SelectionDAGISel.cpp revision f1daf7d8abebd6e0104a6b41a774ccbb19a51c60
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuild.h"
17#include "llvm/CodeGen/SelectionDAGISel.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/CodeGen/FastISel.h"
29#include "llvm/CodeGen/GCStrategy.h"
30#include "llvm/CodeGen/GCMetadata.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/CodeGen/DwarfWriter.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetData.h"
43#include "llvm/Target/TargetFrameInfo.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/Timer.h"
52#include <algorithm>
53using namespace llvm;
54
55static cl::opt<bool>
56DisableLegalizeTypes("disable-legalize-types", cl::Hidden);
57static cl::opt<bool>
58EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
59          cl::desc("Enable verbose messages in the \"fast\" "
60                   "instruction selector"));
61static cl::opt<bool>
62EnableFastISelAbort("fast-isel-abort", cl::Hidden,
63          cl::desc("Enable abort calls when \"fast\" instruction fails"));
64static cl::opt<bool>
65SchedLiveInCopies("schedule-livein-copies",
66                  cl::desc("Schedule copies of livein registers"),
67                  cl::init(false));
68
69#ifndef NDEBUG
70static cl::opt<bool>
71ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
72          cl::desc("Pop up a window to show dags before the first "
73                   "dag combine pass"));
74static cl::opt<bool>
75ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
76          cl::desc("Pop up a window to show dags before legalize types"));
77static cl::opt<bool>
78ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before legalize"));
80static cl::opt<bool>
81ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
82          cl::desc("Pop up a window to show dags before the second "
83                   "dag combine pass"));
84static cl::opt<bool>
85ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
86          cl::desc("Pop up a window to show dags before the post legalize types"
87                   " dag combine pass"));
88static cl::opt<bool>
89ViewISelDAGs("view-isel-dags", cl::Hidden,
90          cl::desc("Pop up a window to show isel dags as they are selected"));
91static cl::opt<bool>
92ViewSchedDAGs("view-sched-dags", cl::Hidden,
93          cl::desc("Pop up a window to show sched dags as they are processed"));
94static cl::opt<bool>
95ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
96      cl::desc("Pop up a window to show SUnit dags after they are processed"));
97#else
98static const bool ViewDAGCombine1 = false,
99                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
100                  ViewDAGCombine2 = false,
101                  ViewDAGCombineLT = false,
102                  ViewISelDAGs = false, ViewSchedDAGs = false,
103                  ViewSUnitDAGs = false;
104#endif
105
106//===---------------------------------------------------------------------===//
107///
108/// RegisterScheduler class - Track the registration of instruction schedulers.
109///
110//===---------------------------------------------------------------------===//
111MachinePassRegistry RegisterScheduler::Registry;
112
113//===---------------------------------------------------------------------===//
114///
115/// ISHeuristic command line option for instruction schedulers.
116///
117//===---------------------------------------------------------------------===//
118static cl::opt<RegisterScheduler::FunctionPassCtor, false,
119               RegisterPassParser<RegisterScheduler> >
120ISHeuristic("pre-RA-sched",
121            cl::init(&createDefaultScheduler),
122            cl::desc("Instruction schedulers available (before register"
123                     " allocation):"));
124
125static RegisterScheduler
126defaultListDAGScheduler("default", "Best scheduler for the target",
127                        createDefaultScheduler);
128
129namespace llvm {
130  //===--------------------------------------------------------------------===//
131  /// createDefaultScheduler - This creates an instruction scheduler appropriate
132  /// for the target.
133  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
134                                             CodeGenOpt::Level OptLevel) {
135    const TargetLowering &TLI = IS->getTargetLowering();
136
137    if (OptLevel == CodeGenOpt::None)
138      return createFastDAGScheduler(IS, OptLevel);
139    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
140      return createTDListDAGScheduler(IS, OptLevel);
141    assert(TLI.getSchedulingPreference() ==
142         TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
143    return createBURRListDAGScheduler(IS, OptLevel);
144  }
145}
146
147// EmitInstrWithCustomInserter - This method should be implemented by targets
148// that mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
149// instructions are special in various ways, which require special support to
150// insert.  The specified MachineInstr is created but not inserted into any
151// basic blocks, and the scheduler passes ownership of it to this method.
152MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
153                                                 MachineBasicBlock *MBB) const {
154  cerr << "If a target marks an instruction with "
155       << "'usesCustomDAGSchedInserter', it must implement "
156       << "TargetLowering::EmitInstrWithCustomInserter!\n";
157  abort();
158  return 0;
159}
160
161/// EmitLiveInCopy - Emit a copy for a live in physical register. If the
162/// physical register has only a single copy use, then coalesced the copy
163/// if possible.
164static void EmitLiveInCopy(MachineBasicBlock *MBB,
165                           MachineBasicBlock::iterator &InsertPos,
166                           unsigned VirtReg, unsigned PhysReg,
167                           const TargetRegisterClass *RC,
168                           DenseMap<MachineInstr*, unsigned> &CopyRegMap,
169                           const MachineRegisterInfo &MRI,
170                           const TargetRegisterInfo &TRI,
171                           const TargetInstrInfo &TII) {
172  unsigned NumUses = 0;
173  MachineInstr *UseMI = NULL;
174  for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg),
175         UE = MRI.use_end(); UI != UE; ++UI) {
176    UseMI = &*UI;
177    if (++NumUses > 1)
178      break;
179  }
180
181  // If the number of uses is not one, or the use is not a move instruction,
182  // don't coalesce. Also, only coalesce away a virtual register to virtual
183  // register copy.
184  bool Coalesced = false;
185  unsigned SrcReg, DstReg, SrcSubReg, DstSubReg;
186  if (NumUses == 1 &&
187      TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) &&
188      TargetRegisterInfo::isVirtualRegister(DstReg)) {
189    VirtReg = DstReg;
190    Coalesced = true;
191  }
192
193  // Now find an ideal location to insert the copy.
194  MachineBasicBlock::iterator Pos = InsertPos;
195  while (Pos != MBB->begin()) {
196    MachineInstr *PrevMI = prior(Pos);
197    DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI);
198    // copyRegToReg might emit multiple instructions to do a copy.
199    unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second;
200    if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg))
201      // This is what the BB looks like right now:
202      // r1024 = mov r0
203      // ...
204      // r1    = mov r1024
205      //
206      // We want to insert "r1025 = mov r1". Inserting this copy below the
207      // move to r1024 makes it impossible for that move to be coalesced.
208      //
209      // r1025 = mov r1
210      // r1024 = mov r0
211      // ...
212      // r1    = mov 1024
213      // r2    = mov 1025
214      break; // Woot! Found a good location.
215    --Pos;
216  }
217
218  bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC);
219  assert(Emitted && "Unable to issue a live-in copy instruction!\n");
220  (void) Emitted;
221
222CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg));
223  if (Coalesced) {
224    if (&*InsertPos == UseMI) ++InsertPos;
225    MBB->erase(UseMI);
226  }
227}
228
229/// EmitLiveInCopies - If this is the first basic block in the function,
230/// and if it has live ins that need to be copied into vregs, emit the
231/// copies into the block.
232static void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
233                             const MachineRegisterInfo &MRI,
234                             const TargetRegisterInfo &TRI,
235                             const TargetInstrInfo &TII) {
236  if (SchedLiveInCopies) {
237    // Emit the copies at a heuristically-determined location in the block.
238    DenseMap<MachineInstr*, unsigned> CopyRegMap;
239    MachineBasicBlock::iterator InsertPos = EntryMBB->begin();
240    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
241           E = MRI.livein_end(); LI != E; ++LI)
242      if (LI->second) {
243        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
244        EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first,
245                       RC, CopyRegMap, MRI, TRI, TII);
246      }
247  } else {
248    // Emit the copies into the top of the block.
249    for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(),
250           E = MRI.livein_end(); LI != E; ++LI)
251      if (LI->second) {
252        const TargetRegisterClass *RC = MRI.getRegClass(LI->second);
253        bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(),
254                                        LI->second, LI->first, RC, RC);
255        assert(Emitted && "Unable to issue a live-in copy instruction!\n");
256        (void) Emitted;
257      }
258  }
259}
260
261//===----------------------------------------------------------------------===//
262// SelectionDAGISel code
263//===----------------------------------------------------------------------===//
264
265SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) :
266  FunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()),
267  FuncInfo(new FunctionLoweringInfo(TLI)),
268  CurDAG(new SelectionDAG(TLI, *FuncInfo)),
269  SDL(new SelectionDAGLowering(*CurDAG, TLI, *FuncInfo, OL)),
270  GFI(),
271  OptLevel(OL),
272  DAGSize(0)
273{}
274
275SelectionDAGISel::~SelectionDAGISel() {
276  delete SDL;
277  delete CurDAG;
278  delete FuncInfo;
279}
280
281unsigned SelectionDAGISel::MakeReg(MVT VT) {
282  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
283}
284
285void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
286  AU.addRequired<AliasAnalysis>();
287  AU.addRequired<GCModuleInfo>();
288  AU.addRequired<DwarfWriter>();
289  AU.setPreservesAll();
290}
291
292bool SelectionDAGISel::runOnFunction(Function &Fn) {
293  // Do some sanity-checking on the command-line options.
294  assert((!EnableFastISelVerbose || EnableFastISel) &&
295         "-fast-isel-verbose requires -fast-isel");
296  assert((!EnableFastISelAbort || EnableFastISel) &&
297         "-fast-isel-abort requires -fast-isel");
298
299  // Do not codegen any 'available_externally' functions at all, they have
300  // definitions outside the translation unit.
301  if (Fn.hasAvailableExternallyLinkage())
302    return false;
303
304
305  // Get alias analysis for load/store combining.
306  AA = &getAnalysis<AliasAnalysis>();
307
308  TargetMachine &TM = TLI.getTargetMachine();
309  MF = &MachineFunction::construct(&Fn, TM);
310  const TargetInstrInfo &TII = *TM.getInstrInfo();
311  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
312
313  if (MF->getFunction()->hasGC())
314    GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(*MF->getFunction());
315  else
316    GFI = 0;
317  RegInfo = &MF->getRegInfo();
318  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
319
320  MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>();
321  DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>();
322  CurDAG->init(*MF, MMI, DW);
323  FuncInfo->set(Fn, *MF, *CurDAG, EnableFastISel);
324  SDL->init(GFI, *AA);
325
326  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
327    if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator()))
328      // Mark landing pad.
329      FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
330
331  SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII);
332
333  // If the first basic block in the function has live ins that need to be
334  // copied into vregs, emit the copies into the top of the block before
335  // emitting the code for the block.
336  EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII);
337
338  // Add function live-ins to entry block live-in set.
339  for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(),
340         E = RegInfo->livein_end(); I != E; ++I)
341    MF->begin()->addLiveIn(I->first);
342
343#ifndef NDEBUG
344  assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() &&
345         "Not all catch info was assigned to a landing pad!");
346#endif
347
348  FuncInfo->clear();
349
350  return true;
351}
352
353static void copyCatchInfo(BasicBlock *SrcBB, BasicBlock *DestBB,
354                          MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
355  for (BasicBlock::iterator I = SrcBB->begin(), E = --SrcBB->end(); I != E; ++I)
356    if (EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
357      // Apply the catch info to DestBB.
358      AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
359#ifndef NDEBUG
360      if (!FLI.MBBMap[SrcBB]->isLandingPad())
361        FLI.CatchInfoFound.insert(EHSel);
362#endif
363    }
364}
365
366/// IsFixedFrameObjectWithPosOffset - Check if object is a fixed frame object and
367/// whether object offset >= 0.
368static bool
369IsFixedFrameObjectWithPosOffset(MachineFrameInfo *MFI, SDValue Op) {
370  if (!isa<FrameIndexSDNode>(Op)) return false;
371
372  FrameIndexSDNode * FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op);
373  int FrameIdx =  FrameIdxNode->getIndex();
374  return MFI->isFixedObjectIndex(FrameIdx) &&
375    MFI->getObjectOffset(FrameIdx) >= 0;
376}
377
378/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
379/// possibly be overwritten when lowering the outgoing arguments in a tail
380/// call. Currently the implementation of this call is very conservative and
381/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
382/// virtual registers would be overwritten by direct lowering.
383static bool IsPossiblyOverwrittenArgumentOfTailCall(SDValue Op,
384                                                    MachineFrameInfo *MFI) {
385  RegisterSDNode * OpReg = NULL;
386  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
387      (Op.getOpcode()== ISD::CopyFromReg &&
388       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
389       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
390      (Op.getOpcode() == ISD::LOAD &&
391       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(1))) ||
392      (Op.getOpcode() == ISD::MERGE_VALUES &&
393       Op.getOperand(Op.getResNo()).getOpcode() == ISD::LOAD &&
394       IsFixedFrameObjectWithPosOffset(MFI, Op.getOperand(Op.getResNo()).
395                                       getOperand(1))))
396    return true;
397  return false;
398}
399
400/// CheckDAGForTailCallsAndFixThem - This Function looks for CALL nodes in the
401/// DAG and fixes their tailcall attribute operand.
402static void CheckDAGForTailCallsAndFixThem(SelectionDAG &DAG,
403                                           const TargetLowering& TLI) {
404  SDNode * Ret = NULL;
405  SDValue Terminator = DAG.getRoot();
406
407  // Find RET node.
408  if (Terminator.getOpcode() == ISD::RET) {
409    Ret = Terminator.getNode();
410  }
411
412  // Fix tail call attribute of CALL nodes.
413  for (SelectionDAG::allnodes_iterator BE = DAG.allnodes_begin(),
414         BI = DAG.allnodes_end(); BI != BE; ) {
415    --BI;
416    if (CallSDNode *TheCall = dyn_cast<CallSDNode>(BI)) {
417      SDValue OpRet(Ret, 0);
418      SDValue OpCall(BI, 0);
419      bool isMarkedTailCall = TheCall->isTailCall();
420      // If CALL node has tail call attribute set to true and the call is not
421      // eligible (no RET or the target rejects) the attribute is fixed to
422      // false. The TargetLowering::IsEligibleForTailCallOptimization function
423      // must correctly identify tail call optimizable calls.
424      if (!isMarkedTailCall) continue;
425      if (Ret==NULL ||
426          !TLI.IsEligibleForTailCallOptimization(TheCall, OpRet, DAG)) {
427        // Not eligible. Mark CALL node as non tail call. Note that we
428        // can modify the call node in place since calls are not CSE'd.
429        TheCall->setNotTailCall();
430      } else {
431        // Look for tail call clobbered arguments. Emit a series of
432        // copyto/copyfrom virtual register nodes to protect them.
433        SmallVector<SDValue, 32> Ops;
434        SDValue Chain = TheCall->getChain(), InFlag;
435        Ops.push_back(Chain);
436        Ops.push_back(TheCall->getCallee());
437        for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; ++i) {
438          SDValue Arg = TheCall->getArg(i);
439          bool isByVal = TheCall->getArgFlags(i).isByVal();
440          MachineFunction &MF = DAG.getMachineFunction();
441          MachineFrameInfo *MFI = MF.getFrameInfo();
442          if (!isByVal &&
443              IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
444            MVT VT = Arg.getValueType();
445            unsigned VReg = MF.getRegInfo().
446              createVirtualRegister(TLI.getRegClassFor(VT));
447            Chain = DAG.getCopyToReg(Chain, Arg.getDebugLoc(),
448                                     VReg, Arg, InFlag);
449            InFlag = Chain.getValue(1);
450            Arg = DAG.getCopyFromReg(Chain, Arg.getDebugLoc(),
451                                     VReg, VT, InFlag);
452            Chain = Arg.getValue(1);
453            InFlag = Arg.getValue(2);
454          }
455          Ops.push_back(Arg);
456          Ops.push_back(TheCall->getArgFlagsVal(i));
457        }
458        // Link in chain of CopyTo/CopyFromReg.
459        Ops[0] = Chain;
460        DAG.UpdateNodeOperands(OpCall, Ops.begin(), Ops.size());
461      }
462    }
463  }
464}
465
466void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB,
467                                        BasicBlock::iterator Begin,
468                                        BasicBlock::iterator End) {
469  SDL->setCurrentBasicBlock(BB);
470
471  // Lower all of the non-terminator instructions.
472  for (BasicBlock::iterator I = Begin; I != End; ++I)
473    if (!isa<TerminatorInst>(I))
474      SDL->visit(*I);
475
476  // Ensure that all instructions which are used outside of their defining
477  // blocks are available as virtual registers.  Invoke is handled elsewhere.
478  for (BasicBlock::iterator I = Begin; I != End; ++I)
479    if (!isa<PHINode>(I) && !isa<InvokeInst>(I))
480      SDL->CopyToExportRegsIfNeeded(I);
481
482  // Handle PHI nodes in successor blocks.
483  if (End == LLVMBB->end()) {
484    HandlePHINodesInSuccessorBlocks(LLVMBB);
485
486    // Lower the terminator after the copies are emitted.
487    SDL->visit(*LLVMBB->getTerminator());
488  }
489
490  // Make sure the root of the DAG is up-to-date.
491  CurDAG->setRoot(SDL->getControlRoot());
492
493  // Check whether calls in this block are real tail calls. Fix up CALL nodes
494  // with correct tailcall attribute so that the target can rely on the tailcall
495  // attribute indicating whether the call is really eligible for tail call
496  // optimization.
497  if (PerformTailCallOpt)
498    CheckDAGForTailCallsAndFixThem(*CurDAG, TLI);
499
500  // Final step, emit the lowered DAG as machine code.
501  CodeGenAndEmitDAG();
502  SDL->clear();
503}
504
505void SelectionDAGISel::ComputeLiveOutVRegInfo() {
506  SmallPtrSet<SDNode*, 128> VisitedNodes;
507  SmallVector<SDNode*, 128> Worklist;
508
509  Worklist.push_back(CurDAG->getRoot().getNode());
510
511  APInt Mask;
512  APInt KnownZero;
513  APInt KnownOne;
514
515  while (!Worklist.empty()) {
516    SDNode *N = Worklist.back();
517    Worklist.pop_back();
518
519    // If we've already seen this node, ignore it.
520    if (!VisitedNodes.insert(N))
521      continue;
522
523    // Otherwise, add all chain operands to the worklist.
524    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
525      if (N->getOperand(i).getValueType() == MVT::Other)
526        Worklist.push_back(N->getOperand(i).getNode());
527
528    // If this is a CopyToReg with a vreg dest, process it.
529    if (N->getOpcode() != ISD::CopyToReg)
530      continue;
531
532    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
533    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
534      continue;
535
536    // Ignore non-scalar or non-integer values.
537    SDValue Src = N->getOperand(2);
538    MVT SrcVT = Src.getValueType();
539    if (!SrcVT.isInteger() || SrcVT.isVector())
540      continue;
541
542    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
543    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
544    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
545
546    // Only install this information if it tells us something.
547    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
548      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
549      FunctionLoweringInfo &FLI = CurDAG->getFunctionLoweringInfo();
550      if (DestReg >= FLI.LiveOutRegInfo.size())
551        FLI.LiveOutRegInfo.resize(DestReg+1);
552      FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[DestReg];
553      LOI.NumSignBits = NumSignBits;
554      LOI.KnownOne = KnownOne;
555      LOI.KnownZero = KnownZero;
556    }
557  }
558}
559
560void SelectionDAGISel::CodeGenAndEmitDAG() {
561  std::string GroupName;
562  if (TimePassesIsEnabled)
563    GroupName = "Instruction Selection and Scheduling";
564  std::string BlockName;
565  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
566      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
567      ViewSUnitDAGs)
568    BlockName = CurDAG->getMachineFunction().getFunction()->getName() + ':' +
569                BB->getBasicBlock()->getName();
570
571  DOUT << "Initial selection DAG:\n";
572  DEBUG(CurDAG->dump());
573
574  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
575
576  // Run the DAG combiner in pre-legalize mode.
577  if (TimePassesIsEnabled) {
578    NamedRegionTimer T("DAG Combining 1", GroupName);
579    CurDAG->Combine(Unrestricted, *AA, OptLevel);
580  } else {
581    CurDAG->Combine(Unrestricted, *AA, OptLevel);
582  }
583
584  DOUT << "Optimized lowered selection DAG:\n";
585  DEBUG(CurDAG->dump());
586
587  // Second step, hack on the DAG until it only uses operations and types that
588  // the target supports.
589  if (!DisableLegalizeTypes) {
590    if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
591                                                 BlockName);
592
593    bool Changed;
594    if (TimePassesIsEnabled) {
595      NamedRegionTimer T("Type Legalization", GroupName);
596      Changed = CurDAG->LegalizeTypes();
597    } else {
598      Changed = CurDAG->LegalizeTypes();
599    }
600
601    DOUT << "Type-legalized selection DAG:\n";
602    DEBUG(CurDAG->dump());
603
604    if (Changed) {
605      if (ViewDAGCombineLT)
606        CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
607
608      // Run the DAG combiner in post-type-legalize mode.
609      if (TimePassesIsEnabled) {
610        NamedRegionTimer T("DAG Combining after legalize types", GroupName);
611        CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
612      } else {
613        CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
614      }
615
616      DOUT << "Optimized type-legalized selection DAG:\n";
617      DEBUG(CurDAG->dump());
618    }
619
620    if (TimePassesIsEnabled) {
621      NamedRegionTimer T("Vector Legalization", GroupName);
622      Changed = CurDAG->LegalizeVectors();
623    } else {
624      Changed = CurDAG->LegalizeVectors();
625    }
626
627    if (Changed) {
628      if (TimePassesIsEnabled) {
629        NamedRegionTimer T("Type Legalization 2", GroupName);
630        Changed = CurDAG->LegalizeTypes();
631      } else {
632        Changed = CurDAG->LegalizeTypes();
633      }
634
635      if (ViewDAGCombineLT)
636        CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
637
638      // Run the DAG combiner in post-type-legalize mode.
639      if (TimePassesIsEnabled) {
640        NamedRegionTimer T("DAG Combining after legalize vectors", GroupName);
641        CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
642      } else {
643        CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
644      }
645
646      DOUT << "Optimized vector-legalized selection DAG:\n";
647      DEBUG(CurDAG->dump());
648    }
649  }
650
651  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
652
653  if (TimePassesIsEnabled) {
654    NamedRegionTimer T("DAG Legalization", GroupName);
655    CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
656  } else {
657    CurDAG->Legalize(DisableLegalizeTypes, OptLevel);
658  }
659
660  DOUT << "Legalized selection DAG:\n";
661  DEBUG(CurDAG->dump());
662
663  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
664
665  // Run the DAG combiner in post-legalize mode.
666  if (TimePassesIsEnabled) {
667    NamedRegionTimer T("DAG Combining 2", GroupName);
668    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
669  } else {
670    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
671  }
672
673  DOUT << "Optimized legalized selection DAG:\n";
674  DEBUG(CurDAG->dump());
675
676  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
677
678  if (OptLevel != CodeGenOpt::None)
679    ComputeLiveOutVRegInfo();
680
681  // Third, instruction select all of the operations to machine code, adding the
682  // code to the MachineBasicBlock.
683  if (TimePassesIsEnabled) {
684    NamedRegionTimer T("Instruction Selection", GroupName);
685    InstructionSelect();
686  } else {
687    InstructionSelect();
688  }
689
690  DOUT << "Selected selection DAG:\n";
691  DEBUG(CurDAG->dump());
692
693  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
694
695  // Schedule machine code.
696  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
697  if (TimePassesIsEnabled) {
698    NamedRegionTimer T("Instruction Scheduling", GroupName);
699    Scheduler->Run(CurDAG, BB, BB->end());
700  } else {
701    Scheduler->Run(CurDAG, BB, BB->end());
702  }
703
704  if (ViewSUnitDAGs) Scheduler->viewGraph();
705
706  // Emit machine code to BB.  This can change 'BB' to the last block being
707  // inserted into.
708  if (TimePassesIsEnabled) {
709    NamedRegionTimer T("Instruction Creation", GroupName);
710    BB = Scheduler->EmitSchedule();
711  } else {
712    BB = Scheduler->EmitSchedule();
713  }
714
715  // Free the scheduler state.
716  if (TimePassesIsEnabled) {
717    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName);
718    delete Scheduler;
719  } else {
720    delete Scheduler;
721  }
722
723  DOUT << "Selected machine code:\n";
724  DEBUG(BB->dump());
725}
726
727void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn,
728                                            MachineFunction &MF,
729                                            MachineModuleInfo *MMI,
730                                            DwarfWriter *DW,
731                                            const TargetInstrInfo &TII) {
732  // Initialize the Fast-ISel state, if needed.
733  FastISel *FastIS = 0;
734  if (EnableFastISel)
735    FastIS = TLI.createFastISel(MF, MMI, DW,
736                                FuncInfo->ValueMap,
737                                FuncInfo->MBBMap,
738                                FuncInfo->StaticAllocaMap
739#ifndef NDEBUG
740                                , FuncInfo->CatchInfoLost
741#endif
742                                );
743
744  // Iterate over all basic blocks in the function.
745  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
746    BasicBlock *LLVMBB = &*I;
747    BB = FuncInfo->MBBMap[LLVMBB];
748
749    BasicBlock::iterator const Begin = LLVMBB->begin();
750    BasicBlock::iterator const End = LLVMBB->end();
751    BasicBlock::iterator BI = Begin;
752
753    // Lower any arguments needed in this block if this is the entry block.
754    bool SuppressFastISel = false;
755    if (LLVMBB == &Fn.getEntryBlock()) {
756      LowerArguments(LLVMBB);
757
758      // If any of the arguments has the byval attribute, forgo
759      // fast-isel in the entry block.
760      if (FastIS) {
761        unsigned j = 1;
762        for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
763             I != E; ++I, ++j)
764          if (Fn.paramHasAttr(j, Attribute::ByVal)) {
765            if (EnableFastISelVerbose || EnableFastISelAbort)
766              cerr << "FastISel skips entry block due to byval argument\n";
767            SuppressFastISel = true;
768            break;
769          }
770      }
771    }
772
773    if (MMI && BB->isLandingPad()) {
774      // Add a label to mark the beginning of the landing pad.  Deletion of the
775      // landing pad can thus be detected via the MachineModuleInfo.
776      unsigned LabelID = MMI->addLandingPad(BB);
777
778      const TargetInstrDesc &II = TII.get(TargetInstrInfo::EH_LABEL);
779      BuildMI(BB, SDL->getCurDebugLoc(), II).addImm(LabelID);
780
781      // Mark exception register as live in.
782      unsigned Reg = TLI.getExceptionAddressRegister();
783      if (Reg) BB->addLiveIn(Reg);
784
785      // Mark exception selector register as live in.
786      Reg = TLI.getExceptionSelectorRegister();
787      if (Reg) BB->addLiveIn(Reg);
788
789      // FIXME: Hack around an exception handling flaw (PR1508): the personality
790      // function and list of typeids logically belong to the invoke (or, if you
791      // like, the basic block containing the invoke), and need to be associated
792      // with it in the dwarf exception handling tables.  Currently however the
793      // information is provided by an intrinsic (eh.selector) that can be moved
794      // to unexpected places by the optimizers: if the unwind edge is critical,
795      // then breaking it can result in the intrinsics being in the successor of
796      // the landing pad, not the landing pad itself.  This results in exceptions
797      // not being caught because no typeids are associated with the invoke.
798      // This may not be the only way things can go wrong, but it is the only way
799      // we try to work around for the moment.
800      BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
801
802      if (Br && Br->isUnconditional()) { // Critical edge?
803        BasicBlock::iterator I, E;
804        for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
805          if (isa<EHSelectorInst>(I))
806            break;
807
808        if (I == E)
809          // No catch info found - try to extract some from the successor.
810          copyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo);
811      }
812    }
813
814    // Before doing SelectionDAG ISel, see if FastISel has been requested.
815    if (FastIS && !SuppressFastISel) {
816      // Emit code for any incoming arguments. This must happen before
817      // beginning FastISel on the entry block.
818      if (LLVMBB == &Fn.getEntryBlock()) {
819        CurDAG->setRoot(SDL->getControlRoot());
820        CodeGenAndEmitDAG();
821        SDL->clear();
822      }
823      FastIS->startNewBlock(BB);
824      // Do FastISel on as many instructions as possible.
825      for (; BI != End; ++BI) {
826        // Just before the terminator instruction, insert instructions to
827        // feed PHI nodes in successor blocks.
828        if (isa<TerminatorInst>(BI))
829          if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) {
830            if (EnableFastISelVerbose || EnableFastISelAbort) {
831              cerr << "FastISel miss: ";
832              BI->dump();
833            }
834            if (EnableFastISelAbort)
835              assert(0 && "FastISel didn't handle a PHI in a successor");
836            break;
837          }
838
839        // First try normal tablegen-generated "fast" selection.
840        if (FastIS->SelectInstruction(BI))
841          continue;
842
843        // Next, try calling the target to attempt to handle the instruction.
844        if (FastIS->TargetSelectInstruction(BI))
845          continue;
846
847        // Then handle certain instructions as single-LLVM-Instruction blocks.
848        if (isa<CallInst>(BI)) {
849          if (EnableFastISelVerbose || EnableFastISelAbort) {
850            cerr << "FastISel missed call: ";
851            BI->dump();
852          }
853
854          if (BI->getType() != Type::VoidTy) {
855            unsigned &R = FuncInfo->ValueMap[BI];
856            if (!R)
857              R = FuncInfo->CreateRegForValue(BI);
858          }
859
860          SDL->setCurDebugLoc(FastIS->getCurDebugLoc());
861          SelectBasicBlock(LLVMBB, BI, next(BI));
862          // If the instruction was codegen'd with multiple blocks,
863          // inform the FastISel object where to resume inserting.
864          FastIS->setCurrentBlock(BB);
865          continue;
866        }
867
868        // Otherwise, give up on FastISel for the rest of the block.
869        // For now, be a little lenient about non-branch terminators.
870        if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) {
871          if (EnableFastISelVerbose || EnableFastISelAbort) {
872            cerr << "FastISel miss: ";
873            BI->dump();
874          }
875          if (EnableFastISelAbort)
876            // The "fast" selector couldn't handle something and bailed.
877            // For the purpose of debugging, just abort.
878            assert(0 && "FastISel didn't select the entire block");
879        }
880        break;
881      }
882    }
883
884    // Run SelectionDAG instruction selection on the remainder of the block
885    // not handled by FastISel. If FastISel is not run, this is the entire
886    // block.
887    if (BI != End) {
888      // If FastISel is run and it has known DebugLoc then use it.
889      if (FastIS && !FastIS->getCurDebugLoc().isUnknown())
890        SDL->setCurDebugLoc(FastIS->getCurDebugLoc());
891      SelectBasicBlock(LLVMBB, BI, End);
892    }
893
894    FinishBasicBlock();
895  }
896
897  delete FastIS;
898}
899
900void
901SelectionDAGISel::FinishBasicBlock() {
902
903  DOUT << "Target-post-processed machine code:\n";
904  DEBUG(BB->dump());
905
906  DOUT << "Total amount of phi nodes to update: "
907       << SDL->PHINodesToUpdate.size() << "\n";
908  DEBUG(for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i)
909          DOUT << "Node " << i << " : (" << SDL->PHINodesToUpdate[i].first
910               << ", " << SDL->PHINodesToUpdate[i].second << ")\n";);
911
912  // Next, now that we know what the last MBB the LLVM BB expanded is, update
913  // PHI nodes in successors.
914  if (SDL->SwitchCases.empty() &&
915      SDL->JTCases.empty() &&
916      SDL->BitTestCases.empty()) {
917    for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
918      MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
919      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
920             "This is not a machine PHI node that we are updating!");
921      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
922                                                false));
923      PHI->addOperand(MachineOperand::CreateMBB(BB));
924    }
925    SDL->PHINodesToUpdate.clear();
926    return;
927  }
928
929  for (unsigned i = 0, e = SDL->BitTestCases.size(); i != e; ++i) {
930    // Lower header first, if it wasn't already lowered
931    if (!SDL->BitTestCases[i].Emitted) {
932      // Set the current basic block to the mbb we wish to insert the code into
933      BB = SDL->BitTestCases[i].Parent;
934      SDL->setCurrentBasicBlock(BB);
935      // Emit the code
936      SDL->visitBitTestHeader(SDL->BitTestCases[i]);
937      CurDAG->setRoot(SDL->getRoot());
938      CodeGenAndEmitDAG();
939      SDL->clear();
940    }
941
942    for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size(); j != ej; ++j) {
943      // Set the current basic block to the mbb we wish to insert the code into
944      BB = SDL->BitTestCases[i].Cases[j].ThisBB;
945      SDL->setCurrentBasicBlock(BB);
946      // Emit the code
947      if (j+1 != ej)
948        SDL->visitBitTestCase(SDL->BitTestCases[i].Cases[j+1].ThisBB,
949                              SDL->BitTestCases[i].Reg,
950                              SDL->BitTestCases[i].Cases[j]);
951      else
952        SDL->visitBitTestCase(SDL->BitTestCases[i].Default,
953                              SDL->BitTestCases[i].Reg,
954                              SDL->BitTestCases[i].Cases[j]);
955
956
957      CurDAG->setRoot(SDL->getRoot());
958      CodeGenAndEmitDAG();
959      SDL->clear();
960    }
961
962    // Update PHI Nodes
963    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
964      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
965      MachineBasicBlock *PHIBB = PHI->getParent();
966      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
967             "This is not a machine PHI node that we are updating!");
968      // This is "default" BB. We have two jumps to it. From "header" BB and
969      // from last "case" BB.
970      if (PHIBB == SDL->BitTestCases[i].Default) {
971        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
972                                                  false));
973        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Parent));
974        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
975                                                  false));
976        PHI->addOperand(MachineOperand::CreateMBB(SDL->BitTestCases[i].Cases.
977                                                  back().ThisBB));
978      }
979      // One of "cases" BB.
980      for (unsigned j = 0, ej = SDL->BitTestCases[i].Cases.size();
981           j != ej; ++j) {
982        MachineBasicBlock* cBB = SDL->BitTestCases[i].Cases[j].ThisBB;
983        if (cBB->succ_end() !=
984            std::find(cBB->succ_begin(),cBB->succ_end(), PHIBB)) {
985          PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
986                                                    false));
987          PHI->addOperand(MachineOperand::CreateMBB(cBB));
988        }
989      }
990    }
991  }
992  SDL->BitTestCases.clear();
993
994  // If the JumpTable record is filled in, then we need to emit a jump table.
995  // Updating the PHI nodes is tricky in this case, since we need to determine
996  // whether the PHI is a successor of the range check MBB or the jump table MBB
997  for (unsigned i = 0, e = SDL->JTCases.size(); i != e; ++i) {
998    // Lower header first, if it wasn't already lowered
999    if (!SDL->JTCases[i].first.Emitted) {
1000      // Set the current basic block to the mbb we wish to insert the code into
1001      BB = SDL->JTCases[i].first.HeaderBB;
1002      SDL->setCurrentBasicBlock(BB);
1003      // Emit the code
1004      SDL->visitJumpTableHeader(SDL->JTCases[i].second, SDL->JTCases[i].first);
1005      CurDAG->setRoot(SDL->getRoot());
1006      CodeGenAndEmitDAG();
1007      SDL->clear();
1008    }
1009
1010    // Set the current basic block to the mbb we wish to insert the code into
1011    BB = SDL->JTCases[i].second.MBB;
1012    SDL->setCurrentBasicBlock(BB);
1013    // Emit the code
1014    SDL->visitJumpTable(SDL->JTCases[i].second);
1015    CurDAG->setRoot(SDL->getRoot());
1016    CodeGenAndEmitDAG();
1017    SDL->clear();
1018
1019    // Update PHI Nodes
1020    for (unsigned pi = 0, pe = SDL->PHINodesToUpdate.size(); pi != pe; ++pi) {
1021      MachineInstr *PHI = SDL->PHINodesToUpdate[pi].first;
1022      MachineBasicBlock *PHIBB = PHI->getParent();
1023      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
1024             "This is not a machine PHI node that we are updating!");
1025      // "default" BB. We can go there only from header BB.
1026      if (PHIBB == SDL->JTCases[i].second.Default) {
1027        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
1028                                                  false));
1029        PHI->addOperand(MachineOperand::CreateMBB(SDL->JTCases[i].first.HeaderBB));
1030      }
1031      // JT BB. Just iterate over successors here
1032      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
1033        PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pi].second,
1034                                                  false));
1035        PHI->addOperand(MachineOperand::CreateMBB(BB));
1036      }
1037    }
1038  }
1039  SDL->JTCases.clear();
1040
1041  // If the switch block involved a branch to one of the actual successors, we
1042  // need to update PHI nodes in that block.
1043  for (unsigned i = 0, e = SDL->PHINodesToUpdate.size(); i != e; ++i) {
1044    MachineInstr *PHI = SDL->PHINodesToUpdate[i].first;
1045    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
1046           "This is not a machine PHI node that we are updating!");
1047    if (BB->isSuccessor(PHI->getParent())) {
1048      PHI->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[i].second,
1049                                                false));
1050      PHI->addOperand(MachineOperand::CreateMBB(BB));
1051    }
1052  }
1053
1054  // If we generated any switch lowering information, build and codegen any
1055  // additional DAGs necessary.
1056  for (unsigned i = 0, e = SDL->SwitchCases.size(); i != e; ++i) {
1057    // Set the current basic block to the mbb we wish to insert the code into
1058    BB = SDL->SwitchCases[i].ThisBB;
1059    SDL->setCurrentBasicBlock(BB);
1060
1061    // Emit the code
1062    SDL->visitSwitchCase(SDL->SwitchCases[i]);
1063    CurDAG->setRoot(SDL->getRoot());
1064    CodeGenAndEmitDAG();
1065    SDL->clear();
1066
1067    // Handle any PHI nodes in successors of this chunk, as if we were coming
1068    // from the original BB before switch expansion.  Note that PHI nodes can
1069    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1070    // handle them the right number of times.
1071    while ((BB = SDL->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
1072      for (MachineBasicBlock::iterator Phi = BB->begin();
1073           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
1074        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
1075        for (unsigned pn = 0; ; ++pn) {
1076          assert(pn != SDL->PHINodesToUpdate.size() &&
1077                 "Didn't find PHI entry!");
1078          if (SDL->PHINodesToUpdate[pn].first == Phi) {
1079            Phi->addOperand(MachineOperand::CreateReg(SDL->PHINodesToUpdate[pn].
1080                                                      second, false));
1081            Phi->addOperand(MachineOperand::CreateMBB(SDL->SwitchCases[i].ThisBB));
1082            break;
1083          }
1084        }
1085      }
1086
1087      // Don't process RHS if same block as LHS.
1088      if (BB == SDL->SwitchCases[i].FalseBB)
1089        SDL->SwitchCases[i].FalseBB = 0;
1090
1091      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
1092      SDL->SwitchCases[i].TrueBB = SDL->SwitchCases[i].FalseBB;
1093      SDL->SwitchCases[i].FalseBB = 0;
1094    }
1095    assert(SDL->SwitchCases[i].TrueBB == 0 && SDL->SwitchCases[i].FalseBB == 0);
1096  }
1097  SDL->SwitchCases.clear();
1098
1099  SDL->PHINodesToUpdate.clear();
1100}
1101
1102
1103/// Create the scheduler. If a specific scheduler was specified
1104/// via the SchedulerRegistry, use it, otherwise select the
1105/// one preferred by the target.
1106///
1107ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1108  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1109
1110  if (!Ctor) {
1111    Ctor = ISHeuristic;
1112    RegisterScheduler::setDefault(Ctor);
1113  }
1114
1115  return Ctor(this, OptLevel);
1116}
1117
1118ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1119  return new ScheduleHazardRecognizer();
1120}
1121
1122//===----------------------------------------------------------------------===//
1123// Helper functions used by the generated instruction selector.
1124//===----------------------------------------------------------------------===//
1125// Calls to these methods are generated by tblgen.
1126
1127/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1128/// the dag combiner simplified the 255, we still want to match.  RHS is the
1129/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1130/// specified in the .td file (e.g. 255).
1131bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1132                                    int64_t DesiredMaskS) const {
1133  const APInt &ActualMask = RHS->getAPIntValue();
1134  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1135
1136  // If the actual mask exactly matches, success!
1137  if (ActualMask == DesiredMask)
1138    return true;
1139
1140  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1141  if (ActualMask.intersects(~DesiredMask))
1142    return false;
1143
1144  // Otherwise, the DAG Combiner may have proven that the value coming in is
1145  // either already zero or is not demanded.  Check for known zero input bits.
1146  APInt NeededMask = DesiredMask & ~ActualMask;
1147  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1148    return true;
1149
1150  // TODO: check to see if missing bits are just not demanded.
1151
1152  // Otherwise, this pattern doesn't match.
1153  return false;
1154}
1155
1156/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1157/// the dag combiner simplified the 255, we still want to match.  RHS is the
1158/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1159/// specified in the .td file (e.g. 255).
1160bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1161                                   int64_t DesiredMaskS) const {
1162  const APInt &ActualMask = RHS->getAPIntValue();
1163  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1164
1165  // If the actual mask exactly matches, success!
1166  if (ActualMask == DesiredMask)
1167    return true;
1168
1169  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1170  if (ActualMask.intersects(~DesiredMask))
1171    return false;
1172
1173  // Otherwise, the DAG Combiner may have proven that the value coming in is
1174  // either already zero or is not demanded.  Check for known zero input bits.
1175  APInt NeededMask = DesiredMask & ~ActualMask;
1176
1177  APInt KnownZero, KnownOne;
1178  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1179
1180  // If all the missing bits in the or are already known to be set, match!
1181  if ((NeededMask & KnownOne) == NeededMask)
1182    return true;
1183
1184  // TODO: check to see if missing bits are just not demanded.
1185
1186  // Otherwise, this pattern doesn't match.
1187  return false;
1188}
1189
1190
1191/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1192/// by tblgen.  Others should not call it.
1193void SelectionDAGISel::
1194SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1195  std::vector<SDValue> InOps;
1196  std::swap(InOps, Ops);
1197
1198  Ops.push_back(InOps[0]);  // input chain.
1199  Ops.push_back(InOps[1]);  // input asm string.
1200
1201  unsigned i = 2, e = InOps.size();
1202  if (InOps[e-1].getValueType() == MVT::Flag)
1203    --e;  // Don't process a flag operand if it is here.
1204
1205  while (i != e) {
1206    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1207    if ((Flags & 7) != 4 /*MEM*/) {
1208      // Just skip over this operand, copying the operands verbatim.
1209      Ops.insert(Ops.end(), InOps.begin()+i,
1210                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1211      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1212    } else {
1213      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1214             "Memory operand with multiple values?");
1215      // Otherwise, this is a memory operand.  Ask the target to select it.
1216      std::vector<SDValue> SelOps;
1217      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) {
1218        cerr << "Could not match memory address.  Inline asm failure!\n";
1219        exit(1);
1220      }
1221
1222      // Add this to the output node.
1223      MVT IntPtrTy = CurDAG->getTargetLoweringInfo().getPointerTy();
1224      Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3),
1225                                              IntPtrTy));
1226      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1227      i += 2;
1228    }
1229  }
1230
1231  // Add the flag input back if present.
1232  if (e != InOps.size())
1233    Ops.push_back(InOps.back());
1234}
1235
1236/// findFlagUse - Return use of MVT::Flag value produced by the specified
1237/// SDNode.
1238///
1239static SDNode *findFlagUse(SDNode *N) {
1240  unsigned FlagResNo = N->getNumValues()-1;
1241  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1242    SDUse &Use = I.getUse();
1243    if (Use.getResNo() == FlagResNo)
1244      return Use.getUser();
1245  }
1246  return NULL;
1247}
1248
1249/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1250/// This function recursively traverses up the operand chain, ignoring
1251/// certain nodes.
1252static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1253                          SDNode *Root,
1254                          SmallPtrSet<SDNode*, 16> &Visited) {
1255  if (Use->getNodeId() < Def->getNodeId() ||
1256      !Visited.insert(Use))
1257    return false;
1258
1259  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1260    SDNode *N = Use->getOperand(i).getNode();
1261    if (N == Def) {
1262      if (Use == ImmedUse || Use == Root)
1263        continue;  // We are not looking for immediate use.
1264      assert(N != Root);
1265      return true;
1266    }
1267
1268    // Traverse up the operand chain.
1269    if (findNonImmUse(N, Def, ImmedUse, Root, Visited))
1270      return true;
1271  }
1272  return false;
1273}
1274
1275/// isNonImmUse - Start searching from Root up the DAG to check is Def can
1276/// be reached. Return true if that's the case. However, ignore direct uses
1277/// by ImmedUse (which would be U in the example illustrated in
1278/// IsLegalAndProfitableToFold) and by Root (which can happen in the store
1279/// case).
1280/// FIXME: to be really generic, we should allow direct use by any node
1281/// that is being folded. But realisticly since we only fold loads which
1282/// have one non-chain use, we only need to watch out for load/op/store
1283/// and load/op/cmp case where the root (store / cmp) may reach the load via
1284/// its chain operand.
1285static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse) {
1286  SmallPtrSet<SDNode*, 16> Visited;
1287  return findNonImmUse(Root, Def, ImmedUse, Root, Visited);
1288}
1289
1290/// IsLegalAndProfitableToFold - Returns true if the specific operand node N of
1291/// U can be folded during instruction selection that starts at Root and
1292/// folding N is profitable.
1293bool SelectionDAGISel::IsLegalAndProfitableToFold(SDNode *N, SDNode *U,
1294                                                  SDNode *Root) const {
1295  if (OptLevel == CodeGenOpt::None) return false;
1296
1297  // If Root use can somehow reach N through a path that that doesn't contain
1298  // U then folding N would create a cycle. e.g. In the following
1299  // diagram, Root can reach N through X. If N is folded into into Root, then
1300  // X is both a predecessor and a successor of U.
1301  //
1302  //          [N*]           //
1303  //         ^   ^           //
1304  //        /     \          //
1305  //      [U*]    [X]?       //
1306  //        ^     ^          //
1307  //         \   /           //
1308  //          \ /            //
1309  //         [Root*]         //
1310  //
1311  // * indicates nodes to be folded together.
1312  //
1313  // If Root produces a flag, then it gets (even more) interesting. Since it
1314  // will be "glued" together with its flag use in the scheduler, we need to
1315  // check if it might reach N.
1316  //
1317  //          [N*]           //
1318  //         ^   ^           //
1319  //        /     \          //
1320  //      [U*]    [X]?       //
1321  //        ^       ^        //
1322  //         \       \       //
1323  //          \      |       //
1324  //         [Root*] |       //
1325  //          ^      |       //
1326  //          f      |       //
1327  //          |      /       //
1328  //         [Y]    /        //
1329  //           ^   /         //
1330  //           f  /          //
1331  //           | /           //
1332  //          [FU]           //
1333  //
1334  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1335  // (call it Fold), then X is a predecessor of FU and a successor of
1336  // Fold. But since Fold and FU are flagged together, this will create
1337  // a cycle in the scheduling graph.
1338
1339  MVT VT = Root->getValueType(Root->getNumValues()-1);
1340  while (VT == MVT::Flag) {
1341    SDNode *FU = findFlagUse(Root);
1342    if (FU == NULL)
1343      break;
1344    Root = FU;
1345    VT = Root->getValueType(Root->getNumValues()-1);
1346  }
1347
1348  return !isNonImmUse(Root, N, U);
1349}
1350
1351
1352char SelectionDAGISel::ID = 0;
1353