SelectionDAGISel.cpp revision f19591c91ec39496d58bf4835640d25abc026da9
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/CodeGen/ScheduleDAG.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/ParameterAttributes.h"
29#include "llvm/CodeGen/Collector.h"
30#include "llvm/CodeGen/MachineDebugInfoDesc.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/SchedulerRegistry.h"
38#include "llvm/CodeGen/SelectionDAG.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include "llvm/Target/TargetData.h"
41#include "llvm/Target/TargetFrameInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Support/MathExtras.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Compiler.h"
49#include <algorithm>
50using namespace llvm;
51
52static cl::opt<bool>
53EnableValueProp("enable-value-prop", cl::Hidden, cl::init(false));
54
55
56#ifndef NDEBUG
57static cl::opt<bool>
58ViewISelDAGs("view-isel-dags", cl::Hidden,
59          cl::desc("Pop up a window to show isel dags as they are selected"));
60static cl::opt<bool>
61ViewSchedDAGs("view-sched-dags", cl::Hidden,
62          cl::desc("Pop up a window to show sched dags as they are processed"));
63static cl::opt<bool>
64ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
65      cl::desc("Pop up a window to show SUnit dags after they are processed"));
66#else
67static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0, ViewSUnitDAGs = 0;
68#endif
69
70//===---------------------------------------------------------------------===//
71///
72/// RegisterScheduler class - Track the registration of instruction schedulers.
73///
74//===---------------------------------------------------------------------===//
75MachinePassRegistry RegisterScheduler::Registry;
76
77//===---------------------------------------------------------------------===//
78///
79/// ISHeuristic command line option for instruction schedulers.
80///
81//===---------------------------------------------------------------------===//
82static cl::opt<RegisterScheduler::FunctionPassCtor, false,
83               RegisterPassParser<RegisterScheduler> >
84ISHeuristic("pre-RA-sched",
85            cl::init(&createDefaultScheduler),
86            cl::desc("Instruction schedulers available (before register"
87                     " allocation):"));
88
89static RegisterScheduler
90defaultListDAGScheduler("default", "  Best scheduler for the target",
91                        createDefaultScheduler);
92
93namespace { struct SDISelAsmOperandInfo; }
94
95/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
96/// insertvalue or extractvalue indices that identify a member, return
97/// the linearized index of the start of the member.
98///
99static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
100                                   const unsigned *Indices,
101                                   const unsigned *IndicesEnd,
102                                   unsigned CurIndex = 0) {
103  // Base case: We're done.
104  if (Indices && Indices == IndicesEnd)
105    return CurIndex;
106
107  // Given a struct type, recursively traverse the elements.
108  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
109    for (StructType::element_iterator EB = STy->element_begin(),
110                                      EI = EB,
111                                      EE = STy->element_end();
112        EI != EE; ++EI) {
113      if (Indices && *Indices == unsigned(EI - EB))
114        return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
115      CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
116    }
117  }
118  // Given an array type, recursively traverse the elements.
119  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
120    const Type *EltTy = ATy->getElementType();
121    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
122      if (Indices && *Indices == i)
123        return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
124      CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
125    }
126  }
127  // We haven't found the type we're looking for, so keep searching.
128  return CurIndex + 1;
129}
130
131/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
132/// MVTs that represent all the individual underlying
133/// non-aggregate types that comprise it.
134///
135/// If Offsets is non-null, it points to a vector to be filled in
136/// with the in-memory offsets of each of the individual values.
137///
138static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
139                            SmallVectorImpl<MVT> &ValueVTs,
140                            SmallVectorImpl<uint64_t> *Offsets = 0,
141                            uint64_t StartingOffset = 0) {
142  // Given a struct type, recursively traverse the elements.
143  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
144    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
145    for (StructType::element_iterator EB = STy->element_begin(),
146                                      EI = EB,
147                                      EE = STy->element_end();
148         EI != EE; ++EI)
149      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
150                      StartingOffset + SL->getElementOffset(EI - EB));
151    return;
152  }
153  // Given an array type, recursively traverse the elements.
154  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
155    const Type *EltTy = ATy->getElementType();
156    uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
157    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
158      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
159                      StartingOffset + i * EltSize);
160    return;
161  }
162  // Base case: we can get an MVT for this LLVM IR type.
163  ValueVTs.push_back(TLI.getValueType(Ty));
164  if (Offsets)
165    Offsets->push_back(StartingOffset);
166}
167
168namespace {
169  /// RegsForValue - This struct represents the registers (physical or virtual)
170  /// that a particular set of values is assigned, and the type information about
171  /// the value. The most common situation is to represent one value at a time,
172  /// but struct or array values are handled element-wise as multiple values.
173  /// The splitting of aggregates is performed recursively, so that we never
174  /// have aggregate-typed registers. The values at this point do not necessarily
175  /// have legal types, so each value may require one or more registers of some
176  /// legal type.
177  ///
178  struct VISIBILITY_HIDDEN RegsForValue {
179    /// TLI - The TargetLowering object.
180    ///
181    const TargetLowering *TLI;
182
183    /// ValueVTs - The value types of the values, which may not be legal, and
184    /// may need be promoted or synthesized from one or more registers.
185    ///
186    SmallVector<MVT, 4> ValueVTs;
187
188    /// RegVTs - The value types of the registers. This is the same size as
189    /// ValueVTs and it records, for each value, what the type of the assigned
190    /// register or registers are. (Individual values are never synthesized
191    /// from more than one type of register.)
192    ///
193    /// With virtual registers, the contents of RegVTs is redundant with TLI's
194    /// getRegisterType member function, however when with physical registers
195    /// it is necessary to have a separate record of the types.
196    ///
197    SmallVector<MVT, 4> RegVTs;
198
199    /// Regs - This list holds the registers assigned to the values.
200    /// Each legal or promoted value requires one register, and each
201    /// expanded value requires multiple registers.
202    ///
203    SmallVector<unsigned, 4> Regs;
204
205    RegsForValue() : TLI(0) {}
206
207    RegsForValue(const TargetLowering &tli,
208                 const SmallVector<unsigned, 4> &regs,
209                 MVT regvt, MVT valuevt)
210      : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
211    RegsForValue(const TargetLowering &tli,
212                 const SmallVector<unsigned, 4> &regs,
213                 const SmallVector<MVT, 4> &regvts,
214                 const SmallVector<MVT, 4> &valuevts)
215      : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
216    RegsForValue(const TargetLowering &tli,
217                 unsigned Reg, const Type *Ty) : TLI(&tli) {
218      ComputeValueVTs(tli, Ty, ValueVTs);
219
220      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
221        MVT ValueVT = ValueVTs[Value];
222        unsigned NumRegs = TLI->getNumRegisters(ValueVT);
223        MVT RegisterVT = TLI->getRegisterType(ValueVT);
224        for (unsigned i = 0; i != NumRegs; ++i)
225          Regs.push_back(Reg + i);
226        RegVTs.push_back(RegisterVT);
227        Reg += NumRegs;
228      }
229    }
230
231    /// append - Add the specified values to this one.
232    void append(const RegsForValue &RHS) {
233      TLI = RHS.TLI;
234      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
235      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
236      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
237    }
238
239
240    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
241    /// this value and returns the result as a ValueVTs value.  This uses
242    /// Chain/Flag as the input and updates them for the output Chain/Flag.
243    /// If the Flag pointer is NULL, no flag is used.
244    SDOperand getCopyFromRegs(SelectionDAG &DAG,
245                              SDOperand &Chain, SDOperand *Flag) const;
246
247    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
248    /// specified value into the registers specified by this object.  This uses
249    /// Chain/Flag as the input and updates them for the output Chain/Flag.
250    /// If the Flag pointer is NULL, no flag is used.
251    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
252                       SDOperand &Chain, SDOperand *Flag) const;
253
254    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
255    /// operand list.  This adds the code marker and includes the number of
256    /// values added into it.
257    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
258                              std::vector<SDOperand> &Ops) const;
259  };
260}
261
262namespace llvm {
263  //===--------------------------------------------------------------------===//
264  /// createDefaultScheduler - This creates an instruction scheduler appropriate
265  /// for the target.
266  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
267                                      SelectionDAG *DAG,
268                                      MachineBasicBlock *BB) {
269    TargetLowering &TLI = IS->getTargetLowering();
270
271    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
272      return createTDListDAGScheduler(IS, DAG, BB);
273    } else {
274      assert(TLI.getSchedulingPreference() ==
275           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
276      return createBURRListDAGScheduler(IS, DAG, BB);
277    }
278  }
279
280
281  //===--------------------------------------------------------------------===//
282  /// FunctionLoweringInfo - This contains information that is global to a
283  /// function that is used when lowering a region of the function.
284  class FunctionLoweringInfo {
285  public:
286    TargetLowering &TLI;
287    Function &Fn;
288    MachineFunction &MF;
289    MachineRegisterInfo &RegInfo;
290
291    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
292
293    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
294    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
295
296    /// ValueMap - Since we emit code for the function a basic block at a time,
297    /// we must remember which virtual registers hold the values for
298    /// cross-basic-block values.
299    DenseMap<const Value*, unsigned> ValueMap;
300
301    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
302    /// the entry block.  This allows the allocas to be efficiently referenced
303    /// anywhere in the function.
304    std::map<const AllocaInst*, int> StaticAllocaMap;
305
306#ifndef NDEBUG
307    SmallSet<Instruction*, 8> CatchInfoLost;
308    SmallSet<Instruction*, 8> CatchInfoFound;
309#endif
310
311    unsigned MakeReg(MVT VT) {
312      return RegInfo.createVirtualRegister(TLI.getRegClassFor(VT));
313    }
314
315    /// isExportedInst - Return true if the specified value is an instruction
316    /// exported from its block.
317    bool isExportedInst(const Value *V) {
318      return ValueMap.count(V);
319    }
320
321    unsigned CreateRegForValue(const Value *V);
322
323    unsigned InitializeRegForValue(const Value *V) {
324      unsigned &R = ValueMap[V];
325      assert(R == 0 && "Already initialized this value register!");
326      return R = CreateRegForValue(V);
327    }
328
329    struct LiveOutInfo {
330      unsigned NumSignBits;
331      APInt KnownOne, KnownZero;
332      LiveOutInfo() : NumSignBits(0) {}
333    };
334
335    /// LiveOutRegInfo - Information about live out vregs, indexed by their
336    /// register number offset by 'FirstVirtualRegister'.
337    std::vector<LiveOutInfo> LiveOutRegInfo;
338  };
339}
340
341/// isSelector - Return true if this instruction is a call to the
342/// eh.selector intrinsic.
343static bool isSelector(Instruction *I) {
344  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
345    return (II->getIntrinsicID() == Intrinsic::eh_selector_i32 ||
346            II->getIntrinsicID() == Intrinsic::eh_selector_i64);
347  return false;
348}
349
350/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
351/// PHI nodes or outside of the basic block that defines it, or used by a
352/// switch or atomic instruction, which may expand to multiple basic blocks.
353static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
354  if (isa<PHINode>(I)) return true;
355  BasicBlock *BB = I->getParent();
356  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
357    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
358        // FIXME: Remove switchinst special case.
359        isa<SwitchInst>(*UI))
360      return true;
361  return false;
362}
363
364/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
365/// entry block, return true.  This includes arguments used by switches, since
366/// the switch may expand into multiple basic blocks.
367static bool isOnlyUsedInEntryBlock(Argument *A) {
368  BasicBlock *Entry = A->getParent()->begin();
369  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
370    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
371      return false;  // Use not in entry block.
372  return true;
373}
374
375FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
376                                           Function &fn, MachineFunction &mf)
377    : TLI(tli), Fn(fn), MF(mf), RegInfo(MF.getRegInfo()) {
378
379  // Create a vreg for each argument register that is not dead and is used
380  // outside of the entry block for the function.
381  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
382       AI != E; ++AI)
383    if (!isOnlyUsedInEntryBlock(AI))
384      InitializeRegForValue(AI);
385
386  // Initialize the mapping of values to registers.  This is only set up for
387  // instruction values that are used outside of the block that defines
388  // them.
389  Function::iterator BB = Fn.begin(), EB = Fn.end();
390  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
391    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
392      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
393        const Type *Ty = AI->getAllocatedType();
394        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
395        unsigned Align =
396          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
397                   AI->getAlignment());
398
399        TySize *= CUI->getZExtValue();   // Get total allocated size.
400        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
401        StaticAllocaMap[AI] =
402          MF.getFrameInfo()->CreateStackObject(TySize, Align);
403      }
404
405  for (; BB != EB; ++BB)
406    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
407      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
408        if (!isa<AllocaInst>(I) ||
409            !StaticAllocaMap.count(cast<AllocaInst>(I)))
410          InitializeRegForValue(I);
411
412  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
413  // also creates the initial PHI MachineInstrs, though none of the input
414  // operands are populated.
415  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
416    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
417    MBBMap[BB] = MBB;
418    MF.getBasicBlockList().push_back(MBB);
419
420    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
421    // appropriate.
422    PHINode *PN;
423    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
424      if (PN->use_empty()) continue;
425
426      MVT VT = TLI.getValueType(PN->getType());
427      unsigned NumRegisters = TLI.getNumRegisters(VT);
428      unsigned PHIReg = ValueMap[PN];
429      assert(PHIReg && "PHI node does not have an assigned virtual register!");
430      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
431      for (unsigned i = 0; i != NumRegisters; ++i)
432        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
433    }
434  }
435}
436
437/// CreateRegForValue - Allocate the appropriate number of virtual registers of
438/// the correctly promoted or expanded types.  Assign these registers
439/// consecutive vreg numbers and return the first assigned number.
440///
441/// In the case that the given value has struct or array type, this function
442/// will assign registers for each member or element.
443///
444unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
445  SmallVector<MVT, 4> ValueVTs;
446  ComputeValueVTs(TLI, V->getType(), ValueVTs);
447
448  unsigned FirstReg = 0;
449  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
450    MVT ValueVT = ValueVTs[Value];
451    MVT RegisterVT = TLI.getRegisterType(ValueVT);
452
453    unsigned NumRegs = TLI.getNumRegisters(ValueVT);
454    for (unsigned i = 0; i != NumRegs; ++i) {
455      unsigned R = MakeReg(RegisterVT);
456      if (!FirstReg) FirstReg = R;
457    }
458  }
459  return FirstReg;
460}
461
462//===----------------------------------------------------------------------===//
463/// SelectionDAGLowering - This is the common target-independent lowering
464/// implementation that is parameterized by a TargetLowering object.
465/// Also, targets can overload any lowering method.
466///
467namespace llvm {
468class SelectionDAGLowering {
469  MachineBasicBlock *CurMBB;
470
471  DenseMap<const Value*, SDOperand> NodeMap;
472
473  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
474  /// them up and then emit token factor nodes when possible.  This allows us to
475  /// get simple disambiguation between loads without worrying about alias
476  /// analysis.
477  std::vector<SDOperand> PendingLoads;
478
479  /// PendingExports - CopyToReg nodes that copy values to virtual registers
480  /// for export to other blocks need to be emitted before any terminator
481  /// instruction, but they have no other ordering requirements. We bunch them
482  /// up and the emit a single tokenfactor for them just before terminator
483  /// instructions.
484  std::vector<SDOperand> PendingExports;
485
486  /// Case - A struct to record the Value for a switch case, and the
487  /// case's target basic block.
488  struct Case {
489    Constant* Low;
490    Constant* High;
491    MachineBasicBlock* BB;
492
493    Case() : Low(0), High(0), BB(0) { }
494    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
495      Low(low), High(high), BB(bb) { }
496    uint64_t size() const {
497      uint64_t rHigh = cast<ConstantInt>(High)->getSExtValue();
498      uint64_t rLow  = cast<ConstantInt>(Low)->getSExtValue();
499      return (rHigh - rLow + 1ULL);
500    }
501  };
502
503  struct CaseBits {
504    uint64_t Mask;
505    MachineBasicBlock* BB;
506    unsigned Bits;
507
508    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
509      Mask(mask), BB(bb), Bits(bits) { }
510  };
511
512  typedef std::vector<Case>           CaseVector;
513  typedef std::vector<CaseBits>       CaseBitsVector;
514  typedef CaseVector::iterator        CaseItr;
515  typedef std::pair<CaseItr, CaseItr> CaseRange;
516
517  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
518  /// of conditional branches.
519  struct CaseRec {
520    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
521    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
522
523    /// CaseBB - The MBB in which to emit the compare and branch
524    MachineBasicBlock *CaseBB;
525    /// LT, GE - If nonzero, we know the current case value must be less-than or
526    /// greater-than-or-equal-to these Constants.
527    Constant *LT;
528    Constant *GE;
529    /// Range - A pair of iterators representing the range of case values to be
530    /// processed at this point in the binary search tree.
531    CaseRange Range;
532  };
533
534  typedef std::vector<CaseRec> CaseRecVector;
535
536  /// The comparison function for sorting the switch case values in the vector.
537  /// WARNING: Case ranges should be disjoint!
538  struct CaseCmp {
539    bool operator () (const Case& C1, const Case& C2) {
540      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
541      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
542      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
543      return CI1->getValue().slt(CI2->getValue());
544    }
545  };
546
547  struct CaseBitsCmp {
548    bool operator () (const CaseBits& C1, const CaseBits& C2) {
549      return C1.Bits > C2.Bits;
550    }
551  };
552
553  unsigned Clusterify(CaseVector& Cases, const SwitchInst &SI);
554
555public:
556  // TLI - This is information that describes the available target features we
557  // need for lowering.  This indicates when operations are unavailable,
558  // implemented with a libcall, etc.
559  TargetLowering &TLI;
560  SelectionDAG &DAG;
561  const TargetData *TD;
562  AliasAnalysis &AA;
563
564  /// SwitchCases - Vector of CaseBlock structures used to communicate
565  /// SwitchInst code generation information.
566  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
567  /// JTCases - Vector of JumpTable structures used to communicate
568  /// SwitchInst code generation information.
569  std::vector<SelectionDAGISel::JumpTableBlock> JTCases;
570  std::vector<SelectionDAGISel::BitTestBlock> BitTestCases;
571
572  /// FuncInfo - Information about the function as a whole.
573  ///
574  FunctionLoweringInfo &FuncInfo;
575
576  /// GCI - Garbage collection metadata for the function.
577  CollectorMetadata *GCI;
578
579  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
580                       AliasAnalysis &aa,
581                       FunctionLoweringInfo &funcinfo,
582                       CollectorMetadata *gci)
583    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()), AA(aa),
584      FuncInfo(funcinfo), GCI(gci) {
585  }
586
587  /// getRoot - Return the current virtual root of the Selection DAG,
588  /// flushing any PendingLoad items. This must be done before emitting
589  /// a store or any other node that may need to be ordered after any
590  /// prior load instructions.
591  ///
592  SDOperand getRoot() {
593    if (PendingLoads.empty())
594      return DAG.getRoot();
595
596    if (PendingLoads.size() == 1) {
597      SDOperand Root = PendingLoads[0];
598      DAG.setRoot(Root);
599      PendingLoads.clear();
600      return Root;
601    }
602
603    // Otherwise, we have to make a token factor node.
604    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
605                                 &PendingLoads[0], PendingLoads.size());
606    PendingLoads.clear();
607    DAG.setRoot(Root);
608    return Root;
609  }
610
611  /// getControlRoot - Similar to getRoot, but instead of flushing all the
612  /// PendingLoad items, flush all the PendingExports items. It is necessary
613  /// to do this before emitting a terminator instruction.
614  ///
615  SDOperand getControlRoot() {
616    SDOperand Root = DAG.getRoot();
617
618    if (PendingExports.empty())
619      return Root;
620
621    // Turn all of the CopyToReg chains into one factored node.
622    if (Root.getOpcode() != ISD::EntryToken) {
623      unsigned i = 0, e = PendingExports.size();
624      for (; i != e; ++i) {
625        assert(PendingExports[i].Val->getNumOperands() > 1);
626        if (PendingExports[i].Val->getOperand(0) == Root)
627          break;  // Don't add the root if we already indirectly depend on it.
628      }
629
630      if (i == e)
631        PendingExports.push_back(Root);
632    }
633
634    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
635                       &PendingExports[0],
636                       PendingExports.size());
637    PendingExports.clear();
638    DAG.setRoot(Root);
639    return Root;
640  }
641
642  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
643
644  void visit(Instruction &I) { visit(I.getOpcode(), I); }
645
646  void visit(unsigned Opcode, User &I) {
647    // Note: this doesn't use InstVisitor, because it has to work with
648    // ConstantExpr's in addition to instructions.
649    switch (Opcode) {
650    default: assert(0 && "Unknown instruction type encountered!");
651             abort();
652      // Build the switch statement using the Instruction.def file.
653#define HANDLE_INST(NUM, OPCODE, CLASS) \
654    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
655#include "llvm/Instruction.def"
656    }
657  }
658
659  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
660
661  SDOperand getValue(const Value *V);
662
663  void setValue(const Value *V, SDOperand NewN) {
664    SDOperand &N = NodeMap[V];
665    assert(N.Val == 0 && "Already set a value for this node!");
666    N = NewN;
667  }
668
669  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
670                            std::set<unsigned> &OutputRegs,
671                            std::set<unsigned> &InputRegs);
672
673  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
674                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
675                            unsigned Opc);
676  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
677  void ExportFromCurrentBlock(Value *V);
678  void LowerCallTo(CallSite CS, SDOperand Callee, bool IsTailCall,
679                   MachineBasicBlock *LandingPad = NULL);
680
681  // Terminator instructions.
682  void visitRet(ReturnInst &I);
683  void visitBr(BranchInst &I);
684  void visitSwitch(SwitchInst &I);
685  void visitUnreachable(UnreachableInst &I) { /* noop */ }
686
687  // Helpers for visitSwitch
688  bool handleSmallSwitchRange(CaseRec& CR,
689                              CaseRecVector& WorkList,
690                              Value* SV,
691                              MachineBasicBlock* Default);
692  bool handleJTSwitchCase(CaseRec& CR,
693                          CaseRecVector& WorkList,
694                          Value* SV,
695                          MachineBasicBlock* Default);
696  bool handleBTSplitSwitchCase(CaseRec& CR,
697                               CaseRecVector& WorkList,
698                               Value* SV,
699                               MachineBasicBlock* Default);
700  bool handleBitTestsSwitchCase(CaseRec& CR,
701                                CaseRecVector& WorkList,
702                                Value* SV,
703                                MachineBasicBlock* Default);
704  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
705  void visitBitTestHeader(SelectionDAGISel::BitTestBlock &B);
706  void visitBitTestCase(MachineBasicBlock* NextMBB,
707                        unsigned Reg,
708                        SelectionDAGISel::BitTestCase &B);
709  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
710  void visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
711                            SelectionDAGISel::JumpTableHeader &JTH);
712
713  // These all get lowered before this pass.
714  void visitInvoke(InvokeInst &I);
715  void visitUnwind(UnwindInst &I);
716
717  void visitBinary(User &I, unsigned OpCode);
718  void visitShift(User &I, unsigned Opcode);
719  void visitAdd(User &I) {
720    if (I.getType()->isFPOrFPVector())
721      visitBinary(I, ISD::FADD);
722    else
723      visitBinary(I, ISD::ADD);
724  }
725  void visitSub(User &I);
726  void visitMul(User &I) {
727    if (I.getType()->isFPOrFPVector())
728      visitBinary(I, ISD::FMUL);
729    else
730      visitBinary(I, ISD::MUL);
731  }
732  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
733  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
734  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
735  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
736  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
737  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
738  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
739  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
740  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
741  void visitShl (User &I) { visitShift(I, ISD::SHL); }
742  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
743  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
744  void visitICmp(User &I);
745  void visitFCmp(User &I);
746  void visitVICmp(User &I);
747  void visitVFCmp(User &I);
748  // Visit the conversion instructions
749  void visitTrunc(User &I);
750  void visitZExt(User &I);
751  void visitSExt(User &I);
752  void visitFPTrunc(User &I);
753  void visitFPExt(User &I);
754  void visitFPToUI(User &I);
755  void visitFPToSI(User &I);
756  void visitUIToFP(User &I);
757  void visitSIToFP(User &I);
758  void visitPtrToInt(User &I);
759  void visitIntToPtr(User &I);
760  void visitBitCast(User &I);
761
762  void visitExtractElement(User &I);
763  void visitInsertElement(User &I);
764  void visitShuffleVector(User &I);
765
766  void visitExtractValue(ExtractValueInst &I);
767  void visitInsertValue(InsertValueInst &I);
768
769  void visitGetElementPtr(User &I);
770  void visitSelect(User &I);
771
772  void visitMalloc(MallocInst &I);
773  void visitFree(FreeInst &I);
774  void visitAlloca(AllocaInst &I);
775  void visitLoad(LoadInst &I);
776  void visitStore(StoreInst &I);
777  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
778  void visitCall(CallInst &I);
779  void visitInlineAsm(CallSite CS);
780  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
781  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
782
783  void visitVAStart(CallInst &I);
784  void visitVAArg(VAArgInst &I);
785  void visitVAEnd(CallInst &I);
786  void visitVACopy(CallInst &I);
787
788  void visitGetResult(GetResultInst &I);
789
790  void visitUserOp1(Instruction &I) {
791    assert(0 && "UserOp1 should not exist at instruction selection time!");
792    abort();
793  }
794  void visitUserOp2(Instruction &I) {
795    assert(0 && "UserOp2 should not exist at instruction selection time!");
796    abort();
797  }
798
799private:
800  inline const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
801
802};
803} // end namespace llvm
804
805
806/// getCopyFromParts - Create a value that contains the specified legal parts
807/// combined into the value they represent.  If the parts combine to a type
808/// larger then ValueVT then AssertOp can be used to specify whether the extra
809/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
810/// (ISD::AssertSext).
811static SDOperand getCopyFromParts(SelectionDAG &DAG,
812                                  const SDOperand *Parts,
813                                  unsigned NumParts,
814                                  MVT PartVT,
815                                  MVT ValueVT,
816                                  ISD::NodeType AssertOp = ISD::DELETED_NODE) {
817  assert(NumParts > 0 && "No parts to assemble!");
818  TargetLowering &TLI = DAG.getTargetLoweringInfo();
819  SDOperand Val = Parts[0];
820
821  if (NumParts > 1) {
822    // Assemble the value from multiple parts.
823    if (!ValueVT.isVector()) {
824      unsigned PartBits = PartVT.getSizeInBits();
825      unsigned ValueBits = ValueVT.getSizeInBits();
826
827      // Assemble the power of 2 part.
828      unsigned RoundParts = NumParts & (NumParts - 1) ?
829        1 << Log2_32(NumParts) : NumParts;
830      unsigned RoundBits = PartBits * RoundParts;
831      MVT RoundVT = RoundBits == ValueBits ?
832        ValueVT : MVT::getIntegerVT(RoundBits);
833      SDOperand Lo, Hi;
834
835      if (RoundParts > 2) {
836        MVT HalfVT = MVT::getIntegerVT(RoundBits/2);
837        Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
838        Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
839                              PartVT, HalfVT);
840      } else {
841        Lo = Parts[0];
842        Hi = Parts[1];
843      }
844      if (TLI.isBigEndian())
845        std::swap(Lo, Hi);
846      Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
847
848      if (RoundParts < NumParts) {
849        // Assemble the trailing non-power-of-2 part.
850        unsigned OddParts = NumParts - RoundParts;
851        MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
852        Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
853
854        // Combine the round and odd parts.
855        Lo = Val;
856        if (TLI.isBigEndian())
857          std::swap(Lo, Hi);
858        MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
859        Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
860        Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
861                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
862                                         TLI.getShiftAmountTy()));
863        Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
864        Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
865      }
866    } else {
867      // Handle a multi-element vector.
868      MVT IntermediateVT, RegisterVT;
869      unsigned NumIntermediates;
870      unsigned NumRegs =
871        TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
872                                   RegisterVT);
873      assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
874      NumParts = NumRegs; // Silence a compiler warning.
875      assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
876      assert(RegisterVT == Parts[0].getValueType() &&
877             "Part type doesn't match part!");
878
879      // Assemble the parts into intermediate operands.
880      SmallVector<SDOperand, 8> Ops(NumIntermediates);
881      if (NumIntermediates == NumParts) {
882        // If the register was not expanded, truncate or copy the value,
883        // as appropriate.
884        for (unsigned i = 0; i != NumParts; ++i)
885          Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
886                                    PartVT, IntermediateVT);
887      } else if (NumParts > 0) {
888        // If the intermediate type was expanded, build the intermediate operands
889        // from the parts.
890        assert(NumParts % NumIntermediates == 0 &&
891               "Must expand into a divisible number of parts!");
892        unsigned Factor = NumParts / NumIntermediates;
893        for (unsigned i = 0; i != NumIntermediates; ++i)
894          Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
895                                    PartVT, IntermediateVT);
896      }
897
898      // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
899      // operands.
900      Val = DAG.getNode(IntermediateVT.isVector() ?
901                        ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
902                        ValueVT, &Ops[0], NumIntermediates);
903    }
904  }
905
906  // There is now one part, held in Val.  Correct it to match ValueVT.
907  PartVT = Val.getValueType();
908
909  if (PartVT == ValueVT)
910    return Val;
911
912  if (PartVT.isVector()) {
913    assert(ValueVT.isVector() && "Unknown vector conversion!");
914    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
915  }
916
917  if (ValueVT.isVector()) {
918    assert(ValueVT.getVectorElementType() == PartVT &&
919           ValueVT.getVectorNumElements() == 1 &&
920           "Only trivial scalar-to-vector conversions should get here!");
921    return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
922  }
923
924  if (PartVT.isInteger() &&
925      ValueVT.isInteger()) {
926    if (ValueVT.bitsLT(PartVT)) {
927      // For a truncate, see if we have any information to
928      // indicate whether the truncated bits will always be
929      // zero or sign-extension.
930      if (AssertOp != ISD::DELETED_NODE)
931        Val = DAG.getNode(AssertOp, PartVT, Val,
932                          DAG.getValueType(ValueVT));
933      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
934    } else {
935      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
936    }
937  }
938
939  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
940    if (ValueVT.bitsLT(Val.getValueType()))
941      // FP_ROUND's are always exact here.
942      return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
943                         DAG.getIntPtrConstant(1));
944    return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
945  }
946
947  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
948    return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
949
950  assert(0 && "Unknown mismatch!");
951  return SDOperand();
952}
953
954/// getCopyToParts - Create a series of nodes that contain the specified value
955/// split into legal parts.  If the parts contain more bits than Val, then, for
956/// integers, ExtendKind can be used to specify how to generate the extra bits.
957static void getCopyToParts(SelectionDAG &DAG,
958                           SDOperand Val,
959                           SDOperand *Parts,
960                           unsigned NumParts,
961                           MVT PartVT,
962                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
963  TargetLowering &TLI = DAG.getTargetLoweringInfo();
964  MVT PtrVT = TLI.getPointerTy();
965  MVT ValueVT = Val.getValueType();
966  unsigned PartBits = PartVT.getSizeInBits();
967  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
968
969  if (!NumParts)
970    return;
971
972  if (!ValueVT.isVector()) {
973    if (PartVT == ValueVT) {
974      assert(NumParts == 1 && "No-op copy with multiple parts!");
975      Parts[0] = Val;
976      return;
977    }
978
979    if (NumParts * PartBits > ValueVT.getSizeInBits()) {
980      // If the parts cover more bits than the value has, promote the value.
981      if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
982        assert(NumParts == 1 && "Do not know what to promote to!");
983        Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
984      } else if (PartVT.isInteger() && ValueVT.isInteger()) {
985        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
986        Val = DAG.getNode(ExtendKind, ValueVT, Val);
987      } else {
988        assert(0 && "Unknown mismatch!");
989      }
990    } else if (PartBits == ValueVT.getSizeInBits()) {
991      // Different types of the same size.
992      assert(NumParts == 1 && PartVT != ValueVT);
993      Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
994    } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
995      // If the parts cover less bits than value has, truncate the value.
996      if (PartVT.isInteger() && ValueVT.isInteger()) {
997        ValueVT = MVT::getIntegerVT(NumParts * PartBits);
998        Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
999      } else {
1000        assert(0 && "Unknown mismatch!");
1001      }
1002    }
1003
1004    // The value may have changed - recompute ValueVT.
1005    ValueVT = Val.getValueType();
1006    assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
1007           "Failed to tile the value with PartVT!");
1008
1009    if (NumParts == 1) {
1010      assert(PartVT == ValueVT && "Type conversion failed!");
1011      Parts[0] = Val;
1012      return;
1013    }
1014
1015    // Expand the value into multiple parts.
1016    if (NumParts & (NumParts - 1)) {
1017      // The number of parts is not a power of 2.  Split off and copy the tail.
1018      assert(PartVT.isInteger() && ValueVT.isInteger() &&
1019             "Do not know what to expand to!");
1020      unsigned RoundParts = 1 << Log2_32(NumParts);
1021      unsigned RoundBits = RoundParts * PartBits;
1022      unsigned OddParts = NumParts - RoundParts;
1023      SDOperand OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
1024                                     DAG.getConstant(RoundBits,
1025                                                     TLI.getShiftAmountTy()));
1026      getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
1027      if (TLI.isBigEndian())
1028        // The odd parts were reversed by getCopyToParts - unreverse them.
1029        std::reverse(Parts + RoundParts, Parts + NumParts);
1030      NumParts = RoundParts;
1031      ValueVT = MVT::getIntegerVT(NumParts * PartBits);
1032      Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1033    }
1034
1035    // The number of parts is a power of 2.  Repeatedly bisect the value using
1036    // EXTRACT_ELEMENT.
1037    Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
1038                           MVT::getIntegerVT(ValueVT.getSizeInBits()),
1039                           Val);
1040    for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
1041      for (unsigned i = 0; i < NumParts; i += StepSize) {
1042        unsigned ThisBits = StepSize * PartBits / 2;
1043        MVT ThisVT = MVT::getIntegerVT (ThisBits);
1044        SDOperand &Part0 = Parts[i];
1045        SDOperand &Part1 = Parts[i+StepSize/2];
1046
1047        Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1048                            DAG.getConstant(1, PtrVT));
1049        Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
1050                            DAG.getConstant(0, PtrVT));
1051
1052        if (ThisBits == PartBits && ThisVT != PartVT) {
1053          Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
1054          Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
1055        }
1056      }
1057    }
1058
1059    if (TLI.isBigEndian())
1060      std::reverse(Parts, Parts + NumParts);
1061
1062    return;
1063  }
1064
1065  // Vector ValueVT.
1066  if (NumParts == 1) {
1067    if (PartVT != ValueVT) {
1068      if (PartVT.isVector()) {
1069        Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
1070      } else {
1071        assert(ValueVT.getVectorElementType() == PartVT &&
1072               ValueVT.getVectorNumElements() == 1 &&
1073               "Only trivial vector-to-scalar conversions should get here!");
1074        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
1075                          DAG.getConstant(0, PtrVT));
1076      }
1077    }
1078
1079    Parts[0] = Val;
1080    return;
1081  }
1082
1083  // Handle a multi-element vector.
1084  MVT IntermediateVT, RegisterVT;
1085  unsigned NumIntermediates;
1086  unsigned NumRegs =
1087    DAG.getTargetLoweringInfo()
1088      .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
1089                              RegisterVT);
1090  unsigned NumElements = ValueVT.getVectorNumElements();
1091
1092  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
1093  NumParts = NumRegs; // Silence a compiler warning.
1094  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
1095
1096  // Split the vector into intermediate operands.
1097  SmallVector<SDOperand, 8> Ops(NumIntermediates);
1098  for (unsigned i = 0; i != NumIntermediates; ++i)
1099    if (IntermediateVT.isVector())
1100      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
1101                           IntermediateVT, Val,
1102                           DAG.getConstant(i * (NumElements / NumIntermediates),
1103                                           PtrVT));
1104    else
1105      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
1106                           IntermediateVT, Val,
1107                           DAG.getConstant(i, PtrVT));
1108
1109  // Split the intermediate operands into legal parts.
1110  if (NumParts == NumIntermediates) {
1111    // If the register was not expanded, promote or copy the value,
1112    // as appropriate.
1113    for (unsigned i = 0; i != NumParts; ++i)
1114      getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
1115  } else if (NumParts > 0) {
1116    // If the intermediate type was expanded, split each the value into
1117    // legal parts.
1118    assert(NumParts % NumIntermediates == 0 &&
1119           "Must expand into a divisible number of parts!");
1120    unsigned Factor = NumParts / NumIntermediates;
1121    for (unsigned i = 0; i != NumIntermediates; ++i)
1122      getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
1123  }
1124}
1125
1126
1127SDOperand SelectionDAGLowering::getValue(const Value *V) {
1128  SDOperand &N = NodeMap[V];
1129  if (N.Val) return N;
1130
1131  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
1132    MVT VT = TLI.getValueType(V->getType(), true);
1133
1134    if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1135      return N = DAG.getConstant(CI->getValue(), VT);
1136
1137    if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
1138      return N = DAG.getGlobalAddress(GV, VT);
1139
1140    if (isa<ConstantPointerNull>(C))
1141      return N = DAG.getConstant(0, TLI.getPointerTy());
1142
1143    if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1144      return N = DAG.getConstantFP(CFP->getValueAPF(), VT);
1145
1146    if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
1147        !V->getType()->isAggregateType())
1148      return N = DAG.getNode(ISD::UNDEF, VT);
1149
1150    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1151      visit(CE->getOpcode(), *CE);
1152      SDOperand N1 = NodeMap[V];
1153      assert(N1.Val && "visit didn't populate the ValueMap!");
1154      return N1;
1155    }
1156
1157    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1158      SmallVector<SDOperand, 4> Constants;
1159      SmallVector<MVT, 4> ValueVTs;
1160      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1161           OI != OE; ++OI) {
1162        SDNode *Val = getValue(*OI).Val;
1163        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) {
1164          Constants.push_back(SDOperand(Val, i));
1165          ValueVTs.push_back(Val->getValueType(i));
1166        }
1167      }
1168      return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1169                                &Constants[0], Constants.size());
1170    }
1171
1172    if (const ArrayType *ATy = dyn_cast<ArrayType>(C->getType())) {
1173      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1174             "Unknown array constant!");
1175      unsigned NumElts = ATy->getNumElements();
1176      if (NumElts == 0)
1177        return SDOperand(); // empty array
1178      MVT EltVT = TLI.getValueType(ATy->getElementType());
1179      SmallVector<SDOperand, 4> Constants(NumElts);
1180      SmallVector<MVT, 4> ValueVTs(NumElts, EltVT);
1181      for (unsigned i = 0, e = NumElts; i != e; ++i) {
1182        if (isa<UndefValue>(C))
1183          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1184        else if (EltVT.isFloatingPoint())
1185          Constants[i] = DAG.getConstantFP(0, EltVT);
1186        else
1187          Constants[i] = DAG.getConstant(0, EltVT);
1188      }
1189      return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1190                                &Constants[0], Constants.size());
1191    }
1192
1193    if (const StructType *STy = dyn_cast<StructType>(C->getType())) {
1194      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1195             "Unknown struct constant!");
1196      unsigned NumElts = STy->getNumElements();
1197      if (NumElts == 0)
1198        return SDOperand(); // empty struct
1199      SmallVector<SDOperand, 4> Constants(NumElts);
1200      SmallVector<MVT, 4> ValueVTs(NumElts);
1201      for (unsigned i = 0, e = NumElts; i != e; ++i) {
1202        MVT EltVT = TLI.getValueType(STy->getElementType(i));
1203        ValueVTs[i] = EltVT;
1204        if (isa<UndefValue>(C))
1205          Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
1206        else if (EltVT.isFloatingPoint())
1207          Constants[i] = DAG.getConstantFP(0, EltVT);
1208        else
1209          Constants[i] = DAG.getConstant(0, EltVT);
1210      }
1211      return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1212                                &Constants[0], Constants.size());
1213    }
1214
1215    const VectorType *VecTy = cast<VectorType>(V->getType());
1216    unsigned NumElements = VecTy->getNumElements();
1217
1218    // Now that we know the number and type of the elements, get that number of
1219    // elements into the Ops array based on what kind of constant it is.
1220    SmallVector<SDOperand, 16> Ops;
1221    if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
1222      for (unsigned i = 0; i != NumElements; ++i)
1223        Ops.push_back(getValue(CP->getOperand(i)));
1224    } else {
1225      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1226             "Unknown vector constant!");
1227      MVT EltVT = TLI.getValueType(VecTy->getElementType());
1228
1229      SDOperand Op;
1230      if (isa<UndefValue>(C))
1231        Op = DAG.getNode(ISD::UNDEF, EltVT);
1232      else if (EltVT.isFloatingPoint())
1233        Op = DAG.getConstantFP(0, EltVT);
1234      else
1235        Op = DAG.getConstant(0, EltVT);
1236      Ops.assign(NumElements, Op);
1237    }
1238
1239    // Create a BUILD_VECTOR node.
1240    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
1241  }
1242
1243  // If this is a static alloca, generate it as the frameindex instead of
1244  // computation.
1245  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1246    std::map<const AllocaInst*, int>::iterator SI =
1247      FuncInfo.StaticAllocaMap.find(AI);
1248    if (SI != FuncInfo.StaticAllocaMap.end())
1249      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1250  }
1251
1252  unsigned InReg = FuncInfo.ValueMap[V];
1253  assert(InReg && "Value not in map!");
1254
1255  RegsForValue RFV(TLI, InReg, V->getType());
1256  SDOperand Chain = DAG.getEntryNode();
1257  return RFV.getCopyFromRegs(DAG, Chain, NULL);
1258}
1259
1260
1261void SelectionDAGLowering::visitRet(ReturnInst &I) {
1262  if (I.getNumOperands() == 0) {
1263    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
1264    return;
1265  }
1266
1267  SmallVector<SDOperand, 8> NewValues;
1268  NewValues.push_back(getControlRoot());
1269  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1270    SDOperand RetOp = getValue(I.getOperand(i));
1271
1272    SmallVector<MVT, 4> ValueVTs;
1273    ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
1274    for (unsigned j = 0, f = ValueVTs.size(); j != f; ++j) {
1275      MVT VT = ValueVTs[j];
1276
1277      // FIXME: C calling convention requires the return type to be promoted to
1278      // at least 32-bit. But this is not necessary for non-C calling conventions.
1279      if (VT.isInteger()) {
1280        MVT MinVT = TLI.getRegisterType(MVT::i32);
1281        if (VT.bitsLT(MinVT))
1282          VT = MinVT;
1283      }
1284
1285      unsigned NumParts = TLI.getNumRegisters(VT);
1286      MVT PartVT = TLI.getRegisterType(VT);
1287      SmallVector<SDOperand, 4> Parts(NumParts);
1288      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1289
1290      const Function *F = I.getParent()->getParent();
1291      if (F->paramHasAttr(0, ParamAttr::SExt))
1292        ExtendKind = ISD::SIGN_EXTEND;
1293      else if (F->paramHasAttr(0, ParamAttr::ZExt))
1294        ExtendKind = ISD::ZERO_EXTEND;
1295
1296      getCopyToParts(DAG, SDOperand(RetOp.Val, RetOp.ResNo + j),
1297                     &Parts[0], NumParts, PartVT, ExtendKind);
1298
1299      for (unsigned i = 0; i < NumParts; ++i) {
1300        NewValues.push_back(Parts[i]);
1301        NewValues.push_back(DAG.getArgFlags(ISD::ArgFlagsTy()));
1302      }
1303    }
1304  }
1305  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
1306                          &NewValues[0], NewValues.size()));
1307}
1308
1309/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1310/// the current basic block, add it to ValueMap now so that we'll get a
1311/// CopyTo/FromReg.
1312void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
1313  // No need to export constants.
1314  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1315
1316  // Already exported?
1317  if (FuncInfo.isExportedInst(V)) return;
1318
1319  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1320  CopyValueToVirtualRegister(V, Reg);
1321}
1322
1323bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
1324                                                    const BasicBlock *FromBB) {
1325  // The operands of the setcc have to be in this block.  We don't know
1326  // how to export them from some other block.
1327  if (Instruction *VI = dyn_cast<Instruction>(V)) {
1328    // Can export from current BB.
1329    if (VI->getParent() == FromBB)
1330      return true;
1331
1332    // Is already exported, noop.
1333    return FuncInfo.isExportedInst(V);
1334  }
1335
1336  // If this is an argument, we can export it if the BB is the entry block or
1337  // if it is already exported.
1338  if (isa<Argument>(V)) {
1339    if (FromBB == &FromBB->getParent()->getEntryBlock())
1340      return true;
1341
1342    // Otherwise, can only export this if it is already exported.
1343    return FuncInfo.isExportedInst(V);
1344  }
1345
1346  // Otherwise, constants can always be exported.
1347  return true;
1348}
1349
1350static bool InBlock(const Value *V, const BasicBlock *BB) {
1351  if (const Instruction *I = dyn_cast<Instruction>(V))
1352    return I->getParent() == BB;
1353  return true;
1354}
1355
1356/// FindMergedConditions - If Cond is an expression like
1357void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1358                                                MachineBasicBlock *TBB,
1359                                                MachineBasicBlock *FBB,
1360                                                MachineBasicBlock *CurBB,
1361                                                unsigned Opc) {
1362  // If this node is not part of the or/and tree, emit it as a branch.
1363  Instruction *BOp = dyn_cast<Instruction>(Cond);
1364
1365  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1366      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1367      BOp->getParent() != CurBB->getBasicBlock() ||
1368      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1369      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1370    const BasicBlock *BB = CurBB->getBasicBlock();
1371
1372    // If the leaf of the tree is a comparison, merge the condition into
1373    // the caseblock.
1374    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
1375        // The operands of the cmp have to be in this block.  We don't know
1376        // how to export them from some other block.  If this is the first block
1377        // of the sequence, no exporting is needed.
1378        (CurBB == CurMBB ||
1379         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1380          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
1381      BOp = cast<Instruction>(Cond);
1382      ISD::CondCode Condition;
1383      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1384        switch (IC->getPredicate()) {
1385        default: assert(0 && "Unknown icmp predicate opcode!");
1386        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
1387        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
1388        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
1389        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
1390        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
1391        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
1392        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
1393        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
1394        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
1395        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
1396        }
1397      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1398        ISD::CondCode FPC, FOC;
1399        switch (FC->getPredicate()) {
1400        default: assert(0 && "Unknown fcmp predicate opcode!");
1401        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1402        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1403        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1404        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1405        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1406        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1407        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1408        case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
1409        case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
1410        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1411        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1412        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1413        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1414        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1415        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1416        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1417        }
1418        if (FiniteOnlyFPMath())
1419          Condition = FOC;
1420        else
1421          Condition = FPC;
1422      } else {
1423        Condition = ISD::SETEQ; // silence warning.
1424        assert(0 && "Unknown compare instruction");
1425      }
1426
1427      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
1428                                     BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1429      SwitchCases.push_back(CB);
1430      return;
1431    }
1432
1433    // Create a CaseBlock record representing this branch.
1434    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1435                                   NULL, TBB, FBB, CurBB);
1436    SwitchCases.push_back(CB);
1437    return;
1438  }
1439
1440
1441  //  Create TmpBB after CurBB.
1442  MachineFunction::iterator BBI = CurBB;
1443  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
1444  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
1445
1446  if (Opc == Instruction::Or) {
1447    // Codegen X | Y as:
1448    //   jmp_if_X TBB
1449    //   jmp TmpBB
1450    // TmpBB:
1451    //   jmp_if_Y TBB
1452    //   jmp FBB
1453    //
1454
1455    // Emit the LHS condition.
1456    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1457
1458    // Emit the RHS condition into TmpBB.
1459    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1460  } else {
1461    assert(Opc == Instruction::And && "Unknown merge op!");
1462    // Codegen X & Y as:
1463    //   jmp_if_X TmpBB
1464    //   jmp FBB
1465    // TmpBB:
1466    //   jmp_if_Y TBB
1467    //   jmp FBB
1468    //
1469    //  This requires creation of TmpBB after CurBB.
1470
1471    // Emit the LHS condition.
1472    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1473
1474    // Emit the RHS condition into TmpBB.
1475    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1476  }
1477}
1478
1479/// If the set of cases should be emitted as a series of branches, return true.
1480/// If we should emit this as a bunch of and/or'd together conditions, return
1481/// false.
1482static bool
1483ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
1484  if (Cases.size() != 2) return true;
1485
1486  // If this is two comparisons of the same values or'd or and'd together, they
1487  // will get folded into a single comparison, so don't emit two blocks.
1488  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1489       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1490      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1491       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1492    return false;
1493  }
1494
1495  return true;
1496}
1497
1498void SelectionDAGLowering::visitBr(BranchInst &I) {
1499  // Update machine-CFG edges.
1500  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1501
1502  // Figure out which block is immediately after the current one.
1503  MachineBasicBlock *NextBlock = 0;
1504  MachineFunction::iterator BBI = CurMBB;
1505  if (++BBI != CurMBB->getParent()->end())
1506    NextBlock = BBI;
1507
1508  if (I.isUnconditional()) {
1509    // Update machine-CFG edges.
1510    CurMBB->addSuccessor(Succ0MBB);
1511
1512    // If this is not a fall-through branch, emit the branch.
1513    if (Succ0MBB != NextBlock)
1514      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1515                              DAG.getBasicBlock(Succ0MBB)));
1516    return;
1517  }
1518
1519  // If this condition is one of the special cases we handle, do special stuff
1520  // now.
1521  Value *CondVal = I.getCondition();
1522  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1523
1524  // If this is a series of conditions that are or'd or and'd together, emit
1525  // this as a sequence of branches instead of setcc's with and/or operations.
1526  // For example, instead of something like:
1527  //     cmp A, B
1528  //     C = seteq
1529  //     cmp D, E
1530  //     F = setle
1531  //     or C, F
1532  //     jnz foo
1533  // Emit:
1534  //     cmp A, B
1535  //     je foo
1536  //     cmp D, E
1537  //     jle foo
1538  //
1539  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1540    if (BOp->hasOneUse() &&
1541        (BOp->getOpcode() == Instruction::And ||
1542         BOp->getOpcode() == Instruction::Or)) {
1543      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1544      // If the compares in later blocks need to use values not currently
1545      // exported from this block, export them now.  This block should always
1546      // be the first entry.
1547      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1548
1549      // Allow some cases to be rejected.
1550      if (ShouldEmitAsBranches(SwitchCases)) {
1551        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1552          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1553          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1554        }
1555
1556        // Emit the branch for this block.
1557        visitSwitchCase(SwitchCases[0]);
1558        SwitchCases.erase(SwitchCases.begin());
1559        return;
1560      }
1561
1562      // Okay, we decided not to do this, remove any inserted MBB's and clear
1563      // SwitchCases.
1564      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1565        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1566
1567      SwitchCases.clear();
1568    }
1569  }
1570
1571  // Create a CaseBlock record representing this branch.
1572  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1573                                 NULL, Succ0MBB, Succ1MBB, CurMBB);
1574  // Use visitSwitchCase to actually insert the fast branch sequence for this
1575  // cond branch.
1576  visitSwitchCase(CB);
1577}
1578
1579/// visitSwitchCase - Emits the necessary code to represent a single node in
1580/// the binary search tree resulting from lowering a switch instruction.
1581void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1582  SDOperand Cond;
1583  SDOperand CondLHS = getValue(CB.CmpLHS);
1584
1585  // Build the setcc now.
1586  if (CB.CmpMHS == NULL) {
1587    // Fold "(X == true)" to X and "(X == false)" to !X to
1588    // handle common cases produced by branch lowering.
1589    if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1590      Cond = CondLHS;
1591    else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1592      SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1593      Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1594    } else
1595      Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1596  } else {
1597    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1598
1599    uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1600    uint64_t High  = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1601
1602    SDOperand CmpOp = getValue(CB.CmpMHS);
1603    MVT VT = CmpOp.getValueType();
1604
1605    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1606      Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1607    } else {
1608      SDOperand SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1609      Cond = DAG.getSetCC(MVT::i1, SUB,
1610                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1611    }
1612  }
1613
1614  // Update successor info
1615  CurMBB->addSuccessor(CB.TrueBB);
1616  CurMBB->addSuccessor(CB.FalseBB);
1617
1618  // Set NextBlock to be the MBB immediately after the current one, if any.
1619  // This is used to avoid emitting unnecessary branches to the next block.
1620  MachineBasicBlock *NextBlock = 0;
1621  MachineFunction::iterator BBI = CurMBB;
1622  if (++BBI != CurMBB->getParent()->end())
1623    NextBlock = BBI;
1624
1625  // If the lhs block is the next block, invert the condition so that we can
1626  // fall through to the lhs instead of the rhs block.
1627  if (CB.TrueBB == NextBlock) {
1628    std::swap(CB.TrueBB, CB.FalseBB);
1629    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1630    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1631  }
1632  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1633                                 DAG.getBasicBlock(CB.TrueBB));
1634  if (CB.FalseBB == NextBlock)
1635    DAG.setRoot(BrCond);
1636  else
1637    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1638                            DAG.getBasicBlock(CB.FalseBB)));
1639}
1640
1641/// visitJumpTable - Emit JumpTable node in the current MBB
1642void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1643  // Emit the code for the jump table
1644  assert(JT.Reg != -1U && "Should lower JT Header first!");
1645  MVT PTy = TLI.getPointerTy();
1646  SDOperand Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1647  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1648  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1649                          Table, Index));
1650  return;
1651}
1652
1653/// visitJumpTableHeader - This function emits necessary code to produce index
1654/// in the JumpTable from switch case.
1655void SelectionDAGLowering::visitJumpTableHeader(SelectionDAGISel::JumpTable &JT,
1656                                         SelectionDAGISel::JumpTableHeader &JTH) {
1657  // Subtract the lowest switch case value from the value being switched on
1658  // and conditional branch to default mbb if the result is greater than the
1659  // difference between smallest and largest cases.
1660  SDOperand SwitchOp = getValue(JTH.SValue);
1661  MVT VT = SwitchOp.getValueType();
1662  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1663                              DAG.getConstant(JTH.First, VT));
1664
1665  // The SDNode we just created, which holds the value being switched on
1666  // minus the the smallest case value, needs to be copied to a virtual
1667  // register so it can be used as an index into the jump table in a
1668  // subsequent basic block.  This value may be smaller or larger than the
1669  // target's pointer type, and therefore require extension or truncating.
1670  if (VT.bitsGT(TLI.getPointerTy()))
1671    SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1672  else
1673    SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1674
1675  unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1676  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1677  JT.Reg = JumpTableReg;
1678
1679  // Emit the range check for the jump table, and branch to the default
1680  // block for the switch statement if the value being switched on exceeds
1681  // the largest case in the switch.
1682  SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1683                               DAG.getConstant(JTH.Last-JTH.First,VT),
1684                               ISD::SETUGT);
1685
1686  // Set NextBlock to be the MBB immediately after the current one, if any.
1687  // This is used to avoid emitting unnecessary branches to the next block.
1688  MachineBasicBlock *NextBlock = 0;
1689  MachineFunction::iterator BBI = CurMBB;
1690  if (++BBI != CurMBB->getParent()->end())
1691    NextBlock = BBI;
1692
1693  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1694                                 DAG.getBasicBlock(JT.Default));
1695
1696  if (JT.MBB == NextBlock)
1697    DAG.setRoot(BrCond);
1698  else
1699    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1700                            DAG.getBasicBlock(JT.MBB)));
1701
1702  return;
1703}
1704
1705/// visitBitTestHeader - This function emits necessary code to produce value
1706/// suitable for "bit tests"
1707void SelectionDAGLowering::visitBitTestHeader(SelectionDAGISel::BitTestBlock &B) {
1708  // Subtract the minimum value
1709  SDOperand SwitchOp = getValue(B.SValue);
1710  MVT VT = SwitchOp.getValueType();
1711  SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1712                              DAG.getConstant(B.First, VT));
1713
1714  // Check range
1715  SDOperand RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1716                                    DAG.getConstant(B.Range, VT),
1717                                    ISD::SETUGT);
1718
1719  SDOperand ShiftOp;
1720  if (VT.bitsGT(TLI.getShiftAmountTy()))
1721    ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1722  else
1723    ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1724
1725  // Make desired shift
1726  SDOperand SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1727                                    DAG.getConstant(1, TLI.getPointerTy()),
1728                                    ShiftOp);
1729
1730  unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1731  SDOperand CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1732  B.Reg = SwitchReg;
1733
1734  // Set NextBlock to be the MBB immediately after the current one, if any.
1735  // This is used to avoid emitting unnecessary branches to the next block.
1736  MachineBasicBlock *NextBlock = 0;
1737  MachineFunction::iterator BBI = CurMBB;
1738  if (++BBI != CurMBB->getParent()->end())
1739    NextBlock = BBI;
1740
1741  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1742
1743  CurMBB->addSuccessor(B.Default);
1744  CurMBB->addSuccessor(MBB);
1745
1746  SDOperand BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1747                                  DAG.getBasicBlock(B.Default));
1748
1749  if (MBB == NextBlock)
1750    DAG.setRoot(BrRange);
1751  else
1752    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1753                            DAG.getBasicBlock(MBB)));
1754
1755  return;
1756}
1757
1758/// visitBitTestCase - this function produces one "bit test"
1759void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1760                                            unsigned Reg,
1761                                            SelectionDAGISel::BitTestCase &B) {
1762  // Emit bit tests and jumps
1763  SDOperand SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
1764                                           TLI.getPointerTy());
1765
1766  SDOperand AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
1767                                DAG.getConstant(B.Mask, TLI.getPointerTy()));
1768  SDOperand AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1769                                  DAG.getConstant(0, TLI.getPointerTy()),
1770                                  ISD::SETNE);
1771
1772  CurMBB->addSuccessor(B.TargetBB);
1773  CurMBB->addSuccessor(NextMBB);
1774
1775  SDOperand BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1776                                AndCmp, DAG.getBasicBlock(B.TargetBB));
1777
1778  // Set NextBlock to be the MBB immediately after the current one, if any.
1779  // This is used to avoid emitting unnecessary branches to the next block.
1780  MachineBasicBlock *NextBlock = 0;
1781  MachineFunction::iterator BBI = CurMBB;
1782  if (++BBI != CurMBB->getParent()->end())
1783    NextBlock = BBI;
1784
1785  if (NextMBB == NextBlock)
1786    DAG.setRoot(BrAnd);
1787  else
1788    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1789                            DAG.getBasicBlock(NextMBB)));
1790
1791  return;
1792}
1793
1794void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1795  // Retrieve successors.
1796  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1797  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1798
1799  if (isa<InlineAsm>(I.getCalledValue()))
1800    visitInlineAsm(&I);
1801  else
1802    LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1803
1804  // If the value of the invoke is used outside of its defining block, make it
1805  // available as a virtual register.
1806  if (!I.use_empty()) {
1807    DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1808    if (VMI != FuncInfo.ValueMap.end())
1809      CopyValueToVirtualRegister(&I, VMI->second);
1810  }
1811
1812  // Update successor info
1813  CurMBB->addSuccessor(Return);
1814  CurMBB->addSuccessor(LandingPad);
1815
1816  // Drop into normal successor.
1817  DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1818                          DAG.getBasicBlock(Return)));
1819}
1820
1821void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1822}
1823
1824/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1825/// small case ranges).
1826bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1827                                                  CaseRecVector& WorkList,
1828                                                  Value* SV,
1829                                                  MachineBasicBlock* Default) {
1830  Case& BackCase  = *(CR.Range.second-1);
1831
1832  // Size is the number of Cases represented by this range.
1833  unsigned Size = CR.Range.second - CR.Range.first;
1834  if (Size > 3)
1835    return false;
1836
1837  // Get the MachineFunction which holds the current MBB.  This is used when
1838  // inserting any additional MBBs necessary to represent the switch.
1839  MachineFunction *CurMF = CurMBB->getParent();
1840
1841  // Figure out which block is immediately after the current one.
1842  MachineBasicBlock *NextBlock = 0;
1843  MachineFunction::iterator BBI = CR.CaseBB;
1844
1845  if (++BBI != CurMBB->getParent()->end())
1846    NextBlock = BBI;
1847
1848  // TODO: If any two of the cases has the same destination, and if one value
1849  // is the same as the other, but has one bit unset that the other has set,
1850  // use bit manipulation to do two compares at once.  For example:
1851  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1852
1853  // Rearrange the case blocks so that the last one falls through if possible.
1854  if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1855    // The last case block won't fall through into 'NextBlock' if we emit the
1856    // branches in this order.  See if rearranging a case value would help.
1857    for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1858      if (I->BB == NextBlock) {
1859        std::swap(*I, BackCase);
1860        break;
1861      }
1862    }
1863  }
1864
1865  // Create a CaseBlock record representing a conditional branch to
1866  // the Case's target mbb if the value being switched on SV is equal
1867  // to C.
1868  MachineBasicBlock *CurBlock = CR.CaseBB;
1869  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1870    MachineBasicBlock *FallThrough;
1871    if (I != E-1) {
1872      FallThrough = new MachineBasicBlock(CurBlock->getBasicBlock());
1873      CurMF->getBasicBlockList().insert(BBI, FallThrough);
1874    } else {
1875      // If the last case doesn't match, go to the default block.
1876      FallThrough = Default;
1877    }
1878
1879    Value *RHS, *LHS, *MHS;
1880    ISD::CondCode CC;
1881    if (I->High == I->Low) {
1882      // This is just small small case range :) containing exactly 1 case
1883      CC = ISD::SETEQ;
1884      LHS = SV; RHS = I->High; MHS = NULL;
1885    } else {
1886      CC = ISD::SETLE;
1887      LHS = I->Low; MHS = SV; RHS = I->High;
1888    }
1889    SelectionDAGISel::CaseBlock CB(CC, LHS, RHS, MHS,
1890                                   I->BB, FallThrough, CurBlock);
1891
1892    // If emitting the first comparison, just call visitSwitchCase to emit the
1893    // code into the current block.  Otherwise, push the CaseBlock onto the
1894    // vector to be later processed by SDISel, and insert the node's MBB
1895    // before the next MBB.
1896    if (CurBlock == CurMBB)
1897      visitSwitchCase(CB);
1898    else
1899      SwitchCases.push_back(CB);
1900
1901    CurBlock = FallThrough;
1902  }
1903
1904  return true;
1905}
1906
1907static inline bool areJTsAllowed(const TargetLowering &TLI) {
1908  return (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1909          TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1910}
1911
1912/// handleJTSwitchCase - Emit jumptable for current switch case range
1913bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1914                                              CaseRecVector& WorkList,
1915                                              Value* SV,
1916                                              MachineBasicBlock* Default) {
1917  Case& FrontCase = *CR.Range.first;
1918  Case& BackCase  = *(CR.Range.second-1);
1919
1920  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1921  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
1922
1923  uint64_t TSize = 0;
1924  for (CaseItr I = CR.Range.first, E = CR.Range.second;
1925       I!=E; ++I)
1926    TSize += I->size();
1927
1928  if (!areJTsAllowed(TLI) || TSize <= 3)
1929    return false;
1930
1931  double Density = (double)TSize / (double)((Last - First) + 1ULL);
1932  if (Density < 0.4)
1933    return false;
1934
1935  DOUT << "Lowering jump table\n"
1936       << "First entry: " << First << ". Last entry: " << Last << "\n"
1937       << "Size: " << TSize << ". Density: " << Density << "\n\n";
1938
1939  // Get the MachineFunction which holds the current MBB.  This is used when
1940  // inserting any additional MBBs necessary to represent the switch.
1941  MachineFunction *CurMF = CurMBB->getParent();
1942
1943  // Figure out which block is immediately after the current one.
1944  MachineBasicBlock *NextBlock = 0;
1945  MachineFunction::iterator BBI = CR.CaseBB;
1946
1947  if (++BBI != CurMBB->getParent()->end())
1948    NextBlock = BBI;
1949
1950  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1951
1952  // Create a new basic block to hold the code for loading the address
1953  // of the jump table, and jumping to it.  Update successor information;
1954  // we will either branch to the default case for the switch, or the jump
1955  // table.
1956  MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1957  CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1958  CR.CaseBB->addSuccessor(Default);
1959  CR.CaseBB->addSuccessor(JumpTableBB);
1960
1961  // Build a vector of destination BBs, corresponding to each target
1962  // of the jump table. If the value of the jump table slot corresponds to
1963  // a case statement, push the case's BB onto the vector, otherwise, push
1964  // the default BB.
1965  std::vector<MachineBasicBlock*> DestBBs;
1966  int64_t TEI = First;
1967  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1968    int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1969    int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1970
1971    if ((Low <= TEI) && (TEI <= High)) {
1972      DestBBs.push_back(I->BB);
1973      if (TEI==High)
1974        ++I;
1975    } else {
1976      DestBBs.push_back(Default);
1977    }
1978  }
1979
1980  // Update successor info. Add one edge to each unique successor.
1981  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1982  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1983         E = DestBBs.end(); I != E; ++I) {
1984    if (!SuccsHandled[(*I)->getNumber()]) {
1985      SuccsHandled[(*I)->getNumber()] = true;
1986      JumpTableBB->addSuccessor(*I);
1987    }
1988  }
1989
1990  // Create a jump table index for this jump table, or return an existing
1991  // one.
1992  unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1993
1994  // Set the jump table information so that we can codegen it as a second
1995  // MachineBasicBlock
1996  SelectionDAGISel::JumpTable JT(-1U, JTI, JumpTableBB, Default);
1997  SelectionDAGISel::JumpTableHeader JTH(First, Last, SV, CR.CaseBB,
1998                                        (CR.CaseBB == CurMBB));
1999  if (CR.CaseBB == CurMBB)
2000    visitJumpTableHeader(JT, JTH);
2001
2002  JTCases.push_back(SelectionDAGISel::JumpTableBlock(JTH, JT));
2003
2004  return true;
2005}
2006
2007/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2008/// 2 subtrees.
2009bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
2010                                                   CaseRecVector& WorkList,
2011                                                   Value* SV,
2012                                                   MachineBasicBlock* Default) {
2013  // Get the MachineFunction which holds the current MBB.  This is used when
2014  // inserting any additional MBBs necessary to represent the switch.
2015  MachineFunction *CurMF = CurMBB->getParent();
2016
2017  // Figure out which block is immediately after the current one.
2018  MachineBasicBlock *NextBlock = 0;
2019  MachineFunction::iterator BBI = CR.CaseBB;
2020
2021  if (++BBI != CurMBB->getParent()->end())
2022    NextBlock = BBI;
2023
2024  Case& FrontCase = *CR.Range.first;
2025  Case& BackCase  = *(CR.Range.second-1);
2026  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2027
2028  // Size is the number of Cases represented by this range.
2029  unsigned Size = CR.Range.second - CR.Range.first;
2030
2031  int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
2032  int64_t Last  = cast<ConstantInt>(BackCase.High)->getSExtValue();
2033  double FMetric = 0;
2034  CaseItr Pivot = CR.Range.first + Size/2;
2035
2036  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2037  // (heuristically) allow us to emit JumpTable's later.
2038  uint64_t TSize = 0;
2039  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2040       I!=E; ++I)
2041    TSize += I->size();
2042
2043  uint64_t LSize = FrontCase.size();
2044  uint64_t RSize = TSize-LSize;
2045  DOUT << "Selecting best pivot: \n"
2046       << "First: " << First << ", Last: " << Last <<"\n"
2047       << "LSize: " << LSize << ", RSize: " << RSize << "\n";
2048  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2049       J!=E; ++I, ++J) {
2050    int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
2051    int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
2052    assert((RBegin-LEnd>=1) && "Invalid case distance");
2053    double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
2054    double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
2055    double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
2056    // Should always split in some non-trivial place
2057    DOUT <<"=>Step\n"
2058         << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
2059         << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
2060         << "Metric: " << Metric << "\n";
2061    if (FMetric < Metric) {
2062      Pivot = J;
2063      FMetric = Metric;
2064      DOUT << "Current metric set to: " << FMetric << "\n";
2065    }
2066
2067    LSize += J->size();
2068    RSize -= J->size();
2069  }
2070  if (areJTsAllowed(TLI)) {
2071    // If our case is dense we *really* should handle it earlier!
2072    assert((FMetric > 0) && "Should handle dense range earlier!");
2073  } else {
2074    Pivot = CR.Range.first + Size/2;
2075  }
2076
2077  CaseRange LHSR(CR.Range.first, Pivot);
2078  CaseRange RHSR(Pivot, CR.Range.second);
2079  Constant *C = Pivot->Low;
2080  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2081
2082  // We know that we branch to the LHS if the Value being switched on is
2083  // less than the Pivot value, C.  We use this to optimize our binary
2084  // tree a bit, by recognizing that if SV is greater than or equal to the
2085  // LHS's Case Value, and that Case Value is exactly one less than the
2086  // Pivot's Value, then we can branch directly to the LHS's Target,
2087  // rather than creating a leaf node for it.
2088  if ((LHSR.second - LHSR.first) == 1 &&
2089      LHSR.first->High == CR.GE &&
2090      cast<ConstantInt>(C)->getSExtValue() ==
2091      (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
2092    TrueBB = LHSR.first->BB;
2093  } else {
2094    TrueBB = new MachineBasicBlock(LLVMBB);
2095    CurMF->getBasicBlockList().insert(BBI, TrueBB);
2096    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2097  }
2098
2099  // Similar to the optimization above, if the Value being switched on is
2100  // known to be less than the Constant CR.LT, and the current Case Value
2101  // is CR.LT - 1, then we can branch directly to the target block for
2102  // the current Case Value, rather than emitting a RHS leaf node for it.
2103  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2104      cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
2105      (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
2106    FalseBB = RHSR.first->BB;
2107  } else {
2108    FalseBB = new MachineBasicBlock(LLVMBB);
2109    CurMF->getBasicBlockList().insert(BBI, FalseBB);
2110    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2111  }
2112
2113  // Create a CaseBlock record representing a conditional branch to
2114  // the LHS node if the value being switched on SV is less than C.
2115  // Otherwise, branch to LHS.
2116  SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, NULL,
2117                                 TrueBB, FalseBB, CR.CaseBB);
2118
2119  if (CR.CaseBB == CurMBB)
2120    visitSwitchCase(CB);
2121  else
2122    SwitchCases.push_back(CB);
2123
2124  return true;
2125}
2126
2127/// handleBitTestsSwitchCase - if current case range has few destination and
2128/// range span less, than machine word bitwidth, encode case range into series
2129/// of masks and emit bit tests with these masks.
2130bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
2131                                                    CaseRecVector& WorkList,
2132                                                    Value* SV,
2133                                                    MachineBasicBlock* Default){
2134  unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
2135
2136  Case& FrontCase = *CR.Range.first;
2137  Case& BackCase  = *(CR.Range.second-1);
2138
2139  // Get the MachineFunction which holds the current MBB.  This is used when
2140  // inserting any additional MBBs necessary to represent the switch.
2141  MachineFunction *CurMF = CurMBB->getParent();
2142
2143  unsigned numCmps = 0;
2144  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2145       I!=E; ++I) {
2146    // Single case counts one, case range - two.
2147    if (I->Low == I->High)
2148      numCmps +=1;
2149    else
2150      numCmps +=2;
2151  }
2152
2153  // Count unique destinations
2154  SmallSet<MachineBasicBlock*, 4> Dests;
2155  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2156    Dests.insert(I->BB);
2157    if (Dests.size() > 3)
2158      // Don't bother the code below, if there are too much unique destinations
2159      return false;
2160  }
2161  DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
2162       << "Total number of comparisons: " << numCmps << "\n";
2163
2164  // Compute span of values.
2165  Constant* minValue = FrontCase.Low;
2166  Constant* maxValue = BackCase.High;
2167  uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
2168                   cast<ConstantInt>(minValue)->getSExtValue();
2169  DOUT << "Compare range: " << range << "\n"
2170       << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
2171       << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
2172
2173  if (range>=IntPtrBits ||
2174      (!(Dests.size() == 1 && numCmps >= 3) &&
2175       !(Dests.size() == 2 && numCmps >= 5) &&
2176       !(Dests.size() >= 3 && numCmps >= 6)))
2177    return false;
2178
2179  DOUT << "Emitting bit tests\n";
2180  int64_t lowBound = 0;
2181
2182  // Optimize the case where all the case values fit in a
2183  // word without having to subtract minValue. In this case,
2184  // we can optimize away the subtraction.
2185  if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
2186      cast<ConstantInt>(maxValue)->getSExtValue() <  IntPtrBits) {
2187    range = cast<ConstantInt>(maxValue)->getSExtValue();
2188  } else {
2189    lowBound = cast<ConstantInt>(minValue)->getSExtValue();
2190  }
2191
2192  CaseBitsVector CasesBits;
2193  unsigned i, count = 0;
2194
2195  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2196    MachineBasicBlock* Dest = I->BB;
2197    for (i = 0; i < count; ++i)
2198      if (Dest == CasesBits[i].BB)
2199        break;
2200
2201    if (i == count) {
2202      assert((count < 3) && "Too much destinations to test!");
2203      CasesBits.push_back(CaseBits(0, Dest, 0));
2204      count++;
2205    }
2206
2207    uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
2208    uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
2209
2210    for (uint64_t j = lo; j <= hi; j++) {
2211      CasesBits[i].Mask |=  1ULL << j;
2212      CasesBits[i].Bits++;
2213    }
2214
2215  }
2216  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2217
2218  SelectionDAGISel::BitTestInfo BTC;
2219
2220  // Figure out which block is immediately after the current one.
2221  MachineFunction::iterator BBI = CR.CaseBB;
2222  ++BBI;
2223
2224  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2225
2226  DOUT << "Cases:\n";
2227  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2228    DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
2229         << ", BB: " << CasesBits[i].BB << "\n";
2230
2231    MachineBasicBlock *CaseBB = new MachineBasicBlock(LLVMBB);
2232    CurMF->getBasicBlockList().insert(BBI, CaseBB);
2233    BTC.push_back(SelectionDAGISel::BitTestCase(CasesBits[i].Mask,
2234                                                CaseBB,
2235                                                CasesBits[i].BB));
2236  }
2237
2238  SelectionDAGISel::BitTestBlock BTB(lowBound, range, SV,
2239                                     -1U, (CR.CaseBB == CurMBB),
2240                                     CR.CaseBB, Default, BTC);
2241
2242  if (CR.CaseBB == CurMBB)
2243    visitBitTestHeader(BTB);
2244
2245  BitTestCases.push_back(BTB);
2246
2247  return true;
2248}
2249
2250
2251/// Clusterify - Transform simple list of Cases into list of CaseRange's
2252unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
2253                                          const SwitchInst& SI) {
2254  unsigned numCmps = 0;
2255
2256  // Start with "simple" cases
2257  for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
2258    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
2259    Cases.push_back(Case(SI.getSuccessorValue(i),
2260                         SI.getSuccessorValue(i),
2261                         SMBB));
2262  }
2263  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2264
2265  // Merge case into clusters
2266  if (Cases.size()>=2)
2267    // Must recompute end() each iteration because it may be
2268    // invalidated by erase if we hold on to it
2269    for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
2270      int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
2271      int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
2272      MachineBasicBlock* nextBB = J->BB;
2273      MachineBasicBlock* currentBB = I->BB;
2274
2275      // If the two neighboring cases go to the same destination, merge them
2276      // into a single case.
2277      if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
2278        I->High = J->High;
2279        J = Cases.erase(J);
2280      } else {
2281        I = J++;
2282      }
2283    }
2284
2285  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2286    if (I->Low != I->High)
2287      // A range counts double, since it requires two compares.
2288      ++numCmps;
2289  }
2290
2291  return numCmps;
2292}
2293
2294void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
2295  // Figure out which block is immediately after the current one.
2296  MachineBasicBlock *NextBlock = 0;
2297  MachineFunction::iterator BBI = CurMBB;
2298
2299  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2300
2301  // If there is only the default destination, branch to it if it is not the
2302  // next basic block.  Otherwise, just fall through.
2303  if (SI.getNumOperands() == 2) {
2304    // Update machine-CFG edges.
2305
2306    // If this is not a fall-through branch, emit the branch.
2307    CurMBB->addSuccessor(Default);
2308    if (Default != NextBlock)
2309      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
2310                              DAG.getBasicBlock(Default)));
2311
2312    return;
2313  }
2314
2315  // If there are any non-default case statements, create a vector of Cases
2316  // representing each one, and sort the vector so that we can efficiently
2317  // create a binary search tree from them.
2318  CaseVector Cases;
2319  unsigned numCmps = Clusterify(Cases, SI);
2320  DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2321       << ". Total compares: " << numCmps << "\n";
2322
2323  // Get the Value to be switched on and default basic blocks, which will be
2324  // inserted into CaseBlock records, representing basic blocks in the binary
2325  // search tree.
2326  Value *SV = SI.getOperand(0);
2327
2328  // Push the initial CaseRec onto the worklist
2329  CaseRecVector WorkList;
2330  WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2331
2332  while (!WorkList.empty()) {
2333    // Grab a record representing a case range to process off the worklist
2334    CaseRec CR = WorkList.back();
2335    WorkList.pop_back();
2336
2337    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2338      continue;
2339
2340    // If the range has few cases (two or less) emit a series of specific
2341    // tests.
2342    if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2343      continue;
2344
2345    // If the switch has more than 5 blocks, and at least 40% dense, and the
2346    // target supports indirect branches, then emit a jump table rather than
2347    // lowering the switch to a binary tree of conditional branches.
2348    if (handleJTSwitchCase(CR, WorkList, SV, Default))
2349      continue;
2350
2351    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2352    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2353    handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2354  }
2355}
2356
2357
2358void SelectionDAGLowering::visitSub(User &I) {
2359  // -0.0 - X --> fneg
2360  const Type *Ty = I.getType();
2361  if (isa<VectorType>(Ty)) {
2362    if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2363      const VectorType *DestTy = cast<VectorType>(I.getType());
2364      const Type *ElTy = DestTy->getElementType();
2365      if (ElTy->isFloatingPoint()) {
2366        unsigned VL = DestTy->getNumElements();
2367        std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2368        Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2369        if (CV == CNZ) {
2370          SDOperand Op2 = getValue(I.getOperand(1));
2371          setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2372          return;
2373        }
2374      }
2375    }
2376  }
2377  if (Ty->isFloatingPoint()) {
2378    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2379      if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2380        SDOperand Op2 = getValue(I.getOperand(1));
2381        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2382        return;
2383      }
2384  }
2385
2386  visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2387}
2388
2389void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2390  SDOperand Op1 = getValue(I.getOperand(0));
2391  SDOperand Op2 = getValue(I.getOperand(1));
2392
2393  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2394}
2395
2396void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2397  SDOperand Op1 = getValue(I.getOperand(0));
2398  SDOperand Op2 = getValue(I.getOperand(1));
2399
2400  if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
2401    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2402  else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
2403    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2404
2405  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2406}
2407
2408void SelectionDAGLowering::visitICmp(User &I) {
2409  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2410  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2411    predicate = IC->getPredicate();
2412  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2413    predicate = ICmpInst::Predicate(IC->getPredicate());
2414  SDOperand Op1 = getValue(I.getOperand(0));
2415  SDOperand Op2 = getValue(I.getOperand(1));
2416  ISD::CondCode Opcode;
2417  switch (predicate) {
2418    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2419    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2420    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2421    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2422    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2423    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2424    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2425    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2426    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2427    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2428    default:
2429      assert(!"Invalid ICmp predicate value");
2430      Opcode = ISD::SETEQ;
2431      break;
2432  }
2433  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2434}
2435
2436void SelectionDAGLowering::visitFCmp(User &I) {
2437  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2438  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2439    predicate = FC->getPredicate();
2440  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2441    predicate = FCmpInst::Predicate(FC->getPredicate());
2442  SDOperand Op1 = getValue(I.getOperand(0));
2443  SDOperand Op2 = getValue(I.getOperand(1));
2444  ISD::CondCode Condition, FOC, FPC;
2445  switch (predicate) {
2446    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2447    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2448    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2449    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2450    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2451    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2452    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2453    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2454    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2455    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2456    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2457    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2458    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2459    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2460    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2461    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2462    default:
2463      assert(!"Invalid FCmp predicate value");
2464      FOC = FPC = ISD::SETFALSE;
2465      break;
2466  }
2467  if (FiniteOnlyFPMath())
2468    Condition = FOC;
2469  else
2470    Condition = FPC;
2471  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2472}
2473
2474void SelectionDAGLowering::visitVICmp(User &I) {
2475  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2476  if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2477    predicate = IC->getPredicate();
2478  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2479    predicate = ICmpInst::Predicate(IC->getPredicate());
2480  SDOperand Op1 = getValue(I.getOperand(0));
2481  SDOperand Op2 = getValue(I.getOperand(1));
2482  ISD::CondCode Opcode;
2483  switch (predicate) {
2484    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
2485    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
2486    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
2487    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
2488    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
2489    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
2490    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
2491    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
2492    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
2493    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
2494    default:
2495      assert(!"Invalid ICmp predicate value");
2496      Opcode = ISD::SETEQ;
2497      break;
2498  }
2499  setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2500}
2501
2502void SelectionDAGLowering::visitVFCmp(User &I) {
2503  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2504  if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2505    predicate = FC->getPredicate();
2506  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2507    predicate = FCmpInst::Predicate(FC->getPredicate());
2508  SDOperand Op1 = getValue(I.getOperand(0));
2509  SDOperand Op2 = getValue(I.getOperand(1));
2510  ISD::CondCode Condition, FOC, FPC;
2511  switch (predicate) {
2512    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
2513    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
2514    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
2515    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
2516    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
2517    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
2518    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
2519    case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
2520    case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
2521    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
2522    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
2523    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
2524    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
2525    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
2526    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
2527    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
2528    default:
2529      assert(!"Invalid VFCmp predicate value");
2530      FOC = FPC = ISD::SETFALSE;
2531      break;
2532  }
2533  if (FiniteOnlyFPMath())
2534    Condition = FOC;
2535  else
2536    Condition = FPC;
2537
2538  MVT DestVT = TLI.getValueType(I.getType());
2539
2540  setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2541}
2542
2543void SelectionDAGLowering::visitSelect(User &I) {
2544  SDOperand Cond     = getValue(I.getOperand(0));
2545  SDOperand TrueVal  = getValue(I.getOperand(1));
2546  SDOperand FalseVal = getValue(I.getOperand(2));
2547  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2548                           TrueVal, FalseVal));
2549}
2550
2551
2552void SelectionDAGLowering::visitTrunc(User &I) {
2553  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2554  SDOperand N = getValue(I.getOperand(0));
2555  MVT DestVT = TLI.getValueType(I.getType());
2556  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2557}
2558
2559void SelectionDAGLowering::visitZExt(User &I) {
2560  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2561  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2562  SDOperand N = getValue(I.getOperand(0));
2563  MVT DestVT = TLI.getValueType(I.getType());
2564  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2565}
2566
2567void SelectionDAGLowering::visitSExt(User &I) {
2568  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2569  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2570  SDOperand N = getValue(I.getOperand(0));
2571  MVT DestVT = TLI.getValueType(I.getType());
2572  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2573}
2574
2575void SelectionDAGLowering::visitFPTrunc(User &I) {
2576  // FPTrunc is never a no-op cast, no need to check
2577  SDOperand N = getValue(I.getOperand(0));
2578  MVT DestVT = TLI.getValueType(I.getType());
2579  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2580}
2581
2582void SelectionDAGLowering::visitFPExt(User &I){
2583  // FPTrunc is never a no-op cast, no need to check
2584  SDOperand N = getValue(I.getOperand(0));
2585  MVT DestVT = TLI.getValueType(I.getType());
2586  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2587}
2588
2589void SelectionDAGLowering::visitFPToUI(User &I) {
2590  // FPToUI is never a no-op cast, no need to check
2591  SDOperand N = getValue(I.getOperand(0));
2592  MVT DestVT = TLI.getValueType(I.getType());
2593  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2594}
2595
2596void SelectionDAGLowering::visitFPToSI(User &I) {
2597  // FPToSI is never a no-op cast, no need to check
2598  SDOperand N = getValue(I.getOperand(0));
2599  MVT DestVT = TLI.getValueType(I.getType());
2600  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2601}
2602
2603void SelectionDAGLowering::visitUIToFP(User &I) {
2604  // UIToFP is never a no-op cast, no need to check
2605  SDOperand N = getValue(I.getOperand(0));
2606  MVT DestVT = TLI.getValueType(I.getType());
2607  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2608}
2609
2610void SelectionDAGLowering::visitSIToFP(User &I){
2611  // UIToFP is never a no-op cast, no need to check
2612  SDOperand N = getValue(I.getOperand(0));
2613  MVT DestVT = TLI.getValueType(I.getType());
2614  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2615}
2616
2617void SelectionDAGLowering::visitPtrToInt(User &I) {
2618  // What to do depends on the size of the integer and the size of the pointer.
2619  // We can either truncate, zero extend, or no-op, accordingly.
2620  SDOperand N = getValue(I.getOperand(0));
2621  MVT SrcVT = N.getValueType();
2622  MVT DestVT = TLI.getValueType(I.getType());
2623  SDOperand Result;
2624  if (DestVT.bitsLT(SrcVT))
2625    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2626  else
2627    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2628    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2629  setValue(&I, Result);
2630}
2631
2632void SelectionDAGLowering::visitIntToPtr(User &I) {
2633  // What to do depends on the size of the integer and the size of the pointer.
2634  // We can either truncate, zero extend, or no-op, accordingly.
2635  SDOperand N = getValue(I.getOperand(0));
2636  MVT SrcVT = N.getValueType();
2637  MVT DestVT = TLI.getValueType(I.getType());
2638  if (DestVT.bitsLT(SrcVT))
2639    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2640  else
2641    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2642    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2643}
2644
2645void SelectionDAGLowering::visitBitCast(User &I) {
2646  SDOperand N = getValue(I.getOperand(0));
2647  MVT DestVT = TLI.getValueType(I.getType());
2648
2649  // BitCast assures us that source and destination are the same size so this
2650  // is either a BIT_CONVERT or a no-op.
2651  if (DestVT != N.getValueType())
2652    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2653  else
2654    setValue(&I, N); // noop cast.
2655}
2656
2657void SelectionDAGLowering::visitInsertElement(User &I) {
2658  SDOperand InVec = getValue(I.getOperand(0));
2659  SDOperand InVal = getValue(I.getOperand(1));
2660  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2661                                getValue(I.getOperand(2)));
2662
2663  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2664                           TLI.getValueType(I.getType()),
2665                           InVec, InVal, InIdx));
2666}
2667
2668void SelectionDAGLowering::visitExtractElement(User &I) {
2669  SDOperand InVec = getValue(I.getOperand(0));
2670  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2671                                getValue(I.getOperand(1)));
2672  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2673                           TLI.getValueType(I.getType()), InVec, InIdx));
2674}
2675
2676void SelectionDAGLowering::visitShuffleVector(User &I) {
2677  SDOperand V1   = getValue(I.getOperand(0));
2678  SDOperand V2   = getValue(I.getOperand(1));
2679  SDOperand Mask = getValue(I.getOperand(2));
2680
2681  setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE,
2682                           TLI.getValueType(I.getType()),
2683                           V1, V2, Mask));
2684}
2685
2686void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
2687  const Value *Op0 = I.getOperand(0);
2688  const Value *Op1 = I.getOperand(1);
2689  const Type *AggTy = I.getType();
2690  const Type *ValTy = Op1->getType();
2691  bool IntoUndef = isa<UndefValue>(Op0);
2692  bool FromUndef = isa<UndefValue>(Op1);
2693
2694  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2695                                            I.idx_begin(), I.idx_end());
2696
2697  SmallVector<MVT, 4> AggValueVTs;
2698  ComputeValueVTs(TLI, AggTy, AggValueVTs);
2699  SmallVector<MVT, 4> ValValueVTs;
2700  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2701
2702  unsigned NumAggValues = AggValueVTs.size();
2703  unsigned NumValValues = ValValueVTs.size();
2704  SmallVector<SDOperand, 4> Values(NumAggValues);
2705
2706  SDOperand Agg = getValue(Op0);
2707  SDOperand Val = getValue(Op1);
2708  unsigned i = 0;
2709  // Copy the beginning value(s) from the original aggregate.
2710  for (; i != LinearIndex; ++i)
2711    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2712                SDOperand(Agg.Val, Agg.ResNo + i);
2713  // Copy values from the inserted value(s).
2714  for (; i != LinearIndex + NumValValues; ++i)
2715    Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2716                SDOperand(Val.Val, Val.ResNo + i - LinearIndex);
2717  // Copy remaining value(s) from the original aggregate.
2718  for (; i != NumAggValues; ++i)
2719    Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2720                SDOperand(Agg.Val, Agg.ResNo + i);
2721
2722  setValue(&I, DAG.getMergeValues(DAG.getVTList(&AggValueVTs[0], NumAggValues),
2723                                  &Values[0], NumAggValues));
2724}
2725
2726void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
2727  const Value *Op0 = I.getOperand(0);
2728  const Type *AggTy = Op0->getType();
2729  const Type *ValTy = I.getType();
2730  bool OutOfUndef = isa<UndefValue>(Op0);
2731
2732  unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2733                                            I.idx_begin(), I.idx_end());
2734
2735  SmallVector<MVT, 4> ValValueVTs;
2736  ComputeValueVTs(TLI, ValTy, ValValueVTs);
2737
2738  unsigned NumValValues = ValValueVTs.size();
2739  SmallVector<SDOperand, 4> Values(NumValValues);
2740
2741  SDOperand Agg = getValue(Op0);
2742  // Copy out the selected value(s).
2743  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2744    Values[i - LinearIndex] =
2745      OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.Val->getValueType(Agg.ResNo + i)) :
2746                   SDOperand(Agg.Val, Agg.ResNo + i);
2747
2748  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValValueVTs[0], NumValValues),
2749                                  &Values[0], NumValValues));
2750}
2751
2752
2753void SelectionDAGLowering::visitGetElementPtr(User &I) {
2754  SDOperand N = getValue(I.getOperand(0));
2755  const Type *Ty = I.getOperand(0)->getType();
2756
2757  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2758       OI != E; ++OI) {
2759    Value *Idx = *OI;
2760    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2761      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2762      if (Field) {
2763        // N = N + Offset
2764        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2765        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2766                        DAG.getIntPtrConstant(Offset));
2767      }
2768      Ty = StTy->getElementType(Field);
2769    } else {
2770      Ty = cast<SequentialType>(Ty)->getElementType();
2771
2772      // If this is a constant subscript, handle it quickly.
2773      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2774        if (CI->getZExtValue() == 0) continue;
2775        uint64_t Offs =
2776            TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2777        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2778                        DAG.getIntPtrConstant(Offs));
2779        continue;
2780      }
2781
2782      // N = N + Idx * ElementSize;
2783      uint64_t ElementSize = TD->getABITypeSize(Ty);
2784      SDOperand IdxN = getValue(Idx);
2785
2786      // If the index is smaller or larger than intptr_t, truncate or extend
2787      // it.
2788      if (IdxN.getValueType().bitsLT(N.getValueType())) {
2789        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2790      } else if (IdxN.getValueType().bitsGT(N.getValueType()))
2791        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2792
2793      // If this is a multiply by a power of two, turn it into a shl
2794      // immediately.  This is a very common case.
2795      if (isPowerOf2_64(ElementSize)) {
2796        unsigned Amt = Log2_64(ElementSize);
2797        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2798                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2799        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2800        continue;
2801      }
2802
2803      SDOperand Scale = DAG.getIntPtrConstant(ElementSize);
2804      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2805      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2806    }
2807  }
2808  setValue(&I, N);
2809}
2810
2811void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2812  // If this is a fixed sized alloca in the entry block of the function,
2813  // allocate it statically on the stack.
2814  if (FuncInfo.StaticAllocaMap.count(&I))
2815    return;   // getValue will auto-populate this.
2816
2817  const Type *Ty = I.getAllocatedType();
2818  uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2819  unsigned Align =
2820    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2821             I.getAlignment());
2822
2823  SDOperand AllocSize = getValue(I.getArraySize());
2824  MVT IntPtr = TLI.getPointerTy();
2825  if (IntPtr.bitsLT(AllocSize.getValueType()))
2826    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2827  else if (IntPtr.bitsGT(AllocSize.getValueType()))
2828    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2829
2830  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2831                          DAG.getIntPtrConstant(TySize));
2832
2833  // Handle alignment.  If the requested alignment is less than or equal to
2834  // the stack alignment, ignore it.  If the size is greater than or equal to
2835  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2836  unsigned StackAlign =
2837    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2838  if (Align <= StackAlign)
2839    Align = 0;
2840
2841  // Round the size of the allocation up to the stack alignment size
2842  // by add SA-1 to the size.
2843  AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2844                          DAG.getIntPtrConstant(StackAlign-1));
2845  // Mask out the low bits for alignment purposes.
2846  AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2847                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2848
2849  SDOperand Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2850  const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2851                                                    MVT::Other);
2852  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2853  setValue(&I, DSA);
2854  DAG.setRoot(DSA.getValue(1));
2855
2856  // Inform the Frame Information that we have just allocated a variable-sized
2857  // object.
2858  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2859}
2860
2861void SelectionDAGLowering::visitLoad(LoadInst &I) {
2862  const Value *SV = I.getOperand(0);
2863  SDOperand Ptr = getValue(SV);
2864
2865  const Type *Ty = I.getType();
2866  bool isVolatile = I.isVolatile();
2867  unsigned Alignment = I.getAlignment();
2868
2869  SmallVector<MVT, 4> ValueVTs;
2870  SmallVector<uint64_t, 4> Offsets;
2871  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2872  unsigned NumValues = ValueVTs.size();
2873  if (NumValues == 0)
2874    return;
2875
2876  SDOperand Root;
2877  if (I.isVolatile())
2878    Root = getRoot();
2879  else {
2880    // Do not serialize non-volatile loads against each other.
2881    Root = DAG.getRoot();
2882  }
2883
2884  SmallVector<SDOperand, 4> Values(NumValues);
2885  SmallVector<SDOperand, 4> Chains(NumValues);
2886  MVT PtrVT = Ptr.getValueType();
2887  for (unsigned i = 0; i != NumValues; ++i) {
2888    SDOperand L = DAG.getLoad(ValueVTs[i], Root,
2889                              DAG.getNode(ISD::ADD, PtrVT, Ptr,
2890                                          DAG.getConstant(Offsets[i], PtrVT)),
2891                              SV, Offsets[i],
2892                              isVolatile, Alignment);
2893    Values[i] = L;
2894    Chains[i] = L.getValue(1);
2895  }
2896
2897  SDOperand Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2898                                &Chains[0], NumValues);
2899  if (isVolatile)
2900    DAG.setRoot(Chain);
2901  else
2902    PendingLoads.push_back(Chain);
2903
2904  setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues),
2905                                  &Values[0], NumValues));
2906}
2907
2908
2909void SelectionDAGLowering::visitStore(StoreInst &I) {
2910  Value *SrcV = I.getOperand(0);
2911  SDOperand Src = getValue(SrcV);
2912  Value *PtrV = I.getOperand(1);
2913  SDOperand Ptr = getValue(PtrV);
2914
2915  SmallVector<MVT, 4> ValueVTs;
2916  SmallVector<uint64_t, 4> Offsets;
2917  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2918  unsigned NumValues = ValueVTs.size();
2919  if (NumValues == 0)
2920    return;
2921
2922  SDOperand Root = getRoot();
2923  SmallVector<SDOperand, 4> Chains(NumValues);
2924  MVT PtrVT = Ptr.getValueType();
2925  bool isVolatile = I.isVolatile();
2926  unsigned Alignment = I.getAlignment();
2927  for (unsigned i = 0; i != NumValues; ++i)
2928    Chains[i] = DAG.getStore(Root, SDOperand(Src.Val, Src.ResNo + i),
2929                             DAG.getNode(ISD::ADD, PtrVT, Ptr,
2930                                         DAG.getConstant(Offsets[i], PtrVT)),
2931                             PtrV, Offsets[i],
2932                             isVolatile, Alignment);
2933
2934  DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
2935}
2936
2937/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2938/// node.
2939void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2940                                                unsigned Intrinsic) {
2941  bool HasChain = !I.doesNotAccessMemory();
2942  bool OnlyLoad = HasChain && I.onlyReadsMemory();
2943
2944  // Build the operand list.
2945  SmallVector<SDOperand, 8> Ops;
2946  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2947    if (OnlyLoad) {
2948      // We don't need to serialize loads against other loads.
2949      Ops.push_back(DAG.getRoot());
2950    } else {
2951      Ops.push_back(getRoot());
2952    }
2953  }
2954
2955  // Add the intrinsic ID as an integer operand.
2956  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2957
2958  // Add all operands of the call to the operand list.
2959  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2960    SDOperand Op = getValue(I.getOperand(i));
2961    assert(TLI.isTypeLegal(Op.getValueType()) &&
2962           "Intrinsic uses a non-legal type?");
2963    Ops.push_back(Op);
2964  }
2965
2966  std::vector<MVT> VTs;
2967  if (I.getType() != Type::VoidTy) {
2968    MVT VT = TLI.getValueType(I.getType());
2969    if (VT.isVector()) {
2970      const VectorType *DestTy = cast<VectorType>(I.getType());
2971      MVT EltVT = TLI.getValueType(DestTy->getElementType());
2972
2973      VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
2974      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2975    }
2976
2977    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2978    VTs.push_back(VT);
2979  }
2980  if (HasChain)
2981    VTs.push_back(MVT::Other);
2982
2983  const MVT *VTList = DAG.getNodeValueTypes(VTs);
2984
2985  // Create the node.
2986  SDOperand Result;
2987  if (!HasChain)
2988    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2989                         &Ops[0], Ops.size());
2990  else if (I.getType() != Type::VoidTy)
2991    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2992                         &Ops[0], Ops.size());
2993  else
2994    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2995                         &Ops[0], Ops.size());
2996
2997  if (HasChain) {
2998    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
2999    if (OnlyLoad)
3000      PendingLoads.push_back(Chain);
3001    else
3002      DAG.setRoot(Chain);
3003  }
3004  if (I.getType() != Type::VoidTy) {
3005    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3006      MVT VT = TLI.getValueType(PTy);
3007      Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
3008    }
3009    setValue(&I, Result);
3010  }
3011}
3012
3013/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
3014static GlobalVariable *ExtractTypeInfo (Value *V) {
3015  V = V->stripPointerCasts();
3016  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3017  assert ((GV || isa<ConstantPointerNull>(V)) &&
3018          "TypeInfo must be a global variable or NULL");
3019  return GV;
3020}
3021
3022/// addCatchInfo - Extract the personality and type infos from an eh.selector
3023/// call, and add them to the specified machine basic block.
3024static void addCatchInfo(CallInst &I, MachineModuleInfo *MMI,
3025                         MachineBasicBlock *MBB) {
3026  // Inform the MachineModuleInfo of the personality for this landing pad.
3027  ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
3028  assert(CE->getOpcode() == Instruction::BitCast &&
3029         isa<Function>(CE->getOperand(0)) &&
3030         "Personality should be a function");
3031  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
3032
3033  // Gather all the type infos for this landing pad and pass them along to
3034  // MachineModuleInfo.
3035  std::vector<GlobalVariable *> TyInfo;
3036  unsigned N = I.getNumOperands();
3037
3038  for (unsigned i = N - 1; i > 2; --i) {
3039    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
3040      unsigned FilterLength = CI->getZExtValue();
3041      unsigned FirstCatch = i + FilterLength + !FilterLength;
3042      assert (FirstCatch <= N && "Invalid filter length");
3043
3044      if (FirstCatch < N) {
3045        TyInfo.reserve(N - FirstCatch);
3046        for (unsigned j = FirstCatch; j < N; ++j)
3047          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3048        MMI->addCatchTypeInfo(MBB, TyInfo);
3049        TyInfo.clear();
3050      }
3051
3052      if (!FilterLength) {
3053        // Cleanup.
3054        MMI->addCleanup(MBB);
3055      } else {
3056        // Filter.
3057        TyInfo.reserve(FilterLength - 1);
3058        for (unsigned j = i + 1; j < FirstCatch; ++j)
3059          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3060        MMI->addFilterTypeInfo(MBB, TyInfo);
3061        TyInfo.clear();
3062      }
3063
3064      N = i;
3065    }
3066  }
3067
3068  if (N > 3) {
3069    TyInfo.reserve(N - 3);
3070    for (unsigned j = 3; j < N; ++j)
3071      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
3072    MMI->addCatchTypeInfo(MBB, TyInfo);
3073  }
3074}
3075
3076
3077/// Inlined utility function to implement binary input atomic intrinsics for
3078// visitIntrinsicCall: I is a call instruction
3079//                     Op is the associated NodeType for I
3080const char *
3081SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3082  SDOperand Root = getRoot();
3083  SDOperand L = DAG.getAtomic(Op, Root,
3084                              getValue(I.getOperand(1)),
3085                              getValue(I.getOperand(2)),
3086                              I.getOperand(1));
3087  setValue(&I, L);
3088  DAG.setRoot(L.getValue(1));
3089  return 0;
3090}
3091
3092/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3093/// we want to emit this as a call to a named external function, return the name
3094/// otherwise lower it and return null.
3095const char *
3096SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3097  switch (Intrinsic) {
3098  default:
3099    // By default, turn this into a target intrinsic node.
3100    visitTargetIntrinsic(I, Intrinsic);
3101    return 0;
3102  case Intrinsic::vastart:  visitVAStart(I); return 0;
3103  case Intrinsic::vaend:    visitVAEnd(I); return 0;
3104  case Intrinsic::vacopy:   visitVACopy(I); return 0;
3105  case Intrinsic::returnaddress:
3106    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
3107                             getValue(I.getOperand(1))));
3108    return 0;
3109  case Intrinsic::frameaddress:
3110    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
3111                             getValue(I.getOperand(1))));
3112    return 0;
3113  case Intrinsic::setjmp:
3114    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3115    break;
3116  case Intrinsic::longjmp:
3117    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3118    break;
3119  case Intrinsic::memcpy_i32:
3120  case Intrinsic::memcpy_i64: {
3121    SDOperand Op1 = getValue(I.getOperand(1));
3122    SDOperand Op2 = getValue(I.getOperand(2));
3123    SDOperand Op3 = getValue(I.getOperand(3));
3124    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3125    DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3126                              I.getOperand(1), 0, I.getOperand(2), 0));
3127    return 0;
3128  }
3129  case Intrinsic::memset_i32:
3130  case Intrinsic::memset_i64: {
3131    SDOperand Op1 = getValue(I.getOperand(1));
3132    SDOperand Op2 = getValue(I.getOperand(2));
3133    SDOperand Op3 = getValue(I.getOperand(3));
3134    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3135    DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
3136                              I.getOperand(1), 0));
3137    return 0;
3138  }
3139  case Intrinsic::memmove_i32:
3140  case Intrinsic::memmove_i64: {
3141    SDOperand Op1 = getValue(I.getOperand(1));
3142    SDOperand Op2 = getValue(I.getOperand(2));
3143    SDOperand Op3 = getValue(I.getOperand(3));
3144    unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3145
3146    // If the source and destination are known to not be aliases, we can
3147    // lower memmove as memcpy.
3148    uint64_t Size = -1ULL;
3149    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3150      Size = C->getValue();
3151    if (AA.alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3152        AliasAnalysis::NoAlias) {
3153      DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3154                                I.getOperand(1), 0, I.getOperand(2), 0));
3155      return 0;
3156    }
3157
3158    DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
3159                               I.getOperand(1), 0, I.getOperand(2), 0));
3160    return 0;
3161  }
3162  case Intrinsic::dbg_stoppoint: {
3163    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3164    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3165    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
3166      SDOperand Ops[5];
3167
3168      Ops[0] = getRoot();
3169      Ops[1] = getValue(SPI.getLineValue());
3170      Ops[2] = getValue(SPI.getColumnValue());
3171
3172      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
3173      assert(DD && "Not a debug information descriptor");
3174      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
3175
3176      Ops[3] = DAG.getString(CompileUnit->getFileName());
3177      Ops[4] = DAG.getString(CompileUnit->getDirectory());
3178
3179      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
3180    }
3181
3182    return 0;
3183  }
3184  case Intrinsic::dbg_region_start: {
3185    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3186    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
3187    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
3188      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
3189      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3190                              DAG.getConstant(LabelID, MVT::i32),
3191                              DAG.getConstant(0, MVT::i32)));
3192    }
3193
3194    return 0;
3195  }
3196  case Intrinsic::dbg_region_end: {
3197    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3198    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
3199    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
3200      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
3201      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3202                              DAG.getConstant(LabelID, MVT::i32),
3203                              DAG.getConstant(0, MVT::i32)));
3204    }
3205
3206    return 0;
3207  }
3208  case Intrinsic::dbg_func_start: {
3209    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3210    if (!MMI) return 0;
3211    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
3212    Value *SP = FSI.getSubprogram();
3213    if (SP && MMI->Verify(SP)) {
3214      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3215      // what (most?) gdb expects.
3216      DebugInfoDesc *DD = MMI->getDescFor(SP);
3217      assert(DD && "Not a debug information descriptor");
3218      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
3219      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
3220      unsigned SrcFile = MMI->RecordSource(CompileUnit->getDirectory(),
3221                                           CompileUnit->getFileName());
3222      // Record the source line but does create a label. It will be emitted
3223      // at asm emission time.
3224      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
3225    }
3226
3227    return 0;
3228  }
3229  case Intrinsic::dbg_declare: {
3230    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3231    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3232    Value *Variable = DI.getVariable();
3233    if (MMI && Variable && MMI->Verify(Variable))
3234      DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3235                              getValue(DI.getAddress()), getValue(Variable)));
3236    return 0;
3237  }
3238
3239  case Intrinsic::eh_exception: {
3240    if (!CurMBB->isLandingPad()) {
3241      // FIXME: Mark exception register as live in.  Hack for PR1508.
3242      unsigned Reg = TLI.getExceptionAddressRegister();
3243      if (Reg) CurMBB->addLiveIn(Reg);
3244    }
3245    // Insert the EXCEPTIONADDR instruction.
3246    SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3247    SDOperand Ops[1];
3248    Ops[0] = DAG.getRoot();
3249    SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3250    setValue(&I, Op);
3251    DAG.setRoot(Op.getValue(1));
3252    return 0;
3253  }
3254
3255  case Intrinsic::eh_selector_i32:
3256  case Intrinsic::eh_selector_i64: {
3257    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3258    MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3259                         MVT::i32 : MVT::i64);
3260
3261    if (MMI) {
3262      if (CurMBB->isLandingPad())
3263        addCatchInfo(I, MMI, CurMBB);
3264      else {
3265#ifndef NDEBUG
3266        FuncInfo.CatchInfoLost.insert(&I);
3267#endif
3268        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3269        unsigned Reg = TLI.getExceptionSelectorRegister();
3270        if (Reg) CurMBB->addLiveIn(Reg);
3271      }
3272
3273      // Insert the EHSELECTION instruction.
3274      SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3275      SDOperand Ops[2];
3276      Ops[0] = getValue(I.getOperand(1));
3277      Ops[1] = getRoot();
3278      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3279      setValue(&I, Op);
3280      DAG.setRoot(Op.getValue(1));
3281    } else {
3282      setValue(&I, DAG.getConstant(0, VT));
3283    }
3284
3285    return 0;
3286  }
3287
3288  case Intrinsic::eh_typeid_for_i32:
3289  case Intrinsic::eh_typeid_for_i64: {
3290    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3291    MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3292                         MVT::i32 : MVT::i64);
3293
3294    if (MMI) {
3295      // Find the type id for the given typeinfo.
3296      GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3297
3298      unsigned TypeID = MMI->getTypeIDFor(GV);
3299      setValue(&I, DAG.getConstant(TypeID, VT));
3300    } else {
3301      // Return something different to eh_selector.
3302      setValue(&I, DAG.getConstant(1, VT));
3303    }
3304
3305    return 0;
3306  }
3307
3308  case Intrinsic::eh_return: {
3309    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3310
3311    if (MMI) {
3312      MMI->setCallsEHReturn(true);
3313      DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3314                              MVT::Other,
3315                              getControlRoot(),
3316                              getValue(I.getOperand(1)),
3317                              getValue(I.getOperand(2))));
3318    } else {
3319      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3320    }
3321
3322    return 0;
3323  }
3324
3325   case Intrinsic::eh_unwind_init: {
3326     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3327       MMI->setCallsUnwindInit(true);
3328     }
3329
3330     return 0;
3331   }
3332
3333   case Intrinsic::eh_dwarf_cfa: {
3334     MVT VT = getValue(I.getOperand(1)).getValueType();
3335     SDOperand CfaArg;
3336     if (VT.bitsGT(TLI.getPointerTy()))
3337       CfaArg = DAG.getNode(ISD::TRUNCATE,
3338                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3339     else
3340       CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3341                            TLI.getPointerTy(), getValue(I.getOperand(1)));
3342
3343     SDOperand Offset = DAG.getNode(ISD::ADD,
3344                                    TLI.getPointerTy(),
3345                                    DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3346                                                TLI.getPointerTy()),
3347                                    CfaArg);
3348     setValue(&I, DAG.getNode(ISD::ADD,
3349                              TLI.getPointerTy(),
3350                              DAG.getNode(ISD::FRAMEADDR,
3351                                          TLI.getPointerTy(),
3352                                          DAG.getConstant(0,
3353                                                          TLI.getPointerTy())),
3354                              Offset));
3355     return 0;
3356  }
3357
3358  case Intrinsic::sqrt:
3359    setValue(&I, DAG.getNode(ISD::FSQRT,
3360                             getValue(I.getOperand(1)).getValueType(),
3361                             getValue(I.getOperand(1))));
3362    return 0;
3363  case Intrinsic::powi:
3364    setValue(&I, DAG.getNode(ISD::FPOWI,
3365                             getValue(I.getOperand(1)).getValueType(),
3366                             getValue(I.getOperand(1)),
3367                             getValue(I.getOperand(2))));
3368    return 0;
3369  case Intrinsic::sin:
3370    setValue(&I, DAG.getNode(ISD::FSIN,
3371                             getValue(I.getOperand(1)).getValueType(),
3372                             getValue(I.getOperand(1))));
3373    return 0;
3374  case Intrinsic::cos:
3375    setValue(&I, DAG.getNode(ISD::FCOS,
3376                             getValue(I.getOperand(1)).getValueType(),
3377                             getValue(I.getOperand(1))));
3378    return 0;
3379  case Intrinsic::pow:
3380    setValue(&I, DAG.getNode(ISD::FPOW,
3381                             getValue(I.getOperand(1)).getValueType(),
3382                             getValue(I.getOperand(1)),
3383                             getValue(I.getOperand(2))));
3384    return 0;
3385  case Intrinsic::pcmarker: {
3386    SDOperand Tmp = getValue(I.getOperand(1));
3387    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3388    return 0;
3389  }
3390  case Intrinsic::readcyclecounter: {
3391    SDOperand Op = getRoot();
3392    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3393                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3394                                &Op, 1);
3395    setValue(&I, Tmp);
3396    DAG.setRoot(Tmp.getValue(1));
3397    return 0;
3398  }
3399  case Intrinsic::part_select: {
3400    // Currently not implemented: just abort
3401    assert(0 && "part_select intrinsic not implemented");
3402    abort();
3403  }
3404  case Intrinsic::part_set: {
3405    // Currently not implemented: just abort
3406    assert(0 && "part_set intrinsic not implemented");
3407    abort();
3408  }
3409  case Intrinsic::bswap:
3410    setValue(&I, DAG.getNode(ISD::BSWAP,
3411                             getValue(I.getOperand(1)).getValueType(),
3412                             getValue(I.getOperand(1))));
3413    return 0;
3414  case Intrinsic::cttz: {
3415    SDOperand Arg = getValue(I.getOperand(1));
3416    MVT Ty = Arg.getValueType();
3417    SDOperand result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3418    setValue(&I, result);
3419    return 0;
3420  }
3421  case Intrinsic::ctlz: {
3422    SDOperand Arg = getValue(I.getOperand(1));
3423    MVT Ty = Arg.getValueType();
3424    SDOperand result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3425    setValue(&I, result);
3426    return 0;
3427  }
3428  case Intrinsic::ctpop: {
3429    SDOperand Arg = getValue(I.getOperand(1));
3430    MVT Ty = Arg.getValueType();
3431    SDOperand result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3432    setValue(&I, result);
3433    return 0;
3434  }
3435  case Intrinsic::stacksave: {
3436    SDOperand Op = getRoot();
3437    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
3438              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3439    setValue(&I, Tmp);
3440    DAG.setRoot(Tmp.getValue(1));
3441    return 0;
3442  }
3443  case Intrinsic::stackrestore: {
3444    SDOperand Tmp = getValue(I.getOperand(1));
3445    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3446    return 0;
3447  }
3448  case Intrinsic::var_annotation:
3449    // Discard annotate attributes
3450    return 0;
3451
3452  case Intrinsic::init_trampoline: {
3453    const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
3454
3455    SDOperand Ops[6];
3456    Ops[0] = getRoot();
3457    Ops[1] = getValue(I.getOperand(1));
3458    Ops[2] = getValue(I.getOperand(2));
3459    Ops[3] = getValue(I.getOperand(3));
3460    Ops[4] = DAG.getSrcValue(I.getOperand(1));
3461    Ops[5] = DAG.getSrcValue(F);
3462
3463    SDOperand Tmp = DAG.getNode(ISD::TRAMPOLINE,
3464                                DAG.getNodeValueTypes(TLI.getPointerTy(),
3465                                                      MVT::Other), 2,
3466                                Ops, 6);
3467
3468    setValue(&I, Tmp);
3469    DAG.setRoot(Tmp.getValue(1));
3470    return 0;
3471  }
3472
3473  case Intrinsic::gcroot:
3474    if (GCI) {
3475      Value *Alloca = I.getOperand(1);
3476      Constant *TypeMap = cast<Constant>(I.getOperand(2));
3477
3478      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).Val);
3479      GCI->addStackRoot(FI->getIndex(), TypeMap);
3480    }
3481    return 0;
3482
3483  case Intrinsic::gcread:
3484  case Intrinsic::gcwrite:
3485    assert(0 && "Collector failed to lower gcread/gcwrite intrinsics!");
3486    return 0;
3487
3488  case Intrinsic::flt_rounds: {
3489    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
3490    return 0;
3491  }
3492
3493  case Intrinsic::trap: {
3494    DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
3495    return 0;
3496  }
3497  case Intrinsic::prefetch: {
3498    SDOperand Ops[4];
3499    Ops[0] = getRoot();
3500    Ops[1] = getValue(I.getOperand(1));
3501    Ops[2] = getValue(I.getOperand(2));
3502    Ops[3] = getValue(I.getOperand(3));
3503    DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
3504    return 0;
3505  }
3506
3507  case Intrinsic::memory_barrier: {
3508    SDOperand Ops[6];
3509    Ops[0] = getRoot();
3510    for (int x = 1; x < 6; ++x)
3511      Ops[x] = getValue(I.getOperand(x));
3512
3513    DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
3514    return 0;
3515  }
3516  case Intrinsic::atomic_cmp_swap: {
3517    SDOperand Root = getRoot();
3518    SDOperand L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, Root,
3519                                getValue(I.getOperand(1)),
3520                                getValue(I.getOperand(2)),
3521                                getValue(I.getOperand(3)),
3522                                I.getOperand(1));
3523    setValue(&I, L);
3524    DAG.setRoot(L.getValue(1));
3525    return 0;
3526  }
3527  case Intrinsic::atomic_load_add:
3528    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
3529  case Intrinsic::atomic_load_sub:
3530    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
3531  case Intrinsic::atomic_load_and:
3532    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
3533  case Intrinsic::atomic_load_or:
3534    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
3535  case Intrinsic::atomic_load_xor:
3536    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
3537  case Intrinsic::atomic_load_nand:
3538    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
3539  case Intrinsic::atomic_load_min:
3540    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
3541  case Intrinsic::atomic_load_max:
3542    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
3543  case Intrinsic::atomic_load_umin:
3544    return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
3545  case Intrinsic::atomic_load_umax:
3546      return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
3547  case Intrinsic::atomic_swap:
3548    return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
3549  }
3550}
3551
3552
3553void SelectionDAGLowering::LowerCallTo(CallSite CS, SDOperand Callee,
3554                                       bool IsTailCall,
3555                                       MachineBasicBlock *LandingPad) {
3556  const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
3557  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
3558  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3559  unsigned BeginLabel = 0, EndLabel = 0;
3560
3561  TargetLowering::ArgListTy Args;
3562  TargetLowering::ArgListEntry Entry;
3563  Args.reserve(CS.arg_size());
3564  for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
3565       i != e; ++i) {
3566    SDOperand ArgNode = getValue(*i);
3567    Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
3568
3569    unsigned attrInd = i - CS.arg_begin() + 1;
3570    Entry.isSExt  = CS.paramHasAttr(attrInd, ParamAttr::SExt);
3571    Entry.isZExt  = CS.paramHasAttr(attrInd, ParamAttr::ZExt);
3572    Entry.isInReg = CS.paramHasAttr(attrInd, ParamAttr::InReg);
3573    Entry.isSRet  = CS.paramHasAttr(attrInd, ParamAttr::StructRet);
3574    Entry.isNest  = CS.paramHasAttr(attrInd, ParamAttr::Nest);
3575    Entry.isByVal = CS.paramHasAttr(attrInd, ParamAttr::ByVal);
3576    Entry.Alignment = CS.getParamAlignment(attrInd);
3577    Args.push_back(Entry);
3578  }
3579
3580  if (LandingPad && MMI) {
3581    // Insert a label before the invoke call to mark the try range.  This can be
3582    // used to detect deletion of the invoke via the MachineModuleInfo.
3583    BeginLabel = MMI->NextLabelID();
3584    // Both PendingLoads and PendingExports must be flushed here;
3585    // this call might not return.
3586    (void)getRoot();
3587    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getControlRoot(),
3588                            DAG.getConstant(BeginLabel, MVT::i32),
3589                            DAG.getConstant(1, MVT::i32)));
3590  }
3591
3592  std::pair<SDOperand,SDOperand> Result =
3593    TLI.LowerCallTo(getRoot(), CS.getType(),
3594                    CS.paramHasAttr(0, ParamAttr::SExt),
3595                    CS.paramHasAttr(0, ParamAttr::ZExt),
3596                    FTy->isVarArg(), CS.getCallingConv(), IsTailCall,
3597                    Callee, Args, DAG);
3598  if (CS.getType() != Type::VoidTy)
3599    setValue(CS.getInstruction(), Result.first);
3600  DAG.setRoot(Result.second);
3601
3602  if (LandingPad && MMI) {
3603    // Insert a label at the end of the invoke call to mark the try range.  This
3604    // can be used to detect deletion of the invoke via the MachineModuleInfo.
3605    EndLabel = MMI->NextLabelID();
3606    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
3607                            DAG.getConstant(EndLabel, MVT::i32),
3608                            DAG.getConstant(1, MVT::i32)));
3609
3610    // Inform MachineModuleInfo of range.
3611    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
3612  }
3613}
3614
3615
3616void SelectionDAGLowering::visitCall(CallInst &I) {
3617  const char *RenameFn = 0;
3618  if (Function *F = I.getCalledFunction()) {
3619    if (F->isDeclaration()) {
3620      if (unsigned IID = F->getIntrinsicID()) {
3621        RenameFn = visitIntrinsicCall(I, IID);
3622        if (!RenameFn)
3623          return;
3624      }
3625    }
3626
3627    // Check for well-known libc/libm calls.  If the function is internal, it
3628    // can't be a library call.
3629    unsigned NameLen = F->getNameLen();
3630    if (!F->hasInternalLinkage() && NameLen) {
3631      const char *NameStr = F->getNameStart();
3632      if (NameStr[0] == 'c' &&
3633          ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
3634           (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
3635        if (I.getNumOperands() == 3 &&   // Basic sanity checks.
3636            I.getOperand(1)->getType()->isFloatingPoint() &&
3637            I.getType() == I.getOperand(1)->getType() &&
3638            I.getType() == I.getOperand(2)->getType()) {
3639          SDOperand LHS = getValue(I.getOperand(1));
3640          SDOperand RHS = getValue(I.getOperand(2));
3641          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
3642                                   LHS, RHS));
3643          return;
3644        }
3645      } else if (NameStr[0] == 'f' &&
3646                 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
3647                  (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
3648                  (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
3649        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3650            I.getOperand(1)->getType()->isFloatingPoint() &&
3651            I.getType() == I.getOperand(1)->getType()) {
3652          SDOperand Tmp = getValue(I.getOperand(1));
3653          setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
3654          return;
3655        }
3656      } else if (NameStr[0] == 's' &&
3657                 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
3658                  (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
3659                  (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
3660        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3661            I.getOperand(1)->getType()->isFloatingPoint() &&
3662            I.getType() == I.getOperand(1)->getType()) {
3663          SDOperand Tmp = getValue(I.getOperand(1));
3664          setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
3665          return;
3666        }
3667      } else if (NameStr[0] == 'c' &&
3668                 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
3669                  (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
3670                  (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
3671        if (I.getNumOperands() == 2 &&   // Basic sanity checks.
3672            I.getOperand(1)->getType()->isFloatingPoint() &&
3673            I.getType() == I.getOperand(1)->getType()) {
3674          SDOperand Tmp = getValue(I.getOperand(1));
3675          setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
3676          return;
3677        }
3678      }
3679    }
3680  } else if (isa<InlineAsm>(I.getOperand(0))) {
3681    visitInlineAsm(&I);
3682    return;
3683  }
3684
3685  SDOperand Callee;
3686  if (!RenameFn)
3687    Callee = getValue(I.getOperand(0));
3688  else
3689    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
3690
3691  LowerCallTo(&I, Callee, I.isTailCall());
3692}
3693
3694
3695void SelectionDAGLowering::visitGetResult(GetResultInst &I) {
3696  if (isa<UndefValue>(I.getOperand(0))) {
3697    SDOperand Undef = DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType()));
3698    setValue(&I, Undef);
3699    return;
3700  }
3701
3702  // To add support for individual return values with aggregate types,
3703  // we'd need a way to take a getresult index and determine which
3704  // values of the Call SDNode are associated with it.
3705  assert(TLI.getValueType(I.getType(), true) != MVT::Other &&
3706         "Individual return values must not be aggregates!");
3707
3708  SDOperand Call = getValue(I.getOperand(0));
3709  setValue(&I, SDOperand(Call.Val, I.getIndex()));
3710}
3711
3712
3713/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
3714/// this value and returns the result as a ValueVT value.  This uses
3715/// Chain/Flag as the input and updates them for the output Chain/Flag.
3716/// If the Flag pointer is NULL, no flag is used.
3717SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
3718                                        SDOperand &Chain,
3719                                        SDOperand *Flag) const {
3720  // Assemble the legal parts into the final values.
3721  SmallVector<SDOperand, 4> Values(ValueVTs.size());
3722  SmallVector<SDOperand, 8> Parts;
3723  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3724    // Copy the legal parts from the registers.
3725    MVT ValueVT = ValueVTs[Value];
3726    unsigned NumRegs = TLI->getNumRegisters(ValueVT);
3727    MVT RegisterVT = RegVTs[Value];
3728
3729    Parts.resize(NumRegs);
3730    for (unsigned i = 0; i != NumRegs; ++i) {
3731      SDOperand P;
3732      if (Flag == 0)
3733        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
3734      else {
3735        P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
3736        *Flag = P.getValue(2);
3737      }
3738      Chain = P.getValue(1);
3739
3740      // If the source register was virtual and if we know something about it,
3741      // add an assert node.
3742      if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
3743          RegisterVT.isInteger() && !RegisterVT.isVector()) {
3744        unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
3745        FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
3746        if (FLI.LiveOutRegInfo.size() > SlotNo) {
3747          FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
3748
3749          unsigned RegSize = RegisterVT.getSizeInBits();
3750          unsigned NumSignBits = LOI.NumSignBits;
3751          unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
3752
3753          // FIXME: We capture more information than the dag can represent.  For
3754          // now, just use the tightest assertzext/assertsext possible.
3755          bool isSExt = true;
3756          MVT FromVT(MVT::Other);
3757          if (NumSignBits == RegSize)
3758            isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
3759          else if (NumZeroBits >= RegSize-1)
3760            isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
3761          else if (NumSignBits > RegSize-8)
3762            isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
3763          else if (NumZeroBits >= RegSize-9)
3764            isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
3765          else if (NumSignBits > RegSize-16)
3766            isSExt = true, FromVT = MVT::i16;   // ASSERT SEXT 16
3767          else if (NumZeroBits >= RegSize-17)
3768            isSExt = false, FromVT = MVT::i16;  // ASSERT ZEXT 16
3769          else if (NumSignBits > RegSize-32)
3770            isSExt = true, FromVT = MVT::i32;   // ASSERT SEXT 32
3771          else if (NumZeroBits >= RegSize-33)
3772            isSExt = false, FromVT = MVT::i32;  // ASSERT ZEXT 32
3773
3774          if (FromVT != MVT::Other) {
3775            P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
3776                            RegisterVT, P, DAG.getValueType(FromVT));
3777
3778          }
3779        }
3780      }
3781
3782      Parts[Part+i] = P;
3783    }
3784
3785    Values[Value] = getCopyFromParts(DAG, &Parts[Part], NumRegs, RegisterVT,
3786                                     ValueVT);
3787    Part += NumRegs;
3788  }
3789
3790  if (ValueVTs.size() == 1)
3791    return Values[0];
3792
3793  return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
3794                            &Values[0], ValueVTs.size());
3795}
3796
3797/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
3798/// specified value into the registers specified by this object.  This uses
3799/// Chain/Flag as the input and updates them for the output Chain/Flag.
3800/// If the Flag pointer is NULL, no flag is used.
3801void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
3802                                 SDOperand &Chain, SDOperand *Flag) const {
3803  // Get the list of the values's legal parts.
3804  unsigned NumRegs = Regs.size();
3805  SmallVector<SDOperand, 8> Parts(NumRegs);
3806  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
3807    MVT ValueVT = ValueVTs[Value];
3808    unsigned NumParts = TLI->getNumRegisters(ValueVT);
3809    MVT RegisterVT = RegVTs[Value];
3810
3811    getCopyToParts(DAG, Val.getValue(Val.ResNo + Value),
3812                   &Parts[Part], NumParts, RegisterVT);
3813    Part += NumParts;
3814  }
3815
3816  // Copy the parts into the registers.
3817  SmallVector<SDOperand, 8> Chains(NumRegs);
3818  for (unsigned i = 0; i != NumRegs; ++i) {
3819    SDOperand Part;
3820    if (Flag == 0)
3821      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
3822    else {
3823      Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
3824      *Flag = Part.getValue(1);
3825    }
3826    Chains[i] = Part.getValue(0);
3827  }
3828
3829  if (NumRegs == 1 || Flag)
3830    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
3831    // flagged to it. That is the CopyToReg nodes and the user are considered
3832    // a single scheduling unit. If we create a TokenFactor and return it as
3833    // chain, then the TokenFactor is both a predecessor (operand) of the
3834    // user as well as a successor (the TF operands are flagged to the user).
3835    // c1, f1 = CopyToReg
3836    // c2, f2 = CopyToReg
3837    // c3     = TokenFactor c1, c2
3838    // ...
3839    //        = op c3, ..., f2
3840    Chain = Chains[NumRegs-1];
3841  else
3842    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
3843}
3844
3845/// AddInlineAsmOperands - Add this value to the specified inlineasm node
3846/// operand list.  This adds the code marker and includes the number of
3847/// values added into it.
3848void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
3849                                        std::vector<SDOperand> &Ops) const {
3850  MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
3851  Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
3852  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
3853    unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
3854    MVT RegisterVT = RegVTs[Value];
3855    for (unsigned i = 0; i != NumRegs; ++i)
3856      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
3857  }
3858}
3859
3860/// isAllocatableRegister - If the specified register is safe to allocate,
3861/// i.e. it isn't a stack pointer or some other special register, return the
3862/// register class for the register.  Otherwise, return null.
3863static const TargetRegisterClass *
3864isAllocatableRegister(unsigned Reg, MachineFunction &MF,
3865                      const TargetLowering &TLI,
3866                      const TargetRegisterInfo *TRI) {
3867  MVT FoundVT = MVT::Other;
3868  const TargetRegisterClass *FoundRC = 0;
3869  for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
3870       E = TRI->regclass_end(); RCI != E; ++RCI) {
3871    MVT ThisVT = MVT::Other;
3872
3873    const TargetRegisterClass *RC = *RCI;
3874    // If none of the the value types for this register class are valid, we
3875    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3876    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
3877         I != E; ++I) {
3878      if (TLI.isTypeLegal(*I)) {
3879        // If we have already found this register in a different register class,
3880        // choose the one with the largest VT specified.  For example, on
3881        // PowerPC, we favor f64 register classes over f32.
3882        if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
3883          ThisVT = *I;
3884          break;
3885        }
3886      }
3887    }
3888
3889    if (ThisVT == MVT::Other) continue;
3890
3891    // NOTE: This isn't ideal.  In particular, this might allocate the
3892    // frame pointer in functions that need it (due to them not being taken
3893    // out of allocation, because a variable sized allocation hasn't been seen
3894    // yet).  This is a slight code pessimization, but should still work.
3895    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
3896         E = RC->allocation_order_end(MF); I != E; ++I)
3897      if (*I == Reg) {
3898        // We found a matching register class.  Keep looking at others in case
3899        // we find one with larger registers that this physreg is also in.
3900        FoundRC = RC;
3901        FoundVT = ThisVT;
3902        break;
3903      }
3904  }
3905  return FoundRC;
3906}
3907
3908
3909namespace {
3910/// AsmOperandInfo - This contains information for each constraint that we are
3911/// lowering.
3912struct SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
3913  /// CallOperand - If this is the result output operand or a clobber
3914  /// this is null, otherwise it is the incoming operand to the CallInst.
3915  /// This gets modified as the asm is processed.
3916  SDOperand CallOperand;
3917
3918  /// AssignedRegs - If this is a register or register class operand, this
3919  /// contains the set of register corresponding to the operand.
3920  RegsForValue AssignedRegs;
3921
3922  explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
3923    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
3924  }
3925
3926  /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
3927  /// busy in OutputRegs/InputRegs.
3928  void MarkAllocatedRegs(bool isOutReg, bool isInReg,
3929                         std::set<unsigned> &OutputRegs,
3930                         std::set<unsigned> &InputRegs,
3931                         const TargetRegisterInfo &TRI) const {
3932    if (isOutReg) {
3933      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3934        MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
3935    }
3936    if (isInReg) {
3937      for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
3938        MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
3939    }
3940  }
3941
3942private:
3943  /// MarkRegAndAliases - Mark the specified register and all aliases in the
3944  /// specified set.
3945  static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
3946                                const TargetRegisterInfo &TRI) {
3947    assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
3948    Regs.insert(Reg);
3949    if (const unsigned *Aliases = TRI.getAliasSet(Reg))
3950      for (; *Aliases; ++Aliases)
3951        Regs.insert(*Aliases);
3952  }
3953};
3954} // end anon namespace.
3955
3956
3957/// GetRegistersForValue - Assign registers (virtual or physical) for the
3958/// specified operand.  We prefer to assign virtual registers, to allow the
3959/// register allocator handle the assignment process.  However, if the asm uses
3960/// features that we can't model on machineinstrs, we have SDISel do the
3961/// allocation.  This produces generally horrible, but correct, code.
3962///
3963///   OpInfo describes the operand.
3964///   HasEarlyClobber is true if there are any early clobber constraints (=&r)
3965///     or any explicitly clobbered registers.
3966///   Input and OutputRegs are the set of already allocated physical registers.
3967///
3968void SelectionDAGLowering::
3969GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, bool HasEarlyClobber,
3970                     std::set<unsigned> &OutputRegs,
3971                     std::set<unsigned> &InputRegs) {
3972  // Compute whether this value requires an input register, an output register,
3973  // or both.
3974  bool isOutReg = false;
3975  bool isInReg = false;
3976  switch (OpInfo.Type) {
3977  case InlineAsm::isOutput:
3978    isOutReg = true;
3979
3980    // If this is an early-clobber output, or if there is an input
3981    // constraint that matches this, we need to reserve the input register
3982    // so no other inputs allocate to it.
3983    isInReg = OpInfo.isEarlyClobber || OpInfo.hasMatchingInput;
3984    break;
3985  case InlineAsm::isInput:
3986    isInReg = true;
3987    isOutReg = false;
3988    break;
3989  case InlineAsm::isClobber:
3990    isOutReg = true;
3991    isInReg = true;
3992    break;
3993  }
3994
3995
3996  MachineFunction &MF = DAG.getMachineFunction();
3997  SmallVector<unsigned, 4> Regs;
3998
3999  // If this is a constraint for a single physreg, or a constraint for a
4000  // register class, find it.
4001  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4002    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4003                                     OpInfo.ConstraintVT);
4004
4005  unsigned NumRegs = 1;
4006  if (OpInfo.ConstraintVT != MVT::Other)
4007    NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
4008  MVT RegVT;
4009  MVT ValueVT = OpInfo.ConstraintVT;
4010
4011
4012  // If this is a constraint for a specific physical register, like {r17},
4013  // assign it now.
4014  if (PhysReg.first) {
4015    if (OpInfo.ConstraintVT == MVT::Other)
4016      ValueVT = *PhysReg.second->vt_begin();
4017
4018    // Get the actual register value type.  This is important, because the user
4019    // may have asked for (e.g.) the AX register in i32 type.  We need to
4020    // remember that AX is actually i16 to get the right extension.
4021    RegVT = *PhysReg.second->vt_begin();
4022
4023    // This is a explicit reference to a physical register.
4024    Regs.push_back(PhysReg.first);
4025
4026    // If this is an expanded reference, add the rest of the regs to Regs.
4027    if (NumRegs != 1) {
4028      TargetRegisterClass::iterator I = PhysReg.second->begin();
4029      for (; *I != PhysReg.first; ++I)
4030        assert(I != PhysReg.second->end() && "Didn't find reg!");
4031
4032      // Already added the first reg.
4033      --NumRegs; ++I;
4034      for (; NumRegs; --NumRegs, ++I) {
4035        assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
4036        Regs.push_back(*I);
4037      }
4038    }
4039    OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4040    const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4041    OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4042    return;
4043  }
4044
4045  // Otherwise, if this was a reference to an LLVM register class, create vregs
4046  // for this reference.
4047  std::vector<unsigned> RegClassRegs;
4048  const TargetRegisterClass *RC = PhysReg.second;
4049  if (RC) {
4050    // If this is an early clobber or tied register, our regalloc doesn't know
4051    // how to maintain the constraint.  If it isn't, go ahead and create vreg
4052    // and let the regalloc do the right thing.
4053    if (!OpInfo.hasMatchingInput && !OpInfo.isEarlyClobber &&
4054        // If there is some other early clobber and this is an input register,
4055        // then we are forced to pre-allocate the input reg so it doesn't
4056        // conflict with the earlyclobber.
4057        !(OpInfo.Type == InlineAsm::isInput && HasEarlyClobber)) {
4058      RegVT = *PhysReg.second->vt_begin();
4059
4060      if (OpInfo.ConstraintVT == MVT::Other)
4061        ValueVT = RegVT;
4062
4063      // Create the appropriate number of virtual registers.
4064      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4065      for (; NumRegs; --NumRegs)
4066        Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
4067
4068      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4069      return;
4070    }
4071
4072    // Otherwise, we can't allocate it.  Let the code below figure out how to
4073    // maintain these constraints.
4074    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
4075
4076  } else {
4077    // This is a reference to a register class that doesn't directly correspond
4078    // to an LLVM register class.  Allocate NumRegs consecutive, available,
4079    // registers from the class.
4080    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
4081                                                         OpInfo.ConstraintVT);
4082  }
4083
4084  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4085  unsigned NumAllocated = 0;
4086  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
4087    unsigned Reg = RegClassRegs[i];
4088    // See if this register is available.
4089    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
4090        (isInReg  && InputRegs.count(Reg))) {    // Already used.
4091      // Make sure we find consecutive registers.
4092      NumAllocated = 0;
4093      continue;
4094    }
4095
4096    // Check to see if this register is allocatable (i.e. don't give out the
4097    // stack pointer).
4098    if (RC == 0) {
4099      RC = isAllocatableRegister(Reg, MF, TLI, TRI);
4100      if (!RC) {        // Couldn't allocate this register.
4101        // Reset NumAllocated to make sure we return consecutive registers.
4102        NumAllocated = 0;
4103        continue;
4104      }
4105    }
4106
4107    // Okay, this register is good, we can use it.
4108    ++NumAllocated;
4109
4110    // If we allocated enough consecutive registers, succeed.
4111    if (NumAllocated == NumRegs) {
4112      unsigned RegStart = (i-NumAllocated)+1;
4113      unsigned RegEnd   = i+1;
4114      // Mark all of the allocated registers used.
4115      for (unsigned i = RegStart; i != RegEnd; ++i)
4116        Regs.push_back(RegClassRegs[i]);
4117
4118      OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
4119                                         OpInfo.ConstraintVT);
4120      OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4121      return;
4122    }
4123  }
4124
4125  // Otherwise, we couldn't allocate enough registers for this.
4126}
4127
4128
4129/// visitInlineAsm - Handle a call to an InlineAsm object.
4130///
4131void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
4132  InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4133
4134  /// ConstraintOperands - Information about all of the constraints.
4135  std::vector<SDISelAsmOperandInfo> ConstraintOperands;
4136
4137  SDOperand Chain = getRoot();
4138  SDOperand Flag;
4139
4140  std::set<unsigned> OutputRegs, InputRegs;
4141
4142  // Do a prepass over the constraints, canonicalizing them, and building up the
4143  // ConstraintOperands list.
4144  std::vector<InlineAsm::ConstraintInfo>
4145    ConstraintInfos = IA->ParseConstraints();
4146
4147  // SawEarlyClobber - Keep track of whether we saw an earlyclobber output
4148  // constraint.  If so, we can't let the register allocator allocate any input
4149  // registers, because it will not know to avoid the earlyclobbered output reg.
4150  bool SawEarlyClobber = false;
4151
4152  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
4153  unsigned ResNo = 0;   // ResNo - The result number of the next output.
4154  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4155    ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
4156    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
4157
4158    MVT OpVT = MVT::Other;
4159
4160    // Compute the value type for each operand.
4161    switch (OpInfo.Type) {
4162    case InlineAsm::isOutput:
4163      // Indirect outputs just consume an argument.
4164      if (OpInfo.isIndirect) {
4165        OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4166        break;
4167      }
4168      // The return value of the call is this value.  As such, there is no
4169      // corresponding argument.
4170      assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4171      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
4172        OpVT = TLI.getValueType(STy->getElementType(ResNo));
4173      } else {
4174        assert(ResNo == 0 && "Asm only has one result!");
4175        OpVT = TLI.getValueType(CS.getType());
4176      }
4177      ++ResNo;
4178      break;
4179    case InlineAsm::isInput:
4180      OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4181      break;
4182    case InlineAsm::isClobber:
4183      // Nothing to do.
4184      break;
4185    }
4186
4187    // If this is an input or an indirect output, process the call argument.
4188    // BasicBlocks are labels, currently appearing only in asm's.
4189    if (OpInfo.CallOperandVal) {
4190      if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal))
4191        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
4192      else {
4193        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
4194        const Type *OpTy = OpInfo.CallOperandVal->getType();
4195        // If this is an indirect operand, the operand is a pointer to the
4196        // accessed type.
4197        if (OpInfo.isIndirect)
4198          OpTy = cast<PointerType>(OpTy)->getElementType();
4199
4200        // If OpTy is not a single value, it may be a struct/union that we
4201        // can tile with integers.
4202        if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4203          unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4204          switch (BitSize) {
4205          default: break;
4206          case 1:
4207          case 8:
4208          case 16:
4209          case 32:
4210          case 64:
4211            OpTy = IntegerType::get(BitSize);
4212            break;
4213          }
4214        }
4215
4216        OpVT = TLI.getValueType(OpTy, true);
4217      }
4218    }
4219
4220    OpInfo.ConstraintVT = OpVT;
4221
4222    // Compute the constraint code and ConstraintType to use.
4223    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
4224
4225    // Keep track of whether we see an earlyclobber.
4226    SawEarlyClobber |= OpInfo.isEarlyClobber;
4227
4228    // If we see a clobber of a register, it is an early clobber.
4229    if (!SawEarlyClobber &&
4230        OpInfo.Type == InlineAsm::isClobber &&
4231        OpInfo.ConstraintType == TargetLowering::C_Register) {
4232      // Note that we want to ignore things that we don't trick here, like
4233      // dirflag, fpsr, flags, etc.
4234      std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4235        TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4236                                         OpInfo.ConstraintVT);
4237      if (PhysReg.first || PhysReg.second) {
4238        // This is a register we know of.
4239        SawEarlyClobber = true;
4240      }
4241    }
4242
4243    // If this is a memory input, and if the operand is not indirect, do what we
4244    // need to to provide an address for the memory input.
4245    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4246        !OpInfo.isIndirect) {
4247      assert(OpInfo.Type == InlineAsm::isInput &&
4248             "Can only indirectify direct input operands!");
4249
4250      // Memory operands really want the address of the value.  If we don't have
4251      // an indirect input, put it in the constpool if we can, otherwise spill
4252      // it to a stack slot.
4253
4254      // If the operand is a float, integer, or vector constant, spill to a
4255      // constant pool entry to get its address.
4256      Value *OpVal = OpInfo.CallOperandVal;
4257      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
4258          isa<ConstantVector>(OpVal)) {
4259        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
4260                                                 TLI.getPointerTy());
4261      } else {
4262        // Otherwise, create a stack slot and emit a store to it before the
4263        // asm.
4264        const Type *Ty = OpVal->getType();
4265        uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
4266        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
4267        MachineFunction &MF = DAG.getMachineFunction();
4268        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
4269        SDOperand StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4270        Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
4271        OpInfo.CallOperand = StackSlot;
4272      }
4273
4274      // There is no longer a Value* corresponding to this operand.
4275      OpInfo.CallOperandVal = 0;
4276      // It is now an indirect operand.
4277      OpInfo.isIndirect = true;
4278    }
4279
4280    // If this constraint is for a specific register, allocate it before
4281    // anything else.
4282    if (OpInfo.ConstraintType == TargetLowering::C_Register)
4283      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4284  }
4285  ConstraintInfos.clear();
4286
4287
4288  // Second pass - Loop over all of the operands, assigning virtual or physregs
4289  // to registerclass operands.
4290  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4291    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4292
4293    // C_Register operands have already been allocated, Other/Memory don't need
4294    // to be.
4295    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
4296      GetRegistersForValue(OpInfo, SawEarlyClobber, OutputRegs, InputRegs);
4297  }
4298
4299  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
4300  std::vector<SDOperand> AsmNodeOperands;
4301  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
4302  AsmNodeOperands.push_back(
4303          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
4304
4305
4306  // Loop over all of the inputs, copying the operand values into the
4307  // appropriate registers and processing the output regs.
4308  RegsForValue RetValRegs;
4309
4310  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
4311  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
4312
4313  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
4314    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4315
4316    switch (OpInfo.Type) {
4317    case InlineAsm::isOutput: {
4318      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
4319          OpInfo.ConstraintType != TargetLowering::C_Register) {
4320        // Memory output, or 'other' output (e.g. 'X' constraint).
4321        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
4322
4323        // Add information to the INLINEASM node to know about this output.
4324        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4325        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4326                                                        TLI.getPointerTy()));
4327        AsmNodeOperands.push_back(OpInfo.CallOperand);
4328        break;
4329      }
4330
4331      // Otherwise, this is a register or register class output.
4332
4333      // Copy the output from the appropriate register.  Find a register that
4334      // we can use.
4335      if (OpInfo.AssignedRegs.Regs.empty()) {
4336        cerr << "Couldn't allocate output reg for constraint '"
4337             << OpInfo.ConstraintCode << "'!\n";
4338        exit(1);
4339      }
4340
4341      // If this is an indirect operand, store through the pointer after the
4342      // asm.
4343      if (OpInfo.isIndirect) {
4344        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
4345                                                      OpInfo.CallOperandVal));
4346      } else {
4347        // This is the result value of the call.
4348        assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4349        // Concatenate this output onto the outputs list.
4350        RetValRegs.append(OpInfo.AssignedRegs);
4351      }
4352
4353      // Add information to the INLINEASM node to know that this register is
4354      // set.
4355      OpInfo.AssignedRegs.AddInlineAsmOperands(2 /*REGDEF*/, DAG,
4356                                               AsmNodeOperands);
4357      break;
4358    }
4359    case InlineAsm::isInput: {
4360      SDOperand InOperandVal = OpInfo.CallOperand;
4361
4362      if (isdigit(OpInfo.ConstraintCode[0])) {    // Matching constraint?
4363        // If this is required to match an output register we have already set,
4364        // just use its register.
4365        unsigned OperandNo = atoi(OpInfo.ConstraintCode.c_str());
4366
4367        // Scan until we find the definition we already emitted of this operand.
4368        // When we find it, create a RegsForValue operand.
4369        unsigned CurOp = 2;  // The first operand.
4370        for (; OperandNo; --OperandNo) {
4371          // Advance to the next operand.
4372          unsigned NumOps =
4373            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4374          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
4375                  (NumOps & 7) == 4 /*MEM*/) &&
4376                 "Skipped past definitions?");
4377          CurOp += (NumOps>>3)+1;
4378        }
4379
4380        unsigned NumOps =
4381          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
4382        if ((NumOps & 7) == 2 /*REGDEF*/) {
4383          // Add NumOps>>3 registers to MatchedRegs.
4384          RegsForValue MatchedRegs;
4385          MatchedRegs.TLI = &TLI;
4386          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
4387          MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
4388          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
4389            unsigned Reg =
4390              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
4391            MatchedRegs.Regs.push_back(Reg);
4392          }
4393
4394          // Use the produced MatchedRegs object to
4395          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4396          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
4397          break;
4398        } else {
4399          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
4400          assert((NumOps >> 3) == 1 && "Unexpected number of operands");
4401          // Add information to the INLINEASM node to know about this input.
4402          unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4403          AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4404                                                          TLI.getPointerTy()));
4405          AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
4406          break;
4407        }
4408      }
4409
4410      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
4411        assert(!OpInfo.isIndirect &&
4412               "Don't know how to handle indirect other inputs yet!");
4413
4414        std::vector<SDOperand> Ops;
4415        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
4416                                         Ops, DAG);
4417        if (Ops.empty()) {
4418          cerr << "Invalid operand for inline asm constraint '"
4419               << OpInfo.ConstraintCode << "'!\n";
4420          exit(1);
4421        }
4422
4423        // Add information to the INLINEASM node to know about this input.
4424        unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
4425        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4426                                                        TLI.getPointerTy()));
4427        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
4428        break;
4429      } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
4430        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
4431        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
4432               "Memory operands expect pointer values");
4433
4434        // Add information to the INLINEASM node to know about this input.
4435        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
4436        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
4437                                                        TLI.getPointerTy()));
4438        AsmNodeOperands.push_back(InOperandVal);
4439        break;
4440      }
4441
4442      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
4443              OpInfo.ConstraintType == TargetLowering::C_Register) &&
4444             "Unknown constraint type!");
4445      assert(!OpInfo.isIndirect &&
4446             "Don't know how to handle indirect register inputs yet!");
4447
4448      // Copy the input into the appropriate registers.
4449      assert(!OpInfo.AssignedRegs.Regs.empty() &&
4450             "Couldn't allocate input reg!");
4451
4452      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
4453
4454      OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG,
4455                                               AsmNodeOperands);
4456      break;
4457    }
4458    case InlineAsm::isClobber: {
4459      // Add the clobbered value to the operand list, so that the register
4460      // allocator is aware that the physreg got clobbered.
4461      if (!OpInfo.AssignedRegs.Regs.empty())
4462        OpInfo.AssignedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG,
4463                                                 AsmNodeOperands);
4464      break;
4465    }
4466    }
4467  }
4468
4469  // Finish up input operands.
4470  AsmNodeOperands[0] = Chain;
4471  if (Flag.Val) AsmNodeOperands.push_back(Flag);
4472
4473  Chain = DAG.getNode(ISD::INLINEASM,
4474                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
4475                      &AsmNodeOperands[0], AsmNodeOperands.size());
4476  Flag = Chain.getValue(1);
4477
4478  // If this asm returns a register value, copy the result from that register
4479  // and set it as the value of the call.
4480  if (!RetValRegs.Regs.empty()) {
4481    SDOperand Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
4482
4483    // If any of the results of the inline asm is a vector, it may have the
4484    // wrong width/num elts.  This can happen for register classes that can
4485    // contain multiple different value types.  The preg or vreg allocated may
4486    // not have the same VT as was expected.  Convert it to the right type with
4487    // bit_convert.
4488    if (const StructType *ResSTy = dyn_cast<StructType>(CS.getType())) {
4489      for (unsigned i = 0, e = ResSTy->getNumElements(); i != e; ++i) {
4490        if (Val.Val->getValueType(i).isVector())
4491          Val = DAG.getNode(ISD::BIT_CONVERT,
4492                            TLI.getValueType(ResSTy->getElementType(i)), Val);
4493      }
4494    } else {
4495      if (Val.getValueType().isVector())
4496        Val = DAG.getNode(ISD::BIT_CONVERT, TLI.getValueType(CS.getType()),
4497                          Val);
4498    }
4499
4500    setValue(CS.getInstruction(), Val);
4501  }
4502
4503  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
4504
4505  // Process indirect outputs, first output all of the flagged copies out of
4506  // physregs.
4507  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
4508    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
4509    Value *Ptr = IndirectStoresToEmit[i].second;
4510    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
4511    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
4512  }
4513
4514  // Emit the non-flagged stores from the physregs.
4515  SmallVector<SDOperand, 8> OutChains;
4516  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
4517    OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
4518                                    getValue(StoresToEmit[i].second),
4519                                    StoresToEmit[i].second, 0));
4520  if (!OutChains.empty())
4521    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
4522                        &OutChains[0], OutChains.size());
4523  DAG.setRoot(Chain);
4524}
4525
4526
4527void SelectionDAGLowering::visitMalloc(MallocInst &I) {
4528  SDOperand Src = getValue(I.getOperand(0));
4529
4530  MVT IntPtr = TLI.getPointerTy();
4531
4532  if (IntPtr.bitsLT(Src.getValueType()))
4533    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
4534  else if (IntPtr.bitsGT(Src.getValueType()))
4535    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
4536
4537  // Scale the source by the type size.
4538  uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
4539  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
4540                    Src, DAG.getIntPtrConstant(ElementSize));
4541
4542  TargetLowering::ArgListTy Args;
4543  TargetLowering::ArgListEntry Entry;
4544  Entry.Node = Src;
4545  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4546  Args.push_back(Entry);
4547
4548  std::pair<SDOperand,SDOperand> Result =
4549    TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, CallingConv::C,
4550                    true, DAG.getExternalSymbol("malloc", IntPtr), Args, DAG);
4551  setValue(&I, Result.first);  // Pointers always fit in registers
4552  DAG.setRoot(Result.second);
4553}
4554
4555void SelectionDAGLowering::visitFree(FreeInst &I) {
4556  TargetLowering::ArgListTy Args;
4557  TargetLowering::ArgListEntry Entry;
4558  Entry.Node = getValue(I.getOperand(0));
4559  Entry.Ty = TLI.getTargetData()->getIntPtrType();
4560  Args.push_back(Entry);
4561  MVT IntPtr = TLI.getPointerTy();
4562  std::pair<SDOperand,SDOperand> Result =
4563    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false,
4564                    CallingConv::C, true,
4565                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
4566  DAG.setRoot(Result.second);
4567}
4568
4569// EmitInstrWithCustomInserter - This method should be implemented by targets
4570// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
4571// instructions are special in various ways, which require special support to
4572// insert.  The specified MachineInstr is created but not inserted into any
4573// basic blocks, and the scheduler passes ownership of it to this method.
4574MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4575                                                       MachineBasicBlock *MBB) {
4576  cerr << "If a target marks an instruction with "
4577       << "'usesCustomDAGSchedInserter', it must implement "
4578       << "TargetLowering::EmitInstrWithCustomInserter!\n";
4579  abort();
4580  return 0;
4581}
4582
4583void SelectionDAGLowering::visitVAStart(CallInst &I) {
4584  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
4585                          getValue(I.getOperand(1)),
4586                          DAG.getSrcValue(I.getOperand(1))));
4587}
4588
4589void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
4590  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
4591                             getValue(I.getOperand(0)),
4592                             DAG.getSrcValue(I.getOperand(0)));
4593  setValue(&I, V);
4594  DAG.setRoot(V.getValue(1));
4595}
4596
4597void SelectionDAGLowering::visitVAEnd(CallInst &I) {
4598  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
4599                          getValue(I.getOperand(1)),
4600                          DAG.getSrcValue(I.getOperand(1))));
4601}
4602
4603void SelectionDAGLowering::visitVACopy(CallInst &I) {
4604  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
4605                          getValue(I.getOperand(1)),
4606                          getValue(I.getOperand(2)),
4607                          DAG.getSrcValue(I.getOperand(1)),
4608                          DAG.getSrcValue(I.getOperand(2))));
4609}
4610
4611/// TargetLowering::LowerArguments - This is the default LowerArguments
4612/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
4613/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
4614/// integrated into SDISel.
4615std::vector<SDOperand>
4616TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
4617  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
4618  std::vector<SDOperand> Ops;
4619  Ops.push_back(DAG.getRoot());
4620  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
4621  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
4622
4623  // Add one result value for each formal argument.
4624  std::vector<MVT> RetVals;
4625  unsigned j = 1;
4626  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
4627       I != E; ++I, ++j) {
4628    SmallVector<MVT, 4> ValueVTs;
4629    ComputeValueVTs(*this, I->getType(), ValueVTs);
4630    for (unsigned Value = 0, NumValues = ValueVTs.size();
4631         Value != NumValues; ++Value) {
4632      MVT VT = ValueVTs[Value];
4633      const Type *ArgTy = VT.getTypeForMVT();
4634      ISD::ArgFlagsTy Flags;
4635      unsigned OriginalAlignment =
4636        getTargetData()->getABITypeAlignment(ArgTy);
4637
4638      if (F.paramHasAttr(j, ParamAttr::ZExt))
4639        Flags.setZExt();
4640      if (F.paramHasAttr(j, ParamAttr::SExt))
4641        Flags.setSExt();
4642      if (F.paramHasAttr(j, ParamAttr::InReg))
4643        Flags.setInReg();
4644      if (F.paramHasAttr(j, ParamAttr::StructRet))
4645        Flags.setSRet();
4646      if (F.paramHasAttr(j, ParamAttr::ByVal)) {
4647        Flags.setByVal();
4648        const PointerType *Ty = cast<PointerType>(I->getType());
4649        const Type *ElementTy = Ty->getElementType();
4650        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4651        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4652        // For ByVal, alignment should be passed from FE.  BE will guess if
4653        // this info is not there but there are cases it cannot get right.
4654        if (F.getParamAlignment(j))
4655          FrameAlign = F.getParamAlignment(j);
4656        Flags.setByValAlign(FrameAlign);
4657        Flags.setByValSize(FrameSize);
4658      }
4659      if (F.paramHasAttr(j, ParamAttr::Nest))
4660        Flags.setNest();
4661      Flags.setOrigAlign(OriginalAlignment);
4662
4663      MVT RegisterVT = getRegisterType(VT);
4664      unsigned NumRegs = getNumRegisters(VT);
4665      for (unsigned i = 0; i != NumRegs; ++i) {
4666        RetVals.push_back(RegisterVT);
4667        ISD::ArgFlagsTy MyFlags = Flags;
4668        if (NumRegs > 1 && i == 0)
4669          MyFlags.setSplit();
4670        // if it isn't first piece, alignment must be 1
4671        else if (i > 0)
4672          MyFlags.setOrigAlign(1);
4673        Ops.push_back(DAG.getArgFlags(MyFlags));
4674      }
4675    }
4676  }
4677
4678  RetVals.push_back(MVT::Other);
4679
4680  // Create the node.
4681  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
4682                               DAG.getVTList(&RetVals[0], RetVals.size()),
4683                               &Ops[0], Ops.size()).Val;
4684
4685  // Prelower FORMAL_ARGUMENTS.  This isn't required for functionality, but
4686  // allows exposing the loads that may be part of the argument access to the
4687  // first DAGCombiner pass.
4688  SDOperand TmpRes = LowerOperation(SDOperand(Result, 0), DAG);
4689
4690  // The number of results should match up, except that the lowered one may have
4691  // an extra flag result.
4692  assert((Result->getNumValues() == TmpRes.Val->getNumValues() ||
4693          (Result->getNumValues()+1 == TmpRes.Val->getNumValues() &&
4694           TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
4695         && "Lowering produced unexpected number of results!");
4696  Result = TmpRes.Val;
4697
4698  unsigned NumArgRegs = Result->getNumValues() - 1;
4699  DAG.setRoot(SDOperand(Result, NumArgRegs));
4700
4701  // Set up the return result vector.
4702  Ops.clear();
4703  unsigned i = 0;
4704  unsigned Idx = 1;
4705  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
4706      ++I, ++Idx) {
4707    SmallVector<MVT, 4> ValueVTs;
4708    ComputeValueVTs(*this, I->getType(), ValueVTs);
4709    for (unsigned Value = 0, NumValues = ValueVTs.size();
4710         Value != NumValues; ++Value) {
4711      MVT VT = ValueVTs[Value];
4712      MVT PartVT = getRegisterType(VT);
4713
4714      unsigned NumParts = getNumRegisters(VT);
4715      SmallVector<SDOperand, 4> Parts(NumParts);
4716      for (unsigned j = 0; j != NumParts; ++j)
4717        Parts[j] = SDOperand(Result, i++);
4718
4719      ISD::NodeType AssertOp = ISD::DELETED_NODE;
4720      if (F.paramHasAttr(Idx, ParamAttr::SExt))
4721        AssertOp = ISD::AssertSext;
4722      else if (F.paramHasAttr(Idx, ParamAttr::ZExt))
4723        AssertOp = ISD::AssertZext;
4724
4725      Ops.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
4726                                     AssertOp));
4727    }
4728  }
4729  assert(i == NumArgRegs && "Argument register count mismatch!");
4730  return Ops;
4731}
4732
4733
4734/// TargetLowering::LowerCallTo - This is the default LowerCallTo
4735/// implementation, which just inserts an ISD::CALL node, which is later custom
4736/// lowered by the target to something concrete.  FIXME: When all targets are
4737/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
4738std::pair<SDOperand, SDOperand>
4739TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
4740                            bool RetSExt, bool RetZExt, bool isVarArg,
4741                            unsigned CallingConv, bool isTailCall,
4742                            SDOperand Callee,
4743                            ArgListTy &Args, SelectionDAG &DAG) {
4744  SmallVector<SDOperand, 32> Ops;
4745  Ops.push_back(Chain);   // Op#0 - Chain
4746  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
4747  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
4748  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
4749  Ops.push_back(Callee);
4750
4751  // Handle all of the outgoing arguments.
4752  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
4753    SmallVector<MVT, 4> ValueVTs;
4754    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
4755    for (unsigned Value = 0, NumValues = ValueVTs.size();
4756         Value != NumValues; ++Value) {
4757      MVT VT = ValueVTs[Value];
4758      const Type *ArgTy = VT.getTypeForMVT();
4759      SDOperand Op = SDOperand(Args[i].Node.Val, Args[i].Node.ResNo + Value);
4760      ISD::ArgFlagsTy Flags;
4761      unsigned OriginalAlignment =
4762        getTargetData()->getABITypeAlignment(ArgTy);
4763
4764      if (Args[i].isZExt)
4765        Flags.setZExt();
4766      if (Args[i].isSExt)
4767        Flags.setSExt();
4768      if (Args[i].isInReg)
4769        Flags.setInReg();
4770      if (Args[i].isSRet)
4771        Flags.setSRet();
4772      if (Args[i].isByVal) {
4773        Flags.setByVal();
4774        const PointerType *Ty = cast<PointerType>(Args[i].Ty);
4775        const Type *ElementTy = Ty->getElementType();
4776        unsigned FrameAlign = getByValTypeAlignment(ElementTy);
4777        unsigned FrameSize  = getTargetData()->getABITypeSize(ElementTy);
4778        // For ByVal, alignment should come from FE.  BE will guess if this
4779        // info is not there but there are cases it cannot get right.
4780        if (Args[i].Alignment)
4781          FrameAlign = Args[i].Alignment;
4782        Flags.setByValAlign(FrameAlign);
4783        Flags.setByValSize(FrameSize);
4784      }
4785      if (Args[i].isNest)
4786        Flags.setNest();
4787      Flags.setOrigAlign(OriginalAlignment);
4788
4789      MVT PartVT = getRegisterType(VT);
4790      unsigned NumParts = getNumRegisters(VT);
4791      SmallVector<SDOperand, 4> Parts(NumParts);
4792      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
4793
4794      if (Args[i].isSExt)
4795        ExtendKind = ISD::SIGN_EXTEND;
4796      else if (Args[i].isZExt)
4797        ExtendKind = ISD::ZERO_EXTEND;
4798
4799      getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
4800
4801      for (unsigned i = 0; i != NumParts; ++i) {
4802        // if it isn't first piece, alignment must be 1
4803        ISD::ArgFlagsTy MyFlags = Flags;
4804        if (NumParts > 1 && i == 0)
4805          MyFlags.setSplit();
4806        else if (i != 0)
4807          MyFlags.setOrigAlign(1);
4808
4809        Ops.push_back(Parts[i]);
4810        Ops.push_back(DAG.getArgFlags(MyFlags));
4811      }
4812    }
4813  }
4814
4815  // Figure out the result value types. We start by making a list of
4816  // the potentially illegal return value types.
4817  SmallVector<MVT, 4> LoweredRetTys;
4818  SmallVector<MVT, 4> RetTys;
4819  ComputeValueVTs(*this, RetTy, RetTys);
4820
4821  // Then we translate that to a list of legal types.
4822  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4823    MVT VT = RetTys[I];
4824    MVT RegisterVT = getRegisterType(VT);
4825    unsigned NumRegs = getNumRegisters(VT);
4826    for (unsigned i = 0; i != NumRegs; ++i)
4827      LoweredRetTys.push_back(RegisterVT);
4828  }
4829
4830  LoweredRetTys.push_back(MVT::Other);  // Always has a chain.
4831
4832  // Create the CALL node.
4833  SDOperand Res = DAG.getNode(ISD::CALL,
4834                              DAG.getVTList(&LoweredRetTys[0],
4835                                            LoweredRetTys.size()),
4836                              &Ops[0], Ops.size());
4837  Chain = Res.getValue(LoweredRetTys.size() - 1);
4838
4839  // Gather up the call result into a single value.
4840  if (RetTy != Type::VoidTy) {
4841    ISD::NodeType AssertOp = ISD::DELETED_NODE;
4842
4843    if (RetSExt)
4844      AssertOp = ISD::AssertSext;
4845    else if (RetZExt)
4846      AssertOp = ISD::AssertZext;
4847
4848    SmallVector<SDOperand, 4> ReturnValues;
4849    unsigned RegNo = 0;
4850    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
4851      MVT VT = RetTys[I];
4852      MVT RegisterVT = getRegisterType(VT);
4853      unsigned NumRegs = getNumRegisters(VT);
4854      unsigned RegNoEnd = NumRegs + RegNo;
4855      SmallVector<SDOperand, 4> Results;
4856      for (; RegNo != RegNoEnd; ++RegNo)
4857        Results.push_back(Res.getValue(RegNo));
4858      SDOperand ReturnValue =
4859        getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
4860                         AssertOp);
4861      ReturnValues.push_back(ReturnValue);
4862    }
4863    Res = DAG.getMergeValues(DAG.getVTList(&RetTys[0], RetTys.size()),
4864                             &ReturnValues[0], ReturnValues.size());
4865  }
4866
4867  return std::make_pair(Res, Chain);
4868}
4869
4870SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4871  assert(0 && "LowerOperation not implemented for this target!");
4872  abort();
4873  return SDOperand();
4874}
4875
4876SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
4877                                                 SelectionDAG &DAG) {
4878  assert(0 && "CustomPromoteOperation not implemented for this target!");
4879  abort();
4880  return SDOperand();
4881}
4882
4883//===----------------------------------------------------------------------===//
4884// SelectionDAGISel code
4885//===----------------------------------------------------------------------===//
4886
4887unsigned SelectionDAGISel::MakeReg(MVT VT) {
4888  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
4889}
4890
4891void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
4892  AU.addRequired<AliasAnalysis>();
4893  AU.addRequired<CollectorModuleMetadata>();
4894  AU.setPreservesAll();
4895}
4896
4897bool SelectionDAGISel::runOnFunction(Function &Fn) {
4898  // Get alias analysis for load/store combining.
4899  AA = &getAnalysis<AliasAnalysis>();
4900
4901  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4902  if (MF.getFunction()->hasCollector())
4903    GCI = &getAnalysis<CollectorModuleMetadata>().get(*MF.getFunction());
4904  else
4905    GCI = 0;
4906  RegInfo = &MF.getRegInfo();
4907  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4908
4909  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4910
4911  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4912    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
4913      // Mark landing pad.
4914      FuncInfo.MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
4915
4916  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4917    SelectBasicBlock(I, MF, FuncInfo);
4918
4919  // Add function live-ins to entry block live-in set.
4920  BasicBlock *EntryBB = &Fn.getEntryBlock();
4921  BB = FuncInfo.MBBMap[EntryBB];
4922  if (!RegInfo->livein_empty())
4923    for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
4924           E = RegInfo->livein_end(); I != E; ++I)
4925      BB->addLiveIn(I->first);
4926
4927#ifndef NDEBUG
4928  assert(FuncInfo.CatchInfoFound.size() == FuncInfo.CatchInfoLost.size() &&
4929         "Not all catch info was assigned to a landing pad!");
4930#endif
4931
4932  return true;
4933}
4934
4935void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
4936  SDOperand Op = getValue(V);
4937  assert((Op.getOpcode() != ISD::CopyFromReg ||
4938          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4939         "Copy from a reg to the same reg!");
4940  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
4941
4942  RegsForValue RFV(TLI, Reg, V->getType());
4943  SDOperand Chain = DAG.getEntryNode();
4944  RFV.getCopyToRegs(Op, DAG, Chain, 0);
4945  PendingExports.push_back(Chain);
4946}
4947
4948void SelectionDAGISel::
4949LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL) {
4950  // If this is the entry block, emit arguments.
4951  Function &F = *LLVMBB->getParent();
4952  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4953  SDOperand OldRoot = SDL.DAG.getRoot();
4954  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4955
4956  unsigned a = 0;
4957  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4958       AI != E; ++AI) {
4959    SmallVector<MVT, 4> ValueVTs;
4960    ComputeValueVTs(TLI, AI->getType(), ValueVTs);
4961    unsigned NumValues = ValueVTs.size();
4962    if (!AI->use_empty()) {
4963      SmallVector<MVT, 4> LegalValueVTs(NumValues);
4964      for (unsigned VI = 0; VI != NumValues; ++VI)
4965        LegalValueVTs[VI] = Args[a + VI].getValueType();
4966      SDL.setValue(AI,
4967                   SDL.DAG.getMergeValues(SDL.DAG.getVTList(&LegalValueVTs[0],
4968                                                            NumValues),
4969                                          &Args[a], NumValues));
4970      // If this argument is live outside of the entry block, insert a copy from
4971      // whereever we got it to the vreg that other BB's will reference it as.
4972      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4973      if (VMI != FuncInfo.ValueMap.end()) {
4974        SDL.CopyValueToVirtualRegister(AI, VMI->second);
4975      }
4976    }
4977    a += NumValues;
4978  }
4979
4980  // Finally, if the target has anything special to do, allow it to do so.
4981  // FIXME: this should insert code into the DAG!
4982  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4983}
4984
4985static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
4986                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
4987  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
4988    if (isSelector(I)) {
4989      // Apply the catch info to DestBB.
4990      addCatchInfo(cast<CallInst>(*I), MMI, FLI.MBBMap[DestBB]);
4991#ifndef NDEBUG
4992      if (!FLI.MBBMap[SrcBB]->isLandingPad())
4993        FLI.CatchInfoFound.insert(I);
4994#endif
4995    }
4996}
4997
4998/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
4999/// whether object offset >= 0.
5000static bool
5001IsFixedFrameObjectWithPosOffset(MachineFrameInfo * MFI, SDOperand Op) {
5002  if (!isa<FrameIndexSDNode>(Op)) return false;
5003
5004  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
5005  int FrameIdx =  FrameIdxNode->getIndex();
5006  return MFI->isFixedObjectIndex(FrameIdx) &&
5007    MFI->getObjectOffset(FrameIdx) >= 0;
5008}
5009
5010/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
5011/// possibly be overwritten when lowering the outgoing arguments in a tail
5012/// call. Currently the implementation of this call is very conservative and
5013/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
5014/// virtual registers would be overwritten by direct lowering.
5015static bool IsPossiblyOverwrittenArgumentOfTailCall(SDOperand Op,
5016                                                    MachineFrameInfo * MFI) {
5017  RegisterSDNode * OpReg = NULL;
5018  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
5019      (Op.getOpcode()== ISD::CopyFromReg &&
5020       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
5021       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
5022      (Op.getOpcode() == ISD::LOAD &&
5023       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
5024      (Op.getOpcode() == ISD::MERGE_VALUES &&
5025       Op.getOperand(Op.ResNo).getOpcode() == ISD::LOAD &&
5026       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.ResNo).
5027                                       getOperand(1))))
5028    return true;
5029  return false;
5030}
5031
5032/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
5033/// DAG and fixes their tailcall attribute operand.
5034static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
5035                                           TargetLowering& TLI) {
5036  SDNode * Ret = NULL;
5037  SDOperand Terminator = DAG.getRoot();
5038
5039  // Find RET node.
5040  if (Terminator.getOpcode() == ISD::RET) {
5041    Ret = Terminator.Val;
5042  }
5043
5044  // Fix tail call attribute of CALL nodes.
5045  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
5046         BI = prior(DAG.allnodes_end()); BI != BE; --BI) {
5047    if (BI->getOpcode() == ISD::CALL) {
5048      SDOperand OpRet(Ret, 0);
5049      SDOperand OpCall(static_cast<SDNode*>(BI), 0);
5050      bool isMarkedTailCall =
5051        cast<ConstantSDNode>(OpCall.getOperand(3))->getValue() != 0;
5052      // If CALL node has tail call attribute set to true and the call is not
5053      // eligible (no RET or the target rejects) the attribute is fixed to
5054      // false. The TargetLowering::IsEligibleForTailCallOptimization function
5055      // must correctly identify tail call optimizable calls.
5056      if (!isMarkedTailCall) continue;
5057      if (Ret==NULL ||
5058          !TLI.IsEligibleForTailCallOptimization(OpCall, OpRet, DAG)) {
5059        // Not eligible. Mark CALL node as non tail call.
5060        SmallVector<SDOperand, 32> Ops;
5061        unsigned idx=0;
5062        for(SDNode::op_iterator I =OpCall.Val->op_begin(),
5063              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5064          if (idx!=3)
5065            Ops.push_back(*I);
5066          else
5067            Ops.push_back(DAG.getConstant(false, TLI.getPointerTy()));
5068        }
5069        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5070      } else {
5071        // Look for tail call clobbered arguments. Emit a series of
5072        // copyto/copyfrom virtual register nodes to protect them.
5073        SmallVector<SDOperand, 32> Ops;
5074        SDOperand Chain = OpCall.getOperand(0), InFlag;
5075        unsigned idx=0;
5076        for(SDNode::op_iterator I = OpCall.Val->op_begin(),
5077              E = OpCall.Val->op_end(); I != E; I++, idx++) {
5078          SDOperand Arg = *I;
5079          if (idx > 4 && (idx % 2)) {
5080            bool isByVal = cast<ARG_FLAGSSDNode>(OpCall.getOperand(idx+1))->
5081              getArgFlags().isByVal();
5082            MachineFunction &MF = DAG.getMachineFunction();
5083            MachineFrameInfo *MFI = MF.getFrameInfo();
5084            if (!isByVal &&
5085                IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
5086              MVT VT = Arg.getValueType();
5087              unsigned VReg = MF.getRegInfo().
5088                createVirtualRegister(TLI.getRegClassFor(VT));
5089              Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
5090              InFlag = Chain.getValue(1);
5091              Arg = DAG.getCopyFromReg(Chain, VReg, VT, InFlag);
5092              Chain = Arg.getValue(1);
5093              InFlag = Arg.getValue(2);
5094            }
5095          }
5096          Ops.push_back(Arg);
5097        }
5098        // Link in chain of CopyTo/CopyFromReg.
5099        Ops[0] = Chain;
5100        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
5101      }
5102    }
5103  }
5104}
5105
5106void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
5107       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
5108                                         FunctionLoweringInfo &FuncInfo) {
5109  SelectionDAGLowering SDL(DAG, TLI, *AA, FuncInfo, GCI);
5110
5111  // Lower any arguments needed in this block if this is the entry block.
5112  if (LLVMBB == &LLVMBB->getParent()->getEntryBlock())
5113    LowerArguments(LLVMBB, SDL);
5114
5115  BB = FuncInfo.MBBMap[LLVMBB];
5116  SDL.setCurrentBasicBlock(BB);
5117
5118  MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
5119
5120  if (MMI && BB->isLandingPad()) {
5121    // Add a label to mark the beginning of the landing pad.  Deletion of the
5122    // landing pad can thus be detected via the MachineModuleInfo.
5123    unsigned LabelID = MMI->addLandingPad(BB);
5124    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
5125                            DAG.getConstant(LabelID, MVT::i32),
5126                            DAG.getConstant(1, MVT::i32)));
5127
5128    // Mark exception register as live in.
5129    unsigned Reg = TLI.getExceptionAddressRegister();
5130    if (Reg) BB->addLiveIn(Reg);
5131
5132    // Mark exception selector register as live in.
5133    Reg = TLI.getExceptionSelectorRegister();
5134    if (Reg) BB->addLiveIn(Reg);
5135
5136    // FIXME: Hack around an exception handling flaw (PR1508): the personality
5137    // function and list of typeids logically belong to the invoke (or, if you
5138    // like, the basic block containing the invoke), and need to be associated
5139    // with it in the dwarf exception handling tables.  Currently however the
5140    // information is provided by an intrinsic (eh.selector) that can be moved
5141    // to unexpected places by the optimizers: if the unwind edge is critical,
5142    // then breaking it can result in the intrinsics being in the successor of
5143    // the landing pad, not the landing pad itself.  This results in exceptions
5144    // not being caught because no typeids are associated with the invoke.
5145    // This may not be the only way things can go wrong, but it is the only way
5146    // we try to work around for the moment.
5147    BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
5148
5149    if (Br && Br->isUnconditional()) { // Critical edge?
5150      BasicBlock::iterator I, E;
5151      for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
5152        if (isSelector(I))
5153          break;
5154
5155      if (I == E)
5156        // No catch info found - try to extract some from the successor.
5157        copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, FuncInfo);
5158    }
5159  }
5160
5161  // Lower all of the non-terminator instructions.
5162  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
5163       I != E; ++I)
5164    SDL.visit(*I);
5165
5166  // Ensure that all instructions which are used outside of their defining
5167  // blocks are available as virtual registers.  Invoke is handled elsewhere.
5168  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
5169    if (!I->use_empty() && !isa<PHINode>(I) && !isa<InvokeInst>(I)) {
5170      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
5171      if (VMI != FuncInfo.ValueMap.end())
5172        SDL.CopyValueToVirtualRegister(I, VMI->second);
5173    }
5174
5175  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
5176  // ensure constants are generated when needed.  Remember the virtual registers
5177  // that need to be added to the Machine PHI nodes as input.  We cannot just
5178  // directly add them, because expansion might result in multiple MBB's for one
5179  // BB.  As such, the start of the BB might correspond to a different MBB than
5180  // the end.
5181  //
5182  TerminatorInst *TI = LLVMBB->getTerminator();
5183
5184  // Emit constants only once even if used by multiple PHI nodes.
5185  std::map<Constant*, unsigned> ConstantsOut;
5186
5187  // Vector bool would be better, but vector<bool> is really slow.
5188  std::vector<unsigned char> SuccsHandled;
5189  if (TI->getNumSuccessors())
5190    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
5191
5192  // Check successor nodes' PHI nodes that expect a constant to be available
5193  // from this block.
5194  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5195    BasicBlock *SuccBB = TI->getSuccessor(succ);
5196    if (!isa<PHINode>(SuccBB->begin())) continue;
5197    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
5198
5199    // If this terminator has multiple identical successors (common for
5200    // switches), only handle each succ once.
5201    unsigned SuccMBBNo = SuccMBB->getNumber();
5202    if (SuccsHandled[SuccMBBNo]) continue;
5203    SuccsHandled[SuccMBBNo] = true;
5204
5205    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5206    PHINode *PN;
5207
5208    // At this point we know that there is a 1-1 correspondence between LLVM PHI
5209    // nodes and Machine PHI nodes, but the incoming operands have not been
5210    // emitted yet.
5211    for (BasicBlock::iterator I = SuccBB->begin();
5212         (PN = dyn_cast<PHINode>(I)); ++I) {
5213      // Ignore dead phi's.
5214      if (PN->use_empty()) continue;
5215
5216      unsigned Reg;
5217      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5218
5219      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5220        unsigned &RegOut = ConstantsOut[C];
5221        if (RegOut == 0) {
5222          RegOut = FuncInfo.CreateRegForValue(C);
5223          SDL.CopyValueToVirtualRegister(C, RegOut);
5224        }
5225        Reg = RegOut;
5226      } else {
5227        Reg = FuncInfo.ValueMap[PHIOp];
5228        if (Reg == 0) {
5229          assert(isa<AllocaInst>(PHIOp) &&
5230                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5231                 "Didn't codegen value into a register!??");
5232          Reg = FuncInfo.CreateRegForValue(PHIOp);
5233          SDL.CopyValueToVirtualRegister(PHIOp, Reg);
5234        }
5235      }
5236
5237      // Remember that this register needs to added to the machine PHI node as
5238      // the input for this MBB.
5239      MVT VT = TLI.getValueType(PN->getType());
5240      unsigned NumRegisters = TLI.getNumRegisters(VT);
5241      for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5242        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5243    }
5244  }
5245  ConstantsOut.clear();
5246
5247  // Lower the terminator after the copies are emitted.
5248  SDL.visit(*LLVMBB->getTerminator());
5249
5250  // Copy over any CaseBlock records that may now exist due to SwitchInst
5251  // lowering, as well as any jump table information.
5252  SwitchCases.clear();
5253  SwitchCases = SDL.SwitchCases;
5254  JTCases.clear();
5255  JTCases = SDL.JTCases;
5256  BitTestCases.clear();
5257  BitTestCases = SDL.BitTestCases;
5258
5259  // Make sure the root of the DAG is up-to-date.
5260  DAG.setRoot(SDL.getControlRoot());
5261
5262  // Check whether calls in this block are real tail calls. Fix up CALL nodes
5263  // with correct tailcall attribute so that the target can rely on the tailcall
5264  // attribute indicating whether the call is really eligible for tail call
5265  // optimization.
5266  CheckDAGForTailCallsAndFixThem(DAG, TLI);
5267}
5268
5269void SelectionDAGISel::ComputeLiveOutVRegInfo(SelectionDAG &DAG) {
5270  SmallPtrSet<SDNode*, 128> VisitedNodes;
5271  SmallVector<SDNode*, 128> Worklist;
5272
5273  Worklist.push_back(DAG.getRoot().Val);
5274
5275  APInt Mask;
5276  APInt KnownZero;
5277  APInt KnownOne;
5278
5279  while (!Worklist.empty()) {
5280    SDNode *N = Worklist.back();
5281    Worklist.pop_back();
5282
5283    // If we've already seen this node, ignore it.
5284    if (!VisitedNodes.insert(N))
5285      continue;
5286
5287    // Otherwise, add all chain operands to the worklist.
5288    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5289      if (N->getOperand(i).getValueType() == MVT::Other)
5290        Worklist.push_back(N->getOperand(i).Val);
5291
5292    // If this is a CopyToReg with a vreg dest, process it.
5293    if (N->getOpcode() != ISD::CopyToReg)
5294      continue;
5295
5296    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
5297    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
5298      continue;
5299
5300    // Ignore non-scalar or non-integer values.
5301    SDOperand Src = N->getOperand(2);
5302    MVT SrcVT = Src.getValueType();
5303    if (!SrcVT.isInteger() || SrcVT.isVector())
5304      continue;
5305
5306    unsigned NumSignBits = DAG.ComputeNumSignBits(Src);
5307    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
5308    DAG.ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
5309
5310    // Only install this information if it tells us something.
5311    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
5312      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
5313      FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5314      if (DestReg >= FLI.LiveOutRegInfo.size())
5315        FLI.LiveOutRegInfo.resize(DestReg+1);
5316      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
5317      LOI.NumSignBits = NumSignBits;
5318      LOI.KnownOne = NumSignBits;
5319      LOI.KnownZero = NumSignBits;
5320    }
5321  }
5322}
5323
5324void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
5325  DOUT << "Lowered selection DAG:\n";
5326  DEBUG(DAG.dump());
5327
5328  // Run the DAG combiner in pre-legalize mode.
5329  DAG.Combine(false, *AA);
5330
5331  DOUT << "Optimized lowered selection DAG:\n";
5332  DEBUG(DAG.dump());
5333
5334  // Second step, hack on the DAG until it only uses operations and types that
5335  // the target supports.
5336#if 0  // Enable this some day.
5337  DAG.LegalizeTypes();
5338  // Someday even later, enable a dag combine pass here.
5339#endif
5340  DAG.Legalize();
5341
5342  DOUT << "Legalized selection DAG:\n";
5343  DEBUG(DAG.dump());
5344
5345  // Run the DAG combiner in post-legalize mode.
5346  DAG.Combine(true, *AA);
5347
5348  DOUT << "Optimized legalized selection DAG:\n";
5349  DEBUG(DAG.dump());
5350
5351  if (ViewISelDAGs) DAG.viewGraph();
5352
5353  if (EnableValueProp)  // FIXME: Only do this if !fast.
5354    ComputeLiveOutVRegInfo(DAG);
5355
5356  // Third, instruction select all of the operations to machine code, adding the
5357  // code to the MachineBasicBlock.
5358  InstructionSelectBasicBlock(DAG);
5359
5360  DOUT << "Selected machine code:\n";
5361  DEBUG(BB->dump());
5362}
5363
5364void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
5365                                        FunctionLoweringInfo &FuncInfo) {
5366  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
5367  {
5368    SelectionDAG DAG(TLI, MF, FuncInfo,
5369                     getAnalysisToUpdate<MachineModuleInfo>());
5370    CurDAG = &DAG;
5371
5372    // First step, lower LLVM code to some DAG.  This DAG may use operations and
5373    // types that are not supported by the target.
5374    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
5375
5376    // Second step, emit the lowered DAG as machine code.
5377    CodeGenAndEmitDAG(DAG);
5378  }
5379
5380  DOUT << "Total amount of phi nodes to update: "
5381       << PHINodesToUpdate.size() << "\n";
5382  DEBUG(for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i)
5383          DOUT << "Node " << i << " : (" << PHINodesToUpdate[i].first
5384               << ", " << PHINodesToUpdate[i].second << ")\n";);
5385
5386  // Next, now that we know what the last MBB the LLVM BB expanded is, update
5387  // PHI nodes in successors.
5388  if (SwitchCases.empty() && JTCases.empty() && BitTestCases.empty()) {
5389    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5390      MachineInstr *PHI = PHINodesToUpdate[i].first;
5391      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5392             "This is not a machine PHI node that we are updating!");
5393      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5394                                                false));
5395      PHI->addOperand(MachineOperand::CreateMBB(BB));
5396    }
5397    return;
5398  }
5399
5400  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) {
5401    // Lower header first, if it wasn't already lowered
5402    if (!BitTestCases[i].Emitted) {
5403      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5404                         getAnalysisToUpdate<MachineModuleInfo>());
5405      CurDAG = &HSDAG;
5406      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5407      // Set the current basic block to the mbb we wish to insert the code into
5408      BB = BitTestCases[i].Parent;
5409      HSDL.setCurrentBasicBlock(BB);
5410      // Emit the code
5411      HSDL.visitBitTestHeader(BitTestCases[i]);
5412      HSDAG.setRoot(HSDL.getRoot());
5413      CodeGenAndEmitDAG(HSDAG);
5414    }
5415
5416    for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5417      SelectionDAG BSDAG(TLI, MF, FuncInfo,
5418                         getAnalysisToUpdate<MachineModuleInfo>());
5419      CurDAG = &BSDAG;
5420      SelectionDAGLowering BSDL(BSDAG, TLI, *AA, FuncInfo, GCI);
5421      // Set the current basic block to the mbb we wish to insert the code into
5422      BB = BitTestCases[i].Cases[j].ThisBB;
5423      BSDL.setCurrentBasicBlock(BB);
5424      // Emit the code
5425      if (j+1 != ej)
5426        BSDL.visitBitTestCase(BitTestCases[i].Cases[j+1].ThisBB,
5427                              BitTestCases[i].Reg,
5428                              BitTestCases[i].Cases[j]);
5429      else
5430        BSDL.visitBitTestCase(BitTestCases[i].Default,
5431                              BitTestCases[i].Reg,
5432                              BitTestCases[i].Cases[j]);
5433
5434
5435      BSDAG.setRoot(BSDL.getRoot());
5436      CodeGenAndEmitDAG(BSDAG);
5437    }
5438
5439    // Update PHI Nodes
5440    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5441      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5442      MachineBasicBlock *PHIBB = PHI->getParent();
5443      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5444             "This is not a machine PHI node that we are updating!");
5445      // This is "default" BB. We have two jumps to it. From "header" BB and
5446      // from last "case" BB.
5447      if (PHIBB == BitTestCases[i].Default) {
5448        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5449                                                  false));
5450        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Parent));
5451        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5452                                                  false));
5453        PHI->addOperand(MachineOperand::CreateMBB(BitTestCases[i].Cases.
5454                                                  back().ThisBB));
5455      }
5456      // One of "cases" BB.
5457      for (unsigned j = 0, ej = BitTestCases[i].Cases.size(); j != ej; ++j) {
5458        MachineBasicBlock* cBB = BitTestCases[i].Cases[j].ThisBB;
5459        if (cBB->succ_end() !=
5460            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
5461          PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5462                                                    false));
5463          PHI->addOperand(MachineOperand::CreateMBB(cBB));
5464        }
5465      }
5466    }
5467  }
5468
5469  // If the JumpTable record is filled in, then we need to emit a jump table.
5470  // Updating the PHI nodes is tricky in this case, since we need to determine
5471  // whether the PHI is a successor of the range check MBB or the jump table MBB
5472  for (unsigned i = 0, e = JTCases.size(); i != e; ++i) {
5473    // Lower header first, if it wasn't already lowered
5474    if (!JTCases[i].first.Emitted) {
5475      SelectionDAG HSDAG(TLI, MF, FuncInfo,
5476                         getAnalysisToUpdate<MachineModuleInfo>());
5477      CurDAG = &HSDAG;
5478      SelectionDAGLowering HSDL(HSDAG, TLI, *AA, FuncInfo, GCI);
5479      // Set the current basic block to the mbb we wish to insert the code into
5480      BB = JTCases[i].first.HeaderBB;
5481      HSDL.setCurrentBasicBlock(BB);
5482      // Emit the code
5483      HSDL.visitJumpTableHeader(JTCases[i].second, JTCases[i].first);
5484      HSDAG.setRoot(HSDL.getRoot());
5485      CodeGenAndEmitDAG(HSDAG);
5486    }
5487
5488    SelectionDAG JSDAG(TLI, MF, FuncInfo,
5489                       getAnalysisToUpdate<MachineModuleInfo>());
5490    CurDAG = &JSDAG;
5491    SelectionDAGLowering JSDL(JSDAG, TLI, *AA, FuncInfo, GCI);
5492    // Set the current basic block to the mbb we wish to insert the code into
5493    BB = JTCases[i].second.MBB;
5494    JSDL.setCurrentBasicBlock(BB);
5495    // Emit the code
5496    JSDL.visitJumpTable(JTCases[i].second);
5497    JSDAG.setRoot(JSDL.getRoot());
5498    CodeGenAndEmitDAG(JSDAG);
5499
5500    // Update PHI Nodes
5501    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
5502      MachineInstr *PHI = PHINodesToUpdate[pi].first;
5503      MachineBasicBlock *PHIBB = PHI->getParent();
5504      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5505             "This is not a machine PHI node that we are updating!");
5506      // "default" BB. We can go there only from header BB.
5507      if (PHIBB == JTCases[i].second.Default) {
5508        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5509                                                  false));
5510        PHI->addOperand(MachineOperand::CreateMBB(JTCases[i].first.HeaderBB));
5511      }
5512      // JT BB. Just iterate over successors here
5513      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
5514        PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pi].second,
5515                                                  false));
5516        PHI->addOperand(MachineOperand::CreateMBB(BB));
5517      }
5518    }
5519  }
5520
5521  // If the switch block involved a branch to one of the actual successors, we
5522  // need to update PHI nodes in that block.
5523  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
5524    MachineInstr *PHI = PHINodesToUpdate[i].first;
5525    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
5526           "This is not a machine PHI node that we are updating!");
5527    if (BB->isSuccessor(PHI->getParent())) {
5528      PHI->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[i].second,
5529                                                false));
5530      PHI->addOperand(MachineOperand::CreateMBB(BB));
5531    }
5532  }
5533
5534  // If we generated any switch lowering information, build and codegen any
5535  // additional DAGs necessary.
5536  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
5537    SelectionDAG SDAG(TLI, MF, FuncInfo,
5538                      getAnalysisToUpdate<MachineModuleInfo>());
5539    CurDAG = &SDAG;
5540    SelectionDAGLowering SDL(SDAG, TLI, *AA, FuncInfo, GCI);
5541
5542    // Set the current basic block to the mbb we wish to insert the code into
5543    BB = SwitchCases[i].ThisBB;
5544    SDL.setCurrentBasicBlock(BB);
5545
5546    // Emit the code
5547    SDL.visitSwitchCase(SwitchCases[i]);
5548    SDAG.setRoot(SDL.getRoot());
5549    CodeGenAndEmitDAG(SDAG);
5550
5551    // Handle any PHI nodes in successors of this chunk, as if we were coming
5552    // from the original BB before switch expansion.  Note that PHI nodes can
5553    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
5554    // handle them the right number of times.
5555    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
5556      for (MachineBasicBlock::iterator Phi = BB->begin();
5557           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
5558        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
5559        for (unsigned pn = 0; ; ++pn) {
5560          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
5561          if (PHINodesToUpdate[pn].first == Phi) {
5562            Phi->addOperand(MachineOperand::CreateReg(PHINodesToUpdate[pn].
5563                                                      second, false));
5564            Phi->addOperand(MachineOperand::CreateMBB(SwitchCases[i].ThisBB));
5565            break;
5566          }
5567        }
5568      }
5569
5570      // Don't process RHS if same block as LHS.
5571      if (BB == SwitchCases[i].FalseBB)
5572        SwitchCases[i].FalseBB = 0;
5573
5574      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
5575      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
5576      SwitchCases[i].FalseBB = 0;
5577    }
5578    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
5579  }
5580}
5581
5582
5583//===----------------------------------------------------------------------===//
5584/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
5585/// target node in the graph.
5586void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
5587  if (ViewSchedDAGs) DAG.viewGraph();
5588
5589  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
5590
5591  if (!Ctor) {
5592    Ctor = ISHeuristic;
5593    RegisterScheduler::setDefault(Ctor);
5594  }
5595
5596  ScheduleDAG *SL = Ctor(this, &DAG, BB);
5597  BB = SL->Run();
5598
5599  if (ViewSUnitDAGs) SL->viewGraph();
5600
5601  delete SL;
5602}
5603
5604
5605HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
5606  return new HazardRecognizer();
5607}
5608
5609//===----------------------------------------------------------------------===//
5610// Helper functions used by the generated instruction selector.
5611//===----------------------------------------------------------------------===//
5612// Calls to these methods are generated by tblgen.
5613
5614/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
5615/// the dag combiner simplified the 255, we still want to match.  RHS is the
5616/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
5617/// specified in the .td file (e.g. 255).
5618bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
5619                                    int64_t DesiredMaskS) const {
5620  const APInt &ActualMask = RHS->getAPIntValue();
5621  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5622
5623  // If the actual mask exactly matches, success!
5624  if (ActualMask == DesiredMask)
5625    return true;
5626
5627  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5628  if (ActualMask.intersects(~DesiredMask))
5629    return false;
5630
5631  // Otherwise, the DAG Combiner may have proven that the value coming in is
5632  // either already zero or is not demanded.  Check for known zero input bits.
5633  APInt NeededMask = DesiredMask & ~ActualMask;
5634  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
5635    return true;
5636
5637  // TODO: check to see if missing bits are just not demanded.
5638
5639  // Otherwise, this pattern doesn't match.
5640  return false;
5641}
5642
5643/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
5644/// the dag combiner simplified the 255, we still want to match.  RHS is the
5645/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
5646/// specified in the .td file (e.g. 255).
5647bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
5648                                   int64_t DesiredMaskS) const {
5649  const APInt &ActualMask = RHS->getAPIntValue();
5650  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
5651
5652  // If the actual mask exactly matches, success!
5653  if (ActualMask == DesiredMask)
5654    return true;
5655
5656  // If the actual AND mask is allowing unallowed bits, this doesn't match.
5657  if (ActualMask.intersects(~DesiredMask))
5658    return false;
5659
5660  // Otherwise, the DAG Combiner may have proven that the value coming in is
5661  // either already zero or is not demanded.  Check for known zero input bits.
5662  APInt NeededMask = DesiredMask & ~ActualMask;
5663
5664  APInt KnownZero, KnownOne;
5665  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
5666
5667  // If all the missing bits in the or are already known to be set, match!
5668  if ((NeededMask & KnownOne) == NeededMask)
5669    return true;
5670
5671  // TODO: check to see if missing bits are just not demanded.
5672
5673  // Otherwise, this pattern doesn't match.
5674  return false;
5675}
5676
5677
5678/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
5679/// by tblgen.  Others should not call it.
5680void SelectionDAGISel::
5681SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
5682  std::vector<SDOperand> InOps;
5683  std::swap(InOps, Ops);
5684
5685  Ops.push_back(InOps[0]);  // input chain.
5686  Ops.push_back(InOps[1]);  // input asm string.
5687
5688  unsigned i = 2, e = InOps.size();
5689  if (InOps[e-1].getValueType() == MVT::Flag)
5690    --e;  // Don't process a flag operand if it is here.
5691
5692  while (i != e) {
5693    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
5694    if ((Flags & 7) != 4 /*MEM*/) {
5695      // Just skip over this operand, copying the operands verbatim.
5696      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
5697      i += (Flags >> 3) + 1;
5698    } else {
5699      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
5700      // Otherwise, this is a memory operand.  Ask the target to select it.
5701      std::vector<SDOperand> SelOps;
5702      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
5703        cerr << "Could not match memory address.  Inline asm failure!\n";
5704        exit(1);
5705      }
5706
5707      // Add this to the output node.
5708      MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
5709      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
5710                                          IntPtrTy));
5711      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
5712      i += 2;
5713    }
5714  }
5715
5716  // Add the flag input back if present.
5717  if (e != InOps.size())
5718    Ops.push_back(InOps.back());
5719}
5720
5721char SelectionDAGISel::ID = 0;
5722