SelectionDAGISel.cpp revision f8814cf8b8ba8953add60078e304fd5a4113f9cc
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/CodeGen/SelectionDAGISel.h"
16#include "llvm/CodeGen/ScheduleDAG.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/InlineAsm.h"
23#include "llvm/Instructions.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineDebugInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/SelectionDAG.h"
32#include "llvm/CodeGen/SSARegMap.h"
33#include "llvm/Target/MRegisterInfo.h"
34#include "llvm/Target/TargetData.h"
35#include "llvm/Target/TargetFrameInfo.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetLowering.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Transforms/Utils/BasicBlockUtils.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/Support/Debug.h"
43#include <map>
44#include <set>
45#include <iostream>
46#include <algorithm>
47using namespace llvm;
48
49#ifndef NDEBUG
50static cl::opt<bool>
51ViewISelDAGs("view-isel-dags", cl::Hidden,
52          cl::desc("Pop up a window to show isel dags as they are selected"));
53static cl::opt<bool>
54ViewSchedDAGs("view-sched-dags", cl::Hidden,
55          cl::desc("Pop up a window to show sched dags as they are processed"));
56#else
57static const bool ViewISelDAGs = 0;
58static const bool ViewSchedDAGs = 0;
59#endif
60
61// Scheduling heuristics
62enum SchedHeuristics {
63  defaultScheduling,      // Let the target specify its preference.
64  noScheduling,           // No scheduling, emit breadth first sequence.
65  simpleScheduling,       // Two pass, min. critical path, max. utilization.
66  simpleNoItinScheduling, // Same as above exact using generic latency.
67  listSchedulingBURR,     // Bottom up reg reduction list scheduling.
68  listSchedulingTD        // Top-down list scheduler.
69};
70
71namespace {
72  cl::opt<SchedHeuristics>
73  ISHeuristic(
74    "sched",
75    cl::desc("Choose scheduling style"),
76    cl::init(defaultScheduling),
77    cl::values(
78      clEnumValN(defaultScheduling, "default",
79                 "Target preferred scheduling style"),
80      clEnumValN(noScheduling, "none",
81                 "No scheduling: breadth first sequencing"),
82      clEnumValN(simpleScheduling, "simple",
83                 "Simple two pass scheduling: minimize critical path "
84                 "and maximize processor utilization"),
85      clEnumValN(simpleNoItinScheduling, "simple-noitin",
86                 "Simple two pass scheduling: Same as simple "
87                 "except using generic latency"),
88      clEnumValN(listSchedulingBURR, "list-burr",
89                 "Bottom up register reduction list scheduling"),
90      clEnumValN(listSchedulingTD, "list-td",
91                 "Top-down list scheduler"),
92      clEnumValEnd));
93} // namespace
94
95namespace {
96  /// RegsForValue - This struct represents the physical registers that a
97  /// particular value is assigned and the type information about the value.
98  /// This is needed because values can be promoted into larger registers and
99  /// expanded into multiple smaller registers than the value.
100  struct RegsForValue {
101    /// Regs - This list hold the register (for legal and promoted values)
102    /// or register set (for expanded values) that the value should be assigned
103    /// to.
104    std::vector<unsigned> Regs;
105
106    /// RegVT - The value type of each register.
107    ///
108    MVT::ValueType RegVT;
109
110    /// ValueVT - The value type of the LLVM value, which may be promoted from
111    /// RegVT or made from merging the two expanded parts.
112    MVT::ValueType ValueVT;
113
114    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
115
116    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
117      : RegVT(regvt), ValueVT(valuevt) {
118        Regs.push_back(Reg);
119    }
120    RegsForValue(const std::vector<unsigned> &regs,
121                 MVT::ValueType regvt, MVT::ValueType valuevt)
122      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
123    }
124
125    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
126    /// this value and returns the result as a ValueVT value.  This uses
127    /// Chain/Flag as the input and updates them for the output Chain/Flag.
128    SDOperand getCopyFromRegs(SelectionDAG &DAG,
129                              SDOperand &Chain, SDOperand &Flag) const;
130
131    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
132    /// specified value into the registers specified by this object.  This uses
133    /// Chain/Flag as the input and updates them for the output Chain/Flag.
134    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
135                       SDOperand &Chain, SDOperand &Flag) const;
136
137    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
138    /// operand list.  This adds the code marker and includes the number of
139    /// values added into it.
140    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
141                              std::vector<SDOperand> &Ops) const;
142  };
143}
144
145namespace llvm {
146  //===--------------------------------------------------------------------===//
147  /// FunctionLoweringInfo - This contains information that is global to a
148  /// function that is used when lowering a region of the function.
149  class FunctionLoweringInfo {
150  public:
151    TargetLowering &TLI;
152    Function &Fn;
153    MachineFunction &MF;
154    SSARegMap *RegMap;
155
156    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
157
158    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
159    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
160
161    /// ValueMap - Since we emit code for the function a basic block at a time,
162    /// we must remember which virtual registers hold the values for
163    /// cross-basic-block values.
164    std::map<const Value*, unsigned> ValueMap;
165
166    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
167    /// the entry block.  This allows the allocas to be efficiently referenced
168    /// anywhere in the function.
169    std::map<const AllocaInst*, int> StaticAllocaMap;
170
171    unsigned MakeReg(MVT::ValueType VT) {
172      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
173    }
174
175    unsigned CreateRegForValue(const Value *V);
176
177    unsigned InitializeRegForValue(const Value *V) {
178      unsigned &R = ValueMap[V];
179      assert(R == 0 && "Already initialized this value register!");
180      return R = CreateRegForValue(V);
181    }
182  };
183}
184
185/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
186/// PHI nodes or outside of the basic block that defines it, or used by a
187/// switch instruction, which may expand to multiple basic blocks.
188static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
189  if (isa<PHINode>(I)) return true;
190  BasicBlock *BB = I->getParent();
191  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
192    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
193        isa<SwitchInst>(*UI))
194      return true;
195  return false;
196}
197
198/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
199/// entry block, return true.  This includes arguments used by switches, since
200/// the switch may expand into multiple basic blocks.
201static bool isOnlyUsedInEntryBlock(Argument *A) {
202  BasicBlock *Entry = A->getParent()->begin();
203  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
204    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
205      return false;  // Use not in entry block.
206  return true;
207}
208
209FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
210                                           Function &fn, MachineFunction &mf)
211    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
212
213  // Create a vreg for each argument register that is not dead and is used
214  // outside of the entry block for the function.
215  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
216       AI != E; ++AI)
217    if (!isOnlyUsedInEntryBlock(AI))
218      InitializeRegForValue(AI);
219
220  // Initialize the mapping of values to registers.  This is only set up for
221  // instruction values that are used outside of the block that defines
222  // them.
223  Function::iterator BB = Fn.begin(), EB = Fn.end();
224  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
225    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
226      if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
227        const Type *Ty = AI->getAllocatedType();
228        uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
229        unsigned Align =
230          std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
231                   AI->getAlignment());
232
233        // If the alignment of the value is smaller than the size of the value,
234        // and if the size of the value is particularly small (<= 8 bytes),
235        // round up to the size of the value for potentially better performance.
236        //
237        // FIXME: This could be made better with a preferred alignment hook in
238        // TargetData.  It serves primarily to 8-byte align doubles for X86.
239        if (Align < TySize && TySize <= 8) Align = TySize;
240        TySize *= CUI->getValue();   // Get total allocated size.
241        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
242        StaticAllocaMap[AI] =
243          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
244      }
245
246  for (; BB != EB; ++BB)
247    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
248      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
249        if (!isa<AllocaInst>(I) ||
250            !StaticAllocaMap.count(cast<AllocaInst>(I)))
251          InitializeRegForValue(I);
252
253  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
254  // also creates the initial PHI MachineInstrs, though none of the input
255  // operands are populated.
256  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
257    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
258    MBBMap[BB] = MBB;
259    MF.getBasicBlockList().push_back(MBB);
260
261    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
262    // appropriate.
263    PHINode *PN;
264    for (BasicBlock::iterator I = BB->begin();
265         (PN = dyn_cast<PHINode>(I)); ++I)
266      if (!PN->use_empty()) {
267        MVT::ValueType VT = TLI.getValueType(PN->getType());
268        unsigned NumElements;
269        if (VT != MVT::Vector)
270          NumElements = TLI.getNumElements(VT);
271        else {
272          MVT::ValueType VT1,VT2;
273          NumElements =
274            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
275                                       VT1, VT2);
276        }
277        unsigned PHIReg = ValueMap[PN];
278        assert(PHIReg &&"PHI node does not have an assigned virtual register!");
279        for (unsigned i = 0; i != NumElements; ++i)
280          BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
281      }
282  }
283}
284
285/// CreateRegForValue - Allocate the appropriate number of virtual registers of
286/// the correctly promoted or expanded types.  Assign these registers
287/// consecutive vreg numbers and return the first assigned number.
288unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
289  MVT::ValueType VT = TLI.getValueType(V->getType());
290
291  // The number of multiples of registers that we need, to, e.g., split up
292  // a <2 x int64> -> 4 x i32 registers.
293  unsigned NumVectorRegs = 1;
294
295  // If this is a packed type, figure out what type it will decompose into
296  // and how many of the elements it will use.
297  if (VT == MVT::Vector) {
298    const PackedType *PTy = cast<PackedType>(V->getType());
299    unsigned NumElts = PTy->getNumElements();
300    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
301
302    // Divide the input until we get to a supported size.  This will always
303    // end with a scalar if the target doesn't support vectors.
304    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
305      NumElts >>= 1;
306      NumVectorRegs <<= 1;
307    }
308    if (NumElts == 1)
309      VT = EltTy;
310    else
311      VT = getVectorType(EltTy, NumElts);
312  }
313
314  // The common case is that we will only create one register for this
315  // value.  If we have that case, create and return the virtual register.
316  unsigned NV = TLI.getNumElements(VT);
317  if (NV == 1) {
318    // If we are promoting this value, pick the next largest supported type.
319    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
320    unsigned Reg = MakeReg(PromotedType);
321    // If this is a vector of supported or promoted types (e.g. 4 x i16),
322    // create all of the registers.
323    for (unsigned i = 1; i != NumVectorRegs; ++i)
324      MakeReg(PromotedType);
325    return Reg;
326  }
327
328  // If this value is represented with multiple target registers, make sure
329  // to create enough consecutive registers of the right (smaller) type.
330  unsigned NT = VT-1;  // Find the type to use.
331  while (TLI.getNumElements((MVT::ValueType)NT) != 1)
332    --NT;
333
334  unsigned R = MakeReg((MVT::ValueType)NT);
335  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
336    MakeReg((MVT::ValueType)NT);
337  return R;
338}
339
340//===----------------------------------------------------------------------===//
341/// SelectionDAGLowering - This is the common target-independent lowering
342/// implementation that is parameterized by a TargetLowering object.
343/// Also, targets can overload any lowering method.
344///
345namespace llvm {
346class SelectionDAGLowering {
347  MachineBasicBlock *CurMBB;
348
349  std::map<const Value*, SDOperand> NodeMap;
350
351  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
352  /// them up and then emit token factor nodes when possible.  This allows us to
353  /// get simple disambiguation between loads without worrying about alias
354  /// analysis.
355  std::vector<SDOperand> PendingLoads;
356
357  /// Case - A pair of values to record the Value for a switch case, and the
358  /// case's target basic block.
359  typedef std::pair<Constant*, MachineBasicBlock*> Case;
360  typedef std::vector<Case>::iterator              CaseItr;
361  typedef std::pair<CaseItr, CaseItr>              CaseRange;
362
363  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
364  /// of conditional branches.
365  struct CaseRec {
366    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
367    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
368
369    /// CaseBB - The MBB in which to emit the compare and branch
370    MachineBasicBlock *CaseBB;
371    /// LT, GE - If nonzero, we know the current case value must be less-than or
372    /// greater-than-or-equal-to these Constants.
373    Constant *LT;
374    Constant *GE;
375    /// Range - A pair of iterators representing the range of case values to be
376    /// processed at this point in the binary search tree.
377    CaseRange Range;
378  };
379
380  /// The comparison function for sorting Case values.
381  struct CaseCmp {
382    bool operator () (const Case& C1, const Case& C2) {
383      if (const ConstantUInt* U1 = dyn_cast<const ConstantUInt>(C1.first))
384        return U1->getValue() < cast<const ConstantUInt>(C2.first)->getValue();
385
386      const ConstantSInt* S1 = dyn_cast<const ConstantSInt>(C1.first);
387      return S1->getValue() < cast<const ConstantSInt>(C2.first)->getValue();
388    }
389  };
390
391public:
392  // TLI - This is information that describes the available target features we
393  // need for lowering.  This indicates when operations are unavailable,
394  // implemented with a libcall, etc.
395  TargetLowering &TLI;
396  SelectionDAG &DAG;
397  const TargetData &TD;
398
399  /// SwitchCases - Vector of CaseBlock structures used to communicate
400  /// SwitchInst code generation information.
401  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
402
403  /// FuncInfo - Information about the function as a whole.
404  ///
405  FunctionLoweringInfo &FuncInfo;
406
407  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
408                       FunctionLoweringInfo &funcinfo)
409    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
410      FuncInfo(funcinfo) {
411  }
412
413  /// getRoot - Return the current virtual root of the Selection DAG.
414  ///
415  SDOperand getRoot() {
416    if (PendingLoads.empty())
417      return DAG.getRoot();
418
419    if (PendingLoads.size() == 1) {
420      SDOperand Root = PendingLoads[0];
421      DAG.setRoot(Root);
422      PendingLoads.clear();
423      return Root;
424    }
425
426    // Otherwise, we have to make a token factor node.
427    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
428    PendingLoads.clear();
429    DAG.setRoot(Root);
430    return Root;
431  }
432
433  void visit(Instruction &I) { visit(I.getOpcode(), I); }
434
435  void visit(unsigned Opcode, User &I) {
436    switch (Opcode) {
437    default: assert(0 && "Unknown instruction type encountered!");
438             abort();
439      // Build the switch statement using the Instruction.def file.
440#define HANDLE_INST(NUM, OPCODE, CLASS) \
441    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
442#include "llvm/Instruction.def"
443    }
444  }
445
446  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
447
448  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
449                        SDOperand SrcValue, SDOperand Root,
450                        bool isVolatile);
451
452  SDOperand getIntPtrConstant(uint64_t Val) {
453    return DAG.getConstant(Val, TLI.getPointerTy());
454  }
455
456  SDOperand getValue(const Value *V);
457
458  const SDOperand &setValue(const Value *V, SDOperand NewN) {
459    SDOperand &N = NodeMap[V];
460    assert(N.Val == 0 && "Already set a value for this node!");
461    return N = NewN;
462  }
463
464  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
465                                    MVT::ValueType VT,
466                                    bool OutReg, bool InReg,
467                                    std::set<unsigned> &OutputRegs,
468                                    std::set<unsigned> &InputRegs);
469
470  // Terminator instructions.
471  void visitRet(ReturnInst &I);
472  void visitBr(BranchInst &I);
473  void visitSwitch(SwitchInst &I);
474  void visitUnreachable(UnreachableInst &I) { /* noop */ }
475
476  // Helper for visitSwitch
477  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
478
479  // These all get lowered before this pass.
480  void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
481  void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
482
483  void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
484  void visitShift(User &I, unsigned Opcode);
485  void visitAdd(User &I) {
486    visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD);
487  }
488  void visitSub(User &I);
489  void visitMul(User &I) {
490    visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL);
491  }
492  void visitDiv(User &I) {
493    const Type *Ty = I.getType();
494    visitBinary(I,
495                Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV,
496                Ty->isSigned() ? ISD::VSDIV : ISD::VUDIV);
497  }
498  void visitRem(User &I) {
499    const Type *Ty = I.getType();
500    visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
501  }
502  void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, ISD::VAND); }
503  void visitOr (User &I) { visitBinary(I, ISD::OR,  0, ISD::VOR); }
504  void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, ISD::VXOR); }
505  void visitShl(User &I) { visitShift(I, ISD::SHL); }
506  void visitShr(User &I) {
507    visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
508  }
509
510  void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
511  void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
512  void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
513  void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
514  void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
515  void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
516  void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
517
518  void visitExtractElement(User &I);
519  void visitInsertElement(User &I);
520
521  void visitGetElementPtr(User &I);
522  void visitCast(User &I);
523  void visitSelect(User &I);
524
525  void visitMalloc(MallocInst &I);
526  void visitFree(FreeInst &I);
527  void visitAlloca(AllocaInst &I);
528  void visitLoad(LoadInst &I);
529  void visitStore(StoreInst &I);
530  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
531  void visitCall(CallInst &I);
532  void visitInlineAsm(CallInst &I);
533  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
534  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
535
536  void visitVAStart(CallInst &I);
537  void visitVAArg(VAArgInst &I);
538  void visitVAEnd(CallInst &I);
539  void visitVACopy(CallInst &I);
540  void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
541
542  void visitMemIntrinsic(CallInst &I, unsigned Op);
543
544  void visitUserOp1(Instruction &I) {
545    assert(0 && "UserOp1 should not exist at instruction selection time!");
546    abort();
547  }
548  void visitUserOp2(Instruction &I) {
549    assert(0 && "UserOp2 should not exist at instruction selection time!");
550    abort();
551  }
552};
553} // end namespace llvm
554
555SDOperand SelectionDAGLowering::getValue(const Value *V) {
556  SDOperand &N = NodeMap[V];
557  if (N.Val) return N;
558
559  const Type *VTy = V->getType();
560  MVT::ValueType VT = TLI.getValueType(VTy);
561  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
562    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
563      visit(CE->getOpcode(), *CE);
564      assert(N.Val && "visit didn't populate the ValueMap!");
565      return N;
566    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
567      return N = DAG.getGlobalAddress(GV, VT);
568    } else if (isa<ConstantPointerNull>(C)) {
569      return N = DAG.getConstant(0, TLI.getPointerTy());
570    } else if (isa<UndefValue>(C)) {
571      if (!isa<PackedType>(VTy))
572        return N = DAG.getNode(ISD::UNDEF, VT);
573
574      // Create a VBUILD_VECTOR of undef nodes.
575      const PackedType *PTy = cast<PackedType>(VTy);
576      unsigned NumElements = PTy->getNumElements();
577      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
578
579      std::vector<SDOperand> Ops;
580      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
581
582      // Create a VConstant node with generic Vector type.
583      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
584      Ops.push_back(DAG.getValueType(PVT));
585      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
586    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
587      return N = DAG.getConstantFP(CFP->getValue(), VT);
588    } else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
589      unsigned NumElements = PTy->getNumElements();
590      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
591
592      // Now that we know the number and type of the elements, push a
593      // Constant or ConstantFP node onto the ops list for each element of
594      // the packed constant.
595      std::vector<SDOperand> Ops;
596      if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
597        for (unsigned i = 0; i != NumElements; ++i)
598          Ops.push_back(getValue(CP->getOperand(i)));
599      } else {
600        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
601        SDOperand Op;
602        if (MVT::isFloatingPoint(PVT))
603          Op = DAG.getConstantFP(0, PVT);
604        else
605          Op = DAG.getConstant(0, PVT);
606        Ops.assign(NumElements, Op);
607      }
608
609      // Create a VBUILD_VECTOR node with generic Vector type.
610      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
611      Ops.push_back(DAG.getValueType(PVT));
612      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
613    } else {
614      // Canonicalize all constant ints to be unsigned.
615      return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
616    }
617  }
618
619  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
620    std::map<const AllocaInst*, int>::iterator SI =
621    FuncInfo.StaticAllocaMap.find(AI);
622    if (SI != FuncInfo.StaticAllocaMap.end())
623      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
624  }
625
626  std::map<const Value*, unsigned>::const_iterator VMI =
627      FuncInfo.ValueMap.find(V);
628  assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
629
630  unsigned InReg = VMI->second;
631
632  // If this type is not legal, make it so now.
633  if (VT != MVT::Vector) {
634    MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
635
636    N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
637    if (DestVT < VT) {
638      // Source must be expanded.  This input value is actually coming from the
639      // register pair VMI->second and VMI->second+1.
640      N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
641                      DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
642    } else if (DestVT > VT) { // Promotion case
643      if (MVT::isFloatingPoint(VT))
644        N = DAG.getNode(ISD::FP_ROUND, VT, N);
645      else
646        N = DAG.getNode(ISD::TRUNCATE, VT, N);
647    }
648  } else {
649    // Otherwise, if this is a vector, make it available as a generic vector
650    // here.
651    MVT::ValueType PTyElementVT, PTyLegalElementVT;
652    unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(VTy),PTyElementVT,
653                                             PTyLegalElementVT);
654
655    // Build a VBUILD_VECTOR with the input registers.
656    std::vector<SDOperand> Ops;
657    if (PTyElementVT == PTyLegalElementVT) {
658      // If the value types are legal, just VBUILD the CopyFromReg nodes.
659      for (unsigned i = 0; i != NE; ++i)
660        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
661                                         PTyElementVT));
662    } else if (PTyElementVT < PTyLegalElementVT) {
663      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
664      for (unsigned i = 0; i != NE; ++i) {
665        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
666                                          PTyElementVT);
667        if (MVT::isFloatingPoint(PTyElementVT))
668          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
669        else
670          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
671        Ops.push_back(Op);
672      }
673    } else {
674      // If the register was expanded, use BUILD_PAIR.
675      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
676      for (unsigned i = 0; i != NE/2; ++i) {
677        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
678                                           PTyElementVT);
679        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
680                                           PTyElementVT);
681        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
682      }
683    }
684
685    Ops.push_back(DAG.getConstant(NE, MVT::i32));
686    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
687    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, Ops);
688  }
689
690  return N;
691}
692
693
694void SelectionDAGLowering::visitRet(ReturnInst &I) {
695  if (I.getNumOperands() == 0) {
696    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
697    return;
698  }
699  std::vector<SDOperand> NewValues;
700  NewValues.push_back(getRoot());
701  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
702    SDOperand RetOp = getValue(I.getOperand(i));
703
704    // If this is an integer return value, we need to promote it ourselves to
705    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
706    // than sign/zero.
707    if (MVT::isInteger(RetOp.getValueType()) &&
708        RetOp.getValueType() < MVT::i64) {
709      MVT::ValueType TmpVT;
710      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
711        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
712      else
713        TmpVT = MVT::i32;
714
715      if (I.getOperand(i)->getType()->isSigned())
716        RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
717      else
718        RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
719    }
720    NewValues.push_back(RetOp);
721  }
722  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, NewValues));
723}
724
725void SelectionDAGLowering::visitBr(BranchInst &I) {
726  // Update machine-CFG edges.
727  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
728  CurMBB->addSuccessor(Succ0MBB);
729
730  // Figure out which block is immediately after the current one.
731  MachineBasicBlock *NextBlock = 0;
732  MachineFunction::iterator BBI = CurMBB;
733  if (++BBI != CurMBB->getParent()->end())
734    NextBlock = BBI;
735
736  if (I.isUnconditional()) {
737    // If this is not a fall-through branch, emit the branch.
738    if (Succ0MBB != NextBlock)
739      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
740                              DAG.getBasicBlock(Succ0MBB)));
741  } else {
742    MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
743    CurMBB->addSuccessor(Succ1MBB);
744
745    SDOperand Cond = getValue(I.getCondition());
746    if (Succ1MBB == NextBlock) {
747      // If the condition is false, fall through.  This means we should branch
748      // if the condition is true to Succ #0.
749      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
750                              Cond, DAG.getBasicBlock(Succ0MBB)));
751    } else if (Succ0MBB == NextBlock) {
752      // If the condition is true, fall through.  This means we should branch if
753      // the condition is false to Succ #1.  Invert the condition first.
754      SDOperand True = DAG.getConstant(1, Cond.getValueType());
755      Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
756      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
757                              Cond, DAG.getBasicBlock(Succ1MBB)));
758    } else {
759      std::vector<SDOperand> Ops;
760      Ops.push_back(getRoot());
761      // If the false case is the current basic block, then this is a self
762      // loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it
763      // adds an extra instruction in the loop.  Instead, invert the
764      // condition and emit "Loop: ... br!cond Loop; br Out.
765      if (CurMBB == Succ1MBB) {
766        std::swap(Succ0MBB, Succ1MBB);
767        SDOperand True = DAG.getConstant(1, Cond.getValueType());
768        Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
769      }
770      SDOperand True = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
771                                   DAG.getBasicBlock(Succ0MBB));
772      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, True,
773                              DAG.getBasicBlock(Succ1MBB)));
774    }
775  }
776}
777
778/// visitSwitchCase - Emits the necessary code to represent a single node in
779/// the binary search tree resulting from lowering a switch instruction.
780void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
781  SDOperand SwitchOp = getValue(CB.SwitchV);
782  SDOperand CaseOp = getValue(CB.CaseC);
783  SDOperand Cond = DAG.getSetCC(MVT::i1, SwitchOp, CaseOp, CB.CC);
784
785  // Set NextBlock to be the MBB immediately after the current one, if any.
786  // This is used to avoid emitting unnecessary branches to the next block.
787  MachineBasicBlock *NextBlock = 0;
788  MachineFunction::iterator BBI = CurMBB;
789  if (++BBI != CurMBB->getParent()->end())
790    NextBlock = BBI;
791
792  // If the lhs block is the next block, invert the condition so that we can
793  // fall through to the lhs instead of the rhs block.
794  if (CB.LHSBB == NextBlock) {
795    std::swap(CB.LHSBB, CB.RHSBB);
796    SDOperand True = DAG.getConstant(1, Cond.getValueType());
797    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
798  }
799  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
800                                 DAG.getBasicBlock(CB.LHSBB));
801  if (CB.RHSBB == NextBlock)
802    DAG.setRoot(BrCond);
803  else
804    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
805                            DAG.getBasicBlock(CB.RHSBB)));
806  // Update successor info
807  CurMBB->addSuccessor(CB.LHSBB);
808  CurMBB->addSuccessor(CB.RHSBB);
809}
810
811void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
812  // Figure out which block is immediately after the current one.
813  MachineBasicBlock *NextBlock = 0;
814  MachineFunction::iterator BBI = CurMBB;
815  if (++BBI != CurMBB->getParent()->end())
816    NextBlock = BBI;
817
818  // If there is only the default destination, branch to it if it is not the
819  // next basic block.  Otherwise, just fall through.
820  if (I.getNumOperands() == 2) {
821    // Update machine-CFG edges.
822    MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[I.getDefaultDest()];
823    // If this is not a fall-through branch, emit the branch.
824    if (DefaultMBB != NextBlock)
825      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
826                              DAG.getBasicBlock(DefaultMBB)));
827    return;
828  }
829
830  // If there are any non-default case statements, create a vector of Cases
831  // representing each one, and sort the vector so that we can efficiently
832  // create a binary search tree from them.
833  std::vector<Case> Cases;
834  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
835    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
836    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
837  }
838  std::sort(Cases.begin(), Cases.end(), CaseCmp());
839
840  // Get the Value to be switched on and default basic blocks, which will be
841  // inserted into CaseBlock records, representing basic blocks in the binary
842  // search tree.
843  Value *SV = I.getOperand(0);
844  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
845
846  // Get the current MachineFunction and LLVM basic block, for use in creating
847  // and inserting new MBBs during the creation of the binary search tree.
848  MachineFunction *CurMF = CurMBB->getParent();
849  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
850
851  // Push the initial CaseRec onto the worklist
852  std::vector<CaseRec> CaseVec;
853  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
854
855  while (!CaseVec.empty()) {
856    // Grab a record representing a case range to process off the worklist
857    CaseRec CR = CaseVec.back();
858    CaseVec.pop_back();
859
860    // Size is the number of Cases represented by this range.  If Size is 1,
861    // then we are processing a leaf of the binary search tree.  Otherwise,
862    // we need to pick a pivot, and push left and right ranges onto the
863    // worklist.
864    unsigned Size = CR.Range.second - CR.Range.first;
865
866    if (Size == 1) {
867      // Create a CaseBlock record representing a conditional branch to
868      // the Case's target mbb if the value being switched on SV is equal
869      // to C.  Otherwise, branch to default.
870      Constant *C = CR.Range.first->first;
871      MachineBasicBlock *Target = CR.Range.first->second;
872      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
873                                     CR.CaseBB);
874      // If the MBB representing the leaf node is the current MBB, then just
875      // call visitSwitchCase to emit the code into the current block.
876      // Otherwise, push the CaseBlock onto the vector to be later processed
877      // by SDISel, and insert the node's MBB before the next MBB.
878      if (CR.CaseBB == CurMBB)
879        visitSwitchCase(CB);
880      else {
881        SwitchCases.push_back(CB);
882        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
883      }
884    } else {
885      // split case range at pivot
886      CaseItr Pivot = CR.Range.first + (Size / 2);
887      CaseRange LHSR(CR.Range.first, Pivot);
888      CaseRange RHSR(Pivot, CR.Range.second);
889      Constant *C = Pivot->first;
890      MachineBasicBlock *RHSBB = 0, *LHSBB = 0;
891      // We know that we branch to the LHS if the Value being switched on is
892      // less than the Pivot value, C.  We use this to optimize our binary
893      // tree a bit, by recognizing that if SV is greater than or equal to the
894      // LHS's Case Value, and that Case Value is exactly one less than the
895      // Pivot's Value, then we can branch directly to the LHS's Target,
896      // rather than creating a leaf node for it.
897      if ((LHSR.second - LHSR.first) == 1 &&
898          LHSR.first->first == CR.GE &&
899          cast<ConstantIntegral>(C)->getRawValue() ==
900          (cast<ConstantIntegral>(CR.GE)->getRawValue() + 1ULL)) {
901        LHSBB = LHSR.first->second;
902      } else {
903        LHSBB = new MachineBasicBlock(LLVMBB);
904        CaseVec.push_back(CaseRec(LHSBB,C,CR.GE,LHSR));
905      }
906      // Similar to the optimization above, if the Value being switched on is
907      // known to be less than the Constant CR.LT, and the current Case Value
908      // is CR.LT - 1, then we can branch directly to the target block for
909      // the current Case Value, rather than emitting a RHS leaf node for it.
910      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
911          cast<ConstantIntegral>(RHSR.first->first)->getRawValue() ==
912          (cast<ConstantIntegral>(CR.LT)->getRawValue() - 1ULL)) {
913        RHSBB = RHSR.first->second;
914      } else {
915        RHSBB = new MachineBasicBlock(LLVMBB);
916        CaseVec.push_back(CaseRec(RHSBB,CR.LT,C,RHSR));
917      }
918      // Create a CaseBlock record representing a conditional branch to
919      // the LHS node if the value being switched on SV is less than C.
920      // Otherwise, branch to LHS.
921      ISD::CondCode CC = C->getType()->isSigned() ? ISD::SETLT : ISD::SETULT;
922      SelectionDAGISel::CaseBlock CB(CC, SV, C, LHSBB, RHSBB, CR.CaseBB);
923      if (CR.CaseBB == CurMBB)
924        visitSwitchCase(CB);
925      else {
926        SwitchCases.push_back(CB);
927        CurMF->getBasicBlockList().insert(BBI, CR.CaseBB);
928      }
929    }
930  }
931}
932
933void SelectionDAGLowering::visitSub(User &I) {
934  // -0.0 - X --> fneg
935  if (I.getType()->isFloatingPoint()) {
936    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
937      if (CFP->isExactlyValue(-0.0)) {
938        SDOperand Op2 = getValue(I.getOperand(1));
939        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
940        return;
941      }
942  }
943  visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
944}
945
946void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp,
947                                       unsigned VecOp) {
948  const Type *Ty = I.getType();
949  SDOperand Op1 = getValue(I.getOperand(0));
950  SDOperand Op2 = getValue(I.getOperand(1));
951
952  if (Ty->isIntegral()) {
953    setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
954  } else if (Ty->isFloatingPoint()) {
955    setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
956  } else {
957    const PackedType *PTy = cast<PackedType>(Ty);
958    SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
959    SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
960    setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
961  }
962}
963
964void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
965  SDOperand Op1 = getValue(I.getOperand(0));
966  SDOperand Op2 = getValue(I.getOperand(1));
967
968  Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
969
970  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
971}
972
973void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
974                                      ISD::CondCode UnsignedOpcode) {
975  SDOperand Op1 = getValue(I.getOperand(0));
976  SDOperand Op2 = getValue(I.getOperand(1));
977  ISD::CondCode Opcode = SignedOpcode;
978  if (I.getOperand(0)->getType()->isUnsigned())
979    Opcode = UnsignedOpcode;
980  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
981}
982
983void SelectionDAGLowering::visitSelect(User &I) {
984  SDOperand Cond     = getValue(I.getOperand(0));
985  SDOperand TrueVal  = getValue(I.getOperand(1));
986  SDOperand FalseVal = getValue(I.getOperand(2));
987  setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
988                           TrueVal, FalseVal));
989}
990
991void SelectionDAGLowering::visitCast(User &I) {
992  SDOperand N = getValue(I.getOperand(0));
993  MVT::ValueType SrcVT = N.getValueType();
994  MVT::ValueType DestVT = TLI.getValueType(I.getType());
995
996  if (DestVT == MVT::Vector) {
997    // This is a cast to a vector from something else.  This is always a bit
998    // convert.  Get information about the input vector.
999    const PackedType *DestTy = cast<PackedType>(I.getType());
1000    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1001    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1002                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1003                             DAG.getValueType(EltVT)));
1004  } else if (SrcVT == DestVT) {
1005    setValue(&I, N);  // noop cast.
1006  } else if (DestVT == MVT::i1) {
1007    // Cast to bool is a comparison against zero, not truncation to zero.
1008    SDOperand Zero = isInteger(SrcVT) ? DAG.getConstant(0, N.getValueType()) :
1009                                       DAG.getConstantFP(0.0, N.getValueType());
1010    setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
1011  } else if (isInteger(SrcVT)) {
1012    if (isInteger(DestVT)) {        // Int -> Int cast
1013      if (DestVT < SrcVT)   // Truncating cast?
1014        setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1015      else if (I.getOperand(0)->getType()->isSigned())
1016        setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1017      else
1018        setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1019    } else if (isFloatingPoint(DestVT)) {           // Int -> FP cast
1020      if (I.getOperand(0)->getType()->isSigned())
1021        setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1022      else
1023        setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1024    } else {
1025      assert(0 && "Unknown cast!");
1026    }
1027  } else if (isFloatingPoint(SrcVT)) {
1028    if (isFloatingPoint(DestVT)) {  // FP -> FP cast
1029      if (DestVT < SrcVT)   // Rounding cast?
1030        setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1031      else
1032        setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1033    } else if (isInteger(DestVT)) {        // FP -> Int cast.
1034      if (I.getType()->isSigned())
1035        setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1036      else
1037        setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1038    } else {
1039      assert(0 && "Unknown cast!");
1040    }
1041  } else {
1042    assert(SrcVT == MVT::Vector && "Unknown cast!");
1043    assert(DestVT != MVT::Vector && "Casts to vector already handled!");
1044    // This is a cast from a vector to something else.  This is always a bit
1045    // convert.  Get information about the input vector.
1046    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1047  }
1048}
1049
1050void SelectionDAGLowering::visitInsertElement(User &I) {
1051  SDOperand InVec = getValue(I.getOperand(0));
1052  SDOperand InVal = getValue(I.getOperand(1));
1053  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1054                                getValue(I.getOperand(2)));
1055
1056  SDOperand Num = *(InVec.Val->op_end()-2);
1057  SDOperand Typ = *(InVec.Val->op_end()-1);
1058  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1059                           InVec, InVal, InIdx, Num, Typ));
1060}
1061
1062void SelectionDAGLowering::visitExtractElement(User &I) {
1063  SDOperand InVec = getValue(I.getOperand(0));
1064  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1065                                getValue(I.getOperand(1)));
1066  SDOperand Typ = *(InVec.Val->op_end()-1);
1067  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1068                           TLI.getValueType(I.getType()), InVec, InIdx));
1069}
1070
1071void SelectionDAGLowering::visitGetElementPtr(User &I) {
1072  SDOperand N = getValue(I.getOperand(0));
1073  const Type *Ty = I.getOperand(0)->getType();
1074  const Type *UIntPtrTy = TD.getIntPtrType();
1075
1076  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1077       OI != E; ++OI) {
1078    Value *Idx = *OI;
1079    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1080      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
1081      if (Field) {
1082        // N = N + Offset
1083        uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
1084        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1085                        getIntPtrConstant(Offset));
1086      }
1087      Ty = StTy->getElementType(Field);
1088    } else {
1089      Ty = cast<SequentialType>(Ty)->getElementType();
1090
1091      // If this is a constant subscript, handle it quickly.
1092      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1093        if (CI->getRawValue() == 0) continue;
1094
1095        uint64_t Offs;
1096        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
1097          Offs = (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
1098        else
1099          Offs = TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
1100        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1101        continue;
1102      }
1103
1104      // N = N + Idx * ElementSize;
1105      uint64_t ElementSize = TD.getTypeSize(Ty);
1106      SDOperand IdxN = getValue(Idx);
1107
1108      // If the index is smaller or larger than intptr_t, truncate or extend
1109      // it.
1110      if (IdxN.getValueType() < N.getValueType()) {
1111        if (Idx->getType()->isSigned())
1112          IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1113        else
1114          IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
1115      } else if (IdxN.getValueType() > N.getValueType())
1116        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1117
1118      // If this is a multiply by a power of two, turn it into a shl
1119      // immediately.  This is a very common case.
1120      if (isPowerOf2_64(ElementSize)) {
1121        unsigned Amt = Log2_64(ElementSize);
1122        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1123                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1124        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1125        continue;
1126      }
1127
1128      SDOperand Scale = getIntPtrConstant(ElementSize);
1129      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1130      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1131    }
1132  }
1133  setValue(&I, N);
1134}
1135
1136void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1137  // If this is a fixed sized alloca in the entry block of the function,
1138  // allocate it statically on the stack.
1139  if (FuncInfo.StaticAllocaMap.count(&I))
1140    return;   // getValue will auto-populate this.
1141
1142  const Type *Ty = I.getAllocatedType();
1143  uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
1144  unsigned Align = std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
1145                            I.getAlignment());
1146
1147  SDOperand AllocSize = getValue(I.getArraySize());
1148  MVT::ValueType IntPtr = TLI.getPointerTy();
1149  if (IntPtr < AllocSize.getValueType())
1150    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1151  else if (IntPtr > AllocSize.getValueType())
1152    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1153
1154  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1155                          getIntPtrConstant(TySize));
1156
1157  // Handle alignment.  If the requested alignment is less than or equal to the
1158  // stack alignment, ignore it and round the size of the allocation up to the
1159  // stack alignment size.  If the size is greater than the stack alignment, we
1160  // note this in the DYNAMIC_STACKALLOC node.
1161  unsigned StackAlign =
1162    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1163  if (Align <= StackAlign) {
1164    Align = 0;
1165    // Add SA-1 to the size.
1166    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1167                            getIntPtrConstant(StackAlign-1));
1168    // Mask out the low bits for alignment purposes.
1169    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1170                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1171  }
1172
1173  std::vector<MVT::ValueType> VTs;
1174  VTs.push_back(AllocSize.getValueType());
1175  VTs.push_back(MVT::Other);
1176  std::vector<SDOperand> Ops;
1177  Ops.push_back(getRoot());
1178  Ops.push_back(AllocSize);
1179  Ops.push_back(getIntPtrConstant(Align));
1180  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
1181  DAG.setRoot(setValue(&I, DSA).getValue(1));
1182
1183  // Inform the Frame Information that we have just allocated a variable-sized
1184  // object.
1185  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1186}
1187
1188void SelectionDAGLowering::visitLoad(LoadInst &I) {
1189  SDOperand Ptr = getValue(I.getOperand(0));
1190
1191  SDOperand Root;
1192  if (I.isVolatile())
1193    Root = getRoot();
1194  else {
1195    // Do not serialize non-volatile loads against each other.
1196    Root = DAG.getRoot();
1197  }
1198
1199  setValue(&I, getLoadFrom(I.getType(), Ptr, DAG.getSrcValue(I.getOperand(0)),
1200                           Root, I.isVolatile()));
1201}
1202
1203SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1204                                            SDOperand SrcValue, SDOperand Root,
1205                                            bool isVolatile) {
1206  SDOperand L;
1207  if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
1208    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1209    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr, SrcValue);
1210  } else {
1211    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SrcValue);
1212  }
1213
1214  if (isVolatile)
1215    DAG.setRoot(L.getValue(1));
1216  else
1217    PendingLoads.push_back(L.getValue(1));
1218
1219  return L;
1220}
1221
1222
1223void SelectionDAGLowering::visitStore(StoreInst &I) {
1224  Value *SrcV = I.getOperand(0);
1225  SDOperand Src = getValue(SrcV);
1226  SDOperand Ptr = getValue(I.getOperand(1));
1227  DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
1228                          DAG.getSrcValue(I.getOperand(1))));
1229}
1230
1231/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1232/// access memory and has no other side effects at all.
1233static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1234#define GET_NO_MEMORY_INTRINSICS
1235#include "llvm/Intrinsics.gen"
1236#undef GET_NO_MEMORY_INTRINSICS
1237  return false;
1238}
1239
1240/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1241/// node.
1242void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1243                                                unsigned Intrinsic) {
1244  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1245
1246  // Build the operand list.
1247  std::vector<SDOperand> Ops;
1248  if (HasChain)   // If this intrinsic has side-effects, chainify it.
1249    Ops.push_back(getRoot());
1250
1251  // Add the intrinsic ID as an integer operand.
1252  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1253
1254  // Add all operands of the call to the operand list.
1255  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1256    SDOperand Op = getValue(I.getOperand(i));
1257
1258    // If this is a vector type, force it to the right packed type.
1259    if (Op.getValueType() == MVT::Vector) {
1260      const PackedType *OpTy = cast<PackedType>(I.getOperand(i)->getType());
1261      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1262
1263      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1264      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1265      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1266    }
1267
1268    assert(TLI.isTypeLegal(Op.getValueType()) &&
1269           "Intrinsic uses a non-legal type?");
1270    Ops.push_back(Op);
1271  }
1272
1273  std::vector<MVT::ValueType> VTs;
1274  if (I.getType() != Type::VoidTy) {
1275    MVT::ValueType VT = TLI.getValueType(I.getType());
1276    if (VT == MVT::Vector) {
1277      const PackedType *DestTy = cast<PackedType>(I.getType());
1278      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1279
1280      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1281      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1282    }
1283
1284    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1285    VTs.push_back(VT);
1286  }
1287  if (HasChain)
1288    VTs.push_back(MVT::Other);
1289
1290  // Create the node.
1291  SDOperand Result;
1292  if (!HasChain)
1293    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTs, Ops);
1294  else if (I.getType() != Type::VoidTy)
1295    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTs, Ops);
1296  else
1297    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTs, Ops);
1298
1299  if (HasChain)
1300    DAG.setRoot(Result.getValue(Result.Val->getNumValues()-1));
1301  if (I.getType() != Type::VoidTy) {
1302    if (const PackedType *PTy = dyn_cast<PackedType>(I.getType())) {
1303      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1304      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1305                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1306                           DAG.getValueType(EVT));
1307    }
1308    setValue(&I, Result);
1309  }
1310}
1311
1312/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1313/// we want to emit this as a call to a named external function, return the name
1314/// otherwise lower it and return null.
1315const char *
1316SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1317  switch (Intrinsic) {
1318  default:
1319    // By default, turn this into a target intrinsic node.
1320    visitTargetIntrinsic(I, Intrinsic);
1321    return 0;
1322  case Intrinsic::vastart:  visitVAStart(I); return 0;
1323  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1324  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1325  case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
1326  case Intrinsic::frameaddress:  visitFrameReturnAddress(I, true); return 0;
1327  case Intrinsic::setjmp:
1328    return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1329    break;
1330  case Intrinsic::longjmp:
1331    return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
1332    break;
1333  case Intrinsic::memcpy_i32:
1334  case Intrinsic::memcpy_i64:
1335    visitMemIntrinsic(I, ISD::MEMCPY);
1336    return 0;
1337  case Intrinsic::memset_i32:
1338  case Intrinsic::memset_i64:
1339    visitMemIntrinsic(I, ISD::MEMSET);
1340    return 0;
1341  case Intrinsic::memmove_i32:
1342  case Intrinsic::memmove_i64:
1343    visitMemIntrinsic(I, ISD::MEMMOVE);
1344    return 0;
1345
1346  case Intrinsic::dbg_stoppoint: {
1347    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1348    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
1349    if (DebugInfo && SPI.getContext() && DebugInfo->Verify(SPI.getContext())) {
1350      std::vector<SDOperand> Ops;
1351
1352      Ops.push_back(getRoot());
1353      Ops.push_back(getValue(SPI.getLineValue()));
1354      Ops.push_back(getValue(SPI.getColumnValue()));
1355
1356      DebugInfoDesc *DD = DebugInfo->getDescFor(SPI.getContext());
1357      assert(DD && "Not a debug information descriptor");
1358      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
1359
1360      Ops.push_back(DAG.getString(CompileUnit->getFileName()));
1361      Ops.push_back(DAG.getString(CompileUnit->getDirectory()));
1362
1363      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops));
1364    }
1365
1366    return 0;
1367  }
1368  case Intrinsic::dbg_region_start: {
1369    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1370    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
1371    if (DebugInfo && RSI.getContext() && DebugInfo->Verify(RSI.getContext())) {
1372      std::vector<SDOperand> Ops;
1373
1374      unsigned LabelID = DebugInfo->RecordRegionStart(RSI.getContext());
1375
1376      Ops.push_back(getRoot());
1377      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1378
1379      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1380    }
1381
1382    return 0;
1383  }
1384  case Intrinsic::dbg_region_end: {
1385    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1386    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
1387    if (DebugInfo && REI.getContext() && DebugInfo->Verify(REI.getContext())) {
1388      std::vector<SDOperand> Ops;
1389
1390      unsigned LabelID = DebugInfo->RecordRegionEnd(REI.getContext());
1391
1392      Ops.push_back(getRoot());
1393      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1394
1395      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1396    }
1397
1398    return 0;
1399  }
1400  case Intrinsic::dbg_func_start: {
1401    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1402    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
1403    if (DebugInfo && FSI.getSubprogram() &&
1404        DebugInfo->Verify(FSI.getSubprogram())) {
1405      std::vector<SDOperand> Ops;
1406
1407      unsigned LabelID = DebugInfo->RecordRegionStart(FSI.getSubprogram());
1408
1409      Ops.push_back(getRoot());
1410      Ops.push_back(DAG.getConstant(LabelID, MVT::i32));
1411
1412      DAG.setRoot(DAG.getNode(ISD::DEBUG_LABEL, MVT::Other, Ops));
1413    }
1414
1415    return 0;
1416  }
1417  case Intrinsic::dbg_declare: {
1418    MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
1419    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
1420    if (DebugInfo && DI.getVariable() && DebugInfo->Verify(DI.getVariable())) {
1421      std::vector<SDOperand> Ops;
1422
1423      SDOperand AddressOp  = getValue(DI.getAddress());
1424      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp)) {
1425        DebugInfo->RecordVariable(DI.getVariable(), FI->getIndex());
1426      }
1427    }
1428
1429    return 0;
1430  }
1431
1432  case Intrinsic::isunordered_f32:
1433  case Intrinsic::isunordered_f64:
1434    setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
1435                              getValue(I.getOperand(2)), ISD::SETUO));
1436    return 0;
1437
1438  case Intrinsic::sqrt_f32:
1439  case Intrinsic::sqrt_f64:
1440    setValue(&I, DAG.getNode(ISD::FSQRT,
1441                             getValue(I.getOperand(1)).getValueType(),
1442                             getValue(I.getOperand(1))));
1443    return 0;
1444  case Intrinsic::pcmarker: {
1445    SDOperand Tmp = getValue(I.getOperand(1));
1446    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
1447    return 0;
1448  }
1449  case Intrinsic::readcyclecounter: {
1450    std::vector<MVT::ValueType> VTs;
1451    VTs.push_back(MVT::i64);
1452    VTs.push_back(MVT::Other);
1453    std::vector<SDOperand> Ops;
1454    Ops.push_back(getRoot());
1455    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops);
1456    setValue(&I, Tmp);
1457    DAG.setRoot(Tmp.getValue(1));
1458    return 0;
1459  }
1460  case Intrinsic::bswap_i16:
1461  case Intrinsic::bswap_i32:
1462  case Intrinsic::bswap_i64:
1463    setValue(&I, DAG.getNode(ISD::BSWAP,
1464                             getValue(I.getOperand(1)).getValueType(),
1465                             getValue(I.getOperand(1))));
1466    return 0;
1467  case Intrinsic::cttz_i8:
1468  case Intrinsic::cttz_i16:
1469  case Intrinsic::cttz_i32:
1470  case Intrinsic::cttz_i64:
1471    setValue(&I, DAG.getNode(ISD::CTTZ,
1472                             getValue(I.getOperand(1)).getValueType(),
1473                             getValue(I.getOperand(1))));
1474    return 0;
1475  case Intrinsic::ctlz_i8:
1476  case Intrinsic::ctlz_i16:
1477  case Intrinsic::ctlz_i32:
1478  case Intrinsic::ctlz_i64:
1479    setValue(&I, DAG.getNode(ISD::CTLZ,
1480                             getValue(I.getOperand(1)).getValueType(),
1481                             getValue(I.getOperand(1))));
1482    return 0;
1483  case Intrinsic::ctpop_i8:
1484  case Intrinsic::ctpop_i16:
1485  case Intrinsic::ctpop_i32:
1486  case Intrinsic::ctpop_i64:
1487    setValue(&I, DAG.getNode(ISD::CTPOP,
1488                             getValue(I.getOperand(1)).getValueType(),
1489                             getValue(I.getOperand(1))));
1490    return 0;
1491  case Intrinsic::stacksave: {
1492    std::vector<MVT::ValueType> VTs;
1493    VTs.push_back(TLI.getPointerTy());
1494    VTs.push_back(MVT::Other);
1495    std::vector<SDOperand> Ops;
1496    Ops.push_back(getRoot());
1497    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops);
1498    setValue(&I, Tmp);
1499    DAG.setRoot(Tmp.getValue(1));
1500    return 0;
1501  }
1502  case Intrinsic::stackrestore: {
1503    SDOperand Tmp = getValue(I.getOperand(1));
1504    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
1505    return 0;
1506  }
1507  case Intrinsic::prefetch:
1508    // FIXME: Currently discarding prefetches.
1509    return 0;
1510  }
1511}
1512
1513
1514void SelectionDAGLowering::visitCall(CallInst &I) {
1515  const char *RenameFn = 0;
1516  if (Function *F = I.getCalledFunction()) {
1517    if (F->isExternal())
1518      if (unsigned IID = F->getIntrinsicID()) {
1519        RenameFn = visitIntrinsicCall(I, IID);
1520        if (!RenameFn)
1521          return;
1522      } else {    // Not an LLVM intrinsic.
1523        const std::string &Name = F->getName();
1524        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
1525          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
1526              I.getOperand(1)->getType()->isFloatingPoint() &&
1527              I.getType() == I.getOperand(1)->getType() &&
1528              I.getType() == I.getOperand(2)->getType()) {
1529            SDOperand LHS = getValue(I.getOperand(1));
1530            SDOperand RHS = getValue(I.getOperand(2));
1531            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
1532                                     LHS, RHS));
1533            return;
1534          }
1535        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
1536          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1537              I.getOperand(1)->getType()->isFloatingPoint() &&
1538              I.getType() == I.getOperand(1)->getType()) {
1539            SDOperand Tmp = getValue(I.getOperand(1));
1540            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
1541            return;
1542          }
1543        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
1544          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1545              I.getOperand(1)->getType()->isFloatingPoint() &&
1546              I.getType() == I.getOperand(1)->getType()) {
1547            SDOperand Tmp = getValue(I.getOperand(1));
1548            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
1549            return;
1550          }
1551        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
1552          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
1553              I.getOperand(1)->getType()->isFloatingPoint() &&
1554              I.getType() == I.getOperand(1)->getType()) {
1555            SDOperand Tmp = getValue(I.getOperand(1));
1556            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
1557            return;
1558          }
1559        }
1560      }
1561  } else if (isa<InlineAsm>(I.getOperand(0))) {
1562    visitInlineAsm(I);
1563    return;
1564  }
1565
1566  SDOperand Callee;
1567  if (!RenameFn)
1568    Callee = getValue(I.getOperand(0));
1569  else
1570    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
1571  std::vector<std::pair<SDOperand, const Type*> > Args;
1572  Args.reserve(I.getNumOperands());
1573  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1574    Value *Arg = I.getOperand(i);
1575    SDOperand ArgNode = getValue(Arg);
1576    Args.push_back(std::make_pair(ArgNode, Arg->getType()));
1577  }
1578
1579  const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
1580  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1581
1582  std::pair<SDOperand,SDOperand> Result =
1583    TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
1584                    I.isTailCall(), Callee, Args, DAG);
1585  if (I.getType() != Type::VoidTy)
1586    setValue(&I, Result.first);
1587  DAG.setRoot(Result.second);
1588}
1589
1590SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
1591                                        SDOperand &Chain, SDOperand &Flag)const{
1592  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
1593  Chain = Val.getValue(1);
1594  Flag  = Val.getValue(2);
1595
1596  // If the result was expanded, copy from the top part.
1597  if (Regs.size() > 1) {
1598    assert(Regs.size() == 2 &&
1599           "Cannot expand to more than 2 elts yet!");
1600    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
1601    Chain = Val.getValue(1);
1602    Flag  = Val.getValue(2);
1603    if (DAG.getTargetLoweringInfo().isLittleEndian())
1604      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
1605    else
1606      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
1607  }
1608
1609  // Otherwise, if the return value was promoted, truncate it to the
1610  // appropriate type.
1611  if (RegVT == ValueVT)
1612    return Val;
1613
1614  if (MVT::isInteger(RegVT))
1615    return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
1616  else
1617    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
1618}
1619
1620/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
1621/// specified value into the registers specified by this object.  This uses
1622/// Chain/Flag as the input and updates them for the output Chain/Flag.
1623void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
1624                                 SDOperand &Chain, SDOperand &Flag) const {
1625  if (Regs.size() == 1) {
1626    // If there is a single register and the types differ, this must be
1627    // a promotion.
1628    if (RegVT != ValueVT) {
1629      if (MVT::isInteger(RegVT))
1630        Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
1631      else
1632        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
1633    }
1634    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
1635    Flag = Chain.getValue(1);
1636  } else {
1637    std::vector<unsigned> R(Regs);
1638    if (!DAG.getTargetLoweringInfo().isLittleEndian())
1639      std::reverse(R.begin(), R.end());
1640
1641    for (unsigned i = 0, e = R.size(); i != e; ++i) {
1642      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
1643                                   DAG.getConstant(i, MVT::i32));
1644      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
1645      Flag = Chain.getValue(1);
1646    }
1647  }
1648}
1649
1650/// AddInlineAsmOperands - Add this value to the specified inlineasm node
1651/// operand list.  This adds the code marker and includes the number of
1652/// values added into it.
1653void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
1654                                        std::vector<SDOperand> &Ops) const {
1655  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
1656  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1657    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
1658}
1659
1660/// isAllocatableRegister - If the specified register is safe to allocate,
1661/// i.e. it isn't a stack pointer or some other special register, return the
1662/// register class for the register.  Otherwise, return null.
1663static const TargetRegisterClass *
1664isAllocatableRegister(unsigned Reg, MachineFunction &MF,
1665                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
1666  MVT::ValueType FoundVT = MVT::Other;
1667  const TargetRegisterClass *FoundRC = 0;
1668  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
1669       E = MRI->regclass_end(); RCI != E; ++RCI) {
1670    MVT::ValueType ThisVT = MVT::Other;
1671
1672    const TargetRegisterClass *RC = *RCI;
1673    // If none of the the value types for this register class are valid, we
1674    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1675    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1676         I != E; ++I) {
1677      if (TLI.isTypeLegal(*I)) {
1678        // If we have already found this register in a different register class,
1679        // choose the one with the largest VT specified.  For example, on
1680        // PowerPC, we favor f64 register classes over f32.
1681        if (FoundVT == MVT::Other ||
1682            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
1683          ThisVT = *I;
1684          break;
1685        }
1686      }
1687    }
1688
1689    if (ThisVT == MVT::Other) continue;
1690
1691    // NOTE: This isn't ideal.  In particular, this might allocate the
1692    // frame pointer in functions that need it (due to them not being taken
1693    // out of allocation, because a variable sized allocation hasn't been seen
1694    // yet).  This is a slight code pessimization, but should still work.
1695    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
1696         E = RC->allocation_order_end(MF); I != E; ++I)
1697      if (*I == Reg) {
1698        // We found a matching register class.  Keep looking at others in case
1699        // we find one with larger registers that this physreg is also in.
1700        FoundRC = RC;
1701        FoundVT = ThisVT;
1702        break;
1703      }
1704  }
1705  return FoundRC;
1706}
1707
1708RegsForValue SelectionDAGLowering::
1709GetRegistersForValue(const std::string &ConstrCode,
1710                     MVT::ValueType VT, bool isOutReg, bool isInReg,
1711                     std::set<unsigned> &OutputRegs,
1712                     std::set<unsigned> &InputRegs) {
1713  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
1714    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
1715  std::vector<unsigned> Regs;
1716
1717  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
1718  MVT::ValueType RegVT;
1719  MVT::ValueType ValueVT = VT;
1720
1721  if (PhysReg.first) {
1722    if (VT == MVT::Other)
1723      ValueVT = *PhysReg.second->vt_begin();
1724    RegVT = VT;
1725
1726    // This is a explicit reference to a physical register.
1727    Regs.push_back(PhysReg.first);
1728
1729    // If this is an expanded reference, add the rest of the regs to Regs.
1730    if (NumRegs != 1) {
1731      RegVT = *PhysReg.second->vt_begin();
1732      TargetRegisterClass::iterator I = PhysReg.second->begin();
1733      TargetRegisterClass::iterator E = PhysReg.second->end();
1734      for (; *I != PhysReg.first; ++I)
1735        assert(I != E && "Didn't find reg!");
1736
1737      // Already added the first reg.
1738      --NumRegs; ++I;
1739      for (; NumRegs; --NumRegs, ++I) {
1740        assert(I != E && "Ran out of registers to allocate!");
1741        Regs.push_back(*I);
1742      }
1743    }
1744    return RegsForValue(Regs, RegVT, ValueVT);
1745  }
1746
1747  // This is a reference to a register class.  Allocate NumRegs consecutive,
1748  // available, registers from the class.
1749  std::vector<unsigned> RegClassRegs =
1750    TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
1751
1752  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
1753  MachineFunction &MF = *CurMBB->getParent();
1754  unsigned NumAllocated = 0;
1755  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
1756    unsigned Reg = RegClassRegs[i];
1757    // See if this register is available.
1758    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
1759        (isInReg  && InputRegs.count(Reg))) {    // Already used.
1760      // Make sure we find consecutive registers.
1761      NumAllocated = 0;
1762      continue;
1763    }
1764
1765    // Check to see if this register is allocatable (i.e. don't give out the
1766    // stack pointer).
1767    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
1768    if (!RC) {
1769      // Make sure we find consecutive registers.
1770      NumAllocated = 0;
1771      continue;
1772    }
1773
1774    // Okay, this register is good, we can use it.
1775    ++NumAllocated;
1776
1777    // If we allocated enough consecutive
1778    if (NumAllocated == NumRegs) {
1779      unsigned RegStart = (i-NumAllocated)+1;
1780      unsigned RegEnd   = i+1;
1781      // Mark all of the allocated registers used.
1782      for (unsigned i = RegStart; i != RegEnd; ++i) {
1783        unsigned Reg = RegClassRegs[i];
1784        Regs.push_back(Reg);
1785        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
1786        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
1787      }
1788
1789      return RegsForValue(Regs, *RC->vt_begin(), VT);
1790    }
1791  }
1792
1793  // Otherwise, we couldn't allocate enough registers for this.
1794  return RegsForValue();
1795}
1796
1797
1798/// visitInlineAsm - Handle a call to an InlineAsm object.
1799///
1800void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
1801  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
1802
1803  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
1804                                                 MVT::Other);
1805
1806  // Note, we treat inline asms both with and without side-effects as the same.
1807  // If an inline asm doesn't have side effects and doesn't access memory, we
1808  // could not choose to not chain it.
1809  bool hasSideEffects = IA->hasSideEffects();
1810
1811  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
1812  std::vector<MVT::ValueType> ConstraintVTs;
1813
1814  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
1815  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
1816  /// if it is a def of that register.
1817  std::vector<SDOperand> AsmNodeOperands;
1818  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
1819  AsmNodeOperands.push_back(AsmStr);
1820
1821  SDOperand Chain = getRoot();
1822  SDOperand Flag;
1823
1824  // We fully assign registers here at isel time.  This is not optimal, but
1825  // should work.  For register classes that correspond to LLVM classes, we
1826  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
1827  // over the constraints, collecting fixed registers that we know we can't use.
1828  std::set<unsigned> OutputRegs, InputRegs;
1829  unsigned OpNum = 1;
1830  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1831    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
1832    std::string &ConstraintCode = Constraints[i].Codes[0];
1833
1834    MVT::ValueType OpVT;
1835
1836    // Compute the value type for each operand and add it to ConstraintVTs.
1837    switch (Constraints[i].Type) {
1838    case InlineAsm::isOutput:
1839      if (!Constraints[i].isIndirectOutput) {
1840        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
1841        OpVT = TLI.getValueType(I.getType());
1842      } else {
1843        const Type *OpTy = I.getOperand(OpNum)->getType();
1844        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
1845        OpNum++;  // Consumes a call operand.
1846      }
1847      break;
1848    case InlineAsm::isInput:
1849      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
1850      OpNum++;  // Consumes a call operand.
1851      break;
1852    case InlineAsm::isClobber:
1853      OpVT = MVT::Other;
1854      break;
1855    }
1856
1857    ConstraintVTs.push_back(OpVT);
1858
1859    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
1860      continue;  // Not assigned a fixed reg.
1861
1862    // Build a list of regs that this operand uses.  This always has a single
1863    // element for promoted/expanded operands.
1864    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
1865                                             false, false,
1866                                             OutputRegs, InputRegs);
1867
1868    switch (Constraints[i].Type) {
1869    case InlineAsm::isOutput:
1870      // We can't assign any other output to this register.
1871      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1872      // If this is an early-clobber output, it cannot be assigned to the same
1873      // value as the input reg.
1874      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
1875        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1876      break;
1877    case InlineAsm::isInput:
1878      // We can't assign any other input to this register.
1879      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1880      break;
1881    case InlineAsm::isClobber:
1882      // Clobbered regs cannot be used as inputs or outputs.
1883      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1884      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
1885      break;
1886    }
1887  }
1888
1889  // Loop over all of the inputs, copying the operand values into the
1890  // appropriate registers and processing the output regs.
1891  RegsForValue RetValRegs;
1892  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
1893  OpNum = 1;
1894
1895  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1896    assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
1897    std::string &ConstraintCode = Constraints[i].Codes[0];
1898
1899    switch (Constraints[i].Type) {
1900    case InlineAsm::isOutput: {
1901      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
1902      if (ConstraintCode.size() == 1)   // not a physreg name.
1903        CTy = TLI.getConstraintType(ConstraintCode[0]);
1904
1905      if (CTy == TargetLowering::C_Memory) {
1906        // Memory output.
1907        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
1908
1909        // Check that the operand (the address to store to) isn't a float.
1910        if (!MVT::isInteger(InOperandVal.getValueType()))
1911          assert(0 && "MATCH FAIL!");
1912
1913        if (!Constraints[i].isIndirectOutput)
1914          assert(0 && "MATCH FAIL!");
1915
1916        OpNum++;  // Consumes a call operand.
1917
1918        // Extend/truncate to the right pointer type if needed.
1919        MVT::ValueType PtrType = TLI.getPointerTy();
1920        if (InOperandVal.getValueType() < PtrType)
1921          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
1922        else if (InOperandVal.getValueType() > PtrType)
1923          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
1924
1925        // Add information to the INLINEASM node to know about this output.
1926        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
1927        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
1928        AsmNodeOperands.push_back(InOperandVal);
1929        break;
1930      }
1931
1932      // Otherwise, this is a register output.
1933      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
1934
1935      // If this is an early-clobber output, or if there is an input
1936      // constraint that matches this, we need to reserve the input register
1937      // so no other inputs allocate to it.
1938      bool UsesInputRegister = false;
1939      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
1940        UsesInputRegister = true;
1941
1942      // Copy the output from the appropriate register.  Find a register that
1943      // we can use.
1944      RegsForValue Regs =
1945        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
1946                             true, UsesInputRegister,
1947                             OutputRegs, InputRegs);
1948      assert(!Regs.Regs.empty() && "Couldn't allocate output reg!");
1949
1950      if (!Constraints[i].isIndirectOutput) {
1951        assert(RetValRegs.Regs.empty() &&
1952               "Cannot have multiple output constraints yet!");
1953        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
1954        RetValRegs = Regs;
1955      } else {
1956        IndirectStoresToEmit.push_back(std::make_pair(Regs,
1957                                                      I.getOperand(OpNum)));
1958        OpNum++;  // Consumes a call operand.
1959      }
1960
1961      // Add information to the INLINEASM node to know that this register is
1962      // set.
1963      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
1964      break;
1965    }
1966    case InlineAsm::isInput: {
1967      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
1968      OpNum++;  // Consumes a call operand.
1969
1970      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
1971        // If this is required to match an output register we have already set,
1972        // just use its register.
1973        unsigned OperandNo = atoi(ConstraintCode.c_str());
1974
1975        // Scan until we find the definition we already emitted of this operand.
1976        // When we find it, create a RegsForValue operand.
1977        unsigned CurOp = 2;  // The first operand.
1978        for (; OperandNo; --OperandNo) {
1979          // Advance to the next operand.
1980          unsigned NumOps =
1981            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
1982          assert((NumOps & 7) == 2 /*REGDEF*/ &&
1983                 "Skipped past definitions?");
1984          CurOp += (NumOps>>3)+1;
1985        }
1986
1987        unsigned NumOps =
1988          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
1989        assert((NumOps & 7) == 2 /*REGDEF*/ &&
1990               "Skipped past definitions?");
1991
1992        // Add NumOps>>3 registers to MatchedRegs.
1993        RegsForValue MatchedRegs;
1994        MatchedRegs.ValueVT = InOperandVal.getValueType();
1995        MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
1996        for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
1997          unsigned Reg=cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
1998          MatchedRegs.Regs.push_back(Reg);
1999        }
2000
2001        // Use the produced MatchedRegs object to
2002        MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
2003        MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2004        break;
2005      }
2006
2007      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2008      if (ConstraintCode.size() == 1)   // not a physreg name.
2009        CTy = TLI.getConstraintType(ConstraintCode[0]);
2010
2011      if (CTy == TargetLowering::C_Other) {
2012        if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
2013          assert(0 && "MATCH FAIL!");
2014
2015        // Add information to the INLINEASM node to know about this input.
2016        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2017        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2018        AsmNodeOperands.push_back(InOperandVal);
2019        break;
2020      } else if (CTy == TargetLowering::C_Memory) {
2021        // Memory input.
2022
2023        // Check that the operand isn't a float.
2024        if (!MVT::isInteger(InOperandVal.getValueType()))
2025          assert(0 && "MATCH FAIL!");
2026
2027        // Extend/truncate to the right pointer type if needed.
2028        MVT::ValueType PtrType = TLI.getPointerTy();
2029        if (InOperandVal.getValueType() < PtrType)
2030          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2031        else if (InOperandVal.getValueType() > PtrType)
2032          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2033
2034        // Add information to the INLINEASM node to know about this input.
2035        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2036        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2037        AsmNodeOperands.push_back(InOperandVal);
2038        break;
2039      }
2040
2041      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2042
2043      // Copy the input into the appropriate registers.
2044      RegsForValue InRegs =
2045        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2046                             false, true, OutputRegs, InputRegs);
2047      // FIXME: should be match fail.
2048      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2049
2050      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag);
2051
2052      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2053      break;
2054    }
2055    case InlineAsm::isClobber: {
2056      RegsForValue ClobberedRegs =
2057        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2058                             OutputRegs, InputRegs);
2059      // Add the clobbered value to the operand list, so that the register
2060      // allocator is aware that the physreg got clobbered.
2061      if (!ClobberedRegs.Regs.empty())
2062        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2063      break;
2064    }
2065    }
2066  }
2067
2068  // Finish up input operands.
2069  AsmNodeOperands[0] = Chain;
2070  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2071
2072  std::vector<MVT::ValueType> VTs;
2073  VTs.push_back(MVT::Other);
2074  VTs.push_back(MVT::Flag);
2075  Chain = DAG.getNode(ISD::INLINEASM, VTs, AsmNodeOperands);
2076  Flag = Chain.getValue(1);
2077
2078  // If this asm returns a register value, copy the result from that register
2079  // and set it as the value of the call.
2080  if (!RetValRegs.Regs.empty())
2081    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2082
2083  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2084
2085  // Process indirect outputs, first output all of the flagged copies out of
2086  // physregs.
2087  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2088    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2089    Value *Ptr = IndirectStoresToEmit[i].second;
2090    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2091    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2092  }
2093
2094  // Emit the non-flagged stores from the physregs.
2095  std::vector<SDOperand> OutChains;
2096  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2097    OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
2098                                    StoresToEmit[i].first,
2099                                    getValue(StoresToEmit[i].second),
2100                                    DAG.getSrcValue(StoresToEmit[i].second)));
2101  if (!OutChains.empty())
2102    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains);
2103  DAG.setRoot(Chain);
2104}
2105
2106
2107void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2108  SDOperand Src = getValue(I.getOperand(0));
2109
2110  MVT::ValueType IntPtr = TLI.getPointerTy();
2111
2112  if (IntPtr < Src.getValueType())
2113    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2114  else if (IntPtr > Src.getValueType())
2115    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2116
2117  // Scale the source by the type size.
2118  uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
2119  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2120                    Src, getIntPtrConstant(ElementSize));
2121
2122  std::vector<std::pair<SDOperand, const Type*> > Args;
2123  Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
2124
2125  std::pair<SDOperand,SDOperand> Result =
2126    TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
2127                    DAG.getExternalSymbol("malloc", IntPtr),
2128                    Args, DAG);
2129  setValue(&I, Result.first);  // Pointers always fit in registers
2130  DAG.setRoot(Result.second);
2131}
2132
2133void SelectionDAGLowering::visitFree(FreeInst &I) {
2134  std::vector<std::pair<SDOperand, const Type*> > Args;
2135  Args.push_back(std::make_pair(getValue(I.getOperand(0)),
2136                                TLI.getTargetData().getIntPtrType()));
2137  MVT::ValueType IntPtr = TLI.getPointerTy();
2138  std::pair<SDOperand,SDOperand> Result =
2139    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
2140                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
2141  DAG.setRoot(Result.second);
2142}
2143
2144// InsertAtEndOfBasicBlock - This method should be implemented by targets that
2145// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
2146// instructions are special in various ways, which require special support to
2147// insert.  The specified MachineInstr is created but not inserted into any
2148// basic blocks, and the scheduler passes ownership of it to this method.
2149MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2150                                                       MachineBasicBlock *MBB) {
2151  std::cerr << "If a target marks an instruction with "
2152               "'usesCustomDAGSchedInserter', it must implement "
2153               "TargetLowering::InsertAtEndOfBasicBlock!\n";
2154  abort();
2155  return 0;
2156}
2157
2158void SelectionDAGLowering::visitVAStart(CallInst &I) {
2159  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
2160                          getValue(I.getOperand(1)),
2161                          DAG.getSrcValue(I.getOperand(1))));
2162}
2163
2164void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
2165  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
2166                             getValue(I.getOperand(0)),
2167                             DAG.getSrcValue(I.getOperand(0)));
2168  setValue(&I, V);
2169  DAG.setRoot(V.getValue(1));
2170}
2171
2172void SelectionDAGLowering::visitVAEnd(CallInst &I) {
2173  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
2174                          getValue(I.getOperand(1)),
2175                          DAG.getSrcValue(I.getOperand(1))));
2176}
2177
2178void SelectionDAGLowering::visitVACopy(CallInst &I) {
2179  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
2180                          getValue(I.getOperand(1)),
2181                          getValue(I.getOperand(2)),
2182                          DAG.getSrcValue(I.getOperand(1)),
2183                          DAG.getSrcValue(I.getOperand(2))));
2184}
2185
2186// It is always conservatively correct for llvm.returnaddress and
2187// llvm.frameaddress to return 0.
2188std::pair<SDOperand, SDOperand>
2189TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
2190                                        unsigned Depth, SelectionDAG &DAG) {
2191  return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
2192}
2193
2194SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2195  assert(0 && "LowerOperation not implemented for this target!");
2196  abort();
2197  return SDOperand();
2198}
2199
2200SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
2201                                                 SelectionDAG &DAG) {
2202  assert(0 && "CustomPromoteOperation not implemented for this target!");
2203  abort();
2204  return SDOperand();
2205}
2206
2207void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
2208  unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
2209  std::pair<SDOperand,SDOperand> Result =
2210    TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
2211  setValue(&I, Result.first);
2212  DAG.setRoot(Result.second);
2213}
2214
2215/// getMemsetValue - Vectorized representation of the memset value
2216/// operand.
2217static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2218                                SelectionDAG &DAG) {
2219  MVT::ValueType CurVT = VT;
2220  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2221    uint64_t Val   = C->getValue() & 255;
2222    unsigned Shift = 8;
2223    while (CurVT != MVT::i8) {
2224      Val = (Val << Shift) | Val;
2225      Shift <<= 1;
2226      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2227    }
2228    return DAG.getConstant(Val, VT);
2229  } else {
2230    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2231    unsigned Shift = 8;
2232    while (CurVT != MVT::i8) {
2233      Value =
2234        DAG.getNode(ISD::OR, VT,
2235                    DAG.getNode(ISD::SHL, VT, Value,
2236                                DAG.getConstant(Shift, MVT::i8)), Value);
2237      Shift <<= 1;
2238      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
2239    }
2240
2241    return Value;
2242  }
2243}
2244
2245/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2246/// used when a memcpy is turned into a memset when the source is a constant
2247/// string ptr.
2248static SDOperand getMemsetStringVal(MVT::ValueType VT,
2249                                    SelectionDAG &DAG, TargetLowering &TLI,
2250                                    std::string &Str, unsigned Offset) {
2251  MVT::ValueType CurVT = VT;
2252  uint64_t Val = 0;
2253  unsigned MSB = getSizeInBits(VT) / 8;
2254  if (TLI.isLittleEndian())
2255    Offset = Offset + MSB - 1;
2256  for (unsigned i = 0; i != MSB; ++i) {
2257    Val = (Val << 8) | Str[Offset];
2258    Offset += TLI.isLittleEndian() ? -1 : 1;
2259  }
2260  return DAG.getConstant(Val, VT);
2261}
2262
2263/// getMemBasePlusOffset - Returns base and offset node for the
2264static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2265                                      SelectionDAG &DAG, TargetLowering &TLI) {
2266  MVT::ValueType VT = Base.getValueType();
2267  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2268}
2269
2270/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2271/// to replace the memset / memcpy is below the threshold. It also returns the
2272/// types of the sequence of  memory ops to perform memset / memcpy.
2273static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2274                                     unsigned Limit, uint64_t Size,
2275                                     unsigned Align, TargetLowering &TLI) {
2276  MVT::ValueType VT;
2277
2278  if (TLI.allowsUnalignedMemoryAccesses()) {
2279    VT = MVT::i64;
2280  } else {
2281    switch (Align & 7) {
2282    case 0:
2283      VT = MVT::i64;
2284      break;
2285    case 4:
2286      VT = MVT::i32;
2287      break;
2288    case 2:
2289      VT = MVT::i16;
2290      break;
2291    default:
2292      VT = MVT::i8;
2293      break;
2294    }
2295  }
2296
2297  MVT::ValueType LVT = MVT::i64;
2298  while (!TLI.isTypeLegal(LVT))
2299    LVT = (MVT::ValueType)((unsigned)LVT - 1);
2300  assert(MVT::isInteger(LVT));
2301
2302  if (VT > LVT)
2303    VT = LVT;
2304
2305  unsigned NumMemOps = 0;
2306  while (Size != 0) {
2307    unsigned VTSize = getSizeInBits(VT) / 8;
2308    while (VTSize > Size) {
2309      VT = (MVT::ValueType)((unsigned)VT - 1);
2310      VTSize >>= 1;
2311    }
2312    assert(MVT::isInteger(VT));
2313
2314    if (++NumMemOps > Limit)
2315      return false;
2316    MemOps.push_back(VT);
2317    Size -= VTSize;
2318  }
2319
2320  return true;
2321}
2322
2323void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
2324  SDOperand Op1 = getValue(I.getOperand(1));
2325  SDOperand Op2 = getValue(I.getOperand(2));
2326  SDOperand Op3 = getValue(I.getOperand(3));
2327  SDOperand Op4 = getValue(I.getOperand(4));
2328  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
2329  if (Align == 0) Align = 1;
2330
2331  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
2332    std::vector<MVT::ValueType> MemOps;
2333
2334    // Expand memset / memcpy to a series of load / store ops
2335    // if the size operand falls below a certain threshold.
2336    std::vector<SDOperand> OutChains;
2337    switch (Op) {
2338    default: break;  // Do nothing for now.
2339    case ISD::MEMSET: {
2340      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
2341                                   Size->getValue(), Align, TLI)) {
2342        unsigned NumMemOps = MemOps.size();
2343        unsigned Offset = 0;
2344        for (unsigned i = 0; i < NumMemOps; i++) {
2345          MVT::ValueType VT = MemOps[i];
2346          unsigned VTSize = getSizeInBits(VT) / 8;
2347          SDOperand Value = getMemsetValue(Op2, VT, DAG);
2348          SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, getRoot(),
2349                                        Value,
2350                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
2351                                      DAG.getSrcValue(I.getOperand(1), Offset));
2352          OutChains.push_back(Store);
2353          Offset += VTSize;
2354        }
2355      }
2356      break;
2357    }
2358    case ISD::MEMCPY: {
2359      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
2360                                   Size->getValue(), Align, TLI)) {
2361        unsigned NumMemOps = MemOps.size();
2362        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
2363        GlobalAddressSDNode *G = NULL;
2364        std::string Str;
2365        bool CopyFromStr = false;
2366
2367        if (Op2.getOpcode() == ISD::GlobalAddress)
2368          G = cast<GlobalAddressSDNode>(Op2);
2369        else if (Op2.getOpcode() == ISD::ADD &&
2370                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2371                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
2372          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
2373          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
2374        }
2375        if (G) {
2376          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2377          if (GV) {
2378            Str = GV->getStringValue(false);
2379            if (!Str.empty()) {
2380              CopyFromStr = true;
2381              SrcOff += SrcDelta;
2382            }
2383          }
2384        }
2385
2386        for (unsigned i = 0; i < NumMemOps; i++) {
2387          MVT::ValueType VT = MemOps[i];
2388          unsigned VTSize = getSizeInBits(VT) / 8;
2389          SDOperand Value, Chain, Store;
2390
2391          if (CopyFromStr) {
2392            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2393            Chain = getRoot();
2394            Store =
2395              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2396                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2397                          DAG.getSrcValue(I.getOperand(1), DstOff));
2398          } else {
2399            Value = DAG.getLoad(VT, getRoot(),
2400                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
2401                        DAG.getSrcValue(I.getOperand(2), SrcOff));
2402            Chain = Value.getValue(1);
2403            Store =
2404              DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
2405                          getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
2406                          DAG.getSrcValue(I.getOperand(1), DstOff));
2407          }
2408          OutChains.push_back(Store);
2409          SrcOff += VTSize;
2410          DstOff += VTSize;
2411        }
2412      }
2413      break;
2414    }
2415    }
2416
2417    if (!OutChains.empty()) {
2418      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains));
2419      return;
2420    }
2421  }
2422
2423  std::vector<SDOperand> Ops;
2424  Ops.push_back(getRoot());
2425  Ops.push_back(Op1);
2426  Ops.push_back(Op2);
2427  Ops.push_back(Op3);
2428  Ops.push_back(Op4);
2429  DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
2430}
2431
2432//===----------------------------------------------------------------------===//
2433// SelectionDAGISel code
2434//===----------------------------------------------------------------------===//
2435
2436unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
2437  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
2438}
2439
2440void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
2441  // FIXME: we only modify the CFG to split critical edges.  This
2442  // updates dom and loop info.
2443}
2444
2445
2446/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
2447/// casting to the type of GEPI.
2448static Value *InsertGEPComputeCode(Value *&V, BasicBlock *BB, Instruction *GEPI,
2449                                   Value *Ptr, Value *PtrOffset) {
2450  if (V) return V;   // Already computed.
2451
2452  BasicBlock::iterator InsertPt;
2453  if (BB == GEPI->getParent()) {
2454    // If insert into the GEP's block, insert right after the GEP.
2455    InsertPt = GEPI;
2456    ++InsertPt;
2457  } else {
2458    // Otherwise, insert at the top of BB, after any PHI nodes
2459    InsertPt = BB->begin();
2460    while (isa<PHINode>(InsertPt)) ++InsertPt;
2461  }
2462
2463  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
2464  // BB so that there is only one value live across basic blocks (the cast
2465  // operand).
2466  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
2467    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
2468      Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
2469
2470  // Add the offset, cast it to the right type.
2471  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
2472  Ptr = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
2473  return V = Ptr;
2474}
2475
2476
2477/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
2478/// selection, we want to be a bit careful about some things.  In particular, if
2479/// we have a GEP instruction that is used in a different block than it is
2480/// defined, the addressing expression of the GEP cannot be folded into loads or
2481/// stores that use it.  In this case, decompose the GEP and move constant
2482/// indices into blocks that use it.
2483static void OptimizeGEPExpression(GetElementPtrInst *GEPI,
2484                                  const TargetData &TD) {
2485  // If this GEP is only used inside the block it is defined in, there is no
2486  // need to rewrite it.
2487  bool isUsedOutsideDefBB = false;
2488  BasicBlock *DefBB = GEPI->getParent();
2489  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
2490       UI != E; ++UI) {
2491    if (cast<Instruction>(*UI)->getParent() != DefBB) {
2492      isUsedOutsideDefBB = true;
2493      break;
2494    }
2495  }
2496  if (!isUsedOutsideDefBB) return;
2497
2498  // If this GEP has no non-zero constant indices, there is nothing we can do,
2499  // ignore it.
2500  bool hasConstantIndex = false;
2501  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
2502       E = GEPI->op_end(); OI != E; ++OI) {
2503    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI))
2504      if (CI->getRawValue()) {
2505        hasConstantIndex = true;
2506        break;
2507      }
2508  }
2509  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
2510  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0))) return;
2511
2512  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
2513  // constant offset (which we now know is non-zero) and deal with it later.
2514  uint64_t ConstantOffset = 0;
2515  const Type *UIntPtrTy = TD.getIntPtrType();
2516  Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
2517  const Type *Ty = GEPI->getOperand(0)->getType();
2518
2519  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
2520       E = GEPI->op_end(); OI != E; ++OI) {
2521    Value *Idx = *OI;
2522    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2523      unsigned Field = cast<ConstantUInt>(Idx)->getValue();
2524      if (Field)
2525        ConstantOffset += TD.getStructLayout(StTy)->MemberOffsets[Field];
2526      Ty = StTy->getElementType(Field);
2527    } else {
2528      Ty = cast<SequentialType>(Ty)->getElementType();
2529
2530      // Handle constant subscripts.
2531      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2532        if (CI->getRawValue() == 0) continue;
2533
2534        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
2535          ConstantOffset += (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
2536        else
2537          ConstantOffset+=TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
2538        continue;
2539      }
2540
2541      // Ptr = Ptr + Idx * ElementSize;
2542
2543      // Cast Idx to UIntPtrTy if needed.
2544      Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
2545
2546      uint64_t ElementSize = TD.getTypeSize(Ty);
2547      // Mask off bits that should not be set.
2548      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
2549      Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
2550
2551      // Multiply by the element size and add to the base.
2552      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
2553      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
2554    }
2555  }
2556
2557  // Make sure that the offset fits in uintptr_t.
2558  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
2559  Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
2560
2561  // Okay, we have now emitted all of the variable index parts to the BB that
2562  // the GEP is defined in.  Loop over all of the using instructions, inserting
2563  // an "add Ptr, ConstantOffset" into each block that uses it and update the
2564  // instruction to use the newly computed value, making GEPI dead.  When the
2565  // user is a load or store instruction address, we emit the add into the user
2566  // block, otherwise we use a canonical version right next to the gep (these
2567  // won't be foldable as addresses, so we might as well share the computation).
2568
2569  std::map<BasicBlock*,Value*> InsertedExprs;
2570  while (!GEPI->use_empty()) {
2571    Instruction *User = cast<Instruction>(GEPI->use_back());
2572
2573    // If this use is not foldable into the addressing mode, use a version
2574    // emitted in the GEP block.
2575    Value *NewVal;
2576    if (!isa<LoadInst>(User) &&
2577        (!isa<StoreInst>(User) || User->getOperand(0) == GEPI)) {
2578      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
2579                                    Ptr, PtrOffset);
2580    } else {
2581      // Otherwise, insert the code in the User's block so it can be folded into
2582      // any users in that block.
2583      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
2584                                    User->getParent(), GEPI,
2585                                    Ptr, PtrOffset);
2586    }
2587    User->replaceUsesOfWith(GEPI, NewVal);
2588  }
2589
2590  // Finally, the GEP is dead, remove it.
2591  GEPI->eraseFromParent();
2592}
2593
2594bool SelectionDAGISel::runOnFunction(Function &Fn) {
2595  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
2596  RegMap = MF.getSSARegMap();
2597  DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
2598
2599  // First, split all critical edges for PHI nodes with incoming values that are
2600  // constants, this way the load of the constant into a vreg will not be placed
2601  // into MBBs that are used some other way.
2602  //
2603  // In this pass we also look for GEP instructions that are used across basic
2604  // blocks and rewrites them to improve basic-block-at-a-time selection.
2605  //
2606  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
2607    PHINode *PN;
2608    BasicBlock::iterator BBI;
2609    for (BBI = BB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI)
2610      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2611        if (isa<Constant>(PN->getIncomingValue(i)))
2612          SplitCriticalEdge(PN->getIncomingBlock(i), BB);
2613
2614    for (BasicBlock::iterator E = BB->end(); BBI != E; )
2615      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(BBI++))
2616        OptimizeGEPExpression(GEPI, TLI.getTargetData());
2617  }
2618
2619  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
2620
2621  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
2622    SelectBasicBlock(I, MF, FuncInfo);
2623
2624  return true;
2625}
2626
2627
2628SDOperand SelectionDAGISel::
2629CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
2630  SDOperand Op = SDL.getValue(V);
2631  assert((Op.getOpcode() != ISD::CopyFromReg ||
2632          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
2633         "Copy from a reg to the same reg!");
2634
2635  // If this type is not legal, we must make sure to not create an invalid
2636  // register use.
2637  MVT::ValueType SrcVT = Op.getValueType();
2638  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
2639  SelectionDAG &DAG = SDL.DAG;
2640  if (SrcVT == DestVT) {
2641    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
2642  } else if (SrcVT == MVT::Vector) {
2643    // Handle copies from generic vectors to registers.
2644    MVT::ValueType PTyElementVT, PTyLegalElementVT;
2645    unsigned NE = TLI.getPackedTypeBreakdown(cast<PackedType>(V->getType()),
2646                                             PTyElementVT, PTyLegalElementVT);
2647
2648    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
2649    // MVT::Vector type.
2650    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
2651                     DAG.getConstant(NE, MVT::i32),
2652                     DAG.getValueType(PTyElementVT));
2653
2654    // Loop over all of the elements of the resultant vector,
2655    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
2656    // copying them into output registers.
2657    std::vector<SDOperand> OutChains;
2658    SDOperand Root = SDL.getRoot();
2659    for (unsigned i = 0; i != NE; ++i) {
2660      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
2661                                  Op, DAG.getConstant(i, MVT::i32));
2662      if (PTyElementVT == PTyLegalElementVT) {
2663        // Elements are legal.
2664        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
2665      } else if (PTyLegalElementVT > PTyElementVT) {
2666        // Elements are promoted.
2667        if (MVT::isFloatingPoint(PTyLegalElementVT))
2668          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
2669        else
2670          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
2671        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
2672      } else {
2673        // Elements are expanded.
2674        // The src value is expanded into multiple registers.
2675        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
2676                                   Elt, DAG.getConstant(0, MVT::i32));
2677        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
2678                                   Elt, DAG.getConstant(1, MVT::i32));
2679        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
2680        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
2681      }
2682    }
2683    return DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains);
2684  } else if (SrcVT < DestVT) {
2685    // The src value is promoted to the register.
2686    if (MVT::isFloatingPoint(SrcVT))
2687      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
2688    else
2689      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
2690    return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
2691  } else  {
2692    // The src value is expanded into multiple registers.
2693    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
2694                               Op, DAG.getConstant(0, MVT::i32));
2695    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
2696                               Op, DAG.getConstant(1, MVT::i32));
2697    Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
2698    return DAG.getCopyToReg(Op, Reg+1, Hi);
2699  }
2700}
2701
2702void SelectionDAGISel::
2703LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
2704               std::vector<SDOperand> &UnorderedChains) {
2705  // If this is the entry block, emit arguments.
2706  Function &F = *BB->getParent();
2707  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
2708  SDOperand OldRoot = SDL.DAG.getRoot();
2709  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
2710
2711  unsigned a = 0;
2712  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
2713       AI != E; ++AI, ++a)
2714    if (!AI->use_empty()) {
2715      SDL.setValue(AI, Args[a]);
2716
2717      // If this argument is live outside of the entry block, insert a copy from
2718      // whereever we got it to the vreg that other BB's will reference it as.
2719      if (FuncInfo.ValueMap.count(AI)) {
2720        SDOperand Copy =
2721          CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
2722        UnorderedChains.push_back(Copy);
2723      }
2724    }
2725
2726  // Next, if the function has live ins that need to be copied into vregs,
2727  // emit the copies now, into the top of the block.
2728  MachineFunction &MF = SDL.DAG.getMachineFunction();
2729  if (MF.livein_begin() != MF.livein_end()) {
2730    SSARegMap *RegMap = MF.getSSARegMap();
2731    const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
2732    for (MachineFunction::livein_iterator LI = MF.livein_begin(),
2733         E = MF.livein_end(); LI != E; ++LI)
2734      if (LI->second)
2735        MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
2736                         LI->first, RegMap->getRegClass(LI->second));
2737  }
2738
2739  // Finally, if the target has anything special to do, allow it to do so.
2740  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
2741}
2742
2743
2744void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
2745       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
2746                                         FunctionLoweringInfo &FuncInfo) {
2747  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
2748
2749  std::vector<SDOperand> UnorderedChains;
2750
2751  // Lower any arguments needed in this block if this is the entry block.
2752  if (LLVMBB == &LLVMBB->getParent()->front())
2753    LowerArguments(LLVMBB, SDL, UnorderedChains);
2754
2755  BB = FuncInfo.MBBMap[LLVMBB];
2756  SDL.setCurrentBasicBlock(BB);
2757
2758  // Lower all of the non-terminator instructions.
2759  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
2760       I != E; ++I)
2761    SDL.visit(*I);
2762
2763  // Ensure that all instructions which are used outside of their defining
2764  // blocks are available as virtual registers.
2765  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
2766    if (!I->use_empty() && !isa<PHINode>(I)) {
2767      std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
2768      if (VMI != FuncInfo.ValueMap.end())
2769        UnorderedChains.push_back(
2770                           CopyValueToVirtualRegister(SDL, I, VMI->second));
2771    }
2772
2773  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
2774  // ensure constants are generated when needed.  Remember the virtual registers
2775  // that need to be added to the Machine PHI nodes as input.  We cannot just
2776  // directly add them, because expansion might result in multiple MBB's for one
2777  // BB.  As such, the start of the BB might correspond to a different MBB than
2778  // the end.
2779  //
2780
2781  // Emit constants only once even if used by multiple PHI nodes.
2782  std::map<Constant*, unsigned> ConstantsOut;
2783
2784  // Check successor nodes PHI nodes that expect a constant to be available from
2785  // this block.
2786  TerminatorInst *TI = LLVMBB->getTerminator();
2787  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
2788    BasicBlock *SuccBB = TI->getSuccessor(succ);
2789    MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
2790    PHINode *PN;
2791
2792    // At this point we know that there is a 1-1 correspondence between LLVM PHI
2793    // nodes and Machine PHI nodes, but the incoming operands have not been
2794    // emitted yet.
2795    for (BasicBlock::iterator I = SuccBB->begin();
2796         (PN = dyn_cast<PHINode>(I)); ++I)
2797      if (!PN->use_empty()) {
2798        unsigned Reg;
2799        Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
2800        if (Constant *C = dyn_cast<Constant>(PHIOp)) {
2801          unsigned &RegOut = ConstantsOut[C];
2802          if (RegOut == 0) {
2803            RegOut = FuncInfo.CreateRegForValue(C);
2804            UnorderedChains.push_back(
2805                             CopyValueToVirtualRegister(SDL, C, RegOut));
2806          }
2807          Reg = RegOut;
2808        } else {
2809          Reg = FuncInfo.ValueMap[PHIOp];
2810          if (Reg == 0) {
2811            assert(isa<AllocaInst>(PHIOp) &&
2812                   FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
2813                   "Didn't codegen value into a register!??");
2814            Reg = FuncInfo.CreateRegForValue(PHIOp);
2815            UnorderedChains.push_back(
2816                             CopyValueToVirtualRegister(SDL, PHIOp, Reg));
2817          }
2818        }
2819
2820        // Remember that this register needs to added to the machine PHI node as
2821        // the input for this MBB.
2822        MVT::ValueType VT = TLI.getValueType(PN->getType());
2823        unsigned NumElements;
2824        if (VT != MVT::Vector)
2825          NumElements = TLI.getNumElements(VT);
2826        else {
2827          MVT::ValueType VT1,VT2;
2828          NumElements =
2829            TLI.getPackedTypeBreakdown(cast<PackedType>(PN->getType()),
2830                                       VT1, VT2);
2831        }
2832        for (unsigned i = 0, e = NumElements; i != e; ++i)
2833          PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
2834      }
2835  }
2836  ConstantsOut.clear();
2837
2838  // Turn all of the unordered chains into one factored node.
2839  if (!UnorderedChains.empty()) {
2840    SDOperand Root = SDL.getRoot();
2841    if (Root.getOpcode() != ISD::EntryToken) {
2842      unsigned i = 0, e = UnorderedChains.size();
2843      for (; i != e; ++i) {
2844        assert(UnorderedChains[i].Val->getNumOperands() > 1);
2845        if (UnorderedChains[i].Val->getOperand(0) == Root)
2846          break;  // Don't add the root if we already indirectly depend on it.
2847      }
2848
2849      if (i == e)
2850        UnorderedChains.push_back(Root);
2851    }
2852    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
2853  }
2854
2855  // Lower the terminator after the copies are emitted.
2856  SDL.visit(*LLVMBB->getTerminator());
2857
2858  // Copy over any CaseBlock records that may now exist due to SwitchInst
2859  // lowering.
2860  SwitchCases.clear();
2861  SwitchCases = SDL.SwitchCases;
2862
2863  // Make sure the root of the DAG is up-to-date.
2864  DAG.setRoot(SDL.getRoot());
2865}
2866
2867void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
2868  // Run the DAG combiner in pre-legalize mode.
2869  DAG.Combine(false);
2870
2871  DEBUG(std::cerr << "Lowered selection DAG:\n");
2872  DEBUG(DAG.dump());
2873
2874  // Second step, hack on the DAG until it only uses operations and types that
2875  // the target supports.
2876  DAG.Legalize();
2877
2878  DEBUG(std::cerr << "Legalized selection DAG:\n");
2879  DEBUG(DAG.dump());
2880
2881  // Run the DAG combiner in post-legalize mode.
2882  DAG.Combine(true);
2883
2884  if (ViewISelDAGs) DAG.viewGraph();
2885
2886  // Third, instruction select all of the operations to machine code, adding the
2887  // code to the MachineBasicBlock.
2888  InstructionSelectBasicBlock(DAG);
2889
2890  DEBUG(std::cerr << "Selected machine code:\n");
2891  DEBUG(BB->dump());
2892}
2893
2894void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
2895                                        FunctionLoweringInfo &FuncInfo) {
2896  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
2897  {
2898    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
2899    CurDAG = &DAG;
2900
2901    // First step, lower LLVM code to some DAG.  This DAG may use operations and
2902    // types that are not supported by the target.
2903    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
2904
2905    // Second step, emit the lowered DAG as machine code.
2906    CodeGenAndEmitDAG(DAG);
2907  }
2908
2909  // Next, now that we know what the last MBB the LLVM BB expanded is, update
2910  // PHI nodes in successors.
2911  if (SwitchCases.empty()) {
2912    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
2913      MachineInstr *PHI = PHINodesToUpdate[i].first;
2914      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
2915             "This is not a machine PHI node that we are updating!");
2916      PHI->addRegOperand(PHINodesToUpdate[i].second);
2917      PHI->addMachineBasicBlockOperand(BB);
2918    }
2919    return;
2920  }
2921
2922  // If we generated any switch lowering information, build and codegen any
2923  // additional DAGs necessary.
2924  for(unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
2925    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
2926    CurDAG = &SDAG;
2927    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
2928    // Set the current basic block to the mbb we wish to insert the code into
2929    BB = SwitchCases[i].ThisBB;
2930    SDL.setCurrentBasicBlock(BB);
2931    // Emit the code
2932    SDL.visitSwitchCase(SwitchCases[i]);
2933    SDAG.setRoot(SDL.getRoot());
2934    CodeGenAndEmitDAG(SDAG);
2935    // Iterate over the phi nodes, if there is a phi node in a successor of this
2936    // block (for instance, the default block), then add a pair of operands to
2937    // the phi node for this block, as if we were coming from the original
2938    // BB before switch expansion.
2939    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
2940      MachineInstr *PHI = PHINodesToUpdate[pi].first;
2941      MachineBasicBlock *PHIBB = PHI->getParent();
2942      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
2943             "This is not a machine PHI node that we are updating!");
2944      if (PHIBB == SwitchCases[i].LHSBB || PHIBB == SwitchCases[i].RHSBB) {
2945        PHI->addRegOperand(PHINodesToUpdate[pi].second);
2946        PHI->addMachineBasicBlockOperand(BB);
2947      }
2948    }
2949  }
2950}
2951
2952//===----------------------------------------------------------------------===//
2953/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
2954/// target node in the graph.
2955void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
2956  if (ViewSchedDAGs) DAG.viewGraph();
2957  ScheduleDAG *SL = NULL;
2958
2959  switch (ISHeuristic) {
2960  default: assert(0 && "Unrecognized scheduling heuristic");
2961  case defaultScheduling:
2962    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
2963      SL = createSimpleDAGScheduler(noScheduling, DAG, BB);
2964    else /* TargetLowering::SchedulingForRegPressure */
2965      SL = createBURRListDAGScheduler(DAG, BB);
2966    break;
2967  case noScheduling:
2968    SL = createBFS_DAGScheduler(DAG, BB);
2969    break;
2970  case simpleScheduling:
2971    SL = createSimpleDAGScheduler(false, DAG, BB);
2972    break;
2973  case simpleNoItinScheduling:
2974    SL = createSimpleDAGScheduler(true, DAG, BB);
2975    break;
2976  case listSchedulingBURR:
2977    SL = createBURRListDAGScheduler(DAG, BB);
2978    break;
2979  case listSchedulingTD:
2980    SL = createTDListDAGScheduler(DAG, BB, CreateTargetHazardRecognizer());
2981    break;
2982  }
2983  BB = SL->Run();
2984  delete SL;
2985}
2986
2987HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
2988  return new HazardRecognizer();
2989}
2990
2991/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
2992/// by tblgen.  Others should not call it.
2993void SelectionDAGISel::
2994SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
2995  std::vector<SDOperand> InOps;
2996  std::swap(InOps, Ops);
2997
2998  Ops.push_back(InOps[0]);  // input chain.
2999  Ops.push_back(InOps[1]);  // input asm string.
3000
3001  const char *AsmStr = cast<ExternalSymbolSDNode>(InOps[1])->getSymbol();
3002  unsigned i = 2, e = InOps.size();
3003  if (InOps[e-1].getValueType() == MVT::Flag)
3004    --e;  // Don't process a flag operand if it is here.
3005
3006  while (i != e) {
3007    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
3008    if ((Flags & 7) != 4 /*MEM*/) {
3009      // Just skip over this operand, copying the operands verbatim.
3010      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
3011      i += (Flags >> 3) + 1;
3012    } else {
3013      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
3014      // Otherwise, this is a memory operand.  Ask the target to select it.
3015      std::vector<SDOperand> SelOps;
3016      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
3017        std::cerr << "Could not match memory address.  Inline asm failure!\n";
3018        exit(1);
3019      }
3020
3021      // Add this to the output node.
3022      Ops.push_back(DAG.getConstant(4/*MEM*/ | (SelOps.size() << 3), MVT::i32));
3023      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
3024      i += 2;
3025    }
3026  }
3027
3028  // Add the flag input back if present.
3029  if (e != InOps.size())
3030    Ops.push_back(InOps.back());
3031}
3032