SelectionDAGISel.cpp revision f2a745efe50dfd57f0e83e5f3ed964611cba6077
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/DebugInfo.h"
22#include "llvm/Constants.h"
23#include "llvm/Function.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/Module.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/GCStrategy.h"
32#include "llvm/CodeGen/GCMetadata.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineFunction.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39#include "llvm/CodeGen/SchedulerRegistry.h"
40#include "llvm/CodeGen/SelectionDAG.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42#include "llvm/Target/TargetIntrinsicInfo.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLibraryInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetOptions.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Support/Compiler.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/Timer.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/ADT/PostOrderIterator.h"
55#include "llvm/ADT/Statistic.h"
56#include <algorithm>
57using namespace llvm;
58
59STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
60STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
61STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
62STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
63STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
64
65#ifndef NDEBUG
66static cl::opt<bool>
67EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
68          cl::desc("Enable extra verbose messages in the \"fast\" "
69                   "instruction selector"));
70  // Terminators
71STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
72STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
73STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
74STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
75STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
76STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
77STATISTIC(NumFastIselFailUnwind,"Fast isel fails on Unwind");
78STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
79
80  // Standard binary operators...
81STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
82STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
83STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
84STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
85STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
86STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
87STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
88STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
89STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
90STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
91STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
92STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
93
94  // Logical operators...
95STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
96STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
97STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
98
99  // Memory instructions...
100STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
101STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
102STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
103STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
104STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
105STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
106STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
107
108  // Convert instructions...
109STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
110STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
111STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
112STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
113STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
114STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
115STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
116STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
117STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
118STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
119STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
120STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
121
122  // Other instructions...
123STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
124STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
125STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
126STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
127STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
128STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
129STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
130STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
131STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
132STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
133STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
134STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
135STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
136STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
137STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
138#endif
139
140static cl::opt<bool>
141EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
142          cl::desc("Enable verbose messages in the \"fast\" "
143                   "instruction selector"));
144static cl::opt<bool>
145EnableFastISelAbort("fast-isel-abort", cl::Hidden,
146          cl::desc("Enable abort calls when \"fast\" instruction fails"));
147
148static cl::opt<bool>
149UseMBPI("use-mbpi",
150        cl::desc("use Machine Branch Probability Info"),
151        cl::init(true), cl::Hidden);
152
153#ifndef NDEBUG
154static cl::opt<bool>
155ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
156          cl::desc("Pop up a window to show dags before the first "
157                   "dag combine pass"));
158static cl::opt<bool>
159ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
160          cl::desc("Pop up a window to show dags before legalize types"));
161static cl::opt<bool>
162ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
163          cl::desc("Pop up a window to show dags before legalize"));
164static cl::opt<bool>
165ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
166          cl::desc("Pop up a window to show dags before the second "
167                   "dag combine pass"));
168static cl::opt<bool>
169ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
170          cl::desc("Pop up a window to show dags before the post legalize types"
171                   " dag combine pass"));
172static cl::opt<bool>
173ViewISelDAGs("view-isel-dags", cl::Hidden,
174          cl::desc("Pop up a window to show isel dags as they are selected"));
175static cl::opt<bool>
176ViewSchedDAGs("view-sched-dags", cl::Hidden,
177          cl::desc("Pop up a window to show sched dags as they are processed"));
178static cl::opt<bool>
179ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
180      cl::desc("Pop up a window to show SUnit dags after they are processed"));
181#else
182static const bool ViewDAGCombine1 = false,
183                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
184                  ViewDAGCombine2 = false,
185                  ViewDAGCombineLT = false,
186                  ViewISelDAGs = false, ViewSchedDAGs = false,
187                  ViewSUnitDAGs = false;
188#endif
189
190//===---------------------------------------------------------------------===//
191///
192/// RegisterScheduler class - Track the registration of instruction schedulers.
193///
194//===---------------------------------------------------------------------===//
195MachinePassRegistry RegisterScheduler::Registry;
196
197//===---------------------------------------------------------------------===//
198///
199/// ISHeuristic command line option for instruction schedulers.
200///
201//===---------------------------------------------------------------------===//
202static cl::opt<RegisterScheduler::FunctionPassCtor, false,
203               RegisterPassParser<RegisterScheduler> >
204ISHeuristic("pre-RA-sched",
205            cl::init(&createDefaultScheduler),
206            cl::desc("Instruction schedulers available (before register"
207                     " allocation):"));
208
209static RegisterScheduler
210defaultListDAGScheduler("default", "Best scheduler for the target",
211                        createDefaultScheduler);
212
213namespace llvm {
214  //===--------------------------------------------------------------------===//
215  /// createDefaultScheduler - This creates an instruction scheduler appropriate
216  /// for the target.
217  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
218                                             CodeGenOpt::Level OptLevel) {
219    const TargetLowering &TLI = IS->getTargetLowering();
220
221    if (OptLevel == CodeGenOpt::None)
222      return createSourceListDAGScheduler(IS, OptLevel);
223    if (TLI.getSchedulingPreference() == Sched::RegPressure)
224      return createBURRListDAGScheduler(IS, OptLevel);
225    if (TLI.getSchedulingPreference() == Sched::Hybrid)
226      return createHybridListDAGScheduler(IS, OptLevel);
227    assert(TLI.getSchedulingPreference() == Sched::ILP &&
228           "Unknown sched type!");
229    return createILPListDAGScheduler(IS, OptLevel);
230  }
231}
232
233// EmitInstrWithCustomInserter - This method should be implemented by targets
234// that mark instructions with the 'usesCustomInserter' flag.  These
235// instructions are special in various ways, which require special support to
236// insert.  The specified MachineInstr is created but not inserted into any
237// basic blocks, and this method is called to expand it into a sequence of
238// instructions, potentially also creating new basic blocks and control flow.
239// When new basic blocks are inserted and the edges from MBB to its successors
240// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
241// DenseMap.
242MachineBasicBlock *
243TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
244                                            MachineBasicBlock *MBB) const {
245#ifndef NDEBUG
246  dbgs() << "If a target marks an instruction with "
247          "'usesCustomInserter', it must implement "
248          "TargetLowering::EmitInstrWithCustomInserter!";
249#endif
250  llvm_unreachable(0);
251  return 0;
252}
253
254void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
255                                                   SDNode *Node) const {
256  assert(!MI->hasPostISelHook() &&
257         "If a target marks an instruction with 'hasPostISelHook', "
258         "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
259}
260
261//===----------------------------------------------------------------------===//
262// SelectionDAGISel code
263//===----------------------------------------------------------------------===//
264
265SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
266                                   CodeGenOpt::Level OL) :
267  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
268  FuncInfo(new FunctionLoweringInfo(TLI)),
269  CurDAG(new SelectionDAG(tm)),
270  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
271  GFI(),
272  OptLevel(OL),
273  DAGSize(0) {
274    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
275    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
276    initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
277    initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
278  }
279
280SelectionDAGISel::~SelectionDAGISel() {
281  delete SDB;
282  delete CurDAG;
283  delete FuncInfo;
284}
285
286void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
287  AU.addRequired<AliasAnalysis>();
288  AU.addPreserved<AliasAnalysis>();
289  AU.addRequired<GCModuleInfo>();
290  AU.addPreserved<GCModuleInfo>();
291  AU.addRequired<TargetLibraryInfo>();
292  if (UseMBPI && OptLevel != CodeGenOpt::None)
293    AU.addRequired<BranchProbabilityInfo>();
294  MachineFunctionPass::getAnalysisUsage(AU);
295}
296
297/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
298/// may trap on it.  In this case we have to split the edge so that the path
299/// through the predecessor block that doesn't go to the phi block doesn't
300/// execute the possibly trapping instruction.
301///
302/// This is required for correctness, so it must be done at -O0.
303///
304static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
305  // Loop for blocks with phi nodes.
306  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
307    PHINode *PN = dyn_cast<PHINode>(BB->begin());
308    if (PN == 0) continue;
309
310  ReprocessBlock:
311    // For each block with a PHI node, check to see if any of the input values
312    // are potentially trapping constant expressions.  Constant expressions are
313    // the only potentially trapping value that can occur as the argument to a
314    // PHI.
315    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
316      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
317        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
318        if (CE == 0 || !CE->canTrap()) continue;
319
320        // The only case we have to worry about is when the edge is critical.
321        // Since this block has a PHI Node, we assume it has multiple input
322        // edges: check to see if the pred has multiple successors.
323        BasicBlock *Pred = PN->getIncomingBlock(i);
324        if (Pred->getTerminator()->getNumSuccessors() == 1)
325          continue;
326
327        // Okay, we have to split this edge.
328        SplitCriticalEdge(Pred->getTerminator(),
329                          GetSuccessorNumber(Pred, BB), SDISel, true);
330        goto ReprocessBlock;
331      }
332  }
333}
334
335bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
336  // Do some sanity-checking on the command-line options.
337  assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
338         "-fast-isel-verbose requires -fast-isel");
339  assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
340         "-fast-isel-abort requires -fast-isel");
341
342  const Function &Fn = *mf.getFunction();
343  const TargetInstrInfo &TII = *TM.getInstrInfo();
344  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
345
346  MF = &mf;
347  RegInfo = &MF->getRegInfo();
348  AA = &getAnalysis<AliasAnalysis>();
349  LibInfo = &getAnalysis<TargetLibraryInfo>();
350  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
351
352  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
353
354  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
355
356  CurDAG->init(*MF);
357  FuncInfo->set(Fn, *MF);
358
359  if (UseMBPI && OptLevel != CodeGenOpt::None)
360    FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
361  else
362    FuncInfo->BPI = 0;
363
364  SDB->init(GFI, *AA, LibInfo);
365
366  SelectAllBasicBlocks(Fn);
367
368  // If the first basic block in the function has live ins that need to be
369  // copied into vregs, emit the copies into the top of the block before
370  // emitting the code for the block.
371  MachineBasicBlock *EntryMBB = MF->begin();
372  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
373
374  DenseMap<unsigned, unsigned> LiveInMap;
375  if (!FuncInfo->ArgDbgValues.empty())
376    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
377           E = RegInfo->livein_end(); LI != E; ++LI)
378      if (LI->second)
379        LiveInMap.insert(std::make_pair(LI->first, LI->second));
380
381  // Insert DBG_VALUE instructions for function arguments to the entry block.
382  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
383    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
384    unsigned Reg = MI->getOperand(0).getReg();
385    if (TargetRegisterInfo::isPhysicalRegister(Reg))
386      EntryMBB->insert(EntryMBB->begin(), MI);
387    else {
388      MachineInstr *Def = RegInfo->getVRegDef(Reg);
389      MachineBasicBlock::iterator InsertPos = Def;
390      // FIXME: VR def may not be in entry block.
391      Def->getParent()->insert(llvm::next(InsertPos), MI);
392    }
393
394    // If Reg is live-in then update debug info to track its copy in a vreg.
395    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
396    if (LDI != LiveInMap.end()) {
397      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
398      MachineBasicBlock::iterator InsertPos = Def;
399      const MDNode *Variable =
400        MI->getOperand(MI->getNumOperands()-1).getMetadata();
401      unsigned Offset = MI->getOperand(1).getImm();
402      // Def is never a terminator here, so it is ok to increment InsertPos.
403      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
404              TII.get(TargetOpcode::DBG_VALUE))
405        .addReg(LDI->second, RegState::Debug)
406        .addImm(Offset).addMetadata(Variable);
407
408      // If this vreg is directly copied into an exported register then
409      // that COPY instructions also need DBG_VALUE, if it is the only
410      // user of LDI->second.
411      MachineInstr *CopyUseMI = NULL;
412      for (MachineRegisterInfo::use_iterator
413             UI = RegInfo->use_begin(LDI->second);
414           MachineInstr *UseMI = UI.skipInstruction();) {
415        if (UseMI->isDebugValue()) continue;
416        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
417          CopyUseMI = UseMI; continue;
418        }
419        // Otherwise this is another use or second copy use.
420        CopyUseMI = NULL; break;
421      }
422      if (CopyUseMI) {
423        MachineInstr *NewMI =
424          BuildMI(*MF, CopyUseMI->getDebugLoc(),
425                  TII.get(TargetOpcode::DBG_VALUE))
426          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
427          .addImm(Offset).addMetadata(Variable);
428        MachineBasicBlock::iterator Pos = CopyUseMI;
429        EntryMBB->insertAfter(Pos, NewMI);
430      }
431    }
432  }
433
434  // Determine if there are any calls in this machine function.
435  MachineFrameInfo *MFI = MF->getFrameInfo();
436  if (!MFI->hasCalls()) {
437    for (MachineFunction::const_iterator
438           I = MF->begin(), E = MF->end(); I != E; ++I) {
439      const MachineBasicBlock *MBB = I;
440      for (MachineBasicBlock::const_iterator
441             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
442        const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
443
444        if ((MCID.isCall() && !MCID.isReturn()) ||
445            II->isStackAligningInlineAsm()) {
446          MFI->setHasCalls(true);
447          goto done;
448        }
449      }
450    }
451  done:;
452  }
453
454  // Determine if there is a call to setjmp in the machine function.
455  MF->setCallsSetJmp(Fn.callsFunctionThatReturnsTwice());
456
457  // Replace forward-declared registers with the registers containing
458  // the desired value.
459  MachineRegisterInfo &MRI = MF->getRegInfo();
460  for (DenseMap<unsigned, unsigned>::iterator
461       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
462       I != E; ++I) {
463    unsigned From = I->first;
464    unsigned To = I->second;
465    // If To is also scheduled to be replaced, find what its ultimate
466    // replacement is.
467    for (;;) {
468      DenseMap<unsigned, unsigned>::iterator J =
469        FuncInfo->RegFixups.find(To);
470      if (J == E) break;
471      To = J->second;
472    }
473    // Replace it.
474    MRI.replaceRegWith(From, To);
475  }
476
477  // Release function-specific state. SDB and CurDAG are already cleared
478  // at this point.
479  FuncInfo->clear();
480
481  return true;
482}
483
484void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
485                                        BasicBlock::const_iterator End,
486                                        bool &HadTailCall) {
487  // Lower all of the non-terminator instructions. If a call is emitted
488  // as a tail call, cease emitting nodes for this block. Terminators
489  // are handled below.
490  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
491    SDB->visit(*I);
492
493  // Make sure the root of the DAG is up-to-date.
494  CurDAG->setRoot(SDB->getControlRoot());
495  HadTailCall = SDB->HasTailCall;
496  SDB->clear();
497
498  // Final step, emit the lowered DAG as machine code.
499  CodeGenAndEmitDAG();
500}
501
502void SelectionDAGISel::ComputeLiveOutVRegInfo() {
503  SmallPtrSet<SDNode*, 128> VisitedNodes;
504  SmallVector<SDNode*, 128> Worklist;
505
506  Worklist.push_back(CurDAG->getRoot().getNode());
507
508  APInt Mask;
509  APInt KnownZero;
510  APInt KnownOne;
511
512  do {
513    SDNode *N = Worklist.pop_back_val();
514
515    // If we've already seen this node, ignore it.
516    if (!VisitedNodes.insert(N))
517      continue;
518
519    // Otherwise, add all chain operands to the worklist.
520    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
521      if (N->getOperand(i).getValueType() == MVT::Other)
522        Worklist.push_back(N->getOperand(i).getNode());
523
524    // If this is a CopyToReg with a vreg dest, process it.
525    if (N->getOpcode() != ISD::CopyToReg)
526      continue;
527
528    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
529    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
530      continue;
531
532    // Ignore non-scalar or non-integer values.
533    SDValue Src = N->getOperand(2);
534    EVT SrcVT = Src.getValueType();
535    if (!SrcVT.isInteger() || SrcVT.isVector())
536      continue;
537
538    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
539    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
540    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
541    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
542  } while (!Worklist.empty());
543}
544
545void SelectionDAGISel::CodeGenAndEmitDAG() {
546  std::string GroupName;
547  if (TimePassesIsEnabled)
548    GroupName = "Instruction Selection and Scheduling";
549  std::string BlockName;
550  int BlockNumber = -1;
551  (void)BlockNumber;
552#ifdef NDEBUG
553  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
554      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
555      ViewSUnitDAGs)
556#endif
557  {
558    BlockNumber = FuncInfo->MBB->getNumber();
559    BlockName = MF->getFunction()->getName().str() + ":" +
560                FuncInfo->MBB->getBasicBlock()->getName().str();
561  }
562  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
563        << " '" << BlockName << "'\n"; CurDAG->dump());
564
565  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
566
567  // Run the DAG combiner in pre-legalize mode.
568  {
569    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
570    CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
571  }
572
573  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
574        << " '" << BlockName << "'\n"; CurDAG->dump());
575
576  // Second step, hack on the DAG until it only uses operations and types that
577  // the target supports.
578  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
579                                               BlockName);
580
581  bool Changed;
582  {
583    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
584    Changed = CurDAG->LegalizeTypes();
585  }
586
587  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
588        << " '" << BlockName << "'\n"; CurDAG->dump());
589
590  if (Changed) {
591    if (ViewDAGCombineLT)
592      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
593
594    // Run the DAG combiner in post-type-legalize mode.
595    {
596      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
597                         TimePassesIsEnabled);
598      CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
599    }
600
601    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
602          << " '" << BlockName << "'\n"; CurDAG->dump());
603  }
604
605  {
606    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
607    Changed = CurDAG->LegalizeVectors();
608  }
609
610  if (Changed) {
611    {
612      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
613      CurDAG->LegalizeTypes();
614    }
615
616    if (ViewDAGCombineLT)
617      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
618
619    // Run the DAG combiner in post-type-legalize mode.
620    {
621      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
622                         TimePassesIsEnabled);
623      CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
624    }
625
626    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
627          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
628  }
629
630  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
631
632  {
633    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
634    CurDAG->Legalize();
635  }
636
637  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
638        << " '" << BlockName << "'\n"; CurDAG->dump());
639
640  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
641
642  // Run the DAG combiner in post-legalize mode.
643  {
644    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
645    CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
646  }
647
648  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
649        << " '" << BlockName << "'\n"; CurDAG->dump());
650
651  if (OptLevel != CodeGenOpt::None)
652    ComputeLiveOutVRegInfo();
653
654  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
655
656  // Third, instruction select all of the operations to machine code, adding the
657  // code to the MachineBasicBlock.
658  {
659    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
660    DoInstructionSelection();
661  }
662
663  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
664        << " '" << BlockName << "'\n"; CurDAG->dump());
665
666  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
667
668  // Schedule machine code.
669  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
670  {
671    NamedRegionTimer T("Instruction Scheduling", GroupName,
672                       TimePassesIsEnabled);
673    Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
674  }
675
676  if (ViewSUnitDAGs) Scheduler->viewGraph();
677
678  // Emit machine code to BB.  This can change 'BB' to the last block being
679  // inserted into.
680  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
681  {
682    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
683
684    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
685    FuncInfo->InsertPt = Scheduler->InsertPos;
686  }
687
688  // If the block was split, make sure we update any references that are used to
689  // update PHI nodes later on.
690  if (FirstMBB != LastMBB)
691    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
692
693  // Free the scheduler state.
694  {
695    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
696                       TimePassesIsEnabled);
697    delete Scheduler;
698  }
699
700  // Free the SelectionDAG state, now that we're finished with it.
701  CurDAG->clear();
702}
703
704void SelectionDAGISel::DoInstructionSelection() {
705  DEBUG(errs() << "===== Instruction selection begins: BB#"
706        << FuncInfo->MBB->getNumber()
707        << " '" << FuncInfo->MBB->getName() << "'\n");
708
709  PreprocessISelDAG();
710
711  // Select target instructions for the DAG.
712  {
713    // Number all nodes with a topological order and set DAGSize.
714    DAGSize = CurDAG->AssignTopologicalOrder();
715
716    // Create a dummy node (which is not added to allnodes), that adds
717    // a reference to the root node, preventing it from being deleted,
718    // and tracking any changes of the root.
719    HandleSDNode Dummy(CurDAG->getRoot());
720    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
721    ++ISelPosition;
722
723    // The AllNodes list is now topological-sorted. Visit the
724    // nodes by starting at the end of the list (the root of the
725    // graph) and preceding back toward the beginning (the entry
726    // node).
727    while (ISelPosition != CurDAG->allnodes_begin()) {
728      SDNode *Node = --ISelPosition;
729      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
730      // but there are currently some corner cases that it misses. Also, this
731      // makes it theoretically possible to disable the DAGCombiner.
732      if (Node->use_empty())
733        continue;
734
735      SDNode *ResNode = Select(Node);
736
737      // FIXME: This is pretty gross.  'Select' should be changed to not return
738      // anything at all and this code should be nuked with a tactical strike.
739
740      // If node should not be replaced, continue with the next one.
741      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
742        continue;
743      // Replace node.
744      if (ResNode)
745        ReplaceUses(Node, ResNode);
746
747      // If after the replacement this node is not used any more,
748      // remove this dead node.
749      if (Node->use_empty()) { // Don't delete EntryToken, etc.
750        ISelUpdater ISU(ISelPosition);
751        CurDAG->RemoveDeadNode(Node, &ISU);
752      }
753    }
754
755    CurDAG->setRoot(Dummy.getValue());
756  }
757
758  DEBUG(errs() << "===== Instruction selection ends:\n");
759
760  PostprocessISelDAG();
761}
762
763/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
764/// do other setup for EH landing-pad blocks.
765void SelectionDAGISel::PrepareEHLandingPad() {
766  MachineBasicBlock *MBB = FuncInfo->MBB;
767
768  // Add a label to mark the beginning of the landing pad.  Deletion of the
769  // landing pad can thus be detected via the MachineModuleInfo.
770  MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
771
772  // Assign the call site to the landing pad's begin label.
773  MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
774
775  const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
776  BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
777    .addSym(Label);
778
779  // Mark exception register as live in.
780  unsigned Reg = TLI.getExceptionAddressRegister();
781  if (Reg) MBB->addLiveIn(Reg);
782
783  // Mark exception selector register as live in.
784  Reg = TLI.getExceptionSelectorRegister();
785  if (Reg) MBB->addLiveIn(Reg);
786
787  // FIXME: Hack around an exception handling flaw (PR1508): the personality
788  // function and list of typeids logically belong to the invoke (or, if you
789  // like, the basic block containing the invoke), and need to be associated
790  // with it in the dwarf exception handling tables.  Currently however the
791  // information is provided by an intrinsic (eh.selector) that can be moved
792  // to unexpected places by the optimizers: if the unwind edge is critical,
793  // then breaking it can result in the intrinsics being in the successor of
794  // the landing pad, not the landing pad itself.  This results
795  // in exceptions not being caught because no typeids are associated with
796  // the invoke.  This may not be the only way things can go wrong, but it
797  // is the only way we try to work around for the moment.
798  const BasicBlock *LLVMBB = MBB->getBasicBlock();
799  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
800
801  if (Br && Br->isUnconditional()) { // Critical edge?
802    BasicBlock::const_iterator I, E;
803    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
804      if (isa<EHSelectorInst>(I))
805        break;
806
807    if (I == E)
808      // No catch info found - try to extract some from the successor.
809      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
810  }
811}
812
813/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
814/// load into the specified FoldInst.  Note that we could have a sequence where
815/// multiple LLVM IR instructions are folded into the same machineinstr.  For
816/// example we could have:
817///   A: x = load i32 *P
818///   B: y = icmp A, 42
819///   C: br y, ...
820///
821/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
822/// any other folded instructions) because it is between A and C.
823///
824/// If we succeed in folding the load into the operation, return true.
825///
826bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
827                                             const Instruction *FoldInst,
828                                             FastISel *FastIS) {
829  // We know that the load has a single use, but don't know what it is.  If it
830  // isn't one of the folded instructions, then we can't succeed here.  Handle
831  // this by scanning the single-use users of the load until we get to FoldInst.
832  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
833
834  const Instruction *TheUser = LI->use_back();
835  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
836         // Stay in the right block.
837         TheUser->getParent() == FoldInst->getParent() &&
838         --MaxUsers) {  // Don't scan too far.
839    // If there are multiple or no uses of this instruction, then bail out.
840    if (!TheUser->hasOneUse())
841      return false;
842
843    TheUser = TheUser->use_back();
844  }
845
846  // If we didn't find the fold instruction, then we failed to collapse the
847  // sequence.
848  if (TheUser != FoldInst)
849    return false;
850
851  // Don't try to fold volatile loads.  Target has to deal with alignment
852  // constraints.
853  if (LI->isVolatile()) return false;
854
855  // Figure out which vreg this is going into.  If there is no assigned vreg yet
856  // then there actually was no reference to it.  Perhaps the load is referenced
857  // by a dead instruction.
858  unsigned LoadReg = FastIS->getRegForValue(LI);
859  if (LoadReg == 0)
860    return false;
861
862  // Check to see what the uses of this vreg are.  If it has no uses, or more
863  // than one use (at the machine instr level) then we can't fold it.
864  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
865  if (RI == RegInfo->reg_end())
866    return false;
867
868  // See if there is exactly one use of the vreg.  If there are multiple uses,
869  // then the instruction got lowered to multiple machine instructions or the
870  // use of the loaded value ended up being multiple operands of the result, in
871  // either case, we can't fold this.
872  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
873  if (PostRI != RegInfo->reg_end())
874    return false;
875
876  assert(RI.getOperand().isUse() &&
877         "The only use of the vreg must be a use, we haven't emitted the def!");
878
879  MachineInstr *User = &*RI;
880
881  // Set the insertion point properly.  Folding the load can cause generation of
882  // other random instructions (like sign extends) for addressing modes, make
883  // sure they get inserted in a logical place before the new instruction.
884  FuncInfo->InsertPt = User;
885  FuncInfo->MBB = User->getParent();
886
887  // Ask the target to try folding the load.
888  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
889}
890
891/// isFoldedOrDeadInstruction - Return true if the specified instruction is
892/// side-effect free and is either dead or folded into a generated instruction.
893/// Return false if it needs to be emitted.
894static bool isFoldedOrDeadInstruction(const Instruction *I,
895                                      FunctionLoweringInfo *FuncInfo) {
896  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
897         !isa<TerminatorInst>(I) && // Terminators aren't folded.
898         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
899         !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
900         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
901}
902
903#ifndef NDEBUG
904static void collectFailStats(const Instruction *I) {
905  switch (I->getOpcode()) {
906  default: assert (0 && "<Invalid operator> ");
907
908  // Terminators
909  case Instruction::Ret:         NumFastIselFailRet++; return;
910  case Instruction::Br:          NumFastIselFailBr++; return;
911  case Instruction::Switch:      NumFastIselFailSwitch++; return;
912  case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
913  case Instruction::Invoke:      NumFastIselFailInvoke++; return;
914  case Instruction::Resume:      NumFastIselFailResume++; return;
915  case Instruction::Unwind:      NumFastIselFailUnwind++; return;
916  case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
917
918  // Standard binary operators...
919  case Instruction::Add:  NumFastIselFailAdd++; return;
920  case Instruction::FAdd: NumFastIselFailFAdd++; return;
921  case Instruction::Sub:  NumFastIselFailSub++; return;
922  case Instruction::FSub: NumFastIselFailFSub++; return;
923  case Instruction::Mul:  NumFastIselFailMul++; return;
924  case Instruction::FMul: NumFastIselFailFMul++; return;
925  case Instruction::UDiv: NumFastIselFailUDiv++; return;
926  case Instruction::SDiv: NumFastIselFailSDiv++; return;
927  case Instruction::FDiv: NumFastIselFailFDiv++; return;
928  case Instruction::URem: NumFastIselFailURem++; return;
929  case Instruction::SRem: NumFastIselFailSRem++; return;
930  case Instruction::FRem: NumFastIselFailFRem++; return;
931
932  // Logical operators...
933  case Instruction::And: NumFastIselFailAnd++; return;
934  case Instruction::Or:  NumFastIselFailOr++; return;
935  case Instruction::Xor: NumFastIselFailXor++; return;
936
937  // Memory instructions...
938  case Instruction::Alloca:        NumFastIselFailAlloca++; return;
939  case Instruction::Load:          NumFastIselFailLoad++; return;
940  case Instruction::Store:         NumFastIselFailStore++; return;
941  case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
942  case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
943  case Instruction::Fence:         NumFastIselFailFence++; return;
944  case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
945
946  // Convert instructions...
947  case Instruction::Trunc:    NumFastIselFailTrunc++; return;
948  case Instruction::ZExt:     NumFastIselFailZExt++; return;
949  case Instruction::SExt:     NumFastIselFailSExt++; return;
950  case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
951  case Instruction::FPExt:    NumFastIselFailFPExt++; return;
952  case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
953  case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
954  case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
955  case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
956  case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
957  case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
958  case Instruction::BitCast:  NumFastIselFailBitCast++; return;
959
960  // Other instructions...
961  case Instruction::ICmp:           NumFastIselFailICmp++; return;
962  case Instruction::FCmp:           NumFastIselFailFCmp++; return;
963  case Instruction::PHI:            NumFastIselFailPHI++; return;
964  case Instruction::Select:         NumFastIselFailSelect++; return;
965  case Instruction::Call:           NumFastIselFailCall++; return;
966  case Instruction::Shl:            NumFastIselFailShl++; return;
967  case Instruction::LShr:           NumFastIselFailLShr++; return;
968  case Instruction::AShr:           NumFastIselFailAShr++; return;
969  case Instruction::VAArg:          NumFastIselFailVAArg++; return;
970  case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
971  case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
972  case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
973  case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
974  case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
975  case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
976  }
977  return;
978}
979#endif
980
981void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
982  // Initialize the Fast-ISel state, if needed.
983  FastISel *FastIS = 0;
984  if (TM.Options.EnableFastISel)
985    FastIS = TLI.createFastISel(*FuncInfo);
986
987  // Iterate over all basic blocks in the function.
988  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
989  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
990       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
991    const BasicBlock *LLVMBB = *I;
992
993    if (OptLevel != CodeGenOpt::None) {
994      bool AllPredsVisited = true;
995      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
996           PI != PE; ++PI) {
997        if (!FuncInfo->VisitedBBs.count(*PI)) {
998          AllPredsVisited = false;
999          break;
1000        }
1001      }
1002
1003      if (AllPredsVisited) {
1004        for (BasicBlock::const_iterator I = LLVMBB->begin();
1005             isa<PHINode>(I); ++I)
1006          FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
1007      } else {
1008        for (BasicBlock::const_iterator I = LLVMBB->begin();
1009             isa<PHINode>(I); ++I)
1010          FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
1011      }
1012
1013      FuncInfo->VisitedBBs.insert(LLVMBB);
1014    }
1015
1016    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
1017    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1018
1019    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
1020    BasicBlock::const_iterator const End = LLVMBB->end();
1021    BasicBlock::const_iterator BI = End;
1022
1023    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
1024
1025    // Setup an EH landing-pad block.
1026    if (FuncInfo->MBB->isLandingPad())
1027      PrepareEHLandingPad();
1028
1029    // Lower any arguments needed in this block if this is the entry block.
1030    if (LLVMBB == &Fn.getEntryBlock())
1031      LowerArguments(LLVMBB);
1032
1033    // Before doing SelectionDAG ISel, see if FastISel has been requested.
1034    if (FastIS) {
1035      FastIS->startNewBlock();
1036
1037      // Emit code for any incoming arguments. This must happen before
1038      // beginning FastISel on the entry block.
1039      if (LLVMBB == &Fn.getEntryBlock()) {
1040        CurDAG->setRoot(SDB->getControlRoot());
1041        SDB->clear();
1042        CodeGenAndEmitDAG();
1043
1044        // If we inserted any instructions at the beginning, make a note of
1045        // where they are, so we can be sure to emit subsequent instructions
1046        // after them.
1047        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
1048          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
1049        else
1050          FastIS->setLastLocalValue(0);
1051      }
1052
1053      unsigned NumFastIselRemaining = std::distance(Begin, End);
1054      // Do FastISel on as many instructions as possible.
1055      for (; BI != Begin; --BI) {
1056        const Instruction *Inst = llvm::prior(BI);
1057
1058        // If we no longer require this instruction, skip it.
1059        if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
1060          --NumFastIselRemaining;
1061          continue;
1062        }
1063
1064        // Bottom-up: reset the insert pos at the top, after any local-value
1065        // instructions.
1066        FastIS->recomputeInsertPt();
1067
1068        // Try to select the instruction with FastISel.
1069        if (FastIS->SelectInstruction(Inst)) {
1070          --NumFastIselRemaining;
1071          ++NumFastIselSuccess;
1072          // If fast isel succeeded, skip over all the folded instructions, and
1073          // then see if there is a load right before the selected instructions.
1074          // Try to fold the load if so.
1075          const Instruction *BeforeInst = Inst;
1076          while (BeforeInst != Begin) {
1077            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
1078            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
1079              break;
1080          }
1081          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
1082              BeforeInst->hasOneUse() &&
1083              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) {
1084            // If we succeeded, don't re-select the load.
1085            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
1086            --NumFastIselRemaining;
1087            ++NumFastIselSuccess;
1088          }
1089          continue;
1090        }
1091
1092#ifndef NDEBUG
1093        if (EnableFastISelVerbose2)
1094          collectFailStats(Inst);
1095#endif
1096
1097        // Then handle certain instructions as single-LLVM-Instruction blocks.
1098        if (isa<CallInst>(Inst)) {
1099
1100          if (EnableFastISelVerbose || EnableFastISelAbort) {
1101            dbgs() << "FastISel missed call: ";
1102            Inst->dump();
1103          }
1104
1105          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
1106            unsigned &R = FuncInfo->ValueMap[Inst];
1107            if (!R)
1108              R = FuncInfo->CreateRegs(Inst->getType());
1109          }
1110
1111          bool HadTailCall = false;
1112          SelectBasicBlock(Inst, BI, HadTailCall);
1113
1114          // Recompute NumFastIselRemaining as Selection DAG instruction
1115          // selection may have handled the call, input args, etc.
1116          unsigned RemainingNow = std::distance(Begin, BI);
1117          NumFastIselFailures += NumFastIselRemaining - RemainingNow;
1118
1119          // If the call was emitted as a tail call, we're done with the block.
1120          if (HadTailCall) {
1121            --BI;
1122            break;
1123          }
1124
1125          NumFastIselRemaining = RemainingNow;
1126          continue;
1127        }
1128
1129        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
1130          // Don't abort, and use a different message for terminator misses.
1131          NumFastIselFailures += NumFastIselRemaining;
1132          if (EnableFastISelVerbose || EnableFastISelAbort) {
1133            dbgs() << "FastISel missed terminator: ";
1134            Inst->dump();
1135          }
1136        } else {
1137          NumFastIselFailures += NumFastIselRemaining;
1138          if (EnableFastISelVerbose || EnableFastISelAbort) {
1139            dbgs() << "FastISel miss: ";
1140            Inst->dump();
1141          }
1142          if (EnableFastISelAbort)
1143            // The "fast" selector couldn't handle something and bailed.
1144            // For the purpose of debugging, just abort.
1145            llvm_unreachable("FastISel didn't select the entire block");
1146        }
1147        break;
1148      }
1149
1150      FastIS->recomputeInsertPt();
1151    }
1152
1153    if (Begin != BI)
1154      ++NumDAGBlocks;
1155    else
1156      ++NumFastIselBlocks;
1157
1158    if (Begin != BI) {
1159      // Run SelectionDAG instruction selection on the remainder of the block
1160      // not handled by FastISel. If FastISel is not run, this is the entire
1161      // block.
1162      bool HadTailCall;
1163      SelectBasicBlock(Begin, BI, HadTailCall);
1164    }
1165
1166    FinishBasicBlock();
1167    FuncInfo->PHINodesToUpdate.clear();
1168  }
1169
1170  delete FastIS;
1171  SDB->clearDanglingDebugInfo();
1172}
1173
1174void
1175SelectionDAGISel::FinishBasicBlock() {
1176
1177  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1178               << FuncInfo->PHINodesToUpdate.size() << "\n";
1179        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1180          dbgs() << "Node " << i << " : ("
1181                 << FuncInfo->PHINodesToUpdate[i].first
1182                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1183
1184  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1185  // PHI nodes in successors.
1186  if (SDB->SwitchCases.empty() &&
1187      SDB->JTCases.empty() &&
1188      SDB->BitTestCases.empty()) {
1189    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1190      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1191      assert(PHI->isPHI() &&
1192             "This is not a machine PHI node that we are updating!");
1193      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1194        continue;
1195      PHI->addOperand(
1196        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1197      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1198    }
1199    return;
1200  }
1201
1202  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1203    // Lower header first, if it wasn't already lowered
1204    if (!SDB->BitTestCases[i].Emitted) {
1205      // Set the current basic block to the mbb we wish to insert the code into
1206      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1207      FuncInfo->InsertPt = FuncInfo->MBB->end();
1208      // Emit the code
1209      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1210      CurDAG->setRoot(SDB->getRoot());
1211      SDB->clear();
1212      CodeGenAndEmitDAG();
1213    }
1214
1215    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1216      // Set the current basic block to the mbb we wish to insert the code into
1217      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1218      FuncInfo->InsertPt = FuncInfo->MBB->end();
1219      // Emit the code
1220      if (j+1 != ej)
1221        SDB->visitBitTestCase(SDB->BitTestCases[i],
1222                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1223                              SDB->BitTestCases[i].Reg,
1224                              SDB->BitTestCases[i].Cases[j],
1225                              FuncInfo->MBB);
1226      else
1227        SDB->visitBitTestCase(SDB->BitTestCases[i],
1228                              SDB->BitTestCases[i].Default,
1229                              SDB->BitTestCases[i].Reg,
1230                              SDB->BitTestCases[i].Cases[j],
1231                              FuncInfo->MBB);
1232
1233
1234      CurDAG->setRoot(SDB->getRoot());
1235      SDB->clear();
1236      CodeGenAndEmitDAG();
1237    }
1238
1239    // Update PHI Nodes
1240    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1241         pi != pe; ++pi) {
1242      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1243      MachineBasicBlock *PHIBB = PHI->getParent();
1244      assert(PHI->isPHI() &&
1245             "This is not a machine PHI node that we are updating!");
1246      // This is "default" BB. We have two jumps to it. From "header" BB and
1247      // from last "case" BB.
1248      if (PHIBB == SDB->BitTestCases[i].Default) {
1249        PHI->addOperand(MachineOperand::
1250                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1251                                  false));
1252        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1253        PHI->addOperand(MachineOperand::
1254                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1255                                  false));
1256        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1257                                                  back().ThisBB));
1258      }
1259      // One of "cases" BB.
1260      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1261           j != ej; ++j) {
1262        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1263        if (cBB->isSuccessor(PHIBB)) {
1264          PHI->addOperand(MachineOperand::
1265                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1266                                    false));
1267          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1268        }
1269      }
1270    }
1271  }
1272  SDB->BitTestCases.clear();
1273
1274  // If the JumpTable record is filled in, then we need to emit a jump table.
1275  // Updating the PHI nodes is tricky in this case, since we need to determine
1276  // whether the PHI is a successor of the range check MBB or the jump table MBB
1277  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1278    // Lower header first, if it wasn't already lowered
1279    if (!SDB->JTCases[i].first.Emitted) {
1280      // Set the current basic block to the mbb we wish to insert the code into
1281      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1282      FuncInfo->InsertPt = FuncInfo->MBB->end();
1283      // Emit the code
1284      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1285                                FuncInfo->MBB);
1286      CurDAG->setRoot(SDB->getRoot());
1287      SDB->clear();
1288      CodeGenAndEmitDAG();
1289    }
1290
1291    // Set the current basic block to the mbb we wish to insert the code into
1292    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1293    FuncInfo->InsertPt = FuncInfo->MBB->end();
1294    // Emit the code
1295    SDB->visitJumpTable(SDB->JTCases[i].second);
1296    CurDAG->setRoot(SDB->getRoot());
1297    SDB->clear();
1298    CodeGenAndEmitDAG();
1299
1300    // Update PHI Nodes
1301    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1302         pi != pe; ++pi) {
1303      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1304      MachineBasicBlock *PHIBB = PHI->getParent();
1305      assert(PHI->isPHI() &&
1306             "This is not a machine PHI node that we are updating!");
1307      // "default" BB. We can go there only from header BB.
1308      if (PHIBB == SDB->JTCases[i].second.Default) {
1309        PHI->addOperand
1310          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1311                                     false));
1312        PHI->addOperand
1313          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1314      }
1315      // JT BB. Just iterate over successors here
1316      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1317        PHI->addOperand
1318          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1319                                     false));
1320        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1321      }
1322    }
1323  }
1324  SDB->JTCases.clear();
1325
1326  // If the switch block involved a branch to one of the actual successors, we
1327  // need to update PHI nodes in that block.
1328  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1329    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1330    assert(PHI->isPHI() &&
1331           "This is not a machine PHI node that we are updating!");
1332    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1333      PHI->addOperand(
1334        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1335      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1336    }
1337  }
1338
1339  // If we generated any switch lowering information, build and codegen any
1340  // additional DAGs necessary.
1341  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1342    // Set the current basic block to the mbb we wish to insert the code into
1343    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1344    FuncInfo->InsertPt = FuncInfo->MBB->end();
1345
1346    // Determine the unique successors.
1347    SmallVector<MachineBasicBlock *, 2> Succs;
1348    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1349    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1350      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1351
1352    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1353    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1354    CurDAG->setRoot(SDB->getRoot());
1355    SDB->clear();
1356    CodeGenAndEmitDAG();
1357
1358    // Remember the last block, now that any splitting is done, for use in
1359    // populating PHI nodes in successors.
1360    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1361
1362    // Handle any PHI nodes in successors of this chunk, as if we were coming
1363    // from the original BB before switch expansion.  Note that PHI nodes can
1364    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1365    // handle them the right number of times.
1366    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1367      FuncInfo->MBB = Succs[i];
1368      FuncInfo->InsertPt = FuncInfo->MBB->end();
1369      // FuncInfo->MBB may have been removed from the CFG if a branch was
1370      // constant folded.
1371      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1372        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1373             Phi != FuncInfo->MBB->end() && Phi->isPHI();
1374             ++Phi) {
1375          // This value for this PHI node is recorded in PHINodesToUpdate.
1376          for (unsigned pn = 0; ; ++pn) {
1377            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1378                   "Didn't find PHI entry!");
1379            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1380              Phi->addOperand(MachineOperand::
1381                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1382                                        false));
1383              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1384              break;
1385            }
1386          }
1387        }
1388      }
1389    }
1390  }
1391  SDB->SwitchCases.clear();
1392}
1393
1394
1395/// Create the scheduler. If a specific scheduler was specified
1396/// via the SchedulerRegistry, use it, otherwise select the
1397/// one preferred by the target.
1398///
1399ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1400  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1401
1402  if (!Ctor) {
1403    Ctor = ISHeuristic;
1404    RegisterScheduler::setDefault(Ctor);
1405  }
1406
1407  return Ctor(this, OptLevel);
1408}
1409
1410//===----------------------------------------------------------------------===//
1411// Helper functions used by the generated instruction selector.
1412//===----------------------------------------------------------------------===//
1413// Calls to these methods are generated by tblgen.
1414
1415/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1416/// the dag combiner simplified the 255, we still want to match.  RHS is the
1417/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1418/// specified in the .td file (e.g. 255).
1419bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1420                                    int64_t DesiredMaskS) const {
1421  const APInt &ActualMask = RHS->getAPIntValue();
1422  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1423
1424  // If the actual mask exactly matches, success!
1425  if (ActualMask == DesiredMask)
1426    return true;
1427
1428  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1429  if (ActualMask.intersects(~DesiredMask))
1430    return false;
1431
1432  // Otherwise, the DAG Combiner may have proven that the value coming in is
1433  // either already zero or is not demanded.  Check for known zero input bits.
1434  APInt NeededMask = DesiredMask & ~ActualMask;
1435  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1436    return true;
1437
1438  // TODO: check to see if missing bits are just not demanded.
1439
1440  // Otherwise, this pattern doesn't match.
1441  return false;
1442}
1443
1444/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1445/// the dag combiner simplified the 255, we still want to match.  RHS is the
1446/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1447/// specified in the .td file (e.g. 255).
1448bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1449                                   int64_t DesiredMaskS) const {
1450  const APInt &ActualMask = RHS->getAPIntValue();
1451  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1452
1453  // If the actual mask exactly matches, success!
1454  if (ActualMask == DesiredMask)
1455    return true;
1456
1457  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1458  if (ActualMask.intersects(~DesiredMask))
1459    return false;
1460
1461  // Otherwise, the DAG Combiner may have proven that the value coming in is
1462  // either already zero or is not demanded.  Check for known zero input bits.
1463  APInt NeededMask = DesiredMask & ~ActualMask;
1464
1465  APInt KnownZero, KnownOne;
1466  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1467
1468  // If all the missing bits in the or are already known to be set, match!
1469  if ((NeededMask & KnownOne) == NeededMask)
1470    return true;
1471
1472  // TODO: check to see if missing bits are just not demanded.
1473
1474  // Otherwise, this pattern doesn't match.
1475  return false;
1476}
1477
1478
1479/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1480/// by tblgen.  Others should not call it.
1481void SelectionDAGISel::
1482SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1483  std::vector<SDValue> InOps;
1484  std::swap(InOps, Ops);
1485
1486  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1487  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1488  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1489  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1490
1491  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1492  if (InOps[e-1].getValueType() == MVT::Glue)
1493    --e;  // Don't process a glue operand if it is here.
1494
1495  while (i != e) {
1496    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1497    if (!InlineAsm::isMemKind(Flags)) {
1498      // Just skip over this operand, copying the operands verbatim.
1499      Ops.insert(Ops.end(), InOps.begin()+i,
1500                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1501      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1502    } else {
1503      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1504             "Memory operand with multiple values?");
1505      // Otherwise, this is a memory operand.  Ask the target to select it.
1506      std::vector<SDValue> SelOps;
1507      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1508        report_fatal_error("Could not match memory address.  Inline asm"
1509                           " failure!");
1510
1511      // Add this to the output node.
1512      unsigned NewFlags =
1513        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1514      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1515      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1516      i += 2;
1517    }
1518  }
1519
1520  // Add the glue input back if present.
1521  if (e != InOps.size())
1522    Ops.push_back(InOps.back());
1523}
1524
1525/// findGlueUse - Return use of MVT::Glue value produced by the specified
1526/// SDNode.
1527///
1528static SDNode *findGlueUse(SDNode *N) {
1529  unsigned FlagResNo = N->getNumValues()-1;
1530  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1531    SDUse &Use = I.getUse();
1532    if (Use.getResNo() == FlagResNo)
1533      return Use.getUser();
1534  }
1535  return NULL;
1536}
1537
1538/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1539/// This function recursively traverses up the operand chain, ignoring
1540/// certain nodes.
1541static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1542                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1543                          bool IgnoreChains) {
1544  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1545  // greater than all of its (recursive) operands.  If we scan to a point where
1546  // 'use' is smaller than the node we're scanning for, then we know we will
1547  // never find it.
1548  //
1549  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1550  // happen because we scan down to newly selected nodes in the case of glue
1551  // uses.
1552  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1553    return false;
1554
1555  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1556  // won't fail if we scan it again.
1557  if (!Visited.insert(Use))
1558    return false;
1559
1560  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1561    // Ignore chain uses, they are validated by HandleMergeInputChains.
1562    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1563      continue;
1564
1565    SDNode *N = Use->getOperand(i).getNode();
1566    if (N == Def) {
1567      if (Use == ImmedUse || Use == Root)
1568        continue;  // We are not looking for immediate use.
1569      assert(N != Root);
1570      return true;
1571    }
1572
1573    // Traverse up the operand chain.
1574    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1575      return true;
1576  }
1577  return false;
1578}
1579
1580/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1581/// operand node N of U during instruction selection that starts at Root.
1582bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1583                                          SDNode *Root) const {
1584  if (OptLevel == CodeGenOpt::None) return false;
1585  return N.hasOneUse();
1586}
1587
1588/// IsLegalToFold - Returns true if the specific operand node N of
1589/// U can be folded during instruction selection that starts at Root.
1590bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1591                                     CodeGenOpt::Level OptLevel,
1592                                     bool IgnoreChains) {
1593  if (OptLevel == CodeGenOpt::None) return false;
1594
1595  // If Root use can somehow reach N through a path that that doesn't contain
1596  // U then folding N would create a cycle. e.g. In the following
1597  // diagram, Root can reach N through X. If N is folded into into Root, then
1598  // X is both a predecessor and a successor of U.
1599  //
1600  //          [N*]           //
1601  //         ^   ^           //
1602  //        /     \          //
1603  //      [U*]    [X]?       //
1604  //        ^     ^          //
1605  //         \   /           //
1606  //          \ /            //
1607  //         [Root*]         //
1608  //
1609  // * indicates nodes to be folded together.
1610  //
1611  // If Root produces glue, then it gets (even more) interesting. Since it
1612  // will be "glued" together with its glue use in the scheduler, we need to
1613  // check if it might reach N.
1614  //
1615  //          [N*]           //
1616  //         ^   ^           //
1617  //        /     \          //
1618  //      [U*]    [X]?       //
1619  //        ^       ^        //
1620  //         \       \       //
1621  //          \      |       //
1622  //         [Root*] |       //
1623  //          ^      |       //
1624  //          f      |       //
1625  //          |      /       //
1626  //         [Y]    /        //
1627  //           ^   /         //
1628  //           f  /          //
1629  //           | /           //
1630  //          [GU]           //
1631  //
1632  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1633  // (call it Fold), then X is a predecessor of GU and a successor of
1634  // Fold. But since Fold and GU are glued together, this will create
1635  // a cycle in the scheduling graph.
1636
1637  // If the node has glue, walk down the graph to the "lowest" node in the
1638  // glueged set.
1639  EVT VT = Root->getValueType(Root->getNumValues()-1);
1640  while (VT == MVT::Glue) {
1641    SDNode *GU = findGlueUse(Root);
1642    if (GU == NULL)
1643      break;
1644    Root = GU;
1645    VT = Root->getValueType(Root->getNumValues()-1);
1646
1647    // If our query node has a glue result with a use, we've walked up it.  If
1648    // the user (which has already been selected) has a chain or indirectly uses
1649    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1650    // this, we cannot ignore chains in this predicate.
1651    IgnoreChains = false;
1652  }
1653
1654
1655  SmallPtrSet<SDNode*, 16> Visited;
1656  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1657}
1658
1659SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1660  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1661  SelectInlineAsmMemoryOperands(Ops);
1662
1663  std::vector<EVT> VTs;
1664  VTs.push_back(MVT::Other);
1665  VTs.push_back(MVT::Glue);
1666  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1667                                VTs, &Ops[0], Ops.size());
1668  New->setNodeId(-1);
1669  return New.getNode();
1670}
1671
1672SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1673  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1674}
1675
1676/// GetVBR - decode a vbr encoding whose top bit is set.
1677LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1678GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1679  assert(Val >= 128 && "Not a VBR");
1680  Val &= 127;  // Remove first vbr bit.
1681
1682  unsigned Shift = 7;
1683  uint64_t NextBits;
1684  do {
1685    NextBits = MatcherTable[Idx++];
1686    Val |= (NextBits&127) << Shift;
1687    Shift += 7;
1688  } while (NextBits & 128);
1689
1690  return Val;
1691}
1692
1693
1694/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1695/// interior glue and chain results to use the new glue and chain results.
1696void SelectionDAGISel::
1697UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1698                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1699                    SDValue InputGlue,
1700                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1701                    bool isMorphNodeTo) {
1702  SmallVector<SDNode*, 4> NowDeadNodes;
1703
1704  ISelUpdater ISU(ISelPosition);
1705
1706  // Now that all the normal results are replaced, we replace the chain and
1707  // glue results if present.
1708  if (!ChainNodesMatched.empty()) {
1709    assert(InputChain.getNode() != 0 &&
1710           "Matched input chains but didn't produce a chain");
1711    // Loop over all of the nodes we matched that produced a chain result.
1712    // Replace all the chain results with the final chain we ended up with.
1713    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1714      SDNode *ChainNode = ChainNodesMatched[i];
1715
1716      // If this node was already deleted, don't look at it.
1717      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1718        continue;
1719
1720      // Don't replace the results of the root node if we're doing a
1721      // MorphNodeTo.
1722      if (ChainNode == NodeToMatch && isMorphNodeTo)
1723        continue;
1724
1725      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1726      if (ChainVal.getValueType() == MVT::Glue)
1727        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1728      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1729      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1730
1731      // If the node became dead and we haven't already seen it, delete it.
1732      if (ChainNode->use_empty() &&
1733          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1734        NowDeadNodes.push_back(ChainNode);
1735    }
1736  }
1737
1738  // If the result produces glue, update any glue results in the matched
1739  // pattern with the glue result.
1740  if (InputGlue.getNode() != 0) {
1741    // Handle any interior nodes explicitly marked.
1742    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1743      SDNode *FRN = GlueResultNodesMatched[i];
1744
1745      // If this node was already deleted, don't look at it.
1746      if (FRN->getOpcode() == ISD::DELETED_NODE)
1747        continue;
1748
1749      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1750             "Doesn't have a glue result");
1751      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1752                                        InputGlue, &ISU);
1753
1754      // If the node became dead and we haven't already seen it, delete it.
1755      if (FRN->use_empty() &&
1756          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1757        NowDeadNodes.push_back(FRN);
1758    }
1759  }
1760
1761  if (!NowDeadNodes.empty())
1762    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1763
1764  DEBUG(errs() << "ISEL: Match complete!\n");
1765}
1766
1767enum ChainResult {
1768  CR_Simple,
1769  CR_InducesCycle,
1770  CR_LeadsToInteriorNode
1771};
1772
1773/// WalkChainUsers - Walk down the users of the specified chained node that is
1774/// part of the pattern we're matching, looking at all of the users we find.
1775/// This determines whether something is an interior node, whether we have a
1776/// non-pattern node in between two pattern nodes (which prevent folding because
1777/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1778/// between pattern nodes (in which case the TF becomes part of the pattern).
1779///
1780/// The walk we do here is guaranteed to be small because we quickly get down to
1781/// already selected nodes "below" us.
1782static ChainResult
1783WalkChainUsers(SDNode *ChainedNode,
1784               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1785               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1786  ChainResult Result = CR_Simple;
1787
1788  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1789         E = ChainedNode->use_end(); UI != E; ++UI) {
1790    // Make sure the use is of the chain, not some other value we produce.
1791    if (UI.getUse().getValueType() != MVT::Other) continue;
1792
1793    SDNode *User = *UI;
1794
1795    // If we see an already-selected machine node, then we've gone beyond the
1796    // pattern that we're selecting down into the already selected chunk of the
1797    // DAG.
1798    if (User->isMachineOpcode() ||
1799        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1800      continue;
1801
1802    if (User->getOpcode() == ISD::CopyToReg ||
1803        User->getOpcode() == ISD::CopyFromReg ||
1804        User->getOpcode() == ISD::INLINEASM ||
1805        User->getOpcode() == ISD::EH_LABEL) {
1806      // If their node ID got reset to -1 then they've already been selected.
1807      // Treat them like a MachineOpcode.
1808      if (User->getNodeId() == -1)
1809        continue;
1810    }
1811
1812    // If we have a TokenFactor, we handle it specially.
1813    if (User->getOpcode() != ISD::TokenFactor) {
1814      // If the node isn't a token factor and isn't part of our pattern, then it
1815      // must be a random chained node in between two nodes we're selecting.
1816      // This happens when we have something like:
1817      //   x = load ptr
1818      //   call
1819      //   y = x+4
1820      //   store y -> ptr
1821      // Because we structurally match the load/store as a read/modify/write,
1822      // but the call is chained between them.  We cannot fold in this case
1823      // because it would induce a cycle in the graph.
1824      if (!std::count(ChainedNodesInPattern.begin(),
1825                      ChainedNodesInPattern.end(), User))
1826        return CR_InducesCycle;
1827
1828      // Otherwise we found a node that is part of our pattern.  For example in:
1829      //   x = load ptr
1830      //   y = x+4
1831      //   store y -> ptr
1832      // This would happen when we're scanning down from the load and see the
1833      // store as a user.  Record that there is a use of ChainedNode that is
1834      // part of the pattern and keep scanning uses.
1835      Result = CR_LeadsToInteriorNode;
1836      InteriorChainedNodes.push_back(User);
1837      continue;
1838    }
1839
1840    // If we found a TokenFactor, there are two cases to consider: first if the
1841    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1842    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1843    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1844    //     [Load chain]
1845    //         ^
1846    //         |
1847    //       [Load]
1848    //       ^    ^
1849    //       |    \                    DAG's like cheese
1850    //      /       \                       do you?
1851    //     /         |
1852    // [TokenFactor] [Op]
1853    //     ^          ^
1854    //     |          |
1855    //      \        /
1856    //       \      /
1857    //       [Store]
1858    //
1859    // In this case, the TokenFactor becomes part of our match and we rewrite it
1860    // as a new TokenFactor.
1861    //
1862    // To distinguish these two cases, do a recursive walk down the uses.
1863    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1864    case CR_Simple:
1865      // If the uses of the TokenFactor are just already-selected nodes, ignore
1866      // it, it is "below" our pattern.
1867      continue;
1868    case CR_InducesCycle:
1869      // If the uses of the TokenFactor lead to nodes that are not part of our
1870      // pattern that are not selected, folding would turn this into a cycle,
1871      // bail out now.
1872      return CR_InducesCycle;
1873    case CR_LeadsToInteriorNode:
1874      break;  // Otherwise, keep processing.
1875    }
1876
1877    // Okay, we know we're in the interesting interior case.  The TokenFactor
1878    // is now going to be considered part of the pattern so that we rewrite its
1879    // uses (it may have uses that are not part of the pattern) with the
1880    // ultimate chain result of the generated code.  We will also add its chain
1881    // inputs as inputs to the ultimate TokenFactor we create.
1882    Result = CR_LeadsToInteriorNode;
1883    ChainedNodesInPattern.push_back(User);
1884    InteriorChainedNodes.push_back(User);
1885    continue;
1886  }
1887
1888  return Result;
1889}
1890
1891/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1892/// operation for when the pattern matched at least one node with a chains.  The
1893/// input vector contains a list of all of the chained nodes that we match.  We
1894/// must determine if this is a valid thing to cover (i.e. matching it won't
1895/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1896/// be used as the input node chain for the generated nodes.
1897static SDValue
1898HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1899                       SelectionDAG *CurDAG) {
1900  // Walk all of the chained nodes we've matched, recursively scanning down the
1901  // users of the chain result. This adds any TokenFactor nodes that are caught
1902  // in between chained nodes to the chained and interior nodes list.
1903  SmallVector<SDNode*, 3> InteriorChainedNodes;
1904  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1905    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1906                       InteriorChainedNodes) == CR_InducesCycle)
1907      return SDValue(); // Would induce a cycle.
1908  }
1909
1910  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1911  // that we are interested in.  Form our input TokenFactor node.
1912  SmallVector<SDValue, 3> InputChains;
1913  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1914    // Add the input chain of this node to the InputChains list (which will be
1915    // the operands of the generated TokenFactor) if it's not an interior node.
1916    SDNode *N = ChainNodesMatched[i];
1917    if (N->getOpcode() != ISD::TokenFactor) {
1918      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1919        continue;
1920
1921      // Otherwise, add the input chain.
1922      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1923      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1924      InputChains.push_back(InChain);
1925      continue;
1926    }
1927
1928    // If we have a token factor, we want to add all inputs of the token factor
1929    // that are not part of the pattern we're matching.
1930    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1931      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1932                      N->getOperand(op).getNode()))
1933        InputChains.push_back(N->getOperand(op));
1934    }
1935  }
1936
1937  SDValue Res;
1938  if (InputChains.size() == 1)
1939    return InputChains[0];
1940  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1941                         MVT::Other, &InputChains[0], InputChains.size());
1942}
1943
1944/// MorphNode - Handle morphing a node in place for the selector.
1945SDNode *SelectionDAGISel::
1946MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1947          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1948  // It is possible we're using MorphNodeTo to replace a node with no
1949  // normal results with one that has a normal result (or we could be
1950  // adding a chain) and the input could have glue and chains as well.
1951  // In this case we need to shift the operands down.
1952  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1953  // than the old isel though.
1954  int OldGlueResultNo = -1, OldChainResultNo = -1;
1955
1956  unsigned NTMNumResults = Node->getNumValues();
1957  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1958    OldGlueResultNo = NTMNumResults-1;
1959    if (NTMNumResults != 1 &&
1960        Node->getValueType(NTMNumResults-2) == MVT::Other)
1961      OldChainResultNo = NTMNumResults-2;
1962  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1963    OldChainResultNo = NTMNumResults-1;
1964
1965  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1966  // that this deletes operands of the old node that become dead.
1967  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1968
1969  // MorphNodeTo can operate in two ways: if an existing node with the
1970  // specified operands exists, it can just return it.  Otherwise, it
1971  // updates the node in place to have the requested operands.
1972  if (Res == Node) {
1973    // If we updated the node in place, reset the node ID.  To the isel,
1974    // this should be just like a newly allocated machine node.
1975    Res->setNodeId(-1);
1976  }
1977
1978  unsigned ResNumResults = Res->getNumValues();
1979  // Move the glue if needed.
1980  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1981      (unsigned)OldGlueResultNo != ResNumResults-1)
1982    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1983                                      SDValue(Res, ResNumResults-1));
1984
1985  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1986    --ResNumResults;
1987
1988  // Move the chain reference if needed.
1989  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1990      (unsigned)OldChainResultNo != ResNumResults-1)
1991    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1992                                      SDValue(Res, ResNumResults-1));
1993
1994  // Otherwise, no replacement happened because the node already exists. Replace
1995  // Uses of the old node with the new one.
1996  if (Res != Node)
1997    CurDAG->ReplaceAllUsesWith(Node, Res);
1998
1999  return Res;
2000}
2001
2002/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2003LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2004CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2005          SDValue N,
2006          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2007  // Accept if it is exactly the same as a previously recorded node.
2008  unsigned RecNo = MatcherTable[MatcherIndex++];
2009  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2010  return N == RecordedNodes[RecNo].first;
2011}
2012
2013/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
2014LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2015CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2016                      SelectionDAGISel &SDISel) {
2017  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
2018}
2019
2020/// CheckNodePredicate - Implements OP_CheckNodePredicate.
2021LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2022CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2023                   SelectionDAGISel &SDISel, SDNode *N) {
2024  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
2025}
2026
2027LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2028CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2029            SDNode *N) {
2030  uint16_t Opc = MatcherTable[MatcherIndex++];
2031  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2032  return N->getOpcode() == Opc;
2033}
2034
2035LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2036CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2037          SDValue N, const TargetLowering &TLI) {
2038  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2039  if (N.getValueType() == VT) return true;
2040
2041  // Handle the case when VT is iPTR.
2042  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
2043}
2044
2045LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2046CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2047               SDValue N, const TargetLowering &TLI,
2048               unsigned ChildNo) {
2049  if (ChildNo >= N.getNumOperands())
2050    return false;  // Match fails if out of range child #.
2051  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
2052}
2053
2054
2055LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2056CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2057              SDValue N) {
2058  return cast<CondCodeSDNode>(N)->get() ==
2059      (ISD::CondCode)MatcherTable[MatcherIndex++];
2060}
2061
2062LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2063CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2064               SDValue N, const TargetLowering &TLI) {
2065  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2066  if (cast<VTSDNode>(N)->getVT() == VT)
2067    return true;
2068
2069  // Handle the case when VT is iPTR.
2070  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
2071}
2072
2073LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2074CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2075             SDValue N) {
2076  int64_t Val = MatcherTable[MatcherIndex++];
2077  if (Val & 128)
2078    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2079
2080  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
2081  return C != 0 && C->getSExtValue() == Val;
2082}
2083
2084LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2085CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2086            SDValue N, SelectionDAGISel &SDISel) {
2087  int64_t Val = MatcherTable[MatcherIndex++];
2088  if (Val & 128)
2089    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2090
2091  if (N->getOpcode() != ISD::AND) return false;
2092
2093  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2094  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
2095}
2096
2097LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
2098CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
2099           SDValue N, SelectionDAGISel &SDISel) {
2100  int64_t Val = MatcherTable[MatcherIndex++];
2101  if (Val & 128)
2102    Val = GetVBR(Val, MatcherTable, MatcherIndex);
2103
2104  if (N->getOpcode() != ISD::OR) return false;
2105
2106  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2107  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
2108}
2109
2110/// IsPredicateKnownToFail - If we know how and can do so without pushing a
2111/// scope, evaluate the current node.  If the current predicate is known to
2112/// fail, set Result=true and return anything.  If the current predicate is
2113/// known to pass, set Result=false and return the MatcherIndex to continue
2114/// with.  If the current predicate is unknown, set Result=false and return the
2115/// MatcherIndex to continue with.
2116static unsigned IsPredicateKnownToFail(const unsigned char *Table,
2117                                       unsigned Index, SDValue N,
2118                                       bool &Result, SelectionDAGISel &SDISel,
2119                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
2120  switch (Table[Index++]) {
2121  default:
2122    Result = false;
2123    return Index-1;  // Could not evaluate this predicate.
2124  case SelectionDAGISel::OPC_CheckSame:
2125    Result = !::CheckSame(Table, Index, N, RecordedNodes);
2126    return Index;
2127  case SelectionDAGISel::OPC_CheckPatternPredicate:
2128    Result = !::CheckPatternPredicate(Table, Index, SDISel);
2129    return Index;
2130  case SelectionDAGISel::OPC_CheckPredicate:
2131    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
2132    return Index;
2133  case SelectionDAGISel::OPC_CheckOpcode:
2134    Result = !::CheckOpcode(Table, Index, N.getNode());
2135    return Index;
2136  case SelectionDAGISel::OPC_CheckType:
2137    Result = !::CheckType(Table, Index, N, SDISel.TLI);
2138    return Index;
2139  case SelectionDAGISel::OPC_CheckChild0Type:
2140  case SelectionDAGISel::OPC_CheckChild1Type:
2141  case SelectionDAGISel::OPC_CheckChild2Type:
2142  case SelectionDAGISel::OPC_CheckChild3Type:
2143  case SelectionDAGISel::OPC_CheckChild4Type:
2144  case SelectionDAGISel::OPC_CheckChild5Type:
2145  case SelectionDAGISel::OPC_CheckChild6Type:
2146  case SelectionDAGISel::OPC_CheckChild7Type:
2147    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
2148                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
2149    return Index;
2150  case SelectionDAGISel::OPC_CheckCondCode:
2151    Result = !::CheckCondCode(Table, Index, N);
2152    return Index;
2153  case SelectionDAGISel::OPC_CheckValueType:
2154    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2155    return Index;
2156  case SelectionDAGISel::OPC_CheckInteger:
2157    Result = !::CheckInteger(Table, Index, N);
2158    return Index;
2159  case SelectionDAGISel::OPC_CheckAndImm:
2160    Result = !::CheckAndImm(Table, Index, N, SDISel);
2161    return Index;
2162  case SelectionDAGISel::OPC_CheckOrImm:
2163    Result = !::CheckOrImm(Table, Index, N, SDISel);
2164    return Index;
2165  }
2166}
2167
2168namespace {
2169
2170struct MatchScope {
2171  /// FailIndex - If this match fails, this is the index to continue with.
2172  unsigned FailIndex;
2173
2174  /// NodeStack - The node stack when the scope was formed.
2175  SmallVector<SDValue, 4> NodeStack;
2176
2177  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2178  unsigned NumRecordedNodes;
2179
2180  /// NumMatchedMemRefs - The number of matched memref entries.
2181  unsigned NumMatchedMemRefs;
2182
2183  /// InputChain/InputGlue - The current chain/glue
2184  SDValue InputChain, InputGlue;
2185
2186  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2187  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2188};
2189
2190}
2191
2192SDNode *SelectionDAGISel::
2193SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2194                 unsigned TableSize) {
2195  // FIXME: Should these even be selected?  Handle these cases in the caller?
2196  switch (NodeToMatch->getOpcode()) {
2197  default:
2198    break;
2199  case ISD::EntryToken:       // These nodes remain the same.
2200  case ISD::BasicBlock:
2201  case ISD::Register:
2202  //case ISD::VALUETYPE:
2203  //case ISD::CONDCODE:
2204  case ISD::HANDLENODE:
2205  case ISD::MDNODE_SDNODE:
2206  case ISD::TargetConstant:
2207  case ISD::TargetConstantFP:
2208  case ISD::TargetConstantPool:
2209  case ISD::TargetFrameIndex:
2210  case ISD::TargetExternalSymbol:
2211  case ISD::TargetBlockAddress:
2212  case ISD::TargetJumpTable:
2213  case ISD::TargetGlobalTLSAddress:
2214  case ISD::TargetGlobalAddress:
2215  case ISD::TokenFactor:
2216  case ISD::CopyFromReg:
2217  case ISD::CopyToReg:
2218  case ISD::EH_LABEL:
2219    NodeToMatch->setNodeId(-1); // Mark selected.
2220    return 0;
2221  case ISD::AssertSext:
2222  case ISD::AssertZext:
2223    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2224                                      NodeToMatch->getOperand(0));
2225    return 0;
2226  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2227  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2228  }
2229
2230  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2231
2232  // Set up the node stack with NodeToMatch as the only node on the stack.
2233  SmallVector<SDValue, 8> NodeStack;
2234  SDValue N = SDValue(NodeToMatch, 0);
2235  NodeStack.push_back(N);
2236
2237  // MatchScopes - Scopes used when matching, if a match failure happens, this
2238  // indicates where to continue checking.
2239  SmallVector<MatchScope, 8> MatchScopes;
2240
2241  // RecordedNodes - This is the set of nodes that have been recorded by the
2242  // state machine.  The second value is the parent of the node, or null if the
2243  // root is recorded.
2244  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2245
2246  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2247  // pattern.
2248  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2249
2250  // These are the current input chain and glue for use when generating nodes.
2251  // Various Emit operations change these.  For example, emitting a copytoreg
2252  // uses and updates these.
2253  SDValue InputChain, InputGlue;
2254
2255  // ChainNodesMatched - If a pattern matches nodes that have input/output
2256  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2257  // which ones they are.  The result is captured into this list so that we can
2258  // update the chain results when the pattern is complete.
2259  SmallVector<SDNode*, 3> ChainNodesMatched;
2260  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2261
2262  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2263        NodeToMatch->dump(CurDAG);
2264        errs() << '\n');
2265
2266  // Determine where to start the interpreter.  Normally we start at opcode #0,
2267  // but if the state machine starts with an OPC_SwitchOpcode, then we
2268  // accelerate the first lookup (which is guaranteed to be hot) with the
2269  // OpcodeOffset table.
2270  unsigned MatcherIndex = 0;
2271
2272  if (!OpcodeOffset.empty()) {
2273    // Already computed the OpcodeOffset table, just index into it.
2274    if (N.getOpcode() < OpcodeOffset.size())
2275      MatcherIndex = OpcodeOffset[N.getOpcode()];
2276    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2277
2278  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2279    // Otherwise, the table isn't computed, but the state machine does start
2280    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2281    // is the first time we're selecting an instruction.
2282    unsigned Idx = 1;
2283    while (1) {
2284      // Get the size of this case.
2285      unsigned CaseSize = MatcherTable[Idx++];
2286      if (CaseSize & 128)
2287        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2288      if (CaseSize == 0) break;
2289
2290      // Get the opcode, add the index to the table.
2291      uint16_t Opc = MatcherTable[Idx++];
2292      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2293      if (Opc >= OpcodeOffset.size())
2294        OpcodeOffset.resize((Opc+1)*2);
2295      OpcodeOffset[Opc] = Idx;
2296      Idx += CaseSize;
2297    }
2298
2299    // Okay, do the lookup for the first opcode.
2300    if (N.getOpcode() < OpcodeOffset.size())
2301      MatcherIndex = OpcodeOffset[N.getOpcode()];
2302  }
2303
2304  while (1) {
2305    assert(MatcherIndex < TableSize && "Invalid index");
2306#ifndef NDEBUG
2307    unsigned CurrentOpcodeIndex = MatcherIndex;
2308#endif
2309    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2310    switch (Opcode) {
2311    case OPC_Scope: {
2312      // Okay, the semantics of this operation are that we should push a scope
2313      // then evaluate the first child.  However, pushing a scope only to have
2314      // the first check fail (which then pops it) is inefficient.  If we can
2315      // determine immediately that the first check (or first several) will
2316      // immediately fail, don't even bother pushing a scope for them.
2317      unsigned FailIndex;
2318
2319      while (1) {
2320        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2321        if (NumToSkip & 128)
2322          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2323        // Found the end of the scope with no match.
2324        if (NumToSkip == 0) {
2325          FailIndex = 0;
2326          break;
2327        }
2328
2329        FailIndex = MatcherIndex+NumToSkip;
2330
2331        unsigned MatcherIndexOfPredicate = MatcherIndex;
2332        (void)MatcherIndexOfPredicate; // silence warning.
2333
2334        // If we can't evaluate this predicate without pushing a scope (e.g. if
2335        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2336        // push the scope and evaluate the full predicate chain.
2337        bool Result;
2338        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2339                                              Result, *this, RecordedNodes);
2340        if (!Result)
2341          break;
2342
2343        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2344                     << "index " << MatcherIndexOfPredicate
2345                     << ", continuing at " << FailIndex << "\n");
2346        ++NumDAGIselRetries;
2347
2348        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2349        // move to the next case.
2350        MatcherIndex = FailIndex;
2351      }
2352
2353      // If the whole scope failed to match, bail.
2354      if (FailIndex == 0) break;
2355
2356      // Push a MatchScope which indicates where to go if the first child fails
2357      // to match.
2358      MatchScope NewEntry;
2359      NewEntry.FailIndex = FailIndex;
2360      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2361      NewEntry.NumRecordedNodes = RecordedNodes.size();
2362      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2363      NewEntry.InputChain = InputChain;
2364      NewEntry.InputGlue = InputGlue;
2365      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2366      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2367      MatchScopes.push_back(NewEntry);
2368      continue;
2369    }
2370    case OPC_RecordNode: {
2371      // Remember this node, it may end up being an operand in the pattern.
2372      SDNode *Parent = 0;
2373      if (NodeStack.size() > 1)
2374        Parent = NodeStack[NodeStack.size()-2].getNode();
2375      RecordedNodes.push_back(std::make_pair(N, Parent));
2376      continue;
2377    }
2378
2379    case OPC_RecordChild0: case OPC_RecordChild1:
2380    case OPC_RecordChild2: case OPC_RecordChild3:
2381    case OPC_RecordChild4: case OPC_RecordChild5:
2382    case OPC_RecordChild6: case OPC_RecordChild7: {
2383      unsigned ChildNo = Opcode-OPC_RecordChild0;
2384      if (ChildNo >= N.getNumOperands())
2385        break;  // Match fails if out of range child #.
2386
2387      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2388                                             N.getNode()));
2389      continue;
2390    }
2391    case OPC_RecordMemRef:
2392      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2393      continue;
2394
2395    case OPC_CaptureGlueInput:
2396      // If the current node has an input glue, capture it in InputGlue.
2397      if (N->getNumOperands() != 0 &&
2398          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2399        InputGlue = N->getOperand(N->getNumOperands()-1);
2400      continue;
2401
2402    case OPC_MoveChild: {
2403      unsigned ChildNo = MatcherTable[MatcherIndex++];
2404      if (ChildNo >= N.getNumOperands())
2405        break;  // Match fails if out of range child #.
2406      N = N.getOperand(ChildNo);
2407      NodeStack.push_back(N);
2408      continue;
2409    }
2410
2411    case OPC_MoveParent:
2412      // Pop the current node off the NodeStack.
2413      NodeStack.pop_back();
2414      assert(!NodeStack.empty() && "Node stack imbalance!");
2415      N = NodeStack.back();
2416      continue;
2417
2418    case OPC_CheckSame:
2419      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2420      continue;
2421    case OPC_CheckPatternPredicate:
2422      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2423      continue;
2424    case OPC_CheckPredicate:
2425      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2426                                N.getNode()))
2427        break;
2428      continue;
2429    case OPC_CheckComplexPat: {
2430      unsigned CPNum = MatcherTable[MatcherIndex++];
2431      unsigned RecNo = MatcherTable[MatcherIndex++];
2432      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2433      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2434                               RecordedNodes[RecNo].first, CPNum,
2435                               RecordedNodes))
2436        break;
2437      continue;
2438    }
2439    case OPC_CheckOpcode:
2440      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2441      continue;
2442
2443    case OPC_CheckType:
2444      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2445      continue;
2446
2447    case OPC_SwitchOpcode: {
2448      unsigned CurNodeOpcode = N.getOpcode();
2449      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2450      unsigned CaseSize;
2451      while (1) {
2452        // Get the size of this case.
2453        CaseSize = MatcherTable[MatcherIndex++];
2454        if (CaseSize & 128)
2455          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2456        if (CaseSize == 0) break;
2457
2458        uint16_t Opc = MatcherTable[MatcherIndex++];
2459        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2460
2461        // If the opcode matches, then we will execute this case.
2462        if (CurNodeOpcode == Opc)
2463          break;
2464
2465        // Otherwise, skip over this case.
2466        MatcherIndex += CaseSize;
2467      }
2468
2469      // If no cases matched, bail out.
2470      if (CaseSize == 0) break;
2471
2472      // Otherwise, execute the case we found.
2473      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2474                   << " to " << MatcherIndex << "\n");
2475      continue;
2476    }
2477
2478    case OPC_SwitchType: {
2479      MVT CurNodeVT = N.getValueType().getSimpleVT();
2480      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2481      unsigned CaseSize;
2482      while (1) {
2483        // Get the size of this case.
2484        CaseSize = MatcherTable[MatcherIndex++];
2485        if (CaseSize & 128)
2486          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2487        if (CaseSize == 0) break;
2488
2489        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2490        if (CaseVT == MVT::iPTR)
2491          CaseVT = TLI.getPointerTy();
2492
2493        // If the VT matches, then we will execute this case.
2494        if (CurNodeVT == CaseVT)
2495          break;
2496
2497        // Otherwise, skip over this case.
2498        MatcherIndex += CaseSize;
2499      }
2500
2501      // If no cases matched, bail out.
2502      if (CaseSize == 0) break;
2503
2504      // Otherwise, execute the case we found.
2505      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2506                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2507      continue;
2508    }
2509    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2510    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2511    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2512    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2513      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2514                            Opcode-OPC_CheckChild0Type))
2515        break;
2516      continue;
2517    case OPC_CheckCondCode:
2518      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2519      continue;
2520    case OPC_CheckValueType:
2521      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2522      continue;
2523    case OPC_CheckInteger:
2524      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2525      continue;
2526    case OPC_CheckAndImm:
2527      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2528      continue;
2529    case OPC_CheckOrImm:
2530      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2531      continue;
2532
2533    case OPC_CheckFoldableChainNode: {
2534      assert(NodeStack.size() != 1 && "No parent node");
2535      // Verify that all intermediate nodes between the root and this one have
2536      // a single use.
2537      bool HasMultipleUses = false;
2538      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2539        if (!NodeStack[i].hasOneUse()) {
2540          HasMultipleUses = true;
2541          break;
2542        }
2543      if (HasMultipleUses) break;
2544
2545      // Check to see that the target thinks this is profitable to fold and that
2546      // we can fold it without inducing cycles in the graph.
2547      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2548                              NodeToMatch) ||
2549          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2550                         NodeToMatch, OptLevel,
2551                         true/*We validate our own chains*/))
2552        break;
2553
2554      continue;
2555    }
2556    case OPC_EmitInteger: {
2557      MVT::SimpleValueType VT =
2558        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2559      int64_t Val = MatcherTable[MatcherIndex++];
2560      if (Val & 128)
2561        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2562      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2563                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2564      continue;
2565    }
2566    case OPC_EmitRegister: {
2567      MVT::SimpleValueType VT =
2568        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2569      unsigned RegNo = MatcherTable[MatcherIndex++];
2570      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2571                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2572      continue;
2573    }
2574    case OPC_EmitRegister2: {
2575      // For targets w/ more than 256 register names, the register enum
2576      // values are stored in two bytes in the matcher table (just like
2577      // opcodes).
2578      MVT::SimpleValueType VT =
2579        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2580      unsigned RegNo = MatcherTable[MatcherIndex++];
2581      RegNo |= MatcherTable[MatcherIndex++] << 8;
2582      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2583                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2584      continue;
2585    }
2586
2587    case OPC_EmitConvertToTarget:  {
2588      // Convert from IMM/FPIMM to target version.
2589      unsigned RecNo = MatcherTable[MatcherIndex++];
2590      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2591      SDValue Imm = RecordedNodes[RecNo].first;
2592
2593      if (Imm->getOpcode() == ISD::Constant) {
2594        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2595        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2596      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2597        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2598        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2599      }
2600
2601      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2602      continue;
2603    }
2604
2605    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2606    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2607      // These are space-optimized forms of OPC_EmitMergeInputChains.
2608      assert(InputChain.getNode() == 0 &&
2609             "EmitMergeInputChains should be the first chain producing node");
2610      assert(ChainNodesMatched.empty() &&
2611             "Should only have one EmitMergeInputChains per match");
2612
2613      // Read all of the chained nodes.
2614      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2615      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2616      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2617
2618      // FIXME: What if other value results of the node have uses not matched
2619      // by this pattern?
2620      if (ChainNodesMatched.back() != NodeToMatch &&
2621          !RecordedNodes[RecNo].first.hasOneUse()) {
2622        ChainNodesMatched.clear();
2623        break;
2624      }
2625
2626      // Merge the input chains if they are not intra-pattern references.
2627      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2628
2629      if (InputChain.getNode() == 0)
2630        break;  // Failed to merge.
2631      continue;
2632    }
2633
2634    case OPC_EmitMergeInputChains: {
2635      assert(InputChain.getNode() == 0 &&
2636             "EmitMergeInputChains should be the first chain producing node");
2637      // This node gets a list of nodes we matched in the input that have
2638      // chains.  We want to token factor all of the input chains to these nodes
2639      // together.  However, if any of the input chains is actually one of the
2640      // nodes matched in this pattern, then we have an intra-match reference.
2641      // Ignore these because the newly token factored chain should not refer to
2642      // the old nodes.
2643      unsigned NumChains = MatcherTable[MatcherIndex++];
2644      assert(NumChains != 0 && "Can't TF zero chains");
2645
2646      assert(ChainNodesMatched.empty() &&
2647             "Should only have one EmitMergeInputChains per match");
2648
2649      // Read all of the chained nodes.
2650      for (unsigned i = 0; i != NumChains; ++i) {
2651        unsigned RecNo = MatcherTable[MatcherIndex++];
2652        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2653        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2654
2655        // FIXME: What if other value results of the node have uses not matched
2656        // by this pattern?
2657        if (ChainNodesMatched.back() != NodeToMatch &&
2658            !RecordedNodes[RecNo].first.hasOneUse()) {
2659          ChainNodesMatched.clear();
2660          break;
2661        }
2662      }
2663
2664      // If the inner loop broke out, the match fails.
2665      if (ChainNodesMatched.empty())
2666        break;
2667
2668      // Merge the input chains if they are not intra-pattern references.
2669      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2670
2671      if (InputChain.getNode() == 0)
2672        break;  // Failed to merge.
2673
2674      continue;
2675    }
2676
2677    case OPC_EmitCopyToReg: {
2678      unsigned RecNo = MatcherTable[MatcherIndex++];
2679      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2680      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2681
2682      if (InputChain.getNode() == 0)
2683        InputChain = CurDAG->getEntryNode();
2684
2685      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2686                                        DestPhysReg, RecordedNodes[RecNo].first,
2687                                        InputGlue);
2688
2689      InputGlue = InputChain.getValue(1);
2690      continue;
2691    }
2692
2693    case OPC_EmitNodeXForm: {
2694      unsigned XFormNo = MatcherTable[MatcherIndex++];
2695      unsigned RecNo = MatcherTable[MatcherIndex++];
2696      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2697      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2698      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2699      continue;
2700    }
2701
2702    case OPC_EmitNode:
2703    case OPC_MorphNodeTo: {
2704      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2705      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2706      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2707      // Get the result VT list.
2708      unsigned NumVTs = MatcherTable[MatcherIndex++];
2709      SmallVector<EVT, 4> VTs;
2710      for (unsigned i = 0; i != NumVTs; ++i) {
2711        MVT::SimpleValueType VT =
2712          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2713        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2714        VTs.push_back(VT);
2715      }
2716
2717      if (EmitNodeInfo & OPFL_Chain)
2718        VTs.push_back(MVT::Other);
2719      if (EmitNodeInfo & OPFL_GlueOutput)
2720        VTs.push_back(MVT::Glue);
2721
2722      // This is hot code, so optimize the two most common cases of 1 and 2
2723      // results.
2724      SDVTList VTList;
2725      if (VTs.size() == 1)
2726        VTList = CurDAG->getVTList(VTs[0]);
2727      else if (VTs.size() == 2)
2728        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2729      else
2730        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2731
2732      // Get the operand list.
2733      unsigned NumOps = MatcherTable[MatcherIndex++];
2734      SmallVector<SDValue, 8> Ops;
2735      for (unsigned i = 0; i != NumOps; ++i) {
2736        unsigned RecNo = MatcherTable[MatcherIndex++];
2737        if (RecNo & 128)
2738          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2739
2740        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2741        Ops.push_back(RecordedNodes[RecNo].first);
2742      }
2743
2744      // If there are variadic operands to add, handle them now.
2745      if (EmitNodeInfo & OPFL_VariadicInfo) {
2746        // Determine the start index to copy from.
2747        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2748        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2749        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2750               "Invalid variadic node");
2751        // Copy all of the variadic operands, not including a potential glue
2752        // input.
2753        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2754             i != e; ++i) {
2755          SDValue V = NodeToMatch->getOperand(i);
2756          if (V.getValueType() == MVT::Glue) break;
2757          Ops.push_back(V);
2758        }
2759      }
2760
2761      // If this has chain/glue inputs, add them.
2762      if (EmitNodeInfo & OPFL_Chain)
2763        Ops.push_back(InputChain);
2764      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2765        Ops.push_back(InputGlue);
2766
2767      // Create the node.
2768      SDNode *Res = 0;
2769      if (Opcode != OPC_MorphNodeTo) {
2770        // If this is a normal EmitNode command, just create the new node and
2771        // add the results to the RecordedNodes list.
2772        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2773                                     VTList, Ops.data(), Ops.size());
2774
2775        // Add all the non-glue/non-chain results to the RecordedNodes list.
2776        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2777          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2778          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2779                                                             (SDNode*) 0));
2780        }
2781
2782      } else {
2783        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2784                        EmitNodeInfo);
2785      }
2786
2787      // If the node had chain/glue results, update our notion of the current
2788      // chain and glue.
2789      if (EmitNodeInfo & OPFL_GlueOutput) {
2790        InputGlue = SDValue(Res, VTs.size()-1);
2791        if (EmitNodeInfo & OPFL_Chain)
2792          InputChain = SDValue(Res, VTs.size()-2);
2793      } else if (EmitNodeInfo & OPFL_Chain)
2794        InputChain = SDValue(Res, VTs.size()-1);
2795
2796      // If the OPFL_MemRefs glue is set on this node, slap all of the
2797      // accumulated memrefs onto it.
2798      //
2799      // FIXME: This is vastly incorrect for patterns with multiple outputs
2800      // instructions that access memory and for ComplexPatterns that match
2801      // loads.
2802      if (EmitNodeInfo & OPFL_MemRefs) {
2803        // Only attach load or store memory operands if the generated
2804        // instruction may load or store.
2805        const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
2806        bool mayLoad = MCID.mayLoad();
2807        bool mayStore = MCID.mayStore();
2808
2809        unsigned NumMemRefs = 0;
2810        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2811             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2812          if ((*I)->isLoad()) {
2813            if (mayLoad)
2814              ++NumMemRefs;
2815          } else if ((*I)->isStore()) {
2816            if (mayStore)
2817              ++NumMemRefs;
2818          } else {
2819            ++NumMemRefs;
2820          }
2821        }
2822
2823        MachineSDNode::mmo_iterator MemRefs =
2824          MF->allocateMemRefsArray(NumMemRefs);
2825
2826        MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
2827        for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
2828             MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
2829          if ((*I)->isLoad()) {
2830            if (mayLoad)
2831              *MemRefsPos++ = *I;
2832          } else if ((*I)->isStore()) {
2833            if (mayStore)
2834              *MemRefsPos++ = *I;
2835          } else {
2836            *MemRefsPos++ = *I;
2837          }
2838        }
2839
2840        cast<MachineSDNode>(Res)
2841          ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
2842      }
2843
2844      DEBUG(errs() << "  "
2845                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2846                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2847
2848      // If this was a MorphNodeTo then we're completely done!
2849      if (Opcode == OPC_MorphNodeTo) {
2850        // Update chain and glue uses.
2851        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2852                            InputGlue, GlueResultNodesMatched, true);
2853        return Res;
2854      }
2855
2856      continue;
2857    }
2858
2859    case OPC_MarkGlueResults: {
2860      unsigned NumNodes = MatcherTable[MatcherIndex++];
2861
2862      // Read and remember all the glue-result nodes.
2863      for (unsigned i = 0; i != NumNodes; ++i) {
2864        unsigned RecNo = MatcherTable[MatcherIndex++];
2865        if (RecNo & 128)
2866          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2867
2868        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2869        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2870      }
2871      continue;
2872    }
2873
2874    case OPC_CompleteMatch: {
2875      // The match has been completed, and any new nodes (if any) have been
2876      // created.  Patch up references to the matched dag to use the newly
2877      // created nodes.
2878      unsigned NumResults = MatcherTable[MatcherIndex++];
2879
2880      for (unsigned i = 0; i != NumResults; ++i) {
2881        unsigned ResSlot = MatcherTable[MatcherIndex++];
2882        if (ResSlot & 128)
2883          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2884
2885        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2886        SDValue Res = RecordedNodes[ResSlot].first;
2887
2888        assert(i < NodeToMatch->getNumValues() &&
2889               NodeToMatch->getValueType(i) != MVT::Other &&
2890               NodeToMatch->getValueType(i) != MVT::Glue &&
2891               "Invalid number of results to complete!");
2892        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2893                NodeToMatch->getValueType(i) == MVT::iPTR ||
2894                Res.getValueType() == MVT::iPTR ||
2895                NodeToMatch->getValueType(i).getSizeInBits() ==
2896                    Res.getValueType().getSizeInBits()) &&
2897               "invalid replacement");
2898        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2899      }
2900
2901      // If the root node defines glue, add it to the glue nodes to update list.
2902      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2903        GlueResultNodesMatched.push_back(NodeToMatch);
2904
2905      // Update chain and glue uses.
2906      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2907                          InputGlue, GlueResultNodesMatched, false);
2908
2909      assert(NodeToMatch->use_empty() &&
2910             "Didn't replace all uses of the node?");
2911
2912      // FIXME: We just return here, which interacts correctly with SelectRoot
2913      // above.  We should fix this to not return an SDNode* anymore.
2914      return 0;
2915    }
2916    }
2917
2918    // If the code reached this point, then the match failed.  See if there is
2919    // another child to try in the current 'Scope', otherwise pop it until we
2920    // find a case to check.
2921    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2922    ++NumDAGIselRetries;
2923    while (1) {
2924      if (MatchScopes.empty()) {
2925        CannotYetSelect(NodeToMatch);
2926        return 0;
2927      }
2928
2929      // Restore the interpreter state back to the point where the scope was
2930      // formed.
2931      MatchScope &LastScope = MatchScopes.back();
2932      RecordedNodes.resize(LastScope.NumRecordedNodes);
2933      NodeStack.clear();
2934      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2935      N = NodeStack.back();
2936
2937      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2938        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2939      MatcherIndex = LastScope.FailIndex;
2940
2941      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2942
2943      InputChain = LastScope.InputChain;
2944      InputGlue = LastScope.InputGlue;
2945      if (!LastScope.HasChainNodesMatched)
2946        ChainNodesMatched.clear();
2947      if (!LastScope.HasGlueResultNodesMatched)
2948        GlueResultNodesMatched.clear();
2949
2950      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2951      // we have reached the end of this scope, otherwise we have another child
2952      // in the current scope to try.
2953      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2954      if (NumToSkip & 128)
2955        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2956
2957      // If we have another child in this scope to match, update FailIndex and
2958      // try it.
2959      if (NumToSkip != 0) {
2960        LastScope.FailIndex = MatcherIndex+NumToSkip;
2961        break;
2962      }
2963
2964      // End of this scope, pop it and try the next child in the containing
2965      // scope.
2966      MatchScopes.pop_back();
2967    }
2968  }
2969}
2970
2971
2972
2973void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2974  std::string msg;
2975  raw_string_ostream Msg(msg);
2976  Msg << "Cannot select: ";
2977
2978  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2979      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2980      N->getOpcode() != ISD::INTRINSIC_VOID) {
2981    N->printrFull(Msg, CurDAG);
2982  } else {
2983    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2984    unsigned iid =
2985      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2986    if (iid < Intrinsic::num_intrinsics)
2987      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2988    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2989      Msg << "target intrinsic %" << TII->getName(iid);
2990    else
2991      Msg << "unknown intrinsic #" << iid;
2992  }
2993  report_fatal_error(Msg.str());
2994}
2995
2996char SelectionDAGISel::ID = 0;
2997