SelectionDAGISel.cpp revision f1b4eafbfec976f939ec0ea3e8acf91cef5363e3
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/Timer.h"
51#include "llvm/Support/raw_ostream.h"
52#include "llvm/ADT/Statistic.h"
53#include <algorithm>
54using namespace llvm;
55
56STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
57STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
58STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
59STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
60
61#ifndef NDEBUG
62STATISTIC(NumBBWithOutOfOrderLineInfo,
63          "Number of blocks with out of order line number info");
64STATISTIC(NumMBBWithOutOfOrderLineInfo,
65          "Number of machine blocks with out of order line number info");
66#endif
67
68static cl::opt<bool>
69EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
70          cl::desc("Enable verbose messages in the \"fast\" "
71                   "instruction selector"));
72static cl::opt<bool>
73EnableFastISelAbort("fast-isel-abort", cl::Hidden,
74          cl::desc("Enable abort calls when \"fast\" instruction fails"));
75
76#ifndef NDEBUG
77static cl::opt<bool>
78ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the first "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before legalize types"));
84static cl::opt<bool>
85ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
86          cl::desc("Pop up a window to show dags before legalize"));
87static cl::opt<bool>
88ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
89          cl::desc("Pop up a window to show dags before the second "
90                   "dag combine pass"));
91static cl::opt<bool>
92ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
93          cl::desc("Pop up a window to show dags before the post legalize types"
94                   " dag combine pass"));
95static cl::opt<bool>
96ViewISelDAGs("view-isel-dags", cl::Hidden,
97          cl::desc("Pop up a window to show isel dags as they are selected"));
98static cl::opt<bool>
99ViewSchedDAGs("view-sched-dags", cl::Hidden,
100          cl::desc("Pop up a window to show sched dags as they are processed"));
101static cl::opt<bool>
102ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
103      cl::desc("Pop up a window to show SUnit dags after they are processed"));
104#else
105static const bool ViewDAGCombine1 = false,
106                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
107                  ViewDAGCombine2 = false,
108                  ViewDAGCombineLT = false,
109                  ViewISelDAGs = false, ViewSchedDAGs = false,
110                  ViewSUnitDAGs = false;
111#endif
112
113//===---------------------------------------------------------------------===//
114///
115/// RegisterScheduler class - Track the registration of instruction schedulers.
116///
117//===---------------------------------------------------------------------===//
118MachinePassRegistry RegisterScheduler::Registry;
119
120//===---------------------------------------------------------------------===//
121///
122/// ISHeuristic command line option for instruction schedulers.
123///
124//===---------------------------------------------------------------------===//
125static cl::opt<RegisterScheduler::FunctionPassCtor, false,
126               RegisterPassParser<RegisterScheduler> >
127ISHeuristic("pre-RA-sched",
128            cl::init(&createDefaultScheduler),
129            cl::desc("Instruction schedulers available (before register"
130                     " allocation):"));
131
132static RegisterScheduler
133defaultListDAGScheduler("default", "Best scheduler for the target",
134                        createDefaultScheduler);
135
136namespace llvm {
137  //===--------------------------------------------------------------------===//
138  /// createDefaultScheduler - This creates an instruction scheduler appropriate
139  /// for the target.
140  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
141                                             CodeGenOpt::Level OptLevel) {
142    const TargetLowering &TLI = IS->getTargetLowering();
143
144    if (OptLevel == CodeGenOpt::None)
145      return createSourceListDAGScheduler(IS, OptLevel);
146    if (TLI.getSchedulingPreference() == Sched::Latency)
147      return createTDListDAGScheduler(IS, OptLevel);
148    if (TLI.getSchedulingPreference() == Sched::RegPressure)
149      return createBURRListDAGScheduler(IS, OptLevel);
150    if (TLI.getSchedulingPreference() == Sched::Hybrid)
151      return createHybridListDAGScheduler(IS, OptLevel);
152    assert(TLI.getSchedulingPreference() == Sched::ILP &&
153           "Unknown sched type!");
154    return createILPListDAGScheduler(IS, OptLevel);
155  }
156}
157
158// EmitInstrWithCustomInserter - This method should be implemented by targets
159// that mark instructions with the 'usesCustomInserter' flag.  These
160// instructions are special in various ways, which require special support to
161// insert.  The specified MachineInstr is created but not inserted into any
162// basic blocks, and this method is called to expand it into a sequence of
163// instructions, potentially also creating new basic blocks and control flow.
164// When new basic blocks are inserted and the edges from MBB to its successors
165// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
166// DenseMap.
167MachineBasicBlock *
168TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
169                                            MachineBasicBlock *MBB) const {
170#ifndef NDEBUG
171  dbgs() << "If a target marks an instruction with "
172          "'usesCustomInserter', it must implement "
173          "TargetLowering::EmitInstrWithCustomInserter!";
174#endif
175  llvm_unreachable(0);
176  return 0;
177}
178
179//===----------------------------------------------------------------------===//
180// SelectionDAGISel code
181//===----------------------------------------------------------------------===//
182
183SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
184  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
185  FuncInfo(new FunctionLoweringInfo(TLI)),
186  CurDAG(new SelectionDAG(tm)),
187  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
188  GFI(),
189  OptLevel(OL),
190  DAGSize(0) {
191    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
192    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
193  }
194
195SelectionDAGISel::~SelectionDAGISel() {
196  delete SDB;
197  delete CurDAG;
198  delete FuncInfo;
199}
200
201void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
202  AU.addRequired<AliasAnalysis>();
203  AU.addPreserved<AliasAnalysis>();
204  AU.addRequired<GCModuleInfo>();
205  AU.addPreserved<GCModuleInfo>();
206  MachineFunctionPass::getAnalysisUsage(AU);
207}
208
209/// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
210/// other function that gcc recognizes as "returning twice". This is used to
211/// limit code-gen optimizations on the machine function.
212///
213/// FIXME: Remove after <rdar://problem/8031714> is fixed.
214static bool FunctionCallsSetJmp(const Function *F) {
215  const Module *M = F->getParent();
216  static const char *ReturnsTwiceFns[] = {
217    "_setjmp",
218    "setjmp",
219    "sigsetjmp",
220    "setjmp_syscall",
221    "savectx",
222    "qsetjmp",
223    "vfork",
224    "getcontext"
225  };
226#define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
227
228  for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
229    if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
230      if (!Callee->use_empty())
231        for (Value::const_use_iterator
232               I = Callee->use_begin(), E = Callee->use_end();
233             I != E; ++I)
234          if (const CallInst *CI = dyn_cast<CallInst>(*I))
235            if (CI->getParent()->getParent() == F)
236              return true;
237    }
238
239  return false;
240#undef NUM_RETURNS_TWICE_FNS
241}
242
243/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
244/// may trap on it.  In this case we have to split the edge so that the path
245/// through the predecessor block that doesn't go to the phi block doesn't
246/// execute the possibly trapping instruction.
247///
248/// This is required for correctness, so it must be done at -O0.
249///
250static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
251  // Loop for blocks with phi nodes.
252  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
253    PHINode *PN = dyn_cast<PHINode>(BB->begin());
254    if (PN == 0) continue;
255
256  ReprocessBlock:
257    // For each block with a PHI node, check to see if any of the input values
258    // are potentially trapping constant expressions.  Constant expressions are
259    // the only potentially trapping value that can occur as the argument to a
260    // PHI.
261    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
262      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
263        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
264        if (CE == 0 || !CE->canTrap()) continue;
265
266        // The only case we have to worry about is when the edge is critical.
267        // Since this block has a PHI Node, we assume it has multiple input
268        // edges: check to see if the pred has multiple successors.
269        BasicBlock *Pred = PN->getIncomingBlock(i);
270        if (Pred->getTerminator()->getNumSuccessors() == 1)
271          continue;
272
273        // Okay, we have to split this edge.
274        SplitCriticalEdge(Pred->getTerminator(),
275                          GetSuccessorNumber(Pred, BB), SDISel, true);
276        goto ReprocessBlock;
277      }
278  }
279}
280
281bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
282  // Do some sanity-checking on the command-line options.
283  assert((!EnableFastISelVerbose || EnableFastISel) &&
284         "-fast-isel-verbose requires -fast-isel");
285  assert((!EnableFastISelAbort || EnableFastISel) &&
286         "-fast-isel-abort requires -fast-isel");
287
288  const Function &Fn = *mf.getFunction();
289  const TargetInstrInfo &TII = *TM.getInstrInfo();
290  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
291
292  MF = &mf;
293  RegInfo = &MF->getRegInfo();
294  AA = &getAnalysis<AliasAnalysis>();
295  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
296
297  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
298
299  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
300
301  CurDAG->init(*MF);
302  FuncInfo->set(Fn, *MF);
303  SDB->init(GFI, *AA);
304
305  SelectAllBasicBlocks(Fn);
306
307  // If the first basic block in the function has live ins that need to be
308  // copied into vregs, emit the copies into the top of the block before
309  // emitting the code for the block.
310  MachineBasicBlock *EntryMBB = MF->begin();
311  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
312
313  DenseMap<unsigned, unsigned> LiveInMap;
314  if (!FuncInfo->ArgDbgValues.empty())
315    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
316           E = RegInfo->livein_end(); LI != E; ++LI)
317      if (LI->second)
318        LiveInMap.insert(std::make_pair(LI->first, LI->second));
319
320  // Insert DBG_VALUE instructions for function arguments to the entry block.
321  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
322    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
323    unsigned Reg = MI->getOperand(0).getReg();
324    if (TargetRegisterInfo::isPhysicalRegister(Reg))
325      EntryMBB->insert(EntryMBB->begin(), MI);
326    else {
327      MachineInstr *Def = RegInfo->getVRegDef(Reg);
328      MachineBasicBlock::iterator InsertPos = Def;
329      // FIXME: VR def may not be in entry block.
330      Def->getParent()->insert(llvm::next(InsertPos), MI);
331    }
332
333    // If Reg is live-in then update debug info to track its copy in a vreg.
334    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
335    if (LDI != LiveInMap.end()) {
336      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
337      MachineBasicBlock::iterator InsertPos = Def;
338      const MDNode *Variable =
339        MI->getOperand(MI->getNumOperands()-1).getMetadata();
340      unsigned Offset = MI->getOperand(1).getImm();
341      // Def is never a terminator here, so it is ok to increment InsertPos.
342      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
343              TII.get(TargetOpcode::DBG_VALUE))
344        .addReg(LDI->second, RegState::Debug)
345        .addImm(Offset).addMetadata(Variable);
346
347      // If this vreg is directly copied into an exported register then
348      // that COPY instructions also need DBG_VALUE, if it is the only
349      // user of LDI->second.
350      MachineInstr *CopyUseMI = NULL;
351      for (MachineRegisterInfo::use_iterator
352             UI = RegInfo->use_begin(LDI->second);
353           MachineInstr *UseMI = UI.skipInstruction();) {
354        if (UseMI->isDebugValue()) continue;
355        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
356          CopyUseMI = UseMI; continue;
357        }
358        // Otherwise this is another use or second copy use.
359        CopyUseMI = NULL; break;
360      }
361      if (CopyUseMI) {
362        MachineInstr *NewMI =
363          BuildMI(*MF, CopyUseMI->getDebugLoc(),
364                  TII.get(TargetOpcode::DBG_VALUE))
365          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
366          .addImm(Offset).addMetadata(Variable);
367        EntryMBB->insertAfter(CopyUseMI, NewMI);
368      }
369    }
370  }
371
372  // Determine if there are any calls in this machine function.
373  MachineFrameInfo *MFI = MF->getFrameInfo();
374  if (!MFI->hasCalls()) {
375    for (MachineFunction::const_iterator
376           I = MF->begin(), E = MF->end(); I != E; ++I) {
377      const MachineBasicBlock *MBB = I;
378      for (MachineBasicBlock::const_iterator
379             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
380        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
381
382        // Operand 1 of an inline asm instruction indicates whether the asm
383        // needs stack or not.
384        if ((II->isInlineAsm() && II->getOperand(1).getImm()) ||
385            (TID.isCall() && !TID.isReturn())) {
386          MFI->setHasCalls(true);
387          goto done;
388        }
389      }
390    }
391  done:;
392  }
393
394  // Determine if there is a call to setjmp in the machine function.
395  MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
396
397  // Replace forward-declared registers with the registers containing
398  // the desired value.
399  MachineRegisterInfo &MRI = MF->getRegInfo();
400  for (DenseMap<unsigned, unsigned>::iterator
401       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
402       I != E; ++I) {
403    unsigned From = I->first;
404    unsigned To = I->second;
405    // If To is also scheduled to be replaced, find what its ultimate
406    // replacement is.
407    for (;;) {
408      DenseMap<unsigned, unsigned>::iterator J =
409        FuncInfo->RegFixups.find(To);
410      if (J == E) break;
411      To = J->second;
412    }
413    // Replace it.
414    MRI.replaceRegWith(From, To);
415  }
416
417  // Release function-specific state. SDB and CurDAG are already cleared
418  // at this point.
419  FuncInfo->clear();
420
421  return true;
422}
423
424void
425SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
426                                   BasicBlock::const_iterator End,
427                                   bool &HadTailCall) {
428  // Lower all of the non-terminator instructions. If a call is emitted
429  // as a tail call, cease emitting nodes for this block. Terminators
430  // are handled below.
431  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
432    SDB->visit(*I);
433
434  // Make sure the root of the DAG is up-to-date.
435  CurDAG->setRoot(SDB->getControlRoot());
436  HadTailCall = SDB->HasTailCall;
437  SDB->clear();
438
439  // Final step, emit the lowered DAG as machine code.
440  CodeGenAndEmitDAG();
441  return;
442}
443
444void SelectionDAGISel::ComputeLiveOutVRegInfo() {
445  SmallPtrSet<SDNode*, 128> VisitedNodes;
446  SmallVector<SDNode*, 128> Worklist;
447
448  Worklist.push_back(CurDAG->getRoot().getNode());
449
450  APInt Mask;
451  APInt KnownZero;
452  APInt KnownOne;
453
454  do {
455    SDNode *N = Worklist.pop_back_val();
456
457    // If we've already seen this node, ignore it.
458    if (!VisitedNodes.insert(N))
459      continue;
460
461    // Otherwise, add all chain operands to the worklist.
462    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
463      if (N->getOperand(i).getValueType() == MVT::Other)
464        Worklist.push_back(N->getOperand(i).getNode());
465
466    // If this is a CopyToReg with a vreg dest, process it.
467    if (N->getOpcode() != ISD::CopyToReg)
468      continue;
469
470    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
471    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
472      continue;
473
474    // Ignore non-scalar or non-integer values.
475    SDValue Src = N->getOperand(2);
476    EVT SrcVT = Src.getValueType();
477    if (!SrcVT.isInteger() || SrcVT.isVector())
478      continue;
479
480    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
481    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
482    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
483
484    // Only install this information if it tells us something.
485    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
486      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
487      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
488        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
489      FunctionLoweringInfo::LiveOutInfo &LOI =
490        FuncInfo->LiveOutRegInfo[DestReg];
491      LOI.NumSignBits = NumSignBits;
492      LOI.KnownOne = KnownOne;
493      LOI.KnownZero = KnownZero;
494    }
495  } while (!Worklist.empty());
496}
497
498void SelectionDAGISel::CodeGenAndEmitDAG() {
499  std::string GroupName;
500  if (TimePassesIsEnabled)
501    GroupName = "Instruction Selection and Scheduling";
502  std::string BlockName;
503  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
504      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
505      ViewSUnitDAGs)
506    BlockName = MF->getFunction()->getNameStr() + ":" +
507                FuncInfo->MBB->getBasicBlock()->getNameStr();
508
509  DEBUG(dbgs() << "Initial selection DAG:\n"; CurDAG->dump());
510
511  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
512
513  // Run the DAG combiner in pre-legalize mode.
514  {
515    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
516    CurDAG->Combine(Unrestricted, *AA, OptLevel);
517  }
518
519  DEBUG(dbgs() << "Optimized lowered selection DAG:\n"; CurDAG->dump());
520
521  // Second step, hack on the DAG until it only uses operations and types that
522  // the target supports.
523  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
524                                               BlockName);
525
526  bool Changed;
527  {
528    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
529    Changed = CurDAG->LegalizeTypes();
530  }
531
532  DEBUG(dbgs() << "Type-legalized selection DAG:\n"; CurDAG->dump());
533
534  if (Changed) {
535    if (ViewDAGCombineLT)
536      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
537
538    // Run the DAG combiner in post-type-legalize mode.
539    {
540      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
541                         TimePassesIsEnabled);
542      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
543    }
544
545    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n";
546          CurDAG->dump());
547  }
548
549  {
550    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
551    Changed = CurDAG->LegalizeVectors();
552  }
553
554  if (Changed) {
555    {
556      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
557      CurDAG->LegalizeTypes();
558    }
559
560    if (ViewDAGCombineLT)
561      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
562
563    // Run the DAG combiner in post-type-legalize mode.
564    {
565      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
566                         TimePassesIsEnabled);
567      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
568    }
569
570    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n";
571          CurDAG->dump());
572  }
573
574  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
575
576  {
577    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
578    CurDAG->Legalize(OptLevel);
579  }
580
581  DEBUG(dbgs() << "Legalized selection DAG:\n"; CurDAG->dump());
582
583  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
584
585  // Run the DAG combiner in post-legalize mode.
586  {
587    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
588    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
589  }
590
591  DEBUG(dbgs() << "Optimized legalized selection DAG:\n"; CurDAG->dump());
592
593  if (OptLevel != CodeGenOpt::None)
594    ComputeLiveOutVRegInfo();
595
596  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
597
598  // Third, instruction select all of the operations to machine code, adding the
599  // code to the MachineBasicBlock.
600  {
601    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
602    DoInstructionSelection();
603  }
604
605  DEBUG(dbgs() << "Selected selection DAG:\n"; CurDAG->dump());
606
607  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
608
609  // Schedule machine code.
610  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
611  {
612    NamedRegionTimer T("Instruction Scheduling", GroupName,
613                       TimePassesIsEnabled);
614    Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
615  }
616
617  if (ViewSUnitDAGs) Scheduler->viewGraph();
618
619  // Emit machine code to BB.  This can change 'BB' to the last block being
620  // inserted into.
621  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
622  {
623    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
624
625    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
626    FuncInfo->InsertPt = Scheduler->InsertPos;
627  }
628
629  // If the block was split, make sure we update any references that are used to
630  // update PHI nodes later on.
631  if (FirstMBB != LastMBB)
632    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
633
634  // Free the scheduler state.
635  {
636    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
637                       TimePassesIsEnabled);
638    delete Scheduler;
639  }
640
641  // Free the SelectionDAG state, now that we're finished with it.
642  CurDAG->clear();
643}
644
645void SelectionDAGISel::DoInstructionSelection() {
646  DEBUG(errs() << "===== Instruction selection begins:\n");
647
648  PreprocessISelDAG();
649
650  // Select target instructions for the DAG.
651  {
652    // Number all nodes with a topological order and set DAGSize.
653    DAGSize = CurDAG->AssignTopologicalOrder();
654
655    // Create a dummy node (which is not added to allnodes), that adds
656    // a reference to the root node, preventing it from being deleted,
657    // and tracking any changes of the root.
658    HandleSDNode Dummy(CurDAG->getRoot());
659    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
660    ++ISelPosition;
661
662    // The AllNodes list is now topological-sorted. Visit the
663    // nodes by starting at the end of the list (the root of the
664    // graph) and preceding back toward the beginning (the entry
665    // node).
666    while (ISelPosition != CurDAG->allnodes_begin()) {
667      SDNode *Node = --ISelPosition;
668      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
669      // but there are currently some corner cases that it misses. Also, this
670      // makes it theoretically possible to disable the DAGCombiner.
671      if (Node->use_empty())
672        continue;
673
674      SDNode *ResNode = Select(Node);
675
676      // FIXME: This is pretty gross.  'Select' should be changed to not return
677      // anything at all and this code should be nuked with a tactical strike.
678
679      // If node should not be replaced, continue with the next one.
680      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
681        continue;
682      // Replace node.
683      if (ResNode)
684        ReplaceUses(Node, ResNode);
685
686      // If after the replacement this node is not used any more,
687      // remove this dead node.
688      if (Node->use_empty()) { // Don't delete EntryToken, etc.
689        ISelUpdater ISU(ISelPosition);
690        CurDAG->RemoveDeadNode(Node, &ISU);
691      }
692    }
693
694    CurDAG->setRoot(Dummy.getValue());
695  }
696
697  DEBUG(errs() << "===== Instruction selection ends:\n");
698
699  PostprocessISelDAG();
700}
701
702/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
703/// do other setup for EH landing-pad blocks.
704void SelectionDAGISel::PrepareEHLandingPad() {
705  // Add a label to mark the beginning of the landing pad.  Deletion of the
706  // landing pad can thus be detected via the MachineModuleInfo.
707  MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
708
709  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
710  BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
711    .addSym(Label);
712
713  // Mark exception register as live in.
714  unsigned Reg = TLI.getExceptionAddressRegister();
715  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
716
717  // Mark exception selector register as live in.
718  Reg = TLI.getExceptionSelectorRegister();
719  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
720
721  // FIXME: Hack around an exception handling flaw (PR1508): the personality
722  // function and list of typeids logically belong to the invoke (or, if you
723  // like, the basic block containing the invoke), and need to be associated
724  // with it in the dwarf exception handling tables.  Currently however the
725  // information is provided by an intrinsic (eh.selector) that can be moved
726  // to unexpected places by the optimizers: if the unwind edge is critical,
727  // then breaking it can result in the intrinsics being in the successor of
728  // the landing pad, not the landing pad itself.  This results
729  // in exceptions not being caught because no typeids are associated with
730  // the invoke.  This may not be the only way things can go wrong, but it
731  // is the only way we try to work around for the moment.
732  const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
733  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
734
735  if (Br && Br->isUnconditional()) { // Critical edge?
736    BasicBlock::const_iterator I, E;
737    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
738      if (isa<EHSelectorInst>(I))
739        break;
740
741    if (I == E)
742      // No catch info found - try to extract some from the successor.
743      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
744  }
745}
746
747
748
749
750bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
751                                             FastISel *FastIS) {
752  // Don't try to fold volatile loads.  Target has to deal with alignment
753  // constraints.
754  if (LI->isVolatile()) return false;
755
756  // Figure out which vreg this is going into.
757  unsigned LoadReg = FastIS->getRegForValue(LI);
758  assert(LoadReg && "Load isn't already assigned a vreg? ");
759
760  // Check to see what the uses of this vreg are.  If it has no uses, or more
761  // than one use (at the machine instr level) then we can't fold it.
762  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
763  if (RI == RegInfo->reg_end())
764    return false;
765
766  // See if there is exactly one use of the vreg.  If there are multiple uses,
767  // then the instruction got lowered to multiple machine instructions or the
768  // use of the loaded value ended up being multiple operands of the result, in
769  // either case, we can't fold this.
770  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
771  if (PostRI != RegInfo->reg_end())
772    return false;
773
774  assert(RI.getOperand().isUse() &&
775         "The only use of the vreg must be a use, we haven't emitted the def!");
776
777  // Ask the target to try folding the load.
778  return FastIS->TryToFoldLoad(&*RI, RI.getOperandNo(), LI);
779}
780
781#ifndef NDEBUG
782/// CheckLineNumbers - Check if basic block instructions follow source order
783/// or not.
784static void CheckLineNumbers(const BasicBlock *BB) {
785  unsigned Line = 0;
786  unsigned Col = 0;
787  for (BasicBlock::const_iterator BI = BB->begin(),
788         BE = BB->end(); BI != BE; ++BI) {
789    const DebugLoc DL = BI->getDebugLoc();
790    if (DL.isUnknown()) continue;
791    unsigned L = DL.getLine();
792    unsigned C = DL.getCol();
793    if (L < Line || (L == Line && C < Col)) {
794      ++NumBBWithOutOfOrderLineInfo;
795      return;
796    }
797    Line = L;
798    Col = C;
799  }
800}
801
802/// CheckLineNumbers - Check if machine basic block instructions follow source
803/// order or not.
804static void CheckLineNumbers(const MachineBasicBlock *MBB) {
805  unsigned Line = 0;
806  unsigned Col = 0;
807  for (MachineBasicBlock::const_iterator MBI = MBB->begin(),
808         MBE = MBB->end(); MBI != MBE; ++MBI) {
809    const DebugLoc DL = MBI->getDebugLoc();
810    if (DL.isUnknown()) continue;
811    unsigned L = DL.getLine();
812    unsigned C = DL.getCol();
813    if (L < Line || (L == Line && C < Col)) {
814      ++NumMBBWithOutOfOrderLineInfo;
815      return;
816    }
817    Line = L;
818    Col = C;
819  }
820}
821#endif
822
823void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
824  // Initialize the Fast-ISel state, if needed.
825  FastISel *FastIS = 0;
826  if (EnableFastISel)
827    FastIS = TLI.createFastISel(*FuncInfo);
828
829  // Iterate over all basic blocks in the function.
830  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
831    const BasicBlock *LLVMBB = &*I;
832#ifndef NDEBUG
833    CheckLineNumbers(LLVMBB);
834#endif
835    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
836    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
837
838    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
839    BasicBlock::const_iterator const End = LLVMBB->end();
840    BasicBlock::const_iterator BI = End;
841
842    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
843
844    // Setup an EH landing-pad block.
845    if (FuncInfo->MBB->isLandingPad())
846      PrepareEHLandingPad();
847
848    // Lower any arguments needed in this block if this is the entry block.
849    if (LLVMBB == &Fn.getEntryBlock())
850      LowerArguments(LLVMBB);
851
852    // Before doing SelectionDAG ISel, see if FastISel has been requested.
853    if (FastIS) {
854      FastIS->startNewBlock();
855
856      // Emit code for any incoming arguments. This must happen before
857      // beginning FastISel on the entry block.
858      if (LLVMBB == &Fn.getEntryBlock()) {
859        CurDAG->setRoot(SDB->getControlRoot());
860        SDB->clear();
861        CodeGenAndEmitDAG();
862
863        // If we inserted any instructions at the beginning, make a note of
864        // where they are, so we can be sure to emit subsequent instructions
865        // after them.
866        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
867          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
868        else
869          FastIS->setLastLocalValue(0);
870      }
871
872      // Do FastISel on as many instructions as possible.
873      for (; BI != Begin; --BI) {
874        const Instruction *Inst = llvm::prior(BI);
875
876        // If we no longer require this instruction, skip it.
877        if (!Inst->mayWriteToMemory() &&
878            !isa<TerminatorInst>(Inst) &&
879            !isa<DbgInfoIntrinsic>(Inst) &&
880            !FuncInfo->isExportedInst(Inst))
881          continue;
882
883        // Bottom-up: reset the insert pos at the top, after any local-value
884        // instructions.
885        FastIS->recomputeInsertPt();
886
887        // Try to select the instruction with FastISel.
888        if (FastIS->SelectInstruction(Inst)) {
889          // If fast isel succeeded, check to see if there is a single-use
890          // non-volatile load right before the selected instruction, and see if
891          // the load is used by the instruction.  If so, try to fold it.
892          const Instruction *BeforeInst = 0;
893          if (Inst != Begin)
894            BeforeInst = llvm::prior(llvm::prior(BI));
895          if (BeforeInst && isa<LoadInst>(BeforeInst) &&
896              BeforeInst->hasOneUse() && *BeforeInst->use_begin() == Inst &&
897              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), FastIS)) {
898            // If we succeeded, don't re-select the load.
899            --BI;
900          }
901          continue;
902        }
903
904        // Then handle certain instructions as single-LLVM-Instruction blocks.
905        if (isa<CallInst>(Inst)) {
906          ++NumFastIselFailures;
907          if (EnableFastISelVerbose || EnableFastISelAbort) {
908            dbgs() << "FastISel missed call: ";
909            Inst->dump();
910          }
911
912          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
913            unsigned &R = FuncInfo->ValueMap[Inst];
914            if (!R)
915              R = FuncInfo->CreateRegs(Inst->getType());
916          }
917
918          bool HadTailCall = false;
919          SelectBasicBlock(Inst, BI, HadTailCall);
920
921          // If the call was emitted as a tail call, we're done with the block.
922          if (HadTailCall) {
923            --BI;
924            break;
925          }
926
927          continue;
928        }
929
930        // Otherwise, give up on FastISel for the rest of the block.
931        // For now, be a little lenient about non-branch terminators.
932        if (!isa<TerminatorInst>(Inst) || isa<BranchInst>(Inst)) {
933          ++NumFastIselFailures;
934          if (EnableFastISelVerbose || EnableFastISelAbort) {
935            dbgs() << "FastISel miss: ";
936            Inst->dump();
937          }
938          if (EnableFastISelAbort)
939            // The "fast" selector couldn't handle something and bailed.
940            // For the purpose of debugging, just abort.
941            llvm_unreachable("FastISel didn't select the entire block");
942        }
943        break;
944      }
945
946      FastIS->recomputeInsertPt();
947    }
948
949    if (Begin != BI)
950      ++NumDAGBlocks;
951    else
952      ++NumFastIselBlocks;
953
954    // Run SelectionDAG instruction selection on the remainder of the block
955    // not handled by FastISel. If FastISel is not run, this is the entire
956    // block.
957    bool HadTailCall;
958    SelectBasicBlock(Begin, BI, HadTailCall);
959
960    FinishBasicBlock();
961    FuncInfo->PHINodesToUpdate.clear();
962  }
963
964  delete FastIS;
965#ifndef NDEBUG
966  for (MachineFunction::const_iterator MBI = MF->begin(), MBE = MF->end();
967       MBI != MBE; ++MBI)
968    CheckLineNumbers(MBI);
969#endif
970}
971
972void
973SelectionDAGISel::FinishBasicBlock() {
974
975  DEBUG(dbgs() << "Total amount of phi nodes to update: "
976               << FuncInfo->PHINodesToUpdate.size() << "\n";
977        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
978          dbgs() << "Node " << i << " : ("
979                 << FuncInfo->PHINodesToUpdate[i].first
980                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
981
982  // Next, now that we know what the last MBB the LLVM BB expanded is, update
983  // PHI nodes in successors.
984  if (SDB->SwitchCases.empty() &&
985      SDB->JTCases.empty() &&
986      SDB->BitTestCases.empty()) {
987    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
988      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
989      assert(PHI->isPHI() &&
990             "This is not a machine PHI node that we are updating!");
991      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
992        continue;
993      PHI->addOperand(
994        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
995      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
996    }
997    return;
998  }
999
1000  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1001    // Lower header first, if it wasn't already lowered
1002    if (!SDB->BitTestCases[i].Emitted) {
1003      // Set the current basic block to the mbb we wish to insert the code into
1004      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1005      FuncInfo->InsertPt = FuncInfo->MBB->end();
1006      // Emit the code
1007      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1008      CurDAG->setRoot(SDB->getRoot());
1009      SDB->clear();
1010      CodeGenAndEmitDAG();
1011    }
1012
1013    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1014      // Set the current basic block to the mbb we wish to insert the code into
1015      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1016      FuncInfo->InsertPt = FuncInfo->MBB->end();
1017      // Emit the code
1018      if (j+1 != ej)
1019        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
1020                              SDB->BitTestCases[i].Reg,
1021                              SDB->BitTestCases[i].Cases[j],
1022                              FuncInfo->MBB);
1023      else
1024        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
1025                              SDB->BitTestCases[i].Reg,
1026                              SDB->BitTestCases[i].Cases[j],
1027                              FuncInfo->MBB);
1028
1029
1030      CurDAG->setRoot(SDB->getRoot());
1031      SDB->clear();
1032      CodeGenAndEmitDAG();
1033    }
1034
1035    // Update PHI Nodes
1036    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1037         pi != pe; ++pi) {
1038      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1039      MachineBasicBlock *PHIBB = PHI->getParent();
1040      assert(PHI->isPHI() &&
1041             "This is not a machine PHI node that we are updating!");
1042      // This is "default" BB. We have two jumps to it. From "header" BB and
1043      // from last "case" BB.
1044      if (PHIBB == SDB->BitTestCases[i].Default) {
1045        PHI->addOperand(MachineOperand::
1046                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1047                                  false));
1048        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1049        PHI->addOperand(MachineOperand::
1050                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1051                                  false));
1052        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1053                                                  back().ThisBB));
1054      }
1055      // One of "cases" BB.
1056      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1057           j != ej; ++j) {
1058        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1059        if (cBB->isSuccessor(PHIBB)) {
1060          PHI->addOperand(MachineOperand::
1061                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1062                                    false));
1063          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1064        }
1065      }
1066    }
1067  }
1068  SDB->BitTestCases.clear();
1069
1070  // If the JumpTable record is filled in, then we need to emit a jump table.
1071  // Updating the PHI nodes is tricky in this case, since we need to determine
1072  // whether the PHI is a successor of the range check MBB or the jump table MBB
1073  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1074    // Lower header first, if it wasn't already lowered
1075    if (!SDB->JTCases[i].first.Emitted) {
1076      // Set the current basic block to the mbb we wish to insert the code into
1077      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1078      FuncInfo->InsertPt = FuncInfo->MBB->end();
1079      // Emit the code
1080      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1081                                FuncInfo->MBB);
1082      CurDAG->setRoot(SDB->getRoot());
1083      SDB->clear();
1084      CodeGenAndEmitDAG();
1085    }
1086
1087    // Set the current basic block to the mbb we wish to insert the code into
1088    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1089    FuncInfo->InsertPt = FuncInfo->MBB->end();
1090    // Emit the code
1091    SDB->visitJumpTable(SDB->JTCases[i].second);
1092    CurDAG->setRoot(SDB->getRoot());
1093    SDB->clear();
1094    CodeGenAndEmitDAG();
1095
1096    // Update PHI Nodes
1097    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1098         pi != pe; ++pi) {
1099      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1100      MachineBasicBlock *PHIBB = PHI->getParent();
1101      assert(PHI->isPHI() &&
1102             "This is not a machine PHI node that we are updating!");
1103      // "default" BB. We can go there only from header BB.
1104      if (PHIBB == SDB->JTCases[i].second.Default) {
1105        PHI->addOperand
1106          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1107                                     false));
1108        PHI->addOperand
1109          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1110      }
1111      // JT BB. Just iterate over successors here
1112      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1113        PHI->addOperand
1114          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1115                                     false));
1116        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1117      }
1118    }
1119  }
1120  SDB->JTCases.clear();
1121
1122  // If the switch block involved a branch to one of the actual successors, we
1123  // need to update PHI nodes in that block.
1124  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1125    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1126    assert(PHI->isPHI() &&
1127           "This is not a machine PHI node that we are updating!");
1128    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1129      PHI->addOperand(
1130        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1131      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1132    }
1133  }
1134
1135  // If we generated any switch lowering information, build and codegen any
1136  // additional DAGs necessary.
1137  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1138    // Set the current basic block to the mbb we wish to insert the code into
1139    MachineBasicBlock *ThisBB = FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1140    FuncInfo->InsertPt = FuncInfo->MBB->end();
1141
1142    // Determine the unique successors.
1143    SmallVector<MachineBasicBlock *, 2> Succs;
1144    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1145    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1146      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1147
1148    // Emit the code. Note that this could result in ThisBB being split, so
1149    // we need to check for updates.
1150    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1151    CurDAG->setRoot(SDB->getRoot());
1152    SDB->clear();
1153    CodeGenAndEmitDAG();
1154    ThisBB = FuncInfo->MBB;
1155
1156    // Handle any PHI nodes in successors of this chunk, as if we were coming
1157    // from the original BB before switch expansion.  Note that PHI nodes can
1158    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1159    // handle them the right number of times.
1160    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1161      FuncInfo->MBB = Succs[i];
1162      FuncInfo->InsertPt = FuncInfo->MBB->end();
1163      // FuncInfo->MBB may have been removed from the CFG if a branch was
1164      // constant folded.
1165      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1166        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1167             Phi != FuncInfo->MBB->end() && Phi->isPHI();
1168             ++Phi) {
1169          // This value for this PHI node is recorded in PHINodesToUpdate.
1170          for (unsigned pn = 0; ; ++pn) {
1171            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1172                   "Didn't find PHI entry!");
1173            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1174              Phi->addOperand(MachineOperand::
1175                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1176                                        false));
1177              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1178              break;
1179            }
1180          }
1181        }
1182      }
1183    }
1184  }
1185  SDB->SwitchCases.clear();
1186}
1187
1188
1189/// Create the scheduler. If a specific scheduler was specified
1190/// via the SchedulerRegistry, use it, otherwise select the
1191/// one preferred by the target.
1192///
1193ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1194  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1195
1196  if (!Ctor) {
1197    Ctor = ISHeuristic;
1198    RegisterScheduler::setDefault(Ctor);
1199  }
1200
1201  return Ctor(this, OptLevel);
1202}
1203
1204ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1205  return new ScheduleHazardRecognizer();
1206}
1207
1208//===----------------------------------------------------------------------===//
1209// Helper functions used by the generated instruction selector.
1210//===----------------------------------------------------------------------===//
1211// Calls to these methods are generated by tblgen.
1212
1213/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1214/// the dag combiner simplified the 255, we still want to match.  RHS is the
1215/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1216/// specified in the .td file (e.g. 255).
1217bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1218                                    int64_t DesiredMaskS) const {
1219  const APInt &ActualMask = RHS->getAPIntValue();
1220  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1221
1222  // If the actual mask exactly matches, success!
1223  if (ActualMask == DesiredMask)
1224    return true;
1225
1226  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1227  if (ActualMask.intersects(~DesiredMask))
1228    return false;
1229
1230  // Otherwise, the DAG Combiner may have proven that the value coming in is
1231  // either already zero or is not demanded.  Check for known zero input bits.
1232  APInt NeededMask = DesiredMask & ~ActualMask;
1233  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1234    return true;
1235
1236  // TODO: check to see if missing bits are just not demanded.
1237
1238  // Otherwise, this pattern doesn't match.
1239  return false;
1240}
1241
1242/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1243/// the dag combiner simplified the 255, we still want to match.  RHS is the
1244/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1245/// specified in the .td file (e.g. 255).
1246bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1247                                   int64_t DesiredMaskS) const {
1248  const APInt &ActualMask = RHS->getAPIntValue();
1249  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1250
1251  // If the actual mask exactly matches, success!
1252  if (ActualMask == DesiredMask)
1253    return true;
1254
1255  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1256  if (ActualMask.intersects(~DesiredMask))
1257    return false;
1258
1259  // Otherwise, the DAG Combiner may have proven that the value coming in is
1260  // either already zero or is not demanded.  Check for known zero input bits.
1261  APInt NeededMask = DesiredMask & ~ActualMask;
1262
1263  APInt KnownZero, KnownOne;
1264  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1265
1266  // If all the missing bits in the or are already known to be set, match!
1267  if ((NeededMask & KnownOne) == NeededMask)
1268    return true;
1269
1270  // TODO: check to see if missing bits are just not demanded.
1271
1272  // Otherwise, this pattern doesn't match.
1273  return false;
1274}
1275
1276
1277/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1278/// by tblgen.  Others should not call it.
1279void SelectionDAGISel::
1280SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1281  std::vector<SDValue> InOps;
1282  std::swap(InOps, Ops);
1283
1284  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1285  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1286  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1287  Ops.push_back(InOps[InlineAsm::Op_IsAlignStack]);  // 3
1288
1289  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1290  if (InOps[e-1].getValueType() == MVT::Glue)
1291    --e;  // Don't process a flag operand if it is here.
1292
1293  while (i != e) {
1294    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1295    if (!InlineAsm::isMemKind(Flags)) {
1296      // Just skip over this operand, copying the operands verbatim.
1297      Ops.insert(Ops.end(), InOps.begin()+i,
1298                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1299      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1300    } else {
1301      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1302             "Memory operand with multiple values?");
1303      // Otherwise, this is a memory operand.  Ask the target to select it.
1304      std::vector<SDValue> SelOps;
1305      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1306        report_fatal_error("Could not match memory address.  Inline asm"
1307                           " failure!");
1308
1309      // Add this to the output node.
1310      unsigned NewFlags =
1311        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1312      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1313      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1314      i += 2;
1315    }
1316  }
1317
1318  // Add the flag input back if present.
1319  if (e != InOps.size())
1320    Ops.push_back(InOps.back());
1321}
1322
1323/// findFlagUse - Return use of EVT::Flag value produced by the specified
1324/// SDNode.
1325///
1326static SDNode *findFlagUse(SDNode *N) {
1327  unsigned FlagResNo = N->getNumValues()-1;
1328  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1329    SDUse &Use = I.getUse();
1330    if (Use.getResNo() == FlagResNo)
1331      return Use.getUser();
1332  }
1333  return NULL;
1334}
1335
1336/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1337/// This function recursively traverses up the operand chain, ignoring
1338/// certain nodes.
1339static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1340                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1341                          bool IgnoreChains) {
1342  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1343  // greater than all of its (recursive) operands.  If we scan to a point where
1344  // 'use' is smaller than the node we're scanning for, then we know we will
1345  // never find it.
1346  //
1347  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1348  // happen because we scan down to newly selected nodes in the case of flag
1349  // uses.
1350  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1351    return false;
1352
1353  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1354  // won't fail if we scan it again.
1355  if (!Visited.insert(Use))
1356    return false;
1357
1358  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1359    // Ignore chain uses, they are validated by HandleMergeInputChains.
1360    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1361      continue;
1362
1363    SDNode *N = Use->getOperand(i).getNode();
1364    if (N == Def) {
1365      if (Use == ImmedUse || Use == Root)
1366        continue;  // We are not looking for immediate use.
1367      assert(N != Root);
1368      return true;
1369    }
1370
1371    // Traverse up the operand chain.
1372    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1373      return true;
1374  }
1375  return false;
1376}
1377
1378/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1379/// operand node N of U during instruction selection that starts at Root.
1380bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1381                                          SDNode *Root) const {
1382  if (OptLevel == CodeGenOpt::None) return false;
1383  return N.hasOneUse();
1384}
1385
1386/// IsLegalToFold - Returns true if the specific operand node N of
1387/// U can be folded during instruction selection that starts at Root.
1388bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1389                                     CodeGenOpt::Level OptLevel,
1390                                     bool IgnoreChains) {
1391  if (OptLevel == CodeGenOpt::None) return false;
1392
1393  // If Root use can somehow reach N through a path that that doesn't contain
1394  // U then folding N would create a cycle. e.g. In the following
1395  // diagram, Root can reach N through X. If N is folded into into Root, then
1396  // X is both a predecessor and a successor of U.
1397  //
1398  //          [N*]           //
1399  //         ^   ^           //
1400  //        /     \          //
1401  //      [U*]    [X]?       //
1402  //        ^     ^          //
1403  //         \   /           //
1404  //          \ /            //
1405  //         [Root*]         //
1406  //
1407  // * indicates nodes to be folded together.
1408  //
1409  // If Root produces a flag, then it gets (even more) interesting. Since it
1410  // will be "glued" together with its flag use in the scheduler, we need to
1411  // check if it might reach N.
1412  //
1413  //          [N*]           //
1414  //         ^   ^           //
1415  //        /     \          //
1416  //      [U*]    [X]?       //
1417  //        ^       ^        //
1418  //         \       \       //
1419  //          \      |       //
1420  //         [Root*] |       //
1421  //          ^      |       //
1422  //          f      |       //
1423  //          |      /       //
1424  //         [Y]    /        //
1425  //           ^   /         //
1426  //           f  /          //
1427  //           | /           //
1428  //          [FU]           //
1429  //
1430  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1431  // (call it Fold), then X is a predecessor of FU and a successor of
1432  // Fold. But since Fold and FU are flagged together, this will create
1433  // a cycle in the scheduling graph.
1434
1435  // If the node has flags, walk down the graph to the "lowest" node in the
1436  // flagged set.
1437  EVT VT = Root->getValueType(Root->getNumValues()-1);
1438  while (VT == MVT::Glue) {
1439    SDNode *FU = findFlagUse(Root);
1440    if (FU == NULL)
1441      break;
1442    Root = FU;
1443    VT = Root->getValueType(Root->getNumValues()-1);
1444
1445    // If our query node has a flag result with a use, we've walked up it.  If
1446    // the user (which has already been selected) has a chain or indirectly uses
1447    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1448    // this, we cannot ignore chains in this predicate.
1449    IgnoreChains = false;
1450  }
1451
1452
1453  SmallPtrSet<SDNode*, 16> Visited;
1454  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1455}
1456
1457SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1458  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1459  SelectInlineAsmMemoryOperands(Ops);
1460
1461  std::vector<EVT> VTs;
1462  VTs.push_back(MVT::Other);
1463  VTs.push_back(MVT::Glue);
1464  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1465                                VTs, &Ops[0], Ops.size());
1466  New->setNodeId(-1);
1467  return New.getNode();
1468}
1469
1470SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1471  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1472}
1473
1474/// GetVBR - decode a vbr encoding whose top bit is set.
1475LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1476GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1477  assert(Val >= 128 && "Not a VBR");
1478  Val &= 127;  // Remove first vbr bit.
1479
1480  unsigned Shift = 7;
1481  uint64_t NextBits;
1482  do {
1483    NextBits = MatcherTable[Idx++];
1484    Val |= (NextBits&127) << Shift;
1485    Shift += 7;
1486  } while (NextBits & 128);
1487
1488  return Val;
1489}
1490
1491
1492/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1493/// interior flag and chain results to use the new flag and chain results.
1494void SelectionDAGISel::
1495UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1496                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1497                     SDValue InputFlag,
1498                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1499                     bool isMorphNodeTo) {
1500  SmallVector<SDNode*, 4> NowDeadNodes;
1501
1502  ISelUpdater ISU(ISelPosition);
1503
1504  // Now that all the normal results are replaced, we replace the chain and
1505  // flag results if present.
1506  if (!ChainNodesMatched.empty()) {
1507    assert(InputChain.getNode() != 0 &&
1508           "Matched input chains but didn't produce a chain");
1509    // Loop over all of the nodes we matched that produced a chain result.
1510    // Replace all the chain results with the final chain we ended up with.
1511    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1512      SDNode *ChainNode = ChainNodesMatched[i];
1513
1514      // If this node was already deleted, don't look at it.
1515      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1516        continue;
1517
1518      // Don't replace the results of the root node if we're doing a
1519      // MorphNodeTo.
1520      if (ChainNode == NodeToMatch && isMorphNodeTo)
1521        continue;
1522
1523      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1524      if (ChainVal.getValueType() == MVT::Glue)
1525        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1526      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1527      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1528
1529      // If the node became dead and we haven't already seen it, delete it.
1530      if (ChainNode->use_empty() &&
1531          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1532        NowDeadNodes.push_back(ChainNode);
1533    }
1534  }
1535
1536  // If the result produces a flag, update any flag results in the matched
1537  // pattern with the flag result.
1538  if (InputFlag.getNode() != 0) {
1539    // Handle any interior nodes explicitly marked.
1540    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1541      SDNode *FRN = FlagResultNodesMatched[i];
1542
1543      // If this node was already deleted, don't look at it.
1544      if (FRN->getOpcode() == ISD::DELETED_NODE)
1545        continue;
1546
1547      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1548             "Doesn't have a flag result");
1549      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1550                                        InputFlag, &ISU);
1551
1552      // If the node became dead and we haven't already seen it, delete it.
1553      if (FRN->use_empty() &&
1554          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1555        NowDeadNodes.push_back(FRN);
1556    }
1557  }
1558
1559  if (!NowDeadNodes.empty())
1560    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1561
1562  DEBUG(errs() << "ISEL: Match complete!\n");
1563}
1564
1565enum ChainResult {
1566  CR_Simple,
1567  CR_InducesCycle,
1568  CR_LeadsToInteriorNode
1569};
1570
1571/// WalkChainUsers - Walk down the users of the specified chained node that is
1572/// part of the pattern we're matching, looking at all of the users we find.
1573/// This determines whether something is an interior node, whether we have a
1574/// non-pattern node in between two pattern nodes (which prevent folding because
1575/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1576/// between pattern nodes (in which case the TF becomes part of the pattern).
1577///
1578/// The walk we do here is guaranteed to be small because we quickly get down to
1579/// already selected nodes "below" us.
1580static ChainResult
1581WalkChainUsers(SDNode *ChainedNode,
1582               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1583               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1584  ChainResult Result = CR_Simple;
1585
1586  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1587         E = ChainedNode->use_end(); UI != E; ++UI) {
1588    // Make sure the use is of the chain, not some other value we produce.
1589    if (UI.getUse().getValueType() != MVT::Other) continue;
1590
1591    SDNode *User = *UI;
1592
1593    // If we see an already-selected machine node, then we've gone beyond the
1594    // pattern that we're selecting down into the already selected chunk of the
1595    // DAG.
1596    if (User->isMachineOpcode() ||
1597        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1598      continue;
1599
1600    if (User->getOpcode() == ISD::CopyToReg ||
1601        User->getOpcode() == ISD::CopyFromReg ||
1602        User->getOpcode() == ISD::INLINEASM ||
1603        User->getOpcode() == ISD::EH_LABEL) {
1604      // If their node ID got reset to -1 then they've already been selected.
1605      // Treat them like a MachineOpcode.
1606      if (User->getNodeId() == -1)
1607        continue;
1608    }
1609
1610    // If we have a TokenFactor, we handle it specially.
1611    if (User->getOpcode() != ISD::TokenFactor) {
1612      // If the node isn't a token factor and isn't part of our pattern, then it
1613      // must be a random chained node in between two nodes we're selecting.
1614      // This happens when we have something like:
1615      //   x = load ptr
1616      //   call
1617      //   y = x+4
1618      //   store y -> ptr
1619      // Because we structurally match the load/store as a read/modify/write,
1620      // but the call is chained between them.  We cannot fold in this case
1621      // because it would induce a cycle in the graph.
1622      if (!std::count(ChainedNodesInPattern.begin(),
1623                      ChainedNodesInPattern.end(), User))
1624        return CR_InducesCycle;
1625
1626      // Otherwise we found a node that is part of our pattern.  For example in:
1627      //   x = load ptr
1628      //   y = x+4
1629      //   store y -> ptr
1630      // This would happen when we're scanning down from the load and see the
1631      // store as a user.  Record that there is a use of ChainedNode that is
1632      // part of the pattern and keep scanning uses.
1633      Result = CR_LeadsToInteriorNode;
1634      InteriorChainedNodes.push_back(User);
1635      continue;
1636    }
1637
1638    // If we found a TokenFactor, there are two cases to consider: first if the
1639    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1640    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1641    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1642    //     [Load chain]
1643    //         ^
1644    //         |
1645    //       [Load]
1646    //       ^    ^
1647    //       |    \                    DAG's like cheese
1648    //      /       \                       do you?
1649    //     /         |
1650    // [TokenFactor] [Op]
1651    //     ^          ^
1652    //     |          |
1653    //      \        /
1654    //       \      /
1655    //       [Store]
1656    //
1657    // In this case, the TokenFactor becomes part of our match and we rewrite it
1658    // as a new TokenFactor.
1659    //
1660    // To distinguish these two cases, do a recursive walk down the uses.
1661    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1662    case CR_Simple:
1663      // If the uses of the TokenFactor are just already-selected nodes, ignore
1664      // it, it is "below" our pattern.
1665      continue;
1666    case CR_InducesCycle:
1667      // If the uses of the TokenFactor lead to nodes that are not part of our
1668      // pattern that are not selected, folding would turn this into a cycle,
1669      // bail out now.
1670      return CR_InducesCycle;
1671    case CR_LeadsToInteriorNode:
1672      break;  // Otherwise, keep processing.
1673    }
1674
1675    // Okay, we know we're in the interesting interior case.  The TokenFactor
1676    // is now going to be considered part of the pattern so that we rewrite its
1677    // uses (it may have uses that are not part of the pattern) with the
1678    // ultimate chain result of the generated code.  We will also add its chain
1679    // inputs as inputs to the ultimate TokenFactor we create.
1680    Result = CR_LeadsToInteriorNode;
1681    ChainedNodesInPattern.push_back(User);
1682    InteriorChainedNodes.push_back(User);
1683    continue;
1684  }
1685
1686  return Result;
1687}
1688
1689/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1690/// operation for when the pattern matched at least one node with a chains.  The
1691/// input vector contains a list of all of the chained nodes that we match.  We
1692/// must determine if this is a valid thing to cover (i.e. matching it won't
1693/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1694/// be used as the input node chain for the generated nodes.
1695static SDValue
1696HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1697                       SelectionDAG *CurDAG) {
1698  // Walk all of the chained nodes we've matched, recursively scanning down the
1699  // users of the chain result. This adds any TokenFactor nodes that are caught
1700  // in between chained nodes to the chained and interior nodes list.
1701  SmallVector<SDNode*, 3> InteriorChainedNodes;
1702  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1703    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1704                       InteriorChainedNodes) == CR_InducesCycle)
1705      return SDValue(); // Would induce a cycle.
1706  }
1707
1708  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1709  // that we are interested in.  Form our input TokenFactor node.
1710  SmallVector<SDValue, 3> InputChains;
1711  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1712    // Add the input chain of this node to the InputChains list (which will be
1713    // the operands of the generated TokenFactor) if it's not an interior node.
1714    SDNode *N = ChainNodesMatched[i];
1715    if (N->getOpcode() != ISD::TokenFactor) {
1716      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1717        continue;
1718
1719      // Otherwise, add the input chain.
1720      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1721      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1722      InputChains.push_back(InChain);
1723      continue;
1724    }
1725
1726    // If we have a token factor, we want to add all inputs of the token factor
1727    // that are not part of the pattern we're matching.
1728    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1729      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1730                      N->getOperand(op).getNode()))
1731        InputChains.push_back(N->getOperand(op));
1732    }
1733  }
1734
1735  SDValue Res;
1736  if (InputChains.size() == 1)
1737    return InputChains[0];
1738  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1739                         MVT::Other, &InputChains[0], InputChains.size());
1740}
1741
1742/// MorphNode - Handle morphing a node in place for the selector.
1743SDNode *SelectionDAGISel::
1744MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1745          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1746  // It is possible we're using MorphNodeTo to replace a node with no
1747  // normal results with one that has a normal result (or we could be
1748  // adding a chain) and the input could have flags and chains as well.
1749  // In this case we need to shift the operands down.
1750  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1751  // than the old isel though.
1752  int OldFlagResultNo = -1, OldChainResultNo = -1;
1753
1754  unsigned NTMNumResults = Node->getNumValues();
1755  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1756    OldFlagResultNo = NTMNumResults-1;
1757    if (NTMNumResults != 1 &&
1758        Node->getValueType(NTMNumResults-2) == MVT::Other)
1759      OldChainResultNo = NTMNumResults-2;
1760  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1761    OldChainResultNo = NTMNumResults-1;
1762
1763  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1764  // that this deletes operands of the old node that become dead.
1765  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1766
1767  // MorphNodeTo can operate in two ways: if an existing node with the
1768  // specified operands exists, it can just return it.  Otherwise, it
1769  // updates the node in place to have the requested operands.
1770  if (Res == Node) {
1771    // If we updated the node in place, reset the node ID.  To the isel,
1772    // this should be just like a newly allocated machine node.
1773    Res->setNodeId(-1);
1774  }
1775
1776  unsigned ResNumResults = Res->getNumValues();
1777  // Move the flag if needed.
1778  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1779      (unsigned)OldFlagResultNo != ResNumResults-1)
1780    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1781                                      SDValue(Res, ResNumResults-1));
1782
1783  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1784    --ResNumResults;
1785
1786  // Move the chain reference if needed.
1787  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1788      (unsigned)OldChainResultNo != ResNumResults-1)
1789    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1790                                      SDValue(Res, ResNumResults-1));
1791
1792  // Otherwise, no replacement happened because the node already exists. Replace
1793  // Uses of the old node with the new one.
1794  if (Res != Node)
1795    CurDAG->ReplaceAllUsesWith(Node, Res);
1796
1797  return Res;
1798}
1799
1800/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1801LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1802CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1803          SDValue N,
1804          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1805  // Accept if it is exactly the same as a previously recorded node.
1806  unsigned RecNo = MatcherTable[MatcherIndex++];
1807  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1808  return N == RecordedNodes[RecNo].first;
1809}
1810
1811/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1812LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1813CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1814                      SelectionDAGISel &SDISel) {
1815  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1816}
1817
1818/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1819LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1820CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1821                   SelectionDAGISel &SDISel, SDNode *N) {
1822  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1823}
1824
1825LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1826CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1827            SDNode *N) {
1828  uint16_t Opc = MatcherTable[MatcherIndex++];
1829  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1830  return N->getOpcode() == Opc;
1831}
1832
1833LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1834CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1835          SDValue N, const TargetLowering &TLI) {
1836  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1837  if (N.getValueType() == VT) return true;
1838
1839  // Handle the case when VT is iPTR.
1840  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1841}
1842
1843LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1844CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1845               SDValue N, const TargetLowering &TLI,
1846               unsigned ChildNo) {
1847  if (ChildNo >= N.getNumOperands())
1848    return false;  // Match fails if out of range child #.
1849  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1850}
1851
1852
1853LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1854CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1855              SDValue N) {
1856  return cast<CondCodeSDNode>(N)->get() ==
1857      (ISD::CondCode)MatcherTable[MatcherIndex++];
1858}
1859
1860LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1861CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1862               SDValue N, const TargetLowering &TLI) {
1863  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1864  if (cast<VTSDNode>(N)->getVT() == VT)
1865    return true;
1866
1867  // Handle the case when VT is iPTR.
1868  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1869}
1870
1871LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1872CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1873             SDValue N) {
1874  int64_t Val = MatcherTable[MatcherIndex++];
1875  if (Val & 128)
1876    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1877
1878  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1879  return C != 0 && C->getSExtValue() == Val;
1880}
1881
1882LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1883CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1884            SDValue N, SelectionDAGISel &SDISel) {
1885  int64_t Val = MatcherTable[MatcherIndex++];
1886  if (Val & 128)
1887    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1888
1889  if (N->getOpcode() != ISD::AND) return false;
1890
1891  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1892  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1893}
1894
1895LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1896CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1897           SDValue N, SelectionDAGISel &SDISel) {
1898  int64_t Val = MatcherTable[MatcherIndex++];
1899  if (Val & 128)
1900    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1901
1902  if (N->getOpcode() != ISD::OR) return false;
1903
1904  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1905  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1906}
1907
1908/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1909/// scope, evaluate the current node.  If the current predicate is known to
1910/// fail, set Result=true and return anything.  If the current predicate is
1911/// known to pass, set Result=false and return the MatcherIndex to continue
1912/// with.  If the current predicate is unknown, set Result=false and return the
1913/// MatcherIndex to continue with.
1914static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1915                                       unsigned Index, SDValue N,
1916                                       bool &Result, SelectionDAGISel &SDISel,
1917                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1918  switch (Table[Index++]) {
1919  default:
1920    Result = false;
1921    return Index-1;  // Could not evaluate this predicate.
1922  case SelectionDAGISel::OPC_CheckSame:
1923    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1924    return Index;
1925  case SelectionDAGISel::OPC_CheckPatternPredicate:
1926    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1927    return Index;
1928  case SelectionDAGISel::OPC_CheckPredicate:
1929    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1930    return Index;
1931  case SelectionDAGISel::OPC_CheckOpcode:
1932    Result = !::CheckOpcode(Table, Index, N.getNode());
1933    return Index;
1934  case SelectionDAGISel::OPC_CheckType:
1935    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1936    return Index;
1937  case SelectionDAGISel::OPC_CheckChild0Type:
1938  case SelectionDAGISel::OPC_CheckChild1Type:
1939  case SelectionDAGISel::OPC_CheckChild2Type:
1940  case SelectionDAGISel::OPC_CheckChild3Type:
1941  case SelectionDAGISel::OPC_CheckChild4Type:
1942  case SelectionDAGISel::OPC_CheckChild5Type:
1943  case SelectionDAGISel::OPC_CheckChild6Type:
1944  case SelectionDAGISel::OPC_CheckChild7Type:
1945    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1946                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1947    return Index;
1948  case SelectionDAGISel::OPC_CheckCondCode:
1949    Result = !::CheckCondCode(Table, Index, N);
1950    return Index;
1951  case SelectionDAGISel::OPC_CheckValueType:
1952    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1953    return Index;
1954  case SelectionDAGISel::OPC_CheckInteger:
1955    Result = !::CheckInteger(Table, Index, N);
1956    return Index;
1957  case SelectionDAGISel::OPC_CheckAndImm:
1958    Result = !::CheckAndImm(Table, Index, N, SDISel);
1959    return Index;
1960  case SelectionDAGISel::OPC_CheckOrImm:
1961    Result = !::CheckOrImm(Table, Index, N, SDISel);
1962    return Index;
1963  }
1964}
1965
1966namespace {
1967
1968struct MatchScope {
1969  /// FailIndex - If this match fails, this is the index to continue with.
1970  unsigned FailIndex;
1971
1972  /// NodeStack - The node stack when the scope was formed.
1973  SmallVector<SDValue, 4> NodeStack;
1974
1975  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1976  unsigned NumRecordedNodes;
1977
1978  /// NumMatchedMemRefs - The number of matched memref entries.
1979  unsigned NumMatchedMemRefs;
1980
1981  /// InputChain/InputFlag - The current chain/flag
1982  SDValue InputChain, InputFlag;
1983
1984  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1985  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1986};
1987
1988}
1989
1990SDNode *SelectionDAGISel::
1991SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1992                 unsigned TableSize) {
1993  // FIXME: Should these even be selected?  Handle these cases in the caller?
1994  switch (NodeToMatch->getOpcode()) {
1995  default:
1996    break;
1997  case ISD::EntryToken:       // These nodes remain the same.
1998  case ISD::BasicBlock:
1999  case ISD::Register:
2000  //case ISD::VALUETYPE:
2001  //case ISD::CONDCODE:
2002  case ISD::HANDLENODE:
2003  case ISD::MDNODE_SDNODE:
2004  case ISD::TargetConstant:
2005  case ISD::TargetConstantFP:
2006  case ISD::TargetConstantPool:
2007  case ISD::TargetFrameIndex:
2008  case ISD::TargetExternalSymbol:
2009  case ISD::TargetBlockAddress:
2010  case ISD::TargetJumpTable:
2011  case ISD::TargetGlobalTLSAddress:
2012  case ISD::TargetGlobalAddress:
2013  case ISD::TokenFactor:
2014  case ISD::CopyFromReg:
2015  case ISD::CopyToReg:
2016  case ISD::EH_LABEL:
2017    NodeToMatch->setNodeId(-1); // Mark selected.
2018    return 0;
2019  case ISD::AssertSext:
2020  case ISD::AssertZext:
2021    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2022                                      NodeToMatch->getOperand(0));
2023    return 0;
2024  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2025  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2026  }
2027
2028  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2029
2030  // Set up the node stack with NodeToMatch as the only node on the stack.
2031  SmallVector<SDValue, 8> NodeStack;
2032  SDValue N = SDValue(NodeToMatch, 0);
2033  NodeStack.push_back(N);
2034
2035  // MatchScopes - Scopes used when matching, if a match failure happens, this
2036  // indicates where to continue checking.
2037  SmallVector<MatchScope, 8> MatchScopes;
2038
2039  // RecordedNodes - This is the set of nodes that have been recorded by the
2040  // state machine.  The second value is the parent of the node, or null if the
2041  // root is recorded.
2042  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2043
2044  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2045  // pattern.
2046  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2047
2048  // These are the current input chain and flag for use when generating nodes.
2049  // Various Emit operations change these.  For example, emitting a copytoreg
2050  // uses and updates these.
2051  SDValue InputChain, InputFlag;
2052
2053  // ChainNodesMatched - If a pattern matches nodes that have input/output
2054  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2055  // which ones they are.  The result is captured into this list so that we can
2056  // update the chain results when the pattern is complete.
2057  SmallVector<SDNode*, 3> ChainNodesMatched;
2058  SmallVector<SDNode*, 3> FlagResultNodesMatched;
2059
2060  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2061        NodeToMatch->dump(CurDAG);
2062        errs() << '\n');
2063
2064  // Determine where to start the interpreter.  Normally we start at opcode #0,
2065  // but if the state machine starts with an OPC_SwitchOpcode, then we
2066  // accelerate the first lookup (which is guaranteed to be hot) with the
2067  // OpcodeOffset table.
2068  unsigned MatcherIndex = 0;
2069
2070  if (!OpcodeOffset.empty()) {
2071    // Already computed the OpcodeOffset table, just index into it.
2072    if (N.getOpcode() < OpcodeOffset.size())
2073      MatcherIndex = OpcodeOffset[N.getOpcode()];
2074    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2075
2076  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2077    // Otherwise, the table isn't computed, but the state machine does start
2078    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2079    // is the first time we're selecting an instruction.
2080    unsigned Idx = 1;
2081    while (1) {
2082      // Get the size of this case.
2083      unsigned CaseSize = MatcherTable[Idx++];
2084      if (CaseSize & 128)
2085        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2086      if (CaseSize == 0) break;
2087
2088      // Get the opcode, add the index to the table.
2089      uint16_t Opc = MatcherTable[Idx++];
2090      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2091      if (Opc >= OpcodeOffset.size())
2092        OpcodeOffset.resize((Opc+1)*2);
2093      OpcodeOffset[Opc] = Idx;
2094      Idx += CaseSize;
2095    }
2096
2097    // Okay, do the lookup for the first opcode.
2098    if (N.getOpcode() < OpcodeOffset.size())
2099      MatcherIndex = OpcodeOffset[N.getOpcode()];
2100  }
2101
2102  while (1) {
2103    assert(MatcherIndex < TableSize && "Invalid index");
2104#ifndef NDEBUG
2105    unsigned CurrentOpcodeIndex = MatcherIndex;
2106#endif
2107    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2108    switch (Opcode) {
2109    case OPC_Scope: {
2110      // Okay, the semantics of this operation are that we should push a scope
2111      // then evaluate the first child.  However, pushing a scope only to have
2112      // the first check fail (which then pops it) is inefficient.  If we can
2113      // determine immediately that the first check (or first several) will
2114      // immediately fail, don't even bother pushing a scope for them.
2115      unsigned FailIndex;
2116
2117      while (1) {
2118        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2119        if (NumToSkip & 128)
2120          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2121        // Found the end of the scope with no match.
2122        if (NumToSkip == 0) {
2123          FailIndex = 0;
2124          break;
2125        }
2126
2127        FailIndex = MatcherIndex+NumToSkip;
2128
2129        unsigned MatcherIndexOfPredicate = MatcherIndex;
2130        (void)MatcherIndexOfPredicate; // silence warning.
2131
2132        // If we can't evaluate this predicate without pushing a scope (e.g. if
2133        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2134        // push the scope and evaluate the full predicate chain.
2135        bool Result;
2136        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2137                                              Result, *this, RecordedNodes);
2138        if (!Result)
2139          break;
2140
2141        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2142                     << "index " << MatcherIndexOfPredicate
2143                     << ", continuing at " << FailIndex << "\n");
2144        ++NumDAGIselRetries;
2145
2146        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2147        // move to the next case.
2148        MatcherIndex = FailIndex;
2149      }
2150
2151      // If the whole scope failed to match, bail.
2152      if (FailIndex == 0) break;
2153
2154      // Push a MatchScope which indicates where to go if the first child fails
2155      // to match.
2156      MatchScope NewEntry;
2157      NewEntry.FailIndex = FailIndex;
2158      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2159      NewEntry.NumRecordedNodes = RecordedNodes.size();
2160      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2161      NewEntry.InputChain = InputChain;
2162      NewEntry.InputFlag = InputFlag;
2163      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2164      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2165      MatchScopes.push_back(NewEntry);
2166      continue;
2167    }
2168    case OPC_RecordNode: {
2169      // Remember this node, it may end up being an operand in the pattern.
2170      SDNode *Parent = 0;
2171      if (NodeStack.size() > 1)
2172        Parent = NodeStack[NodeStack.size()-2].getNode();
2173      RecordedNodes.push_back(std::make_pair(N, Parent));
2174      continue;
2175    }
2176
2177    case OPC_RecordChild0: case OPC_RecordChild1:
2178    case OPC_RecordChild2: case OPC_RecordChild3:
2179    case OPC_RecordChild4: case OPC_RecordChild5:
2180    case OPC_RecordChild6: case OPC_RecordChild7: {
2181      unsigned ChildNo = Opcode-OPC_RecordChild0;
2182      if (ChildNo >= N.getNumOperands())
2183        break;  // Match fails if out of range child #.
2184
2185      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2186                                             N.getNode()));
2187      continue;
2188    }
2189    case OPC_RecordMemRef:
2190      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2191      continue;
2192
2193    case OPC_CaptureFlagInput:
2194      // If the current node has an input flag, capture it in InputFlag.
2195      if (N->getNumOperands() != 0 &&
2196          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2197        InputFlag = N->getOperand(N->getNumOperands()-1);
2198      continue;
2199
2200    case OPC_MoveChild: {
2201      unsigned ChildNo = MatcherTable[MatcherIndex++];
2202      if (ChildNo >= N.getNumOperands())
2203        break;  // Match fails if out of range child #.
2204      N = N.getOperand(ChildNo);
2205      NodeStack.push_back(N);
2206      continue;
2207    }
2208
2209    case OPC_MoveParent:
2210      // Pop the current node off the NodeStack.
2211      NodeStack.pop_back();
2212      assert(!NodeStack.empty() && "Node stack imbalance!");
2213      N = NodeStack.back();
2214      continue;
2215
2216    case OPC_CheckSame:
2217      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2218      continue;
2219    case OPC_CheckPatternPredicate:
2220      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2221      continue;
2222    case OPC_CheckPredicate:
2223      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2224                                N.getNode()))
2225        break;
2226      continue;
2227    case OPC_CheckComplexPat: {
2228      unsigned CPNum = MatcherTable[MatcherIndex++];
2229      unsigned RecNo = MatcherTable[MatcherIndex++];
2230      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2231      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2232                               RecordedNodes[RecNo].first, CPNum,
2233                               RecordedNodes))
2234        break;
2235      continue;
2236    }
2237    case OPC_CheckOpcode:
2238      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2239      continue;
2240
2241    case OPC_CheckType:
2242      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2243      continue;
2244
2245    case OPC_SwitchOpcode: {
2246      unsigned CurNodeOpcode = N.getOpcode();
2247      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2248      unsigned CaseSize;
2249      while (1) {
2250        // Get the size of this case.
2251        CaseSize = MatcherTable[MatcherIndex++];
2252        if (CaseSize & 128)
2253          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2254        if (CaseSize == 0) break;
2255
2256        uint16_t Opc = MatcherTable[MatcherIndex++];
2257        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2258
2259        // If the opcode matches, then we will execute this case.
2260        if (CurNodeOpcode == Opc)
2261          break;
2262
2263        // Otherwise, skip over this case.
2264        MatcherIndex += CaseSize;
2265      }
2266
2267      // If no cases matched, bail out.
2268      if (CaseSize == 0) break;
2269
2270      // Otherwise, execute the case we found.
2271      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2272                   << " to " << MatcherIndex << "\n");
2273      continue;
2274    }
2275
2276    case OPC_SwitchType: {
2277      MVT CurNodeVT = N.getValueType().getSimpleVT();
2278      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2279      unsigned CaseSize;
2280      while (1) {
2281        // Get the size of this case.
2282        CaseSize = MatcherTable[MatcherIndex++];
2283        if (CaseSize & 128)
2284          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2285        if (CaseSize == 0) break;
2286
2287        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2288        if (CaseVT == MVT::iPTR)
2289          CaseVT = TLI.getPointerTy();
2290
2291        // If the VT matches, then we will execute this case.
2292        if (CurNodeVT == CaseVT)
2293          break;
2294
2295        // Otherwise, skip over this case.
2296        MatcherIndex += CaseSize;
2297      }
2298
2299      // If no cases matched, bail out.
2300      if (CaseSize == 0) break;
2301
2302      // Otherwise, execute the case we found.
2303      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2304                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2305      continue;
2306    }
2307    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2308    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2309    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2310    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2311      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2312                            Opcode-OPC_CheckChild0Type))
2313        break;
2314      continue;
2315    case OPC_CheckCondCode:
2316      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2317      continue;
2318    case OPC_CheckValueType:
2319      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2320      continue;
2321    case OPC_CheckInteger:
2322      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2323      continue;
2324    case OPC_CheckAndImm:
2325      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2326      continue;
2327    case OPC_CheckOrImm:
2328      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2329      continue;
2330
2331    case OPC_CheckFoldableChainNode: {
2332      assert(NodeStack.size() != 1 && "No parent node");
2333      // Verify that all intermediate nodes between the root and this one have
2334      // a single use.
2335      bool HasMultipleUses = false;
2336      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2337        if (!NodeStack[i].hasOneUse()) {
2338          HasMultipleUses = true;
2339          break;
2340        }
2341      if (HasMultipleUses) break;
2342
2343      // Check to see that the target thinks this is profitable to fold and that
2344      // we can fold it without inducing cycles in the graph.
2345      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2346                              NodeToMatch) ||
2347          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2348                         NodeToMatch, OptLevel,
2349                         true/*We validate our own chains*/))
2350        break;
2351
2352      continue;
2353    }
2354    case OPC_EmitInteger: {
2355      MVT::SimpleValueType VT =
2356        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2357      int64_t Val = MatcherTable[MatcherIndex++];
2358      if (Val & 128)
2359        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2360      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2361                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2362      continue;
2363    }
2364    case OPC_EmitRegister: {
2365      MVT::SimpleValueType VT =
2366        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2367      unsigned RegNo = MatcherTable[MatcherIndex++];
2368      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2369                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2370      continue;
2371    }
2372
2373    case OPC_EmitConvertToTarget:  {
2374      // Convert from IMM/FPIMM to target version.
2375      unsigned RecNo = MatcherTable[MatcherIndex++];
2376      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2377      SDValue Imm = RecordedNodes[RecNo].first;
2378
2379      if (Imm->getOpcode() == ISD::Constant) {
2380        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2381        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2382      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2383        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2384        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2385      }
2386
2387      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2388      continue;
2389    }
2390
2391    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2392    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2393      // These are space-optimized forms of OPC_EmitMergeInputChains.
2394      assert(InputChain.getNode() == 0 &&
2395             "EmitMergeInputChains should be the first chain producing node");
2396      assert(ChainNodesMatched.empty() &&
2397             "Should only have one EmitMergeInputChains per match");
2398
2399      // Read all of the chained nodes.
2400      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2401      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2402      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2403
2404      // FIXME: What if other value results of the node have uses not matched
2405      // by this pattern?
2406      if (ChainNodesMatched.back() != NodeToMatch &&
2407          !RecordedNodes[RecNo].first.hasOneUse()) {
2408        ChainNodesMatched.clear();
2409        break;
2410      }
2411
2412      // Merge the input chains if they are not intra-pattern references.
2413      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2414
2415      if (InputChain.getNode() == 0)
2416        break;  // Failed to merge.
2417      continue;
2418    }
2419
2420    case OPC_EmitMergeInputChains: {
2421      assert(InputChain.getNode() == 0 &&
2422             "EmitMergeInputChains should be the first chain producing node");
2423      // This node gets a list of nodes we matched in the input that have
2424      // chains.  We want to token factor all of the input chains to these nodes
2425      // together.  However, if any of the input chains is actually one of the
2426      // nodes matched in this pattern, then we have an intra-match reference.
2427      // Ignore these because the newly token factored chain should not refer to
2428      // the old nodes.
2429      unsigned NumChains = MatcherTable[MatcherIndex++];
2430      assert(NumChains != 0 && "Can't TF zero chains");
2431
2432      assert(ChainNodesMatched.empty() &&
2433             "Should only have one EmitMergeInputChains per match");
2434
2435      // Read all of the chained nodes.
2436      for (unsigned i = 0; i != NumChains; ++i) {
2437        unsigned RecNo = MatcherTable[MatcherIndex++];
2438        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2439        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2440
2441        // FIXME: What if other value results of the node have uses not matched
2442        // by this pattern?
2443        if (ChainNodesMatched.back() != NodeToMatch &&
2444            !RecordedNodes[RecNo].first.hasOneUse()) {
2445          ChainNodesMatched.clear();
2446          break;
2447        }
2448      }
2449
2450      // If the inner loop broke out, the match fails.
2451      if (ChainNodesMatched.empty())
2452        break;
2453
2454      // Merge the input chains if they are not intra-pattern references.
2455      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2456
2457      if (InputChain.getNode() == 0)
2458        break;  // Failed to merge.
2459
2460      continue;
2461    }
2462
2463    case OPC_EmitCopyToReg: {
2464      unsigned RecNo = MatcherTable[MatcherIndex++];
2465      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2466      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2467
2468      if (InputChain.getNode() == 0)
2469        InputChain = CurDAG->getEntryNode();
2470
2471      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2472                                        DestPhysReg, RecordedNodes[RecNo].first,
2473                                        InputFlag);
2474
2475      InputFlag = InputChain.getValue(1);
2476      continue;
2477    }
2478
2479    case OPC_EmitNodeXForm: {
2480      unsigned XFormNo = MatcherTable[MatcherIndex++];
2481      unsigned RecNo = MatcherTable[MatcherIndex++];
2482      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2483      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2484      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2485      continue;
2486    }
2487
2488    case OPC_EmitNode:
2489    case OPC_MorphNodeTo: {
2490      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2491      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2492      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2493      // Get the result VT list.
2494      unsigned NumVTs = MatcherTable[MatcherIndex++];
2495      SmallVector<EVT, 4> VTs;
2496      for (unsigned i = 0; i != NumVTs; ++i) {
2497        MVT::SimpleValueType VT =
2498          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2499        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2500        VTs.push_back(VT);
2501      }
2502
2503      if (EmitNodeInfo & OPFL_Chain)
2504        VTs.push_back(MVT::Other);
2505      if (EmitNodeInfo & OPFL_FlagOutput)
2506        VTs.push_back(MVT::Glue);
2507
2508      // This is hot code, so optimize the two most common cases of 1 and 2
2509      // results.
2510      SDVTList VTList;
2511      if (VTs.size() == 1)
2512        VTList = CurDAG->getVTList(VTs[0]);
2513      else if (VTs.size() == 2)
2514        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2515      else
2516        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2517
2518      // Get the operand list.
2519      unsigned NumOps = MatcherTable[MatcherIndex++];
2520      SmallVector<SDValue, 8> Ops;
2521      for (unsigned i = 0; i != NumOps; ++i) {
2522        unsigned RecNo = MatcherTable[MatcherIndex++];
2523        if (RecNo & 128)
2524          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2525
2526        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2527        Ops.push_back(RecordedNodes[RecNo].first);
2528      }
2529
2530      // If there are variadic operands to add, handle them now.
2531      if (EmitNodeInfo & OPFL_VariadicInfo) {
2532        // Determine the start index to copy from.
2533        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2534        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2535        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2536               "Invalid variadic node");
2537        // Copy all of the variadic operands, not including a potential flag
2538        // input.
2539        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2540             i != e; ++i) {
2541          SDValue V = NodeToMatch->getOperand(i);
2542          if (V.getValueType() == MVT::Glue) break;
2543          Ops.push_back(V);
2544        }
2545      }
2546
2547      // If this has chain/flag inputs, add them.
2548      if (EmitNodeInfo & OPFL_Chain)
2549        Ops.push_back(InputChain);
2550      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2551        Ops.push_back(InputFlag);
2552
2553      // Create the node.
2554      SDNode *Res = 0;
2555      if (Opcode != OPC_MorphNodeTo) {
2556        // If this is a normal EmitNode command, just create the new node and
2557        // add the results to the RecordedNodes list.
2558        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2559                                     VTList, Ops.data(), Ops.size());
2560
2561        // Add all the non-flag/non-chain results to the RecordedNodes list.
2562        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2563          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2564          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2565                                                             (SDNode*) 0));
2566        }
2567
2568      } else {
2569        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2570                        EmitNodeInfo);
2571      }
2572
2573      // If the node had chain/flag results, update our notion of the current
2574      // chain and flag.
2575      if (EmitNodeInfo & OPFL_FlagOutput) {
2576        InputFlag = SDValue(Res, VTs.size()-1);
2577        if (EmitNodeInfo & OPFL_Chain)
2578          InputChain = SDValue(Res, VTs.size()-2);
2579      } else if (EmitNodeInfo & OPFL_Chain)
2580        InputChain = SDValue(Res, VTs.size()-1);
2581
2582      // If the OPFL_MemRefs flag is set on this node, slap all of the
2583      // accumulated memrefs onto it.
2584      //
2585      // FIXME: This is vastly incorrect for patterns with multiple outputs
2586      // instructions that access memory and for ComplexPatterns that match
2587      // loads.
2588      if (EmitNodeInfo & OPFL_MemRefs) {
2589        MachineSDNode::mmo_iterator MemRefs =
2590          MF->allocateMemRefsArray(MatchedMemRefs.size());
2591        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2592        cast<MachineSDNode>(Res)
2593          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2594      }
2595
2596      DEBUG(errs() << "  "
2597                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2598                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2599
2600      // If this was a MorphNodeTo then we're completely done!
2601      if (Opcode == OPC_MorphNodeTo) {
2602        // Update chain and flag uses.
2603        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2604                             InputFlag, FlagResultNodesMatched, true);
2605        return Res;
2606      }
2607
2608      continue;
2609    }
2610
2611    case OPC_MarkFlagResults: {
2612      unsigned NumNodes = MatcherTable[MatcherIndex++];
2613
2614      // Read and remember all the flag-result nodes.
2615      for (unsigned i = 0; i != NumNodes; ++i) {
2616        unsigned RecNo = MatcherTable[MatcherIndex++];
2617        if (RecNo & 128)
2618          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2619
2620        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2621        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2622      }
2623      continue;
2624    }
2625
2626    case OPC_CompleteMatch: {
2627      // The match has been completed, and any new nodes (if any) have been
2628      // created.  Patch up references to the matched dag to use the newly
2629      // created nodes.
2630      unsigned NumResults = MatcherTable[MatcherIndex++];
2631
2632      for (unsigned i = 0; i != NumResults; ++i) {
2633        unsigned ResSlot = MatcherTable[MatcherIndex++];
2634        if (ResSlot & 128)
2635          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2636
2637        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2638        SDValue Res = RecordedNodes[ResSlot].first;
2639
2640        assert(i < NodeToMatch->getNumValues() &&
2641               NodeToMatch->getValueType(i) != MVT::Other &&
2642               NodeToMatch->getValueType(i) != MVT::Glue &&
2643               "Invalid number of results to complete!");
2644        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2645                NodeToMatch->getValueType(i) == MVT::iPTR ||
2646                Res.getValueType() == MVT::iPTR ||
2647                NodeToMatch->getValueType(i).getSizeInBits() ==
2648                    Res.getValueType().getSizeInBits()) &&
2649               "invalid replacement");
2650        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2651      }
2652
2653      // If the root node defines a flag, add it to the flag nodes to update
2654      // list.
2655      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2656        FlagResultNodesMatched.push_back(NodeToMatch);
2657
2658      // Update chain and flag uses.
2659      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2660                           InputFlag, FlagResultNodesMatched, false);
2661
2662      assert(NodeToMatch->use_empty() &&
2663             "Didn't replace all uses of the node?");
2664
2665      // FIXME: We just return here, which interacts correctly with SelectRoot
2666      // above.  We should fix this to not return an SDNode* anymore.
2667      return 0;
2668    }
2669    }
2670
2671    // If the code reached this point, then the match failed.  See if there is
2672    // another child to try in the current 'Scope', otherwise pop it until we
2673    // find a case to check.
2674    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2675    ++NumDAGIselRetries;
2676    while (1) {
2677      if (MatchScopes.empty()) {
2678        CannotYetSelect(NodeToMatch);
2679        return 0;
2680      }
2681
2682      // Restore the interpreter state back to the point where the scope was
2683      // formed.
2684      MatchScope &LastScope = MatchScopes.back();
2685      RecordedNodes.resize(LastScope.NumRecordedNodes);
2686      NodeStack.clear();
2687      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2688      N = NodeStack.back();
2689
2690      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2691        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2692      MatcherIndex = LastScope.FailIndex;
2693
2694      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2695
2696      InputChain = LastScope.InputChain;
2697      InputFlag = LastScope.InputFlag;
2698      if (!LastScope.HasChainNodesMatched)
2699        ChainNodesMatched.clear();
2700      if (!LastScope.HasFlagResultNodesMatched)
2701        FlagResultNodesMatched.clear();
2702
2703      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2704      // we have reached the end of this scope, otherwise we have another child
2705      // in the current scope to try.
2706      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2707      if (NumToSkip & 128)
2708        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2709
2710      // If we have another child in this scope to match, update FailIndex and
2711      // try it.
2712      if (NumToSkip != 0) {
2713        LastScope.FailIndex = MatcherIndex+NumToSkip;
2714        break;
2715      }
2716
2717      // End of this scope, pop it and try the next child in the containing
2718      // scope.
2719      MatchScopes.pop_back();
2720    }
2721  }
2722}
2723
2724
2725
2726void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2727  std::string msg;
2728  raw_string_ostream Msg(msg);
2729  Msg << "Cannot select: ";
2730
2731  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2732      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2733      N->getOpcode() != ISD::INTRINSIC_VOID) {
2734    N->printrFull(Msg, CurDAG);
2735  } else {
2736    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2737    unsigned iid =
2738      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2739    if (iid < Intrinsic::num_intrinsics)
2740      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2741    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2742      Msg << "target intrinsic %" << TII->getName(iid);
2743    else
2744      Msg << "unknown intrinsic #" << iid;
2745  }
2746  report_fatal_error(Msg.str());
2747}
2748
2749char SelectionDAGISel::ID = 0;
2750