
374    uint64_t size() const {
375      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
376      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
377      return (rHigh - rLow + 1ULL);
378    }
379  };
380
381  struct CaseBits {
382    uint64_t Mask;
383    MachineBasicBlock* BB;
384    unsigned Bits;
385
386    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
387      Mask(mask), BB(bb), Bits(bits) { }
388  };
389
390  typedef std::vector<Case>           CaseVector;
391  typedef std::vector<CaseBits>       CaseBitsVector;
392  typedef CaseVector::iterator        CaseItr;
393  typedef std::pair<CaseItr, CaseItr> CaseRange;
394
395  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
396  /// of conditional branches.
397  struct CaseRec {
398    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
399    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
400
401    /// CaseBB - The MBB in which to emit the compare and branch
402    MachineBasicBlock *CaseBB;
403    /// LT, GE - If nonzero, we know the current case value must be less-than or
404    /// greater-than-or-equal-to these Constants.
405    Constant *LT;
406    Constant *GE;
407    /// Range - A pair of iterators representing the range of case values to be
408    /// processed at this point in the binary search tree.
409    CaseRange Range;
410  };
411
412  typedef std::vector<CaseRec> CaseRecVector;
413
414  /// The comparison function for sorting the switch case values in the vector.
415  /// WARNING: Case ranges should be disjoint!
416  struct CaseCmp {
417    bool operator () (const Case& C1, const Case& C2) {
418      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
419      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
420      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
421      return CI1->getValue().slt(CI2->getValue());
422    }
423  };
424
425  struct CaseBitsCmp {
426    bool operator () (const CaseBits& C1, const CaseBits& C2) {
427      return C1.Bits > C2.Bits;
428    }
429  };
430
431  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
432
433public:
434  // TLI - This is information that describes the available target features we
435  // need for lowering.  This indicates when operations are unavailable,
436  // implemented with a libcall, etc.
437  TargetLowering &TLI;
438  SelectionDAG &DAG;
439  const TargetData *TD;
440
441  /// SwitchCases - Vector of CaseBlock structures used to communicate
442  /// SwitchInst code generation information.
443  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
444  /// JTCases - Vector of JumpTable structures used to communicate
445  /// SwitchInst code generation information.
446  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
447  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
448
449  /// FuncInfo - Information about the function as a whole.
450  ///
451  FunctionLoweringInfo &FuncInfo;
452
453  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
454                       FunctionLoweringInfo &funcinfo)
455    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
456      FuncInfo(funcinfo) {
457  }
458
459  /// getRoot - Return the current virtual root of the Selection DAG.
460  ///
461  SDOperand getRoot() {
462    if (PendingLoads.empty())
463      return DAG.getRoot();
464
465    if (PendingLoads.size() == 1) {
466      SDOperand Root = PendingLoads[0];
467      DAG.setRoot(Root);
468      PendingLoads.clear();
469      return Root;
470    }
471
472    // Otherwise, we have to make a token factor node.
473    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
474                                 &PendingLoads[0], PendingLoads.size());
475    PendingLoads.clear();
476    DAG.setRoot(Root);
477    return Root;
478  }
479
480  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
481
482  void visit(Instruction &I) { visit(I.getOpcode(), I); }
483
484  void visit(unsigned Opcode, User &I) {
485    // Note: this doesn't use InstVisitor, because it has to work with
486    // ConstantExpr's in addition to instructions.
487    switch (Opcode) {
488    default: assert(0 && "Unknown instruction type encountered!");
489             abort();
490      // Build the switch statement using the Instruction.def file.
491#define HANDLE_INST(NUM, OPCODE, CLASS) \
492    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
493#include "llvm/Instruction.def"
494    }
495  }
496
497  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
498
499  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
500                        const Value *SV, SDOperand Root,
501                        bool isVolatile, unsigned Alignment);
502
503  SDOperand getIntPtrConstant(uint64_t Val) {
504    return DAG.getConstant(Val, TLI.getPointerTy());
505  }
506
507  SDOperand getValue(const Value *V);
508
509  void setValue(const Value *V, SDOperand NewN) {
510    SDOperand &N = NodeMap[V];
511    assert(N.Val == 0 && "Already set a value for this node!");
512    N = NewN;
513  }
514
515  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
516                                    MVT::ValueType VT,
517                                    bool OutReg, bool InReg,
518                                    std::set<unsigned> &OutputRegs,
519                                    std::set<unsigned> &InputRegs);
520
521  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
522                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
523                            unsigned Opc);
524  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
525  void ExportFromCurrentBlock(Value *V);
526  void LowerCallTo(Instruction &I,
527                   const Type *CalledValueTy, unsigned CallingConv,
528                   bool IsTailCall, SDOperand Callee, unsigned OpIdx);
529
530  // Terminator instructions.
531  void visitRet(ReturnInst &I);
532  void visitBr(BranchInst &I);
533  void visitSwitch(SwitchInst &I);
534  void visitUnreachable(UnreachableInst &I) { /* noop */ }
535
536  // Helpers for visitSwitch
537  bool handleSmallSwitchRange(CaseRec& CR,
538                              CaseRecVector& WorkList,
539                              Value* SV,
540                              MachineBasicBlock* Default);
541  bool handleJTSwitchCase(CaseRec& CR,
542                          CaseRecVector& WorkList,
543                          Value* SV,
544                          MachineBasicBlock* Default);
545  bool handleBTSplitSwitchCase(CaseRec& CR,
546                               CaseRecVector& WorkList,
547                               Value* SV,
548                               MachineBasicBlock* Default);
549  bool handleBitTestsSwitchCase(CaseRec& CR,
550                                CaseRecVector& WorkList,
551                                Value* SV,
552                                MachineBasicBlock* Default);
553  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
554  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
555  void visitBitTestCase(MachineBasicBlock* NextMBB,
556                        unsigned Reg,
557                        SelectionDAGISel::BitTestCase &B);
558  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
559  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
560                            SelectionDAGISel::JumpTableHeader &JTH);
561
562  // These all get lowered before this pass.
563  void visitInvoke(InvokeInst &I);
564  void visitInvoke(InvokeInst &I, bool AsTerminator);
565  void visitUnwind(UnwindInst &I);
566
567  void visitScalarBinary(User &I, unsigned OpCode);
568  void visitVectorBinary(User &I, unsigned OpCode);
569  void visitEitherBinary(User &I, unsigned ScalarOp, unsigned VectorOp);
570  void visitShift(User &I, unsigned Opcode);
571  void visitAdd(User &I) {
572    if (isa<VectorType>(I.getType()))
573      visitVectorBinary(I, ISD::VADD);
574    else if (I.getType()->isFloatingPoint())
575      visitScalarBinary(I, ISD::FADD);
576    else
577      visitScalarBinary(I, ISD::ADD);
578  }
579  void visitSub(User &I);
580  void visitMul(User &I) {
581    if (isa<VectorType>(I.getType()))
582      visitVectorBinary(I, ISD::VMUL);
583    else if (I.getType()->isFloatingPoint())
584      visitScalarBinary(I, ISD::FMUL);
585    else
586      visitScalarBinary(I, ISD::MUL);
587  }
588  void visitURem(User &I) { visitScalarBinary(I, ISD::UREM); }
589  void visitSRem(User &I) { visitScalarBinary(I, ISD::SREM); }
590  void visitFRem(User &I) { visitScalarBinary(I, ISD::FREM); }
591  void visitUDiv(User &I) { visitEitherBinary(I, ISD::UDIV, ISD::VUDIV); }
592  void visitSDiv(User &I) { visitEitherBinary(I, ISD::SDIV, ISD::VSDIV); }
593  void visitFDiv(User &I) { visitEitherBinary(I, ISD::FDIV, ISD::VSDIV); }
594  void visitAnd (User &I) { visitEitherBinary(I, ISD::AND,  ISD::VAND ); }
595  void visitOr  (User &I) { visitEitherBinary(I, ISD::OR,   ISD::VOR  ); }
596  void visitXor (User &I) { visitEitherBinary(I, ISD::XOR,  ISD::VXOR ); }
597  void visitShl (User &I) { visitShift(I, ISD::SHL); }
598  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
599  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
600  void visitICmp(User &I);
601  void visitFCmp(User &I);
602  // Visit the conversion instructions
603  void visitTrunc(User &I);
604  void visitZExt(User &I);
605  void visitSExt(User &I);
606  void visitFPTrunc(User &I);
607  void visitFPExt(User &I);
608  void visitFPToUI(User &I);
609  void visitFPToSI(User &I);
610  void visitUIToFP(User &I);
611  void visitSIToFP(User &I);
612  void visitPtrToInt(User &I);
613  void visitIntToPtr(User &I);
614  void visitBitCast(User &I);
615
616  void visitExtractElement(User &I);
617  void visitInsertElement(User &I);
618  void visitShuffleVector(User &I);
619
620  void visitGetElementPtr(User &I);
621  void visitSelect(User &I);
622
623  void visitMalloc(MallocInst &I);
624  void visitFree(FreeInst &I);
625  void visitAlloca(AllocaInst &I);
626  void visitLoad(LoadInst &I);
627  void visitStore(StoreInst &I);
628  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
629  void visitCall(CallInst &I);
630  void visitInlineAsm(CallInst &I);
631  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
632  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
633
634  void visitVAStart(CallInst &I);
635  void visitVAArg(VAArgInst &I);
636  void visitVAEnd(CallInst &I);
637  void visitVACopy(CallInst &I);
638
639  void visitMemIntrinsic(CallInst &I, unsigned Op);
640
641  void visitUserOp1(Instruction &I) {
642    assert(0 && "UserOp1 should not exist at instruction selection time!");
643    abort();
644  }
645  void visitUserOp2(Instruction &I) {
646    assert(0 && "UserOp2 should not exist at instruction selection time!");
647    abort();
648  }
649};
650} // end namespace llvm
651
652SDOperand SelectionDAGLowering::getValue(const Value *V) {
653  SDOperand &N = NodeMap[V];
654  if (N.Val) return N;
655
656  const Type *VTy = V->getType();
657  MVT::ValueType VT = TLI.getValueType(VTy);
658  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
659    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
660      visit(CE->getOpcode(), *CE);
661      SDOperand N1 = NodeMap[V];
662      assert(N1.Val && "visit didn't populate the ValueMap!");
663      return N1;
664    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
665      return N = DAG.getGlobalAddress(GV, VT);
666    } else if (isa<ConstantPointerNull>(C)) {
667      return N = DAG.getConstant(0, TLI.getPointerTy());
668    } else if (isa<UndefValue>(C)) {
669      if (!isa<VectorType>(VTy))
670        return N = DAG.getNode(ISD::UNDEF, VT);
671
672      // Create a VBUILD_VECTOR of undef nodes.
673      const VectorType *PTy = cast<VectorType>(VTy);
674      unsigned NumElements = PTy->getNumElements();
675      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
676
677      SmallVector<SDOperand, 8> Ops;
678      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
679
680      // Create a VConstant node with generic Vector type.
681      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
682      Ops.push_back(DAG.getValueType(PVT));
683      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
684                             &Ops[0], Ops.size());
685    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
686      return N = DAG.getConstantFP(CFP->getValue(), VT);
687    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
688      unsigned NumElements = PTy->getNumElements();
689      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
690
691      // Now that we know the number and type of the elements, push a
692      // Constant or ConstantFP node onto the ops list for each element of
693      // the packed constant.
694      SmallVector<SDOperand, 8> Ops;
695      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
696        for (unsigned i = 0; i != NumElements; ++i)
697          Ops.push_back(getValue(CP->getOperand(i)));
698      } else {
699        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
700        SDOperand Op;
701        if (MVT::isFloatingPoint(PVT))
702          Op = DAG.getConstantFP(0, PVT);
703        else
704          Op = DAG.getConstant(0, PVT);
705        Ops.assign(NumElements, Op);
706      }
707
708      // Create a VBUILD_VECTOR node with generic Vector type.
709      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
710      Ops.push_back(DAG.getValueType(PVT));
711      return NodeMap[V] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0],
712                                      Ops.size());
713    } else {
714      // Canonicalize all constant ints to be unsigned.
715      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
716    }
717  }
718
719  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
720    std::map<const AllocaInst*, int>::iterator SI =
721    FuncInfo.StaticAllocaMap.find(AI);
722    if (SI != FuncInfo.StaticAllocaMap.end())
723      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
724  }
725
726  unsigned InReg = FuncInfo.ValueMap[V];
727  assert(InReg && "Value not in map!");
728
729  // If this type is not legal, make it so now.
730  if (VT != MVT::Vector) {
731    if (TLI.getTypeAction(VT) == TargetLowering::Expand) {
732      // Source must be expanded.  This input value is actually coming from the
733      // register pair InReg and InReg+1.
734      MVT::ValueType DestVT = TLI.getTypeToExpandTo(VT);
735      unsigned NumVals = TLI.getNumElements(VT);
736      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
737      if (NumVals == 1)
738        N = DAG.getNode(ISD::BIT_CONVERT, VT, N);
739      else {
740        assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
741        N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
742                       DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
743      }
744    } else {
745      MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
746      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
747      if (TLI.getTypeAction(VT) == TargetLowering::Promote) // Promotion case
748        N = MVT::isFloatingPoint(VT)
749          ? DAG.getNode(ISD::FP_ROUND, VT, N)
750          : DAG.getNode(ISD::TRUNCATE, VT, N);
751    }
752  } else {
753    // Otherwise, if this is a vector, make it available as a generic vector
754    // here.
755    MVT::ValueType PTyElementVT, PTyLegalElementVT;
756    const VectorType *PTy = cast<VectorType>(VTy);
757    unsigned NE = TLI.getVectorTypeBreakdown(PTy, PTyElementVT,
758                                             PTyLegalElementVT);
759
760    // Build a VBUILD_VECTOR with the input registers.
761    SmallVector<SDOperand, 8> Ops;
762    if (PTyElementVT == PTyLegalElementVT) {
763      // If the value types are legal, just VBUILD the CopyFromReg nodes.
764      for (unsigned i = 0; i != NE; ++i)
765        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
766                                         PTyElementVT));
767    } else if (PTyElementVT < PTyLegalElementVT) {
768      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
769      for (unsigned i = 0; i != NE; ++i) {
770        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
771                                          PTyElementVT);
772        if (MVT::isFloatingPoint(PTyElementVT))
773          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
774        else
775          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
776        Ops.push_back(Op);
777      }
778    } else {
779      // If the register was expanded, use BUILD_PAIR.
780      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
781      for (unsigned i = 0; i != NE/2; ++i) {
782        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
783                                           PTyElementVT);
784        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
785                                           PTyElementVT);
786        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
787      }
788    }
789
790    Ops.push_back(DAG.getConstant(NE, MVT::i32));
791    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
792    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
793
794    // Finally, use a VBIT_CONVERT to make this available as the appropriate
795    // vector type.
796    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
797                    DAG.getConstant(PTy->getNumElements(),
798                                    MVT::i32),
799                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
800  }
801
802  return N;
803}
804
805
806void SelectionDAGLowering::visitRet(ReturnInst &I) {
807  if (I.getNumOperands() == 0) {
808    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
809    return;
810  }
811  SmallVector<SDOperand, 8> NewValues;
812  NewValues.push_back(getRoot());
813  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
814    SDOperand RetOp = getValue(I.getOperand(i));
815
816    // If this is an integer return value, we need to promote it ourselves to
817    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
818    // than sign/zero.
819    // FIXME: C calling convention requires the return type to be promoted to
820    // at least 32-bit. But this is not necessary for non-C calling conventions.
821    if (MVT::isInteger(RetOp.getValueType()) &&
822        RetOp.getValueType() < MVT::i64) {
823      MVT::ValueType TmpVT;
824      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
825        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
826      else
827        TmpVT = MVT::i32;
828      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
829      const ParamAttrsList *Attrs = FTy->getParamAttrs();
830      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
831      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt))
832        ExtendKind = ISD::SIGN_EXTEND;
833      if (Attrs && Attrs->paramHasAttr(0, ParamAttr::ZExt))
834        ExtendKind = ISD::ZERO_EXTEND;
835      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
836    }
837    NewValues.push_back(RetOp);
838    NewValues.push_back(DAG.getConstant(false, MVT::i32));
839  }
840  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
841                          &NewValues[0], NewValues.size()));
842}
843
844/// ExportFromCurrentBlock - If this condition isn't known to be exported from
845/// the current basic block, add it to ValueMap now so that we'll get a
846/// CopyTo/FromReg.
847void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
848  // No need to export constants.
849  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
850
851  // Already exported?
852  if (FuncInfo.isExportedInst(V)) return;
853
854  unsigned Reg = FuncInfo.InitializeRegForValue(V);
855  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
856}
857
858bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
859                                                    const BasicBlock *FromBB) {
860  // The operands of the setcc have to be in this block.  We don't know
861  // how to export them from some other block.
862  if (Instruction *VI = dyn_cast<Instruction>(V)) {
863    // Can export from current BB.
864    if (VI->getParent() == FromBB)
865      return true;
866
867    // Is already exported, noop.
868    return FuncInfo.isExportedInst(V);
869  }
870
871  // If this is an argument, we can export it if the BB is the entry block or
872  // if it is already exported.
873  if (isa<Argument>(V)) {
874    if (FromBB == &FromBB->getParent()->getEntryBlock())
875      return true;
876
877    // Otherwise, can only export this if it is already exported.
878    return FuncInfo.isExportedInst(V);
879  }
880
881  // Otherwise, constants can always be exported.
882  return true;
883}
884
885static bool InBlock(const Value *V, const BasicBlock *BB) {
886  if (const Instruction *I = dyn_cast<Instruction>(V))
887    return I->getParent() == BB;
888  return true;
889}
890
891/// FindMergedConditions - If Cond is an expression like
892void SelectionDAGLowering::FindMergedConditions(Value *Cond,
893                                                MachineBasicBlock *TBB,
894                                                MachineBasicBlock *FBB,
895                                                MachineBasicBlock *CurBB,
896                                                unsigned Opc) {
897  // If this node is not part of the or/and tree, emit it as a branch.
898  Instruction *BOp = dyn_cast<Instruction>(Cond);
899
900  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
901      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
902      BOp->getParent() != CurBB->getBasicBlock() ||
903      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
904      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
905    const BasicBlock *BB = CurBB->getBasicBlock();
906
907    // If the leaf of the tree is a comparison, merge the condition into
908    // the caseblock.
909    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
910        // The operands of the cmp have to be in this block.  We don't know
911        // how to export them from some other block.  If this is the first block
912        // of the sequence, no exporting is needed.
913        (CurBB == CurMBB ||
914         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
915          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
916      BOp = cast<Instruction>(Cond);
917      ISD::CondCode Condition;
918      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
919        switch (IC->getPredicate()) {
920        default: assert(0 && "Unknown icmp predicate opcode!");
921        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
922        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
923        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
924        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
925        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
926        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
927        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
928        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
929        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
930        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
931        }
932      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
933        ISD::CondCode FPC, FOC;
934        switch (FC->getPredicate()) {
935        default: assert(0 && "Unknown fcmp predicate opcode!");
936        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
937        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
938        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
939        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
940        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
941        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
942        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
943        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
944        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
945        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
946        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
947        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
948        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
949        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
950        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
951        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
952        }
953        if (FiniteOnlyFPMath())
954          Condition = FOC;
955        else
956          Condition = FPC;
957      } else {
958        Condition = ISD::SETEQ; // silence warning.
959        assert(0 && "Unknown compare instruction");
960      }
961
962      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
963                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
964      SwitchCases.push_back(CB);
965      return;
966    }
967
968    // Create a CaseBlock record representing this branch.
969    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
970                                   NULL, TBB, FBB, CurBB);
971    SwitchCases.push_back(CB);
972    return;
973  }
974
975
976  //  Create TmpBB after CurBB.
977  MachineFunction::iterator BBI = CurBB;
978  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
979  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
980
981  if (Opc == Instruction::Or) {
982    // Codegen X | Y as:
983    //   jmp_if_X TBB
984    //   jmp TmpBB
985    // TmpBB:
986    //   jmp_if_Y TBB
987    //   jmp FBB
988    //
989
990    // Emit the LHS condition.
991    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
992
993    // Emit the RHS condition into TmpBB.
994    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
995  } else {
996    assert(Opc == Instruction::And && "Unknown merge op!");
997    // Codegen X & Y as:
998    //   jmp_if_X TmpBB
999    //   jmp FBB
1000    // TmpBB:
1001    //   jmp_if_Y TBB
1002    //   jmp FBB
1003    //
1004    //  This requires creation of TmpBB after CurBB.
1005
1006    // Emit the LHS condition.
1007    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1008
1009    // Emit the RHS condition into TmpBB.
1010    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1011  }
1012}
1013
1014/// If the set of cases should be emitted as a series of branches, return true.
1015/// If we should emit this as a bunch of and/or'd together conditions, return
1016/// false.
1017static bool
1018ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1019  if (Cases.size() != 2) return true;
1020
1021  // If this is two comparisons of the same values or'd or and'd together, they
1022  // will get folded into a single comparison, so don't emit two blocks.
1023  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1024       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1025      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1026       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1027    return false;
1028  }
1029
1030  return true;
1031}
1032
1033void SelectionDAGLowering::visitBr(BranchInst &I) {
1034  // Update machine-CFG edges.
1035  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1036
1037  // Figure out which block is immediately after the current one.
1038  MachineBasicBlock *NextBlock = 0;
1039  MachineFunction::iterator BBI = CurMBB;
1040  if (++BBI != CurMBB->getParent()->end())
1041    NextBlock = BBI;
1042
1043  if (I.isUnconditional()) {
1044    // If this is not a fall-through branch, emit the branch.
1045    if (Succ0MBB != NextBlock)
1046      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1047                              DAG.getBasicBlock(Succ0MBB)));
1048
1049    // Update machine-CFG edges.
1050    CurMBB->addSuccessor(Succ0MBB);
1051
1052    return;
1053  }
1054
1055  // If this condition is one of the special cases we handle, do special stuff
1056  // now.
1057  Value *CondVal = I.getCondition();
1058  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1059
1060  // If this is a series of conditions that are or'd or and'd together, emit
1061  // this as a sequence of branches instead of setcc's with and/or operations.
1062  // For example, instead of something like:
1063  //     cmp A, B
1064  //     C = seteq
1065  //     cmp D, E
1066  //     F = setle
1067  //     or C, F
1068  //     jnz foo
1069  // Emit:
1070  //     cmp A, B
1071  //     je foo
1072  //     cmp D, E
1073  //     jle foo
1074  //
1075  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1076    if (BOp->hasOneUse() &&
1077        (BOp->getOpcode() == Instruction::And ||
1078         BOp->getOpcode() == Instruction::Or)) {
1079      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1080      // If the compares in later blocks need to use values not currently
1081      // exported from this block, export them now.  This block should always
1082      // be the first entry.
1083      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1084
1085      // Allow some cases to be rejected.
1086      if (ShouldEmitAsBranches(SwitchCases)) {
1087        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1088          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1089          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1090        }
1091
1092        // Emit the branch for this block.
1093        visitSwitchCase(SwitchCases[0]);
1094        SwitchCases.erase(SwitchCases.begin());
1095        return;
1096      }
1097
1098      // Okay, we decided not to do this, remove any inserted MBB's and clear
1099      // SwitchCases.
1100      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1101        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1102
1103      SwitchCases.clear();
1104    }
1105  }
1106
1107  // Create a CaseBlock record representing this branch.
1108  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1109                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1110  // Use visitSwitchCase to actually insert the fast branch sequence for this
1111  // cond branch.
1112  visitSwitchCase(CB);
1113}
1114
1115/// visitSwitchCase - Emits the necessary code to represent a single node in
1116/// the binary search tree resulting from lowering a switch instruction.
1117void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1118  SDOperand Cond;
1119  SDOperand CondLHS = getValue(CB.CmpLHS);
1120
1121  // Build the setcc now.
1122  if (CB.CmpMHS == NULL) {
1123    // Fold "(X == true)" to X and "(X == false)" to !X to
1124    // handle common cases produced by branch lowering.
1125    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1126      Cond = CondLHS;
1127    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1128      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1129      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1130    } else
1131      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1132  } else {
1133    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1134
1135    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1136    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1137
1138    SDOperand CmpOp = getValue(CB.CmpMHS);
1139    MVT::ValueType VT = CmpOp.getValueType();
1140
1141    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1142      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1143    } else {
1144      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1145      Cond = DAG.getSetCC(MVT::i1, SUB,
1146                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1147    }
1148
1149  }
1150
1151  // Set NextBlock to be the MBB immediately after the current one, if any.
1152  // This is used to avoid emitting unnecessary branches to the next block.
1153  MachineBasicBlock *NextBlock = 0;
1154  MachineFunction::iterator BBI = CurMBB;
1155  if (++BBI != CurMBB->getParent()->end())
1156    NextBlock = BBI;
1157
1158  // If the lhs block is the next block, invert the condition so that we can
1159  // fall through to the lhs instead of the rhs block.
1160  if (CB.TrueBB == NextBlock) {
1161    std::swap(CB.TrueBB, CB.FalseBB);
1162    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1163    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1164  }
1165  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1166                                 DAG.getBasicBlock(CB.TrueBB));
1167  if (CB.FalseBB == NextBlock)
1168    DAG.setRoot(BrCond);
1169  else
1170    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1171                            DAG.getBasicBlock(CB.FalseBB)));
1172  // Update successor info
1173  CurMBB->addSuccessor(CB.TrueBB);
1174  CurMBB->addSuccessor(CB.FalseBB);
1175}
1176
1177/// visitJumpTable - Emit JumpTable node in the current MBB
1178void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1179  // Emit the code for the jump table
1180  assert(JT.Reg != -1U && "Should lower JT Header first!");
1181  MVT::ValueType PTy = TLI.getPointerTy();
1182  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1183  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1184  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1185                          Table, Index));
1186  return;
1187}
1188
1189/// visitJumpTableHeader - This function emits necessary code to produce index
1190/// in the JumpTable from switch case.
1191void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1192                                         SelectionDAGISel::JumpTableHeader &JTH) {
1193  // Subtract the lowest switch case value from the value being switched on
1194  // and conditional branch to default mbb if the result is greater than the
1195  // difference between smallest and largest cases.
1196  SDOperand SwitchOp = getValue(JTH.SValue);
1197  MVT::ValueType VT = SwitchOp.getValueType();
1198  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1199                              DAG.getConstant(JTH.First, VT));
1200
1201  // The SDNode we just created, which holds the value being switched on
1202  // minus the the smallest case value, needs to be copied to a virtual
1203  // register so it can be used as an index into the jump table in a
1204  // subsequent basic block.  This value may be smaller or larger than the
1205  // target's pointer type, and therefore require extension or truncating.
1206  if (VT > TLI.getPointerTy())
1207    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1208  else
1209    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1210
1211  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1212  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1213  JT.Reg = JumpTableReg;
1214
1215  // Emit the range check for the jump table, and branch to the default
1216  // block for the switch statement if the value being switched on exceeds
1217  // the largest case in the switch.
1218  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1219                               DAG.getConstant(JTH.Last-JTH.First,VT),
1220                               ISD::SETUGT);
1221
1222  // Set NextBlock to be the MBB immediately after the current one, if any.
1223  // This is used to avoid emitting unnecessary branches to the next block.
1224  MachineBasicBlock *NextBlock = 0;
1225  MachineFunction::iterator BBI = CurMBB;
1226  if (++BBI != CurMBB->getParent()->end())
1227    NextBlock = BBI;
1228
1229  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1230                                 DAG.getBasicBlock(JT.Default));
1231
1232  if (JT.MBB == NextBlock)
1233    DAG.setRoot(BrCond);
1234  else
1235    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1236                            DAG.getBasicBlock(JT.MBB)));
1237
1238  return;
1239}
1240
1241/// visitBitTestHeader - This function emits necessary code to produce value
1242/// suitable for "bit tests"
1243void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1244  // Subtract the minimum value
1245  SDOperand SwitchOp = getValue(B.SValue);
1246  MVT::ValueType VT = SwitchOp.getValueType();
1247  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1248                              DAG.getConstant(B.First, VT));
1249
1250  // Check range
1251  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1252                                    DAG.getConstant(B.Range, VT),
1253                                    ISD::SETUGT);
1254
1255  SDOperand ShiftOp;
1256  if (VT > TLI.getShiftAmountTy())
1257    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1258  else
1259    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1260
1261  // Make desired shift
1262  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1263                                    DAG.getConstant(1, TLI.getPointerTy()),
1264                                    ShiftOp);
1265
1266  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1267  SDOperand CopyTo = DAG.getCopyToReg(getRoot(), SwitchReg, SwitchVal);
1268  B.Reg = SwitchReg;
1269
1270  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1271                                  DAG.getBasicBlock(B.Default));
1272
1273  // Set NextBlock to be the MBB immediately after the current one, if any.
1274  // This is used to avoid emitting unnecessary branches to the next block.
1275  MachineBasicBlock *NextBlock = 0;
1276  MachineFunction::iterator BBI = CurMBB;
1277  if (++BBI != CurMBB->getParent()->end())
1278    NextBlock = BBI;
1279
1280  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1281  if (MBB == NextBlock)
1282    DAG.setRoot(BrRange);
1283  else
1284    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1285                            DAG.getBasicBlock(MBB)));
1286
1287  CurMBB->addSuccessor(B.Default);
1288  CurMBB->addSuccessor(MBB);
1289
1290  return;
1291}
1292
1293/// visitBitTestCase - this function produces one "bit test"
1294void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1295                                            unsigned Reg,
1296                                            SelectionDAGISel::BitTestCase &B) {
1297  // Emit bit tests and jumps
1298  SDOperand SwitchVal = DAG.getCopyFromReg(getRoot(), Reg, TLI.getPointerTy());
1299
1300  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(),
1301                                SwitchVal,
1302                                DAG.getConstant(B.Mask,
1303                                                TLI.getPointerTy()));
1304  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultTy(), AndOp,
1305                                  DAG.getConstant(0, TLI.getPointerTy()),
1306                                  ISD::SETNE);
1307  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
1308                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1309
1310  // Set NextBlock to be the MBB immediately after the current one, if any.
1311  // This is used to avoid emitting unnecessary branches to the next block.
1312  MachineBasicBlock *NextBlock = 0;
1313  MachineFunction::iterator BBI = CurMBB;
1314  if (++BBI != CurMBB->getParent()->end())
1315    NextBlock = BBI;
1316
1317  if (NextMBB == NextBlock)
1318    DAG.setRoot(BrAnd);
1319  else
1320    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1321                            DAG.getBasicBlock(NextMBB)));
1322
1323  CurMBB->addSuccessor(B.TargetBB);
1324  CurMBB->addSuccessor(NextMBB);
1325
1326  return;
1327}
1328
1329void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1330  assert(0 && "Should never be visited directly");
1331}
1332void SelectionDAGLowering::visitInvoke(InvokeInst &I, bool AsTerminator) {
1333  // Retrieve successors.
1334  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1335  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1336
1337  if (!AsTerminator) {
1338    // Mark landing pad so that it doesn't get deleted in branch folding.
1339    LandingPad->setIsLandingPad();
1340
1341    // Insert a label before the invoke call to mark the try range.
1342    // This can be used to detect deletion of the invoke via the
1343    // MachineModuleInfo.
1344    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
1345    unsigned BeginLabel = MMI->NextLabelID();
1346    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
1347                            DAG.getConstant(BeginLabel, MVT::i32)));
1348
1349    LowerCallTo(I, I.getCalledValue()->getType(),
1350                   I.getCallingConv(),
1351                   false,
1352                   getValue(I.getOperand(0)),
1353                   3);
1354
1355    // Insert a label before the invoke call to mark the try range.
1356    // This can be used to detect deletion of the invoke via the
1357    // MachineModuleInfo.
1358    unsigned EndLabel = MMI->NextLabelID();
1359    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
1360                            DAG.getConstant(EndLabel, MVT::i32)));
1361
1362    // Inform MachineModuleInfo of range.
1363    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
1364
1365    // Update successor info
1366    CurMBB->addSuccessor(Return);
1367    CurMBB->addSuccessor(LandingPad);
1368  } else {
1369    // Drop into normal successor.
1370    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1371                            DAG.getBasicBlock(Return)));
1372  }
1373}
1374
1375void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1376}
1377
1378/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1379/// small case ranges).
1380bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1381                                                  CaseRecVector& WorkList,
1382                                                  Value* SV,
1383                                                  MachineBasicBlock* Default) {
1384  Case& BackCase  = *(CR.Range.second-1);
1385
1386  // Size is the number of Cases represented by this range.
1387  unsigned Size = CR.Range.second - CR.Range.first;
1388  if (Size > 3)
1389    return false;
1390
1391  // Get the MachineFunction which holds the current MBB.  This is used when
1392  // inserting any additional MBBs necessary to represent the switch.
1393  MachineFunction *CurMF = CurMBB->getParent();
1394
1395  // Figure out which block is immediately after the current one.
1396  MachineBasicBlock *NextBlock = 0;
1397  MachineFunction::iterator BBI = CR.CaseBB;
1398
1399  if (++BBI != CurMBB->getParent()->end())
1400    NextBlock = BBI;
1401
1402  // TODO: If any two of the cases has the same destination, and if one value
1403  // is the same as the other, but has one bit unset that the other has set,
1404  // use bit manipulation to do two compares at once.  For example:
1405  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1406
1407  // Rearrange the case blocks so that the last one falls through if possible.
1408  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1409    // The last case block won't fall through into 'NextBlock' if we emit the
1410    // branches in this order.  See if rearranging a case value would help.
1411    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1412      if (I->BB == NextBlock) {
1413        std::swap(*I, BackCase);
1414        break;
1415      }
1416    }
1417  }
1418
1419  // Create a CaseBlock record representing a conditional branch to
1420  // the Case's target mbb if the value being switched on SV is equal
1421  // to C.
1422  MachineBasicBlock *CurBlock = CR.CaseBB;
1423  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1424    MachineBasicBlock *FallThrough;
1425    if (I != E-1) {
1426      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1427      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1428    } else {
1429      // If the last case doesn't match, go to the default block.
1430      FallThrough = Default;
1431    }
1432
1433    Value *RHS, *LHS, *MHS;
1434    ISD::CondCode CC;
1435    if (I->High == I->Low) {
1436      // This is just small small case range :) containing exactly 1 case
1437      CC = ISD::SETEQ;
1438      LHS = SV; RHS = I->High; MHS = NULL;
1439    } else {
1440      CC = ISD::SETLE;
1441      LHS = I->Low; MHS = SV; RHS = I->High;
1442    }
1443    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1444                                   I->BB, FallThrough, CurBlock);
1445
1446    // If emitting the first comparison, just call visitSwitchCase to emit the
1447    // code into the current block.  Otherwise, push the CaseBlock onto the
1448    // vector to be later processed by SDISel, and insert the node's MBB
1449    // before the next MBB.
1450    if (CurBlock == CurMBB)
1451      visitSwitchCase(CB);
1452    else
1453      SwitchCases.push_back(CB);
1454
1455    CurBlock = FallThrough;
1456  }
1457
1458  return true;
1459}
1460
1461/// handleJTSwitchCase - Emit jumptable for current switch case range
1462bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1463                                              CaseRecVector& WorkList,
1464                                              Value* SV,
1465                                              MachineBasicBlock* Default) {
1466  Case& FrontCase = *CR.Range.first;
1467  Case& BackCase  = *(CR.Range.second-1);
1468
1469  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1470  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1471
1472  uint64_t TSize = 0;
1473  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1474       I!=E; ++I)
1475    TSize += I->size();
1476
1477  if ((!TLI.isOperationLegal(ISD::BR_JT, MVT::Other) &&
1478       !TLI.isOperationLegal(ISD::BRIND, MVT::Other)) ||
1479      TSize <= 3)
1480    return false;
1481
1482  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1483  if (Density < 0.4)
1484    return false;
1485
1486  DOUT << "Lowering jump table\n"
1487       << "First entry: " << First << ". Last entry: " << Last << "\n"
1488       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1489
1490  // Get the MachineFunction which holds the current MBB.  This is used when
1491  // inserting any additional MBBs necessary to represent the switch.
1492  MachineFunction *CurMF = CurMBB->getParent();
1493
1494  // Figure out which block is immediately after the current one.
1495  MachineBasicBlock *NextBlock = 0;
1496  MachineFunction::iterator BBI = CR.CaseBB;
1497
1498  if (++BBI != CurMBB->getParent()->end())
1499    NextBlock = BBI;
1500
1501  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1502
1503  // Create a new basic block to hold the code for loading the address
1504  // of the jump table, and jumping to it.  Update successor information;
1505  // we will either branch to the default case for the switch, or the jump
1506  // table.
1507  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1508  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1509  CR.CaseBB->addSuccessor(Default);
1510  CR.CaseBB->addSuccessor(JumpTableBB);
1511
1512  // Build a vector of destination BBs, corresponding to each target
1513  // of the jump table. If the value of the jump table slot corresponds to
1514  // a case statement, push the case's BB onto the vector, otherwise, push
1515  // the default BB.
1516  std::vector<MachineBasicBlock*> DestBBs;
1517  int64_t TEI = First;
1518  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1519    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1520    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1521
1522    if ((Low <= TEI) && (TEI <= High)) {
1523      DestBBs.push_back(I->BB);
1524      if (TEI==High)
1525        ++I;
1526    } else {
1527      DestBBs.push_back(Default);
1528    }
1529  }
1530
1531  // Update successor info. Add one edge to each unique successor.
1532  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1533  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1534         E = DestBBs.end(); I != E; ++I) {
1535    if (!SuccsHandled[(*I)->getNumber()]) {
1536      SuccsHandled[(*I)->getNumber()] = true;
1537      JumpTableBB->addSuccessor(*I);
1538    }
1539  }
1540
1541  // Create a jump table index for this jump table, or return an existing
1542  // one.
1543  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1544
1545  // Set the jump table information so that we can codegen it as a second
1546  // MachineBasicBlock
1547  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1548  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1549                                        (CR.CaseBB == CurMBB));
1550  if (CR.CaseBB == CurMBB)
1551    visitJumpTableHeader(JT, JTH);
1552
1553  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
1554
1555  return true;
1556}
1557
1558/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1559/// 2 subtrees.
1560bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1561                                                   CaseRecVector& WorkList,
1562                                                   Value* SV,
1563                                                   MachineBasicBlock* Default) {
1564  // Get the MachineFunction which holds the current MBB.  This is used when
1565  // inserting any additional MBBs necessary to represent the switch.
1566  MachineFunction *CurMF = CurMBB->getParent();
1567
1568  // Figure out which block is immediately after the current one.
1569  MachineBasicBlock *NextBlock = 0;
1570  MachineFunction::iterator BBI = CR.CaseBB;
1571
1572  if (++BBI != CurMBB->getParent()->end())
1573    NextBlock = BBI;
1574
1575  Case& FrontCase = *CR.Range.first;
1576  Case& BackCase  = *(CR.Range.second-1);
1577  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1578
1579  // Size is the number of Cases represented by this range.
1580  unsigned Size = CR.Range.second - CR.Range.first;
1581
1582  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1583  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1584  double FMetric = 0;
1585  CaseItr Pivot = CR.Range.first + Size/2;
1586
1587  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1588  // (heuristically) allow us to emit JumpTable's later.
1589  uint64_t TSize = 0;
1590  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1591       I!=E; ++I)
1592    TSize += I->size();
1593
1594  uint64_t LSize = FrontCase.size();
1595  uint64_t RSize = TSize-LSize;
1596  DOUT << "Selecting best pivot: \n"
1597       << "First: " << First << ", Last: " << Last <<"\n"
1598       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1599  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1600       J!=E; ++I, ++J) {
1601    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1602    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1603    assert((RBegin-LEnd>=1) && "Invalid case distance");
1604    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1605    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1606    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1607    // Should always split in some non-trivial place
1608    DOUT <<"=>Step\n"
1609         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1610         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1611         << "Metric: " << Metric << "\n";
1612    if (FMetric < Metric) {
1613      Pivot = J;
1614      FMetric = Metric;
1615      DOUT << "Current metric set to: " << FMetric << "\n";
1616    }
1617
1618    LSize += J->size();
1619    RSize -= J->size();
1620  }
1621  // If our case is dense we *really* should handle it earlier!
1622  assert((FMetric > 0) && "Should handle dense range earlier!");
1623
1624  CaseRange LHSR(CR.Range.first, Pivot);
1625  CaseRange RHSR(Pivot, CR.Range.second);
1626  Constant *C = Pivot->Low;
1627  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1628
1629  // We know that we branch to the LHS if the Value being switched on is
1630  // less than the Pivot value, C.  We use this to optimize our binary
1631  // tree a bit, by recognizing that if SV is greater than or equal to the
1632  // LHS's Case Value, and that Case Value is exactly one less than the
1633  // Pivot's Value, then we can branch directly to the LHS's Target,
1634  // rather than creating a leaf node for it.
1635  if ((LHSR.second - LHSR.first) == 1 &&
1636      LHSR.first->High == CR.GE &&
1637      cast<ConstantInt>(C)->getSExtValue() ==
1638      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1639    TrueBB = LHSR.first->BB;
1640  } else {
1641    TrueBB = new MachineBasicBlock(LLVMBB);
1642    CurMF->getBasicBlockList().insert(BBI, TrueBB);
1643    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1644  }
1645
1646  // Similar to the optimization above, if the Value being switched on is
1647  // known to be less than the Constant CR.LT, and the current Case Value
1648  // is CR.LT - 1, then we can branch directly to the target block for
1649  // the current Case Value, rather than emitting a RHS leaf node for it.
1650  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1651      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1652      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1653    FalseBB = RHSR.first->BB;
1654  } else {
1655    FalseBB = new MachineBasicBlock(LLVMBB);
1656    CurMF->getBasicBlockList().insert(BBI, FalseBB);
1657    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1658  }
1659
1660  // Create a CaseBlock record representing a conditional branch to
1661  // the LHS node if the value being switched on SV is less than C.
1662  // Otherwise, branch to LHS.
1663  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
1664                                 TrueBB, FalseBB, CR.CaseBB);
1665
1666  if (CR.CaseBB == CurMBB)
1667    visitSwitchCase(CB);
1668  else
1669    SwitchCases.push_back(CB);
1670
1671  return true;
1672}
1673
1674/// handleBitTestsSwitchCase - if current case range has few destination and
1675/// range span less, than machine word bitwidth, encode case range into series
1676/// of masks and emit bit tests with these masks.
1677bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1678                                                    CaseRecVector& WorkList,
1679                                                    Value* SV,
1680                                                    MachineBasicBlock* Default){
1681  return false;
1682  unsigned IntPtrBits = getSizeInBits(TLI.getPointerTy());
1683
1684  Case& FrontCase = *CR.Range.first;
1685  Case& BackCase  = *(CR.Range.second-1);
1686
1687  // Get the MachineFunction which holds the current MBB.  This is used when
1688  // inserting any additional MBBs necessary to represent the switch.
1689  MachineFunction *CurMF = CurMBB->getParent();
1690
1691  unsigned numCmps = 0;
1692  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1693       I!=E; ++I) {
1694    // Single case counts one, case range - two.
1695    if (I->Low == I->High)
1696      numCmps +=1;
1697    else
1698      numCmps +=2;
1699  }
1700
1701  // Count unique destinations
1702  SmallSet<MachineBasicBlock*, 4> Dests;
1703  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1704    Dests.insert(I->BB);
1705    if (Dests.size() > 3)
1706      // Don't bother the code below, if there are too much unique destinations
1707      return false;
1708  }
1709  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1710       << "Total number of comparisons: " << numCmps << "\n";
1711
1712  // Compute span of values.
1713  Constant* minValue = FrontCase.Low;
1714  Constant* maxValue = BackCase.High;
1715  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1716                   cast<ConstantInt>(minValue)->getSExtValue();
1717  DOUT << "Compare range: " << range << "\n"
1718       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1719       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1720
1721  if (range>IntPtrBits ||
1722      (!(Dests.size() == 1 && numCmps >= 3) &&
1723       !(Dests.size() == 2 && numCmps >= 5) &&
1724       !(Dests.size() >= 3 && numCmps >= 6)))
1725    return false;
1726
1727  DOUT << "Emitting bit tests\n";
1728  int64_t lowBound = 0;
1729
1730  // Optimize the case where all the case values fit in a
1731  // word without having to subtract minValue. In this case,
1732  // we can optimize away the subtraction.
1733  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1734      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
1735    range = cast<ConstantInt>(maxValue)->getSExtValue();
1736  } else {
1737    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1738  }
1739
1740  CaseBitsVector CasesBits;
1741  unsigned i, count = 0;
1742
1743  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1744    MachineBasicBlock* Dest = I->BB;
1745    for (i = 0; i < count; ++i)
1746      if (Dest == CasesBits[i].BB)
1747        break;
1748
1749    if (i == count) {
1750      assert((count < 3) && "Too much destinations to test!");
1751      CasesBits.push_back(CaseBits(0, Dest, 0));
1752      count++;
1753    }
1754
1755    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1756    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1757
1758    for (uint64_t j = lo; j <= hi; j++) {
1759      CasesBits[i].Mask |=  1ULL << j;
1760      CasesBits[i].Bits++;
1761    }
1762
1763  }
1764  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1765
1766  SelectionDAGISel::BitTestInfo BTC;
1767
1768  // Figure out which block is immediately after the current one.
1769  MachineFunction::iterator BBI = CR.CaseBB;
1770  ++BBI;
1771
1772  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1773
1774  DOUT << "Cases:\n";
1775  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1776    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1777         << ", BB: " << CasesBits[i].BB << "\n";
1778
1779    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
1780    CurMF->getBasicBlockList().insert(BBI, CaseBB);
1781    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
1782                                                CaseBB,
1783                                                CasesBits[i].BB));
1784  }
1785
1786  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
1787                                     -1U, (CR.CaseBB == CurMBB),
1788                                     CR.CaseBB, Default, BTC);
1789
1790  if (CR.CaseBB == CurMBB)
1791    visitBitTestHeader(BTB);
1792
1793  BitTestCases.push_back(BTB);
1794
1795  return true;
1796}
1797
1798
1799// Clusterify - Transform simple list of Cases into list of CaseRange's
1800unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1801                                          const SwitchInst& SI) {
1802  unsigned numCmps = 0;
1803
1804  // Start with "simple" cases
1805  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1806    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1807    Cases.push_back(Case(SI.getSuccessorValue(i),
1808                         SI.getSuccessorValue(i),
1809                         SMBB));
1810  }
1811  sort(Cases.begin(), Cases.end(), CaseCmp());
1812
1813  // Merge case into clusters
1814  if (Cases.size()>=2)
1815    for (CaseItr I=Cases.begin(), J=++(Cases.begin()), E=Cases.end(); J!=E; ) {
1816      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1817      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1818      MachineBasicBlock* nextBB = J->BB;
1819      MachineBasicBlock* currentBB = I->BB;
1820
1821      // If the two neighboring cases go to the same destination, merge them
1822      // into a single case.
1823      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1824        I->High = J->High;
1825        J = Cases.erase(J);
1826      } else {
1827        I = J++;
1828      }
1829    }
1830
1831  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1832    if (I->Low != I->High)
1833      // A range counts double, since it requires two compares.
1834      ++numCmps;
1835  }
1836
1837  return numCmps;
1838}
1839
1840void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1841  // Figure out which block is immediately after the current one.
1842  MachineBasicBlock *NextBlock = 0;
1843  MachineFunction::iterator BBI = CurMBB;
1844
1845  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1846
1847  // If there is only the default destination, branch to it if it is not the
1848  // next basic block.  Otherwise, just fall through.
1849  if (SI.getNumOperands() == 2) {
1850    // Update machine-CFG edges.
1851
1852    // If this is not a fall-through branch, emit the branch.
1853    if (Default != NextBlock)
1854      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1855                              DAG.getBasicBlock(Default)));
1856
1857    CurMBB->addSuccessor(Default);
1858    return;
1859  }
1860
1861  // If there are any non-default case statements, create a vector of Cases
1862  // representing each one, and sort the vector so that we can efficiently
1863  // create a binary search tree from them.
1864  CaseVector Cases;
1865  unsigned numCmps = Clusterify(Cases, SI);
1866  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
1867       << ". Total compares: " << numCmps << "\n";
1868
1869  // Get the Value to be switched on and default basic blocks, which will be
1870  // inserted into CaseBlock records, representing basic blocks in the binary
1871  // search tree.
1872  Value *SV = SI.getOperand(0);
1873
1874  // Push the initial CaseRec onto the worklist
1875  CaseRecVector WorkList;
1876  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1877
1878  while (!WorkList.empty()) {
1879    // Grab a record representing a case range to process off the worklist
1880    CaseRec CR = WorkList.back();
1881    WorkList.pop_back();
1882
1883    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
1884      continue;
1885
1886    // If the range has few cases (two or less) emit a series of specific
1887    // tests.
1888    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
1889      continue;
1890
1891    // If the switch has more than 5 blocks, and at least 40% dense, and the
1892    // target supports indirect branches, then emit a jump table rather than
1893    // lowering the switch to a binary tree of conditional branches.
1894    if (handleJTSwitchCase(CR, WorkList, SV, Default))
1895      continue;
1896
1897    // Emit binary tree. We need to pick a pivot, and push left and right ranges
1898    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
1899    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
1900  }
1901}
1902
1903
1904void SelectionDAGLowering::visitSub(User &I) {
1905  // -0.0 - X --> fneg
1906  const Type *Ty = I.getType();
1907  if (isa<VectorType>(Ty)) {
1908    visitVectorBinary(I, ISD::VSUB);
1909  } else if (Ty->isFloatingPoint()) {
1910    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1911      if (CFP->isExactlyValue(-0.0)) {
1912        SDOperand Op2 = getValue(I.getOperand(1));
1913        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1914        return;
1915      }
1916    visitScalarBinary(I, ISD::FSUB);
1917  } else
1918    visitScalarBinary(I, ISD::SUB);
1919}
1920
1921void SelectionDAGLowering::visitScalarBinary(User &I, unsigned OpCode) {
1922  SDOperand Op1 = getValue(I.getOperand(0));
1923  SDOperand Op2 = getValue(I.getOperand(1));
1924
1925  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
1926}
1927
1928void
1929SelectionDAGLowering::visitVectorBinary(User &I, unsigned OpCode) {
1930  assert(isa<VectorType>(I.getType()));
1931  const VectorType *Ty = cast<VectorType>(I.getType());
1932  SDOperand Typ = DAG.getValueType(TLI.getValueType(Ty->getElementType()));
1933
1934  setValue(&I, DAG.getNode(OpCode, MVT::Vector,
1935                           getValue(I.getOperand(0)),
1936                           getValue(I.getOperand(1)),
1937                           DAG.getConstant(Ty->getNumElements(), MVT::i32),
1938                           Typ));
1939}
1940
1941void SelectionDAGLowering::visitEitherBinary(User &I, unsigned ScalarOp,
1942                                             unsigned VectorOp) {
1943  if (isa<VectorType>(I.getType()))
1944    visitVectorBinary(I, VectorOp);
1945  else
1946    visitScalarBinary(I, ScalarOp);
1947}
1948
1949void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1950  SDOperand Op1 = getValue(I.getOperand(0));
1951  SDOperand Op2 = getValue(I.getOperand(1));
1952
1953  if (TLI.getShiftAmountTy() < Op2.getValueType())
1954    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
1955  else if (TLI.getShiftAmountTy() > Op2.getValueType())
1956    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1957
1958  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1959}
1960
1961void SelectionDAGLowering::visitICmp(User &I) {
1962  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
1963  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
1964    predicate = IC->getPredicate();
1965  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
1966    predicate = ICmpInst::Predicate(IC->getPredicate());
1967  SDOperand Op1 = getValue(I.getOperand(0));
1968  SDOperand Op2 = getValue(I.getOperand(1));
1969  ISD::CondCode Opcode;
1970  switch (predicate) {
1971    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
1972    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
1973    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
1974    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
1975    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
1976    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
1977    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
1978    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
1979    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
1980    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
1981    default:
1982      assert(!"Invalid ICmp predicate value");
1983      Opcode = ISD::SETEQ;
1984      break;
1985  }
1986  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1987}
1988
1989void SelectionDAGLowering::visitFCmp(User &I) {
1990  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
1991  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
1992    predicate = FC->getPredicate();
1993  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
1994    predicate = FCmpInst::Predicate(FC->getPredicate());
1995  SDOperand Op1 = getValue(I.getOperand(0));
1996  SDOperand Op2 = getValue(I.getOperand(1));
1997  ISD::CondCode Condition, FOC, FPC;
1998  switch (predicate) {
1999    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2000    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2001    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2002    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2003    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2004    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2005    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2006    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
2007    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
2008    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2009    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2010    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2011    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2012    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2013    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2014    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2015    default:
2016      assert(!"Invalid FCmp predicate value");
2017      FOC = FPC = ISD::SETFALSE;
2018      break;
2019  }
2020  if (FiniteOnlyFPMath())
2021    Condition = FOC;
2022  else
2023    Condition = FPC;
2024  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2025}
2026
2027void SelectionDAGLowering::visitSelect(User &I) {
2028  SDOperand Cond     = getValue(I.getOperand(0));
2029  SDOperand TrueVal  = getValue(I.getOperand(1));
2030  SDOperand FalseVal = getValue(I.getOperand(2));
2031  if (!isa<VectorType>(I.getType())) {
2032    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2033                             TrueVal, FalseVal));
2034  } else {
2035    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
2036                             *(TrueVal.Val->op_end()-2),
2037                             *(TrueVal.Val->op_end()-1)));
2038  }
2039}
2040
2041
2042void SelectionDAGLowering::visitTrunc(User &I) {
2043  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2044  SDOperand N = getValue(I.getOperand(0));
2045  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2046  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2047}
2048
2049void SelectionDAGLowering::visitZExt(User &I) {
2050  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2051  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2052  SDOperand N = getValue(I.getOperand(0));
2053  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2054  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2055}
2056
2057void SelectionDAGLowering::visitSExt(User &I) {
2058  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2059  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2060  SDOperand N = getValue(I.getOperand(0));
2061  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2062  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2063}
2064
2065void SelectionDAGLowering::visitFPTrunc(User &I) {
2066  // FPTrunc is never a no-op cast, no need to check
2067  SDOperand N = getValue(I.getOperand(0));
2068  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2069  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
2070}
2071
2072void SelectionDAGLowering::visitFPExt(User &I){
2073  // FPTrunc is never a no-op cast, no need to check
2074  SDOperand N = getValue(I.getOperand(0));
2075  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2076  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2077}
2078
2079void SelectionDAGLowering::visitFPToUI(User &I) {
2080  // FPToUI is never a no-op cast, no need to check
2081  SDOperand N = getValue(I.getOperand(0));
2082  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2083  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2084}
2085
2086void SelectionDAGLowering::visitFPToSI(User &I) {
2087  // FPToSI is never a no-op cast, no need to check
2088  SDOperand N = getValue(I.getOperand(0));
2089  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2090  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2091}
2092
2093void SelectionDAGLowering::visitUIToFP(User &I) {
2094  // UIToFP is never a no-op cast, no need to check
2095  SDOperand N = getValue(I.getOperand(0));
2096  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2097  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2098}
2099
2100void SelectionDAGLowering::visitSIToFP(User &I){
2101  // UIToFP is never a no-op cast, no need to check
2102  SDOperand N = getValue(I.getOperand(0));
2103  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2104  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2105}
2106
2107void SelectionDAGLowering::visitPtrToInt(User &I) {
2108  // What to do depends on the size of the integer and the size of the pointer.
2109  // We can either truncate, zero extend, or no-op, accordingly.
2110  SDOperand N = getValue(I.getOperand(0));
2111  MVT::ValueType SrcVT = N.getValueType();
2112  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2113  SDOperand Result;
2114  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2115    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2116  else
2117    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2118    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2119  setValue(&I, Result);
2120}
2121
2122void SelectionDAGLowering::visitIntToPtr(User &I) {
2123  // What to do depends on the size of the integer and the size of the pointer.
2124  // We can either truncate, zero extend, or no-op, accordingly.
2125  SDOperand N = getValue(I.getOperand(0));
2126  MVT::ValueType SrcVT = N.getValueType();
2127  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2128  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
2129    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2130  else
2131    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2132    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2133}
2134
2135void SelectionDAGLowering::visitBitCast(User &I) {
2136  SDOperand N = getValue(I.getOperand(0));
2137  MVT::ValueType DestVT = TLI.getValueType(I.getType());
2138  if (DestVT == MVT::Vector) {
2139    // This is a cast to a vector from something else.
2140    // Get information about the output vector.
2141    const VectorType *DestTy = cast<VectorType>(I.getType());
2142    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2143    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
2144                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
2145                             DAG.getValueType(EltVT)));
2146    return;
2147  }
2148  MVT::ValueType SrcVT = N.getValueType();
2149  if (SrcVT == MVT::Vector) {
2150    // This is a cast from a vctor to something else.
2151    // Get information about the input vector.
2152    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
2153    return;
2154  }
2155
2156  // BitCast assures us that source and destination are the same size so this
2157  // is either a BIT_CONVERT or a no-op.
2158  if (DestVT != N.getValueType())
2159    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2160  else
2161    setValue(&I, N); // noop cast.
2162}
2163
2164void SelectionDAGLowering::visitInsertElement(User &I) {
2165  SDOperand InVec = getValue(I.getOperand(0));
2166  SDOperand InVal = getValue(I.getOperand(1));
2167  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2168                                getValue(I.getOperand(2)));
2169
2170  SDOperand Num = *(InVec.Val->op_end()-2);
2171  SDOperand Typ = *(InVec.Val->op_end()-1);
2172  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
2173                           InVec, InVal, InIdx, Num, Typ));
2174}
2175
2176void SelectionDAGLowering::visitExtractElement(User &I) {
2177  SDOperand InVec = getValue(I.getOperand(0));
2178  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2179                                getValue(I.getOperand(1)));
2180  SDOperand Typ = *(InVec.Val->op_end()-1);
2181  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
2182                           TLI.getValueType(I.getType()), InVec, InIdx));
2183}
2184
2185void SelectionDAGLowering::visitShuffleVector(User &I) {
2186  SDOperand V1   = getValue(I.getOperand(0));
2187  SDOperand V2   = getValue(I.getOperand(1));
2188  SDOperand Mask = getValue(I.getOperand(2));
2189
2190  SDOperand Num = *(V1.Val->op_end()-2);
2191  SDOperand Typ = *(V2.Val->op_end()-1);
2192  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
2193                           V1, V2, Mask, Num, Typ));
2194}
2195
2196
2197void SelectionDAGLowering::visitGetElementPtr(User &I) {
2198  SDOperand N = getValue(I.getOperand(0));
2199  const Type *Ty = I.getOperand(0)->getType();
2200
2201  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2202       OI != E; ++OI) {
2203    Value *Idx = *OI;
2204    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2205      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2206      if (Field) {
2207        // N = N + Offset
2208        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2209        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2210                        getIntPtrConstant(Offset));
2211      }
2212      Ty = StTy->getElementType(Field);
2213    } else {
2214      Ty = cast<SequentialType>(Ty)->getElementType();
2215
2216      // If this is a constant subscript, handle it quickly.
2217      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2218        if (CI->getZExtValue() == 0) continue;
2219        uint64_t Offs =
2220            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2221        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
2222        continue;
2223      }
2224
2225      // N = N + Idx * ElementSize;
2226      uint64_t ElementSize = TD->getTypeSize(Ty);
2227      SDOperand IdxN = getValue(Idx);
2228
2229      // If the index is smaller or larger than intptr_t, truncate or extend
2230      // it.
2231      if (IdxN.getValueType() < N.getValueType()) {
2232        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2233      } else if (IdxN.getValueType() > N.getValueType())
2234        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2235
2236      // If this is a multiply by a power of two, turn it into a shl
2237      // immediately.  This is a very common case.
2238      if (isPowerOf2_64(ElementSize)) {
2239        unsigned Amt = Log2_64(ElementSize);
2240        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2241                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2242        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2243        continue;
2244      }
2245
2246      SDOperand Scale = getIntPtrConstant(ElementSize);
2247      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2248      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2249    }
2250  }
2251  setValue(&I, N);
2252}
2253
2254void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2255  // If this is a fixed sized alloca in the entry block of the function,
2256  // allocate it statically on the stack.
2257  if (FuncInfo.StaticAllocaMap.count(&I))
2258    return;   // getValue will auto-populate this.
2259
2260  const Type *Ty = I.getAllocatedType();
2261  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
2262  unsigned Align =
2263    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2264             I.getAlignment());
2265
2266  SDOperand AllocSize = getValue(I.getArraySize());
2267  MVT::ValueType IntPtr = TLI.getPointerTy();
2268  if (IntPtr < AllocSize.getValueType())
2269    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2270  else if (IntPtr > AllocSize.getValueType())
2271    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2272
2273  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2274                          getIntPtrConstant(TySize));
2275
2276  // Handle alignment.  If the requested alignment is less than or equal to the
2277  // stack alignment, ignore it and round the size of the allocation up to the
2278  // stack alignment size.  If the size is greater than the stack alignment, we
2279  // note this in the DYNAMIC_STACKALLOC node.
2280  unsigned StackAlign =
2281    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2282  if (Align <= StackAlign) {
2283    Align = 0;
2284    // Add SA-1 to the size.
2285    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2286                            getIntPtrConstant(StackAlign-1));
2287    // Mask out the low bits for alignment purposes.
2288    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2289                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2290  }
2291
2292  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
2293  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2294                                                    MVT::Other);
2295  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2296  setValue(&I, DSA);
2297  DAG.setRoot(DSA.getValue(1));
2298
2299  // Inform the Frame Information that we have just allocated a variable-sized
2300  // object.
2301  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2302}
2303
2304void SelectionDAGLowering::visitLoad(LoadInst &I) {
2305  SDOperand Ptr = getValue(I.getOperand(0));
2306
2307  SDOperand Root;
2308  if (I.isVolatile())
2309    Root = getRoot();
2310  else {
2311    // Do not serialize non-volatile loads against each other.
2312    Root = DAG.getRoot();
2313  }
2314
2315  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
2316                           Root, I.isVolatile(), I.getAlignment()));
2317}
2318
2319SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
2320                                            const Value *SV, SDOperand Root,
2321                                            bool isVolatile,
2322                                            unsigned Alignment) {
2323  SDOperand L;
2324  if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
2325    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
2326    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
2327                       DAG.getSrcValue(SV));
2328  } else {
2329    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0,
2330                    isVolatile, Alignment);
2331  }
2332
2333  if (isVolatile)
2334    DAG.setRoot(L.getValue(1));
2335  else
2336    PendingLoads.push_back(L.getValue(1));
2337
2338  return L;
2339}
2340
2341
2342void SelectionDAGLowering::visitStore(StoreInst &I) {
2343  Value *SrcV = I.getOperand(0);
2344  SDOperand Src = getValue(SrcV);
2345  SDOperand Ptr = getValue(I.getOperand(1));
2346  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
2347                           I.isVolatile(), I.getAlignment()));
2348}
2349
2350/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
2351/// access memory and has no other side effects at all.
2352static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
2353#define GET_NO_MEMORY_INTRINSICS
2354#include "llvm/Intrinsics.gen"
2355#undef GET_NO_MEMORY_INTRINSICS
2356  return false;
2357}
2358
2359// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
2360// have any side-effects or if it only reads memory.
2361static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
2362#define GET_SIDE_EFFECT_INFO
2363#include "llvm/Intrinsics.gen"
2364#undef GET_SIDE_EFFECT_INFO
2365  return false;
2366}
2367
2368/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2369/// node.
2370void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2371                                                unsigned Intrinsic) {
2372  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
2373  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
2374
2375  // Build the operand list.
2376  SmallVector<SDOperand, 8> Ops;
2377  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2378    if (OnlyLoad) {
2379      // We don't need to serialize loads against other loads.
2380      Ops.push_back(DAG.getRoot());
2381    } else {
2382      Ops.push_back(getRoot());
2383    }
2384  }
2385
2386  // Add the intrinsic ID as an integer operand.
2387  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2388
2389  // Add all operands of the call to the operand list.
2390  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2391    SDOperand Op = getValue(I.getOperand(i));
2392
2393    // If this is a vector type, force it to the right vector type.
2394    if (Op.getValueType() == MVT::Vector) {
2395      const VectorType *OpTy = cast<VectorType>(I.getOperand(i)->getType());
2396      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
2397
2398      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
2399      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
2400      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
2401    }
2402
2403    assert(TLI.isTypeLegal(Op.getValueType()) &&
2404           "Intrinsic uses a non-legal type?");
2405    Ops.push_back(Op);
2406  }
2407
2408  std::vector<MVT::ValueType> VTs;
2409  if (I.getType() != Type::VoidTy) {
2410    MVT::ValueType VT = TLI.getValueType(I.getType());
2411    if (VT == MVT::Vector) {
2412      const VectorType *DestTy = cast<VectorType>(I.getType());
2413      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
2414
2415      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
2416      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2417    }
2418
2419    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2420    VTs.push_back(VT);
2421  }
2422  if (HasChain)
2423    VTs.push_back(MVT::Other);
2424
2425  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
2426
2427  // Create the node.
2428  SDOperand Result;
2429  if (!HasChain)
2430    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2431                         &Ops[0], Ops.size());
2432  else if (I.getType() != Type::VoidTy)
2433    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2434                         &Ops[0], Ops.size());
2435  else
2436    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2437                         &Ops[0], Ops.size());
2438
2439  if (HasChain) {
2440    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2441    if (OnlyLoad)
2442      PendingLoads.push_back(Chain);
2443    else
2444      DAG.setRoot(Chain);
2445  }
2446  if (I.getType() != Type::VoidTy) {
2447    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2448      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
2449      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
2450                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
2451                           DAG.getValueType(EVT));
2452    }
2453    setValue(&I, Result);
2454  }
2455}
2456
2457/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
2458/// we want to emit this as a call to a named external function, return the name
2459/// otherwise lower it and return null.
2460const char *
2461SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
2462  switch (Intrinsic) {
2463  default:
2464    // By default, turn this into a target intrinsic node.
2465    visitTargetIntrinsic(I, Intrinsic);
2466    return 0;
2467  case Intrinsic::vastart:  visitVAStart(I); return 0;
2468  case Intrinsic::vaend:    visitVAEnd(I); return 0;
2469  case Intrinsic::vacopy:   visitVACopy(I); return 0;
2470  case Intrinsic::returnaddress:
2471    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
2472                             getValue(I.getOperand(1))));
2473    return 0;
2474  case Intrinsic::frameaddress:
2475    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
2476                             getValue(I.getOperand(1))));
2477    return 0;
2478  case Intrinsic::setjmp:
2479    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2480    break;
2481  case Intrinsic::longjmp:
2482    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2483    break;
2484  case Intrinsic::memcpy_i32:
2485  case Intrinsic::memcpy_i64:
2486    visitMemIntrinsic(I, ISD::MEMCPY);
2487    return 0;
2488  case Intrinsic::memset_i32:
2489  case Intrinsic::memset_i64:
2490    visitMemIntrinsic(I, ISD::MEMSET);
2491    return 0;
2492  case Intrinsic::memmove_i32:
2493  case Intrinsic::memmove_i64:
2494    visitMemIntrinsic(I, ISD::MEMMOVE);
2495    return 0;
2496
2497  case Intrinsic::dbg_stoppoint: {
2498    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2499    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2500    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2501      SDOperand Ops[5];
2502
2503      Ops[0] = getRoot();
2504      Ops[1] = getValue(SPI.getLineValue());
2505      Ops[2] = getValue(SPI.getColumnValue());
2506
2507      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2508      assert(DD && "Not a debug information descriptor");
2509      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2510
2511      Ops[3] = DAG.getString(CompileUnit->getFileName());
2512      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2513
2514      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2515    }
2516
2517    return 0;
2518  }
2519  case Intrinsic::dbg_region_start: {
2520    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2521    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2522    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2523      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2524      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2525                              DAG.getConstant(LabelID, MVT::i32)));
2526    }
2527
2528    return 0;
2529  }
2530  case Intrinsic::dbg_region_end: {
2531    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2532    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2533    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2534      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2535      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2536                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2537    }
2538
2539    return 0;
2540  }
2541  case Intrinsic::dbg_func_start: {
2542    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2543    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2544    if (MMI && FSI.getSubprogram() &&
2545        MMI->Verify(FSI.getSubprogram())) {
2546      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2547      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2548                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2549    }
2550
2551    return 0;
2552  }
2553  case Intrinsic::dbg_declare: {
2554    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2555    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2556    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2557      SDOperand AddressOp  = getValue(DI.getAddress());
2558      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2559        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2560    }
2561
2562    return 0;
2563  }
2564
2565  case Intrinsic::eh_exception: {
2566    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2567
2568    if (MMI) {
2569      // Add a label to mark the beginning of the landing pad.  Deletion of the
2570      // landing pad can thus be detected via the MachineModuleInfo.
2571      unsigned LabelID = MMI->addLandingPad(CurMBB);
2572      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
2573                              DAG.getConstant(LabelID, MVT::i32)));
2574
2575      // Mark exception register as live in.
2576      unsigned Reg = TLI.getExceptionAddressRegister();
2577      if (Reg) CurMBB->addLiveIn(Reg);
2578
2579      // Insert the EXCEPTIONADDR instruction.
2580      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2581      SDOperand Ops[1];
2582      Ops[0] = DAG.getRoot();
2583      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2584      setValue(&I, Op);
2585      DAG.setRoot(Op.getValue(1));
2586    } else {
2587      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2588    }
2589    return 0;
2590  }
2591
2592  case Intrinsic::eh_selector:
2593  case Intrinsic::eh_filter:{
2594    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2595
2596    if (MMI) {
2597      // Inform the MachineModuleInfo of the personality for this landing pad.
2598      ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(2));
2599      assert(CE && CE->getOpcode() == Instruction::BitCast &&
2600             isa<Function>(CE->getOperand(0)) &&
2601             "Personality should be a function");
2602      MMI->addPersonality(CurMBB, cast<Function>(CE->getOperand(0)));
2603      if (Intrinsic == Intrinsic::eh_filter)
2604        MMI->setIsFilterLandingPad(CurMBB);
2605
2606      // Gather all the type infos for this landing pad and pass them along to
2607      // MachineModuleInfo.
2608      std::vector<GlobalVariable *> TyInfo;
2609      for (unsigned i = 3, N = I.getNumOperands(); i < N; ++i) {
2610        ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i));
2611        if (CE && CE->getOpcode() == Instruction::BitCast &&
2612            isa<GlobalVariable>(CE->getOperand(0))) {
2613          TyInfo.push_back(cast<GlobalVariable>(CE->getOperand(0)));
2614        } else {
2615          ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i));
2616          assert(CI && CI->getZExtValue() == 0 &&
2617            "TypeInfo must be a global variable typeinfo or NULL");
2618          TyInfo.push_back(NULL);
2619        }
2620      }
2621      MMI->addCatchTypeInfo(CurMBB, TyInfo);
2622
2623      // Mark exception selector register as live in.
2624      unsigned Reg = TLI.getExceptionSelectorRegister();
2625      if (Reg) CurMBB->addLiveIn(Reg);
2626
2627      // Insert the EHSELECTION instruction.
2628      SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2629      SDOperand Ops[2];
2630      Ops[0] = getValue(I.getOperand(1));
2631      Ops[1] = getRoot();
2632      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2633      setValue(&I, Op);
2634      DAG.setRoot(Op.getValue(1));
2635    } else {
2636      setValue(&I, DAG.getConstant(0, MVT::i32));
2637    }
2638
2639    return 0;
2640  }
2641
2642  case Intrinsic::eh_typeid_for: {
2643    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2644
2645    if (MMI) {
2646      // Find the type id for the given typeinfo.
2647      GlobalVariable *GV = NULL;
2648      ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(1));
2649      if (CE && CE->getOpcode() == Instruction::BitCast &&
2650          isa<GlobalVariable>(CE->getOperand(0))) {
2651        GV = cast<GlobalVariable>(CE->getOperand(0));
2652      } else {
2653        ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2654        assert(CI && CI->getZExtValue() == 0 &&
2655          "TypeInfo must be a global variable typeinfo or NULL");
2656        GV = NULL;
2657      }
2658
2659      unsigned TypeID = MMI->getTypeIDFor(GV);
2660      setValue(&I, DAG.getConstant(TypeID, MVT::i32));
2661    } else {
2662      setValue(&I, DAG.getConstant(0, MVT::i32));
2663    }
2664
2665    return 0;
2666  }
2667
2668  case Intrinsic::sqrt_f32:
2669  case Intrinsic::sqrt_f64:
2670    setValue(&I, DAG.getNode(ISD::FSQRT,
2671                             getValue(I.getOperand(1)).getValueType(),
2672                             getValue(I.getOperand(1))));
2673    return 0;
2674  case Intrinsic::powi_f32:
2675  case Intrinsic::powi_f64:
2676    setValue(&I, DAG.getNode(ISD::FPOWI,
2677                             getValue(I.getOperand(1)).getValueType(),
2678                             getValue(I.getOperand(1)),
2679                             getValue(I.getOperand(2))));
2680    return 0;
2681  case Intrinsic::pcmarker: {
2682    SDOperand Tmp = getValue(I.getOperand(1));
2683    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2684    return 0;
2685  }
2686  case Intrinsic::readcyclecounter: {
2687    SDOperand Op = getRoot();
2688    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2689                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2690                                &Op, 1);
2691    setValue(&I, Tmp);
2692    DAG.setRoot(Tmp.getValue(1));
2693    return 0;
2694  }
2695  case Intrinsic::part_select: {
2696    // Currently not implemented: just abort
2697    assert(0 && "part_select intrinsic not implemented");
2698    abort();
2699  }
2700  case Intrinsic::part_set: {
2701    // Currently not implemented: just abort
2702    assert(0 && "part_set intrinsic not implemented");
2703    abort();
2704  }
2705  case Intrinsic::bswap:
2706    setValue(&I, DAG.getNode(ISD::BSWAP,
2707                             getValue(I.getOperand(1)).getValueType(),
2708                             getValue(I.getOperand(1))));
2709    return 0;
2710  case Intrinsic::cttz: {
2711    SDOperand Arg = getValue(I.getOperand(1));
2712    MVT::ValueType Ty = Arg.getValueType();
2713    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
2714    if (Ty < MVT::i32)
2715      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2716    else if (Ty > MVT::i32)
2717      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2718    setValue(&I, result);
2719    return 0;
2720  }
2721  case Intrinsic::ctlz: {
2722    SDOperand Arg = getValue(I.getOperand(1));
2723    MVT::ValueType Ty = Arg.getValueType();
2724    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
2725    if (Ty < MVT::i32)
2726      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2727    else if (Ty > MVT::i32)
2728      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2729    setValue(&I, result);
2730    return 0;
2731  }
2732  case Intrinsic::ctpop: {
2733    SDOperand Arg = getValue(I.getOperand(1));
2734    MVT::ValueType Ty = Arg.getValueType();
2735    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
2736    if (Ty < MVT::i32)
2737      result = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, result);
2738    else if (Ty > MVT::i32)
2739      result = DAG.getNode(ISD::TRUNCATE, MVT::i32, result);
2740    setValue(&I, result);
2741    return 0;
2742  }
2743  case Intrinsic::stacksave: {
2744    SDOperand Op = getRoot();
2745    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2746              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2747    setValue(&I, Tmp);
2748    DAG.setRoot(Tmp.getValue(1));
2749    return 0;
2750  }
2751  case Intrinsic::stackrestore: {
2752    SDOperand Tmp = getValue(I.getOperand(1));
2753    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2754    return 0;
2755  }
2756  case Intrinsic::prefetch:
2757    // FIXME: Currently discarding prefetches.
2758    return 0;
2759  }
2760}
2761
2762
2763void SelectionDAGLowering::LowerCallTo(Instruction &I,
2764                                       const Type *CalledValueTy,
2765                                       unsigned CallingConv,
2766                                       bool IsTailCall,
2767                                       SDOperand Callee, unsigned OpIdx) {
2768  const PointerType *PT = cast<PointerType>(CalledValueTy);
2769  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2770  const ParamAttrsList *Attrs = FTy->getParamAttrs();
2771
2772  TargetLowering::ArgListTy Args;
2773  TargetLowering::ArgListEntry Entry;
2774  Args.reserve(I.getNumOperands());
2775  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2776    Value *Arg = I.getOperand(i);
2777    SDOperand ArgNode = getValue(Arg);
2778    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2779    Entry.isSExt   = Attrs && Attrs->paramHasAttr(i, ParamAttr::SExt);
2780    Entry.isZExt   = Attrs && Attrs->paramHasAttr(i, ParamAttr::ZExt);
2781    Entry.isInReg  = Attrs && Attrs->paramHasAttr(i, ParamAttr::InReg);
2782    Entry.isSRet   = Attrs && Attrs->paramHasAttr(i, ParamAttr::StructRet);
2783    Args.push_back(Entry);
2784  }
2785
2786  std::pair<SDOperand,SDOperand> Result =
2787    TLI.LowerCallTo(getRoot(), I.getType(),
2788                    Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt),
2789                    FTy->isVarArg(), CallingConv, IsTailCall,
2790                    Callee, Args, DAG);
2791  if (I.getType() != Type::VoidTy)
2792    setValue(&I, Result.first);
2793  DAG.setRoot(Result.second);
2794}
2795
2796
2797void SelectionDAGLowering::visitCall(CallInst &I) {
2798  const char *RenameFn = 0;
2799  if (Function *F = I.getCalledFunction()) {
2800    if (F->isDeclaration())
2801      if (unsigned IID = F->getIntrinsicID()) {
2802        RenameFn = visitIntrinsicCall(I, IID);
2803        if (!RenameFn)
2804          return;
2805      } else {    // Not an LLVM intrinsic.
2806        const std::string &Name = F->getName();
2807        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2808          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2809              I.getOperand(1)->getType()->isFloatingPoint() &&
2810              I.getType() == I.getOperand(1)->getType() &&
2811              I.getType() == I.getOperand(2)->getType()) {
2812            SDOperand LHS = getValue(I.getOperand(1));
2813            SDOperand RHS = getValue(I.getOperand(2));
2814            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2815                                     LHS, RHS));
2816            return;
2817          }
2818        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2819          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2820              I.getOperand(1)->getType()->isFloatingPoint() &&
2821              I.getType() == I.getOperand(1)->getType()) {
2822            SDOperand Tmp = getValue(I.getOperand(1));
2823            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2824            return;
2825          }
2826        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2827          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2828              I.getOperand(1)->getType()->isFloatingPoint() &&
2829              I.getType() == I.getOperand(1)->getType()) {
2830            SDOperand Tmp = getValue(I.getOperand(1));
2831            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2832            return;
2833          }
2834        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2835          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2836              I.getOperand(1)->getType()->isFloatingPoint() &&
2837              I.getType() == I.getOperand(1)->getType()) {
2838            SDOperand Tmp = getValue(I.getOperand(1));
2839            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2840            return;
2841          }
2842        }
2843      }
2844  } else if (isa<InlineAsm>(I.getOperand(0))) {
2845    visitInlineAsm(I);
2846    return;
2847  }
2848
2849  SDOperand Callee;
2850  if (!RenameFn)
2851    Callee = getValue(I.getOperand(0));
2852  else
2853    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2854
2855  LowerCallTo(I, I.getCalledValue()->getType(),
2856                 I.getCallingConv(),
2857                 I.isTailCall(),
2858                 Callee,
2859                 1);
2860}
2861
2862
2863SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2864                                        SDOperand &Chain, SDOperand &Flag)const{
2865  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
2866  Chain = Val.getValue(1);
2867  Flag  = Val.getValue(2);
2868
2869  // If the result was expanded, copy from the top part.
2870  if (Regs.size() > 1) {
2871    assert(Regs.size() == 2 &&
2872           "Cannot expand to more than 2 elts yet!");
2873    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
2874    Chain = Hi.getValue(1);
2875    Flag  = Hi.getValue(2);
2876    if (DAG.getTargetLoweringInfo().isLittleEndian())
2877      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
2878    else
2879      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
2880  }
2881
2882  // Otherwise, if the return value was promoted or extended, truncate it to the
2883  // appropriate type.
2884  if (RegVT == ValueVT)
2885    return Val;
2886
2887  if (MVT::isVector(RegVT)) {
2888    assert(ValueVT == MVT::Vector && "Unknown vector conversion!");
2889    return DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Val,
2890                       DAG.getConstant(MVT::getVectorNumElements(RegVT),
2891                                       MVT::i32),
2892                       DAG.getValueType(MVT::getVectorBaseType(RegVT)));
2893  }
2894
2895  if (MVT::isInteger(RegVT)) {
2896    if (ValueVT < RegVT)
2897      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
2898    else
2899      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
2900  }
2901
2902  assert(MVT::isFloatingPoint(RegVT) && MVT::isFloatingPoint(ValueVT));
2903  return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
2904}
2905
2906/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2907/// specified value into the registers specified by this object.  This uses
2908/// Chain/Flag as the input and updates them for the output Chain/Flag.
2909void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2910                                 SDOperand &Chain, SDOperand &Flag,
2911                                 MVT::ValueType PtrVT) const {
2912  if (Regs.size() == 1) {
2913    // If there is a single register and the types differ, this must be
2914    // a promotion.
2915    if (RegVT != ValueVT) {
2916      if (MVT::isVector(RegVT)) {
2917        assert(Val.getValueType() == MVT::Vector &&"Not a vector-vector cast?");
2918        Val = DAG.getNode(ISD::VBIT_CONVERT, RegVT, Val);
2919      } else if (MVT::isInteger(RegVT) && MVT::isInteger(Val.getValueType())) {
2920        if (RegVT < ValueVT)
2921          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
2922        else
2923          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
2924      } else if (MVT::isFloatingPoint(RegVT) &&
2925                 MVT::isFloatingPoint(Val.getValueType())) {
2926        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
2927      } else if (MVT::getSizeInBits(RegVT) ==
2928                 MVT::getSizeInBits(Val.getValueType())) {
2929        Val = DAG.getNode(ISD::BIT_CONVERT, RegVT, Val);
2930      } else {
2931        assert(0 && "Unknown mismatch!");
2932      }
2933    }
2934    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
2935    Flag = Chain.getValue(1);
2936  } else {
2937    std::vector<unsigned> R(Regs);
2938    if (!DAG.getTargetLoweringInfo().isLittleEndian())
2939      std::reverse(R.begin(), R.end());
2940
2941    for (unsigned i = 0, e = R.size(); i != e; ++i) {
2942      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
2943                                   DAG.getConstant(i, PtrVT));
2944      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
2945      Flag = Chain.getValue(1);
2946    }
2947  }
2948}
2949
2950/// AddInlineAsmOperands - Add this value to the specified inlineasm node
2951/// operand list.  This adds the code marker and includes the number of
2952/// values added into it.
2953void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
2954                                        std::vector<SDOperand> &Ops) const {
2955  MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
2956  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
2957  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
2958    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
2959}
2960
2961/// isAllocatableRegister - If the specified register is safe to allocate,
2962/// i.e. it isn't a stack pointer or some other special register, return the
2963/// register class for the register.  Otherwise, return null.
2964static const TargetRegisterClass *
2965isAllocatableRegister(unsigned Reg, MachineFunction &MF,
2966                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
2967  MVT::ValueType FoundVT = MVT::Other;
2968  const TargetRegisterClass *FoundRC = 0;
2969  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
2970       E = MRI->regclass_end(); RCI != E; ++RCI) {
2971    MVT::ValueType ThisVT = MVT::Other;
2972
2973    const TargetRegisterClass *RC = *RCI;
2974    // If none of the the value types for this register class are valid, we
2975    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2976    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2977         I != E; ++I) {
2978      if (TLI.isTypeLegal(*I)) {
2979        // If we have already found this register in a different register class,
2980        // choose the one with the largest VT specified.  For example, on
2981        // PowerPC, we favor f64 register classes over f32.
2982        if (FoundVT == MVT::Other ||
2983            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
2984          ThisVT = *I;
2985          break;
2986        }
2987      }
2988    }
2989
2990    if (ThisVT == MVT::Other) continue;
2991
2992    // NOTE: This isn't ideal.  In particular, this might allocate the
2993    // frame pointer in functions that need it (due to them not being taken
2994    // out of allocation, because a variable sized allocation hasn't been seen
2995    // yet).  This is a slight code pessimization, but should still work.
2996    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
2997         E = RC->allocation_order_end(MF); I != E; ++I)
2998      if (*I == Reg) {
2999        // We found a matching register class.  Keep looking at others in case
3000        // we find one with larger registers that this physreg is also in.
3001        FoundRC = RC;
3002        FoundVT = ThisVT;
3003        break;
3004      }
3005  }
3006  return FoundRC;
3007}
3008
3009RegsForValue SelectionDAGLowering::
3010GetRegistersForValue(const std::string &ConstrCode,
3011                     MVT::ValueType VT, bool isOutReg, bool isInReg,
3012                     std::set<unsigned> &OutputRegs,
3013                     std::set<unsigned> &InputRegs) {
3014  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
3015    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
3016  std::vector<unsigned> Regs;
3017
3018  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
3019  MVT::ValueType RegVT;
3020  MVT::ValueType ValueVT = VT;
3021
3022  // If this is a constraint for a specific physical register, like {r17},
3023  // assign it now.
3024  if (PhysReg.first) {
3025    if (VT == MVT::Other)
3026      ValueVT = *PhysReg.second->vt_begin();
3027
3028    // Get the actual register value type.  This is important, because the user
3029    // may have asked for (e.g.) the AX register in i32 type.  We need to
3030    // remember that AX is actually i16 to get the right extension.
3031    RegVT = *PhysReg.second->vt_begin();
3032
3033    // This is a explicit reference to a physical register.
3034    Regs.push_back(PhysReg.first);
3035
3036    // If this is an expanded reference, add the rest of the regs to Regs.
3037    if (NumRegs != 1) {
3038      TargetRegisterClass::iterator I = PhysReg.second->begin();
3039      TargetRegisterClass::iterator E = PhysReg.second->end();
3040      for (; *I != PhysReg.first; ++I)
3041        assert(I != E && "Didn't find reg!");
3042
3043      // Already added the first reg.
3044      --NumRegs; ++I;
3045      for (; NumRegs; --NumRegs, ++I) {
3046        assert(I != E && "Ran out of registers to allocate!");
3047        Regs.push_back(*I);
3048      }
3049    }
3050    return RegsForValue(Regs, RegVT, ValueVT);
3051  }
3052
3053  // Otherwise, if this was a reference to an LLVM register class, create vregs
3054  // for this reference.
3055  std::vector<unsigned> RegClassRegs;
3056  if (PhysReg.second) {
3057    // If this is an early clobber or tied register, our regalloc doesn't know
3058    // how to maintain the constraint.  If it isn't, go ahead and create vreg
3059    // and let the regalloc do the right thing.
3060    if (!isOutReg || !isInReg) {
3061      RegVT = *PhysReg.second->vt_begin();
3062
3063      if (VT == MVT::Other)
3064        ValueVT = RegVT;
3065
3066      // Create the appropriate number of virtual registers.
3067      SSARegMap *RegMap = DAG.getMachineFunction().getSSARegMap();
3068      for (; NumRegs; --NumRegs)
3069        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
3070
3071      return RegsForValue(Regs, RegVT, ValueVT);
3072    }
3073
3074    // Otherwise, we can't allocate it.  Let the code below figure out how to
3075    // maintain these constraints.
3076    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
3077
3078  } else {
3079    // This is a reference to a register class that doesn't directly correspond
3080    // to an LLVM register class.  Allocate NumRegs consecutive, available,
3081    // registers from the class.
3082    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
3083  }
3084
3085  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
3086  MachineFunction &MF = *CurMBB->getParent();
3087  unsigned NumAllocated = 0;
3088  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
3089    unsigned Reg = RegClassRegs[i];
3090    // See if this register is available.
3091    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
3092        (isInReg  && InputRegs.count(Reg))) {    // Already used.
3093      // Make sure we find consecutive registers.
3094      NumAllocated = 0;
3095      continue;
3096    }
3097
3098    // Check to see if this register is allocatable (i.e. don't give out the
3099    // stack pointer).
3100    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
3101    if (!RC) {
3102      // Make sure we find consecutive registers.
3103      NumAllocated = 0;
3104      continue;
3105    }
3106
3107    // Okay, this register is good, we can use it.
3108    ++NumAllocated;
3109
3110    // If we allocated enough consecutive registers, succeed.
3111    if (NumAllocated == NumRegs) {
3112      unsigned RegStart = (i-NumAllocated)+1;
3113      unsigned RegEnd   = i+1;
3114      // Mark all of the allocated registers used.
3115      for (unsigned i = RegStart; i != RegEnd; ++i) {
3116        unsigned Reg = RegClassRegs[i];
3117        Regs.push_back(Reg);
3118        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
3119        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
3120      }
3121
3122      return RegsForValue(Regs, *RC->vt_begin(), VT);
3123    }
3124  }
3125
3126  // Otherwise, we couldn't allocate enough registers for this.
3127  return RegsForValue();
3128}
3129
3130/// getConstraintGenerality - Return an integer indicating how general CT is.
3131static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3132  switch (CT) {
3133  default: assert(0 && "Unknown constraint type!");
3134  case TargetLowering::C_Other:
3135  case TargetLowering::C_Unknown:
3136    return 0;
3137  case TargetLowering::C_Register:
3138    return 1;
3139  case TargetLowering::C_RegisterClass:
3140    return 2;
3141  case TargetLowering::C_Memory:
3142    return 3;
3143  }
3144}
3145
3146static std::string GetMostGeneralConstraint(std::vector<std::string> &C,
3147                                            const TargetLowering &TLI) {
3148  assert(!C.empty() && "Must have at least one constraint");
3149  if (C.size() == 1) return C[0];
3150
3151  std::string *Current = &C[0];
3152  // If we have multiple constraints, try to pick the most general one ahead
3153  // of time.  This isn't a wonderful solution, but handles common cases.
3154  TargetLowering::ConstraintType Flavor = TLI.getConstraintType(Current[0]);
3155  for (unsigned j = 1, e = C.size(); j != e; ++j) {
3156    TargetLowering::ConstraintType ThisFlavor = TLI.getConstraintType(C[j]);
3157    if (getConstraintGenerality(ThisFlavor) >
3158        getConstraintGenerality(Flavor)) {
3159      // This constraint letter is more general than the previous one,
3160      // use it.
3161      Flavor = ThisFlavor;
3162      Current = &C[j];
3163    }
3164  }
3165  return *Current;
3166}
3167
3168
3169/// visitInlineAsm - Handle a call to an InlineAsm object.
3170///
3171void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
3172  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
3173
3174  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
3175                                                 MVT::Other);
3176
3177  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
3178  std::vector<MVT::ValueType> ConstraintVTs;
3179
3180  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
3181  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
3182  /// if it is a def of that register.
3183  std::vector<SDOperand> AsmNodeOperands;
3184  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
3185  AsmNodeOperands.push_back(AsmStr);
3186
3187  SDOperand Chain = getRoot();
3188  SDOperand Flag;
3189
3190  // We fully assign registers here at isel time.  This is not optimal, but
3191  // should work.  For register classes that correspond to LLVM classes, we
3192  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
3193  // over the constraints, collecting fixed registers that we know we can't use.
3194  std::set<unsigned> OutputRegs, InputRegs;
3195  unsigned OpNum = 1;
3196  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
3197    std::string ConstraintCode =
3198      GetMostGeneralConstraint(Constraints[i].Codes, TLI);
3199
3200    MVT::ValueType OpVT;
3201
3202    // Compute the value type for each operand and add it to ConstraintVTs.
3203    switch (Constraints[i].Type) {
3204    case InlineAsm::isOutput:
3205      if (!Constraints[i].isIndirectOutput) {
3206        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3207        OpVT = TLI.getValueType(I.getType());
3208      } else {
3209        const Type *OpTy = I.getOperand(OpNum)->getType();
3210        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
3211        OpNum++;  // Consumes a call operand.
3212      }
3213      break;
3214    case InlineAsm::isInput:
3215      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
3216      OpNum++;  // Consumes a call operand.
3217      break;
3218    case InlineAsm::isClobber:
3219      OpVT = MVT::Other;
3220      break;
3221    }
3222
3223    ConstraintVTs.push_back(OpVT);
3224
3225    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
3226      continue;  // Not assigned a fixed reg.
3227
3228    // Build a list of regs that this operand uses.  This always has a single
3229    // element for promoted/expanded operands.
3230    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
3231                                             false, false,
3232                                             OutputRegs, InputRegs);
3233
3234    switch (Constraints[i].Type) {
3235    case InlineAsm::isOutput:
3236      // We can't assign any other output to this register.
3237      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
3238      // If this is an early-clobber output, it cannot be assigned to the same
3239      // value as the input reg.
3240      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
3241        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
3242      break;
3243    case InlineAsm::isInput:
3244      // We can't assign any other input to this register.
3245      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
3246      break;
3247    case InlineAsm::isClobber:
3248      // Clobbered regs cannot be used as inputs or outputs.
3249      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
3250      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
3251      break;
3252    }
3253  }
3254
3255  // Loop over all of the inputs, copying the operand values into the
3256  // appropriate registers and processing the output regs.
3257  RegsForValue RetValRegs;
3258  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
3259  OpNum = 1;
3260
3261  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
3262    std::string ConstraintCode =
3263      GetMostGeneralConstraint(Constraints[i].Codes, TLI);
3264
3265    switch (Constraints[i].Type) {
3266    case InlineAsm::isOutput: {
3267      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
3268      if (ConstraintCode.size() == 1)   // not a physreg name.
3269        CTy = TLI.getConstraintType(ConstraintCode);
3270
3271      if (CTy == TargetLowering::C_Memory) {
3272        // Memory output.
3273        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
3274
3275        // Check that the operand (the address to store to) isn't a float.
3276        if (!MVT::isInteger(InOperandVal.getValueType()))
3277          assert(0 && "MATCH FAIL!");
3278
3279        if (!Constraints[i].isIndirectOutput)
3280          assert(0 && "MATCH FAIL!");
3281
3282        OpNum++;  // Consumes a call operand.
3283
3284        // Extend/truncate to the right pointer type if needed.
3285        MVT::ValueType PtrType = TLI.getPointerTy();
3286        if (InOperandVal.getValueType() < PtrType)
3287          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
3288        else if (InOperandVal.getValueType() > PtrType)
3289          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
3290
3291        // Add information to the INLINEASM node to know about this output.
3292        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3293        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
3294        AsmNodeOperands.push_back(InOperandVal);
3295        break;
3296      }
3297
3298      // Otherwise, this is a register output.
3299      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
3300
3301      // If this is an early-clobber output, or if there is an input
3302      // constraint that matches this, we need to reserve the input register
3303      // so no other inputs allocate to it.
3304      bool UsesInputRegister = false;
3305      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
3306        UsesInputRegister = true;
3307
3308      // Copy the output from the appropriate register.  Find a register that
3309      // we can use.
3310      RegsForValue Regs =
3311        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
3312                             true, UsesInputRegister,
3313                             OutputRegs, InputRegs);
3314      if (Regs.Regs.empty()) {
3315        cerr << "Couldn't allocate output reg for contraint '"
3316             << ConstraintCode << "'!\n";
3317        exit(1);
3318      }
3319
3320      if (!Constraints[i].isIndirectOutput) {
3321        assert(RetValRegs.Regs.empty() &&
3322               "Cannot have multiple output constraints yet!");
3323        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
3324        RetValRegs = Regs;
3325      } else {
3326        IndirectStoresToEmit.push_back(std::make_pair(Regs,
3327                                                      I.getOperand(OpNum)));
3328        OpNum++;  // Consumes a call operand.
3329      }
3330
3331      // Add information to the INLINEASM node to know that this register is
3332      // set.
3333      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
3334      break;
3335    }
3336    case InlineAsm::isInput: {
3337      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
3338      OpNum++;  // Consumes a call operand.
3339
3340      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
3341        // If this is required to match an output register we have already set,
3342        // just use its register.
3343        unsigned OperandNo = atoi(ConstraintCode.c_str());
3344
3345        // Scan until we find the definition we already emitted of this operand.
3346        // When we find it, create a RegsForValue operand.
3347        unsigned CurOp = 2;  // The first operand.
3348        for (; OperandNo; --OperandNo) {
3349          // Advance to the next operand.
3350          unsigned NumOps =
3351            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3352          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
3353                  (NumOps & 7) == 4 /*MEM*/) &&
3354                 "Skipped past definitions?");
3355          CurOp += (NumOps>>3)+1;
3356        }
3357
3358        unsigned NumOps =
3359          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
3360        if ((NumOps & 7) == 2 /*REGDEF*/) {
3361          // Add NumOps>>3 registers to MatchedRegs.
3362          RegsForValue MatchedRegs;
3363          MatchedRegs.ValueVT = InOperandVal.getValueType();
3364          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
3365          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
3366            unsigned Reg =
3367              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
3368            MatchedRegs.Regs.push_back(Reg);
3369          }
3370
3371          // Use the produced MatchedRegs object to
3372          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
3373                                    TLI.getPointerTy());
3374          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
3375          break;
3376        } else {
3377          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
3378          assert(0 && "matching constraints for memory operands unimp");
3379        }
3380      }
3381
3382      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
3383      if (ConstraintCode.size() == 1)   // not a physreg name.
3384        CTy = TLI.getConstraintType(ConstraintCode);
3385
3386      if (CTy == TargetLowering::C_Other) {
3387        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
3388                                                       ConstraintCode[0], DAG);
3389        if (!InOperandVal.Val) {
3390          cerr << "Invalid operand for inline asm constraint '"
3391               << ConstraintCode << "'!\n";
3392          exit(1);
3393        }
3394
3395        // Add information to the INLINEASM node to know about this input.
3396        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
3397        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
3398        AsmNodeOperands.push_back(InOperandVal);
3399        break;
3400      } else if (CTy == TargetLowering::C_Memory) {
3401        // Memory input.
3402
3403        // If the operand is a float, spill to a constant pool entry to get its
3404        // address.
3405        if (ConstantFP *Val = dyn_cast<ConstantFP>(I.getOperand(OpNum-1)))
3406          InOperandVal = DAG.getConstantPool(Val, TLI.getPointerTy());
3407
3408        if (!MVT::isInteger(InOperandVal.getValueType())) {
3409          cerr << "Match failed, cannot handle this yet!\n";
3410          InOperandVal.Val->dump();
3411          exit(1);
3412        }
3413
3414        // Extend/truncate to the right pointer type if needed.
3415        MVT::ValueType PtrType = TLI.getPointerTy();
3416        if (InOperandVal.getValueType() < PtrType)
3417          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
3418        else if (InOperandVal.getValueType() > PtrType)
3419          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
3420
3421        // Add information to the INLINEASM node to know about this input.
3422        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
3423        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
3424        AsmNodeOperands.push_back(InOperandVal);
3425        break;
3426      }
3427
3428      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
3429
3430      // Copy the input into the appropriate registers.
3431      RegsForValue InRegs =
3432        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
3433                             false, true, OutputRegs, InputRegs);
3434      // FIXME: should be match fail.
3435      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
3436
3437      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
3438
3439      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
3440      break;
3441    }
3442    case InlineAsm::isClobber: {
3443      RegsForValue ClobberedRegs =
3444        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
3445                             OutputRegs, InputRegs);
3446      // Add the clobbered value to the operand list, so that the register
3447      // allocator is aware that the physreg got clobbered.
3448      if (!ClobberedRegs.Regs.empty())
3449        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
3450      break;
3451    }
3452    }
3453  }
3454
3455  // Finish up input operands.
3456  AsmNodeOperands[0] = Chain;
3457  if (Flag.Val) AsmNodeOperands.push_back(Flag);
3458
3459  Chain = DAG.getNode(ISD::INLINEASM,
3460                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
3461                      &AsmNodeOperands[0], AsmNodeOperands.size());
3462  Flag = Chain.getValue(1);
3463
3464  // If this asm returns a register value, copy the result from that register
3465  // and set it as the value of the call.
3466  if (!RetValRegs.Regs.empty()) {
3467    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, Flag);
3468
3469    // If the result of the inline asm is a vector, it may have the wrong
3470    // width/num elts.  Make sure to convert it to the right type with
3471    // vbit_convert.
3472    if (Val.getValueType() == MVT::Vector) {
3473      const VectorType *VTy = cast<VectorType>(I.getType());
3474      unsigned DesiredNumElts = VTy->getNumElements();
3475      MVT::ValueType DesiredEltVT = TLI.getValueType(VTy->getElementType());
3476
3477      Val = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Val,
3478                        DAG.getConstant(DesiredNumElts, MVT::i32),
3479                        DAG.getValueType(DesiredEltVT));
3480    }
3481
3482    setValue(&I, Val);
3483  }
3484
3485  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
3486
3487  // Process indirect outputs, first output all of the flagged copies out of
3488  // physregs.
3489  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
3490    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
3491    Value *Ptr = IndirectStoresToEmit[i].second;
3492    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
3493    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
3494  }
3495
3496  // Emit the non-flagged stores from the physregs.
3497  SmallVector<SDOperand, 8> OutChains;
3498  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
3499    OutChains.push_back(DAG.getStore(Chain,  StoresToEmit[i].first,
3500                                    getValue(StoresToEmit[i].second),
3501                                    StoresToEmit[i].second, 0));
3502  if (!OutChains.empty())
3503    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3504                        &OutChains[0], OutChains.size());
3505  DAG.setRoot(Chain);
3506}
3507
3508
3509void SelectionDAGLowering::visitMalloc(MallocInst &I) {
3510  SDOperand Src = getValue(I.getOperand(0));
3511
3512  MVT::ValueType IntPtr = TLI.getPointerTy();
3513
3514  if (IntPtr < Src.getValueType())
3515    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
3516  else if (IntPtr > Src.getValueType())
3517    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
3518
3519  // Scale the source by the type size.
3520  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
3521  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
3522                    Src, getIntPtrConstant(ElementSize));
3523
3524  TargetLowering::ArgListTy Args;
3525  TargetLowering::ArgListEntry Entry;
3526  Entry.Node = Src;
3527  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3528  Args.push_back(Entry);
3529
3530  std::pair<SDOperand,SDOperand> Result =
3531    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
3532                    DAG.getExternalSymbol("malloc", IntPtr),
3533                    Args, DAG);
3534  setValue(&I, Result.first);  // Pointers always fit in registers
3535  DAG.setRoot(Result.second);
3536}
3537
3538void SelectionDAGLowering::visitFree(FreeInst &I) {
3539  TargetLowering::ArgListTy Args;
3540  TargetLowering::ArgListEntry Entry;
3541  Entry.Node = getValue(I.getOperand(0));
3542  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3543  Args.push_back(Entry);
3544  MVT::ValueType IntPtr = TLI.getPointerTy();
3545  std::pair<SDOperand,SDOperand> Result =
3546    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3547                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3548  DAG.setRoot(Result.second);
3549}
3550
3551// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3552// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3553// instructions are special in various ways, which require special support to
3554// insert.  The specified MachineInstr is created but not inserted into any
3555// basic blocks, and the scheduler passes ownership of it to this method.
3556MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3557                                                       MachineBasicBlock *MBB) {
3558  cerr << "If a target marks an instruction with "
3559       << "'usesCustomDAGSchedInserter', it must implement "
3560       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3561  abort();
3562  return 0;
3563}
3564
3565void SelectionDAGLowering::visitVAStart(CallInst &I) {
3566  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3567                          getValue(I.getOperand(1)),
3568                          DAG.getSrcValue(I.getOperand(1))));
3569}
3570
3571void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3572  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3573                             getValue(I.getOperand(0)),
3574                             DAG.getSrcValue(I.getOperand(0)));
3575  setValue(&I, V);
3576  DAG.setRoot(V.getValue(1));
3577}
3578
3579void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3580  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3581                          getValue(I.getOperand(1)),
3582                          DAG.getSrcValue(I.getOperand(1))));
3583}
3584
3585void SelectionDAGLowering::visitVACopy(CallInst &I) {
3586  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3587                          getValue(I.getOperand(1)),
3588                          getValue(I.getOperand(2)),
3589                          DAG.getSrcValue(I.getOperand(1)),
3590                          DAG.getSrcValue(I.getOperand(2))));
3591}
3592
3593/// ExpandScalarFormalArgs - Recursively expand the formal_argument node, either
3594/// bit_convert it or join a pair of them with a BUILD_PAIR when appropriate.
3595static SDOperand ExpandScalarFormalArgs(MVT::ValueType VT, SDNode *Arg,
3596                                        unsigned &i, SelectionDAG &DAG,
3597                                        TargetLowering &TLI) {
3598  if (TLI.getTypeAction(VT) != TargetLowering::Expand)
3599    return SDOperand(Arg, i++);
3600
3601  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3602  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3603  if (NumVals == 1) {
3604    return DAG.getNode(ISD::BIT_CONVERT, VT,
3605                       ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI));
3606  } else if (NumVals == 2) {
3607    SDOperand Lo = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
3608    SDOperand Hi = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
3609    if (!TLI.isLittleEndian())
3610      std::swap(Lo, Hi);
3611    return DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
3612  } else {
3613    // Value scalarized into many values.  Unimp for now.
3614    assert(0 && "Cannot expand i64 -> i16 yet!");
3615  }
3616  return SDOperand();
3617}
3618
3619/// TargetLowering::LowerArguments - This is the default LowerArguments
3620/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3621/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3622/// integrated into SDISel.
3623std::vector<SDOperand>
3624TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3625  const FunctionType *FTy = F.getFunctionType();
3626  const ParamAttrsList *Attrs = FTy->getParamAttrs();
3627  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3628  std::vector<SDOperand> Ops;
3629  Ops.push_back(DAG.getRoot());
3630  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3631  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3632
3633  // Add one result value for each formal argument.
3634  std::vector<MVT::ValueType> RetVals;
3635  unsigned j = 1;
3636  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3637       I != E; ++I, ++j) {
3638    MVT::ValueType VT = getValueType(I->getType());
3639    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3640    unsigned OriginalAlignment =
3641      getTargetData()->getABITypeAlignment(I->getType());
3642
3643    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3644    // that is zero extended!
3645    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::ZExt))
3646      Flags &= ~(ISD::ParamFlags::SExt);
3647    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::SExt))
3648      Flags |= ISD::ParamFlags::SExt;
3649    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::InReg))
3650      Flags |= ISD::ParamFlags::InReg;
3651    if (Attrs && Attrs->paramHasAttr(j, ParamAttr::StructRet))
3652      Flags |= ISD::ParamFlags::StructReturn;
3653    Flags |= (OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs);
3654
3655    switch (getTypeAction(VT)) {
3656    default: assert(0 && "Unknown type action!");
3657    case Legal:
3658      RetVals.push_back(VT);
3659      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3660      break;
3661    case Promote:
3662      RetVals.push_back(getTypeToTransformTo(VT));
3663      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3664      break;
3665    case Expand:
3666      if (VT != MVT::Vector) {
3667        // If this is a large integer, it needs to be broken up into small
3668        // integers.  Figure out what the destination type is and how many small
3669        // integers it turns into.
3670        MVT::ValueType NVT = getTypeToExpandTo(VT);
3671        unsigned NumVals = getNumElements(VT);
3672        for (unsigned i = 0; i != NumVals; ++i) {
3673          RetVals.push_back(NVT);
3674          // if it isn't first piece, alignment must be 1
3675          if (i > 0)
3676            Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3677              (1 << ISD::ParamFlags::OrigAlignmentOffs);
3678          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3679        }
3680      } else {
3681        // Otherwise, this is a vector type.  We only support legal vectors
3682        // right now.
3683        unsigned NumElems = cast<VectorType>(I->getType())->getNumElements();
3684        const Type *EltTy = cast<VectorType>(I->getType())->getElementType();
3685
3686        // Figure out if there is a Packed type corresponding to this Vector
3687        // type.  If so, convert to the vector type.
3688        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3689        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3690          RetVals.push_back(TVT);
3691          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3692        } else {
3693          assert(0 && "Don't support illegal by-val vector arguments yet!");
3694        }
3695      }
3696      break;
3697    }
3698  }
3699
3700  RetVals.push_back(MVT::Other);
3701
3702  // Create the node.
3703  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3704                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3705                               &Ops[0], Ops.size()).Val;
3706
3707  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
3708
3709  // Set up the return result vector.
3710  Ops.clear();
3711  unsigned i = 0;
3712  unsigned Idx = 1;
3713  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3714      ++I, ++Idx) {
3715    MVT::ValueType VT = getValueType(I->getType());
3716
3717    switch (getTypeAction(VT)) {
3718    default: assert(0 && "Unknown type action!");
3719    case Legal:
3720      Ops.push_back(SDOperand(Result, i++));
3721      break;
3722    case Promote: {
3723      SDOperand Op(Result, i++);
3724      if (MVT::isInteger(VT)) {
3725        if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::SExt))
3726          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3727                           DAG.getValueType(VT));
3728        else if (Attrs && Attrs->paramHasAttr(Idx, ParamAttr::ZExt))
3729          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3730                           DAG.getValueType(VT));
3731        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3732      } else {
3733        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3734        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3735      }
3736      Ops.push_back(Op);
3737      break;
3738    }
3739    case Expand:
3740      if (VT != MVT::Vector) {
3741        // If this is a large integer or a floating point node that needs to be
3742        // expanded, it needs to be reassembled from small integers.  Figure out
3743        // what the source elt type is and how many small integers it is.
3744        Ops.push_back(ExpandScalarFormalArgs(VT, Result, i, DAG, *this));
3745      } else {
3746        // Otherwise, this is a vector type.  We only support legal vectors
3747        // right now.
3748        const VectorType *PTy = cast<VectorType>(I->getType());
3749        unsigned NumElems = PTy->getNumElements();
3750        const Type *EltTy = PTy->getElementType();
3751
3752        // Figure out if there is a Packed type corresponding to this Vector
3753        // type.  If so, convert to the vector type.
3754        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3755        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3756          SDOperand N = SDOperand(Result, i++);
3757          // Handle copies from generic vectors to registers.
3758          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
3759                          DAG.getConstant(NumElems, MVT::i32),
3760                          DAG.getValueType(getValueType(EltTy)));
3761          Ops.push_back(N);
3762        } else {
3763          assert(0 && "Don't support illegal by-val vector arguments yet!");
3764          abort();
3765        }
3766      }
3767      break;
3768    }
3769  }
3770  return Ops;
3771}
3772
3773
3774/// ExpandScalarCallArgs - Recursively expand call argument node by
3775/// bit_converting it or extract a pair of elements from the larger  node.
3776static void ExpandScalarCallArgs(MVT::ValueType VT, SDOperand Arg,
3777                                 unsigned Flags,
3778                                 SmallVector<SDOperand, 32> &Ops,
3779                                 SelectionDAG &DAG,
3780                                 TargetLowering &TLI,
3781                                 bool isFirst = true) {
3782
3783  if (TLI.getTypeAction(VT) != TargetLowering::Expand) {
3784    // if it isn't first piece, alignment must be 1
3785    if (!isFirst)
3786      Flags = (Flags & (~ISD::ParamFlags::OrigAlignment)) |
3787        (1 << ISD::ParamFlags::OrigAlignmentOffs);
3788    Ops.push_back(Arg);
3789    Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3790    return;
3791  }
3792
3793  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3794  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3795  if (NumVals == 1) {
3796    Arg = DAG.getNode(ISD::BIT_CONVERT, EVT, Arg);
3797    ExpandScalarCallArgs(EVT, Arg, Flags, Ops, DAG, TLI, isFirst);
3798  } else if (NumVals == 2) {
3799    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3800                               DAG.getConstant(0, TLI.getPointerTy()));
3801    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3802                               DAG.getConstant(1, TLI.getPointerTy()));
3803    if (!TLI.isLittleEndian())
3804      std::swap(Lo, Hi);
3805    ExpandScalarCallArgs(EVT, Lo, Flags, Ops, DAG, TLI, isFirst);
3806    ExpandScalarCallArgs(EVT, Hi, Flags, Ops, DAG, TLI, false);
3807  } else {
3808    // Value scalarized into many values.  Unimp for now.
3809    assert(0 && "Cannot expand i64 -> i16 yet!");
3810  }
3811}
3812
3813/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3814/// implementation, which just inserts an ISD::CALL node, which is later custom
3815/// lowered by the target to something concrete.  FIXME: When all targets are
3816/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3817std::pair<SDOperand, SDOperand>
3818TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3819                            bool RetTyIsSigned, bool isVarArg,
3820                            unsigned CallingConv, bool isTailCall,
3821                            SDOperand Callee,
3822                            ArgListTy &Args, SelectionDAG &DAG) {
3823  SmallVector<SDOperand, 32> Ops;
3824  Ops.push_back(Chain);   // Op#0 - Chain
3825  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3826  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3827  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3828  Ops.push_back(Callee);
3829
3830  // Handle all of the outgoing arguments.
3831  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3832    MVT::ValueType VT = getValueType(Args[i].Ty);
3833    SDOperand Op = Args[i].Node;
3834    unsigned Flags = ISD::ParamFlags::NoFlagSet;
3835    unsigned OriginalAlignment =
3836      getTargetData()->getABITypeAlignment(Args[i].Ty);
3837
3838    if (Args[i].isSExt)
3839      Flags |= ISD::ParamFlags::SExt;
3840    if (Args[i].isZExt)
3841      Flags |= ISD::ParamFlags::ZExt;
3842    if (Args[i].isInReg)
3843      Flags |= ISD::ParamFlags::InReg;
3844    if (Args[i].isSRet)
3845      Flags |= ISD::ParamFlags::StructReturn;
3846    Flags |= OriginalAlignment << ISD::ParamFlags::OrigAlignmentOffs;
3847
3848    switch (getTypeAction(VT)) {
3849    default: assert(0 && "Unknown type action!");
3850    case Legal:
3851      Ops.push_back(Op);
3852      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3853      break;
3854    case Promote:
3855      if (MVT::isInteger(VT)) {
3856        unsigned ExtOp;
3857        if (Args[i].isSExt)
3858          ExtOp = ISD::SIGN_EXTEND;
3859        else if (Args[i].isZExt)
3860          ExtOp = ISD::ZERO_EXTEND;
3861        else
3862          ExtOp = ISD::ANY_EXTEND;
3863        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3864      } else {
3865        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3866        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
3867      }
3868      Ops.push_back(Op);
3869      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3870      break;
3871    case Expand:
3872      if (VT != MVT::Vector) {
3873        // If this is a large integer, it needs to be broken down into small
3874        // integers.  Figure out what the source elt type is and how many small
3875        // integers it is.
3876        ExpandScalarCallArgs(VT, Op, Flags, Ops, DAG, *this);
3877      } else {
3878        // Otherwise, this is a vector type.  We only support legal vectors
3879        // right now.
3880        const VectorType *PTy = cast<VectorType>(Args[i].Ty);
3881        unsigned NumElems = PTy->getNumElements();
3882        const Type *EltTy = PTy->getElementType();
3883
3884        // Figure out if there is a Packed type corresponding to this Vector
3885        // type.  If so, convert to the vector type.
3886        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3887        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3888          // Insert a VBIT_CONVERT of the MVT::Vector type to the vector type.
3889          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
3890          Ops.push_back(Op);
3891          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3892        } else {
3893          assert(0 && "Don't support illegal by-val vector call args yet!");
3894          abort();
3895        }
3896      }
3897      break;
3898    }
3899  }
3900
3901  // Figure out the result value types.
3902  SmallVector<MVT::ValueType, 4> RetTys;
3903
3904  if (RetTy != Type::VoidTy) {
3905    MVT::ValueType VT = getValueType(RetTy);
3906    switch (getTypeAction(VT)) {
3907    default: assert(0 && "Unknown type action!");
3908    case Legal:
3909      RetTys.push_back(VT);
3910      break;
3911    case Promote:
3912      RetTys.push_back(getTypeToTransformTo(VT));
3913      break;
3914    case Expand:
3915      if (VT != MVT::Vector) {
3916        // If this is a large integer, it needs to be reassembled from small
3917        // integers.  Figure out what the source elt type is and how many small
3918        // integers it is.
3919        MVT::ValueType NVT = getTypeToExpandTo(VT);
3920        unsigned NumVals = getNumElements(VT);
3921        for (unsigned i = 0; i != NumVals; ++i)
3922          RetTys.push_back(NVT);
3923      } else {
3924        // Otherwise, this is a vector type.  We only support legal vectors
3925        // right now.
3926        const VectorType *PTy = cast<VectorType>(RetTy);
3927        unsigned NumElems = PTy->getNumElements();
3928        const Type *EltTy = PTy->getElementType();
3929
3930        // Figure out if there is a Packed type corresponding to this Vector
3931        // type.  If so, convert to the vector type.
3932        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3933        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3934          RetTys.push_back(TVT);
3935        } else {
3936          assert(0 && "Don't support illegal by-val vector call results yet!");
3937          abort();
3938        }
3939      }
3940    }
3941  }
3942
3943  RetTys.push_back(MVT::Other);  // Always has a chain.
3944
3945  // Finally, create the CALL node.
3946  SDOperand Res = DAG.getNode(ISD::CALL,
3947                              DAG.getVTList(&RetTys[0], RetTys.size()),
3948                              &Ops[0], Ops.size());
3949
3950  // This returns a pair of operands.  The first element is the
3951  // return value for the function (if RetTy is not VoidTy).  The second
3952  // element is the outgoing token chain.
3953  SDOperand ResVal;
3954  if (RetTys.size() != 1) {
3955    MVT::ValueType VT = getValueType(RetTy);
3956    if (RetTys.size() == 2) {
3957      ResVal = Res;
3958
3959      // If this value was promoted, truncate it down.
3960      if (ResVal.getValueType() != VT) {
3961        if (VT == MVT::Vector) {
3962          // Insert a VBIT_CONVERT to convert from the packed result type to the
3963          // MVT::Vector type.
3964          unsigned NumElems = cast<VectorType>(RetTy)->getNumElements();
3965          const Type *EltTy = cast<VectorType>(RetTy)->getElementType();
3966
3967          // Figure out if there is a Packed type corresponding to this Vector
3968          // type.  If so, convert to the vector type.
3969          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy),NumElems);
3970          if (TVT != MVT::Other && isTypeLegal(TVT)) {
3971            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
3972            // "N x PTyElementVT" MVT::Vector type.
3973            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
3974                                 DAG.getConstant(NumElems, MVT::i32),
3975                                 DAG.getValueType(getValueType(EltTy)));
3976          } else {
3977            abort();
3978          }
3979        } else if (MVT::isInteger(VT)) {
3980          unsigned AssertOp = ISD::AssertSext;
3981          if (!RetTyIsSigned)
3982            AssertOp = ISD::AssertZext;
3983          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
3984                               DAG.getValueType(VT));
3985          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
3986        } else {
3987          assert(MVT::isFloatingPoint(VT));
3988          if (getTypeAction(VT) == Expand)
3989            ResVal = DAG.getNode(ISD::BIT_CONVERT, VT, ResVal);
3990          else
3991            ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
3992        }
3993      }
3994    } else if (RetTys.size() == 3) {
3995      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
3996                           Res.getValue(0), Res.getValue(1));
3997
3998    } else {
3999      assert(0 && "Case not handled yet!");
4000    }
4001  }
4002
4003  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
4004}
4005
4006SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4007  assert(0 && "LowerOperation not implemented for this target!");
4008  abort();
4009  return SDOperand();
4010}
4011
4012SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4013                                                 SelectionDAG &DAG) {
4014  assert(0 && "CustomPromoteOperation not implemented for this target!");
4015  abort();
4016  return SDOperand();
4017}
4018
4019/// getMemsetValue - Vectorized representation of the memset value
4020/// operand.
4021static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
4022                                SelectionDAG &DAG) {
4023  MVT::ValueType CurVT = VT;
4024  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
4025    uint64_t Val   = C->getValue() & 255;
4026    unsigned Shift = 8;
4027    while (CurVT != MVT::i8) {
4028      Val = (Val << Shift) | Val;
4029      Shift <<= 1;
4030      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4031    }
4032    return DAG.getConstant(Val, VT);
4033  } else {
4034    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
4035    unsigned Shift = 8;
4036    while (CurVT != MVT::i8) {
4037      Value =
4038        DAG.getNode(ISD::OR, VT,
4039                    DAG.getNode(ISD::SHL, VT, Value,
4040                                DAG.getConstant(Shift, MVT::i8)), Value);
4041      Shift <<= 1;
4042      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
4043    }
4044
4045    return Value;
4046  }
4047}
4048
4049/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
4050/// used when a memcpy is turned into a memset when the source is a constant
4051/// string ptr.
4052static SDOperand getMemsetStringVal(MVT::ValueType VT,
4053                                    SelectionDAG &DAG, TargetLowering &TLI,
4054                                    std::string &Str, unsigned Offset) {
4055  uint64_t Val = 0;
4056  unsigned MSB = getSizeInBits(VT) / 8;
4057  if (TLI.isLittleEndian())
4058    Offset = Offset + MSB - 1;
4059  for (unsigned i = 0; i != MSB; ++i) {
4060    Val = (Val << 8) | (unsigned char)Str[Offset];
4061    Offset += TLI.isLittleEndian() ? -1 : 1;
4062  }
4063  return DAG.getConstant(Val, VT);
4064}
4065
4066/// getMemBasePlusOffset - Returns base and offset node for the
4067static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
4068                                      SelectionDAG &DAG, TargetLowering &TLI) {
4069  MVT::ValueType VT = Base.getValueType();
4070  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
4071}
4072
4073/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
4074/// to replace the memset / memcpy is below the threshold. It also returns the
4075/// types of the sequence of  memory ops to perform memset / memcpy.
4076static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
4077                                     unsigned Limit, uint64_t Size,
4078                                     unsigned Align, TargetLowering &TLI) {
4079  MVT::ValueType VT;
4080
4081  if (TLI.allowsUnalignedMemoryAccesses()) {
4082    VT = MVT::i64;
4083  } else {
4084    switch (Align & 7) {
4085    case 0:
4086      VT = MVT::i64;
4087      break;
4088    case 4:
4089      VT = MVT::i32;
4090      break;
4091    case 2:
4092      VT = MVT::i16;
4093      break;
4094    default:
4095      VT = MVT::i8;
4096      break;
4097    }
4098  }
4099
4100  MVT::ValueType LVT = MVT::i64;
4101  while (!TLI.isTypeLegal(LVT))
4102    LVT = (MVT::ValueType)((unsigned)LVT - 1);
4103  assert(MVT::isInteger(LVT));
4104
4105  if (VT > LVT)
4106    VT = LVT;
4107
4108  unsigned NumMemOps = 0;
4109  while (Size != 0) {
4110    unsigned VTSize = getSizeInBits(VT) / 8;
4111    while (VTSize > Size) {
4112      VT = (MVT::ValueType)((unsigned)VT - 1);
4113      VTSize >>= 1;
4114    }
4115    assert(MVT::isInteger(VT));
4116
4117    if (++NumMemOps > Limit)
4118      return false;
4119    MemOps.push_back(VT);
4120    Size -= VTSize;
4121  }
4122
4123  return true;
4124}
4125
4126void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
4127  SDOperand Op1 = getValue(I.getOperand(1));
4128  SDOperand Op2 = getValue(I.getOperand(2));
4129  SDOperand Op3 = getValue(I.getOperand(3));
4130  SDOperand Op4 = getValue(I.getOperand(4));
4131  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
4132  if (Align == 0) Align = 1;
4133
4134  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
4135    std::vector<MVT::ValueType> MemOps;
4136
4137    // Expand memset / memcpy to a series of load / store ops
4138    // if the size operand falls below a certain threshold.
4139    SmallVector<SDOperand, 8> OutChains;
4140    switch (Op) {
4141    default: break;  // Do nothing for now.
4142    case ISD::MEMSET: {
4143      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
4144                                   Size->getValue(), Align, TLI)) {
4145        unsigned NumMemOps = MemOps.size();
4146        unsigned Offset = 0;
4147        for (unsigned i = 0; i < NumMemOps; i++) {
4148          MVT::ValueType VT = MemOps[i];
4149          unsigned VTSize = getSizeInBits(VT) / 8;
4150          SDOperand Value = getMemsetValue(Op2, VT, DAG);
4151          SDOperand Store = DAG.getStore(getRoot(), Value,
4152                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
4153                                         I.getOperand(1), Offset);
4154          OutChains.push_back(Store);
4155          Offset += VTSize;
4156        }
4157      }
4158      break;
4159    }
4160    case ISD::MEMCPY: {
4161      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
4162                                   Size->getValue(), Align, TLI)) {
4163        unsigned NumMemOps = MemOps.size();
4164        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
4165        GlobalAddressSDNode *G = NULL;
4166        std::string Str;
4167        bool CopyFromStr = false;
4168
4169        if (Op2.getOpcode() == ISD::GlobalAddress)
4170          G = cast<GlobalAddressSDNode>(Op2);
4171        else if (Op2.getOpcode() == ISD::ADD &&
4172                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
4173                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
4174          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
4175          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
4176        }
4177        if (G) {
4178          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
4179          if (GV && GV->isConstant()) {
4180            Str = GV->getStringValue(false);
4181            if (!Str.empty()) {
4182              CopyFromStr = true;
4183              SrcOff += SrcDelta;
4184            }
4185          }
4186        }
4187
4188        for (unsigned i = 0; i < NumMemOps; i++) {
4189          MVT::ValueType VT = MemOps[i];
4190          unsigned VTSize = getSizeInBits(VT) / 8;
4191          SDOperand Value, Chain, Store;
4192
4193          if (CopyFromStr) {
4194            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
4195            Chain = getRoot();
4196            Store =
4197              DAG.getStore(Chain, Value,
4198                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4199                           I.getOperand(1), DstOff);
4200          } else {
4201            Value = DAG.getLoad(VT, getRoot(),
4202                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
4203                        I.getOperand(2), SrcOff);
4204            Chain = Value.getValue(1);
4205            Store =
4206              DAG.getStore(Chain, Value,
4207                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
4208                           I.getOperand(1), DstOff);
4209          }
4210          OutChains.push_back(Store);
4211          SrcOff += VTSize;
4212          DstOff += VTSize;
4213        }
4214      }
4215      break;
4216    }
4217    }
4218
4219    if (!OutChains.empty()) {
4220      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4221                  &OutChains[0], OutChains.size()));
4222      return;
4223    }
4224  }
4225
4226  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
4227}
4228
4229//===----------------------------------------------------------------------===//
4230// SelectionDAGISel code
4231//===----------------------------------------------------------------------===//
4232
4233unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
4234  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
4235}
4236
4237void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4238  AU.addRequired<AliasAnalysis>();
4239  AU.setPreservesAll();
4240}
4241
4242
4243
4244bool SelectionDAGISel::runOnFunction(Function &Fn) {
4245  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4246  RegMap = MF.getSSARegMap();
4247  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4248
4249  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4250
4251  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4252    SelectBasicBlock(I, MF, FuncInfo);
4253
4254  // Add function live-ins to entry block live-in set.
4255  BasicBlock *EntryBB = &Fn.getEntryBlock();
4256  BB = FuncInfo.MBBMap[EntryBB];
4257  if (!MF.livein_empty())
4258    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4259           E = MF.livein_end(); I != E; ++I)
4260      BB->addLiveIn(I->first);
4261
4262  return true;
4263}
4264
4265SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4266                                                           unsigned Reg) {
4267  SDOperand Op = getValue(V);
4268  assert((Op.getOpcode() != ISD::CopyFromReg ||
4269          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4270         "Copy from a reg to the same reg!");
4271
4272  // If this type is not legal, we must make sure to not create an invalid
4273  // register use.
4274  MVT::ValueType SrcVT = Op.getValueType();
4275  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
4276  if (SrcVT == DestVT) {
4277    return DAG.getCopyToReg(getRoot(), Reg, Op);
4278  } else if (SrcVT == MVT::Vector) {
4279    // Handle copies from generic vectors to registers.
4280    MVT::ValueType PTyElementVT, PTyLegalElementVT;
4281    unsigned NE = TLI.getVectorTypeBreakdown(cast<VectorType>(V->getType()),
4282                                             PTyElementVT, PTyLegalElementVT);
4283
4284    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
4285    // MVT::Vector type.
4286    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
4287                     DAG.getConstant(NE, MVT::i32),
4288                     DAG.getValueType(PTyElementVT));
4289
4290    // Loop over all of the elements of the resultant vector,
4291    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
4292    // copying them into output registers.
4293    SmallVector<SDOperand, 8> OutChains;
4294    SDOperand Root = getRoot();
4295    for (unsigned i = 0; i != NE; ++i) {
4296      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
4297                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
4298      if (PTyElementVT == PTyLegalElementVT) {
4299        // Elements are legal.
4300        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
4301      } else if (PTyLegalElementVT > PTyElementVT) {
4302        // Elements are promoted.
4303        if (MVT::isFloatingPoint(PTyLegalElementVT))
4304          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
4305        else
4306          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
4307        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
4308      } else {
4309        // Elements are expanded.
4310        // The src value is expanded into multiple registers.
4311        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
4312                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
4313        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
4314                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
4315        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
4316        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
4317      }
4318    }
4319    return DAG.getNode(ISD::TokenFactor, MVT::Other,
4320                       &OutChains[0], OutChains.size());
4321  } else if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) {
4322    // The src value is promoted to the register.
4323    if (MVT::isFloatingPoint(SrcVT))
4324      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
4325    else
4326      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
4327    return DAG.getCopyToReg(getRoot(), Reg, Op);
4328  } else  {
4329    DestVT = TLI.getTypeToExpandTo(SrcVT);
4330    unsigned NumVals = TLI.getNumElements(SrcVT);
4331    if (NumVals == 1)
4332      return DAG.getCopyToReg(getRoot(), Reg,
4333                              DAG.getNode(ISD::BIT_CONVERT, DestVT, Op));
4334    assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
4335    // The src value is expanded into multiple registers.
4336    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
4337                               Op, DAG.getConstant(0, TLI.getPointerTy()));
4338    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
4339                               Op, DAG.getConstant(1, TLI.getPointerTy()));
4340    Op = DAG.getCopyToReg(getRoot(), Reg, Lo);
4341    return DAG.getCopyToReg(Op, Reg+1, Hi);
4342  }
4343}
4344
4345void SelectionDAGISel::
4346LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4347               std::vector<SDOperand> &UnorderedChains) {
4348  // If this is the entry block, emit arguments.
4349  Function &F = *LLVMBB->getParent();
4350  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4351  SDOperand OldRoot = SDL.DAG.getRoot();
4352  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4353
4354  unsigned a = 0;
4355  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4356       AI != E; ++AI, ++a)
4357    if (!AI->use_empty()) {
4358      SDL.setValue(AI, Args[a]);
4359
4360      // If this argument is live outside of the entry block, insert a copy from
4361      // whereever we got it to the vreg that other BB's will reference it as.
4362      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4363      if (VMI != FuncInfo.ValueMap.end()) {
4364        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4365        UnorderedChains.push_back(Copy);
4366      }
4367    }
4368
4369  // Finally, if the target has anything special to do, allow it to do so.
4370  // FIXME: this should insert code into the DAG!
4371  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4372}
4373
4374void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4375       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4376                                         FunctionLoweringInfo &FuncInfo) {
4377  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
4378
4379  std::vector<SDOperand> UnorderedChains;
4380
4381  // Lower any arguments needed in this block if this is the entry block.
4382  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
4383    LowerArguments(LLVMBB, SDL, UnorderedChains);
4384
4385  BB = FuncInfo.MBBMap[LLVMBB];
4386  SDL.setCurrentBasicBlock(BB);
4387
4388  // Lower all of the non-terminator instructions.
4389  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4390       I != E; ++I)
4391    SDL.visit(*I);
4392
4393  // Lower call part of invoke.
4394  InvokeInst *Invoke = dyn_cast<InvokeInst>(LLVMBB->getTerminator());
4395  if (Invoke) SDL.visitInvoke(*Invoke, false);
4396
4397  // Ensure that all instructions which are used outside of their defining
4398  // blocks are available as virtual registers.
4399  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4400    if (!I->use_empty() && !isa<PHINode>(I)) {
4401      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4402      if (VMI != FuncInfo.ValueMap.end())
4403        UnorderedChains.push_back(
4404                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4405    }
4406
4407  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4408  // ensure constants are generated when needed.  Remember the virtual registers
4409  // that need to be added to the Machine PHI nodes as input.  We cannot just
4410  // directly add them, because expansion might result in multiple MBB's for one
4411  // BB.  As such, the start of the BB might correspond to a different MBB than
4412  // the end.
4413  //
4414  TerminatorInst *TI = LLVMBB->getTerminator();
4415
4416  // Emit constants only once even if used by multiple PHI nodes.
4417  std::map<Constant*, unsigned> ConstantsOut;
4418
4419  // Vector bool would be better, but vector<bool> is really slow.
4420  std::vector<unsigned char> SuccsHandled;
4421  if (TI->getNumSuccessors())
4422    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4423
4424  // Check successor nodes PHI nodes that expect a constant to be available from
4425  // this block.
4426  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4427    BasicBlock *SuccBB = TI->getSuccessor(succ);
4428    if (!isa<PHINode>(SuccBB->begin())) continue;
4429    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4430
4431    // If this terminator has multiple identical successors (common for
4432    // switches), only handle each succ once.
4433    unsigned SuccMBBNo = SuccMBB->getNumber();
4434    if (SuccsHandled[SuccMBBNo]) continue;
4435    SuccsHandled[SuccMBBNo] = true;
4436
4437    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4438    PHINode *PN;
4439
4440    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4441    // nodes and Machine PHI nodes, but the incoming operands have not been
4442    // emitted yet.
4443    for (BasicBlock::iterator I = SuccBB->begin();
4444         (PN = dyn_cast<PHINode>(I)); ++I) {
4445      // Ignore dead phi's.
4446      if (PN->use_empty()) continue;
4447
4448      unsigned Reg;
4449      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4450
4451      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4452        unsigned &RegOut = ConstantsOut[C];
4453        if (RegOut == 0) {
4454          RegOut = FuncInfo.CreateRegForValue(C);
4455          UnorderedChains.push_back(
4456                           SDL.CopyValueToVirtualRegister(C, RegOut));
4457        }
4458        Reg = RegOut;
4459      } else {
4460        Reg = FuncInfo.ValueMap[PHIOp];
4461        if (Reg == 0) {
4462          assert(isa<AllocaInst>(PHIOp) &&
4463                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4464                 "Didn't codegen value into a register!??");
4465          Reg = FuncInfo.CreateRegForValue(PHIOp);
4466          UnorderedChains.push_back(
4467                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4468        }
4469      }
4470
4471      // Remember that this register needs to added to the machine PHI node as
4472      // the input for this MBB.
4473      MVT::ValueType VT = TLI.getValueType(PN->getType());
4474      unsigned NumElements;
4475      if (VT != MVT::Vector)
4476        NumElements = TLI.getNumElements(VT);
4477      else {
4478        MVT::ValueType VT1,VT2;
4479        NumElements =
4480          TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
4481                                     VT1, VT2);
4482      }
4483      for (unsigned i = 0, e = NumElements; i != e; ++i)
4484        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4485    }
4486  }
4487  ConstantsOut.clear();
4488
4489  // Turn all of the unordered chains into one factored node.
4490  if (!UnorderedChains.empty()) {
4491    SDOperand Root = SDL.getRoot();
4492    if (Root.getOpcode() != ISD::EntryToken) {
4493      unsigned i = 0, e = UnorderedChains.size();
4494      for (; i != e; ++i) {
4495        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4496        if (UnorderedChains[i].Val->getOperand(0) == Root)
4497          break;  // Don't add the root if we already indirectly depend on it.
4498      }
4499
4500      if (i == e)
4501        UnorderedChains.push_back(Root);
4502    }
4503    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4504                            &UnorderedChains[0], UnorderedChains.size()));
4505  }
4506
4507  // Lower the terminator after the copies are emitted.
4508  if (Invoke) {
4509    // Just the branch part of invoke.
4510    SDL.visitInvoke(*Invoke, true);
4511  } else {
4512    SDL.visit(*LLVMBB->getTerminator());
4513  }
4514
4515  // Copy over any CaseBlock records that may now exist due to SwitchInst
4516  // lowering, as well as any jump table information.
4517  SwitchCases.clear();
4518  SwitchCases = SDL.SwitchCases;
4519  JTCases.clear();
4520  JTCases = SDL.JTCases;
4521  BitTestCases.clear();
4522  BitTestCases = SDL.BitTestCases;
4523
4524  // Make sure the root of the DAG is up-to-date.
4525  DAG.setRoot(SDL.getRoot());
4526}
4527
4528void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4529  // Get alias analysis for load/store combining.
4530  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4531
4532  // Run the DAG combiner in pre-legalize mode.
4533  DAG.Combine(false, AA);
4534
4535  DOUT << "Lowered selection DAG:\n";
4536  DEBUG(DAG.dump());
4537
4538  // Second step, hack on the DAG until it only uses operations and types that
4539  // the target supports.
4540  DAG.Legalize();
4541
4542  DOUT << "Legalized selection DAG:\n";
4543  DEBUG(DAG.dump());
4544
4545  // Run the DAG combiner in post-legalize mode.
4546  DAG.Combine(true, AA);
4547
4548  if (ViewISelDAGs) DAG.viewGraph();
4549
4550  // Third, instruction select all of the operations to machine code, adding the
4551  // code to the MachineBasicBlock.
4552  InstructionSelectBasicBlock(DAG);
4553
4554  DOUT << "Selected machine code:\n";
4555  DEBUG(BB->dump());
4556}
4557
4558void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4559                                        FunctionLoweringInfo &FuncInfo) {
4560  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4561  {
4562    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4563    CurDAG = &DAG;
4564
4565    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4566    // types that are not supported by the target.
4567    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4568
4569    // Second step, emit the lowered DAG as machine code.
4570    CodeGenAndEmitDAG(DAG);
4571  }
4572
4573  DOUT << "Total amount of phi nodes to update: "
4574       << PHINodesToUpdate.size() << "\n";
4575  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
4576          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
4577               << ", " << PHINodesToUpdate[i].second << ")\n";);
4578
4579  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4580  // PHI nodes in successors.
4581  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
4582    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4583      MachineInstr *PHI = PHINodesToUpdate[i].first;
4584      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4585             "This is not a machine PHI node that we are updating!");
4586      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4587      PHI->addMachineBasicBlockOperand(BB);
4588    }
4589    return;
4590  }
4591
4592  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
4593    // Lower header first, if it wasn't already lowered
4594    if (!BitTestCases[i].Emitted) {
4595      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4596      CurDAG = &HSDAG;
4597      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4598      // Set the current basic block to the mbb we wish to insert the code into
4599      BB = BitTestCases[i].Parent;
4600      HSDL.setCurrentBasicBlock(BB);
4601      // Emit the code
4602      HSDL.visitBitTestHeader(BitTestCases[i]);
4603      HSDAG.setRoot(HSDL.getRoot());
4604      CodeGenAndEmitDAG(HSDAG);
4605    }
4606
4607    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4608      SelectionDAG BSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4609      CurDAG = &BSDAG;
4610      SelectionDAGLowering BSDL(BSDAG, TLI, FuncInfo);
4611      // Set the current basic block to the mbb we wish to insert the code into
4612      BB = BitTestCases[i].Cases[j].ThisBB;
4613      BSDL.setCurrentBasicBlock(BB);
4614      // Emit the code
4615      if (j+1 != ej)
4616        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
4617                              BitTestCases[i].Reg,
4618                              BitTestCases[i].Cases[j]);
4619      else
4620        BSDL.visitBitTestCase(BitTestCases[i].Default,
4621                              BitTestCases[i].Reg,
4622                              BitTestCases[i].Cases[j]);
4623
4624
4625      BSDAG.setRoot(BSDL.getRoot());
4626      CodeGenAndEmitDAG(BSDAG);
4627    }
4628
4629    // Update PHI Nodes
4630    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4631      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4632      MachineBasicBlock *PHIBB = PHI->getParent();
4633      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4634             "This is not a machine PHI node that we are updating!");
4635      // This is "default" BB. We have two jumps to it. From "header" BB and
4636      // from last "case" BB.
4637      if (PHIBB == BitTestCases[i].Default) {
4638        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4639        PHI->addMachineBasicBlockOperand(BitTestCases[i].Parent);
4640        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4641        PHI->addMachineBasicBlockOperand(BitTestCases[i].Cases.back().ThisBB);
4642      }
4643      // One of "cases" BB.
4644      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
4645        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
4646        if (cBB->succ_end() !=
4647            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
4648          PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4649          PHI->addMachineBasicBlockOperand(cBB);
4650        }
4651      }
4652    }
4653  }
4654
4655  // If the JumpTable record is filled in, then we need to emit a jump table.
4656  // Updating the PHI nodes is tricky in this case, since we need to determine
4657  // whether the PHI is a successor of the range check MBB or the jump table MBB
4658  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
4659    // Lower header first, if it wasn't already lowered
4660    if (!JTCases[i].first.Emitted) {
4661      SelectionDAG HSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4662      CurDAG = &HSDAG;
4663      SelectionDAGLowering HSDL(HSDAG, TLI, FuncInfo);
4664      // Set the current basic block to the mbb we wish to insert the code into
4665      BB = JTCases[i].first.HeaderBB;
4666      HSDL.setCurrentBasicBlock(BB);
4667      // Emit the code
4668      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
4669      HSDAG.setRoot(HSDL.getRoot());
4670      CodeGenAndEmitDAG(HSDAG);
4671    }
4672
4673    SelectionDAG JSDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4674    CurDAG = &JSDAG;
4675    SelectionDAGLowering JSDL(JSDAG, TLI, FuncInfo);
4676    // Set the current basic block to the mbb we wish to insert the code into
4677    BB = JTCases[i].second.MBB;
4678    JSDL.setCurrentBasicBlock(BB);
4679    // Emit the code
4680    JSDL.visitJumpTable(JTCases[i].second);
4681    JSDAG.setRoot(JSDL.getRoot());
4682    CodeGenAndEmitDAG(JSDAG);
4683
4684    // Update PHI Nodes
4685    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4686      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4687      MachineBasicBlock *PHIBB = PHI->getParent();
4688      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4689             "This is not a machine PHI node that we are updating!");
4690      // "default" BB. We can go there only from header BB.
4691      if (PHIBB == JTCases[i].second.Default) {
4692        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4693        PHI->addMachineBasicBlockOperand(JTCases[i].first.HeaderBB);
4694      }
4695      // JT BB. Just iterate over successors here
4696      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4697        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4698        PHI->addMachineBasicBlockOperand(BB);
4699      }
4700    }
4701  }
4702
4703  // If the switch block involved a branch to one of the actual successors, we
4704  // need to update PHI nodes in that block.
4705  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4706    MachineInstr *PHI = PHINodesToUpdate[i].first;
4707    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4708           "This is not a machine PHI node that we are updating!");
4709    if (BB->isSuccessor(PHI->getParent())) {
4710      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4711      PHI->addMachineBasicBlockOperand(BB);
4712    }
4713  }
4714
4715  // If we generated any switch lowering information, build and codegen any
4716  // additional DAGs necessary.
4717  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4718    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4719    CurDAG = &SDAG;
4720    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4721
4722    // Set the current basic block to the mbb we wish to insert the code into
4723    BB = SwitchCases[i].ThisBB;
4724    SDL.setCurrentBasicBlock(BB);
4725
4726    // Emit the code
4727    SDL.visitSwitchCase(SwitchCases[i]);
4728    SDAG.setRoot(SDL.getRoot());
4729    CodeGenAndEmitDAG(SDAG);
4730
4731    // Handle any PHI nodes in successors of this chunk, as if we were coming
4732    // from the original BB before switch expansion.  Note that PHI nodes can
4733    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4734    // handle them the right number of times.
4735    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4736      for (MachineBasicBlock::iterator Phi = BB->begin();
4737           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4738        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4739        for (unsigned pn = 0; ; ++pn) {
4740          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4741          if (PHINodesToUpdate[pn].first == Phi) {
4742            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4743            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4744            break;
4745          }
4746        }
4747      }
4748
4749      // Don't process RHS if same block as LHS.
4750      if (BB == SwitchCases[i].FalseBB)
4751        SwitchCases[i].FalseBB = 0;
4752
4753      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4754      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4755      SwitchCases[i].FalseBB = 0;
4756    }
4757    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4758  }
4759}
4760
4761
4762//===----------------------------------------------------------------------===//
4763/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4764/// target node in the graph.
4765void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4766  if (ViewSchedDAGs) DAG.viewGraph();
4767
4768  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4769
4770  if (!Ctor) {
4771    Ctor = ISHeuristic;
4772    RegisterScheduler::setDefault(Ctor);
4773  }
4774
4775  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4776  BB = SL->Run();
4777  delete SL;
4778}
4779
4780
4781HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4782  return new HazardRecognizer();
4783}
4784
4785//===----------------------------------------------------------------------===//
4786// Helper functions used by the generated instruction selector.
4787//===----------------------------------------------------------------------===//
4788// Calls to these methods are generated by tblgen.
4789
4790/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4791/// the dag combiner simplified the 255, we still want to match.  RHS is the
4792/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4793/// specified in the .td file (e.g. 255).
4794bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4795                                    int64_t DesiredMaskS) {
4796  uint64_t ActualMask = RHS->getValue();
4797  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4798
4799  // If the actual mask exactly matches, success!
4800  if (ActualMask == DesiredMask)
4801    return true;
4802
4803  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4804  if (ActualMask & ~DesiredMask)
4805    return false;
4806
4807  // Otherwise, the DAG Combiner may have proven that the value coming in is
4808  // either already zero or is not demanded.  Check for known zero input bits.
4809  uint64_t NeededMask = DesiredMask & ~ActualMask;
4810  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
4811    return true;
4812
4813  // TODO: check to see if missing bits are just not demanded.
4814
4815  // Otherwise, this pattern doesn't match.
4816  return false;
4817}
4818
4819/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4820/// the dag combiner simplified the 255, we still want to match.  RHS is the
4821/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4822/// specified in the .td file (e.g. 255).
4823bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4824                                    int64_t DesiredMaskS) {
4825  uint64_t ActualMask = RHS->getValue();
4826  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4827
4828  // If the actual mask exactly matches, success!
4829  if (ActualMask == DesiredMask)
4830    return true;
4831
4832  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4833  if (ActualMask & ~DesiredMask)
4834    return false;
4835
4836  // Otherwise, the DAG Combiner may have proven that the value coming in is
4837  // either already zero or is not demanded.  Check for known zero input bits.
4838  uint64_t NeededMask = DesiredMask & ~ActualMask;
4839
4840  uint64_t KnownZero, KnownOne;
4841  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4842
4843  // If all the missing bits in the or are already known to be set, match!
4844  if ((NeededMask & KnownOne) == NeededMask)
4845    return true;
4846
4847  // TODO: check to see if missing bits are just not demanded.
4848
4849  // Otherwise, this pattern doesn't match.
4850  return false;
4851}
4852
4853
4854/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4855/// by tblgen.  Others should not call it.
4856void SelectionDAGISel::
4857SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4858  std::vector<SDOperand> InOps;
4859  std::swap(InOps, Ops);
4860
4861  Ops.push_back(InOps[0]);  // input chain.
4862  Ops.push_back(InOps[1]);  // input asm string.
4863
4864  unsigned i = 2, e = InOps.size();
4865  if (InOps[e-1].getValueType() == MVT::Flag)
4866    --e;  // Don't process a flag operand if it is here.
4867
4868  while (i != e) {
4869    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4870    if ((Flags & 7) != 4 /*MEM*/) {
4871      // Just skip over this operand, copying the operands verbatim.
4872      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4873      i += (Flags >> 3) + 1;
4874    } else {
4875      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4876      // Otherwise, this is a memory operand.  Ask the target to select it.
4877      std::vector<SDOperand> SelOps;
4878      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4879        cerr << "Could not match memory address.  Inline asm failure!\n";
4880        exit(1);
4881      }
4882
4883      // Add this to the output node.
4884      MVT::ValueType IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4885      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4886                                          IntPtrTy));
4887      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4888      i += 2;
4889    }
4890  }
4891
4892  // Add the flag input back if present.
4893  if (e != InOps.size())
4894    Ops.push_back(InOps.back());
4895}
4896